1
|
Endzhievskaya S, Chahal K, Resnick J, Khare E, Roy S, Handel TM, Kufareva I. Essential strategies for the detection of constitutive and ligand-dependent Gi-directed activity of 7TM receptors using bioluminescence resonance energy transfer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626681. [PMID: 39713355 PMCID: PMC11661105 DOI: 10.1101/2024.12.04.626681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The constitutive (ligand-independent) signaling of G protein-coupled receptors (GPCRs) is being increasingly appreciated as an integral aspect of their function; however, it can be technically hard to detect for poorly characterized, e.g. orphan, receptors of the cAMP-inhibitory Gi-coupled (GiPCR) family. In this study, we delineate the optimal strategies for the detection of such activity across several GiPCRs in two cell lines. As our study examples, we chose two canonical GiPCRs - the constitutively active Smoothened and the ligand-activated CXCR4, - and one atypical GPCRs, the chemokine receptor ACKR3. We verified the applicability of three Bioluminescence Resonance Energy Transfer (BRET)-based assays - one measuring changes in intracellular cAMP, another in Gβγ/GRK3ct association and third in Gαi-Gβγ dissociation, - for assessing both constitutive and ligand-modulated activity of these receptors. We also revealed the possible caveats and sources of false positives, and proposed optimization strategies. All three types of assays confirmed the ligand-dependent activity of CXCR4, the controversial G protein incompetence of ACKR3, the constitutive Gi-directed activity of SMO, and its modulation by PTCH1. We also demonstrated that PTCH1 promotes SMO localization to the cell surface, thus enhancing its responsiveness not only to agonists but also to antagonists, which is a novel mechanism of regulation of a Class F GiPCR Smoothened.
Collapse
Affiliation(s)
- Sofia Endzhievskaya
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kirti Chahal
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- LigronBio Inc., San Diego, CA, USA
| | - Julie Resnick
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ekta Khare
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Suchismita Roy
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Yeung HY, Ramiro IBL, Andersen DB, Koch TL, Hamilton A, Bjørn-Yoshimoto WE, Espino S, Vakhrushev SY, Pedersen KB, de Haan N, Hipgrave Ederveen AL, Olivera BM, Knudsen JG, Bräuner-Osborne H, Schjoldager KT, Holst JJ, Safavi-Hemami H. Fish-hunting cone snail disrupts prey's glucose homeostasis with weaponized mimetics of somatostatin and insulin. Nat Commun 2024; 15:6408. [PMID: 39164229 PMCID: PMC11336141 DOI: 10.1038/s41467-024-50470-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/04/2024] [Indexed: 08/22/2024] Open
Abstract
Venomous animals have evolved diverse molecular mechanisms to incapacitate prey and defend against predators. Most venom components disrupt nervous, locomotor, and cardiovascular systems or cause tissue damage. The discovery that certain fish-hunting cone snails use weaponized insulins to induce hypoglycemic shock in prey highlights a unique example of toxins targeting glucose homeostasis. Here, we show that, in addition to insulins, the deadly fish hunter, Conus geographus, uses a selective somatostatin receptor 2 (SSTR2) agonist that blocks the release of the insulin-counteracting hormone glucagon, thereby exacerbating insulin-induced hypoglycemia in prey. The native toxin, Consomatin nG1, exists in several proteoforms with a minimized vertebrate somatostatin-like core motif connected to a heavily glycosylated N-terminal region. We demonstrate that the toxin's N-terminal tail closely mimics a glycosylated somatostatin from fish pancreas and is crucial for activating the fish SSTR2. Collectively, these findings provide a stunning example of chemical mimicry, highlight the combinatorial nature of venom components, and establish glucose homeostasis as an effective target for prey capture.
Collapse
Affiliation(s)
- Ho Yan Yeung
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
- Department of Biochemistry, University of Utah, 15 N Medical Drive, Salt Lake City, UT, 84112, USA
| | - Iris Bea L Ramiro
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Daniel B Andersen
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Thomas Lund Koch
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
- Department of Biochemistry, University of Utah, 15 N Medical Drive, Salt Lake City, UT, 84112, USA
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Alexander Hamilton
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
- Department of Clinical Sciences in Malmö, Islet Cell Exocytosis, Lund University, Malmö, Sweden
| | - Walden E Bjørn-Yoshimoto
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Samuel Espino
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Kasper B Pedersen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Noortje de Haan
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2333, ZA, Leiden, The Netherlands
| | - Agnes L Hipgrave Ederveen
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2333, ZA, Leiden, The Netherlands
| | - Baldomero M Olivera
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Jakob G Knudsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, DK-2100, Copenhagen, Denmark
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Helena Safavi-Hemami
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.
- Department of Biochemistry, University of Utah, 15 N Medical Drive, Salt Lake City, UT, 84112, USA.
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
3
|
Strauss A, Gonzalez-Hernandez AJ, Lee J, Abreu N, Selvakumar P, Salas-Estrada L, Kristt M, Arefin A, Huynh K, Marx DC, Gilliland K, Melancon BJ, Filizola M, Meyerson J, Levitz J. Structural basis of positive allosteric modulation of metabotropic glutamate receptor activation and internalization. Nat Commun 2024; 15:6498. [PMID: 39090128 PMCID: PMC11294631 DOI: 10.1038/s41467-024-50548-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
The metabotropic glutamate receptors (mGluRs) are neuromodulatory family C G protein coupled receptors which assemble as dimers and allosterically couple extracellular ligand binding domains (LBDs) to transmembrane domains (TMDs) to drive intracellular signaling. Pharmacologically, mGluRs can be targeted at the LBDs by glutamate and synthetic orthosteric compounds or at the TMDs by allosteric modulators. Despite the potential of allosteric compounds as therapeutics, an understanding of the functional and structural basis of their effects is limited. Here we use multiple approaches to dissect the functional and structural effects of orthosteric versus allosteric ligands. We find, using electrophysiological and live cell imaging assays, that both agonists and positive allosteric modulators (PAMs) can drive activation and internalization of group II and III mGluRs. The effects of PAMs are pleiotropic, boosting the maximal response to orthosteric agonists and serving independently as internalization-biased agonists across mGluR subtypes. Motivated by this and intersubunit FRET analyses, we determine cryo-electron microscopy structures of mGluR3 in the presence of either an agonist or antagonist alone or in combination with a PAM. These structures reveal PAM-driven re-shaping of intra- and inter-subunit conformations and provide evidence for a rolling TMD dimer interface activation pathway that controls G protein and beta-arrestin coupling.
Collapse
Affiliation(s)
- Alexa Strauss
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
- Tri-Institutional Program in Chemical Biology, New York, NY, 10065, USA
| | | | - Joon Lee
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Nohely Abreu
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Purushotham Selvakumar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Leslie Salas-Estrada
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melanie Kristt
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Anisul Arefin
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kevin Huynh
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Dagan C Marx
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kristen Gilliland
- Warren Center for Neuroscience Drug Discovery at Vanderbilt University, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bruce J Melancon
- Warren Center for Neuroscience Drug Discovery at Vanderbilt University, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joel Meyerson
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA.
- Tri-Institutional Program in Chemical Biology, New York, NY, 10065, USA.
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
4
|
Chen CL, Syahirah R, Ravala SK, Yen YC, Klose T, Deng Q, Tesmer JJG. Molecular basis for Gβγ-mediated activation of phosphoinositide 3-kinase γ. Nat Struct Mol Biol 2024; 31:1198-1207. [PMID: 38565696 PMCID: PMC11329362 DOI: 10.1038/s41594-024-01265-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
The conversion of phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-triphosphate by phosphoinositide 3-kinase γ (PI3Kγ) is critical for neutrophil chemotaxis and cancer metastasis. PI3Kγ is activated by Gβγ heterodimers released from G protein-coupled receptors responding to extracellular signals. Here we determined cryo-electron microscopy structures of Sus scrofa PI3Kγ-human Gβγ complexes in the presence of substrates/analogs, revealing two Gβγ binding sites: one on the p110γ helical domain and another on the p101 C-terminal domain. Comparison with PI3Kγ alone reveals conformational changes in the kinase domain upon Gβγ binding that are similar to Ras·GTP-induced changes. Assays of variants perturbing the Gβγ binding sites and interdomain contacts altered by Gβγ binding suggest that Gβγ recruits the enzyme to membranes and allosterically regulates activity via both sites. Studies of zebrafish neutrophil migration align with these findings, paving the way for in-depth investigation of Gβγ-mediated activation mechanisms in this enzyme family and drug development for PI3Kγ.
Collapse
Affiliation(s)
- Chun-Liang Chen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Ramizah Syahirah
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Sandeep K Ravala
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Yu-Chen Yen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue Cryo-EM Facility, Purdue University, West Lafayette, IN, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - John J G Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
5
|
Tanaka K, Chen M, Prendergast A, Zhuang Z, Nasiri A, Joshi D, Hintzen J, Chung M, Kumar A, Mani A, Koleske A, Crawford J, Nicoli S, Schwartz MA. Latrophilin-2 mediates fluid shear stress mechanotransduction at endothelial junctions. EMBO J 2024; 43:3175-3191. [PMID: 38886581 PMCID: PMC11294477 DOI: 10.1038/s44318-024-00142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Endothelial cell responses to fluid shear stress from blood flow are crucial for vascular development, function, and disease. A complex of PECAM-1, VE-cadherin, VEGF receptors (VEGFRs), and Plexin D1 located at cell-cell junctions mediates many of these events. However, available evidence suggests that another mechanosensor upstream of PECAM-1 initiates signaling. Hypothesizing that GPCR and Gα proteins may serve this role, we performed siRNA screening of Gα subunits and found that Gαi2 and Gαq/11 are required for activation of the junctional complex. We then developed a new activation assay, which showed that these G proteins are activated by flow. We next mapped the Gα residues required for activation and developed an affinity purification method that used this information to identify latrophilin-2 (Lphn2/ADGRL2) as the upstream GPCR. Latrophilin-2 is required for all PECAM-1 downstream events tested. In both mice and zebrafish, latrophilin-2 is required for flow-dependent angiogenesis and artery remodeling. Furthermore, endothelial-specific knockout demonstrates that latrophilin plays a role in flow-dependent artery remodeling. Human genetic data reveal a correlation between the latrophilin-2-encoding Adgrl2 gene and cardiovascular disease. Together, these results define a pathway that connects latrophilin-dependent G protein activation to subsequent endothelial signaling, vascular physiology, and disease.
Collapse
Affiliation(s)
- Keiichiro Tanaka
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA.
| | - Minghao Chen
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Andrew Prendergast
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Zhenwu Zhuang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Ali Nasiri
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Divyesh Joshi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Jared Hintzen
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Minhwan Chung
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Abhishek Kumar
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Arya Mani
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Anthony Koleske
- Department of Molecular Biochemistry and Biophysics, Yale University, New Haven, CT, USA
| | - Jason Crawford
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Stefania Nicoli
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA.
- Department of Cell Biology, Yale University, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
6
|
Matthees ESF, Filor JC, Jaiswal N, Reichel M, Youssef N, D'Uonnolo G, Szpakowska M, Drube J, König GM, Kostenis E, Chevigné A, Godbole A, Hoffmann C. GRK specificity and Gβγ dependency determines the potential of a GPCR for arrestin-biased agonism. Commun Biol 2024; 7:802. [PMID: 38956302 PMCID: PMC11220067 DOI: 10.1038/s42003-024-06490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are mainly regulated by GPCR kinase (GRK) phosphorylation and subsequent β-arrestin recruitment. The ubiquitously expressed GRKs are classified into cytosolic GRK2/3 and membrane-tethered GRK5/6 subfamilies. GRK2/3 interact with activated G protein βγ-subunits to translocate to the membrane. Yet, this need was not linked as a factor for bias, influencing the effectiveness of β-arrestin-biased agonist creation. Using multiple approaches such as GRK2/3 mutants unable to interact with Gβγ, membrane-tethered GRKs and G protein inhibitors in GRK2/3/5/6 knockout cells, we show that G protein activation will precede GRK2/3-mediated β-arrestin2 recruitment to activated receptors. This was independent of the source of free Gβγ and observable for Gs-, Gi- and Gq-coupled GPCRs. Thus, β-arrestin interaction for GRK2/3-regulated receptors is inseparably connected with G protein activation. We outline a theoretical framework of how GRK dependence on free Gβγ can determine a GPCR's potential for biased agonism. Due to this inherent cellular mechanism for GRK2/3 recruitment and receptor phosphorylation, we anticipate generation of β-arrestin-biased ligands to be mechanistically challenging for the subgroup of GPCRs exclusively regulated by GRK2/3, but achievable for GRK5/6-regulated receptors, that do not demand liberated Gβγ. Accordingly, GRK specificity of any GPCR is foundational for developing arrestin-biased ligands.
Collapse
Affiliation(s)
- Edda S F Matthees
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine; Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - Jenny C Filor
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine; Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - Natasha Jaiswal
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine; Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mona Reichel
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine; Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - Noureldine Youssef
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine; Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - Giulia D'Uonnolo
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Julia Drube
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine; Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - Gabriele M König
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Amod Godbole
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine; Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - Carsten Hoffmann
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine; Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany.
| |
Collapse
|
7
|
Sanchez GA, Smrcka AV, Jutkiewicz EM. Biasing G βγ Downstream Signaling with Gallein Inhibits Development of Morphine Tolerance and Potentiates Morphine-Induced Nociception in a Tolerant State. Mol Pharmacol 2024; 106:47-55. [PMID: 38769020 PMCID: PMC11187686 DOI: 10.1124/molpharm.124.000875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Opioid analgesics are widely used as a treatment option for pain management and relief. However, the misuse of opioid analgesics has contributed to the current opioid epidemic in the United States. Prescribed opioids such as morphine, codeine, oxycodone, and fentanyl are mu-opioid receptor (MOR) agonists primarily used in the clinic to treat pain or during medical procedures, but development of tolerance limits their utility for treatment of chronic pain. Here we explored the effects of biasing Gβγ signaling on tolerance development after chronic morphine treatment in vivo. We hypothesized that biasing Gβγ signaling with gallein could prevent activation of regulatory signaling pathways that result in tolerance to antinociceptive effects of MOR agonists. Gallein has been shown to bind to Gβγ and inhibit interactions of Gβγ with phospholipase-Cβ3 (PLCβ3) or G-protein-coupled receptor kinase 2 (GRK2) but not G-protein inwardly rectifying potassium (GIRK) channels. In mice, morphine-induced antinociception was evaluated in the 55°C warm water tail withdrawal assay. We used two paradigms for gallein treatment: administration during and after three times-daily morphine administration. Our results show that gallein cotreatment during repeated administration of morphine decreased opioid tolerance development and that gallein treatment in an opioid-tolerant state enhanced the potency of morphine. Mechanistically, our data suggest that PLCβ3 is necessary for potentiating effects of gallein in an opioid-tolerant state but not in preventing the development of tolerance. These studies demonstrate that small molecules that target Gβγ signaling could reduce the need for large doses of opioid analgesics to treat pain by producing an opioid-sparing effect. SIGNIFICANCE STATEMENT: Biasing Gβγ signaling prevents tolerance to repeated morphine administration in vivo and potentiates the antinociceptive effects of morphine in an opioid-tolerant state. Mechanistically, phospholipase-Cβ is necessary for potentiating effects of gallein in an opioid-tolerant state but not in preventing the development of tolerance. This study identifies a novel treatment strategy to decrease the development of tolerance to the analgesic effects of mu-opioid receptor agonists, which are necessary to improve pain treatment and decrease the incidence of opioid use disorder.
Collapse
Affiliation(s)
- Gissell A Sanchez
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Alan V Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
8
|
Tanaka K, Chen M, Prendergast A, Zhuang Z, Nasiri A, Joshi D, Hintzen J, Chung M, Kumar A, Mani A, Koleske A, Crawford J, Nicoli S, Schwartz MA. Latrophilin-2 mediates fluid shear stress mechanotransduction at endothelial junctions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598386. [PMID: 38915515 PMCID: PMC11195282 DOI: 10.1101/2024.06.13.598386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Endothelial cell responses to fluid shear stress from blood flow are crucial for vascular development, function and disease. A complex of PECAM-1, VE-cadherin, VEGF receptors (VEGFRs) and PlexinD1 located at cell-cell junctions mediates many of these events. But available evidence suggests that another mechanosensor upstream of PECAM-1 initiates signaling. Hypothesizing that GPCR and Gα proteins may serve this role, we performed siRNA screening of Gα subunits and found that Gαi2 and Gαq/11 are required for activation of the junctional complex. We then developed a new activation assay, which showed that these G proteins are activated by flow. We next mapped the Gα residues required for activation and developed an affinity purification method that used this information to identify latrophilin-2 (Lphn-2/ADGRL2) as the upstream GPCR. Latrophilin-2 is required for all PECAM-1 downstream events tested. In both mice and zebrafish, latrophilin-2 is required for flow-dependent angiogenesis and artery remodeling. Furthermore, endothelial specific knockout demonstrates that latrophilin plays a role in flow-dependent artery remodeling. Human genetic data reveal a correlation between the latrophilin-2-encoding Adgrl2 gene and cardiovascular disease. Together, these results define a pathway that connects latrophilin-dependent G protein activation to subsequent endothelial signaling, vascular physiology and disease.
Collapse
|
9
|
Manning JJ, Finlay DB, Glass M. GPCR kinase subtype requirements for arrestin-2 and -3 translocation to the cannabinoid CB 1 receptor and the consequences on G protein signalling. Biochem Pharmacol 2024; 224:116190. [PMID: 38604257 DOI: 10.1016/j.bcp.2024.116190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
Arrestins are key negative regulators of G Protein-Coupled Receptors (GPCRs) through mediation of G protein desensitisation and receptor internalisation. Arrestins can also contribute to signal transduction by scaffolding downstream signalling effectors for activation. GPCR kinase (GRK) enzymes phosphorylate the intracellular C-terminal domain, or intracellular loop regions of GPCRs to promote arrestin interaction. There are seven different GRK subtypes, which may uniquely phosphorylate the C-terminal tail in a type of 'phosphorylation barcode,' potentially differentially contributing to arrestin translocation and arrestin-dependent signalling. Such contributions may be exploited to develop arrestin-biased ligands. Here, we examine the effect of different GRK subtypes on the ability to promote translocation of arrestin-2 and arrestin-3 to the cannabinoid CB1 receptor (CB1) with a range of ligands. We find that most GRK subtypes (including visual GRK1) can enhance arrestin-2 and -3 translocation to CB1, and that GRK-dependent changes in arrestin-2 and arrestin-3 translocation were broadly shared for most agonists tested. GRK2/3 generally enhanced arrestin translocation more than the other GRK subtypes, with some small differences between ligands. We also explore the interplay between G protein activity and GRK2/3-dependent arrestin translocation, highlighting that high-efficacy G protein agonists will cause GRK2/3 dependent arrestin translocation. This study supports the hypothesis that arrestin-biased ligands for CB1 must engage GRK5/6 rather than GRK2/3, and G protein-biased ligands must have inherently low efficacy.
Collapse
Affiliation(s)
- Jamie J Manning
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David B Finlay
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Michelle Glass
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
10
|
Lefevre TJ, Wei W, Mukhaleva E, Meda Venkata SP, Chandan NR, Abraham S, Li Y, Dessauer CW, Vaidehi N, Smrcka AV. Stabilization of interdomain interactions in G protein α subunits as a determinant of Gα i subtype signaling specificity. J Biol Chem 2024; 300:107211. [PMID: 38522511 PMCID: PMC11066577 DOI: 10.1016/j.jbc.2024.107211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
Highly homologous members of the Gαi family, Gαi1-3, have distinct tissue distributions and physiological functions, yet their biochemical and functional properties are very similar. We recently identified PDZ-RhoGEF (PRG) as a novel Gαi1 effector that is poorly activated by Gαi2. In a proteomic proximity labeling screen we observed a strong preference for Gαi1 relative to Gαi2 with respect to engagement of a broad range of potential targets. We investigated the mechanistic basis for this selectivity using PRG as a representative target. Substitution of either the helical domain (HD) from Gαi1 into Gαi2 or substitution of a single amino acid, A230 in Gαi2 with the corresponding D in Gαi1, largely rescues PRG activation and interactions with other potential Gαi targets. Molecular dynamics simulations combined with Bayesian network models revealed that in the GTP bound state, separation at the HD-Ras-like domain (RLD) interface is more pronounced in Gαi2 than Gαi1. Mutation of A230 to D in Gαi2 stabilizes HD-RLD interactions via ionic interactions with R145 in the HD which in turn modify the conformation of Switch III. These data support a model where D229 in Gαi1 interacts with R144 and stabilizes a network of interactions between HD and RLD to promote protein target recognition. The corresponding A230 in Gαi2 is unable to stabilize this network leading to an overall lower efficacy with respect to target interactions. This study reveals distinct mechanistic properties that could underly differential biological and physiological consequences of activation of Gαi1 or Gαi2 by G protein-coupled receptors.
Collapse
Affiliation(s)
- Tyler J Lefevre
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Wenyuan Wei
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Elizaveta Mukhaleva
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | | | - Naincy R Chandan
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Genentech, South San Francisco, California, USA
| | - Saji Abraham
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yong Li
- Department of Integrative Biology and Pharmacology McGovern Medical School, UTHealth, Houston, Texas, USA
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology McGovern Medical School, UTHealth, Houston, Texas, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Alan V Smrcka
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
11
|
Hammill AM, Boscolo E. Capillary malformations. J Clin Invest 2024; 134:e172842. [PMID: 38618955 PMCID: PMC11014659 DOI: 10.1172/jci172842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Capillary malformation (CM), or port wine birthmark, is a cutaneous congenital vascular anomaly that occurs in 0.1%-2% of newborns. Patients with a CM localized on the forehead have an increased risk of developing a neurocutaneous disorder called encephalotrigeminal angiomatosis or Sturge-Weber syndrome (SWS), with complications including seizure, developmental delay, glaucoma, and vision loss. In 2013, a groundbreaking study revealed causative activating somatic mutations in the gene (GNAQ) encoding guanine nucleotide-binding protein Q subunit α (Gαq) in CM and SWS patient tissues. In this Review, we discuss the disease phenotype, the causative GNAQ mutations, and their cellular origin. We also present the endothelial Gαq-related signaling pathways, the current animal models to study CM and its complications, and future options for therapeutic treatment. Further work remains to fully elucidate the cellular and molecular mechanisms underlying the formation and maintenance of the abnormal vessels.
Collapse
Affiliation(s)
- Adrienne M. Hammill
- Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Elisa Boscolo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
12
|
Lao-Peregrin C, Xiang G, Kim J, Srivastava I, Fall AB, Gerhard DM, Kohtala P, Kim D, Song M, Garcia-Marcos M, Levitz J, Lee FS. Synaptic plasticity via receptor tyrosine kinase/G-protein-coupled receptor crosstalk. Cell Rep 2024; 43:113595. [PMID: 38117654 PMCID: PMC10844890 DOI: 10.1016/j.celrep.2023.113595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023] Open
Abstract
Cellular signaling involves a large repertoire of membrane receptors operating in overlapping spatiotemporal regimes and targeting many common intracellular effectors. However, both the molecular mechanisms and the physiological roles of crosstalk between receptors, especially those from different superfamilies, are poorly understood. We find that the receptor tyrosine kinase (RTK) TrkB and the G-protein-coupled receptor (GPCR) metabotropic glutamate receptor 5 (mGluR5) together mediate hippocampal synaptic plasticity in response to brain-derived neurotrophic factor (BDNF). Activated TrkB enhances constitutive mGluR5 activity to initiate a mode switch that drives BDNF-dependent sustained, oscillatory Ca2+ signaling and enhanced MAP kinase activation. This crosstalk is mediated, in part, by synergy between Gβγ, released by TrkB, and Gαq-GTP, released by mGluR5, to enable physiologically relevant RTK/GPCR crosstalk.
Collapse
Affiliation(s)
| | - Guoqing Xiang
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jihye Kim
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA
| | - Ipsit Srivastava
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alexandra B Fall
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA
| | - Danielle M Gerhard
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA
| | - Piia Kohtala
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA
| | - Daegeon Kim
- Department of Life Sciences, Yeongnam University, Gyeongsan, Gyeongbuk 38451, South Korea
| | - Minseok Song
- Department of Life Sciences, Yeongnam University, Gyeongsan, Gyeongbuk 38451, South Korea
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Joshua Levitz
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine. New York, NY 10065, USA.
| |
Collapse
|
13
|
Burghi V, Paradis JS, Officer A, Adame-Garcia SR, Wu X, Matthees ESF, Barsi-Rhyne B, Ramms DJ, Clubb L, Acosta M, Tamayo P, Bouvier M, Inoue A, von Zastrow M, Hoffmann C, Gutkind JS. Gαs is dispensable for β-arrestin coupling but dictates GRK selectivity and is predominant for gene expression regulation by β2-adrenergic receptor. J Biol Chem 2023; 299:105293. [PMID: 37774973 PMCID: PMC10641165 DOI: 10.1016/j.jbc.2023.105293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/03/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023] Open
Abstract
β-arrestins play a key role in G protein-coupled receptor (GPCR) internalization, trafficking, and signaling. Whether β-arrestins act independently of G protein-mediated signaling has not been fully elucidated. Studies using genome-editing approaches revealed that whereas G proteins are essential for mitogen-activated protein kinase activation by GPCRs., β-arrestins play a more prominent role in signal compartmentalization. However, in the absence of G proteins, GPCRs may not activate β-arrestins, thereby limiting the ability to distinguish G protein from β-arrestin-mediated signaling events. We used β2-adrenergic receptor (β2AR) and its β2AR-C tail mutant expressed in human embryonic kidney 293 cells wildtype or CRISPR-Cas9 gene edited for Gαs, β-arrestin1/2, or GPCR kinases 2/3/5/6 in combination with arrestin conformational sensors to elucidate the interplay between Gαs and β-arrestins in controlling gene expression. We found that Gαs is not required for β2AR and β-arrestin conformational changes, β-arrestin recruitment, and receptor internalization, but that Gαs dictates the GPCR kinase isoforms involved in β-arrestin recruitment. By RNA-Seq analysis, we found that protein kinase A and mitogen-activated protein kinase gene signatures were activated by stimulation of β2AR in wildtype and β-arrestin1/2-KO cells but absent in Gαs-KO cells. These results were validated by re-expressing Gαs in the corresponding KO cells and silencing β-arrestins in wildtype cells. These findings were extended to cellular systems expressing endogenous levels of β2AR. Overall, our results support that Gs is essential for β2AR-promoted protein kinase A and mitogen-activated protein kinase gene expression signatures, whereas β-arrestins initiate signaling events modulating Gαs-driven nuclear transcriptional activity.
Collapse
Affiliation(s)
- Valeria Burghi
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Justine S Paradis
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Adam Officer
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Sendi Rafael Adame-Garcia
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Xingyu Wu
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Edda S F Matthees
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Benjamin Barsi-Rhyne
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Dana J Ramms
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Lauren Clubb
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Monica Acosta
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Pablo Tamayo
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Québec, Canada
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Mark von Zastrow
- Department of Psychiatry and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Carsten Hoffmann
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA; Department of Pharmacology, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
14
|
Marcus DJ, Bruchas MR. Optical Approaches for Investigating Neuromodulation and G Protein-Coupled Receptor Signaling. Pharmacol Rev 2023; 75:1119-1139. [PMID: 37429736 PMCID: PMC10595021 DOI: 10.1124/pharmrev.122.000584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/06/2023] [Accepted: 05/01/2023] [Indexed: 07/12/2023] Open
Abstract
Despite the fact that roughly 40% of all US Food and Drug Administration (FDA)-approved pharmacological therapeutics target G protein-coupled receptors (GPCRs), there remains a gap in our understanding of the physiologic and functional role of these receptors at the systems level. Although heterologous expression systems and in vitro assays have revealed a tremendous amount about GPCR signaling cascades, how these cascades interact across cell types, tissues, and organ systems remains obscure. Classic behavioral pharmacology experiments lack both the temporal and spatial resolution to resolve these long-standing issues. Over the past half century, there has been a concerted effort toward the development of optical tools for understanding GPCR signaling. From initial ligand uncaging approaches to more recent development of optogenetic techniques, these strategies have allowed researchers to probe longstanding questions in GPCR pharmacology both in vivo and in vitro. These tools have been employed across biologic systems and have allowed for interrogation of everything from specific intramolecular events to pharmacology at the systems level in a spatiotemporally specific manner. In this review, we present a historical perspective on the motivation behind and development of a variety of optical toolkits that have been generated to probe GPCR signaling. Here we highlight how these tools have been used in vivo to uncover the functional role of distinct populations of GPCRs and their signaling cascades at a systems level. SIGNIFICANCE STATEMENT: G protein-coupled receptors (GPCRs) remain one of the most targeted classes of proteins for pharmaceutical intervention, yet we still have a limited understanding of how their unique signaling cascades effect physiology and behavior at the systems level. In this review, we discuss a vast array of optical techniques that have been devised to probe GPCR signaling both in vitro and in vivo.
Collapse
Affiliation(s)
- David J Marcus
- Center for the Neurobiology of Addiction, Pain and Emotion (D.J.M., M.R.B.), Department of Anesthesiology and Pain Medicine (D.J.M., M.R.B.), Department of Pharmacology (M.R.B.), and Department of Bioengineering (M.R.B.), University of Washington, Seattle, Washington
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain and Emotion (D.J.M., M.R.B.), Department of Anesthesiology and Pain Medicine (D.J.M., M.R.B.), Department of Pharmacology (M.R.B.), and Department of Bioengineering (M.R.B.), University of Washington, Seattle, Washington
| |
Collapse
|
15
|
Lao-Peregrin C, Xiang G, Kim J, Srivastava I, Fall AB, Gerhard DM, Kohtala P, Kim D, Song M, Garcia-Marcos M, Levitz J, Lee FS. Synaptic plasticity via receptor tyrosine kinase/G protein-coupled receptor crosstalk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555210. [PMID: 37693535 PMCID: PMC10491144 DOI: 10.1101/2023.08.28.555210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Cellular signaling involves a large repertoire of membrane receptors operating in overlapping spatiotemporal regimes and targeting many common intracellular effectors. However, both the molecular mechanisms and physiological roles of crosstalk between receptors, especially those from different superfamilies, are poorly understood. We find that the receptor tyrosine kinase (RTK), TrkB, and the G protein-coupled receptor (GPCR), metabotropic glutamate receptor 5 (mGluR5), together mediate a novel form of hippocampal synaptic plasticity in response to brain-derived neurotrophic factor (BDNF). Activated TrkB enhances constitutive mGluR5 activity to initiate a mode-switch that drives BDNF-dependent sustained, oscillatory Ca 2+ signaling and enhanced MAP kinase activation. This crosstalk is mediated, in part, by synergy between Gβγ, released by TrkB, and Gα q -GTP, released by mGluR5, to enable a previously unidentified form of physiologically relevant RTK/GPCR crosstalk.
Collapse
|
16
|
Strauss A, Gonzalez-Hernandez AJ, Lee J, Abreu N, Selvakumar P, Salas-Estrada L, Kristt M, Marx DC, Gilliland K, Melancon BJ, Filizola M, Meyerson J, Levitz J. Structural basis of allosteric modulation of metabotropic glutamate receptor activation and desensitization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.552748. [PMID: 37645747 PMCID: PMC10461995 DOI: 10.1101/2023.08.13.552748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The metabotropic glutamate receptors (mGluRs) are neuromodulatory family C G protein coupled receptors which assemble as dimers and allosterically couple extracellular ligand binding domains (LBDs) to transmembrane domains (TMDs) to drive intracellular signaling. Pharmacologically, mGluRs can be targeted either at the LBDs by glutamate and synthetic orthosteric compounds or at the TMDs by allosteric modulators. Despite the potential of allosteric TMD-targeting compounds as therapeutics, an understanding of the functional and structural basis of their effects on mGluRs is limited. Here we use a battery of approaches to dissect the distinct functional and structural effects of orthosteric versus allosteric ligands. We find using electrophysiological and live cell imaging assays that both agonists and positive allosteric modulators (PAMs) can drive activation and desensitization of mGluRs. The effects of PAMs are pleiotropic, including both the ability to boost the maximal response to orthosteric agonists and to serve independently as desensitization-biased agonists across mGluR subtypes. Conformational sensors reveal PAM-driven inter-subunit re-arrangements at both the LBD and TMD. Motivated by this, we determine cryo-electron microscopy structures of mGluR3 in the presence of either an agonist or antagonist alone or in combination with a PAM. These structures reveal PAM-driven re-shaping of intra- and inter-subunit conformations and provide evidence for a rolling TMD dimer interface activation pathway that controls G protein and beta-arrestin coupling. Highlights -Agonists and PAMs drive mGluR activation, desensitization, and endocytosis-PAMs are desensitization-biased and synergistic with agonists-Four combinatorial ligand conditions reveal an ensemble of full-length mGluR structures with novel interfaces-Activation and desensitization involve rolling TMD interfaces which are re-shaped by PAM.
Collapse
|
17
|
Duan J, Liu H, Zhao F, Yuan Q, Ji Y, Cai X, He X, Li X, Li J, Wu K, Gao T, Zhu S, Lin S, Wang MW, Cheng X, Yin W, Jiang Y, Yang D, Xu HE. GPCR activation and GRK2 assembly by a biased intracellular agonist. Nature 2023; 620:676-681. [PMID: 37532940 DOI: 10.1038/s41586-023-06395-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Phosphorylation of G-protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) desensitizes G-protein signalling and promotes arrestin signalling, which is also modulated by biased ligands1-6. The molecular assembly of GRKs on GPCRs and the basis of GRK-mediated biased signalling remain largely unknown owing to the weak GPCR-GRK interactions. Here we report the complex structure of neurotensin receptor 1 (NTSR1) bound to GRK2, Gαq and the arrestin-biased ligand SBI-5537. The density map reveals the arrangement of the intact GRK2 with the receptor, with the N-terminal helix of GRK2 docking into the open cytoplasmic pocket formed by the outward movement of the receptor transmembrane helix 6, analogous to the binding of the G protein to the receptor. SBI-553 binds at the interface between GRK2 and NTSR1 to enhance GRK2 binding. The binding mode of SBI-553 is compatible with arrestin binding but clashes with the binding of Gαq protein, thus providing a mechanism for its arrestin-biased signalling capability. In sum, our structure provides a rational model for understanding the details of GPCR-GRK interactions and GRK2-mediated biased signalling.
Collapse
Affiliation(s)
- Jia Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Heng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fenghui Zhao
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qingning Yuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yujie Ji
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqing Cai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinzhu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Junrui Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kai Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tianyu Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shengnan Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shi Lin
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Ming-Wei Wang
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wanchao Yin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Jiang
- Lingang Laboratory, Shanghai, China
| | - Dehua Yang
- University of Chinese Academy of Sciences, Beijing, China.
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
18
|
Park JC, Luebbers A, Dao M, Semeano A, Nguyen AM, Papakonstantinou MP, Broselid S, Yano H, Martemyanov KA, Garcia-Marcos M. Fine-tuning GPCR-mediated neuromodulation by biasing signaling through different G protein subunits. Mol Cell 2023; 83:2540-2558.e12. [PMID: 37390816 PMCID: PMC10527995 DOI: 10.1016/j.molcel.2023.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
G-protein-coupled receptors (GPCRs) mediate neuromodulation through the activation of heterotrimeric G proteins (Gαβγ). Classical models depict that G protein activation leads to a one-to-one formation of Gα-GTP and Gβγ species. Each of these species propagates signaling by independently acting on effectors, but the mechanisms by which response fidelity is ensured by coordinating Gα and Gβγ responses remain unknown. Here, we reveal a paradigm of G protein regulation whereby the neuronal protein GINIP (Gα inhibitory interacting protein) biases inhibitory GPCR responses to favor Gβγ over Gα signaling. Tight binding of GINIP to Gαi-GTP precludes its association with effectors (adenylyl cyclase) and, simultaneously, with regulator-of-G-protein-signaling (RGS) proteins that accelerate deactivation. As a consequence, Gαi-GTP signaling is dampened, whereas Gβγ signaling is enhanced. We show that this mechanism is essential to prevent the imbalances of neurotransmission that underlie increased seizure susceptibility in mice. Our findings reveal an additional layer of regulation within a quintessential mechanism of signal transduction that sets the tone of neurotransmission.
Collapse
Affiliation(s)
- Jong-Chan Park
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Alex Luebbers
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Maria Dao
- U.F. Scripps Biomedical Research, University of Florida, Jupiter, FL 33458, USA
| | - Ana Semeano
- Department of Pharmaceutical Sciences, Center for Drug Discovery, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Anh Minh Nguyen
- Department of Pharmaceutical Sciences, Center for Drug Discovery, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Maria P Papakonstantinou
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Stefan Broselid
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Hideaki Yano
- Department of Pharmaceutical Sciences, Center for Drug Discovery, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | | | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Iverson TM, Singh PK, Cecchini G. An evolving view of complex II-noncanonical complexes, megacomplexes, respiration, signaling, and beyond. J Biol Chem 2023; 299:104761. [PMID: 37119852 PMCID: PMC10238741 DOI: 10.1016/j.jbc.2023.104761] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023] Open
Abstract
Mitochondrial complex II is traditionally studied for its participation in two key respiratory processes: the electron transport chain and the Krebs cycle. There is now a rich body of literature explaining how complex II contributes to respiration. However, more recent research shows that not all of the pathologies associated with altered complex II activity clearly correlate with this respiratory role. Complex II activity has now been shown to be necessary for a range of biological processes peripherally related to respiration, including metabolic control, inflammation, and cell fate. Integration of findings from multiple types of studies suggests that complex II both participates in respiration and controls multiple succinate-dependent signal transduction pathways. Thus, the emerging view is that the true biological function of complex II is well beyond respiration. This review uses a semichronological approach to highlight major paradigm shifts that occurred over time. Special emphasis is given to the more recently identified functions of complex II and its subunits because these findings have infused new directions into an established field.
Collapse
Affiliation(s)
- T M Iverson
- Departments of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Departments of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA.
| | - Prashant K Singh
- Departments of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Gary Cecchini
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, California, USA; Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA.
| |
Collapse
|
20
|
Chen CL, Syahirah R, Ravala SK, Yen YC, Klose T, Deng Q, Tesmer JJG. Molecular basis for Gβγ-mediated activation of phosphoinositide 3-kinase γ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539492. [PMID: 37205329 PMCID: PMC10187307 DOI: 10.1101/2023.05.04.539492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The conversion of PIP2 to PIP3 by phosphoinositide 3-kinase γ (PI3Kγ) is a critical step in neutrophil chemotaxis and is essential for metastasis in many types of cancer. PI3Kγ is activated via directed interaction with Gβγ heterodimers released from cell-surface G protein-coupled receptors (GPCRs) responding to extracellular signals. To resolve how Gβγ activates PI3Kγ, we determined cryo-EM reconstructions of PI3Kγ-Gβγ complexes in the presence of various substrates/analogs, revealing two distinct Gβγ binding sites, one on the p110γ helical domain and one on the C-terminal domain of the p101 subunit. Comparison of these complexes with structures of PI3Kγ alone demonstrates conformational changes in the kinase domain upon Gβγ binding similar to those induced by Ras·GTP. Assays of variants perturbing the two Gβγ binding sites and interdomain contacts that change upon Gβγ binding suggest that Gβγ not only recruits the enzyme to membranes but also allosterically controls activity via both sites. Studies in a zebrafish model examining neutrophil migration are consistent with these results. These findings set the stage for future detailed investigation of Gβγ-mediated activation mechanisms in this enzyme family and will aid in developing drugs selective for PI3Kγ.
Collapse
Affiliation(s)
- Chun-Liang Chen
- Departments of Biological Sciences & Medicinal Chemistry and Molecular Pharmacology, Purdue University. 240 S. Martin Jischke Drive, West Lafayette, IN 47907
| | - Ramizah Syahirah
- Department of Biological Sciences, Purdue University. 915 W State St, West Lafayette, IN 47907
| | - Sandeep K Ravala
- Departments of Biological Sciences & Medicinal Chemistry and Molecular Pharmacology, Purdue University. 240 S. Martin Jischke Drive, West Lafayette, IN 47907
| | - Yu-Chen Yen
- Departments of Biological Sciences & Medicinal Chemistry and Molecular Pharmacology, Purdue University. 240 S. Martin Jischke Drive, West Lafayette, IN 47907
| | - Thomas Klose
- Purdue Cryo-EM Facility, Purdue University. 240 S. Martin Jischke Drive, West Lafayette, IN 47907
| | - Qing Deng
- Department of Biological Sciences, Purdue University. 915 W State St, West Lafayette, IN 47907
- Purdue Institute for Inflammation, Immunology & Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - John J G Tesmer
- Departments of Biological Sciences & Medicinal Chemistry and Molecular Pharmacology, Purdue University. 240 S. Martin Jischke Drive, West Lafayette, IN 47907
| |
Collapse
|
21
|
Lefevre TJ, Wei W, Mukhaleva E, Venkata SPM, Chandan NR, Abraham S, Li Y, Dessauer CW, Vaidehi N, Smrcka AV. Stabilization of Interdomain Interactions in G protein α i Subunits Determines Gα i Subtype Signaling Specificity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532072. [PMID: 37066214 PMCID: PMC10103935 DOI: 10.1101/2023.03.10.532072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Highly homologous members of the Gαi family, Gαi1-3, have distinct tissue distributions and physiological functions, yet the functional properties of these proteins with respect to GDP/GTP binding and regulation of adenylate cyclase are very similar. We recently identified PDZ-RhoGEF (PRG) as a novel Gαi1 effector, however, it is poorly activated by Gαi2. Here, in a proteomic proximity labeling screen we observed a strong preference for Gαi1 relative to Gαi2 with respect to engagement of a broad range of potential targets. We investigated the mechanistic basis for this selectivity using PRG as a representative target. Substitution of either the helical domain (HD) from Gαi1 into Gαi2 or substitution of a single amino acid, A230 in Gαi2 to the corresponding D in Gαi1, largely rescues PRG activation and interactions with other Gαi targets. Molecular dynamics simulations combined with Bayesian network models revealed that in the GTP bound state, dynamic separation at the HD-Ras-like domain (RLD) interface is prevalent in Gαi2 relative to Gαi1 and that mutation of A230s4h3.3 to D in Gαi2 stabilizes HD-RLD interactions through formation of an ionic interaction with R145HD.11 in the HD. These interactions in turn modify the conformation of Switch III. These data support a model where D229s4h3.3 in Gαi1 interacts with R144HD.11 stabilizes a network of interactions between HD and RLD to promote protein target recognition. The corresponding A230 in Gαi2 is unable to form the "ionic lock" to stabilize this network leading to an overall lower efficacy with respect to target interactions. This study reveals distinct mechanistic properties that could underly differential biological and physiological consequences of activation of Gαi1 or Gαi2 by GPCRs.
Collapse
Affiliation(s)
- Tyler J. Lefevre
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI
| | - Wenyuan Wei
- Department of Integrative Biology and Pharmacology McGovern Medical School, UTHealth, Houston, TX
| | - Elizaveta Mukhaleva
- Department of Integrative Biology and Pharmacology McGovern Medical School, UTHealth, Houston, TX
| | | | - Naincy R. Chandan
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
- Genentech, South San Francisco, CA
| | - Saji Abraham
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Yong Li
- Department of Integrative Biology and Pharmacology McGovern Medical School, UTHealth, Houston, TX
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology McGovern Medical School, UTHealth, Houston, TX
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA
| | - Alan V. Smrcka
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
22
|
Chen XR, Igumenova TI. Regulation of eukaryotic protein kinases by Pin1, a peptidyl-prolyl isomerase. Adv Biol Regul 2023; 87:100938. [PMID: 36496344 PMCID: PMC9992314 DOI: 10.1016/j.jbior.2022.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
The peptidyl-prolyl isomerase Pin1 cooperates with proline-directed kinases and phosphatases to regulate multiple oncogenic pathways. Pin1 specifically recognizes phosphorylated Ser/Thr-Pro motifs in proteins and catalyzes their cis-trans isomerization. The Pin1-catalyzed conformational changes determine the stability, activity, and subcellular localization of numerous protein substrates. We conducted a survey of eukaryotic protein kinases that are regulated by Pin1 and whose Pin1 binding sites have been identified. Our analyses reveal that Pin1 target sites in kinases do not fall exclusively within the intrinsically disordered regions of these enzymes. Rather, they fall into three groups based on their location: (i) within the catalytic kinase domain, (ii) in the C-terminal kinase region, and (iii) in regulatory domains. Some of the kinases downregulated by Pin1 activity are tumor-suppressing, and all kinases upregulated by Pin1 activity are functionally pro-oncogenic. These findings further reinforce the rationale for developing Pin1-specific inhibitors as attractive pharmaceuticals for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Ru Chen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
23
|
Xiang G, Acosta-Ruiz A, Radoux-Mergault A, Kristt M, Kim J, Moon JD, Broichhagen J, Inoue A, Lee FS, Stoeber M, Dittman JS, Levitz J. Control of Gα q signaling dynamics and GPCR cross-talk by GRKs. SCIENCE ADVANCES 2022; 8:eabq3363. [PMID: 36427324 PMCID: PMC9699688 DOI: 10.1126/sciadv.abq3363] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/06/2022] [Indexed: 05/04/2023]
Abstract
Numerous processes contribute to the regulation of G protein-coupled receptors (GPCRs), but relatively little is known about rapid mechanisms that control signaling on the seconds time scale or regulate cross-talk between receptors. Here, we reveal that the ability of some GPCR kinases (GRKs) to bind Gαq both drives acute signaling desensitization and regulates functional interactions between GPCRs. GRK2/3-mediated acute desensitization occurs within seconds, is rapidly reversible, and can occur upon local, subcellular activation. This rapid desensitization is kinase independent, insensitive to pharmacological inhibition, and generalizable across receptor families and effectors. We also find that the ability of GRK2 to bind G proteins also enables it to regulate the extent and timing of Gαq-dependent signaling cross-talk between GPCRs. Last, we find that G protein/GRK2 interactions enable a novel form of GPCR trafficking cross-talk. Together, this work reveals potent forms of Gαq-dependent GPCR regulation with wide-ranging pharmacological and physiological implications.
Collapse
Affiliation(s)
- Guoqing Xiang
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Melanie Kristt
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Jihye Kim
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Jared D. Moon
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | | | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Francis S. Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Miriam Stoeber
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Jeremy S. Dittman
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
24
|
Zhang Y, Chen R, Dong Y, Zhu J, Su K, Liu J, Xu J. Structural Studies Reveal Unique Non-canonical Regulators of G Protein Signaling Homology (RH) Domains in Sorting Nexins. J Mol Biol 2022; 434:167823. [PMID: 36103920 DOI: 10.1016/j.jmb.2022.167823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022]
Abstract
As a subgroup of sorting nexins (SNXs) that contain regulator of G protein signaling homology (RH) domain, SNX-RH proteins, including SNX13, SNX14 and SNX25, were proposed to play bifunctional roles in protein sorting and GPCR signaling regulation. However, mechanistic details of SNX-RH proteins functioning via RH domain remain to be illustrated. Here, we delineate crystal structures of the RH domains of SNX13 and SNX25, revealing a homodimer of SNX13 RH domain mediated by unique extended α4 and α5 helices, and a thiol modulated homodimer of SNX25-RH triggered by a unique cysteine on α6 helix. Further studies showed that RH domains of SNX-RH do not possess binding capacity toward Gα subunits, owing to the lack of critical residues for interaction. Thus, this study identifies a group of novel non-canonical RH domains that can act as a dimerization module in sorting nexins, which provides structural basis for mechanism studies on SNX-RH protein functions.
Collapse
Affiliation(s)
- Yulong Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yan Dong
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiabin Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Kai Su
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
25
|
Wang C, Yang L, Xiao T, Li J, Liu Q, Xiong S. Identification and expression analysis of zebrafish gnaq in the hypothalamic–Pituitary–Gonadal axis. Front Genet 2022; 13:1015796. [DOI: 10.3389/fgene.2022.1015796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
The G proteins have emerged as essential molecular switches in a wide variety of signal transduction pathways. Gαq, encoded by G protein subunit alpha q (gnaq), is a member of the G proteins and participates in regulating important biological activities in mammals; however, its function and regulatory mechanism in teleost remain largely unclear. In the current study, we cloned the cDNA of gnaq from zebrafish (Danio rerio) and investigated the expression characteristics of Gαq/gnaq in reproductive tissues. RT-PCR and WISH analyses showed that gnaq was widely expressed in zebrafish tissues, with high expression in the brain, olfactory brain, and hypothalamus. During the embryonic development stage, the gnaq was mainly distributed in the hypothalamus after 72 h post-fertilization. In addition, immunohistochemistry analysis revealed that the Gαq protein was highly expressed in the diffuse nucleus of the inferior hypothalamic lobe (DIL), ventral zone of the periventricular hypothalamus (Hv), and caudal zone of the periventricular hypothalamus (Hc) in adult zebrafish. Furthermore, in the gonads, the Gαq protein was found in oocytes of all stages, except spermatids. Lastly, the gnaq mRNA exhibited relatively low expression in gonads on Day 4 during the reproductive cycle, while increasing drastically in the hypothalamus and pituitary afterward. Altogether, our results suggest that gnaq/Gαq might be important in fish reproduction.
Collapse
|
26
|
Dai SA, Hu Q, Gao R, Blythe EE, Touhara KK, Peacock H, Zhang Z, von Zastrow M, Suga H, Shokat KM. State-selective modulation of heterotrimeric Gαs signaling with macrocyclic peptides. Cell 2022; 185:3950-3965.e25. [PMID: 36170854 PMCID: PMC9747239 DOI: 10.1016/j.cell.2022.09.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 01/26/2023]
Abstract
The G protein-coupled receptor cascade leading to production of the second messenger cAMP is replete with pharmacologically targetable proteins, with the exception of the Gα subunit, Gαs. GTPases remain largely undruggable given the difficulty of displacing high-affinity guanine nucleotides and the lack of other drug binding sites. We explored a chemical library of 1012 cyclic peptides to expand the chemical search for inhibitors of this enzyme class. We identified two macrocyclic peptides, GN13 and GD20, that antagonize the active and inactive states of Gαs, respectively. Both macrocyclic peptides fine-tune Gαs activity with high nucleotide-binding-state selectivity and G protein class-specificity. Co-crystal structures reveal that GN13 and GD20 distinguish the conformational differences within the switch II/α3 pocket. Cell-permeable analogs of GN13 and GD20 modulate Gαs/Gβγ signaling in cells through binding to crystallographically defined pockets. The discovery of cyclic peptide inhibitors targeting Gαs provides a path for further development of state-dependent GTPase inhibitors.
Collapse
Affiliation(s)
- Shizhong A Dai
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Qi Hu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Rong Gao
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Emily E Blythe
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kouki K Touhara
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hayden Peacock
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ziyang Zhang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Mark von Zastrow
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
27
|
How Arrestins and GRKs Regulate the Function of Long Chain Fatty Acid Receptors. Int J Mol Sci 2022; 23:ijms232012237. [PMID: 36293091 PMCID: PMC9602559 DOI: 10.3390/ijms232012237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
FFA1 and FFA4, two G protein-coupled receptors that are activated by long chain fatty acids, play crucial roles in mediating many biological functions in the body. As a result, these fatty acid receptors have gained considerable attention due to their potential to be targeted for the treatment of type-2 diabetes. However, the relative contribution of canonical G protein-mediated signalling versus the effects of agonist-induced phosphorylation and interactions with β-arrestins have yet to be fully defined. Recently, several reports have highlighted the ability of β-arrestins and GRKs to interact with and modulate different functions of both FFA1 and FFA4, suggesting that it is indeed important to consider these interactions when studying the roles of FFA1 and FFA4 in both normal physiology and in different disease settings. Here, we discuss what is currently known and show the importance of understanding fully how β-arrestins and GRKs regulate the function of long chain fatty acid receptors.
Collapse
|
28
|
Pepanian A, Sommerfeld P, Kasprzyk R, Kühl T, Binbay FA, Hauser C, Löser R, Wodtke R, Bednarczyk M, Chrominski M, Kowalska J, Jemielity J, Imhof D, Pietsch M. Fluorescence Anisotropy Assay with Guanine Nucleotides Provides Access to Functional Analysis of Gαi1 Proteins. Anal Chem 2022; 94:14410-14418. [PMID: 36206384 DOI: 10.1021/acs.analchem.2c03176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gα proteins as part of heterotrimeric G proteins are molecular switches essential for G protein-coupled receptor- mediated intracellular signaling. The role of the Gα subunits has been examined for decades with various guanine nucleotides to elucidate the activation mechanism and Gα protein-dependent signal transduction. Several approaches describe fluorescent ligands mimicking the GTP function, yet lack the efficient estimation of the proteins' GTP binding activity and the fraction of active protein. Herein, we report the development of a reliable fluorescence anisotropy-based method to determine the affinity of ligands at the GTP-binding site and to quantify the fraction of active Gαi1 protein. An advanced bacterial expression protocol was applied to produce active human Gαi1 protein, whose GTP binding capability was determined with novel fluorescently labeled guanine nucleotides acting as high-affinity Gαi1 binders compared to the commonly used BODIPY FL GTPγS. This study thus contributes a new method for future investigations of the characterization of Gαi and other Gα protein subunits, exploring their corresponding signal transduction systems and potential for biomedical applications.
Collapse
Affiliation(s)
- Anna Pepanian
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Paul Sommerfeld
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Renata Kasprzyk
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - F Ayberk Binbay
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Christoph Hauser
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Reik Löser
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Marcelina Bednarczyk
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland.,Division of Biophysics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | | | - Joanna Kowalska
- Division of Biophysics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Markus Pietsch
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
29
|
Jiang H, Galtes D, Wang J, Rockman HA. G protein-coupled receptor signaling: transducers and effectors. Am J Physiol Cell Physiol 2022; 323:C731-C748. [PMID: 35816644 PMCID: PMC9448338 DOI: 10.1152/ajpcell.00210.2022] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 07/10/2022] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are of considerable interest due to their importance in a wide range of physiological functions and in a large number of Food and Drug Administration (FDA)-approved drugs as therapeutic entities. With continued study of their function and mechanism of action, there is a greater understanding of how effector molecules interact with a receptor to initiate downstream effector signaling. This review aims to explore the signaling pathways, dynamic structures, and physiological relevance in the cardiovascular system of the three most important GPCR signaling effectors: heterotrimeric G proteins, GPCR kinases (GRKs), and β-arrestins. We will first summarize their prominent roles in GPCR pharmacology before transitioning into less well-explored areas. As new technologies are developed and applied to studying GPCR structure and their downstream effectors, there is increasing appreciation for the elegance of the regulatory mechanisms that mediate intracellular signaling and function.
Collapse
Affiliation(s)
- Haoran Jiang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Daniella Galtes
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jialu Wang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
30
|
Chen Q, Tesmer JJG. G protein-coupled receptor interactions with arrestins and GPCR kinases: The unresolved issue of signal bias. J Biol Chem 2022; 298:102279. [PMID: 35863432 PMCID: PMC9418498 DOI: 10.1016/j.jbc.2022.102279] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 12/25/2022] Open
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) and arrestins interact with agonist-bound GPCRs to promote receptor desensitization and downregulation. They also trigger signaling cascades distinct from those of heterotrimeric G proteins. Biased agonists for GPCRs that favor either heterotrimeric G protein or GRK/arrestin signaling are of profound pharmacological interest because they could usher in a new generation of drugs with greatly reduced side effects. One mechanism by which biased agonism might occur is by stabilizing receptor conformations that preferentially bind to GRKs and/or arrestins. In this review, we explore this idea by comparing structures of GPCRs bound to heterotrimeric G proteins with those of the same GPCRs in complex with arrestins and GRKs. The arrestin and GRK complexes all exhibit high conformational heterogeneity, which is likely a consequence of their unusual ability to adapt and bind to hundreds of different GPCRs. This dynamic behavior, along with the experimental tactics required to stabilize GPCR complexes for biophysical analysis, confounds these comparisons, but some possible molecular mechanisms of bias are beginning to emerge. We also examine if and how the recent structures advance our understanding of how arrestins parse the "phosphorylation barcodes" installed in the intracellular loops and tails of GPCRs by GRKs. In the future, structural analyses of arrestins in complex with intact receptors that have well-defined native phosphorylation barcodes, such as those installed by the two nonvisual subfamilies of GRKs, will be particularly illuminating.
Collapse
Affiliation(s)
- Qiuyan Chen
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - John J G Tesmer
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
31
|
Li QY, Li Y, Inoue A, Lu R, Xu A, Ruan KH. Reversing thromboxane A2 receptor activity from calcium to cAMP signaling by shifting Gαq to Gαs covalently linked to the receptor. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
32
|
Nubbemeyer B, George AAP, Kühl T, Pepanian A, Beck MS, Maghraby R, Boushehri MS, Muehlhaupt M, Pfeil EM, Annala SK, Ammer H, Imhof D, Pei D. Targeting Gαi/s Proteins with Peptidyl Nucleotide Exchange Modulators. ACS Chem Biol 2022; 17:463-473. [PMID: 35042325 PMCID: PMC11002716 DOI: 10.1021/acschembio.1c00929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemical probes that specifically modulate the activity of heterotrimeric G proteins provide excellent tools for investigating G protein-mediated cell signaling. Herein, we report a family of selective peptidyl Gαi/s modulators derived from peptide library screening and optimization. Conjugation to a cell-penetrating peptide rendered the peptides cell-permeable and biologically active in cell-based assays. The peptides exhibit potent guanine-nucleotide exchange modulator-like activity toward Gαi and Gαs. Molecular docking and dynamic simulations revealed the molecular basis of the protein-ligand interactions and their effects on GDP binding. This study demonstrates the feasibility of developing direct Gαi/s modulators and provides a novel chemical probe for investigating cell signaling through GPCRs/G proteins.
Collapse
Affiliation(s)
- Britta Nubbemeyer
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Ajay Abisheck Paul George
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
- BioSolveIT GmbH, An der Ziegelei 79, 53757, Sankt Augustin, Germany
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Anna Pepanian
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Maximilian Steve Beck
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Rahma Maghraby
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Maryam Shetab Boushehri
- Pharmaceutical Technology and Biopharmacy, University of Bonn, Gerhard-Domagk-Str. 3, 53121, Bonn, Germany
| | - Maximilian Muehlhaupt
- Institute of Pharmacology, Toxicology and Pharmacy, Veterinary Faculty, Ludwig Maximilian University of Munich, Königinstr. 16, 80539, Munich, Germany
| | - Eva Marie Pfeil
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Suvi Katariina Annala
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Hermann Ammer
- Institute of Pharmacology, Toxicology and Pharmacy, Veterinary Faculty, Ludwig Maximilian University of Munich, Königinstr. 16, 80539, Munich, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biosciences Building, 484 W 12 Avenue, Columbus, OH 43210, USA
| |
Collapse
|
33
|
Drube J, Haider RS, Matthees ESF, Reichel M, Zeiner J, Fritzwanker S, Ziegler C, Barz S, Klement L, Filor J, Weitzel V, Kliewer A, Miess-Tanneberg E, Kostenis E, Schulz S, Hoffmann C. GPCR kinase knockout cells reveal the impact of individual GRKs on arrestin binding and GPCR regulation. Nat Commun 2022; 13:540. [PMID: 35087057 PMCID: PMC8795447 DOI: 10.1038/s41467-022-28152-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) activate G proteins and undergo a complex regulation by interaction with GPCR kinases (GRKs) and the formation of receptor-arrestin complexes. However, the impact of individual GRKs on arrestin binding is not clear. We report the creation of eleven combinatorial HEK293 knockout cell clones lacking GRK2/3/5/6, including single, double, triple and the quadruple GRK knockout. Analysis of β-arrestin1/2 interactions for twelve GPCRs in our GRK knockout cells enables the differentiation of two main receptor subsets: GRK2/3-regulated and GRK2/3/5/6-regulated receptors. Furthermore, we identify GPCRs that interact with β-arrestins via the overexpression of specific GRKs even in the absence of agonists. Finally, using GRK knockout cells, PKC inhibitors and β-arrestin mutants, we present evidence for differential receptor-β-arrestin1/2 complex configurations mediated by selective engagement of kinases. We anticipate our GRK knockout platform to facilitate the elucidation of previously unappreciated details of GRK-specific GPCR regulation and β-arrestin complex formation.
Collapse
Affiliation(s)
- J Drube
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - R S Haider
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - E S F Matthees
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - M Reichel
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - J Zeiner
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - S Fritzwanker
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Drackendorfer Straße 1, D-07747, Jena, Germany
| | - C Ziegler
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - S Barz
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - L Klement
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - J Filor
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - V Weitzel
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany
| | - A Kliewer
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Drackendorfer Straße 1, D-07747, Jena, Germany
| | - E Miess-Tanneberg
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Drackendorfer Straße 1, D-07747, Jena, Germany
| | - E Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - S Schulz
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Drackendorfer Straße 1, D-07747, Jena, Germany
| | - C Hoffmann
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745, Jena, Germany.
| |
Collapse
|
34
|
Kawakami K, Yanagawa M, Hiratsuka S, Yoshida M, Ono Y, Hiroshima M, Ueda M, Aoki J, Sako Y, Inoue A. Heterotrimeric Gq proteins act as a switch for GRK5/6 selectivity underlying β-arrestin transducer bias. Nat Commun 2022; 13:487. [PMID: 35078997 PMCID: PMC8789823 DOI: 10.1038/s41467-022-28056-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/04/2022] [Indexed: 12/23/2022] Open
Abstract
Signaling-biased ligands acting on G-protein-coupled receptors (GPCRs) differentially activate heterotrimeric G proteins and β-arrestins. Although a wealth of structural knowledge about signaling bias at the GPCR level exists (preferential engagement of a specific transducer), little is known about the bias at the transducer level (different functions mediated by a single transducer), partly due to a poor understanding of GPCR kinase (GRK)-mediated GPCR phosphorylation. Here, we reveal a unique role of the Gq heterotrimer as a determinant for GRK-subtype selectivity that regulates subsequent β-arrestin conformation and function. Using the angiotensin II (Ang II) type-1 receptor (AT1R), we show that β-arrestin recruitment depends on both GRK2/3 and GRK5/6 upon binding of Ang II, but solely on GRK5/6 upon binding of the β-arrestin-biased ligand TRV027. With pharmacological inhibition or genetic loss of Gq, GRK-subtype selectivity and β-arrestin functionality by Ang II is shifted to those of TRV027. Single-molecule imaging identifies relocation of AT1R and GRK5, but not GRK2, to an immobile phase under the Gq-inactive, AT1R-stimulated conditions. These findings uncover a previously unappreciated Gq-regulated mechanism that encodes GRK-subtype selectivity and imparts distinct phosphorylation-barcodes directing downstream β-arrestin functions. GPCR kinases (GRKs) phosphorylate active-form G-protein-coupled receptors (GPCRs). Here, the authors reveal that Gq heterotrimer coupled with the angiotensin II type-1 receptor (AT1R) determines the GRK subtypes recruited to the complex in a microdomain, thus defining subsequent AT1R phosphorylation patterns, β-arrestin conformation and functionality.
Collapse
|
35
|
Tennakoon M, Senarath K, Kankanamge D, Chadee DN, Karunarathne A. A short C-terminal peptide in Gγ regulates Gβγ signaling efficacy. Mol Biol Cell 2021; 32:1446-1458. [PMID: 34106735 PMCID: PMC8351738 DOI: 10.1091/mbc.e20-11-0750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/03/2021] [Accepted: 06/04/2021] [Indexed: 01/03/2023] Open
Abstract
G protein beta-gamma (Gβγ) subunits anchor to the plasma membrane (PM) through the carboxy-terminal (CT) prenyl group in Gγ. This interaction is crucial for the PM localization and functioning of Gβγ, allowing GPCR-G protein signaling to proceed. The diverse Gγ family has 12 members, and we have recently shown that the signaling efficacies of major Gβγ effectors are Gγ-type dependent. This dependency is due to the distinct series of membrane-interacting abilities of Gγ. However, the molecular process allowing for Gβγ subunits to exhibit a discrete and diverse range of Gγ-type-dependent membrane affinities is unclear and cannot be explained using only the type of prenylation. The present work explores the unique designs of membrane-interacting CT residues in Gγ as a major source for this Gγ-type-dependent Gβγ signaling. Despite the type of prenylation, the results show signaling efficacy at the PM, and associated cell behaviors of Gβγ are governed by crucially located specific amino acids in the five to six residue preprenylation region of Gγ. The provided molecular picture of Gγ-membrane interactions may explain how cells gain Gγ-type-dependent G protein-GPCR signaling as well as how Gβγ elicits selective signaling at various subcellular compartments.
Collapse
Affiliation(s)
- Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606
| | - Kanishka Senarath
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606
| | - Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606
| | - Deborah N. Chadee
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606
| |
Collapse
|
36
|
Matthees ESF, Haider RS, Hoffmann C, Drube J. Differential Regulation of GPCRs-Are GRK Expression Levels the Key? Front Cell Dev Biol 2021; 9:687489. [PMID: 34109182 PMCID: PMC8182058 DOI: 10.3389/fcell.2021.687489] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/29/2021] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs) comprise the largest family of transmembrane receptors and their signal transduction is tightly regulated by GPCR kinases (GRKs) and β-arrestins. In this review, we discuss novel aspects of the regulatory GRK/β-arrestin system. Therefore, we briefly revise the origin of the "barcode" hypothesis for GPCR/β-arrestin interactions, which states that β-arrestins recognize different receptor phosphorylation states to induce specific functions. We emphasize two important parameters which may influence resulting GPCR phosphorylation patterns: (A) direct GPCR-GRK interactions and (B) tissue-specific expression and availability of GRKs and β-arrestins. In most studies that focus on the molecular mechanisms of GPCR regulation, these expression profiles are underappreciated. Hence we analyzed expression data for GRKs and β-arrestins in 61 tissues annotated in the Human Protein Atlas. We present our analysis in the context of pathophysiological dysregulation of the GPCR/GRK/β-arrestin system. This tissue-specific point of view might be the key to unraveling the individual impact of different GRK isoforms on GPCR regulation.
Collapse
Affiliation(s)
| | | | - Carsten Hoffmann
- Institut für Molekulare Zellbiologie, CMB – Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | | |
Collapse
|
37
|
Abreu N, Acosta-Ruiz A, Xiang G, Levitz J. Mechanisms of differential desensitization of metabotropic glutamate receptors. Cell Rep 2021; 35:109050. [PMID: 33910009 PMCID: PMC9750234 DOI: 10.1016/j.celrep.2021.109050] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/04/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
G protein-coupled receptors (GPCRs) interact with intracellular transducers to control both signal initiation and desensitization, but the distinct mechanisms that control the regulation of different GPCR subtypes are unclear. Here we use fluorescence imaging and electrophysiology to examine the metabotropic glutamate receptor (mGluR) family. We find distinct properties across subtypes in both rapid desensitization and internalization, with striking differences between the group II mGluRs. mGluR3, but not mGluR2, undergoes glutamate-dependent rapid desensitization, internalization, trafficking, and recycling. We map differences between mGluRs to variable Ser/Thr-rich sequences in the C-terminal domain (CTD) that control interaction with both GPCR kinases and β-arrestins. Finally, we identify a cancer-associated mutation, G848E, within the mGluR3 CTD that enhances β-arrestin coupling and internalization, enabling an analysis of mGluR3 β-arrestin-coupling properties and revealing biased variants. Together, this work provides a framework for understanding the distinct regulation and functional roles of mGluR subtypes.
Collapse
Affiliation(s)
- Nohely Abreu
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Amanda Acosta-Ruiz
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Guoqing Xiang
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Joshua Levitz
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
38
|
Mechanistic diversity involved in the desensitization of G protein-coupled receptors. Arch Pharm Res 2021; 44:342-353. [PMID: 33761113 DOI: 10.1007/s12272-021-01320-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/14/2021] [Indexed: 01/14/2023]
Abstract
The desensitization of G protein-coupled receptors (GPCRs), which involves rapid loss of responsiveness due to repeated or chronic exposure to agonists, can occur through various mechanisms at different levels of signaling pathways. In this review, the mechanisms of GPCR desensitization are classified according to their occurrence at the receptor level and downstream to the receptor. The desensitization at the receptor level occurs in a phosphorylation-dependent manner, wherein the activated receptors are phosphorylated by GPCR kinases (GRKs), thereby increasing their affinities for arrestins. Arrestins bind to receptors through the cavity on the cytoplasmic region of heptahelical domains and interfere with the binding and activation of G-protein. Diverse mechanisms are involved in the desensitization that occurs downstream of the receptor. Some of these include the sequestration of G proteins, such as Gq and Gi/o by GRK2/3 and deubiquitinated arrestins, respectively. Mechanistically, GRK2/3 attenuates GPCR signaling by sequestering the Gα subunits of the Gq family and Gβγ via regulators of G protein signaling and pleckstrin homology domains, respectively. Moreover, studies on Gi/o-coupled D2-like receptors have reported that arrestins are deubiquitinated under desensitization condition and form a stable complex with Gβγ, thereby preventing them from coupling with Gα and the receptor, eventually leading to receptor signaling inhibition. Notably, the desensitization mechanism that involves arrestin deubiquitination is interesting; however, this is a new mechanism and needs to be explored further.
Collapse
|
39
|
The GNAQ T96S Mutation Affects Cell Signaling and Enhances the Oncogenic Properties of Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22063284. [PMID: 33807071 PMCID: PMC8004934 DOI: 10.3390/ijms22063284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most common malignant tumor in the liver, grows and metastasizes rapidly. Despite advances in treatment modalities, the five-year survival rate of HCC remains less than 30%. We sought genetic mutations that may affect the oncogenic properties of HCC, using The Cancer Genome Atlas (TCGA) data analysis. We found that the GNAQ T96S mutation (threonine 96 to serine alteration of the Gαq protein) was present in 12 out of 373 HCC patients (3.2%). To examine the effect of the GNAQ T96S mutation on HCC, we transfected the SK-Hep-1 cell line with the wild-type or the mutant GNAQ T96S expression vector. Transfection with the wild-type GNAQ expression vector enhanced anchorage-independent growth, migration, and the MAPK pathways in the SK-Hep-1 cells compared to control vector transfection. Moreover, cell proliferation, anchorage-independent growth, migration, and the MAPK pathways were further enhanced in the SK-Hep-1 cells transfected with the GNAQ T96S expression vector compared to the wild-type GNAQ-transfected cells. In silico structural analysis shows that the substitution of the GNAQ amino acid threonine 96 with a serine may destabilize the interaction between the regulator of G protein signaling (RGS) protein and GNAQ. This may reduce the inhibitory effect of RGS on GNAQ signaling, enhancing the GNAQ signaling pathway. Single nucleotide polymorphism (SNP) genotyping analysis for Korean HCC patients shows that the GNAQ T96S mutation was found in only one of the 456 patients (0.22%). Our data suggest that the GNAQ T96S hotspot mutation may play an oncogenic role in HCC by potentiating the GNAQ signal transduction pathway.
Collapse
|
40
|
Benovic JL. Historical Perspective of the G Protein-Coupled Receptor Kinase Family. Cells 2021; 10:555. [PMID: 33806476 PMCID: PMC7999923 DOI: 10.3390/cells10030555] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 01/14/2023] Open
Abstract
Agonist activation of G protein-coupled receptors promotes sequential interaction of the receptor with heterotrimeric G proteins, G protein-coupled receptor kinases (GRKs), and arrestins. GRKs play a central role in mediating the switch from G protein to arrestin interaction and thereby control processes such as receptor desensitization and trafficking and arrestin-mediated signaling. In this review, I provide a historical perspective on some of the early studies that identified the family of GRKs with a primary focus on the non-visual GRKs. These studies included identification, purification, and cloning of the β-adrenergic receptor kinase in the mid- to late-1980s and subsequent cloning and characterization of additional members of the GRK family. This helped to lay the groundwork for ensuing work focused on understanding the structure and function of these important enzymes.
Collapse
Affiliation(s)
- Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
41
|
Targeting GRK5 for Treating Chronic Degenerative Diseases. Int J Mol Sci 2021; 22:ijms22041920. [PMID: 33671974 PMCID: PMC7919044 DOI: 10.3390/ijms22041920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors and they are responsible for the transduction of extracellular signals, regulating almost all aspects of mammalian physiology. These receptors are specifically regulated by a family of serine/threonine kinases, called GPCR kinases (GRKs). Given the biological role of GPCRs, it is not surprising that GRKs are also involved in several pathophysiological processes. Particular importance is emerging for GRK5, which is a multifunctional protein, expressed in different cell types, and it has been found located in single or multiple subcellular compartments. For instance, when anchored to the plasma membrane, GRK5 exerts its canonical function, regulating GPCRs. However, under certain conditions (e.g., pro-hypertrophic stimuli), GRK5 translocates to the nucleus of cells where it can interact with non-GPCR-related proteins as well as DNA itself to promote “non-canonical” signaling, including gene transcription. Importantly, due to these actions, several studies have demonstrated that GRK5 has a pivotal role in the pathogenesis of chronic-degenerative disorders. This is true in the cardiac cells, tumor cells, and neurons. For this reason, in this review article, we will inform the readers of the most recent evidence that supports the importance of targeting GRK5 to prevent the development or progression of cancer, cardiovascular, and neurological diseases.
Collapse
|
42
|
Sellgren CM, Imbeault S, Larsson MK, Oliveros A, Nilsson IAK, Codeluppi S, Orhan F, Bhat M, Tufvesson-Alm M, Gracias J, Kegel ME, Zheng Y, Faka A, Svedberg M, Powell SB, Caldwell S, Kamenski ME, Vawter MP, Schulmann A, Goiny M, Svensson CI, Hökfelt T, Schalling M, Schwieler L, Cervenka S, Choi DS, Landén M, Engberg G, Erhardt S. GRK3 deficiency elicits brain immune activation and psychosis. Mol Psychiatry 2021; 26:6820-6832. [PMID: 33976392 PMCID: PMC8760053 DOI: 10.1038/s41380-021-01106-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 04/07/2021] [Indexed: 02/03/2023]
Abstract
The G protein-coupled receptor kinase (GRK) family member protein GRK3 has been linked to the pathophysiology of schizophrenia and bipolar disorder. Expression, as well as protein levels, of GRK3 are reduced in post-mortem prefrontal cortex of schizophrenia subjects. Here, we investigate functional behavior and neurotransmission related to immune activation and psychosis using mice lacking functional Grk3 and utilizing a variety of methods, including behavioral, biochemical, electrophysiological, molecular, and imaging methods. Compared to wildtype controls, the Grk3-/- mice show a number of aberrations linked to psychosis, including elevated brain levels of IL-1β, increased turnover of kynurenic acid (KYNA), hyper-responsiveness to D-amphetamine, elevated spontaneous firing of midbrain dopamine neurons, and disruption in prepulse inhibition. Analyzing human genetic data, we observe a link between psychotic features in bipolar disorder, decreased GRK expression, and increased concentration of CSF KYNA. Taken together, our data suggest that Grk3-/- mice show face and construct validity relating to the psychosis phenotype with glial activation and would be suitable for translational studies of novel immunomodulatory agents in psychotic disorders.
Collapse
Affiliation(s)
- Carl M. Sellgren
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm & Stockholm Health Care Services, Region Stockholm, Sweden
| | - Sophie Imbeault
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Markus K. Larsson
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Alfredo Oliveros
- grid.66875.3a0000 0004 0459 167XDepartment of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN USA
| | - Ida A. K. Nilsson
- grid.4714.60000 0004 1937 0626Translational Psychiatry, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Simone Codeluppi
- grid.4714.60000 0004 1937 0626Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Funda Orhan
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Bhat
- grid.418151.80000 0001 1519 6403Research and Development, Innovative Medicines, Personalised Healthcare and Biomarkers, Translational Science Centre, Science for Life Laboratory, AstraZeneca, Solna, Sweden ,grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Maximilian Tufvesson-Alm
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jessica Gracias
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena E. Kegel
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Yiran Zheng
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anthi Faka
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Svedberg
- grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Susan B. Powell
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Sorana Caldwell
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Mary E. Kamenski
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Marquis P. Vawter
- grid.266093.80000 0001 0668 7243Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine School of Medicine, Irvine, CA USA
| | - Anton Schulmann
- grid.416868.50000 0004 0464 0574Human Genetics Branch, National Institute of Mental Health, Bethesda, MD USA
| | - Michel Goiny
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Camilla I. Svensson
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Hökfelt
- grid.4714.60000 0004 1937 0626Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Martin Schalling
- grid.4714.60000 0004 1937 0626Translational Psychiatry, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lilly Schwieler
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Simon Cervenka
- grid.4714.60000 0004 1937 0626Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm & Stockholm Health Care Services, Region Stockholm, Sweden
| | - Doo-Sup Choi
- grid.66875.3a0000 0004 0459 167XDepartment of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN USA ,grid.66875.3a0000 0004 0459 167XDepartment of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN USA
| | - Mikael Landén
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden ,grid.4714.60000 0004 1937 0626Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Göran Engberg
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Sophie Erhardt
- grid.4714.60000 0004 1937 0626Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
Sun X, Zhou M, Wen G, Huang Y, Wu J, Peng L, Jiang W, Yuan H, Lu Y, Cai J. Paroxetine Attenuates Cardiac Hypertrophy Via Blocking GRK2 and ADRB1 Interaction in Hypertension. J Am Heart Assoc 2020; 10:e016364. [PMID: 33372534 PMCID: PMC7955481 DOI: 10.1161/jaha.120.016364] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background ADRB1 (adrenergic receptor beta 1) responds to neuroendocrine stimulations, which have great implications in hypertension. GRK2 (G protein‐coupled receptor kinase 2) is an essential regulator for many G protein‐coupled receptors and subsequent cell signaling cascades, but its role as a regulator of ADRB1 and associated cardiac hypertrophy in hypertension remains to be elucidated. Methods and Results In this study, we found the expressions of GRK2 and ADRB1 in peripheral blood mononuclear cells were positively associated with blood pressure levels in hypertensive patients and with their expression in heart. In vitro evidence showed a direct interaction in ADRB1 and GRK2 and genetic depletion of GRK2 blocks epinephrine‐induced upregulation of hypertrophic and fibrotic genes in cardiomyocytes. Meanwhile, we discovered a selective serotonin reuptake inhibitor paroxetine specifically blockades GRK2 and ADRB1 interaction. In vivo, paroxetine treatment ameliorates hypertension‐induced cardiac hypertrophy, dysfunction, and fibrosis in animal models. We found that paroxetine suppressed sympathetic overdrive and increased the adrenergic receptor sensitivity to catecholamines. Paroxetine treatment also blocks epinephrine‐induced upregulation of hypertrophic and fibrotic genes as well as ADRB1 internalization in cardiomyocytes. Coadministration of paroxetine further potentiates metoprolol‐induced reductions in blood pressure and heart rate, further attenuating cardiac hypertrophy in spontaneously hypertensive rats. Furthermore, in patients with hypertension accompanied with depression, we observed that cardiac remodeling was less severe in those with paroxetine treatment compared with those with other types of anti‐depressive agents. Conclusions Paroxetine promotes ADRB1 sensitivity and attenuates cardiac hypertrophy partially via blocking GRK2‐mediated ADRB1 activation and internalization in the context of hypertension.
Collapse
Affiliation(s)
- Xuejing Sun
- Department of Cardiology The Third Xiangya HospitalCentral South University Changsha China
| | - Mengli Zhou
- Department of Cardiology The Third Xiangya HospitalCentral South University Changsha China
| | - Gaiyan Wen
- Department of Pharmacy Zhejiang Hospital Hangzhou China
| | - Yun Huang
- Ningbo Medical Center Lihuili Hospital Ningbo China
| | - Junru Wu
- Department of Cardiology The Third Xiangya HospitalCentral South University Changsha China
| | - Liping Peng
- Department of Cardiology The Third Xiangya HospitalCentral South University Changsha China
| | - Weihong Jiang
- Department of Cardiology The Third Xiangya HospitalCentral South University Changsha China
| | - Hong Yuan
- The Center of Clinical Pharmacology The Third Xiangya HospitalCentral South University Changsha China
| | - Yao Lu
- The Center of Clinical Pharmacology The Third Xiangya HospitalCentral South University Changsha China
| | - Jingjing Cai
- Department of Cardiology The Third Xiangya HospitalCentral South University Changsha China.,The Center of Clinical Pharmacology The Third Xiangya HospitalCentral South University Changsha China
| |
Collapse
|
44
|
Calebiro D, Koszegi Z, Lanoiselée Y, Miljus T, O'Brien S. G protein-coupled receptor-G protein interactions: a single-molecule perspective. Physiol Rev 2020; 101:857-906. [PMID: 33331229 DOI: 10.1152/physrev.00021.2020] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate many cellular and physiological processes, responding to a diverse range of extracellular stimuli including hormones, neurotransmitters, odorants, and light. Decades of biochemical and pharmacological studies have provided fundamental insights into the mechanisms of GPCR signaling. Thanks to recent advances in structural biology, we now possess an atomistic understanding of receptor activation and G protein coupling. However, how GPCRs and G proteins interact in living cells to confer signaling efficiency and specificity remains insufficiently understood. The development of advanced optical methods, including single-molecule microscopy, has provided the means to study receptors and G proteins in living cells with unprecedented spatio-temporal resolution. The results of these studies reveal an unexpected level of complexity, whereby GPCRs undergo transient interactions among themselves as well as with G proteins and structural elements of the plasma membrane to form short-lived signaling nanodomains that likely confer both rapidity and specificity to GPCR signaling. These findings may provide new strategies to pharmaceutically modulate GPCR function, which might eventually pave the way to innovative drugs for common diseases such as diabetes or heart failure.
Collapse
Affiliation(s)
- Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Tamara Miljus
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Shannon O'Brien
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| |
Collapse
|
45
|
Chung YK, Wong YH. Re‐examining the ‘Dissociation Model’ of G protein activation from the perspective of Gβγ signaling. FEBS J 2020; 288:2490-2501. [DOI: 10.1111/febs.15605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Yin Kwan Chung
- Division of Life Science and Biotechnology Research Institute Hong Kong University of Science and Technology Hong Kong China
| | - Yung Hou Wong
- Division of Life Science and Biotechnology Research Institute Hong Kong University of Science and Technology Hong Kong China
- State Key Laboratory of Molecular Neuroscience the Molecular Neuroscience Center Hong Kong University of Science and Technology Kowloon China
| |
Collapse
|
46
|
Krebs FS, Gérard C, Wicky A, Aedo-Lopez V, Missiaglia E, Bisig B, Trimech M, Michielin O, Homicsko K, Zoete V. Trametinib Induces the Stabilization of a Dual GNAQ p.Gly48Leu- and FGFR4 p.Cys172Gly-Mutated Uveal Melanoma. The Role of Molecular Modelling in Personalized Oncology. Int J Mol Sci 2020; 21:E8021. [PMID: 33126538 PMCID: PMC7662249 DOI: 10.3390/ijms21218021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022] Open
Abstract
We report a case of an uveal melanoma patient with GNAQ p.Gly48Leu who responded to MEK inhibition. At the time of the molecular analysis, the pathogenicity of the mutation was unknown. A tridimensional structural analysis showed that Gαq can adopt active and inactive conformations that lead to substantial changes, involving three important switch regions. Our molecular modelling study predicted that GNAQ p.Gly48Leu introduces new favorable interactions in its active conformation, whereas little or no impact is expected in its inactive form. This strongly suggests that GNAQ p.Gly48Leu is a possible tumor-activating driver mutation, consequently triggering the MEK pathway. In addition, we also found an FGFR4 p.Cys172Gly mutation, which was predicted by molecular modelling analysis to lead to a gain of function by impacting the Ig-like domain 2 folding, which is involved in FGF binding and increases the stability of the homodimer. Based on these analyses, the patient received the MEK inhibitor trametinib with a lasting clinical benefit. This work highlights the importance of molecular modelling for personalized oncology.
Collapse
MESH Headings
- Amino Acid Sequence
- Antineoplastic Agents/therapeutic use
- Female
- GTP-Binding Protein alpha Subunits, Gq-G11/chemistry
- GTP-Binding Protein alpha Subunits, Gq-G11/genetics
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Humans
- Melanoma/drug therapy
- Melanoma/genetics
- Melanoma/metabolism
- Melanoma/pathology
- Middle Aged
- Models, Molecular
- Mutant Proteins/chemistry
- Mutant Proteins/genetics
- Mutant Proteins/metabolism
- Mutation
- Protein Conformation
- Protein Stability
- Pyridones/therapeutic use
- Pyrimidinones/therapeutic use
- Receptor, Fibroblast Growth Factor, Type 4/chemistry
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Sequence Homology
- Signal Transduction
- Uveal Neoplasms/drug therapy
- Uveal Neoplasms/genetics
- Uveal Neoplasms/metabolism
- Uveal Neoplasms/pathology
Collapse
Affiliation(s)
- Fanny S. Krebs
- Computer-aided molecular engineering group, Department of Fundamental Oncology, Lausanne University, Ludwig Lausanne Branch, 1066 Epalinges, Switzerland;
| | - Camille Gérard
- Precision Oncology Center, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland; (C.G.); (A.W.); (O.M.); (K.H.)
| | - Alexandre Wicky
- Precision Oncology Center, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland; (C.G.); (A.W.); (O.M.); (K.H.)
| | - Veronica Aedo-Lopez
- Service of Medical Oncology, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland;
| | - Edoardo Missiaglia
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland;
- University Institute of Pathology, Lausanne University Hospital, 1011 Lausanne, Switzerland; (B.B.); (M.T.)
| | - Bettina Bisig
- University Institute of Pathology, Lausanne University Hospital, 1011 Lausanne, Switzerland; (B.B.); (M.T.)
| | - Mounir Trimech
- University Institute of Pathology, Lausanne University Hospital, 1011 Lausanne, Switzerland; (B.B.); (M.T.)
| | - Olivier Michielin
- Precision Oncology Center, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland; (C.G.); (A.W.); (O.M.); (K.H.)
- Service of Medical Oncology, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland;
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland;
| | - Krisztian Homicsko
- Precision Oncology Center, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland; (C.G.); (A.W.); (O.M.); (K.H.)
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland;
- Laboratory of Translational Oncology, EPFL, 1015 Lausanne, Switzerland
| | - Vincent Zoete
- Computer-aided molecular engineering group, Department of Fundamental Oncology, Lausanne University, Ludwig Lausanne Branch, 1066 Epalinges, Switzerland;
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland;
| |
Collapse
|
47
|
Blankenbach KV, Claas RF, Aster NJ, Spohner AK, Trautmann S, Ferreirós N, Black JL, Tesmer JJG, Offermanns S, Wieland T, Meyer zu Heringdorf D. Dissecting G q/11-Mediated Plasma Membrane Translocation of Sphingosine Kinase-1. Cells 2020; 9:cells9102201. [PMID: 33003441 PMCID: PMC7599897 DOI: 10.3390/cells9102201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/24/2022] Open
Abstract
Diverse extracellular signals induce plasma membrane translocation of sphingosine kinase-1 (SphK1), thereby enabling inside-out signaling of sphingosine-1-phosphate. We have shown before that Gq-coupled receptors and constitutively active Gαq/11 specifically induced a rapid and long-lasting SphK1 translocation, independently of canonical Gq/phospholipase C (PLC) signaling. Here, we further characterized Gq/11 regulation of SphK1. SphK1 translocation by the M3 receptor in HEK-293 cells was delayed by expression of catalytically inactive G-protein-coupled receptor kinase-2, p63Rho guanine nucleotide exchange factor (p63RhoGEF), and catalytically inactive PLCβ3, but accelerated by wild-type PLCβ3 and the PLCδ PH domain. Both wild-type SphK1 and catalytically inactive SphK1-G82D reduced M3 receptor-stimulated inositol phosphate production, suggesting competition at Gαq. Embryonic fibroblasts from Gαq/11 double-deficient mice were used to show that amino acids W263 and T257 of Gαq, which interact directly with PLCβ3 and p63RhoGEF, were important for bradykinin B2 receptor-induced SphK1 translocation. Finally, an AIXXPL motif was identified in vertebrate SphK1 (positions 100–105 in human SphK1a), which resembles the Gαq binding motif, ALXXPI, in PLCβ and p63RhoGEF. After M3 receptor stimulation, SphK1-A100E-I101E and SphK1-P104A-L105A translocated in only 25% and 56% of cells, respectively, and translocation efficiency was significantly reduced. The data suggest that both the AIXXPL motif and currently unknown consequences of PLCβ/PLCδ(PH) expression are important for regulation of SphK1 by Gq/11.
Collapse
Affiliation(s)
- Kira Vanessa Blankenbach
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
| | - Ralf Frederik Claas
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
| | - Natalie Judith Aster
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
| | - Anna Katharina Spohner
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
| | - Sandra Trautmann
- Institut für Klinische Pharmakologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.T.); (N.F.)
| | - Nerea Ferreirós
- Institut für Klinische Pharmakologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.T.); (N.F.)
| | - Justin L. Black
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - John J. G. Tesmer
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette, West Lafayette, IN 47907-2054, USA;
| | - Stefan Offermanns
- Abteilung für Pharmakologie, Max-Planck-Institut für Herz- und Lungenforschung, 61231 Bad Nauheim, Germany;
| | - Thomas Wieland
- Experimentelle Pharmakologie Mannheim, European Center for Angioscience, Universität Heidelberg, 68167 Mannheim, Germany;
| | - Dagmar Meyer zu Heringdorf
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
- Correspondence: ; Tel.: +49-69-6301-3906
| |
Collapse
|
48
|
Chen X, Zhao X, Cooper M, Ma P. The Roles of GRKs in Hemostasis and Thrombosis. Int J Mol Sci 2020; 21:ijms21155345. [PMID: 32731360 PMCID: PMC7432802 DOI: 10.3390/ijms21155345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Along with cancer, cardiovascular and cerebrovascular diseases remain by far the most common causes of death. Heart attacks and strokes are diseases in which platelets play a role, through activation on ruptured plaques and subsequent thrombus formation. Most platelet agonists activate platelets via G protein-coupled receptors (GPCRs), which make these receptors ideal targets for many antiplatelet drugs. However, little is known about the mechanisms that provide feedback regulation on GPCRs to limit platelet activation. Emerging evidence from our group and others strongly suggests that GPCR kinases (GRKs) are critical negative regulators during platelet activation and thrombus formation. In this review, we will summarize recent findings on the role of GRKs in platelet biology and how one specific GRK, GRK6, regulates the hemostatic response to vascular injury. Furthermore, we will discuss the potential role of GRKs in thrombotic disorders, such as thrombotic events in COVID-19 patients. Studies on the function of GRKs during platelet activation and thrombus formation have just recently begun, and a better understanding of the role of GRKs in hemostasis and thrombosis will provide a fruitful avenue for understanding the hemostatic response to injury. It may also lead to new therapeutic options for the treatment of thrombotic and cardiovascular disorders.
Collapse
Affiliation(s)
- Xi Chen
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
| | - Xuefei Zhao
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
- Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China
| | - Matthew Cooper
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
| | - Peisong Ma
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
- Correspondence: ; Tel.: +1-215-955-3966
| |
Collapse
|
49
|
Maziarz M, Park JC, Leyme A, Marivin A, Garcia-Lopez A, Patel PP, Garcia-Marcos M. Revealing the Activity of Trimeric G-proteins in Live Cells with a Versatile Biosensor Design. Cell 2020; 182:770-785.e16. [PMID: 32634377 DOI: 10.1016/j.cell.2020.06.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/21/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022]
Abstract
Heterotrimeric G-proteins (Gαβγ) are the main transducers of signals from GPCRs, mediating the action of countless natural stimuli and therapeutic agents. However, there are currently no robust approaches to directly measure the activity of endogenous G-proteins in cells. Here, we describe a suite of optical biosensors that detect endogenous active G-proteins with sub-second resolution in live cells. Using a modular design principle, we developed genetically encoded, unimolecular biosensors for endogenous Gα-GTP and free Gβγ: the two active species of heterotrimeric G-proteins. This design was leveraged to generate biosensors with specificity for different heterotrimeric G-proteins or for other G-proteins, such as Rho GTPases. Versatility was further validated by implementing the biosensors in multiple contexts, from characterizing cancer-associated G-protein mutants to neurotransmitter signaling in primary neurons. Overall, the versatile biosensor design introduced here enables studying the activity of endogenous G-proteins in live cells with high fidelity, temporal resolution, and convenience.
Collapse
Affiliation(s)
- Marcin Maziarz
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jong-Chan Park
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anthony Leyme
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Arthur Marivin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alberto Garcia-Lopez
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Prachi P Patel
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
50
|
Gurevich VV, Gurevich EV. Biased GPCR signaling: Possible mechanisms and inherent limitations. Pharmacol Ther 2020; 211:107540. [PMID: 32201315 PMCID: PMC7275904 DOI: 10.1016/j.pharmthera.2020.107540] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
G protein-coupled receptors (GPCRs) are targeted by about a third of clinically used drugs. Many GPCRs couple to more than one type of heterotrimeric G proteins, become phosphorylated by any of several different GRKs, and then bind one or more types of arrestin. Thus, classical therapeutically active drugs simultaneously initiate several branches of signaling, some of which are beneficial, whereas others result in unwanted on-target side effects. The development of novel compounds to selectively channel the signaling into the desired direction has the potential to become a breakthrough in health care. However, there are natural and technological hurdles that must be overcome. The fact that most GPCRs are subject to homologous desensitization, where the active receptor couples to G proteins, is phosphorylated by GRKs, and then binds arrestins, suggest that in most cases the GPCR conformations that facilitate their interactions with these three classes of binding partners significantly overlap. Thus, while partner-specific conformations might exist, they are likely low-probability states. GPCRs are inherently flexible, which suggests that complete bias is highly unlikely to be feasible: in the conformational ensemble induced by any ligand, there would be some conformations facilitating receptor coupling to unwanted partners. Things are further complicated by the fact that virtually every cell expresses numerous G proteins, several GRK subtypes, and two non-visual arrestins with distinct signaling capabilities. Finally, novel screening methods for measuring ligand bias must be devised, as the existing methods are not specific for one particular branch of signaling.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|