1
|
Zhang Y, Li N, Tang K, Wang M, Li H, Li K, Zheng B, Zhang Q, Gao M, Fang J, Zhang H, Cui S, Wang J, Chen M, Liao H, Ge X, Hauglustaine D, Balkanski Y, Ciais P, Jiang G. Widespread surface ozone reduction triggered by dust storm disturbance on ozone production and destruction chemistry. SCIENCE ADVANCES 2025; 11:eadr4297. [PMID: 40333981 PMCID: PMC12057657 DOI: 10.1126/sciadv.adr4297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 04/02/2025] [Indexed: 05/09/2025]
Abstract
Natural dust storms are associated with changes to atmospheric photochemical processes, including changes in surface ozone, a critical global air pollutant. Here, we quantified the change in surface ozone during dust storms for regions in China by using a synthesis of measurements and modeling approaches. Our results showed that notable reductions of the average ozone concentration (2.0 to 12.2 parts per billion by volume) were observed during the 12 dust storm events from 2016 to 2023, relative to predust storm levels. The chemical interactions of dust particles with ozone production processes played crucial roles in explaining approximately 13 to 35% of the observed ozone reduction, alongside the impact of intense meteorological disturbances on transport and formation of ozone. Among these interactions, the uptake of ozone, reactive nitrogen, and hydroperoxyl radical by dust particles could substantially contribute to the ozone suppression. This study highlighted the importance of interactions between severe dust pollution and atmospheric photochemistry.
Collapse
Affiliation(s)
- Yunjiang Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Joint International Research Laboratory of Climate and Environment Change, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Laboratoire des Sciences du Climat et de l’Environnement, CNRS-CEA-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nan Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Joint International Research Laboratory of Climate and Environment Change, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Keqin Tang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Joint International Research Laboratory of Climate and Environment Change, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Ming Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Joint International Research Laboratory of Climate and Environment Change, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Haiwei Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Joint International Research Laboratory of Climate and Environment Change, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Ke Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Joint International Research Laboratory of Climate and Environment Change, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Bo Zheng
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qiang Zhang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Meng Gao
- Department of Geography, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Jie Fang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Joint International Research Laboratory of Climate and Environment Change, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Haoran Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210033, China
| | - Shijie Cui
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Joint International Research Laboratory of Climate and Environment Change, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Junfeng Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Joint International Research Laboratory of Climate and Environment Change, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Mindong Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Joint International Research Laboratory of Climate and Environment Change, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Hong Liao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Joint International Research Laboratory of Climate and Environment Change, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xinlei Ge
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Joint International Research Laboratory of Climate and Environment Change, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Didier Hauglustaine
- Laboratoire des Sciences du Climat et de l’Environnement, CNRS-CEA-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Yves Balkanski
- Laboratoire des Sciences du Climat et de l’Environnement, CNRS-CEA-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l’Environnement, CNRS-CEA-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Ye Y, Sun J, Fan Y, Li Y, Li Q, He C, Ma S, Zhao Z, Xu T. Key Roles of Bulk Viscosity and Acidity on Liquid-Liquid Phase Separation of Atmospheric Organic-Inorganic Mixed Aerosols. J Phys Chem A 2025; 129:3921-3930. [PMID: 40262061 DOI: 10.1021/acs.jpca.5c01182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Liquid-liquid phase separation (LLPS) and the resulting particle morphologies in atmospheric organic-inorganic mixed aerosols are key regulators of aerosol chemistry and climate forcing. However, the influence of coexisting viscous water-soluble organic compounds (WSOCs) on the LLPS behavior in complex multicomponent aerosol systems remains poorly understood. In this study, we introduced three representative WSOCs, i.e., sucrose (SUC), glycerol (GLY), and citric acid (CA), to increase the bulk viscosity of a model LLPS system composed of 1,2,6-hexanetriol (HXT) and ammonium sulfate (AS). Using microscopic imaging techniques and viscosity model predictions, we examined the impact of mass transfer limitations on LLPS. As WSOC fractions increased, both the phase separation relative humidity (SRH) and the efflorescence relative humidity (ERH) progressively decreased. For the HXT/AS/SUC and HXT/AS/CA mixed systems with molar ratios of 1:1:0.5 and 1:1:0.75, LLPS was completely suppressed, although efflorescence still occurred. In the 1:1:1 mixtures, neither LLPS nor efflorescence was observed. In contrast, the addition of GLY caused minimal changes to phase transitions due to its minor effect on the aqueous-phase viscosity. Additionally, reducing bulk acidity, along with the transformation of CA into its salts, alleviated molecular transport limitations, leading to increased SRH and ERH values for the HXT/AS/CA mixtures. These findings are critical for advancing high-resolution phase state modeling of multicomponent aerosols and assessing the atmospheric implications of particle morphologies in the presence or absence of LLPS.
Collapse
Affiliation(s)
- Yuanyuan Ye
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Jingyu Sun
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Younuo Fan
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Yilin Li
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Qiong Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Chengxiang He
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Shuaishuai Ma
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Zhiqing Zhao
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Tianyou Xu
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| |
Collapse
|
3
|
Jiang Y, Ma Y, Zheng J, Ye N, Yuan C. Characterization of size-resolved aerosol hygroscopicity and liquid water content in Nanjing of the Yangtze River Delta. J Environ Sci (China) 2025; 151:26-41. [PMID: 39481938 DOI: 10.1016/j.jes.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 11/03/2024]
Abstract
Aerosol hygroscopicity and liquid water content (ALWC) have important influences on the environmental and climate effect of aerosols. In this study, we measured the hygroscopic growth factors (GF) of particles with dry diameters of 40, 80, 150, and 200 nm during the wintertime in Nanjing. Both the GF-derived hygroscopicity parameter (κgf) and ALWC increased with particle size, but displayed differing diurnal variations, with κgf peaking around the midday, while ALWC peaking in the early morning. Nitrate, ammonium and oxygenated organic aerosols (OOA) were found as the chemical components mostly strongly correlated with ALWC. A closure study suggests that during midday photo-oxidation and nighttime high ALWC periods, the κ of organic aerosols (κorg) was underestimated when using previous parameterizations. Accordingly, we re-constructed parameterizations for κorg and the oxidation level of organics for these periods, which indicates a higher hygroscopicity of photochemically formed OOA than the aqueous OOA, yet both being much higher than the generally assumed OOA hygroscopicity. Additionally, in a typical high ALWC episode, concurrently increased ALWC, nitrate, OOA as well as aerosol surface area and mass concentrations were observed under elevated ambient RH. This strongly indicates a coupled effect that the hygroscopic secondary aerosols, in particular nitrate with strong hygroscopicity, led to large increase in ALWC, which in turn synergistically boosted nitrate and OOA formation by heterogeneous/aqueous reactions. Such interaction may represent an important mechanism contributing to enhanced formation of secondary aerosols and rapid growth of fine particulate matter under relatively high RH conditions.
Collapse
Affiliation(s)
- Youling Jiang
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yan Ma
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Jun Zheng
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Nan Ye
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Cheng Yuan
- School of Emergency Management, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
4
|
Chen DP, Ma W, Yang CH, Li M, Zhou ZZ, Zhang Y, Wang XC, Quan ZJ. Formation of atmospheric molecular clusters containing nitric acid with ammonia, methylamine, and dimethylamine. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2036-2050. [PMID: 39392062 DOI: 10.1039/d4em00330f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
This study investigates the formation of atmospheric molecular clusters containing ammonia (NH3, A), methylamine (CH3NH2, MA), or dimethylamine (CH3NHCH3, DMA) with nitric acid (HNO3, NA) using quantum mechanics. The Atmospheric Cluster Dynamic Code (ACDC) was employed to simulate the total evaporation rate, formation rate, and growth pathways of three types of clusters under dry and hydrated conditions. This study evaluates the enhancing potential of A/MA/DMA for NA-based new particle formation (NPF) at parts per trillion (ppt) levels. The results indicate that A/MA/DMA can enhance NA-based NPF at high nitric acid concentrations and low temperatures in the atmosphere. The enhancing potential of MA is weaker than that of DMA but stronger than that of A. Cluster growth predominantly follows the lowest free energy pathways on the acid-base grid, with the formation of initial acid-base dimers (NA)(A), (NA)(MA), and (NA)(DMA) being crucial. Hydration influences the evaporation rate and formation rate of clusters, especially for initial clusters. When the humidity is at 100%, the formation rate for NA-A, NA-MA, and NA-DMA clusters can increase by approximately 109, 107, and 104-fold compared to the corresponding unhydrated clusters, respectively. These results highlight the significance of nitric acid nucleation in NPF events in low-temperature, high-humidity atmospheres, particularly in regions like China with significant automobile exhaust pollution.
Collapse
Affiliation(s)
- Dong-Ping Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Wen Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Chun-Hong Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Zhao-Zhen Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Yang Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| |
Collapse
|
5
|
Duan J, Huang RJ, Lin C, Shen J, Yang L, Yuan W, Wang Y, Liu Y, Xu W. Aromatic Nitration Enhances Absorption of Biomass Burning Brown Carbon in an Oxidizing Urban Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17344-17354. [PMID: 39300776 DOI: 10.1021/acs.est.4c05558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Brown carbon (BrC) from biomass burning constitutes a significant portion of light-absorbing components in the atmosphere. Although the aging of BrC surrogates from biomass burning has been studied in many laboratory settings, BrC aging behavior in real-world urban environments is not well understood. In this study, through a combination of online dynamic monitoring and offline molecular characterization, the ambient optical aging of BrC was linked to its dynamic changes in molecular composition. Enhanced light absorption by BrC was consistently observed during the periods dominated by oxygenated biomass burning organic aerosol (BBOA), in contrast to periods dominated by primary emissions or secondary formation in aqueous-phase. This enhancement was linked to the formation of nitrogen-containing compounds during the ambient aging of BBOA. Detailed molecular characterization, alongside analysis of environmental parameters, revealed that an increased atmospheric oxidizing capacity, marked by elevated levels of ozone and nighttime NO3 radicals, facilitated the formation of nitrated aromatic BrC chromophores. These chromophores were primarily responsible for the enhanced light absorption during the ambient aging of BBOA. This study elucidates the nitration processes that enhance BrC light absorption for ambient BBOA, and highlights the crucial role of meteorological conditions. Furthermore, our findings shed light on the chemical and optical aging processes of biomass burning BrC in ambient air, offering insights into its environmental behavior and effects.
Collapse
Affiliation(s)
- Jing Duan
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ru-Jin Huang
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunshui Lin
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Jincan Shen
- Key Laboratory of Detection Technology R&D on Food Safety, Food Inspection and Quarantine Technology Center of Shenzhen Customs District, Shenzhen 518045, China
| | - Lu Yang
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Wei Yuan
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ying Wang
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yi Liu
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Wei Xu
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
6
|
Ma S, Fan Y, Tang Y, He C, Li Q, Zhao Z, Xu T, Zhang Y. Spectral Characteristics of Unsaturated and Supersaturated Inorganic Aerosols: Insights into Deliquescence Kinetics. J Phys Chem A 2024; 128:6286-6295. [PMID: 39042908 DOI: 10.1021/acs.jpca.4c03107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The deliquescence phase transition of atmospheric aerosols is crucial for radiative forcing and atmospheric chemistry. However, the deliquescence kinetics of micrometer-sized aerosols, especially the formation and evolution of surface solution films, remain poorly understood. In this study, IR spectral characteristics were employed for the first time to quantify the solute concentration evolution in surface solution films. At a constant relative humidity (RH) of ∼65%, solution films on NaCl crystals exhibited a very low solute concentration (3.06 ± 0.18 mol/L), comparable to aqueous NaCl droplets above 90% RH. These films reached saturation at ∼74% RH, i.e., the deliquescence RH of NaCl, maintaining a nearly constant saturation level during deliquescence. In contrast, amorphous NaNO3 solids showed supersaturated solution films before deliquescence. Following deliquescence, the saturation level of solution phases increased due to faster solid dissolution rates than liquid water condensation. These findings address knowledge gaps in the complex nonequilibrium dissolution processes of crystalline or amorphous atmospheric aerosols.
Collapse
Affiliation(s)
- Shuaishuai Ma
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Younuo Fan
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Yingying Tang
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Chengxiang He
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Qiong Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Zhiqing Zhao
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Tianyou Xu
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Yunhong Zhang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
7
|
Guo L, Zhao P, Jia Y, Wang Z, Chen M, Zhang H, Liu D, Zhang Y, Wang X, Rong M. Inactivation of airborne pathogenic microorganisms by plasma-activated nebulized mist. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132072. [PMID: 37480605 DOI: 10.1016/j.jhazmat.2023.132072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
The airborne microorganisms in the aerosols are one main transmission way of pathogenic microorganisms and therefore inactivation of microorganisms in aerosols could effectively prevent the transmission of pathogenic microorganisms to control epidemics. The mist nebulized by plasma-activated air could effectively inactivate bacteria and could be developed for the sterilization of microorganisms in aerosols. In this study, the plasma-activated nebulized mist (PANM) was applied for the inactivation of microorganisms in aerosols and efficiently inactivated the bacteria, yeast, and viruses in aerosols after 2-min treatment. The PANM treatment caused morphologic changes and damage to the bacteria cells in aerosols. The PANM could also inactivate the microorganisms attached to the surface of the treatment chamber and the bacteria attached to the skin of mice within 6-min treatment. The biosafety assays demonstrated that the PANM treatment exhibited no effects on the behavior, hematological and serum biochemical parameters of blood, and organs from the mice. This study would supply an efficient, broad-spectrum, and safe aerosol sterilization strategy based on plasma technology to prevent the transmission of airborne microorganisms.
Collapse
Affiliation(s)
- Li Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Pengyu Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yikang Jia
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zifeng Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Min Chen
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hao Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Yong Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiaohua Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
8
|
Duan X, Yan Y, Xie K, Niu Y, Xu Y, Peng L. Impact of primary emission variations on secondary inorganic aerosol formation: Prospective from COVID-19 lockdown in a typical northern China city. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121355. [PMID: 36842622 DOI: 10.1016/j.envpol.2023.121355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Hourly observations in northern China city of Taiyuan were performed to compare secondary inorganic aerosol (SIA) reaction mechanisms, and emission effects on SIA during the pre-lock and COVID-19 lock days. Emission control implemented and meteorological conditions during lock days both caused beneficial impact on air quality. NO2 showed the highest decrease ratio of -49.5%, while the relative fraction of NO3- in PM2.5 increased the most (2.7%). Source apportionment revealed the top three contributors to PM2.5 were secondary formation (SF), coal combustion (CC), and vehicle exhaust (VE) during both pre-lock and lock days. EC lock/pre were all lower than 1, suggesting the overall reduction of primary emissions during lock days, while the higher ratio of (SIA/EC) lock/pre (1.01-1.36) indicated the enhanced secondary formation in lock days. The ratio of SIA of pollution to clean days during lock periods considerably higher by 23.7% compared with that in pre-lock periods, which was indicated SIA secondary formation was more pronounced and contributed great to pollution days in lock periods though secondary formation existed in pre-lock and lock periods. Enhanced secondary formation of NO3- and SO42- during lock days might be mainly due to the increased in aqueous and gas-phase reactions, respectively. Except for SF, high contribution of VE and CC were also important for high SIA concentration in pre-lock and lock days, respectively. The decreased contribution of VE weakens its contribution to SIA formation, indicating the effectiveness of VE emission control, as confirmed during the COVID-19 pandemic. This study highlights the aqueous and gas-phase reactions for nitrate and sulfate, respectively, which contributed to heavy pollution, as well as indicated the important role of VE on SIA formation, suggesting the urgent need to further strengthen controls on vehicle emissions.
Collapse
Affiliation(s)
- Xiaolin Duan
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yulong Yan
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing, 100044, China; Institute of Transport Energy and Environment, Beijing Jiaotong University, Beijing, 100044, China.
| | - Kai Xie
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yueyuan Niu
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yang Xu
- School for Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, China
| | - Lin Peng
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing, 100044, China; Institute of Transport Energy and Environment, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
9
|
McCaslin LM, Götz AW, Johnson MA, Gerber RB. Effects of Microhydration on the Mechanisms of Hydrolysis and Cl - Substitution in Reactions of N 2 O 5 and Seawater. Chemphyschem 2023; 24:e202200819. [PMID: 36385485 DOI: 10.1002/cphc.202200819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/15/2022] [Indexed: 11/18/2022]
Abstract
The reaction of N2 O5 at atmospheric interfaces has recently received considerable attention due to its importance in atmospheric chemistry. N2 O5 reacts preferentially with Cl- to form ClNO2 /NO3 - (Cl- substitution), but can also react with H2 O to form 2HNO3 (hydrolysis). In this paper, we explore these competing reactions in a theoretical study of the clusters N2 O5 /Cl- /nH2 O (n=2-5), resulting in the identification of three reaction motifs. First, we uncovered an SN 2-type Cl- substitution reaction of N2 O5 that occurs very quickly due to low barriers to reaction. Second, we found a low-lying pathway to hydrolysis via a ClNO2 intermediate (two-step hydrolysis). Finally, we found a direct hydrolysis pathway where H2 O attacks N2 O5 (one-step hydrolysis). We find that Cl- substitution is the fastest reaction in every cluster. Between one-step and two-step hydrolysis, we find that one-step hydrolysis barriers are lower, making two-step hydrolysis (via ClNO2 intermediate) likely only when concentrations of Cl- are high.
Collapse
Affiliation(s)
- Laura M McCaslin
- Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94550, USA
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mark A Johnson
- Department of Chemistry, Yale University, New Haven, CT 06525, USA
| | - R Benny Gerber
- Institute of Chemistry and the Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem, 9190401, Israel.,Department of Chemistry, University of California Irvine, Irvine, CA 92597, USA
| |
Collapse
|
10
|
Zhao X, Zhao X, Liu P, Chen D, Zhang C, Xue C, Liu J, Xu J, Mu Y. Transport Pathways of Nitrate Formed from Nocturnal N 2O 5 Hydrolysis Aloft to the Ground Level in Winter North China Plain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2715-2725. [PMID: 36722840 DOI: 10.1021/acs.est.3c00086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Particulate nitrate (NO3-) has currently become the major component of fine particles in the North China Plain (NCP) during winter haze episodes. However, the contributions of formation pathways to ground NO3- in the NCP are not fully understood. Herein, the NO3- formation pathways were comprehensively investigated based on model simulations combined with two-month field measurements at a rural site in the winter NCP. The results indicated that the nocturnal chemistry of N2O5 hydrolysis aloft could contribute evidently to ground NO3- at the rural site during the pollution episodes with high aerosol water contents, achieving the contribution percentages of 25.2-30.4% of the total. In addition to the commonly proposed vertical mixing of breaking nocturnal boundary layer in the early morning, two additional transport pathways (frontal downdrafts and downslope mountain breezes) in the nighttime were found to make higher contributions to ground NO3-. Considering the dominant role (69.6-74.8%) of diurnal chemistry in NO3- formation, reduction of NOx emissions in the daytime may be an effective control measure for reducing regional NO3- in the NCP.
Collapse
Affiliation(s)
- Xiaoxi Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing100089, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xiujuan Zhao
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing100089, China
| | - Pengfei Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Dan Chen
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing100089, China
| | - Chenglong Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Chaoyang Xue
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), CNRS-Université Orléans-CNES, CEDEX 2, Orléans45071, France
| | - Junfeng Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jing Xu
- Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing100089, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
11
|
Xu T, Zhang C, Liu C, Hu Q. Variability of PM 2.5 and O 3 concentrations and their driving forces over Chinese megacities during 2018-2020. J Environ Sci (China) 2023; 124:1-10. [PMID: 36182119 DOI: 10.1016/j.jes.2021.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/19/2021] [Accepted: 10/11/2021] [Indexed: 06/16/2023]
Abstract
Recently, air pollution especially fine particulate matters (PM2.5) and ozone (O3) has become a severe issue in China. In this study, we first characterized the temporal trends of PM2.5 and O3 for Beijing, Guangzhou, Shanghai, and Wuhan respectively during 2018-2020. The annual mean PM2.5 has decreased by 7.82%-33.92%, while O3 concentration showed insignificant variations by -6.77%-4.65% during 2018-2020. The generalized additive models (GAMs) were implemented to quantify the contribution of individual meteorological factors and their gas precursors on PM2.5 and O3. On a short-term perspective, GAMs modeling shows that the daily variability of PM2.5 concentration is largely related to the variation of precursor gases (R = 0.67-0.90), while meteorological conditions mainly affect the daily variability of O3 concentration (R = 0.65-0.80) during 2018-2020. The impact of COVID-19 lockdown on PM2.5 and O3 concentrations were also quantified by using GAMs. During the 2020 lockdown, PM2.5 decreased significantly for these megacities, yet the ozone concentration showed an increasing trend compared to 2019. The GAMs analysis indicated that the contribution of precursor gases to PM2.5 and O3 changes is 3-8 times higher than that of meteorological factors. In general, GAMs modeling on air quality is helpful to the understanding and control of PM2.5 and O3 pollution in China.
Collapse
Affiliation(s)
- Tianyi Xu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Chengxin Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
| | - Cheng Liu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, China.
| | - Qihou Hu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
12
|
Xia M, Wang T, Wang Z, Chen Y, Peng X, Huo Y, Wang W, Yuan Q, Jiang Y, Guo H, Lau C, Leung K, Yu A, Lee S. Pollution-Derived Br 2 Boosts Oxidation Power of the Coastal Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12055-12065. [PMID: 35948027 DOI: 10.1021/acs.est.2c02434] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The bromine atom (Br•) has been known to destroy ozone (O3) and accelerate the deposition of toxic mercury (Hg). However, its abundance and sources outside the polar regions are not well-known. Here, we report significant levels of molecular bromine (Br2)─a producer of Br•─observed at a coastal site in Hong Kong, with an average noontime mixing ratio of 5 ppt. Given the short lifetime of Br2 (∼1 min at noon), this finding reveals a large Br2 daytime source. On the basis of laboratory and field evidence, we show that the observed daytime Br2 is generated by the photodissociation of particulate nitrate (NO3-) and that the reactive uptake of dinitrogen pentoxide (N2O5) on aerosols is an important nighttime source. Model-calculated Br• concentrations are comparable with that of the OH radical─the primary oxidant in the troposphere, accounting for 24% of the oxidation of isoprene, a 13% increase in net O3 production, and a nearly 10-fold increase in the production rate of toxic HgII. Our findings reveal that reactive bromines play a larger role in the atmospheric chemistry and air quality of polluted coastal and maritime areas than previously thought. Our results also suggest that tightening the control of emissions of two conventional pollutants (NOx and SO2)─thereby decreasing the levels of nitrate and aerosol acidity─would alleviate halogen radical production and its adverse impact on air quality.
Collapse
Affiliation(s)
- Men Xia
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Zhe Wang
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
| | - Yi Chen
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
| | - Xiang Peng
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
- China National Environmental Monitoring Centre, Beijing 100020, China
| | - Yunxi Huo
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Weihao Wang
- Hangzhou PuYu Technology Development Co Ltd, Hangzhou 311305, Zhejiang, China
| | - Qi Yuan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Yifan Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Hai Guo
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Chiho Lau
- Air Science Group Environmental Protection Department, Hong Kong SAR 999077, China
| | - Kenneth Leung
- Air Science Group Environmental Protection Department, Hong Kong SAR 999077, China
| | - Alfred Yu
- Air Science Group Environmental Protection Department, Hong Kong SAR 999077, China
| | - Shuncheng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| |
Collapse
|
13
|
Niu Y, Huang X, Wang H, Wang S, Lin X, Chen Y, Zhu B, Zhu Q, He L. Effects of nighttime heterogeneous reactions on the formation of secondary aerosols and ozone in the Pearl River Delta. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2021-0638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Lin C, Hu R, Xie P, Lou S, Zhang G, Tong J, Liu J, Liu W. Nocturnal atmospheric chemistry of NO 3 and N 2O 5 over Changzhou in the Yangtze River Delta in China. J Environ Sci (China) 2022; 114:376-390. [PMID: 35459501 DOI: 10.1016/j.jes.2021.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 06/14/2023]
Abstract
Comprehensive observations of the nocturnal atmospheric oxidation of NO3 and N2O5 were conducted at a suburban site in Changzhou in the YRD using cavity ring-down spectroscopy (CRDS) from 27 May to 24 June, 2019. High concentrations of NO3 precursors were observed, and the nocturnal production rate of NO3 was determined to be 1.7 ± 1.2 ppbv/hr. However, the nighttime NO3 and N2O5 concentrations were relatively low, with maximum values of 17.7 and 304.7 pptv, respectively, illustrating the rapid loss of NO3 and N2O5. It was found that NO3 dominated the nighttime atmospheric oxidation, accounting for 50.7%, while O3 and OH only contributed 34.1% and 15.2%, respectively. For the reactions of NO3 with volatile organic compounds (VOCs), styrene was found to account for 60.3%, highlighting its dominant role in the NO3 reactivity. In general, the contributions of the reactions between NO3 and VOCs and the N2O5 uptake to NO3 loss were found to be about 39.5% and 60.5%, respectively, indicating that N2O5 uptake also played an important role in the loss of NO3 and N2O5, especially under the high humidity conditions in China. The formation of nitrate at night mainly originated from N2O5 uptake, and the maximum production rate of NO3- reached 6.5 ppbv/hr. The average NOx consumption rate via NO3 and N2O5 chemistry was found to be 0.4 ppbv/h, accounting for 47.9% of the total NOx removal. The predominant roles of NO3 and N2O5 in nitrate formation and NOx removal in the YRD region was highlighted in this study.
Collapse
Affiliation(s)
- Chuan Lin
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Renzhi Hu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Pinhua Xie
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361000, China.
| | - Shengrong Lou
- State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Guoxian Zhang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jinzhao Tong
- University of Science and Technology of China, Hefei 230026, China
| | - Jianguo Liu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Wenqing Liu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
15
|
Liang Y, Rong H, Liu L, Zhang S, Zhang X, Xu W. Gas-phase catalytic hydration of I 2O 5 in the polluted coastal regions: Reaction mechanisms and atmospheric implications. J Environ Sci (China) 2022; 114:412-421. [PMID: 35459504 DOI: 10.1016/j.jes.2021.09.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 06/14/2023]
Abstract
Marine aerosols play an important role in the global aerosol system. In polluted coastal regions, ultra-fine particles have been recognized to be related to iodine-containing species and is more serious due to the impact of atmospheric pollutants. Many previous studies have identified iodine pentoxide (I2O5, IP) to be the key species in new particles formation (NPF) in marine regions, but the role of IP in the polluted coastal atmosphere is far to be fully understood. Considering the high humidity and concentrations of pollutants in the polluted coastal regions, the gas-phase hydration of IP catalyzed by sulfuric acid (SA), nitric acid (NA), dimethylamine (DMA), and ammonia (A) have been investigated at DLPNO-CCSD(T)//ωB97X-D/aug-cc-pVTZ + aug-cc-pVTZ-PP with ECP28MDF (for iodine) level of theory. The results show that the hydration of IP involves a significant energy barrier of 22.33 kcal/mol, while the pollutants SA, NA, DMA, and A all could catalyze the hydration of IP. Especially, with SA and DMA as catalysts, the hydration reactions of IP present extremely low barriers and high rate constants. It is suggested that IP is unstable under the catalysis of SA and DMA to generate iodic acid, which is the key component in NPF in marine regions. Thus, the catalytic hydration of IP is very likely to trigger the formation of iodine-containing particles. Our research provides a clear picture of the catalytic hydration of IP as well as theoretical guidance for NPF in the polluted coastal atmosphere.
Collapse
Affiliation(s)
- Yan Liang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hui Rong
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ling Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shaobing Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiuhui Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Wenguo Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
16
|
Yi H, Meng L, Wu T, Lauraguais A, Coeur C, Tomas A, Fu H, Gao X, Chen W. Absolute determination of chemical kinetic rate constants by optical tracking the reaction on the second timescale using cavity-enhanced absorption spectroscopy. Phys Chem Chem Phys 2022; 24:7396-7404. [PMID: 35266491 DOI: 10.1039/d2cp00206j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a new spectroscopic platform coupled to an atmospheric simulation chamber for the direct determination of chemical rate constants with high accuracy at a second time-scale resolution. These developed analytical instruments consist of an incoherent broadband cavity enhanced absorption spectrometer using a red light emitting diode (LED) emitting at ∼662 nm (LED-IBBCEAS) associated with a multipass cell direct absorption spectrometer (MPC-DAS) coupled to an external cavity quantum cascade laser (EC-QCL) operating in the mid-infrared region at approximately 8 μm (EC-QCL-MPC-DAS). Spectrometers were employed to investigate the NO3-initiated oxidation of four selected volatile organic compounds (VOCs) for the determination of the corresponding rate constants with a dynamic range of 5 orders of magnitude (from 10-11 to 10-16 cm3 molecule-1 s-1). Rate constants of (6.5 ± 0.5) × 10-15, (7.0 ± 0.4) × 10-13, and (5.8 ± 0.5) × 10-16 cm3 molecule-1 s-1 for propanal, isoprene and formaldehyde, respectively, were directly determined by fitting the measured concentration-time profiles of NO3 and VOCs (measured using a proton transfer reaction time-of-flight mass spectrometer, PTR-ToF-MS) to chemical models based on the FACSIMILE simulation software (version 4.2.50) at 760 torr and 293 ± 2 K. The obtained rate constants are in good agreement with the most recent recommendations of the IUPAC (International Union of Pure and Applied Chemistry). In addition, a rate constant of (2.60 ± 0.30) × 10-11 cm3 molecule-1 s-1 for the oxidation of 2-methoxyphenol by NO3 radicals was first determined using the absolute kinetic method. Compared to the mostly used indirect relative rate method, the rate constant uncertainty is reduced from ∼20% to ∼12%. The results demonstrated the high potential of using modern spectroscopic techniques to directly determine the chemical reaction rate constants.
Collapse
Affiliation(s)
- Hongming Yi
- Laboratoire de Physicochimie de l'Atmosphère, Université du Littoral Côte d'Opale, 59140 Dunkerque, France.
| | - Lingshuo Meng
- Laboratoire de Physicochimie de l'Atmosphère, Université du Littoral Côte d'Opale, 59140 Dunkerque, France. .,IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Center for Energy and Environment, 59000 Lille, France
| | - Tao Wu
- Key Laboratory of Nondestructive Test, Nanchang Hangkong University, Nanchang 330063, China.
| | - Amélie Lauraguais
- Laboratoire de Physicochimie de l'Atmosphère, Université du Littoral Côte d'Opale, 59140 Dunkerque, France.
| | - Cecile Coeur
- Laboratoire de Physicochimie de l'Atmosphère, Université du Littoral Côte d'Opale, 59140 Dunkerque, France.
| | - Alexandre Tomas
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Center for Energy and Environment, 59000 Lille, France
| | - Hongbo Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Institute of Atmospheric Sciences, Fudan University, Shanghai, 200433, China
| | - Xiaoming Gao
- Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Weidong Chen
- Laboratoire de Physicochimie de l'Atmosphère, Université du Littoral Côte d'Opale, 59140 Dunkerque, France.
| |
Collapse
|
17
|
Feng Z, Zheng F, Liu Y, Fan X, Yan C, Zhang Y, Daellenbach KR, Bianchi F, Petäjä T, Kulmala M, Bao X. Evolution of organic carbon during COVID-19 lockdown period: Possible contribution of nocturnal chemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152191. [PMID: 34875334 PMCID: PMC8651497 DOI: 10.1016/j.scitotenv.2021.152191] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 05/03/2023]
Abstract
Carbonaceous aerosol is one of the main components of atmospheric particulate matter, which is of great significance due to its role in climate change, earth's radiation balance, visibility, and human health. In this work, carbonaceous aerosols were measured in Shijiazhuang and Beijing using the OC/EC analyzer from December 1, 2019 to March 15, 2020, which covered the Coronavirus Disease 2019 (COVID-19) pandemic. The observed results show that the gas-phase pollutants, such as NO, NO2, and aerosol-phase pollutants (Primary Organic Compounds, POC) from anthropogenic emissions, were significantly reduced during the lockdown period due to limited human activities in North China Plain (NCP). However, the atmospheric oxidation capacity (Ox/CO) shows a significantly increase during the lockdown period. Meanwhile, additional sources of nighttime Secondary Organic Carbon (SOC), Secondary Organic Aerosol (SOA), and babs, BrC(370 nm) are observed and ascribed to the nocturnal chemistry related to NO3 radical. The Potential Source Contribution Function (PSCF) analysis indicates that the southeast areas of the NCP region contributed more to the SOC during the lockdown period than the normal period. Our results highlight the importance of regional nocturnal chemistry in SOA formation.
Collapse
Affiliation(s)
- Zemin Feng
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Feixue Zheng
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Xiaolong Fan
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Yan
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Yusheng Zhang
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaspar R Daellenbach
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Federico Bianchi
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Markku Kulmala
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
| | - Xiaolei Bao
- Hebei Provincial Academy of Environmental Sciences, Shijiazhuang 050037, China; Hebei Chemical & Pharmaceutical College, Shijiazhuang 050026, China.
| |
Collapse
|
18
|
Wang H, Lu K, Chen S, Li X, Zeng L, Hu M, Zhang Y. Characterizing nitrate radical budget trends in Beijing during 2013-2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148869. [PMID: 34328950 DOI: 10.1016/j.scitotenv.2021.148869] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Nitrate (NO3) radical is an important oxidant in the atmosphere as it regulates the NOx budget and impacts secondary pollutant formation. Here, a long-term observational dataset of NO3-related species at an urban site in Beijing was used to investigate changes in the NO3 budget and their atmospheric impacts during 2013-2019, in this period the Clean Air Actions Plan was carried out in China. We found that (1) changes in NO3 precursors (NO2 and O3) led to a significant increase in NO3 formation in the surface layer in winter but a decrease in summer; (2) a reduction in NOx promoted thermal equilibrium, favoring the formation of NO3 rather than dinitrogen pentoxide (N2O5). The simultaneous decrease in PM2.5, during these years, further weakened the N2O5 heterogeneous uptake; (3) a box model simulation revealed that both the reactions of NO3 with volatile organic compounds (VOC) and N2O5 uptake were weakened in summer, implying that the policy actions implemented help to moderate secondary aerosol formation caused by NO3 and N2O5 chemistry in summer; and (4) during winter, both NO3 + VOC and N2O5 uptake were enhanced. Specifically, for the N2O5 uptake, the rapid increase in NO3 production, or to some extent, NO3 oxidation capacity, far outweighed the negative shift effect, leading to a net enhancement of N2O5 uptake in winter, which indicates that the action policy implemented led to an adverse effect on particulate nitrate formation via N2O5 uptake in winter. This may explain the persistent winter particulate nitrate pollution in recent years. Our results highlight the systematic changes in the NO3 budget between 2013 and 2019 in Beijing, which subsequently affect secondary aerosol formation in different seasons.
Collapse
Affiliation(s)
- Haichao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Shiyi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Wang Y, Piletic IR, Takeuchi M, Xu T, France S, Ng NL. Synthesis and Hydrolysis of Atmospherically Relevant Monoterpene-Derived Organic Nitrates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14595-14606. [PMID: 34668375 PMCID: PMC8863268 DOI: 10.1021/acs.est.1c05310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Affiliation(s)
- Yuchen Wang
- School of Chemical and Bimolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ivan R. Piletic
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Masayuki Takeuchi
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tianchang Xu
- School of Chemical and Bimolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Stefan France
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Nga Lee Ng
- School of Chemical and Bimolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
20
|
Zhang S, Sarwar G, Xing J, Chu B, Xue C, Sarav A, Ding D, Zheng H, Mu Y, Duan F, Ma T, He H. Improving the representation of HONO chemistry in CMAQ and examining its impact on haze over China. ATMOSPHERIC CHEMISTRY AND PHYSICS 2021; 21:15809-15826. [PMID: 34804135 PMCID: PMC8597575 DOI: 10.5194/acp-21-15809-2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We compare Community Multiscale Air Quality (CMAQ) model predictions with measured nitrous acid (HONO) concentrations in Beijing, China for December 2015. The model with the existing HONO chemistry in CMAQ severely under-estimates the observed HONO concentrations with a normalized mean bias of -97%. We revise the HONO chemistry in the model by implementing six additional heterogeneous reactions in the model: reaction of nitrogen dioxide (NO2) on ground surfaces, reaction of NO2 on aerosol surfaces, reaction of NO2 on soot surfaces, photolysis of aerosol nitrate, nitric acid displacement reaction, and hydrochloric acid displacement reaction. The model with the revised chemistry substantially increases HONO predictions and improves the comparison with observed data with a normalized mean bias of -5%. The photolysis of HONO enhances day-time hydroxyl radical by almost a factor of two. The enhanced hydroxyl radical concentrations compare favourably with observed data and produce additional sulfate via the reaction with sulfur dioxide, aerosol nitrate via the reaction with nitrogen dioxide, and secondary organic aerosols via the reactions with volatile organic compounds. The additional sulfate stemming from revised HONO chemistry improves the comparison with observed concentration; however, it does not close the gap between model prediction and the observation during polluted days.
Collapse
Affiliation(s)
- Shuping Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Golam Sarwar
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA
| | - Jia Xing
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chaoyang Xue
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Arunachalam Sarav
- Institute for the Environment, The University of North Carolina at Chapel Hill, 100 Eurpoa Drive, Chapel Hill, NC 27514, USA
| | - Dian Ding
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Haotian Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yujing Mu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Fengkui Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tao Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
21
|
Abundance of NO3 Derived Organo-Nitrates and Their Importance in the Atmosphere. ATMOSPHERE 2021. [DOI: 10.3390/atmos12111381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The chemistry of the nitrate radical and its contribution to organo-nitrate formation in the troposphere has been investigated using a mesoscale 3-D chemistry and transport model, WRF-Chem-CRI. The model-measurement comparisons of NO2, ozone and night-time N2O5 mixing ratios show good agreement supporting the model’s ability to represent nitrate (NO3) chemistry reasonably. Thirty-nine organo-nitrates in the model are formed exclusively either from the reaction of RO2 with NO or by the reaction of NO3 with alkenes. Temporal analysis highlighted a significant contribution of NO3-derived organo-nitrates, even during daylight hours. Night-time NO3-derived organo-nitrates were found to be 3-fold higher than that in the daytime. The reactivity of daytime NO3 could be more competitive than previously thought, with losses due to reaction with VOCs (and subsequent organo-nitrate formation) likely to be just as important as photolysis. This has highlighted the significance of NO3 in daytime organo-nitrate formation, with potential implications for air quality, climate and human health. Estimated atmospheric lifetimes of organo-nitrates showed that the organo-nitrates act as NOx reservoirs, with particularly short-lived species impacting on air quality as contributors to downwind ozone formation.
Collapse
|
22
|
Rapid sulfuric acid-dimethylamine nucleation enhanced by nitric acid in polluted regions. Proc Natl Acad Sci U S A 2021; 118:2108384118. [PMID: 34453007 DOI: 10.1073/pnas.2108384118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent research [Wang et al., Nature 581, 184-189 (2020)] indicates nitric acid (NA) can participate in sulfuric acid (SA)-ammonia (NH3) nucleation in the clean and cold upper free troposphere, whereas NA exhibits no obvious effects at the boundary layer with relatively high temperatures. Herein, considering that an SA-dimethylamine (DMA) nucleation mechanism was detected in megacities [Yao et al., Science 361, 278-281 (2018)], the roles of NA in SA-DMA nucleation are investigated. Different from SA-NH3 nucleation, we found that NA can enhance SA-DMA-based particle formation rates in the polluted atmospheric boundary layer, such as Beijing in winter, with the enhancement up to 80-fold. Moreover, we found that NA can promote the number concentrations of nucleation clusters (up to 27-fold) and contribute 76% of cluster formation pathways at 280 K. The enhancements on particle formation by NA are critical for particulate pollution in the polluted boundary layer with relatively high NA and DMA concentrations.
Collapse
|
23
|
Ma S, Pang S, Li J, Zhang Y. A review of efflorescence kinetics studies on atmospherically relevant particles. CHEMOSPHERE 2021; 277:130320. [PMID: 33773310 DOI: 10.1016/j.chemosphere.2021.130320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The efflorescence transitions of aerosol particles have been intensively investigated due to their critical impacts on global climate and atmospheric chemistry. In the present study, we present a critical review of efflorescence kinetics focusing on three key issues: the efflorescence relative humidity (ERH) and the influence factors for aerosol ERH (e.g. particle sizes, and temperature); efflorescence processes of mixed aerosols, concerning the effect of coexisting inorganic and organic components on the efflorescence of inorganic salts; homogeneous and heterogeneous nucleation rates of pure and mixed aerosols. Among the previous studies, there are significant discrepancies for measured aerosol ERH under even the same conditions. Moreover, the interactions between organic and inorganic components remain largely unclear, causing efflorescence transition behaviours and chemical composition evolutions of certain mixed systems to be debatable. Thus, it is important to better understand efflorescence to gain insights into the physicochemical properties and characterize observed efflorescence characteristics of atmospheric particles, as well as guide further studies on aerosol hygroscopicity and reactivity.
Collapse
Affiliation(s)
- Shuaishuai Ma
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Shufeng Pang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jing Li
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Yunhong Zhang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
24
|
Hallar AG, Brown SS, Crosman E, Barsanti K, Cappa CD, Faloona I, Fast J, Holmes HA, Horel J, Lin J, Middlebrook A, Mitchell L, Murphy J, Womack CC, Aneja V, Baasandorj M, Bahreini R, Banta R, Bray C, Brewer A, Caulton D, de Gouw J, De Wekker SF, Farmer DK, Gaston CJ, Hoch S, Hopkins F, Karle NN, Kelly JT, Kelly K, Lareau N, Lu K, Mauldin RL, Mallia DV, Martin R, Mendoza D, Oldroyd HJ, Pichugina Y, Pratt KA, Saide P, Silva PJ, Simpson W, Stephens BB, Stutz J, Sullivan A. Coupled Air Quality and Boundary-Layer Meteorology in Western U.S. Basins during Winter: Design and Rationale for a Comprehensive Study. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY 2021; 0:1-94. [PMID: 34446943 PMCID: PMC8384125 DOI: 10.1175/bams-d-20-0017.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wintertime episodes of high aerosol concentrations occur frequently in urban and agricultural basins and valleys worldwide. These episodes often arise following development of persistent cold-air pools (PCAPs) that limit mixing and modify chemistry. While field campaigns targeting either basin meteorology or wintertime pollution chemistry have been conducted, coupling between interconnected chemical and meteorological processes remains an insufficiently studied research area. Gaps in understanding the coupled chemical-meteorological interactions that drive high pollution events make identification of the most effective air-basin specific emission control strategies challenging. To address this, a September 2019 workshop occurred with the goal of planning a future research campaign to investigate air quality in Western U.S. basins. Approximately 120 people participated, representing 50 institutions and 5 countries. Workshop participants outlined the rationale and design for a comprehensive wintertime study that would couple atmospheric chemistry and boundary-layer and complex-terrain meteorology within western U.S. basins. Participants concluded the study should focus on two regions with contrasting aerosol chemistry: three populated valleys within Utah (Salt Lake, Utah, and Cache Valleys) and the San Joaquin Valley in California. This paper describes the scientific rationale for a campaign that will acquire chemical and meteorological datasets using airborne platforms with extensive range, coupled to surface-based measurements focusing on sampling within the near-surface boundary layer, and transport and mixing processes within this layer, with high vertical resolution at a number of representative sites. No prior wintertime basin-focused campaign has provided the breadth of observations necessary to characterize the meteorological-chemical linkages outlined here, nor to validate complex processes within coupled atmosphere-chemistry models.
Collapse
Affiliation(s)
| | | | - Erik Crosman
- Department of Life, Earth, and Environmental Sciences, West Texas A&M University
| | - Kelley Barsanti
- Department of Chemical and Environmental Engineering, Center for Environmental Research and Technology, University of California, Riverside
| | - Christopher D. Cappa
- Department of Civil and Environmental Engineering, University of California, Davis 95616 USA
| | - Ian Faloona
- Department of Land, Air and Water Resources, University of California, Davis
| | - Jerome Fast
- Atmospheric Science and Global Change Division, Pacific Northwest, National Laboratory, Richland, Washington, USA
| | - Heather A. Holmes
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT
| | - John Horel
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | - John Lin
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | | | - Logan Mitchell
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | - Jennifer Murphy
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Caroline C. Womack
- Cooperative Institute for Research in Environmental Sciences, University of Colorado/ NOAA Chemical Sciences Laboratory, Boulder, CO
| | - Viney Aneja
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University
| | | | - Roya Bahreini
- Environmental Sciences, University of California, Riverside, CA
| | | | - Casey Bray
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University
| | - Alan Brewer
- NOAA Chemical Sciences Laboratory, Boulder, CO
| | - Dana Caulton
- Department of Atmospheric Science, University of Wyoming
| | - Joost de Gouw
- Cooperative Institute for Research in Environmental Sciences & Department of Chemistry, University of Colorado, Boulder, CO
| | | | | | - Cassandra J. Gaston
- Department of Atmospheric Science - Rosenstiel School of Marine and Atmospheric Science, University of Miami
| | - Sebastian Hoch
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | | | - Nakul N. Karle
- Environmental Science and Engineering, The University of Texas at El Paso, TX
| | - James T. Kelly
- Office of Air Quality Planning and Standards, US Environmental Protection Agency, Research Triangle Park, NC
| | - Kerry Kelly
- Chemical Engineering, University of Utah, Salt Lake City, UT
| | - Neil Lareau
- Atmospheric Sciences and Environmental Sciences and Health, University of Nevada, Reno, NV
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing, China, 100871
| | - Roy L. Mauldin
- National Center for Atmospheric Research, Boulder, CO 80307, USA
| | - Derek V. Mallia
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | - Randal Martin
- Civil and Environmental Engineering, Utah State University, Utah Water Research Laboratory, Logan, UT
| | - Daniel Mendoza
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT
| | - Holly J. Oldroyd
- Department of Civil and Environmental Engineering, University of California, Davis
| | | | | | - Pablo Saide
- Department of Atmospheric and Oceanic Sciences, and Institute of the Environment and Sustainability, University of California, Los Angeles
| | - Phillip J. Silva
- Food Animal Environmental Systems Research Unit, USDA-ARS, Bowling Green, KY
| | - William Simpson
- Department of Chemistry, Biochemistry, and Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775-6160
| | - Britton B. Stephens
- Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, CO
| | - Jochen Stutz
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles
| | - Amy Sullivan
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO
| |
Collapse
|
25
|
Tian J, Wang Q, Zhang Y, Yan M, Liu H, Zhang N, Ran W, Cao J. Impacts of primary emissions and secondary aerosol formation on air pollution in an urban area of China during the COVID-19 lockdown. ENVIRONMENT INTERNATIONAL 2021; 150:106426. [PMID: 33578069 PMCID: PMC7997682 DOI: 10.1016/j.envint.2021.106426] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 05/21/2023]
Abstract
Restrictions on human activities were implemented in China to cope with the outbreak of the Coronavirus Disease 2019 (COVID-19), providing an opportunity to investigate the impacts of anthropogenic emissions on air quality. Intensive real-time measurements were made to compare primary emissions and secondary aerosol formation in Xi'an, China before and during the COVID-19 lockdown. Decreases in mass concentrations of particulate matter (PM) and its components were observed during the lockdown with reductions of 32-51%. The dominant contributor of PM was organic aerosol (OA), and results of a hybrid environmental receptor model indicated OA was composed of four primary OA (POA) factors (hydrocarbon-like OA (HOA), cooking OA (COA), biomass burning OA (BBOA), and coal combustion OA (CCOA)) and two oxygenated OA (OOA) factors (less-oxidized OOA (LO-OOA) and more-oxidized OOA (MO-OOA)). The mass concentrations of OA factors decreased from before to during the lockdown over a range of 17% to 58%, and they were affected by control measures and secondary processes. Correlations of secondary aerosols/ΔCO with Ox (NO2 + O3) and aerosol liquid water content indicated that photochemical oxidation had a greater effect on the formation of nitrate and two OOAs than sulfate; however, aqueous-phase reaction presented a more complex effect on secondary aerosols formation at different relative humidity condition. The formation efficiencies of secondary aerosols were enhanced during the lockdown as the increase of atmospheric oxidation capacity. Analyses of pollution episodes highlighted the importance of OA, especially the LO-OOA, for air pollution during the lockdown.
Collapse
Affiliation(s)
- Jie Tian
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China; Shaanxi Key Laboratory of Atmospheric and Haze-fog Pollution Prevention, Xi'an 710061, China
| | - Qiyuan Wang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China; Shaanxi Key Laboratory of Atmospheric and Haze-fog Pollution Prevention, Xi'an 710061, China.
| | - Yong Zhang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Mengyuan Yan
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Huikun Liu
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ningning Zhang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Weikang Ran
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China; Shaanxi Key Laboratory of Atmospheric and Haze-fog Pollution Prevention, Xi'an 710061, China.
| |
Collapse
|
26
|
Gu Y, Yan F, Xu J, Duan Y, Fu Q, Qu Y, Liao H. Mitigated PM 2.5 Changes by the Regional Transport During the COVID-19 Lockdown in Shanghai, China. GEOPHYSICAL RESEARCH LETTERS 2021; 48:e2021GL092395. [PMID: 34230715 PMCID: PMC8250290 DOI: 10.1029/2021gl092395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 05/12/2023]
Abstract
Intensive observations and WRF-Chem simulations are applied in this study to investigate the adverse impacts of regional transport on the PM2.5 (fine particulate matter; diameter ≤2.5 μm) changes in Shanghai during the Coronavirus Disease 2019 lockdown. As the local atmospheric oxidation capacity was observed to be generally weakened, strong regional transport carried by the frequent westerly winds is suggested to be the main driver of the unexpected pollution episodes, increasing the input of both primary and secondary aerosols. Contributing 40%-80% to the PM2.5, the transport contributed aerosols are simulated to exhibit less decreases (13.2%-21.8%) than the local particles (37.1%-64.8%) in urban Shanghai due to the lockdown, which largely results from the less decreased industrial and residential emissions in surrounding provinces. To reduce the influence of the transport, synergetic emission control, especially synergetic ammonia control, measures are proved to be effective strategies, which need to be considered in future regulations.
Collapse
Affiliation(s)
- Yixuan Gu
- Shanghai Typhoon InstituteChina Meteorological AdministrationShanghaiChina
- Shanghai Key Laboratory of Meteorology and HealthShanghai Meteorological ServiceShanghaiChina
| | - Fengxia Yan
- East China Air Traffic Management BureauShanghaiChina
| | - Jianming Xu
- Shanghai Typhoon InstituteChina Meteorological AdministrationShanghaiChina
- Shanghai Key Laboratory of Meteorology and HealthShanghai Meteorological ServiceShanghaiChina
| | - Yusen Duan
- Shanghai Environmental Monitoring CenterShanghaiChina
| | - Qingyan Fu
- Shanghai Environmental Monitoring CenterShanghaiChina
| | - Yuanhao Qu
- Shanghai Typhoon InstituteChina Meteorological AdministrationShanghaiChina
- Shanghai Key Laboratory of Meteorology and HealthShanghai Meteorological ServiceShanghaiChina
| | - Hong Liao
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment TechnologyJiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution ControlSchool of Environmental Science and EngineeringNanjing University of Information Science and TechnologyNanjingChina
| |
Collapse
|
27
|
Liu T, Chan AWH, Abbatt JPD. Multiphase Oxidation of Sulfur Dioxide in Aerosol Particles: Implications for Sulfate Formation in Polluted Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4227-4242. [PMID: 33760581 DOI: 10.1021/acs.est.0c06496] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Atmospheric oxidation of sulfur dioxide (SO2) forms sulfate-containing aerosol particles that impact air quality, climate, and human and ecosystem health. It is well-known that in-cloud oxidation of SO2 frequently dominates over gas-phase oxidation on regional and global scales. Multiphase oxidation involving aerosol particles, fog, and cloud droplets has been generally thought to scale with liquid water content (LWC) so multiphase oxidation would be negligible for aerosol particles due to their low aerosol LWC. However, recent field evidence, particularly from East Asia, shows that fast sulfate formation prevails in cloud-free environments that are characterized by high aerosol loadings. By assuming that the kinetics of cloud water chemistry prevails for aerosol particles, most atmospheric models do not capture this phenomenon. Therefore, the field of aerosol SO2 multiphase chemistry has blossomed in the past decade, with many oxidation processes proposed to bridge the difference between modeled and observed sulfate mass loadings. This review summarizes recent advances in the fundamental understanding of the aerosol multiphase oxidation of SO2, with a focus on environmental conditions that affect the oxidation rate, experimental challenges, mechanisms and kinetics results for individual reaction pathways, and future research directions. Compared to dilute cloud water conditions, this paper highlights the differences that arise at the molecular level with the extremely high solute strengths present in aerosol particles.
Collapse
Affiliation(s)
- Tengyu Liu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
28
|
Comparison of the RADM2 and RACM chemical mechanisms in O 3 simulations: effect of the photolysis rate constant. Sci Rep 2021; 11:5024. [PMID: 33658633 PMCID: PMC7930097 DOI: 10.1038/s41598-021-84629-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/18/2021] [Indexed: 11/08/2022] Open
Abstract
Since the photolysis rate plays an important role in any photoreaction leading to compound sink and radical formation/destruction and eventually O3 formation, its impact on the simulated O3 concentration was evaluated in the present study. Both RADM2 and RACM were adopted with and without updated photolysis rate constants. The newly developed photolysis rates were determined based on two major absorption cross-section and quantum yield data sources. CMAQ in conjunction with meteorological MM5 and emission data retrieved from Taiwan and East Asia were employed to provide spatial and temporal O3 predictions over a one-week period in a three-level nested domain [from 81 km × 81 km in Domain 1 (East Asia) to 9 km × 9 km in Domain 3 (Taiwan)]. Four cases were analyzed, namely, RADM2, with the original photolysis rates applied in Case 1 as a reference case, RADM2, with the updated photolysis rates applied in Case 2, and RACM, with and without the updated photolysis rates applied in Cases 3 and 4, respectively. A comparison of the simulation and observed results indicates that both the application of updated photolysis rate constants and RACM instead of RADM2 enhanced all three error analysis indicators (unpaired peak prediction accuracy, mean normalized bias error and mean absolute normalized gross error). Specifically, RADM2 with the updated photolysis rates resulted in an increase of 12 ppb (10%) in the daily maximum O3 concentration in southwestern Taiwan, while RACM without the updated photolysis rates resulted in an increase of 20 ppb (17%) in the daily maximum O3 concentration in the same area. When RACM with the updated photolysis rate constants was applied in the air quality model, the difference in the daily maximum O3 concentration reached up to 30 ppb (25%). The implication of Case 4 (RACM with the updated photolysis rates) for the formation and degradation of α-pinene and d-limonene was examined.
Collapse
|
29
|
Zhang X, Zhang Y, Wang Y, Fath BD. Research progress and hotspot analysis for reactive nitrogen flows in macroscopic systems based on a CiteSpace analysis. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Ninneman M, Marto J, Shaw S, Edgerton E, Blanchard C, Schwab J. Reactive oxidized nitrogen speciation and partitioning in urban and rural New York State. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2021; 71:348-365. [PMID: 33395373 DOI: 10.1080/10962247.2020.1837289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
This study examined reactive oxidized nitrogen (NOy) speciation and partitioning at one urban site, Queens College (QC) in New York City, and one rural site, Pinnacle State Park (PSP) in Addison, New York (NY) from September 2016 to August 2018 and June 2016 to September 2018, respectively. Oxides of nitrogen (NOx), nitric acid (HNO3), particle nitrate (pNO3), peroxy nitrates (PNs), alkyl nitrates (ANs), and NOy measurements were made at both sites. Across all seasons at QC, the median NOx, HNO3, pNO3, PNs, ANs, and NOy concentrations were 10.99, 0.49, 0.24, 0.62, 0.94, and 13.95 parts per billion (ppb), respectively. All-season median percent contributions of NOx, HNO3, pNO3, PNs, and ANs to the total NOy at QC were 77, 4, 2, 5, and 7%, respectively. Therefore, the sum of the individual NOy species (NOyi ≈ NOx + HNO3 + pNO3 + PNs + ANs) accounted for 95% of the total NOy at QC, which was well within measurement uncertainties. At PSP, the median NOx, HNO3, pNO3, PNs, ANs, and NOy concentrations were 0.65, 0.16, 0.12, 0.13, 0.18, and 1.56 ppb, respectively, over all seasons. The median percent contributions of NOx, HNO3, pNO3, PNs, and ANs to NOy over all seasons at PSP were 42, 10, 8, 9, and 12%, respectively. NOyi comprised 81% of NOy across all seasons at PSP, and deviations from 100% closure were generally within measurement uncertainties. Since both datasets yielded NOy budget closure results that were either fully or largely explained by the measurement uncertainties, the observed NOyi is likely representative of ambient NOy in urban and rural New York. The results have implications for understanding the fate of NOx emissions and their impact on local and regional air quality in urban and rural New York State.Implications: Continuous speciated and total reactive oxidized nitrogen (NOy) measurements were made in urban and rural New York from 2016 to 2018. Different NOy species have contrasting effects on the chemistry that impacts ozone (O3) and fine particulate matter (PM2.5) formation and concentrations. Since O3 and PM2.5 are regulated pollutants that have proven difficult to control, the results have implications for current and future air quality policy.
Collapse
Affiliation(s)
- Matthew Ninneman
- Atmospheric Sciences Research Center, State University of New York at Albany, Albany, NY, USA
| | - Joseph Marto
- Atmospheric Sciences Research Center, State University of New York at Albany, Albany, NY, USA
| | | | - Eric Edgerton
- Atmospheric Research & Analysis, Inc., Cary, NC, USA
| | | | - James Schwab
- Atmospheric Sciences Research Center, State University of New York at Albany, Albany, NY, USA
| |
Collapse
|
31
|
Peng J, Hu M, Shang D, Wu Z, Du Z, Tan T, Wang Y, Zhang F, Zhang R. Explosive Secondary Aerosol Formation during Severe Haze in the North China Plain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2189-2207. [PMID: 33539077 DOI: 10.1021/acs.est.0c07204] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Severe haze events with exceedingly high-levels of fine aerosols occur frequently over the past decades in the North China Plain (NCP), exerting profound impacts on human health, weather, and climate. The development of effective mitigation policies requires a comprehensive understanding of the haze formation mechanisms, including identification and quantification of the sources, formation, and transformation of the aerosol species. Haze evolution in this region exhibits distinct physical and chemical characteristics from clean to polluted periods, as evident from increasing stagnation and relative humidity, but decreasing solar radiation as well as explosive secondary aerosol formation. The latter is attributed to highly elevated concentrations of aerosol precursor gases and is reflected by rapid increases in the particle number and mass concentrations, both corresponding to nonequilibrium chemical processes. Considerable new knowledge has been acquired to understand the processes regulating haze formation, particularly in light of the progress in elucidating the aerosol formation mechanisms. This review synthesizes recent advances in understanding secondary aerosol formation, by highlighting several critical chemical/physical processes, that is, new particle formation and aerosol growth driven by photochemistry and aqueous chemistry as well as the interaction between aerosols and atmospheric stability. Current challenges and future research priorities are also discussed.
Collapse
Affiliation(s)
- Jianfei Peng
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Dongjie Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhuofei Du
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tianyi Tan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yanan Wang
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Fang Zhang
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
- College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Renyi Zhang
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
32
|
Lv Z, Wang X, Deng F, Ying Q, Archibald AT, Jones RL, Ding Y, Cheng Y, Fu M, Liu Y, Man H, Xue Z, He K, Hao J, Liu H. Source-Receptor Relationship Revealed by the Halted Traffic and Aggravated Haze in Beijing during the COVID-19 Lockdown. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15660-15670. [PMID: 33225703 PMCID: PMC7724757 DOI: 10.1021/acs.est.0c04941] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 05/19/2023]
Abstract
The COVID-19 outbreak greatly limited human activities and reduced primary emissions particularly from urban on-road vehicles but coincided with Beijing experiencing "pandemic haze," raising the public concerns about the effectiveness of imposed traffic policies to improve the air quality. This paper explores the relationship between local vehicle emissions and the winter haze in Beijing before and during the COVID-19 lockdown based on an integrated analysis framework, which combines a real-time on-road emission inventory, in situ air quality observations, and a localized numerical modeling system. We found that traffic emissions decreased substantially during the COVID-19 pandemic, but its imbalanced emission abatement of NOx (76%, 125.3 Mg/day) and volatile organic compounds (VOCs, 53%, 52.9 Mg/day) led to a significant rise of atmospheric oxidants in urban areas, resulting in a modest increase in secondary aerosols due to inadequate precursors, which still offset reduced primary emissions. Moreover, the enhanced oxidizing capacity in the surrounding regions greatly increased the secondary particles with relatively abundant precursors, which was transported into Beijing and mainly responsible for the aggravated haze pollution. We recommend that mitigation policies should focus on accelerating VOC emission reduction and synchronously controlling regional sources to release the benefits of local traffic emission control.
Collapse
Affiliation(s)
- Zhaofeng Lv
- State
Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory
of Sources and Control of Air Pollution Complex, International Joint
Laboratory on Low Carbon Clean Energy Innovation, School of the Environment, Tsinghua University, Beijing 100084, China
| | - Xiaotong Wang
- State
Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory
of Sources and Control of Air Pollution Complex, International Joint
Laboratory on Low Carbon Clean Energy Innovation, School of the Environment, Tsinghua University, Beijing 100084, China
| | - Fanyuan Deng
- State
Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory
of Sources and Control of Air Pollution Complex, International Joint
Laboratory on Low Carbon Clean Energy Innovation, School of the Environment, Tsinghua University, Beijing 100084, China
| | - Qi Ying
- Zachry
Department of Civil and Environmental Engineering, Texas A&M University, College
Station, Texas 77843, United States
| | - Alexander T. Archibald
- Centre
for Atmospheric Science, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Roderic L. Jones
- Centre
for Atmospheric Science, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Yan Ding
- Chinese
Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Cheng
- Beijing
Transport Institute, Beijing 100073, China
| | - Mingliang Fu
- Chinese
Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Liu
- Beijing
Transport Institute, Beijing 100073, China
| | - Hanyang Man
- State
Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory
of Sources and Control of Air Pollution Complex, International Joint
Laboratory on Low Carbon Clean Energy Innovation, School of the Environment, Tsinghua University, Beijing 100084, China
| | - Zhigang Xue
- Chinese
Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kebin He
- State
Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory
of Sources and Control of Air Pollution Complex, International Joint
Laboratory on Low Carbon Clean Energy Innovation, School of the Environment, Tsinghua University, Beijing 100084, China
| | - Jiming Hao
- State
Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory
of Sources and Control of Air Pollution Complex, International Joint
Laboratory on Low Carbon Clean Energy Innovation, School of the Environment, Tsinghua University, Beijing 100084, China
| | - Huan Liu
- State
Key Joint Laboratory of ESPC, State Environmental Protection Key Laboratory
of Sources and Control of Air Pollution Complex, International Joint
Laboratory on Low Carbon Clean Energy Innovation, School of the Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Singh V, Singh S, Biswal A, Kesarkar AP, Mor S, Ravindra K. Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115368. [PMID: 32829030 PMCID: PMC7426090 DOI: 10.1016/j.envpol.2020.115368] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/10/2020] [Accepted: 08/02/2020] [Indexed: 05/19/2023]
Abstract
Lockdown measures to contain COVID-19 pandemic has resulted in a considerable change in air pollution worldwide. We estimate the temporal and diurnal changes of the six criteria air pollutants, including particulate matter (PM2.5 and PM10) and gaseous pollutants (NO2, O3, CO, and SO2) during lockdown (25th March - 3rd May 2020) across regions of India using the observations from 134 real-time monitoring sites of Central Pollution Control Board (CPCB). Significant reduction in PM2.5, PM10, NO2, and CO has been found in all the regions during the lockdown. SO2 showed mixed behavior, with a slight increase at some sites but a comparatively significant decrease at other locations. O3 also showed a mixed variation with a mild increase in IGP and a decrease in the South. The absolute decrease in PM2.5, PM10, and NO2 was observed during peak morning traffic hours (08-10 Hrs) and late evening (20-24 Hrs), but the percentage reduction is almost constant throughout the day. A significant decrease in day-time O3 has been found over Indo Gangetic plain (IGP) and central India, whereas night-time O3 has increased over IGP due to less O3 loss. The most significant reduction (∼40-60%) was found in PM2.5 and PM10. The highest decrease in PM was found for the north-west and IGP followed by South and central regions. A considerable reduction (∼30-70%) in NO2 was found except for a few sites in the central region. A similar pattern was observed for CO having a ∼20-40% reduction. The reduction observed for PM2.5, PM10, NO2, and enhancement in O3 was proportional to the population density. Delhi's air quality has improved with a significant reduction in primary pollutants, however, an increase in O3 was observed. The changes reported during the lockdown are combined effect of changes in the emissions, meteorology, and atmospheric chemistry that requires detailed investigations.
Collapse
Affiliation(s)
- Vikas Singh
- National Atmospheric Research Laboratory, Gadanki, AP, India.
| | - Shweta Singh
- National Atmospheric Research Laboratory, Gadanki, AP, India
| | - Akash Biswal
- National Atmospheric Research Laboratory, Gadanki, AP, India; Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Amit P Kesarkar
- National Atmospheric Research Laboratory, Gadanki, AP, India
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| |
Collapse
|
34
|
Zheng H, Kong S, Chen N, Yan Y, Liu D, Zhu B, Xu K, Cao W, Ding Q, Lan B, Zhang Z, Zheng M, Fan Z, Cheng Y, Zheng S, Yao L, Bai Y, Zhao T, Qi S. Significant changes in the chemical compositions and sources of PM 2.5 in Wuhan since the city lockdown as COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140000. [PMID: 32540668 PMCID: PMC7274103 DOI: 10.1016/j.scitotenv.2020.140000] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 04/14/2023]
Abstract
Wuhan was the first city to adopt the lockdown measures to prevent COVID-19 spreading, which improved the air quality accordingly. This study investigated the variations in chemical compositions, source contributions, and regional transport of fine particles (PM2.5) during January 23-February 22 of 2020, compared with the same period in 2019. The average mass concentration of PM2.5 decreased from 72.9 μg m-3 (2019) to 45.9 μg m-3 (2020), by 27.0 μg m-3. It was predominantly contributed by the emission reduction (92.0%), retrieved from a random forest tree approach. The main chemical species of PM2.5 all decreased with the reductions ranging from 0.85 μg m-3 (chloride) to 9.86 μg m-3 (nitrate) (p < 0.01). Positive matrix factorization model indicated that the mass contributions of seven PM2.5 sources all decreased. However, their contribution percentages varied from -11.0% (industrial processes) to 8.70% (secondary inorganic aerosol). Source contributions of PM2.5 transported from potential geographical regions showed reductions with mean values ranging from 0.22 to 4.36 μg m-3. However, increased contributions of firework burning, secondary inorganic aerosol, road dust, and vehicle emissions from transboundary transport were observed. This study highlighted the complex and nonlinear response of chemical compositions and sources of PM2.5 to air pollution control measures, suggesting the importance of regional-joint control.
Collapse
Affiliation(s)
- Huang Zheng
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Department of Environmental Science and Engineering, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Shaofei Kong
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Research Centre for Complex Air Pollution of Hubei Province, Wuhan, China.
| | - Nan Chen
- Eco-Environmental Monitoring Centre of Hubei Province, Wuhan 430072, China; Research Centre for Complex Air Pollution of Hubei Province, Wuhan, China
| | - Yingying Yan
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Research Centre for Complex Air Pollution of Hubei Province, Wuhan, China
| | - Dantong Liu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Zhu
- Eco-Environmental Monitoring Centre of Hubei Province, Wuhan 430072, China; Research Centre for Complex Air Pollution of Hubei Province, Wuhan, China
| | - Ke Xu
- Eco-Environmental Monitoring Centre of Hubei Province, Wuhan 430072, China; Research Centre for Complex Air Pollution of Hubei Province, Wuhan, China
| | - Wenxiang Cao
- Eco-Environmental Monitoring Centre of Hubei Province, Wuhan 430072, China; Research Centre for Complex Air Pollution of Hubei Province, Wuhan, China
| | - Qingqing Ding
- Eco-Environmental Monitoring Centre of Hubei Province, Wuhan 430072, China; Research Centre for Complex Air Pollution of Hubei Province, Wuhan, China
| | - Bo Lan
- Eco-Environmental Monitoring Centre of Hubei Province, Wuhan 430072, China; Research Centre for Complex Air Pollution of Hubei Province, Wuhan, China
| | - Zhouxiang Zhang
- Eco-Environmental Monitoring Centre of Hubei Province, Wuhan 430072, China; Research Centre for Complex Air Pollution of Hubei Province, Wuhan, China
| | - Mingming Zheng
- Department of Environmental Science and Engineering, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Eco-Environmental Monitoring Centre of Hubei Province, Wuhan 430072, China
| | - Zewei Fan
- Department of Environmental Science and Engineering, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yi Cheng
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Shurui Zheng
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Department of Environmental Science and Engineering, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Liquan Yao
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Department of Environmental Science and Engineering, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yongqing Bai
- Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China
| | - Tianliang Zhao
- School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Shihua Qi
- Department of Environmental Science and Engineering, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Research Centre for Complex Air Pollution of Hubei Province, Wuhan, China
| |
Collapse
|
35
|
Li Z, Xie P, Hu R, Wang D, Jin H, Chen H, Lin C, Liu W. Observations of N 2O 5 and NO 3 at a suburban environment in Yangtze river delta in China: Estimating heterogeneous N 2O 5 uptake coefficients. J Environ Sci (China) 2020; 95:248-255. [PMID: 32653187 DOI: 10.1016/j.jes.2020.04.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
The nitrate radical (NO3) and dinitrogen pentoxide (N2O5) play an important role in the nocturnal atmosphere chemistry. Observations of NO3 radicals and N2O5 were performed in a semirural ground site at Tai'Zhou in polluted southern China using cavity ring down spectroscopy (CRDS) from 23 May to 15 June 2018. The observed NO3 and N2O5 concentrations were relatively low, with 1 min average value of 4.4 ± 2.2 and 26.0 ± 35.7 pptV, respectively. The N2O5 uptake coefficient was determined to be from 0.027 to 0.107 based on steady state lifetime method. Fast N2O5 hydrolysis was the largest contributor to the loss of NO3 and contributed to substantial nitrate formation, with an average value of 14.83 ± 6.01 µg/m3. Further analysis shows that the N2O5 heterogeneous reactions dominated the nocturnal NOx loss and the nocturnal NOx loss rate is 0.14 ± 0.02 over this region.
Collapse
Affiliation(s)
- Zhiyan Li
- Key laboratory of Environmental Optical and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science, Hefei 230031, China; Department of Optoelectronic Engineering, School of Mathematics and Physics, Anhui University of Technology, Ma'an Shan 243032, China
| | - Pinhua Xie
- Key laboratory of Environmental Optical and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science, Hefei 230031, China; CAS Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Renzhi Hu
- Key laboratory of Environmental Optical and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science, Hefei 230031, China.
| | - Dan Wang
- Department of Optoelectronic Engineering, School of Mathematics and Physics, Anhui University of Technology, Ma'an Shan 243032, China
| | - Huawei Jin
- Key laboratory of Environmental Optical and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science, Hefei 230031, China
| | - Hao Chen
- College of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chuan Lin
- Key laboratory of Environmental Optical and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science, Hefei 230031, China
| | - Wenqing Liu
- Key laboratory of Environmental Optical and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science, Hefei 230031, China
| |
Collapse
|
36
|
Chen X, Wang H, Lu K, Li C, Zhai T, Tan Z, Ma X, Yang X, Liu Y, Chen S, Dong H, Li X, Wu Z, Hu M, Zeng L, Zhang Y. Field Determination of Nitrate Formation Pathway in Winter Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9243-9253. [PMID: 32589840 DOI: 10.1021/acs.est.0c00972] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Particulate nitrate (pNO3-) has often been found to be the major component of fine particles in urban air-sheds in China, the United States, and Europe during winter haze episodes in recent years. However, there is a lack of knowledge regarding the experimentally determined contribution of different chemical pathways to the formation of pNO3-. Here, for the first time, we combine ground and tall-tower observations to quantify the chemical formation of pNO3- using observationally constrained model approach based on direct observations of OH and N2O5 for the urban air-shed. We find that the gas-phase oxidation pathway (OH+NO2) during the daytime is the dominant channel over the nocturnal uptake of N2O5 during pollution episodes, with percentages of 74% in urban areas and 76% in suburban areas. This is quite different from previous studies in some regions of the US, in which the uptake of N2O5 was concluded to account for a larger contribution in winter. These results indicate that the driving factor of nitrate pollution in Beijing and different regions of the US is different, as are the mitigation strategies for particulate nitrate.
Collapse
Affiliation(s)
- Xiaorui Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Haichao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chunmeng Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tianyu Zhai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhaofeng Tan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, Jülich 52428, Germany
| | - Xuefei Ma
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinping Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuhan Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shiyi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Huabin Dong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Science, Xiamen 361021, China
| |
Collapse
|
37
|
Huang X, Ding A, Gao J, Zheng B, Zhou D, Qi X, Tang R, Wang J, Ren C, Nie W, Chi X, Xu Z, Chen L, Li Y, Che F, Pang N, Wang H, Tong D, Qin W, Cheng W, Liu W, Fu Q, Liu B, Chai F, Davis SJ, Zhang Q, He K. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. Natl Sci Rev 2020; 8:nwaa137. [PMID: 34676092 PMCID: PMC7337733 DOI: 10.1093/nsr/nwaa137] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/02/2022] Open
Abstract
To control the spread of the 2019 novel coronavirus (COVID-19), China imposed nationwide restrictions on the movement of its population (lockdown) after the Chinese New Year of 2020, leading to large reductions in economic activities and associated emissions. Despite such large decreases in primary pollution, there were nonetheless several periods of heavy haze pollution in eastern China, raising questions about the well-established relationship between human activities and air quality. Here, using comprehensive measurements and modeling, we show that the haze during the COVID lockdown was driven by enhancements of secondary pollution. In particular, large decreases in NOx emissions from transportation increased ozone and nighttime NO3 radical formation, and these increases in atmospheric oxidizing capacity in turn facilitated the formation of secondary particulate matter. Our results, afforded by the tragic natural experiment of the COVID-19 pandemic, indicate that haze mitigation depends upon a coordinated and balanced strategy for controlling multiple pollutants.
Collapse
Affiliation(s)
- Xin Huang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Aijun Ding
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Jian Gao
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bo Zheng
- Department of Earth System Science, Tsinghua University, Beijing 100084, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Derong Zhou
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Ximeng Qi
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Rong Tang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Jiaping Wang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Chuanhua Ren
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Wei Nie
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Xuguang Chi
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Zheng Xu
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Liangduo Chen
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Yuanyuan Li
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Fei Che
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Nini Pang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haikun Wang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Dan Tong
- Department of Earth System Science, Tsinghua University, Beijing 100084, China
- Department of Earth System Science, University of California, Irvine, CA 92697, USA
| | - Wei Qin
- Jiangsu Environmental Monitoring Center, Nanjing 210036, China
| | - Wei Cheng
- Jiangsu Environmental Monitoring Center, Nanjing 210036, China
| | - Weijing Liu
- Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai 200030, China
| | - Baoxian Liu
- Beijing Key Laboratory of Airborne Particulate Matter Monitoring Technology, Beijing Municipal Environmental Monitoring Center, Beijing 100048, China
| | - Fahe Chai
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Steven J Davis
- Department of Earth System Science, Tsinghua University, Beijing 100084, China
- Department of Earth System Science, University of California, Irvine, CA 92697, USA
| | - Qiang Zhang
- Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Kebin He
- Department of Earth System Science, Tsinghua University, Beijing 100084, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
38
|
Chemical Analysis of Surface-Level Ozone Exceedances during the 2015 Pan American Games. ATMOSPHERE 2020. [DOI: 10.3390/atmos11060572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Surface-level ozone (O3) continues to be a significant health risk in the Greater Toronto Hamilton Area (GTHA) of Canada even though precursor emissions in the area have decreased significantly over the past two decades. In July 2015, Environment and Climate Change Canada (ECCC) led an intensive field study coincident with Toronto hosting the 2015 Pan American Games. During the field study, the daily 1-h maximum O3 standard (80 ppbv) was exceeded twice at a measurement site in North Toronto, once on July 12 and again on July 28. In this study, ECCC’s 2.5-km configuration of the Global Environmental Multi-scale (GEM) meteorological model was combined with the Modelling Air-quality and CHemistry (MACH) on-line atmospheric chemistry model and the Town Energy Balance (TEB) urban surface parameterization to create a new urban air quality modelling system. In general, the model results showed that the nested 2.5-km grid-spaced urban air quality model performed better in statistical scores compared to the piloting 10-km grid-spaced GEM-MACH model without TEB. Model analyses were performed with GEM-MACH-TEB for the two exceedance periods. The local meteorology for both cases consisted of light winds with the highest O3 predictions situated along lake-breeze fronts. For the July 28 case, O3 production sensitivity analysis along the trajectory of the lake-breeze circulation showed that the region of most efficient O3 production occurred in the updraft region of the lake-breeze front, as the precursors to O3 formation underwent vertical mixing. In this updraft region, the ozone production switches from volatile organic compound (VOC)-sensitive to NOx-sensitive, and the local net O3 production rate reaches a maximum. This transition in the chemical regime is a previously unidentified factor for why O3 surface-level mixing ratios maximize along the lake-breeze front. For the July 12 case, differences between the model and observed Lake Ontario water temperature and the strength of lake-breeze opposing wind flow play a role in differences in the timing of the lake-breeze, which impacts the predicted location of the O3 maximum north of Toronto.
Collapse
|
39
|
Wintertime N 2O 5 uptake coefficients over the North China Plain. Sci Bull (Beijing) 2020; 65:765-774. [PMID: 36659110 DOI: 10.1016/j.scib.2020.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/21/2023]
Abstract
The heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) plays an important role in regulating NOx. The N2O5 uptake coefficient, γ(N2O5), was determined using an iterative box model that was constrained to observational data obtained in suburban Beijing from February to March 2016. The box model determined 2289 individual γ(N2O5) values that varied from <0.001 to 0.02 with an average value of 0.0046 ± 0.0039 (and a median value of 0.0032). We found the derived winter γ(N2O5) values in Beijing were relatively low as compared to values reported in previous field studies conducted during winter in Hong Kong (average value of 0.014) and the eastern U.S. coast (median value of 0.0143). In our study, field evidence of the suppression of γ(N2O5) values due to pNO3- content, organics and the enhancement by aerosol liquid water content (ALWC) is in line with previous laboratory study results. Low ALWC, high pNO3- content, and particle morphology (inorganic core with an organic shell) accounted for the low γ(N2O5) values in the North China Plain (NCP) during wintertime. The field-derived γ(N2O5) values are well reproduced by a revised parameterization method, which includes the aerosol size distribution, ALWC, nitrate and organic coating, suggesting the feasibility of comprehensive parameterization in the NCP during wintertime.
Collapse
|
40
|
Sorooshian A, Corral AF, Braun RA, Cairns B, Crosbie E, Ferrare R, Hair J, Kleb MM, Mardi AH, Maring H, McComiskey A, Moore R, Painemal D, Jo Scarino A, Schlosser J, Shingler T, Shook M, Wang H, Zeng X, Ziemba L, Zuidema P. Atmospheric Research Over the Western North Atlantic Ocean Region and North American East Coast: A Review of Past Work and Challenges Ahead. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2020; 125:10.1029/2019jd031626. [PMID: 32699733 PMCID: PMC7375207 DOI: 10.1029/2019jd031626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/21/2020] [Indexed: 05/26/2023]
Abstract
Decades of atmospheric research have focused on the Western North Atlantic Ocean (WNAO) region because of its unique location that offers accessibility for airborne and ship measurements, gradients in important atmospheric parameters, and a range of meteorological regimes leading to diverse conditions that are poorly understood. This work reviews these scientific investigations for the WNAO region, including the East Coast of North America and the island of Bermuda. Over 50 field campaigns and long-term monitoring programs, in addition to 715 peer-reviewed publications between 1946 and 2019 have provided a firm foundation of knowledge for these areas. Of particular importance in this region has been extensive work at the island of Bermuda that is host to important time series records of oceanic and atmospheric variables. Our review categorizes WNAO atmospheric research into eight major categories, with some studies fitting into multiple categories (relative %): Aerosols (25%), Gases (24%), Development/Validation of Techniques, Models, and Retrievals (18%), Meteorology and Transport (9%), Air-Sea Interactions (8%), Clouds/Storms (8%), Atmospheric Deposition (7%), and Aerosol-Cloud Interactions (2%). Recommendations for future research are provided in the categories highlighted above.
Collapse
Affiliation(s)
- Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ
| | - Andrea F. Corral
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | - Rachel A. Braun
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | - Brian Cairns
- NASA Goddard Institute for Space Studies, New York, NY
| | - Ewan Crosbie
- NASA Langley Research Center, Hampton, VA
- Science Systems and Applications, Inc., Hampton, VA
| | | | | | | | - Ali Hossein Mardi
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | | | | | | | - David Painemal
- NASA Langley Research Center, Hampton, VA
- Science Systems and Applications, Inc., Hampton, VA
| | - Amy Jo Scarino
- NASA Langley Research Center, Hampton, VA
- Science Systems and Applications, Inc., Hampton, VA
| | - Joseph Schlosser
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | | | | | - Hailong Wang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA
| | - Xubin Zeng
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ
| | | | - Paquita Zuidema
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL
| |
Collapse
|
41
|
Li C, He Q, Hettiyadura APS, Käfer U, Shmul G, Meidan D, Zimmermann R, Brown SS, George C, Laskin A, Rudich Y. Formation of Secondary Brown Carbon in Biomass Burning Aerosol Proxies through NO 3 Radical Reactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1395-1405. [PMID: 31730747 DOI: 10.1021/acs.est.9b05641] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Atmospheric brown carbon (BrC) is an important contributor to the radiative forcing of climate by organic aerosols. Because of the molecular diversity of BrC compounds and their dynamic transformations, it is challenging to predictively understand BrC optical properties. OH radical and O3 reactions, together with photolysis, lead to diminished light absorption and lower warming effects of biomass burning BrC. The effects of night-time aging on the optical properties of BrC aerosols are less known. To address this knowledge gap, night-time NO3 radical chemistry with tar aerosols from wood pyrolysis was investigated in a flow reactor. This study shows that the optical properties of BrC change because of transformations driven by reactions with the NO3 radical that form new absorbing species and lead to significant absorption enhancement over the ultraviolet-visible (UV-vis) range. The overnight aging increases the mass absorption coefficients of the BrC by a factor of 1.3-3.2 between 380 nm and 650 nm. Nitrated organic compounds, particularly nitroaromatics, were identified as the main products that contribute to the enhanced light absorption in the secondary BrC. Night-time aging of BrC aerosols represents an important source of secondary BrC and can have a pronounced effect on atmospheric chemistry and air pollution.
Collapse
Affiliation(s)
- Chunlin Li
- Department of Earth and Planetary Sciences , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Quanfu He
- Department of Earth and Planetary Sciences , Weizmann Institute of Science , Rehovot 76100 , Israel
| | | | - Uwe Käfer
- Joint Mass Spectrometry Centre , University of Rostock , Dr.-Lorenz-Weg 2 , 18059 Rostock , Germany
- Joint Mass Spectrometry Centre, Cooperation Group "Comprehensive Molecular Analytics" (CMA) , Helmholtz Zentrum München , Ingolstädter Landstrasse 1 , 85764 Neuherberg , Germany
| | - Guy Shmul
- Department of Chemical Research Support , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Daphne Meidan
- Department of Earth and Planetary Sciences , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre , University of Rostock , Dr.-Lorenz-Weg 2 , 18059 Rostock , Germany
- Joint Mass Spectrometry Centre, Cooperation Group "Comprehensive Molecular Analytics" (CMA) , Helmholtz Zentrum München , Ingolstädter Landstrasse 1 , 85764 Neuherberg , Germany
| | - Steven S Brown
- Chemical Science Division , NOAA Earth System Research Laboratory (ESRL) , Boulder , Colorado 80305 , United States
- Department of Chemistry , University of Colorado , Boulder , Colorado 80309-0215 , United States
| | - Christian George
- Univ Lyon, Université Claude Bernard Lyon 1 , CNRS, IRCELYON , F-69626 , Villeurbanne , France
| | - Alexander Laskin
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Yinon Rudich
- Department of Earth and Planetary Sciences , Weizmann Institute of Science , Rehovot 76100 , Israel
| |
Collapse
|
42
|
Abstract
The atmosphere is composed of nitrogen, oxygen and argon, a variety of trace gases, and particles or aerosols from a variety of sources. Reactive, trace gases have short mean residence time in the atmosphere and large spatial and temporal variations in concentration. Many trace gases are removed by reaction with hydroxyl radical and deposition in rainfall or dryfall at the Earth's surface. The upper atmosphere, the stratosphere, contains ozone that screens ultraviolet light from the Earth's surface. Chlorofluorocarbons released by humans lead to the loss of stratospheric ozone, which might eventually render the Earth's land surface uninhabitable. Changes in the composition of the atmosphere, especially rising concentrations of CO2, CH4, and N2O, will lead to climatic changes over much of the Earth's surface.
Collapse
|
43
|
Goldberger LA, Jahl LG, Thornton JA, Sullivan RC. N 2O 5 reactive uptake kinetics and chlorine activation on authentic biomass-burning aerosol. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1684-1698. [PMID: 31580371 DOI: 10.1039/c9em00330d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We examined the reactive uptake of dinitrogen pentoxide (N2O5) to authentic biomass-burning aerosol (BBA) using a small chamber reservoir in combination with an entrained aerosol flow tube. BBA was generated from four different fuel types and the reactivity of N2O5 was probed from 30 to 70% relative humidity (RH). The N2O5 reactive uptake coefficient, γ(N2O5), depended upon RH, fuel type, and to a lesser degree on aerosol chloride mass fractions. The γ(N2O5) ranged from 2.0 (±0.4) ×10-3 on black needlerush derived BBA at 30% RH to 6.0 (±0.6) ×10-3 on wiregrass derived BBA at 65% RH. Major N2O5 reaction products were observed including gaseous ClNO2 and HNO3 and particulate nitrate, and used to create a reactive nitrogen budget. Black needlerush BBA had the most particulate chloride, and the only measured ClNO2 yield > 1%. The ClNO2 yield on black needlerush decayed from an initial value of ∼100% to ∼30% over the course of the burn experiment, suggesting a depletion of BBA chloride over time. Black needlerush was also the only fuel for which the reactive nitrogen budget indicated other N-containing products were generated. Generally, the results suggest limited chloride availability for heterogeneous reaction for BBA in the RH range probed here, including BBA with chloride mass fractions on the higher end of previously reported values (∼17-34%). Though less than fresh sea spray aerosol, ∼50%. We use these measured quantities to discuss the implications for nocturnal aerosol nitrate formation, the chemical fate of N2O5(g), and the availability of particulate chloride for activation in biomass burning plumes.
Collapse
Affiliation(s)
- Lexie A Goldberger
- Department of Atmospheric Science, University of Washington, Seattle, WA, USA.
| | | | | | | |
Collapse
|
44
|
Yan C, Tham YJ, Zha Q, Wang X, Xue L, Dai J, Wang Z, Wang T. Fast heterogeneous loss of N 2O 5 leads to significant nighttime NO x removal and nitrate aerosol formation at a coastal background environment of southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 677:637-647. [PMID: 31071666 DOI: 10.1016/j.scitotenv.2019.04.389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Nitrate radical (NO3) and dinitrogen pentoxide (N2O5) play crucial roles in the nocturnal atmosphere. To quantify their impacts, we deployed a thermal-dissociation chemical ionization mass spectrometry (TD-CIMS), to measure their concentration, as well as ClNO2 at a coastal background site in the southern of China during the late autumn of 2012. Moderate levels of NO3, N2O5 and high concentration of ClNO2 were observed during the study period, indicating active NOx-O3 chemistry in the region. Distinct features of NO3, N2O5 and ClNO2 mixing ratios were observed in different airmasses. Further analysis revealed that the N2O5 heterogeneous reaction was the dominant loss of N2O5 and NO3, which showed higher loss rate compared to that in other coastal sites. Especially, the N2O5 loss rates could reach up to 0.0139 s-1 when airmasses went across the sea. The fast heterogeneous loss of N2O5 led to rapid NOx loss which could be comparable to the daytime process through NO2 oxidization by OH, and on the other hand, to rapid nitrate aerosol formation. In summary, our results revealed that the N2O5 hydrolysis could play significant roles in regulating the air quality by reducing NOx but forming nitrate aerosols.
Collapse
Affiliation(s)
- Chao Yan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China; Institute for Atmospheric and Earth System Research, Physics, University of Helsinki, 00014, Helsinki, Finland
| | - Yee Jun Tham
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China; Institute for Atmospheric and Earth System Research, Physics, University of Helsinki, 00014, Helsinki, Finland
| | - Qiaozhi Zha
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China; Institute for Atmospheric and Earth System Research, Physics, University of Helsinki, 00014, Helsinki, Finland
| | - Xinfeng Wang
- Environment Research Institute, Shandong University, Jinan, Shandong, China
| | - Likun Xue
- Environment Research Institute, Shandong University, Jinan, Shandong, China
| | - Jianing Dai
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhe Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
45
|
Tutsak E, Koçak M. High time-resolved measurements of water-soluble sulfate, nitrate and ammonium in PM 2.5 and their precursor gases over the Eastern Mediterranean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:212-226. [PMID: 30959289 DOI: 10.1016/j.scitotenv.2019.03.451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 05/28/2023]
Abstract
High time-resolved measurements of aerosol SO42-, NO3-, NH4+ and their precursor gases HNO3, SO2, NH3 between 27 and 02 January/February and 19-01 August/September 2015 were carried out by applying AIM-IC at a rural site located on the coast of the Eastern Mediterranean, Erdemli, Turkey. The comparison between online and offline techniques revealed better correlation coefficients for SO42- and NH4+ (r > 0.90) than that of NO3- (0.63). Mean concentrations of water-soluble species were found in decreasing order SO42- (2814 ng m-3) > NH4+ (1371 ng m-3) > NO3- (495 ng m-3). NH3 (3390 ng m-3) concentration was more than enough to neutralize SO2 (879 ng m-3) and HNO3 (346 ng m-3). The gas-to-particle conversion ratios (>0.3) implied that SO42-, NO3- and NH4+ were mainly influenced by non-local sources. SO42-, NO3-, NH4+, HNO3, SO2 exhibited remarkable decrease (leastways 40%) in the atmosphere over the Eastern Mediterranean throughout fifteen years. In winter, day time NH3 concentrations illustrated significant relationship with temperature (positive) and humidity (negative), implying evaporation of dew or emission from plant stoma. Whereas, diurnal cycle of SO42- and SO2 was considerably influenced by populated City of Mersin in winter. During summer, HNO3 and SO2 (r = 0.74) demonstrated similar diurnal cycle, suggesting a common source for these precursor gases whilst NH3 was considerably affected by biomass burning emissions. Variability of all species was governed by local or nearly mesoscale transport in winter possibly due to frequent rain events. In summer, air flow from Eastern Mediterranean denoted aged air masses (GPC > 0.65) containing rather uniform concentrations of SO42- (~65 nmol m-3) and NH4+ (~140 nmol m-3). The highest NH3 along with the greatest % KBB contribution to PM2.5 mass was observed under the influence of Northerly airflow, exhibiting significance of biomass burning emissions as a source of NH3 in summer.
Collapse
Affiliation(s)
- Ersin Tutsak
- Institute of Marine Sciences, Middle East Technical University, P.O. Box 28, 33731 Erdemli-Mersin, Turkey
| | - Mustafa Koçak
- Institute of Marine Sciences, Middle East Technical University, P.O. Box 28, 33731 Erdemli-Mersin, Turkey.
| |
Collapse
|
46
|
McCaslin LM, Johnson MA, Gerber RB. Mechanisms and competition of halide substitution and hydrolysis in reactions of N 2O 5 with seawater. SCIENCE ADVANCES 2019; 5:eaav6503. [PMID: 31183400 PMCID: PMC6551187 DOI: 10.1126/sciadv.aav6503] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
SN2-type halide substitution and hydrolysis are two of the most ubiquitous reactions in chemistry. The interplay between these processes is fundamental in atmospheric chemistry through reactions of N2O5 and seawater. N2O5 plays a major role in regulating levels of O3, OH, NO x , and CH4. While the reactions of N2O5 and seawater are of central importance, little is known about their mechanisms. Of interest is the activation of Cl in seawater by the formation of gaseous ClNO2, which occurs despite the fact that hydrolysis (to HNO3) is energetically more favorable. We determine key features of the reaction landscape that account for this behavior in a theoretical study of the cluster N2O5/Cl-/H2O. This was carried out using ab initio molecular dynamics to determine reaction pathways, structures, and time scales. While hydrolysis of N2O5 occurs in the absence of Cl-, results here reveal that a low-lying pathway featuring halide substitution intermediates enhances hydrolysis.
Collapse
Affiliation(s)
- Laura M. McCaslin
- Institute of Chemistry and the Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 9190401, Israel
| | - Mark A. Johnson
- Department of Chemistry, Yale University, New Haven, CT 06525, USA
| | - R. Benny Gerber
- Institute of Chemistry and the Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem 9190401, Israel
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
47
|
Heterogeneous Uptake of N2O5 in Sand Dust and Urban Aerosols Observed during the Dry Season in Beijing. ATMOSPHERE 2019. [DOI: 10.3390/atmos10040204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The uptake of dinitrogen pentoxide (N2O5) on aerosols affects the nocturnal removal of NOx and particulate nitrate formation in the atmosphere. This study investigates N2O5 uptake processes using field observations from an urban site in Beijing during April–May 2017, a period characterized by dry weather conditions. For the first time, a very large N2O5 uptake rate (k(N2O5) up to ~0.01 s−1) was observed during a sand storm event, and the uptake coefficient (γ(N2O5)) was estimated to be 0.044. The γ(N2O5) in urban air masses was also determined and exhibited moderate correlation (r = 0.68) with aerosol volume to surface ratio (Va/Sa), but little relation to aerosol water, nitrate, and chloride, a finding that contrasts with previous results. Several commonly used parameterizations of γ(N2O5) underestimated the field-derived γ(N2O5). A new parameterization is suggested for dry conditions, which considers the effect of Va/Sa, temperature, and relative humidity.
Collapse
|
48
|
Rocha ADN, Candido LS, Pereira JG, Silva CAM, da Silva SV, Mussury RM. Evaluation of vehicular pollution using the TRAD-MCN mutagenic bioassay with Tradescantia pallida (Commelinaceae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:440-447. [PMID: 29754093 DOI: 10.1016/j.envpol.2018.04.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 04/14/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Biomonitoring is one of the tools used to assess the mutagenic potential of the atmosphere. In this study, the mutagenicity of Tradescantia pallida, a species of plant largely present in urban environments, was investigated. The objectives of this study was to estimate the mutagenic potential of vehicular flow through the TRAD-MCN bioassay in cities located at different altitudes in the southwest mesoregion of Mato Grosso do Sul, Brazil, to infer possible abiotic agents that may contribute to the effects of atmospheric pollutants, and finally to map the cities with greater risks to the health of the local population. To achieve these objectives, the Tradescantia-micronucleus test was performed on young buds of T. pallida collected between August 2015 and August 2016 in nine cities of Mato Grosso do Sul. These buds were exposed to traffic flows of various intensities. The data collected consisted of measurements of meteorological parameters and vehicular traffic counts for each city. The variables considered were: mean ambient temperature; micronuclei frequency; vehicular flow; altitude; relative humidity; pluviosity. The application of the Trad-MCN bioassay, with the consideration of environmental variables and altitudes, and the use of the Kernel interpolation technique, allowed us to map the areas with significant pollution risks to the population. The highest frequency of exposure to mutagens occurred in the cities with the highest vehicular traffic intensity. The average ambient temperature failed to show a linear association with the frequency of the micronuclei in the samples analyzed (r = 0.11ns). A positive correlation was observed between micronuclei frequency and vehicular flow, (r = 0.67; p ≤ 0.001%) and between micronuclei frequency and altitude (r = 0.24; p ≤ 0.05). A negative correlation was found between relative humidity and micronuclei frequency (r = -0.19; p ≤ 0.05%). Thus, higher micronuclei frequency tended to be present in locations with low relative humidity and high altitudes and vehicular flow.
Collapse
Affiliation(s)
- Aline do Nascimento Rocha
- Laboratory of Botanical Application, PostGraduate Program in General Biology/Bioprospecting, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Rodovia Dourados-Itahum, KM 12, 79.800-000, Dourados, Mato Grosso Do Sul, Brazil.
| | - Liliam Silvia Candido
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Rodovia Dourados-Itahum, KM 12, 79.800-000, Dourados, Mato Grosso Do Sul, Brazil.
| | - Joelson Gonçalves Pereira
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Rodovia Dourados-Itahum, KM 12, 79.800-000, Dourados, Mato Grosso Do Sul, Brazil.
| | - Caio Augusto Mussury Silva
- Federal University of Minas Gerais, Faculty of Medicine. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, Brazil.
| | - Sandra Verza da Silva
- Department of Vegetal Production, Phytosanitary Defense, Faculty of Agronomic Sciences, São Paulo State University, Street José Barbosa de Barros, 18610-307, Botucatu, São Paulo, Brazil.
| | - Rosilda Mara Mussury
- Laboratory of Botanical Application, PostGraduate Program in General Biology/Bioprospecting, Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Rodovia Dourados-Itahum, KM 12, 79.800-000, Dourados, Mato Grosso Do Sul, Brazil; Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Rodovia Dourados-Itahum, KM 12, 79.800-000, Dourados, Mato Grosso Do Sul, Brazil.
| |
Collapse
|
49
|
Liu L, Li H, Zhang H, Zhong J, Bai Y, Ge M, Li Z, Chen Y, Zhang X. The role of nitric acid in atmospheric new particle formation. Phys Chem Chem Phys 2018; 20:17406-17414. [PMID: 29911231 DOI: 10.1039/c8cp02719f] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitric acid, an air pollutant with strong acidity and oxidizability, can be found in considerable quantities in the gas and aerosol phase. Understanding the role of nitric acid in atmospheric new particle formation is essential to study the complicated nucleation mechanism. Using density functional theory combined with the Atmospheric Clusters Dynamic Code (ACDC), the role of nitric acid in the formation of new particles has been investigated under different atmospheric conditions (different precursor concentrations and temperatures). The results show that nitric acid can form clusters with sulfuric acid and ammonia by hydrogen bond or even proton-transfer interactions. The concentrations of clusters involving nitric acid can be comparable with those of sulfuric acid-ammonia-based clusters, considering the thermodynamic stability combined with the realistic atmospheric concentrations of precursors. Within the atmospheric concentration range, nitric acid can enhance the formation rates of sulfuric acid-ammonia clusters, especially at low temperature, low sulfuric acid concentration and high ammonia concentration. In addition, the new particle formation mechanism indicates that nitric acid can contribute to the cluster formation and the role of nitric acid in the cluster formation pathway is as a "bridge" connecting the smaller and larger clusters.
Collapse
Affiliation(s)
- Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zelenov VV, Aparina EV, Kozlovskiy VI, Sulimenkov IV, Nosyrev AE. Kinetics of NO3 Uptake on Pyrene as a Representative Organic Aerosols. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2018. [DOI: 10.1134/s1990793118020136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|