1
|
Suzuki A, Higashida K, Yoshino T, Matsunaga S. Multiple Deuterium Atom Transfer Perdeuteration of Unactivated Alkenes under Base-Assisted Cobalt/Photoredox Dual Catalysis. Angew Chem Int Ed Engl 2025; 64:e202500233. [PMID: 39916445 DOI: 10.1002/anie.202500233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Indexed: 04/17/2025]
Abstract
A radical approach for hydrogenative perdeuteration of unactivated alkenes under cobalt/photoredox dual catalysis is described. The addition of a suitable base plays a key role in controlling two competing pathways by switching the catalytic performance of cobalt/photoredox catalysis. Base-assisted cobalt/photoredox dual catalysis promoted a hydrogen isotope exchange reaction of alkenes to afford deuterated alkenes via multiple repeating deuterium atom transfer/hydrogen atom abstraction processes, while consecutive reductive deuteration of alkenes proceeded in the absence of a base to afford polydeuterated alkanes. One-pot hydrogenative perdeuteration and perdeutero-arylation were also developed, providing access to various polydeuterated aliphatic compounds.
Collapse
Affiliation(s)
- Akihiko Suzuki
- Faculty of Pharmaceutical Sciences, Hokkaido University Kita-ku, Sapporo, 060-0812, Japan
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kosuke Higashida
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tatsuhiko Yoshino
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
- Kyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University Kita-ku, Sapporo, 060-0812, Japan
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
2
|
Hwang DW, Maekiniemi A, Singer RH, Sato H. Real-time single-molecule imaging of transcriptional regulatory networks in living cells. Nat Rev Genet 2024; 25:272-285. [PMID: 38195868 DOI: 10.1038/s41576-023-00684-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Gene regulatory networks drive the specific transcriptional programmes responsible for the diversification of cell types during the development of multicellular organisms. Although our knowledge of the genes involved in these dynamic networks has expanded rapidly, our understanding of how transcription is spatiotemporally regulated at the molecular level over a wide range of timescales in the small volume of the nucleus remains limited. Over the past few decades, advances in the field of single-molecule fluorescence imaging have enabled real-time behaviours of individual transcriptional components to be measured in living cells and organisms. These efforts are now shedding light on the dynamic mechanisms of transcription, revealing not only the temporal rules but also the spatial coordination of underlying molecular interactions during various biological events.
Collapse
Affiliation(s)
- Dong-Woo Hwang
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Anna Maekiniemi
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Robert H Singer
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Hanae Sato
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
- Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan.
| |
Collapse
|
3
|
Wang X, Xia J, Aipire A, Li J. Reviews of bio-orthogonal probes in bioscience by stimulated Raman scattering microscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 306:123545. [PMID: 39492383 DOI: 10.1016/j.saa.2023.123545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/10/2023] [Accepted: 10/14/2023] [Indexed: 11/05/2024]
Abstract
Stimulated Raman scattering (SRS) microscopy, is a nonlinear optical imaging method for visualizing chemical content based on molecular vibrational bonds, with high sensitivity, resolution, speed, and specificity. In the current review, we provided a comprehensive and critical review of the most recent developments in the field of SRS in combination with bio-orthogonal Raman tags or labels in bioscience. Firstly, we introduced the fundamentals of SRS microscopy and the theory principle of bio-orthogonal Raman tags. In particular, present the applications of each kind of bio-orthogonal Raman tags, including heavy water (D2O), stable isotope probes (SIP), and triple-bonds tags. And shared our vision for the remaining challenges, research needs, and potential future breakthroughs for SRS technology lastly. We envision that the advanced SRS imaging and analysis will be a major force in future biological discovery.
Collapse
Affiliation(s)
- Xiaoting Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Jingjing Xia
- Institute of Materia Medica, Xinjiang University, Urumqi, 830017, China.
| | - Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; Institute of Materia Medica, Xinjiang University, Urumqi, 830017, China.
| |
Collapse
|
4
|
Moriyama S, Mae M, Shibata D, Yamakoshi H, Kajimoto S, Nakabayashi T, Ishimoto T, Mogi K, Sajiki H, Akai S, Sawama Y. Multiple deuteration of triphenylphosphine and live-cell Raman imaging of deuterium-incorporated Mito-Q. Chem Commun (Camb) 2023; 59:12100-12103. [PMID: 37721453 DOI: 10.1039/d3cc04410f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
All aromatic C-H bonds of triphenylphosphine (PPh3) were efficiently replaced by C-D bonds using Ru/C and Ir/C co-catalysts in 2-PrOH and D2O, an inexpensive deuterium source. Furthermore, non-radioactive and safe deuterium-incorporated Mito-Q (drug candidate) was prepared from deuterated PPh3 and used for the live-cell Raman imaging to evaluate the mitochondrial uptake.
Collapse
Affiliation(s)
- Shogo Moriyama
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka 565-0871, Japan.
| | - Miyu Mae
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka 565-0871, Japan.
| | - Daiki Shibata
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Hiroyuki Yamakoshi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Shinji Kajimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
- JST PRESTO, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Takayoshi Ishimoto
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Kaiki Mogi
- Gifu Pharmaceutical University, 1-25-4-Daigaku-nishi, Gifu 501-1196, Japan
| | - Hironao Sajiki
- Gifu Pharmaceutical University, 1-25-4-Daigaku-nishi, Gifu 501-1196, Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka 565-0871, Japan.
| | - Yoshinari Sawama
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka 565-0871, Japan.
- Deuterium Science Research Unit, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Park HH, Choi AA, Xu K. Size-Dependent Suppression of Molecular Diffusivity in Expandable Hydrogels: A Single-Molecule Study. J Phys Chem B 2023; 127:3333-3339. [PMID: 37011131 DOI: 10.1021/acs.jpcb.3c00761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
By repurposing the recently popularized expansion microscopy to control the meshwork size of hydrogels, we examine the size-dependent suppression of molecular diffusivity in the resultant tuned hydrogel nanomatrices over a wide range of polymer fractions of ∼0.14-7 wt %. With our recently developed single-molecule displacement/diffusivity mapping (SMdM) microscopy methods, we thus show that with a fixed meshwork size, larger molecules exhibit more impeded diffusion and that, for the same molecule, diffusion is progressively more suppressed as the meshwork size is reduced; this effect is more prominent for the larger molecules. Moreover, we show that the meshwork-induced obstruction of diffusion is uncoupled from the suppression of diffusion due to increased solution viscosities. Thus, the two mechanisms, respectively, being diffuser-size-dependent and independent, may separately scale down molecular diffusivity to produce the final diffusion slowdown in complex systems like the cell.
Collapse
Affiliation(s)
- Ha H Park
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Alexander A Choi
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Abstract
In chemical biology research, various fluorescent probes have been developed and used to visualize target proteins or molecules in living cells and tissues, yet there are limitations to this technology, such as the limited number of colors that can be detected simultaneously. Recently, Raman spectroscopy has been applied in chemical biology to overcome such limitations. Raman spectroscopy detects the molecular vibrations reflecting the structures and chemical conditions of molecules in a sample and was originally used to directly visualize the chemical responses of endogenous molecules. However, our initial research to develop "Raman tags" opens a new avenue for the application of Raman spectroscopy in chemical biology. In this Perspective, we first introduce the label-free Raman imaging of biomolecules, illustrating the biological applications of Raman spectroscopy. Next, we highlight the application of Raman imaging of small molecules using Raman tags for chemical biology research. Finally, we discuss the development and potential of Raman probes, which represent the next-generation probes in chemical biology.
Collapse
Affiliation(s)
- Kosuke Dodo
- Synthetic
Organic Chemistry Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Catalysis
and Integrated Research Group, RIKEN Center
for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Katsumasa Fujita
- Department
of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute
for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- AIST-Osaka
University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science
and Technology (AIST), Suita, Osaka 565-0871, Japan
| | - Mikiko Sodeoka
- Synthetic
Organic Chemistry Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Catalysis
and Integrated Research Group, RIKEN Center
for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
7
|
Lunter D, Klang V, Kocsis D, Varga-Medveczky Z, Berkó S, Erdő F. Novel aspects of Raman spectroscopy in skin research. Exp Dermatol 2022; 31:1311-1329. [PMID: 35837832 PMCID: PMC9545633 DOI: 10.1111/exd.14645] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 07/12/2022] [Indexed: 11/27/2022]
Abstract
The analytical technology of Raman spectroscopy has an almost 100‐year history. During this period, many modifications and developments happened in the method like discovery of laser, improvements in optical elements and sensitivity of spectrometer and also more advanced light detection systems. Many types of the innovative techniques appeared (e.g. Transmittance Raman spectroscopy, Coherent Raman Scattering microscopy, Surface‐Enhanced Raman scattering and Confocal Raman spectroscopy/microscopy). This review article gives a short description about these different Raman techniques and their possible applications. Then, a short statistical part is coming about the appearance of Raman spectroscopy in the scientific literature from the beginnings to these days. The third part of the paper shows the main application options of the technique (especially confocal Raman spectroscopy) in skin research, including skin composition analysis, drug penetration monitoring and analysis, diagnostic utilizations in dermatology and cosmeto‐scientific applications. At the end, the possible role of artificial intelligence in Raman data analysis and the regulatory aspect of these techniques in dermatology are briefly summarized. For the future of Raman Spectroscopy, increasing clinical relevance and in vivo applications can be predicted with spreading of non‐destructive methods and appearance with the most advanced instruments with rapid analysis time.
Collapse
Affiliation(s)
- Dominique Lunter
- University of Tübingen, Department of Pharmaceutical Technology, Institute of Pharmacy and Biochemistry, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Victoria Klang
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, Vienna, Austria
| | - Dorottya Kocsis
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Zsófia Varga-Medveczky
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Szilvia Berkó
- University of Szeged, Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, Szeged, Hungary
| | - Franciska Erdő
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary.,University of Tours EA 6295 Nanomédicaments et Nanosondes, Tours, France
| |
Collapse
|
8
|
Tolstik E, Ali N, Guo S, Ebersbach P, Möllmann D, Arias-Loza P, Dierks J, Schuler I, Freier E, Debus J, Baba HA, Nordbeck P, Bocklitz T, Lorenz K. CARS Imaging Advances Early Diagnosis of Cardiac Manifestation of Fabry Disease. Int J Mol Sci 2022; 23:5345. [PMID: 35628155 PMCID: PMC9142043 DOI: 10.3390/ijms23105345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 12/12/2022] Open
Abstract
Vibrational spectroscopy can detect characteristic biomolecular signatures and thus has the potential to support diagnostics. Fabry disease (FD) is a lipid disorder disease that leads to accumulations of globotriaosylceramide in different organs, including the heart, which is particularly critical for the patient's prognosis. Effective treatment options are available if initiated at early disease stages, but many patients are late- or under-diagnosed. Since Coherent anti-Stokes Raman (CARS) imaging has a high sensitivity for lipid/protein shifts, we applied CARS as a diagnostic tool to assess cardiac FD manifestation in an FD mouse model. CARS measurements combined with multivariate data analysis, including image preprocessing followed by image clustering and data-driven modeling, allowed for differentiation between FD and control groups. Indeed, CARS identified shifts of lipid/protein content between the two groups in cardiac tissue visually and by subsequent automated bioinformatic discrimination with a mean sensitivity of 90-96%. Of note, this genotype differentiation was successful at a very early time point during disease development when only kidneys are visibly affected by globotriaosylceramide depositions. Altogether, the sensitivity of CARS combined with multivariate analysis allows reliable diagnostic support of early FD organ manifestation and may thus improve diagnosis, prognosis, and possibly therapeutic monitoring of FD.
Collapse
Affiliation(s)
- Elen Tolstik
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany; (P.E.); (J.D.); (I.S.); (E.F.)
| | - Nairveen Ali
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany; (N.A.); (S.G.); (T.B.)
| | - Shuxia Guo
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany; (N.A.); (S.G.); (T.B.)
| | - Paul Ebersbach
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany; (P.E.); (J.D.); (I.S.); (E.F.)
| | - Dorothe Möllmann
- Institute of Pathology, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany; (D.M.); (H.A.B.)
| | - Paula Arias-Loza
- Department of Nuclear Medicine, Oberdürrbacher Str. 6, 97080 Wuerzburg, Germany;
| | - Johann Dierks
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany; (P.E.); (J.D.); (I.S.); (E.F.)
| | - Irina Schuler
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany; (P.E.); (J.D.); (I.S.); (E.F.)
| | - Erik Freier
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany; (P.E.); (J.D.); (I.S.); (E.F.)
| | - Jörg Debus
- Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany;
| | - Hideo A. Baba
- Institute of Pathology, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany; (D.M.); (H.A.B.)
| | - Peter Nordbeck
- Department of Internal Medicine I, University of Würzburg, Oberdürrbacher Str. 6, 97080 Wuerzburg, Germany;
| | - Thomas Bocklitz
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany; (N.A.); (S.G.); (T.B.)
| | - Kristina Lorenz
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany; (P.E.); (J.D.); (I.S.); (E.F.)
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Wuerzburg, Germany
- Comprehensive Heart Failure Center, University Hospital of Würzburg, Am Schwarzenberg 15, 97078 Wuerzburg, Germany
| |
Collapse
|
9
|
Boorman D, Pope I, Masia F, Langbein W, Hood S, Borri P, Watson P. Hyperspectral CARS microscopy and quantitative unsupervised analysis of deuterated and non-deuterated fatty acid storage in human cells. J Chem Phys 2021; 155:224202. [PMID: 34911324 DOI: 10.1063/5.0065950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Coherent anti-Stokes Raman scattering (CARS) implemented as a vibrational micro-spectroscopy modality eradicates the need for potentially perturbative fluorescent labeling while still providing high-resolution, chemically specific images of biological samples. Isotopic substitution of hydrogen atoms with deuterium introduces minimal change to molecular structures and can be coupled with CARS microscopy to increase chemical contrast. Here, we investigate HeLa cells incubated with non-deuterated or deuterium-labeled fatty acids, using an in-house-developed hyperspectral CARS microscope coupled with an unsupervised quantitative data analysis algorithm, to retrieve Raman susceptibility spectra and concentration maps of chemical components in physically meaningful units. We demonstrate that our unsupervised analysis retrieves the susceptibility spectra of the specific fatty acids, both deuterated and non-deuterated, in good agreement with reference Raman spectra measured in pure lipids. Our analysis, using the cell-silent spectral region, achieved excellent chemical specificity despite having no prior knowledge and considering the complex intracellular environment inside cells. The quantitative capabilities of the analysis allowed us to measure the concentration of deuterated and non-deuterated fatty acids stored within cytosolic lipid droplets over a 24 h period. Finally, we explored the potential use of deuterium-labeled lipid droplets for non-invasive cell tracking, demonstrating an effective application of the technique for distinguishing between cells in a mixed population over a 16 h period. These results further demonstrate the chemically specific capabilities of hyperspectral CARS microscopy to characterize and distinguish specific lipid types inside cells using an unbiased quantitative data analysis methodology.
Collapse
Affiliation(s)
- Dale Boorman
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Iestyn Pope
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Francesco Masia
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Wolfgang Langbein
- School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, United Kingdom
| | - Steve Hood
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Paola Borri
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Peter Watson
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| |
Collapse
|
10
|
Dodo K, Sato A, Tamura Y, Egoshi S, Fujiwara K, Oonuma K, Nakao S, Terayama N, Sodeoka M. Synthesis of deuterated γ-linolenic acid and application for biological studies: metabolic tuning and Raman imaging. Chem Commun (Camb) 2021; 57:2180-2183. [PMID: 33527102 DOI: 10.1039/d0cc07824g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
γ-Linolenic acid (GLA) is reported to show tumor-selective cytotoxicity through unidentified mechanisms. Here, to assess the involvement of oxidized metabolites of GLA, we synthesized several deuterated GLAs and evaluated their metabolism and cytotoxicity towards normal human fibroblast WI-38 cells and VA-13 tumor cells generated from WI-38 by transformation with SV40 virus. Deuteration of GLA suppressed both metabolism and cytotoxicity towards WI-38 cells and increased the selectivity for VA-13 cells. Fully deuterated GLA was visualized by Raman imaging, which indicated that GLA is accumulated in intracellular lipid droplets of VA-13 cells. Our results suggest the tumor-selective cytotoxicity is due to GLA itself, not its oxidized metabolites.
Collapse
Affiliation(s)
- Kosuke Dodo
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. and Sodeoka Live Cell Chemistry Project, ERATO, Japan Sciences and Technology Agency, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan and AMED-CREST, Japan Agency for Medical Research and Development, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan and RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ayato Sato
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. and Sodeoka Live Cell Chemistry Project, ERATO, Japan Sciences and Technology Agency, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuki Tamura
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. and Sodeoka Live Cell Chemistry Project, ERATO, Japan Sciences and Technology Agency, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Syusuke Egoshi
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. and AMED-CREST, Japan Agency for Medical Research and Development, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Koichi Fujiwara
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. and AMED-CREST, Japan Agency for Medical Research and Development, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kana Oonuma
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shuhei Nakao
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. and AMED-CREST, Japan Agency for Medical Research and Development, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Naoki Terayama
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. and AMED-CREST, Japan Agency for Medical Research and Development, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan and RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. and Sodeoka Live Cell Chemistry Project, ERATO, Japan Sciences and Technology Agency, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan and AMED-CREST, Japan Agency for Medical Research and Development, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan and RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
11
|
Tang Y, Zhuang Y, Zhang S, Smith ZJ, Li Y, Mu X, Li M, He C, Zheng X, Pan F, Gao T, Zhang L. Azo-Enhanced Raman Scattering for Enhancing the Sensitivity and Tuning the Frequency of Molecular Vibrations. ACS CENTRAL SCIENCE 2021; 7:768-780. [PMID: 34079895 PMCID: PMC8161494 DOI: 10.1021/acscentsci.1c00117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Indexed: 05/14/2023]
Abstract
Raman scattering provides stable narrow-banded signals that potentially allow for multicolor microscopic imaging. The major obstacle for the applications of Raman spectroscopy and microscopy is the small cross section of Raman scattering that results in low sensitivity. Here, we report a new concept of azo-enhanced Raman scattering (AERS) by designing the intrinsic molecular structures using resonance Raman and concomitant fluorescence quenching strategies. Based on the selection of vibrational modes and the enhancing unit of azobenzenes, we obtained a library of AERS molecules with specific Raman signals in the fingerprint and silent frequency regions. The spectral characterization and molecular simulation revealed that the azobenzene unit conjugated to the vibrational modes significantly enhanced Raman signals due to the mechanism of extending the conjugation system, coupling the electronic-vibrational transitions, and improving the symmetry of vibrational modes. The nonradiative decay of azobenzene from the excited state quenched the commitment fluorescence, thus providing a clean background for identifying Raman scattering. The most sensitive AERS molecules produced Raman signals of more than 4 orders of magnitude compared to 5-ethynyl-2'-deoxyuridine (EdU). In addition, a frequency tunability of 10 distinct Raman bands was achieved by selecting different types of vibrational modes. This methodology of AERS allows for designing small-molecule Raman probes to visualize various entities in complex systems by multicolor spontaneous Raman imaging. It will open new prospects to explore innovative applications of AERS in interdisciplinary research fields.
Collapse
Affiliation(s)
- Yuchen Tang
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yongpeng Zhuang
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shaohua Zhang
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zachary J. Smith
- Department
of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yuee Li
- School
of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xijiao Mu
- School
of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Mengna Li
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Caili He
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xingxing Zheng
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Fangfang Pan
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Tingjuan Gao
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lizhi Zhang
- China
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
- College
of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
12
|
Verma M, Chan YH, Saha S, Liu MH. Recent Developments in Semiconducting Polymer Dots for Analytical Detection and NIR-II Fluorescence Imaging. ACS APPLIED BIO MATERIALS 2021; 4:2142-2159. [PMID: 35014343 DOI: 10.1021/acsabm.0c01185] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In recent years, semiconducting polymer dots (Pdots) have attracted enormous attention in applications from fundamental analytical detection to advanced deep-tissue bioimaging due to their ultrahigh fluorescence brightness with excellent photostability and minimal cytotoxicity. Pdots have therefore been widely adopted for a variety types of molecular sensing for analytical detection. More importantly, the recent development of Pdots for use in the optical window between 1000 and 1700 nm, popularly known as the "second near-infrared window" (NIR-II), has emerged as a class of optical transparent imaging technology in the living body. The advantages of the NIR-II region over the traditional NIR-I (700-900 nm) window in fluorescence imaging originate from the reduced autofluorescence, minimal absorption and scattering of light, and improved penetration depths to yield high spatiotemporal images for biological tissues. Herein, we discuss and summarize the recent developments of Pdots employed for analytical detection and NIR-II fluorescence imaging. Starting with their preparation, the recent developments for targeting various analytes are then highlighted. After that, the importance of and latest progress in NIR-II fluorescence imaging using Pdots are reported. Finally, perspectives and challenges associated with the emergence of Pdots in different fields are given.
Collapse
Affiliation(s)
- Meenakshi Verma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Yang-Hsiang Chan
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan.,Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30050, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ming-Ho Liu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
13
|
Tian S, Li H, Li Z, Tang H, Yin M, Chen Y, Wang S, Gao Y, Yang X, Meng F, Lauher JW, Wang P, Luo L. Polydiacetylene-based ultrastrong bioorthogonal Raman probes for targeted live-cell Raman imaging. Nat Commun 2020; 11:81. [PMID: 31900403 PMCID: PMC6941979 DOI: 10.1038/s41467-019-13784-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022] Open
Abstract
Live-cell Raman imaging based on bioorthogonal Raman probes with distinct signals in the cellular Raman-silent region (1800-2800 cm-1) has attracted great interest in recent years. We report here a class of water-soluble and biocompatible polydiacetylenes with intrinsic ultrastrong alkyne Raman signals that locate in this region for organelle-targeting live-cell Raman imaging. Using a host-guest topochemical polymerization strategy, we have synthesized a water-soluble and functionalizable master polydiacetylene, namely poly(deca-4,6-diynedioic acid) (PDDA), which possesses significantly enhanced (up to ~104 fold) alkyne vibration compared to conventional alkyne Raman probes. In addition, PDDA can be used as a general platform for multi-functional ultrastrong Raman probes. We achieve high quality live-cell stimulated Raman scattering imaging on the basis of modified PDDA. The polydiacetylene-based Raman probes represent ultrastrong intrinsic Raman imaging agents in the Raman-silent region (without any Raman enhancer), and the flexible functionalization of this material holds great promise for its potential diverse applications.
Collapse
Affiliation(s)
- Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haozheng Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhong Li
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Huajun Tang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Mingming Yin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yage Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Shun Wang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yuting Gao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Joseph W Lauher
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11790, USA.
| | - Ping Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
14
|
Pena AM, Chen X, Pence IJ, Bornschlögl T, Jeong S, Grégoire S, Luengo GS, Hallegot P, Obeidy P, Feizpour A, Chan KF, Evans CL. Imaging and quantifying drug delivery in skin - Part 2: Fluorescence andvibrational spectroscopic imaging methods. Adv Drug Deliv Rev 2020; 153:147-168. [PMID: 32217069 PMCID: PMC7483684 DOI: 10.1016/j.addr.2020.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 01/31/2023]
Abstract
Understanding the delivery and diffusion of topically-applied drugs on human skin is of paramount importance in both pharmaceutical and cosmetics research. This information is critical in early stages of drug development and allows the identification of the most promising ingredients delivered at optimal concentrations to their target skin compartments. Different skin imaging methods, invasive and non-invasive, are available to characterize and quantify the spatiotemporal distribution of a drug within ex vivo and in vivo human skin. The first part of this review detailed invasive imaging methods (autoradiography, MALDI and SIMS). This second part reviews non-invasive imaging methods that can be applied in vivo: i) fluorescence (conventional, confocal, and multiphoton) and second harmonic generation microscopies and ii) vibrational spectroscopic imaging methods (infrared, confocal Raman, and coherent Raman scattering microscopies). Finally, a flow chart for the selection of imaging methods is presented to guide human skin ex vivo and in vivo drug delivery studies.
Collapse
Affiliation(s)
- Ana-Maria Pena
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93600 Aulnay-sous-Bois, France
| | - Xueqin Chen
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93600 Aulnay-sous-Bois, France
| | - Isaac J Pence
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, CNY149-3, 13(th) St, Charlestown, MA 02129, United States of America
| | - Thomas Bornschlögl
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93600 Aulnay-sous-Bois, France
| | - Sinyoung Jeong
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, CNY149-3, 13(th) St, Charlestown, MA 02129, United States of America
| | - Sébastien Grégoire
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93600 Aulnay-sous-Bois, France.
| | - Gustavo S Luengo
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93600 Aulnay-sous-Bois, France
| | - Philippe Hallegot
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93600 Aulnay-sous-Bois, France
| | - Peyman Obeidy
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, CNY149-3, 13(th) St, Charlestown, MA 02129, United States of America
| | - Amin Feizpour
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, CNY149-3, 13(th) St, Charlestown, MA 02129, United States of America
| | - Kin F Chan
- Simpson Interventions, Inc., Woodside, CA 94062, United States of America
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, CNY149-3, 13(th) St, Charlestown, MA 02129, United States of America.
| |
Collapse
|
15
|
Zhu C, Yang J, Zheng J, Chen S, Huang F, Yang R. Triplex-Functionalized DNA Tetrahedral Nanoprobe for Imaging of Intracellular pH and Tumor-Related Messenger RNA. Anal Chem 2019; 91:15599-15607. [DOI: 10.1021/acs.analchem.9b03659] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cong Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jinfeng Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410083, China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shiya Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Fujian Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410076, China
| |
Collapse
|
16
|
Walter NG. Biological Pathway Specificity in the Cell-Does Molecular Diversity Matter? Bioessays 2019; 41:e1800244. [PMID: 31245864 PMCID: PMC6684156 DOI: 10.1002/bies.201800244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/09/2019] [Indexed: 01/07/2023]
Abstract
Biology arises from the crowded molecular environment of the cell, rendering it a challenge to understand biological pathways based on the reductionist, low-concentration in vitro conditions generally employed for mechanistic studies. Recent evidence suggests that low-affinity interactions between cellular biopolymers abound, with still poorly defined effects on the complex interaction networks that lead to the emergent properties and plasticity of life. Mass-action considerations are used here to underscore that the sheer number of weak interactions expected from the complex mixture of cellular components significantly shapes biological pathway specificity. In particular, on-pathway-i.e., "functional"-become those interactions thermodynamically and kinetically stable enough to survive the incessant onslaught of the many off-pathway ("nonfunctional") interactions. Consequently, to better understand the molecular biology of the cell a further paradigm shift is needed toward mechanistic experimental and computational approaches that probe intracellular diversity and complexity more directly. Also see the video abstract here https://youtu.be/T19X_zYaBzg.
Collapse
|
17
|
Su Y, Li D, Liu B, Xiao M, Wang F, Li L, Zhang X, Pei H. Rational Design of Framework Nucleic Acids for Bioanalytical Applications. Chempluschem 2019; 84:512-523. [DOI: 10.1002/cplu.201900118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/08/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Yuwei Su
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Dan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Bingyi Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Fei Wang
- Joint Research Center for Precision MedicineShanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus 6600th Nanfeng Road, Fengxian District Shanghai 201499 P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| | - Xueli Zhang
- Joint Research Center for Precision MedicineShanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus 6600th Nanfeng Road, Fengxian District Shanghai 201499 P. R. China
- Southern Medical University Affiliated Fengxian Hospital Shanghai 201499 P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular EngineeringEast China Normal University 500 Dongchuan Road Shanghai 200241 P.R. China
| |
Collapse
|
18
|
Coherent power amplification of third-order harmonic femtosecond pulses at thin-film up-conversion nanoparticles. Sci Rep 2019; 9:5094. [PMID: 30911063 PMCID: PMC6433956 DOI: 10.1038/s41598-019-41591-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 03/13/2019] [Indexed: 11/25/2022] Open
Abstract
Third harmonic generation (THG) is a nonlinear optical process attractive in high-resolution interfacial studies, sub-wavelength light manipulation, and bio-molecular detection due to its capability of converting low-energy quanta into a quantum of a higher energy. One of the limitations in utilizing THG is its low power conversion efficiency; thus, various THG enhancement methods have been researched by involving plasmonic coupling effects or utilizing electric band gap resonances at quantum dots or two-dimensional materials. Meanwhile, lanthanide ion-doped up-conversion nanoparticles (UCNPs) can be excited by a multi-photon process similar to THG, but its interaction or resonance with THG has not been studied to date. In this Communication, we demonstrate the first coherent amplification of third-order harmonic femtosecond pulses at multi-layered UCNP thin-film with an amplification factor of 7.8. This amplification is made by the resonance interaction of incident femtosecond laser field, generated third-order harmonics, and the electric band gaps of UCNPs. The power contribution of the third-order harmonic and the up-conversion luminescence (UCL) is strongly dependent on the sample geometry due to the reabsorption effect. For in-depth understanding of the emission characteristics, spectral-domain, time-domain, radio-frequency (RF) domain, and polarization-dependence analysis were addressed. This coherent amplification of third harmonic (TH) at UCNP thin-films enables us to attain higher power, shorter wavelength, and ultra-short femtosecond pulses generated from a simple thin-film structure near to the target samples, which will pave a way to an ultrafast short-wavelength laser platform for material characterization, sub-wavelength photonics, and biomolecular detection.
Collapse
|
19
|
Abstract
The combination of next generation sequencing (NGS) and automated liquid handling platforms has led to a revolution in single-cell genomic studies. However, many molecules that are critical to understanding the functional roles of cells in a complex tissue or organs, are not directly encoded in the genome, and therefore cannot be profiled with NGS. Lipids, for example, play a critical role in many metabolic processes but cannot be detected by sequencing. Recent developments in quantitative imaging, particularly coherent Raman scattering (CRS) techniques, have produced a suite of tools for studying lipid content in single cells. This article reviews CRS imaging and computational image processing techniques for non-destructive profiling of dynamic changes in lipid composition and spatial distribution at the single-cell level. As quantitative CRS imaging progresses synergistically with microfluidic and microscopic platforms for single-cell genomic analysis, we anticipate that these techniques will bring researchers closer towards combined lipidomic and genomic analysis.
Collapse
Affiliation(s)
- Anushka Gupta
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley Graduate Division, Berkeley, California, USA.
| | | | | |
Collapse
|
20
|
Byrnes SA, Chang TC, Huynh T, Astashkina A, Weigl BH, Nichols KP. Simple Polydisperse Droplet Emulsion Polymerase Chain Reaction with Statistical Volumetric Correction Compared with Microfluidic Droplet Digital Polymerase Chain Reaction. Anal Chem 2018; 90:9374-9380. [DOI: 10.1021/acs.analchem.8b01988] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Samantha A. Byrnes
- Intellectual Ventures Laboratory, 14360 Southeast Eastgate Way, Bellevue, Washington 98007, United States
| | - Tim C. Chang
- Intellectual Ventures Laboratory, 14360 Southeast Eastgate Way, Bellevue, Washington 98007, United States
| | - Toan Huynh
- Intellectual Ventures Laboratory, 14360 Southeast Eastgate Way, Bellevue, Washington 98007, United States
| | - Anna Astashkina
- Intellectual Ventures Laboratory, 14360 Southeast Eastgate Way, Bellevue, Washington 98007, United States
| | - Bernhard H. Weigl
- Intellectual Ventures Laboratory, 14360 Southeast Eastgate Way, Bellevue, Washington 98007, United States
| | - Kevin P. Nichols
- Intellectual Ventures Laboratory, 14360 Southeast Eastgate Way, Bellevue, Washington 98007, United States
| |
Collapse
|
21
|
Abstract
Drug metabolites have been monitored with various types of newly developed techniques and/or combination of common analytical methods, which could provide a great deal of information on metabolite profiling. Because it is not easy to analyze whole drug metabolites qualitatively and quantitatively, a single solution of analytical techniques is combined in a multilateral manner to cover the widest range of drug metabolites. Mass-based spectroscopic analysis of drug metabolites has been expanded with the help of other parameter-based methods. The current development of metabolism studies through contemporary pharmaceutical research are reviewed with an overview on conventionally used spectroscopic methods. Several technical approaches for conducting drug metabolic profiling through spectroscopic methods are discussed in depth.
Collapse
Affiliation(s)
- Jong-Jae Yi
- Department of Pharmacy, College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon-Si, Gyeonggi-do, 11160, Republic of Korea
| | - Kyeongsoon Park
- Department of Systems Biotechnology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726 Seodong-daero, Anseong-Si, Gyeonggi-do, 17546, Republic of Korea
| | - Won-Je Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jin-Kyu Rhee
- Department of Food Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| | - Woo Sung Son
- Department of Pharmacy, College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon-Si, Gyeonggi-do, 11160, Republic of Korea.
| |
Collapse
|
22
|
LASHKARIPOUR ALI, MEHRIZI ALIABOUEI, GOHARIMANESH MASOUD, RASOULI MOHAMMADREZA, BAZAZ SAJADRAZAVI. SIZE-CONTROLLED DROPLET GENERATION IN A MICROFLUIDIC DEVICE FOR RARE DNA AMPLIFICATION BY OPTIMIZING ITS EFFECTIVE PARAMETERS. J MECH MED BIOL 2018. [DOI: 10.1142/s0219519418500021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Versatility and portability of microfluidic devices play a dominant role in their widespread use by researchers. Droplet-based microfluidic devices have been extensively used due to their precise control over sample volume, and ease of manipulating and addressing each droplet on demand. Droplet-based polymerase chain reaction (PCR) devices are particularly desirable in single DNA amplification. If the droplets are small enough to contain only one DNA molecule, single molecule amplification becomes possible, which can be advantageous in several cases such as early cancer detection. In this work, flow-focusing microfluidic droplet generation’s parameters are numerically investigated and optimized for generating the smallest droplet possible, while considering fabrication limits. Taguchi design of experiment method is used to study the effects of key parameters in droplet generation. By exploiting this approach, a droplet with a radius of 111[Formula: see text]nm is generated using a 3[Formula: see text][Formula: see text]m orifice. Since the governing physics of the droplet generation process is not totally understood yet, by means of analysis of variance (ANOVA) analysis, a generalized linear model (GLM) is proposed to predict the droplet radius, given the values of eight major parameters affecting the droplet size. The proposed model shows a correlation of 95.3% and 64.95% for droplets of radius greater than and lower than 5[Formula: see text][Formula: see text]m, respectively. Finally, the source of this variation of behavior in different size scales is identified.
Collapse
Affiliation(s)
- ALI LASHKARIPOUR
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1417466191, Iran
| | - ALI ABOUEI MEHRIZI
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1417466191, Iran
| | - MASOUD GOHARIMANESH
- Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - MOHAMMADREZA RASOULI
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1417466191, Iran
- Department of Biology and Department of Biomedical Engineering, McGill University, Montreal, QC H3A2B4, Canada
| | - SAJAD RAZAVI BAZAZ
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1417466191, Iran
| |
Collapse
|
23
|
Zhao Z, Shen Y, Hu F, Min W. Applications of vibrational tags in biological imaging by Raman microscopy. Analyst 2017; 142:4018-4029. [PMID: 28875184 PMCID: PMC5674523 DOI: 10.1039/c7an01001j] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
As a superb tool to visualize and study the spatial-temporal distribution of chemicals, Raman microscopy has made a big impact in many disciplines of science. While label-free imaging has been the prevailing strategy in Raman microscopy, recent development and applications of vibrational/Raman tags, particularly when coupled with stimulated Raman scattering (SRS) microscopy, have generated intense excitement in biomedical imaging. SRS imaging of vibrational tags has enabled researchers to study a wide range of small biomolecules with high specificity, sensitivity and multiplex capability, at a single live cell level, tissue level or even in vivo. As reviewed in this article, this platform has facilitated imaging distribution and dynamics of small molecules such as glucose, lipids, amino acids, nucleic acids, and drugs that are otherwise difficult to monitor with other means. As both the vibrational tags and Raman instrumental development progress rapidly and synergistically, we anticipate that this technique will shed light onto an even broader spectrum of biomedical problems.
Collapse
Affiliation(s)
- Zhilun Zhao
- Department of Chemistry, Columbia University, New York, 10027, USA.
| | | | | | | |
Collapse
|
24
|
D'Olieslaeger L, Braeken Y, Cheruku S, Smits J, Ameloot M, Vanderzande D, Maes W, Ethirajan A. Tuning the optical properties of poly(p-phenylene ethynylene) nanoparticles as bio-imaging probes by side chain functionalization. J Colloid Interface Sci 2017; 504:527-537. [DOI: 10.1016/j.jcis.2017.05.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/09/2017] [Accepted: 05/21/2017] [Indexed: 12/01/2022]
|
25
|
Abstract
Recent progress in the electrochemical field enabled development of miniaturized sensing devices that can be used in biological settings to obtain fundamental and practical biochemically relevant information on physiology, metabolism, and disease states in living systems. Electrochemical sensors and biosensors have demonstrated potential for rapid, real-time measurements of biologically relevant molecules. This chapter provides an overview of the most recent advances in the development of miniaturized sensors for biological investigations in living systems, with focus on the detection of neurotransmitters and oxidative stress markers. The design of electrochemical (bio)sensors, including their detection mechanism and functionality in biological systems, is described as well as their advantages and limitations. Application of these sensors to studies in live cells, embryonic development, and rodent models is discussed.
Collapse
|
26
|
Adhikary R, Zimmermann J, Romesberg FE. Transparent Window Vibrational Probes for the Characterization of Proteins With High Structural and Temporal Resolution. Chem Rev 2017; 117:1927-1969. [DOI: 10.1021/acs.chemrev.6b00625] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ramkrishna Adhikary
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jörg Zimmermann
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Floyd E. Romesberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
27
|
Xie N, Liu S, Yang X, He X, Huang J, Wang K. DNA tetrahedron nanostructures for biological applications: biosensors and drug delivery. Analyst 2017; 142:3322-3332. [DOI: 10.1039/c7an01154g] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein, we review and summarise the development and biological applications of DNA tetrahedron, including cellular biosensors and drug delivery systems.
Collapse
Affiliation(s)
- Nuli Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Institute of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Shiyuan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Institute of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Institute of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Institute of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Institute of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Institute of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| |
Collapse
|
28
|
Li Y, Wang Z, Mu X, Ma A, Guo S. Raman tags: Novel optical probes for intracellular sensing and imaging. Biotechnol Adv 2016; 35:168-177. [PMID: 28017904 DOI: 10.1016/j.biotechadv.2016.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/25/2016] [Accepted: 12/20/2016] [Indexed: 11/30/2022]
Abstract
Optical labels are needed for probing specific target molecules in complex biological systems. As a newly emerging category of tags for molecular imaging in live cells, the Raman label attracts much attention because of the rich information obtained from targeted and untargeted molecules by detecting molecular vibrations. Here, we list three types of Raman probes based on different mechanisms: Surface Enhanced Raman Scattering (SERS) probes, bioorthogonal Raman probes, and Resonance Raman (RR) probes. We review how these Raman probes work for detecting and imaging proteins, nucleic acids, lipids, and other biomolecules in vitro, within cells, or in vivo. We also summarize recent noteworthy studies, expound on the construction of every type of Raman probe and operating principle, sum up in tables typically targeting molecules for specific binding, and provide merits, drawbacks, and future prospects for the three Raman probes.
Collapse
Affiliation(s)
- Yuee Li
- School of Information Science & Engineering, Lanzhou University, 222 Tianshui South Road, 730000, China.
| | - Zhong Wang
- School of Information Science & Engineering, Lanzhou University, 222 Tianshui South Road, 730000, China
| | - Xijiao Mu
- School of Information Science & Engineering, Lanzhou University, 222 Tianshui South Road, 730000, China
| | - Aning Ma
- School of Information Science & Engineering, Lanzhou University, 222 Tianshui South Road, 730000, China
| | - Shu Guo
- School of Information Science & Engineering, Lanzhou University, 222 Tianshui South Road, 730000, China
| |
Collapse
|
29
|
Xie N, Huang J, Yang X, Yang Y, Quan K, Ou M, Fang H, Wang K. Competition-Mediated FRET-Switching DNA Tetrahedron Molecular Beacon for Intracellular Molecular Detection. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00593] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nuli Xie
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, China
| | - Yanjing Yang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, China
| | - Ke Quan
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, China
| | - Min Ou
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, China
| | - Hongmei Fang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, China
| |
Collapse
|
30
|
Abstract
Methods to visualize, track, measure, and perturb or activate proteins in living cells are central to biomedical efforts to characterize and understand the spatial and temporal underpinnings of life inside cells. Although fluorescent proteins have proven to be extremely useful for in vivo studies of protein function, their utility is inherently limited because their spectral and structural characteristics are interdependent. These limitations have spurred the creation of alternative approaches for the chemical labeling of proteins. We describe in this protocol the use of fluorescence resonance emission transfer (FRET)-quenched DnaE split-inteins for the site-specific labeling and concomitant fluorescence activation of proteins in living cells. We have successfully employed this approach for the site-specific in-cell labeling of the DNA binding domain (DBD) of the transcription factor YY1 using several human cell lines. Moreover, we have shown that this approach can be also used for modifying proteins in order to control their cellular localization and potentially alter their biological activity.
Collapse
Affiliation(s)
- Radhika Borra
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089-9121, USA
| | - Julio A Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089-9121, USA.
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089-9121, USA.
| |
Collapse
|
31
|
Hou X, DeSantis MC, Tian C, Cheng W. Optical manipulation of a single human virus for study of viral-cell interactions. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9922. [PMID: 27746582 DOI: 10.1117/12.2239051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although Ashkin and Dziedzic first demonstrated optical trapping of individual tobacco mosaic viruses in suspension as early as 1987, this pioneering work has not been followed up only until recently. Using human immunodeficiency virus type 1 (HIV-1) as a model virus, we have recently demonstrated that a single HIV-1 virion can be stabled trapped, manipulated and measured in physiological media with high precision. The capability to optically trap a single virion in suspension not only allows us to determine, for the first time, the refractive index of a single virus with high precision, but also quantitate the heterogeneity among individual virions with single-molecule resolution, the results of which shed light on the molecular mechanisms of virion infectivity. Here we report the further development of a set of microscopic techniques to physically deliver a single HIV-1 virion to a single host cell in solution. Combined with simultaneous epifluorescence imaging, the attachment and dissociation events of individual manipulated virions on host cell surface can be measured and the results help us understand the role of diffusion in mediating viral attachment to host cells. The establishment of these techniques opens up new ways for investigation of a wide range of virion-cell interactions, and should be applicable for study of B cell interactions with particulate antigens such as viruses.
Collapse
Affiliation(s)
- Ximiao Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan Medical School, 428 Church Street, Ann Arbor, MI 48109, USA
| | - Michael C DeSantis
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan Medical School, 428 Church Street, Ann Arbor, MI 48109, USA
| | - Chunjuan Tian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan Medical School, 428 Church Street, Ann Arbor, MI 48109, USA
| | - Wei Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan Medical School, 428 Church Street, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan Medical School, 428 Church Street, Ann Arbor, MI 48109, USA; Department of Biophysics, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA
| |
Collapse
|
32
|
Peters M, Zaquen N, D’Olieslaeger L, Bové H, Vanderzande D, Hellings N, Junkers T, Ethirajan A. PPV-Based Conjugated Polymer Nanoparticles as a Versatile Bioimaging Probe: A Closer Look at the Inherent Optical Properties and Nanoparticle–Cell Interactions. Biomacromolecules 2016; 17:2562-71. [DOI: 10.1021/acs.biomac.6b00574] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Martijn Peters
- Institute for Materials Research, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Neomy Zaquen
- Institute for Materials Research, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Lien D’Olieslaeger
- Institute for Materials Research, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | | | - Dirk Vanderzande
- Institute for Materials Research, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
- Imec Associated Lab IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | | | - Tanja Junkers
- Institute for Materials Research, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
- Imec Associated Lab IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Anitha Ethirajan
- Institute for Materials Research, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
- Imec Associated Lab IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| |
Collapse
|
33
|
Wang Y, Huang WE, Cui L, Wagner M. Single cell stable isotope probing in microbiology using Raman microspectroscopy. Curr Opin Biotechnol 2016; 41:34-42. [PMID: 27149160 DOI: 10.1016/j.copbio.2016.04.018] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/17/2016] [Accepted: 04/19/2016] [Indexed: 12/14/2022]
Abstract
Microbial communities are essential for most ecosystem processes and interact in highly complex ways with virtually all eukaryotes. Thus, a detailed understanding of the function of such communities is a fundamental prerequisite for microbial ecologists, applied microbiologists and microbiome researchers. Using single cell Raman microspectroscopy, biochemical fingerprints of individual microbial cells can be obtained in an externally label-free and non-destructive manner. If combined with stable isotope probing (SIP), Raman spectroscopy can directly reveal functions of single microorganisms in their natural habitat. This review provides an update on various SIP-approaches suitable for combination with different Raman scattering techniques and illustrates how single cell Raman SIP can be directly combined with the omics-centric analysis pipelines to investigate microbial communities.
Collapse
Affiliation(s)
- Yun Wang
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics and Single Cell Center, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom.
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network 'Chemistry Meets Microbiology', University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
34
|
|
35
|
Bourguet E, Brazhnik K, Sukhanova A, Moroy G, Brassart-Pasco S, Martin AP, Villena I, Bellon G, Sapi J, Nabiev I. Design, Synthesis, and Use of MMP-2 Inhibitor-Conjugated Quantum Dots in Functional Biochemical Assays. Bioconjug Chem 2016; 27:1067-81. [DOI: 10.1021/acs.bioconjchem.6b00065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Erika Bourguet
- Institut de Chimie Moléculaire de Reims, UMR 7312-CNRS, SFR Cap-Santé, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51 rue Cognacq Jay, 51100 Reims, France
| | - Kristina Brazhnik
- Laboratoire de Recherche en Nanosciences, LRN - EA4682, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51 rue Cognacq Jay, 51100 Reims, France
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe shosse, 115409 Moscow, Russian Federation
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN - EA4682, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51 rue Cognacq Jay, 51100 Reims, France
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe shosse, 115409 Moscow, Russian Federation
| | - Gautier Moroy
- Molécules Thérapeutiques In Silico, INSERM UMR-S 973, Université Paris Diderot, Sorbonne Paris Cité, 35 rue Hélène Brion, 75013 Paris, France
| | - Sylvie Brassart-Pasco
- Laboratoire de Biochimie et de Biologie moléculaire, MEDyC, UMR CNRS/URCA 7369, SFR Cap-Santé, UFR de Médecine, Université de Reims Champagne-Ardenne, 51 rue Cognacq Jay, 51100 Reims, France
| | - Anne-Pascaline Martin
- Laboratoire de Biochimie et de Biologie moléculaire, MEDyC, UMR CNRS/URCA 7369, SFR Cap-Santé, UFR de Médecine, Université de Reims Champagne-Ardenne, 51 rue Cognacq Jay, 51100 Reims, France
- Laboratoire de Parasitologie-Mycologie, EA3800, SFR Cap-Santé, UFR de Médecine, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51100 Reims, France
| | - Isabelle Villena
- Laboratoire de Parasitologie-Mycologie, EA3800, SFR Cap-Santé, UFR de Médecine, Université de Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51100 Reims, France
| | - Georges Bellon
- Laboratoire de Biochimie et de Biologie moléculaire, MEDyC, UMR CNRS/URCA 7369, SFR Cap-Santé, UFR de Médecine, Université de Reims Champagne-Ardenne, 51 rue Cognacq Jay, 51100 Reims, France
| | - Janos Sapi
- Institut de Chimie Moléculaire de Reims, UMR 7312-CNRS, SFR Cap-Santé, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51 rue Cognacq Jay, 51100 Reims, France
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN - EA4682, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51 rue Cognacq Jay, 51100 Reims, France
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe shosse, 115409 Moscow, Russian Federation
| |
Collapse
|
36
|
Cheng JX, Xie XS. Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine. Science 2015; 350:aaa8870. [PMID: 26612955 DOI: 10.1126/science.aaa8870] [Citation(s) in RCA: 428] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vibrational spectroscopy has been extensively applied to the study of molecules in gas phase, in condensed phase, and at interfaces. The transition from spectroscopy to spectroscopic imaging of living systems, which allows the spectrum of biomolecules to act as natural contrast, is opening new opportunities to reveal cellular machinery and to enable molecule-based diagnosis. Such a transition, however, involves more than a simple combination of spectrometry and microscopy. We review recent efforts that have pushed the boundary of the vibrational spectroscopic imaging field in terms of spectral acquisition speed, detection sensitivity, spatial resolution, and imaging depth. We further highlight recent applications in functional analysis of single cells and in label-free detection of diseases.
Collapse
Affiliation(s)
- Ji-Xin Cheng
- Weldon School of Biomedical Engineering and Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - X Sunney Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
37
|
Sustarsic M, Kapanidis AN. Taking the ruler to the jungle: single-molecule FRET for understanding biomolecular structure and dynamics in live cells. Curr Opin Struct Biol 2015; 34:52-9. [DOI: 10.1016/j.sbi.2015.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 07/02/2015] [Indexed: 12/29/2022]
|
38
|
Li M, Liu L, Xi N, Wang Y. Biological Applications of a Nanomanipulator Based on AFM: In situ visualization and quantification of cellular behaviors at the single-molecule level. IEEE NANOTECHNOLOGY MAGAZINE 2015. [DOI: 10.1109/mnano.2015.2441110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Schill J, Schenning APHJ, Brunsveld L. Self-Assembled Fluorescent Nanoparticles from π-Conjugated Small Molecules: En Route to Biological Applications. Macromol Rapid Commun 2015; 36:1306-21. [DOI: 10.1002/marc.201500117] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/26/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Jurgen Schill
- Laboratory of Chemical Biology; Department of Biomedical Engineering, and Institute of Complex Molecular Systems; Eindhoven University of Technology; P.O Box 513 5600 MB Eindhoven The Netherlands
| | - Albertus P. H. J. Schenning
- Functional Organic Materials and Devicesand Institute of Complex Molecular Systems; Eindhoven University of Technology; P.O Box 513 5600 MB Eindhoven The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology; Department of Biomedical Engineering, and Institute of Complex Molecular Systems; Eindhoven University of Technology; P.O Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
40
|
Aigrain L, Sustarsic M, Crawford R, Plochowietz A, Kapanidis AN. Internalization and observation of fluorescent biomolecules in living microorganisms via electroporation. J Vis Exp 2015. [PMID: 25741968 PMCID: PMC4354625 DOI: 10.3791/52208] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ability to study biomolecules in vivo is crucial for understanding their function in a biological context. One powerful approach involves fusing molecules of interest to fluorescent proteins such as GFP to study their expression, localization and function. However, GFP and its derivatives are significantly larger and less photostable than organic fluorophores generally used for in vitro experiments, and this can limit the scope of investigation. We recently introduced a straightforward, versatile and high-throughput method based on electroporation, allowing the internalization of biomolecules labeled with organic fluorophores into living microorganisms. Here we describe how to use electroporation to internalize labeled DNA fragments or proteins into Escherichia coli and Saccharomyces cerevisiæ, how to quantify the number of internalized molecules using fluorescence microscopy, and how to quantify the viability of electroporated cells. Data can be acquired at the single-cell or single-molecule level using fluorescence or FRET. The possibility of internalizing non-labeled molecules that trigger a physiological observable response in vivo is also presented. Finally, strategies of optimization of the protocol for specific biological systems are discussed.
Collapse
Affiliation(s)
- Louise Aigrain
- Clarendon Laboratory, Department of Physics, University of Oxford; Wellcome Trust Sanger Institute, Genome Center
| | - Marko Sustarsic
- Clarendon Laboratory, Department of Physics, University of Oxford
| | - Robert Crawford
- Clarendon Laboratory, Department of Physics, University of Oxford
| | - Anne Plochowietz
- Clarendon Laboratory, Department of Physics, University of Oxford
| | | |
Collapse
|
41
|
Li H, Chen D, Xu G, Yu B, Niu H. Three dimensional multi-molecule tracking in thick samples with extended depth-of-field. OPTICS EXPRESS 2015; 23:787-794. [PMID: 25835838 DOI: 10.1364/oe.23.000787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a non-z-scanning multi-molecule tracking system with nano-resolution in all three dimensions and extended depth of field (DOF), which based on distorted grating (DG) and double-helix point spread function (DH-PSF) combination microscopy (DDCM). The critical component in DDCM is a custom designed composite phase mask (PM) combining the functions of DG and DH-PSF. The localization precision and the effective DOF of the home-built DDCM system based on the designed PM were tested. Our experimental results show that the three-dimensional (3D) localization precision for the three diffraction orders of the grating are σ(-1st)(x, y, z) = (6.5 nm, 9.2nm, 23.4 nm), σ(0th)(x, y, z) = (3.7 nm, 2.8nm, 10.3 nm), and σ(+1s)(x, y, z) = (5.8 nm, 6.9 nm, 18.4 nm), respectively. Furthermore, the total effective DOF of the DDCM system is extended to 14 μm. Tracking experiment demonstrated that beads separated over 12 μm along the axial direction at some instants can be localized and tracked successfully.
Collapse
|
42
|
Lee HJ, Zhang W, Zhang D, Yang Y, Liu B, Barker EL, Buhman KK, Slipchenko LV, Dai M, Cheng JX. Assessing cholesterol storage in live cells and C. elegans by stimulated Raman scattering imaging of phenyl-Diyne cholesterol. Sci Rep 2015; 5:7930. [PMID: 25608867 PMCID: PMC4302291 DOI: 10.1038/srep07930] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/22/2014] [Indexed: 02/07/2023] Open
Abstract
We report a cholesterol imaging method using rationally synthesized phenyl-diyne cholesterol (PhDY-Chol) and stimulated Raman scattering (SRS) microscope. The phenyl-diyne group is biologically inert and provides a Raman scattering cross section that is 88 times larger than the endogenous C = O stretching mode. SRS microscopy offers an imaging speed that is faster than spontaneous Raman microscopy by three orders of magnitude, and a detection sensitivity of 31 μM PhDY-Chol (~1,800 molecules in the excitation volume). Inside living CHO cells, PhDY-Chol mimics the behavior of cholesterol, including membrane incorporation and esterification. In a cellular model of Niemann-Pick type C disease, PhDY-Chol reflects the lysosomal accumulation of cholesterol, and shows relocation to lipid droplets after HPβCD treatment. In live C. elegans, PhDY-Chol mimics cholesterol uptake by intestinal cells and reflects cholesterol storage. Together, our work demonstrates an enabling platform for study of cholesterol storage and trafficking in living cells and vital organisms.
Collapse
Affiliation(s)
- Hyeon Jeong Lee
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Wandi Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Delong Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Yang Yang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Bin Liu
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, China
| | - Eric L. Barker
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA
- Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Kimberly K. Buhman
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | | | - Mingji Dai
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Ji-Xin Cheng
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
43
|
Mi Li, Lianqing Liu, Ning Xi, Yuechao Wang, Xiubin Xiao, Weijing Zhang. Quantitative Analysis of Drug-Induced Complement-Mediated Cytotoxic Effect on Single Tumor Cells Using Atomic Force Microscopy and Fluorescence Microscopy. IEEE Trans Nanobioscience 2015; 14:84-94. [DOI: 10.1109/tnb.2014.2370759] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Widom JR, Dhakal S, Heinicke LA, Walter NG. Single-molecule tools for enzymology, structural biology, systems biology and nanotechnology: an update. Arch Toxicol 2014; 88:1965-85. [PMID: 25212907 PMCID: PMC4615698 DOI: 10.1007/s00204-014-1357-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 08/28/2014] [Indexed: 12/22/2022]
Abstract
Toxicology is the highly interdisciplinary field studying the adverse effects of chemicals on living organisms. It requires sensitive tools to detect such effects. After their initial implementation during the 1990s, single-molecule fluorescence detection tools were quickly recognized for their potential to contribute greatly to many different areas of scientific inquiry. In the intervening time, technical advances in the field have generated ever-improving spatial and temporal resolution and have enabled the application of single-molecule fluorescence to increasingly complex systems, such as live cells. In this review, we give an overview of the optical components necessary to implement the most common versions of single-molecule fluorescence detection. We then discuss current applications to enzymology and structural studies, systems biology, and nanotechnology, presenting the technical considerations that are unique to each area of study, along with noteworthy recent results. We also highlight future directions that have the potential to revolutionize these areas of study by further exploiting the capabilities of single-molecule fluorescence microscopy.
Collapse
Affiliation(s)
- Julia R Widom
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109-1055, USA
| | | | | | | |
Collapse
|
45
|
Enzyme molecules in solitary confinement. Molecules 2014; 19:14417-45. [PMID: 25221867 PMCID: PMC6271441 DOI: 10.3390/molecules190914417] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 11/17/2022] Open
Abstract
Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.
Collapse
|
46
|
Crawford R, Torella JP, Aigrain L, Plochowietz A, Gryte K, Uphoff S, Kapanidis AN. Long-lived intracellular single-molecule fluorescence using electroporated molecules. Biophys J 2014; 105:2439-50. [PMID: 24314075 DOI: 10.1016/j.bpj.2013.09.057] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/12/2013] [Accepted: 09/06/2013] [Indexed: 11/28/2022] Open
Abstract
Studies of biomolecules in vivo are crucial to understand their function in a natural, biological context. One powerful approach involves fusing molecules of interest to fluorescent proteins to study their expression, localization, and action; however, the scope of such studies would be increased considerably by using organic fluorophores, which are smaller and more photostable than their fluorescent protein counterparts. Here, we describe a straightforward, versatile, and high-throughput method to internalize DNA fragments and proteins labeled with organic fluorophores into live Escherichia coli by employing electroporation. We studied the copy numbers, diffusion profiles, and structure of internalized molecules at the single-molecule level in vivo, and were able to extend single-molecule observation times by two orders of magnitude compared to green fluorescent protein, allowing continuous monitoring of molecular processes occurring from seconds to minutes. We also exploited the desirable properties of organic fluorophores to perform single-molecule Förster resonance energy transfer measurements in the cytoplasm of live bacteria, both for DNA and proteins. Finally, we demonstrate internalization of labeled proteins and DNA into yeast Saccharomyces cerevisiae, a model eukaryotic system. Our method should broaden the range of biological questions addressable in microbes by single-molecule fluorescence.
Collapse
Affiliation(s)
- Robert Crawford
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
47
|
Chakrabarty S, Kaur H, Pal T, Kar S, Ghosh S, Ghosh S. Morphology dependent photoinduced electron transfer from N,N-dimethylaniline to semiconductor cadmium sulfide. RSC Adv 2014. [DOI: 10.1039/c4ra05498a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
48
|
Li M, Xiao X, Zhang W, Liu L, Xi N, Wang Y. AFM analysis of the multiple types of molecular interactions involved in rituximab lymphoma therapy on patient tumor cells and NK cells. Cell Immunol 2014; 290:233-44. [PMID: 25117605 DOI: 10.1016/j.cellimm.2014.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/12/2014] [Accepted: 07/12/2014] [Indexed: 10/25/2022]
Abstract
Rituximab is a monoclonal antibody drug approved for the treatment of patients with lymphomas. Rituximab's main killing mechanism is antibody-dependent cellular cytotoxicity (ADCC). During ADCC, rituximab's fragment antigen binding (Fab) region binds to the CD20 antigen on the tumor cell and its fragment crystallizable (Fc) region binds to the Fc receptor (FcR) on the natural killer (NK) cells. In this study, two types of molecular interactions (CD20-rituximab, FcR-rituximab) involved in ADCC were measured simultaneously on cells prepared from biopsy specimens of lymphoma patients by utilizing atomic force microscopy (AFM) with functionalized tips carrying rituximab. NK cells were detected by specific NKp46 fluorescent labeling and tumor cells were detected by specific ROR1 fluorescent labeling. Based on the fluorescence recognition, the binding affinity and distribution of FcRs on NK cells, and CD20 on tumor cells, were quantitatively measured and mapped. The binding affinity and distribution of FcRs (on NK cells) and CD20 (on tumor cells) were associated with rituximab clinical efficacy. The experimental results provide a new approach to simultaneously quantify the multiple types of molecular interactions involved in rituximab ADCC mechanism on patient biopsy cells, which is of potential clinical significance to predict rituximab efficacy for personalized medicine.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiubin Xiao
- Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing 100071, China
| | - Weijing Zhang
- Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing 100071, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Ning Xi
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Yuechao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
49
|
Fu D, Yu Y, Folick A, Currie E, Farese R, Tsai TH, Xie XS, Wang MC. In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy. J Am Chem Soc 2014; 136:8820-8. [PMID: 24869754 PMCID: PMC4073829 DOI: 10.1021/ja504199s] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Indexed: 12/25/2022]
Abstract
Metabolic fingerprinting provides valuable information on the physiopathological states of cells and tissues. Traditional imaging mass spectrometry and magnetic resonance imaging are unable to probe the spatial-temporal dynamics of metabolites at the subcellular level due to either lack of spatial resolution or inability to perform live cell imaging. Here we report a complementary metabolic imaging technique that is based on hyperspectral stimulated Raman scattering (hsSRS). We demonstrated the use of hsSRS imaging in quantifying two major neutral lipids: cholesteryl ester and triacylglycerol in cells and tissues. Our imaging results revealed previously unknown changes of lipid composition associated with obesity and steatohepatitis. We further used stable-isotope labeling to trace the metabolic dynamics of fatty acids in live cells and live Caenorhabditis elegans with hsSRS imaging. We found that unsaturated fatty acid has preferential uptake into lipid storage while saturated fatty acid exhibits toxicity in hepatic cells. Simultaneous metabolic fingerprinting of deuterium-labeled saturated and unsaturated fatty acids in living C. elegans revealed that there is a lack of interaction between the two, unlike previously hypothesized. Our findings provide new approaches for metabolic tracing of neutral lipids and their precursors in living cells and organisms, and could potentially serve as a general approach for metabolic fingerprinting of other metabolites.
Collapse
Affiliation(s)
- Dan Fu
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Yong Yu
- Huffington
Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Andrew Folick
- Program
in Developmental Biology, Baylor College
of Medicine, Houston, Texas 77030, United
States
| | - Erin Currie
- Gladstone
Institute of Cardiovascular Disease, Department of Biochemistry and
Biophysics, University of California, San Francisco, California 94158, United States
| | - Robert
V. Farese
- Gladstone
Institute of Cardiovascular Disease, Department of Biochemistry and
Biophysics, University of California, San Francisco, California 94158, United States
| | - Tsung-Huang Tsai
- Diabetes
and Endocrinology Research Center and Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Xiaoliang Sunney Xie
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Meng C. Wang
- Huffington
Center on Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, United States
- Program
in Developmental Biology, Baylor College
of Medicine, Houston, Texas 77030, United
States
| |
Collapse
|
50
|
Hong S, Chen T, Zhu Y, Li A, Huang Y, Chen X. Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules. Angew Chem Int Ed Engl 2014; 53:5827-31. [PMID: 24753329 DOI: 10.1002/anie.201400328] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 02/26/2014] [Indexed: 12/15/2022]
Abstract
Alkynes can be metabolically incorporated into biomolecules including nucleic acids, proteins, lipids, and glycans. In addition to the clickable chemical reactivity, alkynes possess a unique Raman scattering within the Raman-silent region of a cell. Coupling this spectroscopic signature with Raman microscopy yields a new imaging modality beyond fluorescence and label-free microscopies. The bioorthogonal Raman imaging of various biomolecules tagged with an alkyne by a state-of-the-art Raman imaging technique, stimulated Raman scattering (SRS) microscopy, is reported. This imaging method affords non-invasiveness, high sensitivity, and molecular specificity and therefore should find broad applications in live-cell imaging.
Collapse
Affiliation(s)
- Senlian Hong
- Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871 (China)
| | | | | | | | | | | |
Collapse
|