1
|
Narechania A, Bobo D, DeSalle R, Mathema B, Kreiswirth B, Planet PJ. What Do We Gain When Tolerating Loss? The Information Bottleneck Wrings Out Recombination. Mol Biol Evol 2025; 42:msaf029. [PMID: 39899343 PMCID: PMC11890988 DOI: 10.1093/molbev/msaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/03/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
Most microbes have the capacity to acquire genetic material from their environment. Recombination of foreign DNA yields genomes that are, at least in part, incongruent with the vertical history of their species. Dominant approaches for detecting these transfers are phylogenetic, requiring a painstaking series of analyses including alignment and tree reconstruction. But these methods do not scale. Here, we propose an unsupervised, alignment-free, and tree-free technique based on the sequential information bottleneck, an optimization procedure designed to extract some portion of relevant information from 1 random variable conditioned on another. In our case, this joint probability distribution tabulates occurrence counts of k-mers against their genomes of origin with the expectation that recombination will create a strong signal that unifies certain sets of co-occurring k-mers. We conceptualize the technique as a rate-distortion problem, measuring distortion in the relevance information as k-mers are compressed into clusters based on their co-occurrence in the source genomes. The result is fast, model-free, lossy compression of k-mers into learned groups of shared genome sequence, differentiating recombined elements from the vertically inherited core. We show that the technique yields a new recombination measure based purely on information, divorced from any biases and limitations inherent to alignment and phylogeny.
Collapse
Affiliation(s)
- Apurva Narechania
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
- Section for Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Dean Bobo
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - Rob DeSalle
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | - Barun Mathema
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Barry Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Paul J Planet
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Doran BA, Chen RY, Giba H, Behera V, Barat B, Sundararajan A, Lin H, Sidebottom A, Pamer EG, Raman AS. Subspecies phylogeny in the human gut revealed by co-evolutionary constraints across the bacterial kingdom. Cell Syst 2025; 16:101167. [PMID: 39826551 DOI: 10.1016/j.cels.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/16/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
The human gut microbiome contains many bacterial strains of the same species ("strain-level variants") that shape microbiome function. The tremendous scale and molecular resolution at which microbial communities are being interrogated motivates addressing how to describe strain-level variants. We introduce the "Spectral Tree"-an inferred tree of relatedness built from patterns of co-evolutionary constraint between greater than 7,000 diverse bacteria. Using the Spectral Tree to describe over 600 diverse gut commensal strains that we isolated, whole-genome sequenced, and metabolically profiled revealed (1) widespread phylogenetic structure among strain-level variants, (2) the origins of subspecies phylogeny as a shared history of phage infections across humans, and (3) the key role of inter-human strain variation in predicting strain-level metabolic qualities. Overall, our work demonstrates the existence and metabolic importance of structured phylogeny below the level of species for commensal gut bacteria, motivating a redefinition of individual strains according to their evolutionary context. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Benjamin A Doran
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Robert Y Chen
- Department of Psychiatry, University of Washington, Seattle, WA 98195, USA
| | - Hannah Giba
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Vivek Behera
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Bidisha Barat
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | | | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Ashley Sidebottom
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Arjun S Raman
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA; Center for the Physics of Evolving Systems, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
3
|
Ndovie W, Havránek J, Leconte J, Koszucki J, Chindelevitch L, Adriaenssens EM, Mostowy RJ. Exploration of the genetic landscape of bacterial dsDNA viruses reveals an ANI gap amid extensive mosaicism. mSystems 2025; 10:e0166124. [PMID: 39878503 PMCID: PMC11834439 DOI: 10.1128/msystems.01661-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
Average nucleotide identity (ANI) is a widely used metric to estimate genetic relatedness, especially in microbial species delineation. While ANI calculation has been well optimized for bacteria and closely related viral genomes, accurate estimation of ANI below 80%, particularly in large reference data sets, has been challenging due to a lack of accurate and scalable methods. To bridge this gap, we introduce MANIAC, an efficient computational pipeline optimized for estimating ANI and alignment fraction (AF) in viral genomes with divergence around ANI of 70%. Using a rigorous simulation framework, we demonstrate MANIAC's accuracy and scalability compared to existing approaches, even to data sets of hundreds of thousands of viral genomes. Applying MANIAC to a curated data set of complete bacterial dsDNA viruses revealed a multimodal ANI distribution, with a distinct gap around 80%, akin to the bacterial ANI gap (~90%) but shifted, likely due to viral-specific evolutionary processes such as recombination dynamics and mosaicism. We then evaluated ANI and AF as predictors of genus-level taxonomy using a logistic regression model. We found that this model has strong predictive power (PR-AUC = 0.981), but that it works much better for virulent (PR-AUC = 0.997) than temperate (PR-AUC = 0.847) bacterial viruses. This highlights the complexity of taxonomic classification in temperate phages, known for their extensive mosaicism, and cautions against over-reliance on ANI in such cases. MANIAC can be accessed at https://github.com/bioinf-mcb/MANIAC.IMPORTANCEWe introduce a novel computational pipeline called MANIAC, designed to accurately assess average nucleotide identity (ANI) and alignment fraction (AF) between diverse viral genomes, scalable to data sets of over 100k genomes. Using computer simulations and real data analyses, we show that MANIAC could accurately estimate genetic relatedness between pairs of viral genomes of around 60%-70% ANI. We applied MANIAC to investigate the question of ANI discontinuity in bacterial dsDNA viruses, finding evidence for an ANI gap, akin to the one seen in bacteria but around ANI of 80%. We then assessed the ability of ANI and AF to predict taxonomic genus boundaries, finding its strong predictive power in virulent, but not in temperate phages. Our results suggest that bacterial dsDNA viruses may exhibit an ANI threshold (on average around 80%) above which recombination helps maintain population cohesiveness, as previously argued in bacteria.
Collapse
Affiliation(s)
- Wanangwa Ndovie
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Jan Havránek
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jade Leconte
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Janusz Koszucki
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Leonid Chindelevitch
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Rafal J. Mostowy
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
4
|
Zhao L, Luo Z, Hu Z, Zhang Y, Zhao T, Zhong Y, Wang X. Linking phylogenetic niche conservatism in bacterial communities in sorghum root compartments revealed by the Hongyingzi cultivar. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:134-145. [PMID: 39506791 DOI: 10.1111/plb.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024]
Abstract
The root system harbours complex bacterial communities, which are critical for plant growth and health. Significant differences exist between bacterial communities in the root compartments; however, limited reports have explored their phylogenetic composition and niche conservatism in the root system of sorghum. We used the sorghum Hongyingzi cultivar as test plant, and applied 16S rRNA high-throughput sequencing and various statistical approaches. Phylogenetic composition of bacterial communities in root compartments were primarily driven by closely related species with similar environmental adaptations. We also found evidence of phylogenetic niche conservatism in bacterial communities for edaphic factors in the various root compartments, with pH and available N playing essential roles in shaping community composition. Environmental threshold analysis revealed threshold ranges of dominant taxa for pH and available N, indicating wider adaptive thresholds for more abundant taxa. Reconstruction of ancestral states suggested evolutionary changes in adaptability of certain bacterial taxa to edaphic factors, suggesting a shift towards slightly acidic, high N environments and reflecting the prolonged mutual interaction between bacteria and plants in cultivated soils. These findings enhance our understanding of environmental responses and evolutionary dynamics of root-associated microbiota in young sorghum plants and provide novel insights into ecological adaptations, shedding light on their responses to environmental factors. Our study contributes to a better understanding of the ecological dynamics of root-associated microbiota and offers analytical pathways for exploring the nutritional regulation of root microbiota.
Collapse
Affiliation(s)
- L Zhao
- Department of Liquor Brewing Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Z Luo
- Department of Liquor Brewing Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Z Hu
- Department of Liquor Brewing Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Y Zhang
- Department of Liquor Brewing Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - T Zhao
- Department of Liquor Brewing Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Y Zhong
- Department of Liquor Brewing Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - X Wang
- Department of Liquor Brewing Engineering, Moutai Institute, Renhuai, Guizhou, China
| |
Collapse
|
5
|
Conrad RE, Brink CE, Viver T, Rodriguez-R LM, Aldeguer-Riquelme B, Hatt JK, Venter SN, Rossello-Mora R, Amann R, Konstantinidis KT. Microbial species and intraspecies units exist and are maintained by ecological cohesiveness coupled to high homologous recombination. Nat Commun 2024; 15:9906. [PMID: 39548060 PMCID: PMC11568254 DOI: 10.1038/s41467-024-53787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024] Open
Abstract
Recent genomic analyses have revealed that microbial communities are predominantly composed of persistent, sequence-discrete species and intraspecies units (genomovars), but the mechanisms that create and maintain these units remain unclear. By analyzing closely-related isolate genomes from the same or related samples and identifying recent recombination events using a novel bioinformatics methodology, we show that high ecological cohesiveness coupled to frequent-enough and unbiased (i.e., not selection-driven) horizontal gene flow, mediated by homologous recombination, often underlie these diversity patterns. Ecological cohesiveness was inferred based on greater similarity in temporal abundance patterns of genomes of the same vs. different units, and recombination was shown to affect all sizable segments of the genome (i.e., be genome-wide) and have two times or greater impact on sequence evolution than point mutations. These results were observed in both Salinibacter ruber, an environmental halophilic organism, and Escherichia coli, the model gut-associated organism and an opportunistic pathogen, indicating that they may be more broadly applicable to the microbial world. Therefore, our results represent a departure compared to previous models of microbial speciation that invoke either ecology or recombination, but not necessarily their synergistic effect, and answer an important question for microbiology: what a species and a subspecies are.
Collapse
Affiliation(s)
| | | | - Tomeu Viver
- Mediterranean Institutes for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | | | - Janet K Hatt
- Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Ramon Rossello-Mora
- Mediterranean Institutes for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain.
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | | |
Collapse
|
6
|
Akther S, Mongodin EF, Morgan RD, Di L, Yang X, Golovchenko M, Rudenko N, Margos G, Hepner S, Fingerle V, Kawabata H, Norte AC, de Carvalho IL, Núncio MS, Marques A, Schutzer SE, Fraser CM, Luft BJ, Casjens SR, Qiu W. Natural selection and recombination at host-interacting lipoprotein loci drive genome diversification of Lyme disease and related bacteria. mBio 2024; 15:e0174924. [PMID: 39145656 PMCID: PMC11389397 DOI: 10.1128/mbio.01749-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 08/16/2024] Open
Abstract
Lyme disease, caused by spirochetes in the Borrelia burgdorferi sensu lato clade within the Borrelia genus, is transmitted by Ixodes ticks and is currently the most prevalent and rapidly expanding tick-borne disease in Europe and North America. We report complete genome sequences of 47 isolates that encompass all established species in this clade while highlighting the diversity of the widespread human pathogenic species B. burgdorferi. A similar set of plasmids has been maintained throughout Borrelia divergence, indicating that they are a key adaptive feature of this genus. Phylogenetic reconstruction of all sequenced Borrelia genomes revealed the original divergence of Eurasian and North American lineages and subsequent dispersals that introduced B. garinii, B. bavariensis, B. lusitaniae, B. valaisiana, and B. afzelii from East Asia to Europe and B. burgdorferi and B. finlandensis from North America to Europe. Molecular phylogenies of the universally present core replicons (chromosome and cp26 and lp54 plasmids) are highly consistent, revealing a strong clonal structure. Nonetheless, numerous inconsistencies between the genome and gene phylogenies indicate species dispersal, genetic exchanges, and rapid sequence evolution at plasmid-borne loci, including key host-interacting lipoprotein genes. While localized recombination occurs uniformly on the main chromosome at a rate comparable to mutation, lipoprotein-encoding loci are recombination hotspots on the plasmids, suggesting adaptive maintenance of recombinant alleles at loci directly interacting with the host. We conclude that within- and between-species recombination facilitates adaptive sequence evolution of host-interacting lipoprotein loci and contributes to human virulence despite a genome-wide clonal structure of its natural populations. IMPORTANCE Lyme disease (also called Lyme borreliosis in Europe), a condition caused by spirochete bacteria of the genus Borrelia, transmitted by hard-bodied Ixodes ticks, is currently the most prevalent and rapidly expanding tick-borne disease in the United States and Europe. Borrelia interspecies and intraspecies genome comparisons of Lyme disease-related bacteria are essential to reconstruct their evolutionary origins, track epidemiological spread, identify molecular mechanisms of human pathogenicity, and design molecular and ecological approaches to disease prevention, diagnosis, and treatment. These Lyme disease-associated bacteria harbor complex genomes that encode many genes that do not have homologs in other organisms and are distributed across multiple linear and circular plasmids. The functional significance of most of the plasmid-borne genes and the multipartite genome organization itself remains unknown. Here we sequenced, assembled, and analyzed whole genomes of 47 Borrelia isolates from around the world, including multiple isolates of the human pathogenic species. Our analysis elucidates the evolutionary origins, historical migration, and sources of genomic variability of these clinically important pathogens. We have developed web-based software tools (BorreliaBase.org) to facilitate dissemination and continued comparative analysis of Borrelia genomes to identify determinants of human pathogenicity.
Collapse
Affiliation(s)
- Saymon Akther
- Graduate Center and Hunter College, City University of New York, New York, New York, USA
| | | | | | - Lia Di
- Graduate Center and Hunter College, City University of New York, New York, New York, USA
| | - Xiaohua Yang
- Department of Medicine, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, USA
| | - Maryna Golovchenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| | - Natalie Rudenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| | - Gabriele Margos
- Bavarian Health and Food Safety Authority and German National Reference Centre for Borrelia, Oberschleissheim, Bavaria, Germany
| | - Sabrina Hepner
- Bavarian Health and Food Safety Authority and German National Reference Centre for Borrelia, Oberschleissheim, Bavaria, Germany
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority and German National Reference Centre for Borrelia, Oberschleissheim, Bavaria, Germany
| | | | - Ana Cláudia Norte
- Department of Life Sciences, University of Coimbra, MARE-Marine and Environmental Sciences Centre, Coimbra, Portugal
| | | | - Maria Sofia Núncio
- Centre for Vector and Infectious Diseases Research, Águas de Moura, Portugal
| | - Adriana Marques
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | | | - Claire M Fraser
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Benjamin J Luft
- Department of Medicine, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, USA
| | - Sherwood R Casjens
- University of Utah School of Medicine and School of Biological Sciences, Salt Lake City, Utah, USA
| | - Weigang Qiu
- Graduate Center and Hunter College, City University of New York, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
7
|
Aldeguer-Riquelme B, Conrad RE, Antón J, Rossello-Mora R, Konstantinidis KT. A natural ANI gap that can define intra-species units of bacteriophages and other viruses. mBio 2024; 15:e0153624. [PMID: 39037288 PMCID: PMC11323488 DOI: 10.1128/mbio.01536-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Despite the importance of intra-species variants of viruses for causing disease and/or disrupting ecosystem functioning, there is no universally applicable standard to define these. A (natural) gap in whole-genome average nucleotide identity (ANI) values around 95% is commonly used to define species, especially for bacteriophages, but whether a similar gap exists within species that can be used to define intra-species units has not been evaluated yet. Whole-genome comparisons among members of 1,016 bacteriophage (Caudoviricetes) species revealed a region of low frequency of ANI values around 99.2%-99.8%, showing threefold or fewer pairs than expected for an even distribution. This second gap is prevalent in viruses infecting various cultured or uncultured hosts from a variety of environments, although a few exceptions to this pattern were also observed (3.7% of total species) and are likely attributed to cultivation biases or other factors. Similar results were observed for a limited set of eukaryotic viruses that are adequately sampled, including SARS-CoV-2, whose ANI-based clusters matched well with the WHO-defined variants of concern, indicating that our findings from bacteriophages might be more broadly applicable and the ANI-based clusters may represent functionally and/or ecologically distinct units. These units appear to be predominantly driven by (high) ecological cohesiveness coupled to either frequent recombination for bacteriophages or selection and clonal evolution for other viruses such as SARS-CoV-2, indicating that fundamentally different underlying mechanisms could lead to similar diversity patterns. Accordingly, we propose the ANI gap approach outlined above for defining viral intra-species units, for which we propose the term genomovars. IMPORTANCE Viral species are composed of an ensemble of intra-species variants whose individual dynamics may have major implications for human and animal health and/or ecosystem functioning. However, the lack of universally accepted standards to define these intra-species variants has led researchers to use different approaches for this task, creating inconsistent intra-species units across different viral families and confusion in communication. By comparing hundreds of mostly bacteriophage genomes, we show that there is a widely distributed natural gap in whole-genome average nucleotide identity values in most, but not all, of these species that can be used to define intra-species units. Therefore, these results advance the molecular toolbox for tracking viral intra-species units and should facilitate future epidemiological and environmental studies.
Collapse
Affiliation(s)
- Borja Aldeguer-Riquelme
- School of Civil & Environmental Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Roth E. Conrad
- School of Civil & Environmental Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Josefa Antón
- Department of Physiology, Genetics and Microbiology, University of Alicante, San Vicente del Raspeig, Spain
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Konstantinos T. Konstantinidis
- School of Civil & Environmental Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Martín-Rodríguez AJ, Fernández-Juárez V, Valeriano VD, Mihindukulasooriya I, Ceresnova L, Joffré E, Jensie-Markopoulos S, Moore ERB, Sjöling Å. A hotspot of diversity: novel Shewanella species isolated from Baltic Sea sediments delineate a sympatric species complex. Int J Syst Evol Microbiol 2024; 74. [PMID: 39150443 PMCID: PMC11329295 DOI: 10.1099/ijsem.0.006480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Two bacterial strains, SP1S1-4T and SP2S1-2T, were isolated from sediment samples collected in the Stockholm archipelago in November 2021. Following whole-genome sequencing, these strains were identified as tentatively belonging to two novel Shewanella genospecies, based on digital DNA-DNA hybridization, as implemented in the Type Strain Genome Server. Shewanella septentrionalis, Shewanella baltica and Shewanella hafniensis were, in this order and within a narrow genomic relatedness range, their closest genotypic relatives. Additional sampling and sequencing efforts led to the retrieval of distinct isolates that were monophyletic with SP1S1-4T and SP2S1-2T, respectively, based on phylogenomic analysis of whole-genome sequences. Comparative analyses of genome sequence data, which included blast-based average nucleotide identity, core genome-based and core proteome-based phylogenomics, in addition to MALDI-TOF MS-based protein profiling, confirmed the distinctness of the putative novel genospecies with respect to their closest genotypic relatives. A comprehensive phenotypic characterisation of SP1S1-4T and SP2S1-2T revealed only minor differences with respect to the type strains of S. septentrionalis, S. baltica and S. hafniensis. Based on the collective phylogenomic, proteomic, and phenotypic evidence presented here, we describe two novel genospecies within the genus Shewanella, for which the names Shewanella scandinavica sp. nov. and Shewanella vaxholmensis sp. nov. are proposed. The type strains are, respectively, SP2S1-2T (=CCUG 76457T=CECT 30688T), with a draft genome sequence of 5 041 805 bp and a G+C content of 46.3 mol%, and SP1S1-4T (=CCUG 76453T=CECT 30684T), with a draft genome sequence of 4 920147 bp and a G+C content of 46.0 mol%. Our findings suggest the existence of a species complex formed by the species S. baltica, S. septentrionalis, S. scandinavica sp. nov., and S. vaxholmensis sp. nov., with S. hafniensis falling in the periphery, where distinct genomic species clusters could be identified. However, this does not exclude the possibility of a continuum of genomic diversity within this sedimental ecosystem, as discussed herein with additional sequenced isolates.
Collapse
Affiliation(s)
- Alberto J Martín-Rodríguez
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Víctor Fernández-Juárez
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital and Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
| | - Valerie D Valeriano
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Indiwari Mihindukulasooriya
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Livia Ceresnova
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Enrique Joffré
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Chemistry and Molecular Biology (CMB), University of Gothenburg, Gothenburg, Sweden
| | - Susanne Jensie-Markopoulos
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital and Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Edward R B Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital and Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Åsa Sjöling
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Chemistry and Molecular Biology (CMB), University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Birkholz EA, Morgan CJ, Laughlin TG, Lau RK, Prichard A, Rangarajan S, Meza GN, Lee J, Armbruster E, Suslov S, Pogliano K, Meyer JR, Villa E, Corbett KD, Pogliano J. An intron endonuclease facilitates interference competition between coinfecting viruses. Science 2024; 385:105-112. [PMID: 38963841 PMCID: PMC11620839 DOI: 10.1126/science.adl1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/22/2024] [Indexed: 07/06/2024]
Abstract
Introns containing homing endonucleases are widespread in nature and have long been assumed to be selfish elements that provide no benefit to the host organism. These genetic elements are common in viruses, but whether they confer a selective advantage is unclear. In this work, we studied intron-encoded homing endonuclease gp210 in bacteriophage ΦPA3 and found that it contributes to viral competition by interfering with the replication of a coinfecting phage, ΦKZ. We show that gp210 targets a specific sequence in ΦKZ, which prevents the assembly of progeny viruses. This work demonstrates how a homing endonuclease can be deployed in interference competition among viruses and provide a relative fitness advantage. Given the ubiquity of homing endonucleases, this selective advantage likely has widespread evolutionary implications in diverse plasmid and viral competition as well as virus-host interactions.
Collapse
Affiliation(s)
- Erica A. Birkholz
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Chase J. Morgan
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Thomas G. Laughlin
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Rebecca K. Lau
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Amy Prichard
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Sahana Rangarajan
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Gabrielle N. Meza
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Jina Lee
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Emily Armbruster
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Sergey Suslov
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Kit Pogliano
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Justin R. Meyer
- Department of Ecology, Behavior and Evolution, University of California, San Diego, La Jolla, CA
| | - Elizabeth Villa
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA
| | - Kevin D. Corbett
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Joe Pogliano
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| |
Collapse
|
10
|
Babajanyan SG, Garushyants SK, Wolf YI, Koonin EV. Microbial diversity and ecological complexity emerging from environmental variation and horizontal gene transfer in a simple mathematical model. BMC Biol 2024; 22:148. [PMID: 38965531 PMCID: PMC11225191 DOI: 10.1186/s12915-024-01937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/13/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Microbiomes are generally characterized by high diversity of coexisting microbial species and strains, and microbiome composition typically remains stable across a broad range of conditions. However, under fixed conditions, microbial ecology conforms with the exclusion principle under which two populations competing for the same resource within the same niche cannot coexist because the less fit population inevitably goes extinct. Therefore, the long-term persistence of microbiome diversity calls for an explanation. RESULTS To explore the conditions for stabilization of microbial diversity, we developed a simple mathematical model consisting of two competing populations that could exchange a single gene allele via horizontal gene transfer (HGT). We found that, although in a fixed environment, with unbiased HGT, the system obeyed the exclusion principle, in an oscillating environment, within large regions of the phase space bounded by the rates of reproduction and HGT, the two populations coexist. Moreover, depending on the parameter combination, all three major types of symbiosis were obtained, namely, pure competition, host-parasite relationship, and mutualism. In each of these regimes, certain parameter combinations provided for synergy, that is, a greater total abundance of both populations compared to the abundance of the winning population in the fixed environment. CONCLUSIONS The results of this modeling study show that basic phenomena that are universal in microbial communities, namely, environmental variation and HGT, provide for stabilization and persistence of microbial diversity, and emergence of ecological complexity.
Collapse
Affiliation(s)
- Sanasar G Babajanyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, 20894, MD, USA.
| | - Sofya K Garushyants
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, 20894, MD, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, 20894, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, 20894, MD, USA.
| |
Collapse
|
11
|
Taylor AJ, Yahara K, Pascoe B, Ko S, Mageiros L, Mourkas E, Calland JK, Puranen S, Hitchings MD, Jolley KA, Kobras CM, Bayliss S, Williams NJ, van Vliet AHM, Parkhill J, Maiden MCJ, Corander J, Hurst LD, Falush D, Keim P, Didelot X, Kelly DJ, Sheppard SK. Epistasis, core-genome disharmony, and adaptation in recombining bacteria. mBio 2024; 15:e0058124. [PMID: 38683013 PMCID: PMC11237541 DOI: 10.1128/mbio.00581-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Recombination of short DNA fragments via horizontal gene transfer (HGT) can introduce beneficial alleles, create genomic disharmony through negative epistasis, and create adaptive gene combinations through positive epistasis. For non-core (accessory) genes, the negative epistatic cost is likely to be minimal because the incoming genes have not co-evolved with the recipient genome and are frequently observed as tightly linked cassettes with major effects. By contrast, interspecific recombination in the core genome is expected to be rare because disruptive allelic replacement is likely to introduce negative epistasis. Why then is homologous recombination common in the core of bacterial genomes? To understand this enigma, we take advantage of an exceptional model system, the common enteric pathogens Campylobacter jejuni and C. coli that are known for very high magnitude interspecies gene flow in the core genome. As expected, HGT does indeed disrupt co-adapted allele pairings, indirect evidence of negative epistasis. However, multiple HGT events enable recovery of the genome's co-adaption between introgressing alleles, even in core metabolism genes (e.g., formate dehydrogenase). These findings demonstrate that, even for complex traits, genetic coalitions can be decoupled, transferred, and independently reinstated in a new genetic background-facilitating transition between fitness peaks. In this example, the two-step recombinational process is associated with C. coli that are adapted to the agricultural niche.IMPORTANCEGenetic exchange among bacteria shapes the microbial world. From the acquisition of antimicrobial resistance genes to fundamental questions about the nature of bacterial species, this powerful evolutionary force has preoccupied scientists for decades. However, the mixing of genes between species rests on a paradox: 0n one hand, promoting adaptation by conferring novel functionality; on the other, potentially introducing disharmonious gene combinations (negative epistasis) that will be selected against. Taking an interdisciplinary approach to analyze natural populations of the enteric bacteria Campylobacter, an ideal example of long-range admixture, we demonstrate that genes can independently transfer across species boundaries and rejoin in functional networks in a recipient genome. The positive impact of two-gene interactions appears to be adaptive by expanding metabolic capacity and facilitating niche shifts through interspecific hybridization. This challenges conventional ideas and highlights the possibility of multiple-step evolution of multi-gene traits by interspecific introgression.
Collapse
Affiliation(s)
- Aidan J Taylor
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ben Pascoe
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Seungwon Ko
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Leonardos Mageiros
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
- The Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | - Jessica K Calland
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Santeri Puranen
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
| | - Matthew D Hitchings
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | - Keith A Jolley
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Carolin M Kobras
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sion Bayliss
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Nicola J Williams
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Wirral, United Kingdom
| | | | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Jukka Corander
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Laurence D Hurst
- The Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Daniel Falush
- The Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Shanghai, China
| | - Paul Keim
- Department of Biology, University of Oxford, Oxford, United Kingdom
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Xavier Didelot
- Department of Statistics, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - David J Kelly
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
12
|
Zhang P, Zhang B, Ji Y, Jiao J, Zhang Z, Tian C. Cofitness network connectivity determines a fuzzy essential zone in open bacterial pangenome. MLIFE 2024; 3:277-290. [PMID: 38948139 PMCID: PMC11211677 DOI: 10.1002/mlf2.12132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 07/02/2024]
Abstract
Most in silico evolutionary studies commonly assumed that core genes are essential for cellular function, while accessory genes are dispensable, particularly in nutrient-rich environments. However, this assumption is seldom tested genetically within the pangenome context. In this study, we conducted a robust pangenomic Tn-seq analysis of fitness genes in a nutrient-rich medium for Sinorhizobium strains with a canonical open pangenome. To evaluate the robustness of fitness category assignment, Tn-seq data for three independent mutant libraries per strain were analyzed by three methods, which indicates that the Hidden Markov Model (HMM)-based method is most robust to variations between mutant libraries and not sensitive to data size, outperforming the Bayesian and Monte Carlo simulation-based methods. Consequently, the HMM method was used to classify the fitness category. Fitness genes, categorized as essential (ES), advantage (GA), and disadvantage (GD) genes for growth, are enriched in core genes, while nonessential genes (NE) are over-represented in accessory genes. Accessory ES/GA genes showed a lower fitness effect than core ES/GA genes. Connectivity degrees in the cofitness network decrease in the order of ES, GD, and GA/NE. In addition to accessory genes, 1599 out of 3284 core genes display differential essentiality across test strains. Within the pangenome core, both shared quasi-essential (ES and GA) and strain-dependent fitness genes are enriched in similar functional categories. Our analysis demonstrates a considerable fuzzy essential zone determined by cofitness connectivity degrees in Sinorhizobium pangenome and highlights the power of the cofitness network in understanding the genetic basis of ever-increasing prokaryotic pangenome data.
Collapse
Affiliation(s)
- Pan Zhang
- State Key Laboratory of Plant Environmental Resilience, and College of Biological SciencesChina Agricultural UniversityBeijingChina
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research CenterChina Agricultural UniversityBeijingChina
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Biliang Zhang
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research CenterChina Agricultural UniversityBeijingChina
- State Key Laboratory of Livestock and Poultry Biotechnology Breeding, and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yuan‐Yuan Ji
- State Key Laboratory of Plant Environmental Resilience, and College of Biological SciencesChina Agricultural UniversityBeijingChina
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research CenterChina Agricultural UniversityBeijingChina
| | - Jian Jiao
- State Key Laboratory of Plant Environmental Resilience, and College of Biological SciencesChina Agricultural UniversityBeijingChina
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research CenterChina Agricultural UniversityBeijingChina
| | - Ziding Zhang
- State Key Laboratory of Livestock and Poultry Biotechnology Breeding, and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Chang‐Fu Tian
- State Key Laboratory of Plant Environmental Resilience, and College of Biological SciencesChina Agricultural UniversityBeijingChina
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research CenterChina Agricultural UniversityBeijingChina
| |
Collapse
|
13
|
Avila Cartes J, Bonizzoni P, Ciccolella S, Della Vedova G, Denti L, Didelot X, Monti DC, Pirola Y. RecGraph: recombination-aware alignment of sequences to variation graphs. Bioinformatics 2024; 40:btae292. [PMID: 38676570 PMCID: PMC11256948 DOI: 10.1093/bioinformatics/btae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024] Open
Abstract
MOTIVATION Bacterial genomes present more variability than human genomes, which requires important adjustments in computational tools that are developed for human data. In particular, bacteria exhibit a mosaic structure due to homologous recombinations, but this fact is not sufficiently captured by standard read mappers that align against linear reference genomes. The recent introduction of pangenomics provides some insights in that context, as a pangenome graph can represent the variability within a species. However, the concept of sequence-to-graph alignment that captures the presence of recombinations has not been previously investigated. RESULTS In this paper, we present the extension of the notion of sequence-to-graph alignment to a variation graph that incorporates a recombination, so that the latter are explicitly represented and evaluated in an alignment. Moreover, we present a dynamic programming approach for the special case where there is at most a recombination-we implement this case as RecGraph. From a modelling point of view, a recombination corresponds to identifying a new path of the variation graph, where the new arc is composed of two halves, each extracted from an original path, possibly joined by a new arc. Our experiments show that RecGraph accurately aligns simulated recombinant bacterial sequences that have at most a recombination, providing evidence for the presence of recombination events. AVAILABILITY AND IMPLEMENTATION Our implementation is open source and available at https://github.com/AlgoLab/RecGraph.
Collapse
Affiliation(s)
- Jorge Avila Cartes
- Department of Informatics, Systems and Communication, University of Milano – Bicocca. Viale Sarca 336, Milano 20126, Italy
| | - Paola Bonizzoni
- Department of Informatics, Systems and Communication, University of Milano – Bicocca. Viale Sarca 336, Milano 20126, Italy
| | - Simone Ciccolella
- Department of Informatics, Systems and Communication, University of Milano – Bicocca. Viale Sarca 336, Milano 20126, Italy
| | - Gianluca Della Vedova
- Department of Informatics, Systems and Communication, University of Milano – Bicocca. Viale Sarca 336, Milano 20126, Italy
| | - Luca Denti
- Department of Informatics, Systems and Communication, University of Milano – Bicocca. Viale Sarca 336, Milano 20126, Italy
| | - Xavier Didelot
- Department of Statistics and School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Davide Cesare Monti
- Department of Informatics, Systems and Communication, University of Milano – Bicocca. Viale Sarca 336, Milano 20126, Italy
| | - Yuri Pirola
- Department of Informatics, Systems and Communication, University of Milano – Bicocca. Viale Sarca 336, Milano 20126, Italy
| |
Collapse
|
14
|
Morel-Letelier I, Yuen B, Kück AC, Camacho-García YE, Petersen JM, Lara M, Leray M, Eisen JA, Osvatic JT, Gros O, Wilkins LGE. Adaptations to nitrogen availability drive ecological divergence of chemosynthetic symbionts. PLoS Genet 2024; 20:e1011295. [PMID: 38820540 PMCID: PMC11168628 DOI: 10.1371/journal.pgen.1011295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/12/2024] [Accepted: 05/08/2024] [Indexed: 06/02/2024] Open
Abstract
Bacterial symbionts, with their shorter generation times and capacity for horizontal gene transfer (HGT), play a critical role in allowing marine organisms to cope with environmental change. The closure of the Isthmus of Panama created distinct environmental conditions in the Tropical Eastern Pacific (TEP) and Caribbean, offering a "natural experiment" for studying how closely related animals evolve and adapt under environmental change. However, the role of bacterial symbionts in this process is often overlooked. We sequenced the genomes of endosymbiotic bacteria in two sets of sister species of chemosymbiotic bivalves from the genera Codakia and Ctena (family Lucinidae) collected on either side of the Isthmus, to investigate how differing environmental conditions have influenced the selection of symbionts and their metabolic capabilities. The lucinid sister species hosted different Candidatus Thiodiazotropha symbionts and only those from the Caribbean had the genetic potential for nitrogen fixation, while those from the TEP did not. Interestingly, this nitrogen-fixing ability did not correspond to symbiont phylogeny, suggesting convergent evolution of nitrogen fixation potential under nutrient-poor conditions. Reconstructing the evolutionary history of the nifHDKT operon by including other lucinid symbiont genomes from around the world further revealed that the last common ancestor (LCA) of Ca. Thiodiazotropha lacked nif genes, and populations in oligotrophic habitats later re-acquired the nif operon through HGT from the Sedimenticola symbiont lineage. Our study suggests that HGT of the nif operon has facilitated niche diversification of the globally distributed Ca. Thiodiazotropha endolucinida species clade. It highlights the importance of nitrogen availability in driving the ecological diversification of chemosynthetic symbiont species and the role that bacterial symbionts may play in the adaptation of marine organisms to changing environmental conditions.
Collapse
Affiliation(s)
- Isidora Morel-Letelier
- Eco-Evolutionary Interactions Group, Max Planck Institute for Marine Microbiology (MPIMM), Bremen, Germany
| | - Benedict Yuen
- Eco-Evolutionary Interactions Group, Max Planck Institute for Marine Microbiology (MPIMM), Bremen, Germany
| | - A. Carlotta Kück
- Eco-Evolutionary Interactions Group, Max Planck Institute for Marine Microbiology (MPIMM), Bremen, Germany
| | - Yolanda E. Camacho-García
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San Pedro, San José, Costa Rica
- Centro de Investigación en Biodiversidad y Ecología Tropical (CIBET), Universidad de Costa Rica, San Pedro, San José, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Jillian M. Petersen
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Minor Lara
- Diving Center Cuajiniquil, Provincia de Guanacaste, Cuajiniquil, Costa Rica
| | - Matthieu Leray
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panamá
| | - Jonathan A. Eisen
- Department of Evolution and Ecology, University of California, Davis, Davis, California, United States of America
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, United States of America
| | - Jay T. Osvatic
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Olivier Gros
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, Université des Antilles, Pointe-à-Pitre, France
| | - Laetitia G. E. Wilkins
- Eco-Evolutionary Interactions Group, Max Planck Institute for Marine Microbiology (MPIMM), Bremen, Germany
| |
Collapse
|
15
|
Sterzi L, Nodari R, Di Marco F, Ferrando ML, Saluzzo F, Spitaleri A, Allahverdi H, Papaleo S, Panelli S, Rimoldi SG, Batisti Biffignandi G, Corbella M, Cavallero A, Prati P, Farina C, Cirillo DM, Zuccotti G, Bandi C, Comandatore F. Genetic barriers more than environmental associations explain Serratia marcescens population structure. Commun Biol 2024; 7:468. [PMID: 38632370 PMCID: PMC11023947 DOI: 10.1038/s42003-024-06069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Bacterial species often comprise well-separated lineages, likely emerged and maintained by genetic isolation and/or ecological divergence. How these two evolutionary actors interact in the shaping of bacterial population structure is currently not fully understood. In this study, we investigate the genetic and ecological drivers underlying the evolution of Serratia marcescens, an opportunistic pathogen with high genomic flexibility and able to colonise diverse environments. Comparative genomic analyses reveal a population structure composed of five deeply-demarcated genetic clusters with open pan-genome but limited inter-cluster gene flow, partially explained by Restriction-Modification (R-M) systems incompatibility. Furthermore, a large-scale research on hundred-thousands metagenomic datasets reveals only a partial habitat separation of the clusters. Globally, two clusters only show a separate gene composition coherent with ecological adaptations. These results suggest that genetic isolation has preceded ecological adaptations in the shaping of the species diversity, an evolutionary scenario coherent with the Evolutionary Extended Synthesis.
Collapse
Affiliation(s)
- Lodovico Sterzi
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Riccardo Nodari
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Federico Di Marco
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Laura Ferrando
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Saluzzo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Hamed Allahverdi
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Stella Papaleo
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Simona Panelli
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Sara Giordana Rimoldi
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, ASST Fatebenefratelli Sacco, Milan, Italy
| | | | - Marta Corbella
- Department of Microbiology & Virology, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, 27100, Pavia, Italy
| | | | - Paola Prati
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Pavia, Italy
| | - Claudio Farina
- Laboratory of Microbiology and Virology, Azienda Socio-Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
- Department of Paediatrics, Children's Hospital "V. Buzzi", Milano, Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo Ed Enrica Invernizzi", University of Milan, 20133, Milan, Italy
| | - Francesco Comandatore
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy.
| |
Collapse
|
16
|
Sheinman M, Arndt PF, Massip F. Modeling the mosaic structure of bacterial genomes to infer their evolutionary history. Proc Natl Acad Sci U S A 2024; 121:e2313367121. [PMID: 38517978 PMCID: PMC10990148 DOI: 10.1073/pnas.2313367121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/30/2024] [Indexed: 03/24/2024] Open
Abstract
The chronology and phylogeny of bacterial evolution are difficult to reconstruct due to a scarce fossil record. The analysis of bacterial genomes remains challenging because of large sequence divergence, the plasticity of bacterial genomes due to frequent gene loss, horizontal gene transfer, and differences in selective pressure from one locus to another. Therefore, taking advantage of the rich and rapidly accumulating genomic data requires accurate modeling of genome evolution. An important technical consideration is that loci with high effective mutation rates may diverge beyond the detection limit of the alignment algorithms used, biasing the genome-wide divergence estimates toward smaller divergences. In this article, we propose a novel method to gain insight into bacterial evolution based on statistical properties of genome comparisons. We find that the length distribution of sequence matches is shaped by the effective mutation rates of different loci, by the horizontal transfers, and by the aligner sensitivity. Based on these inputs, we build a model and show that it accounts for the empirically observed distributions, taking the Enterobacteriaceae family as an example. Our method allows to distinguish segments of vertical and horizontal origins and to estimate the time divergence and exchange rate between any pair of taxa from genome-wide alignments. Based on the estimated time divergences, we construct a time-calibrated phylogenetic tree to demonstrate the accuracy of the method.
Collapse
Affiliation(s)
- Michael Sheinman
- Institute for Advanced Studies, Sevastopol State University, Sevastopol299053, Crimea
| | - Peter F. Arndt
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin12163, Germany
| | - Florian Massip
- Department U900, Centre for Computational Biology, Mines Paris, PSL University, Paris75006, France
- Department U900, Institut Curie, Université Paris Sciences et Lettres, Paris75005, France
- INSERM, U900, Paris75005, France
| |
Collapse
|
17
|
Stanojković A, Skoupý S, Johannesson H, Dvořák P. The global speciation continuum of the cyanobacterium Microcoleus. Nat Commun 2024; 15:2122. [PMID: 38459017 PMCID: PMC10923798 DOI: 10.1038/s41467-024-46459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
Speciation is a continuous process driven by genetic, geographic, and ecological barriers to gene flow. It is widely investigated in multicellular eukaryotes, yet we are only beginning to comprehend the relative importance of mechanisms driving the emergence of barriers to gene flow in microbial populations. Here, we explored the diversification of the nearly ubiquitous soil cyanobacterium Microcoleus. Our dataset consisted of 291 genomes, of which 202 strains and eight herbarium specimens were sequenced for this study. We found that Microcoleus represents a global speciation continuum of at least 12 lineages, which radiated during Eocene/Oligocene aridification and exhibit varying degrees of divergence and gene flow. The lineage divergence has been driven by selection, geographical distance, and the environment. Evidence of genetic divergence and selection was widespread across the genome, but we identified regions of exceptional differentiation containing candidate genes associated with stress response and biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Aleksandar Stanojković
- Palacký University Olomouc, Faculty of Sciences, Department of Botany, Olomouc, Czech Republic
| | - Svatopluk Skoupý
- Palacký University Olomouc, Faculty of Sciences, Department of Botany, Olomouc, Czech Republic
| | - Hanna Johannesson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- The Royal Swedish Academy of Sciences, Stockholm, Sweden
| | - Petr Dvořák
- Palacký University Olomouc, Faculty of Sciences, Department of Botany, Olomouc, Czech Republic.
| |
Collapse
|
18
|
Liu Z, Good BH. Dynamics of bacterial recombination in the human gut microbiome. PLoS Biol 2024; 22:e3002472. [PMID: 38329938 PMCID: PMC10852326 DOI: 10.1371/journal.pbio.3002472] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/14/2023] [Indexed: 02/10/2024] Open
Abstract
Horizontal gene transfer (HGT) is a ubiquitous force in microbial evolution. Previous work has shown that the human gut is a hotspot for gene transfer between species, but the more subtle exchange of variation within species-also known as recombination-remains poorly characterized in this ecosystem. Here, we show that the genetic structure of the human gut microbiome provides an opportunity to measure recent recombination events from sequenced fecal samples, enabling quantitative comparisons across diverse commensal species that inhabit a common environment. By analyzing recent recombination events in the core genomes of 29 human gut bacteria, we observed widespread heterogeneities in the rates and lengths of transferred fragments, which are difficult to explain by existing models of ecological isolation or homology-dependent recombination rates. We also show that natural selection helps facilitate the spread of genetic variants across strain backgrounds, both within individual hosts and across the broader population. These results shed light on the dynamics of in situ recombination, which can strongly constrain the adaptability of gut microbial communities.
Collapse
Affiliation(s)
- Zhiru Liu
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
| | - Benjamin H. Good
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
| |
Collapse
|
19
|
Babajanyan SG, Garushyants SK, Wolf YI, Koonin EV. Microbial diversity and ecological complexity emerging from environmental variation and horizontal gene transfer in a simple mathematical model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576128. [PMID: 38313259 PMCID: PMC10836074 DOI: 10.1101/2024.01.17.576128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Microbiomes are generally characterized by high diversity of coexisting microbial species and strains that remains stable within a broad range of conditions. However, under fixed conditions, microbial ecology conforms with the exclusion principle under which two populations competing for the same resource within the same niche cannot coexist because the less fit population inevitably goes extinct. To explore the conditions for stabilization of microbial diversity, we developed a simple mathematical model consisting of two competing populations that could exchange a single gene allele via horizontal gene transfer (HGT). We found that, although in a fixed environment, with unbiased HGT, the system obeyed the exclusion principle, in an oscillating environment, within large regions of the phase space bounded by the rates of reproduction and HGT, the two populations coexist. Moreover, depending on the parameter combination, all three major types of symbiosis obtained, namely, pure competition, host-parasite relationship and mutualism. In each of these regimes, certain parameter combinations provided for synergy, that is, a greater total abundance of both populations compared to the abundance of the winning population in the fixed environments. These findings show that basic phenomena that are universal in microbial communities, environmental variation and HGT, provide for stabilization of microbial diversity and ecological complexity.
Collapse
Affiliation(s)
- Sanasar G. Babajanyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Sofya K. Garushyants
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
20
|
Rodriguez-R LM, Conrad RE, Viver T, Feistel DJ, Lindner BG, Venter SN, Orellana LH, Amann R, Rossello-Mora R, Konstantinidis KT. An ANI gap within bacterial species that advances the definitions of intra-species units. mBio 2024; 15:e0269623. [PMID: 38085031 PMCID: PMC10790751 DOI: 10.1128/mbio.02696-23] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/03/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Bacterial strains and clonal complexes are two cornerstone concepts for microbiology that remain loosely defined, which confuses communication and research. Here we identify a natural gap in genome sequence comparisons among isolate genomes of all well-sequenced species that has gone unnoticed so far and could be used to more accurately and precisely define these and related concepts compared to current methods. These findings advance the molecular toolbox for accurately delineating and following the important units of diversity within prokaryotic species and thus should greatly facilitate future epidemiological and micro-diversity studies across clinical and environmental settings.
Collapse
Affiliation(s)
- Luis M. Rodriguez-R
- Department of Microbiology, and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Roth E. Conrad
- School of Civil and Environmental Engineering, and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Tomeu Viver
- Department of Animal and Microbial Biodiversity, Marine Microbiology Group, Mediterranean Institutes for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Dorian J. Feistel
- School of Civil and Environmental Engineering, and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Blake G. Lindner
- School of Civil and Environmental Engineering, and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephanus N. Venter
- Department of Biochemistry, Genetics and Microbiology, and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Luis H. Orellana
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Ramon Rossello-Mora
- Department of Animal and Microbial Biodiversity, Marine Microbiology Group, Mediterranean Institutes for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Konstantinos T. Konstantinidis
- School of Civil and Environmental Engineering, and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
21
|
Konstantinidis KT. Sequence-discrete species for prokaryotes and other microbes: A historical perspective and pending issues. MLIFE 2023; 2:341-349. [PMID: 38818268 PMCID: PMC10989153 DOI: 10.1002/mlf2.12088] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/04/2023] [Accepted: 10/08/2023] [Indexed: 06/01/2024]
Abstract
Whether prokaryotes, and other microorganisms, form distinct clusters that can be recognized as species remains an issue of paramount theoretical as well as practical consequence in identifying, regulating, and communicating about these organisms. In the past decade, comparisons of thousands of genomes of isolates and hundreds of metagenomes have shown that prokaryotic diversity may be predominantly organized in such sequence-discrete clusters, albeit organisms of intermediate relatedness between the identified clusters are also frequently found. Accumulating evidence suggests, however, that the latter "intermediate" organisms show enough ecological and/or functional distinctiveness to be considered different species. Notably, the area of discontinuity between clusters often-but not always-appears to be around 85%-95% genome-average nucleotide identity, consistently among different taxa. More recent studies have revealed remarkably similar diversity patterns for viruses and microbial eukaryotes as well. This high consistency across taxa implies a specific mechanistic process that underlies the maintenance of the clusters. The underlying mechanism may be a substantial reduction in the efficiency of homologous recombination, which mediates (successful) horizontal gene transfer, around 95% nucleotide identity. Deviations from the 95% threshold (e.g., species showing lower intraspecies diversity) may be caused by ecological differentiation that imposes barriers to otherwise frequent gene transfer. While this hypothesis that clusters are driven by ecological differentiation coupled to recombination frequency (i.e., higher recombination within vs. between groups) is appealing, the supporting evidence remains anecdotal. The data needed to rigorously test the hypothesis toward advancing the species concept are also outlined.
Collapse
Affiliation(s)
- Konstantinos T. Konstantinidis
- School of Civil and Environmental Engineering, and School of Biological SciencesGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
22
|
Birkholz EA, Morgan CJ, Laughlin TG, Lau RK, Prichard A, Rangarajan S, Meza GN, Lee J, Armbruster EG, Suslov S, Pogliano K, Meyer JR, Villa E, Corbett KD, Pogliano J. A mobile intron facilitates interference competition between co-infecting viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560319. [PMID: 37808663 PMCID: PMC10557746 DOI: 10.1101/2023.09.30.560319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Mobile introns containing homing endonucleases are widespread in nature and have long been assumed to be selfish elements that provide no benefit to the host organism. These genetic elements are common in viruses, but whether they confer a selective advantage is unclear. Here we studied a mobile intron in bacteriophage ΦPA3 and found its homing endonuclease gp210 contributes to viral competition by interfering with the virogenesis of co-infecting phage ΦKZ. We show that gp210 targets a specific sequence in its competitor ΦKZ, preventing the assembly of progeny viruses. This work reports the first demonstration of how a mobile intron can be deployed to engage in interference competition and provide a reproductive advantage. Given the ubiquity of introns, this selective advantage likely has widespread evolutionary implications in nature.
Collapse
|
23
|
Breusing C, Xiao Y, Russell SL, Corbett-Detig RB, Li S, Sun J, Chen C, Lan Y, Qian PY, Beinart RA. Ecological differences among hydrothermal vent symbioses may drive contrasting patterns of symbiont population differentiation. mSystems 2023; 8:e0028423. [PMID: 37493648 PMCID: PMC10469979 DOI: 10.1128/msystems.00284-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/13/2023] [Indexed: 07/27/2023] Open
Abstract
The intra-host composition of horizontally transmitted microbial symbionts can vary across host populations due to interactive effects of host genetics, environmental, and geographic factors. While adaptation to local habitat conditions can drive geographic subdivision of symbiont strains, it is unknown how differences in ecological characteristics among host-symbiont associations influence the genomic structure of symbiont populations. To address this question, we sequenced metagenomes of different populations of the deep-sea mussel Bathymodiolus septemdierum, which are common at Western Pacific deep-sea hydrothermal vents and show characteristic patterns of niche partitioning with sympatric gastropod symbioses. Bathymodiolus septemdierum lives in close symbiotic relationship with sulfur-oxidizing chemosynthetic bacteria but supplements its symbiotrophic diet through filter-feeding, enabling it to occupy ecological niches with little exposure to geochemical reductants. Our analyses indicate that symbiont populations associated with B. septemdierum show structuring by geographic location, but that the dominant symbiont strain is uncorrelated with vent site. These patterns are in contrast to co-occurring Alviniconcha and Ifremeria gastropod symbioses that exhibit greater symbiont nutritional dependence and occupy habitats with higher spatial variability in environmental conditions. Our results suggest that relative habitat homogeneity combined with sufficient symbiont dispersal and genomic mixing might promote persistence of similar symbiont strains across geographic locations, while mixotrophy might decrease selective pressures on the host to affiliate with locally adapted symbiont strains. Overall, these data contribute to our understanding of the potential mechanisms influencing symbiont population structure across a spectrum of marine microbial symbioses that occupy contrasting ecological niches. IMPORTANCE Beneficial relationships between animals and microbial organisms (symbionts) are ubiquitous in nature. In the ocean, microbial symbionts are typically acquired from the environment and their composition across geographic locations is often shaped by adaptation to local habitat conditions. However, it is currently unknown how generalizable these patterns are across symbiotic systems that have contrasting ecological characteristics. To address this question, we compared symbiont population structure between deep-sea hydrothermal vent mussels and co-occurring but ecologically distinct snail species. Our analyses show that mussel symbiont populations are less partitioned by geography and do not demonstrate evidence for environmental adaptation. We posit that the mussel's mixotrophic feeding mode may lower its need to affiliate with locally adapted symbiont strains, while microhabitat stability and symbiont genomic mixing likely favors persistence of symbiont strains across geographic locations. Altogether, these findings further our understanding of the mechanisms shaping symbiont population structure in marine environmentally transmitted symbioses.
Collapse
Affiliation(s)
- Corinna Breusing
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Yao Xiao
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
| | - Shelbi L. Russell
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Russell B. Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Sixuan Li
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Jin Sun
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yi Lan
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
| | - Roxanne A. Beinart
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| |
Collapse
|
24
|
Castillo AI, Almeida RPP. The Multifaceted Role of Homologous Recombination in a Fastidious Bacterial Plant Pathogen. Appl Environ Microbiol 2023; 89:e0043923. [PMID: 37154680 PMCID: PMC10231230 DOI: 10.1128/aem.00439-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
Homologous recombination plays a key function in the evolution of bacterial genomes. Within Xylella fastidiosa, an emerging plant pathogen with increasing host and geographic ranges, it has been suggested that homologous recombination facilitates host switching, speciation, and the development of virulence. We used 340 whole-genome sequences to study the relationship between inter- and intrasubspecific homologous recombination, random mutation, and natural selection across individual X. fastidiosa genes. Individual gene orthologs were identified and aligned, and a maximum likelihood (ML) gene tree was generated. Each gene alignment and tree pair were then used to calculate gene-wide and branch-specific r/m values (relative effect of recombination to mutation), gene-wide and branch-site nonsynonymous over synonymous substitution rates (dN/dS values; episodic selection), and branch length (as a proxy for mutation rate). The relationships between these variables were evaluated at the global level (i.e., for all genes among and within a subspecies), among specific functional classes (i.e., COGs), and between pangenome components (i.e., accessory versus core genes). Our analysis showed that r/m varied widely among genes as well as across X. fastidiosa subspecies. While r/m and dN/dS values were positively correlated in some instances (e.g., core genes in X. fastidiosa subsp. fastidiosa and both core and accessory genes in X. fastidiosa subsp. multiplex), low correlation coefficients suggested no clear biological significance. Overall, our results indicate that, in addition to its adaptive role in certain genes, homologous recombination acts as a homogenizing and a neutral force across phylogenetic clades, gene functional groups, and pangenome components. IMPORTANCE There is ample evidence that homologous recombination occurs frequently in the economically important plant pathogen Xylella fastidiosa. Homologous recombination has been known to occur among sympatric subspecies and is associated with host-switching events and virulence-linked genes. As a consequence, is it generally assumed that recombinant events in X. fastidiosa are adaptive. This mindset influences expectations of how homologous recombination acts as an evolutionary force as well as how management strategies for X. fastidiosa diseases are determined. Yet, homologous recombination plays roles beyond that of a source for diversification and adaptation. Homologous recombination can act as a DNA repair mechanism, as a means to facilitate nucleotide compositional change, as a homogenization mechanism within populations, or even as a neutral force. Here, we provide a first assessment of long-held beliefs regarding the general role of recombination in adaptation for X. fastidiosa. We evaluate gene-specific variations in homologous recombination rate across three X. fastidiosa subspecies and its relationship to other evolutionary forces (e.g., natural selection, mutation, etc.). These data were used to assess the role of homologous recombination in X. fastidiosa evolution.
Collapse
Affiliation(s)
- Andreina I. Castillo
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
| | - Rodrigo P. P. Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
| |
Collapse
|
25
|
Novelty Search Promotes Antigenic Diversity in Microbial Pathogens. Pathogens 2023; 12:pathogens12030388. [PMID: 36986310 PMCID: PMC10053453 DOI: 10.3390/pathogens12030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Driven by host–pathogen coevolution, cell surface antigens are often the fastest evolving parts of a microbial pathogen. The persistent evolutionary impetus for novel antigen variants suggests the utility of novelty-seeking algorithms in predicting antigen diversification in microbial pathogens. In contrast to traditional genetic algorithms maximizing variant fitness, novelty-seeking algorithms optimize variant novelty. Here, we designed and implemented three evolutionary algorithms (fitness-seeking, novelty-seeking, and hybrid) and evaluated their performances in 10 simulated and 2 empirically derived antigen fitness landscapes. The hybrid walks combining fitness- and novelty-seeking strategies overcame the limitations of each algorithm alone, and consistently reached global fitness peaks. Thus, hybrid walks provide a model for microbial pathogens escaping host immunity without compromising variant fitness. Biological processes facilitating novelty-seeking evolution in natural pathogen populations include hypermutability, recombination, wide dispersal, and immune-compromised hosts. The high efficiency of the hybrid algorithm improves the evolutionary predictability of novel antigen variants. We propose the design of escape-proof vaccines based on high-fitness variants covering a majority of the basins of attraction on the fitness landscape representing all potential variants of a microbial antigen.
Collapse
|
26
|
Ngugi DK, Salcher MM, Andrei AS, Ghai R, Klotz F, Chiriac MC, Ionescu D, Büsing P, Grossart HP, Xing P, Priscu JC, Alymkulov S, Pester M. Postglacial adaptations enabled colonization and quasi-clonal dispersal of ammonia-oxidizing archaea in modern European large lakes. SCIENCE ADVANCES 2023; 9:eadc9392. [PMID: 36724220 PMCID: PMC9891703 DOI: 10.1126/sciadv.adc9392] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ammonia-oxidizing archaea (AOA) play a key role in the aquatic nitrogen cycle. Their genetic diversity is viewed as the outcome of evolutionary processes that shaped ancestral transition from terrestrial to marine habitats. However, current genome-wide insights into AOA evolution rarely consider brackish and freshwater representatives or provide their divergence timeline in lacustrine systems. An unbiased global assessment of lacustrine AOA diversity is critical for understanding their origins, dispersal mechanisms, and ecosystem roles. Here, we leveraged continental-scale metagenomics to document that AOA species diversity in freshwater systems is remarkably low compared to marine environments. We show that the uncultured freshwater AOA, "Candidatus Nitrosopumilus limneticus," is ubiquitous and genotypically static in various large European lakes where it evolved 13 million years ago. We find that extensive proteome remodeling was a key innovation for freshwater colonization of AOA. These findings reveal the genetic diversity and adaptive mechanisms of a keystone species that has survived clonally in lakes for millennia.
Collapse
Affiliation(s)
- David Kamanda Ngugi
- Leibniz Institute DSMZ–German Collection of Cell Microorganisms and Cell Cultures GmbH, D-38124 Braunschweig, Germany
- Corresponding author.
| | - Michaela M. Salcher
- Institute of Hydrobiology, Biology Center CAS, Na Sádkách 7, 37005 České Budejovice, Czech Republic
| | - Adrian-Stefan Andrei
- Microbial Evogenomics Lab, Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Rohit Ghai
- Institute of Hydrobiology, Biology Center CAS, Na Sádkách 7, 37005 České Budejovice, Czech Republic
| | - Franziska Klotz
- Department of Biology, University of Konstanz, D-78457 Constance, Germany
| | - Maria-Cecilia Chiriac
- Institute of Hydrobiology, Biology Center CAS, Na Sádkách 7, 37005 České Budejovice, Czech Republic
| | - Danny Ionescu
- Department of Experimental Limnology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, D-12587 Stechlin, Germany
| | - Petra Büsing
- Leibniz Institute DSMZ–German Collection of Cell Microorganisms and Cell Cultures GmbH, D-38124 Braunschweig, Germany
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, D-12587 Stechlin, Germany
- Institute of Biochemistry and Biology, Potsdam University, D-14469 Potsdam, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Free University, D-14195 Berlin, Germany
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - John C. Priscu
- Department of Land Resources and Environmental Sciences, Montana State University, 334 Leon Johnson Hall, Bozeman, MT 59717, USA
| | - Salmor Alymkulov
- Institute of Physics, National Academy of Sciences of Kyrgyz Republic, Chui Avenue, 265-a, Bishkek 720071, Kyrgyzstan
| | - Michael Pester
- Leibniz Institute DSMZ–German Collection of Cell Microorganisms and Cell Cultures GmbH, D-38124 Braunschweig, Germany
- Institute of Microbiology, Technical University of Braunschweig, D-38108 Braunschweig, Germany
| |
Collapse
|
27
|
Strachan CR, Yu XA, Neubauer V, Mueller AJ, Wagner M, Zebeli Q, Selberherr E, Polz MF. Differential carbon utilization enables co-existence of recently speciated Campylobacteraceae in the cow rumen epithelial microbiome. Nat Microbiol 2023; 8:309-320. [PMID: 36635570 PMCID: PMC9894753 DOI: 10.1038/s41564-022-01300-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/05/2022] [Indexed: 01/14/2023]
Abstract
The activities of different microbes in the cow rumen have been shown to modulate the host's ability to utilize plant biomass, while the host-rumen interface has received little attention. As datasets collected worldwide have pointed to Campylobacteraceae as particularly abundant members of the rumen epithelial microbiome, we targeted this group in a subset of seven cows with meta- and isolate genome analysis. We show that the dominant Campylobacteraceae lineage has recently speciated into two populations that were structured by genome-wide selective sweeps followed by population-specific gene import and recombination. These processes led to differences in gene expression and enzyme domain composition that correspond to the ability to utilize acetate, the main carbon source for the host, at the cost of inhibition by propionate. This trade-off in competitive ability further manifests itself in differential dynamics of the two populations in vivo. By exploring population-level adaptations that otherwise remain cryptic in culture-independent analyses, our results highlight how recent evolutionary dynamics can shape key functional roles in the rumen microbiome.
Collapse
Affiliation(s)
- Cameron R Strachan
- Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
| | - Xiaoqian A Yu
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Viktoria Neubauer
- Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
| | - Anna J Mueller
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- University of Vienna, Doctoral School in Microbiology and Environmental Science, Vienna, Austria
| | - Martin Wagner
- Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Evelyne Selberherr
- Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Public Health, University of Veterinary Medicine Vienna, Vienna, Austria.
| | - Martin F Polz
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
28
|
Mutua TM, Kulohoma BW. Differences in genetic flux in invasive Streptococcus pneumoniae associated with bacteraemia and meningitis. Heliyon 2022; 8:e12229. [PMID: 36593853 PMCID: PMC9803773 DOI: 10.1016/j.heliyon.2022.e12229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Background Genetic flux, a crucial process of pneumococcal evolution, is an essential aspect of bacterial physiology during human pathogenesis. However, the role of these genetic changes and the selective forces that drive them is not fully understood. Elucidating the underlying selective forces that determine the magnitude and direction (gene gain or loss) of gene transfer is important for better understanding the pathogenesis process, and may also highlight potential therapeutic and diagnostic targets. Methods Here, we leveraged data from high throughput genome sequencing and robust probabilistic models to discover the magnitude and likely direction of genetic flux events, but not the source, in 209 multi-lineage invasive pneumococcal genomes generated from blood (n = 147) and CSF (n = 62) isolates, associated with bacteremia and meningitis respectively. The Gain and Loss Mapping Engine (GLOOME) was used to infer gene gain and loss more accurately by taking into account differences in rates of gene gain and loss among gene families, as well as independent evolution within and across lineages. Results Our results show the likely extent and direction of gene fluctuations at different niche, during pneumococcal pathogenesis, highlighting that evolutionary dynamics are important for tissue-specific host invasion and survival. Conclusion These findings improve insights on evolutionary dynamics during invasive pneumococcal disease, and highlight potential diagnostic and therapeutic targets.
Collapse
|
29
|
Stanojković A, Skoupý S, Škaloud P, Dvořák P. High genomic differentiation and limited gene flow indicate recent cryptic speciation within the genus Laspinema (cyanobacteria). Front Microbiol 2022; 13:977454. [PMID: 36160208 PMCID: PMC9500459 DOI: 10.3389/fmicb.2022.977454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
The sympatric occurrence of closely related lineages displaying conserved morphological and ecological traits is often characteristic of free-living microbes. Gene flow, recombination, selection, and mutations govern the genetic variability between these cryptic lineages and drive their differentiation. However, sequencing conservative molecular markers (e.g., 16S rRNA) coupled with insufficient population-level sampling hindered the study of intra-species genetic diversity and speciation in cyanobacteria. We used phylogenomics and a population genomic approach to investigate the extent of local genomic diversity and the mechanisms underlying sympatric speciation of Laspinema thermale. We found two cryptic lineages of Laspinema. The lineages were highly genetically diverse, with recombination occurring more frequently within than between them. That suggests the existence of a barrier to gene flow, which further maintains divergence. Genomic regions of high population differentiation harbored genes associated with possible adaptations to high/low light conditions and stress stimuli, although with a weak diversifying selection. Overall, the diversification of Laspinema species might have been affected by both genomic and ecological processes.
Collapse
Affiliation(s)
| | - Svatopluk Skoupý
- Department of Botany, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Petr Dvořák
- Department of Botany, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
30
|
Abstract
The subseafloor is a vast habitat that supports microorganisms that have a global scale impact on geochemical cycles. Many of the endemic microbial communities inhabiting the subseafloor consist of small populations under growth-limited conditions. For small populations, stochastic evolutionary events can have large impacts on intraspecific population dynamics and allele frequencies. These conditions are fundamentally different from those experienced by most microorganisms in surface environments, and it is unknown how small population sizes and growth-limiting conditions influence evolution and population structure in the subsurface. Using a 2-year, high-resolution environmental time series, we examine the dynamics of microbial populations from cold, oxic crustal fluids collected from the subseafloor site North Pond, located near the mid-Atlantic ridge. Our results reveal rapid shifts in overall abundance, allele frequency, and strain abundance across the time points observed, with evidence for homologous recombination between coexisting lineages. We show that the subseafloor aquifer is a dynamic habitat that hosts microbial metapopulations that disperse frequently through the crustal fluids, enabling gene flow and recombination between microbial populations. The dynamism and stochasticity of microbial population dynamics in North Pond suggest that these forces are important drivers in the evolution of microbial populations in the vast subseafloor habitat.
Collapse
|
31
|
Gao Y, Wu M. Microbial genomic trait evolution is dominated by frequent and rare pulsed evolution. SCIENCE ADVANCES 2022; 8:eabn1916. [PMID: 35857501 PMCID: PMC9286504 DOI: 10.1126/sciadv.abn1916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/02/2022] [Indexed: 06/12/2023]
Abstract
On the macroevolutionary time scale, does trait evolution proceed gradually or by rapid bursts (pulses) separated by prolonged periods of stasis or slow evolution? Although studies have shown that pulsed evolution is prevalent in animals, our knowledge about the tempo and mode of evolution across the tree of life is very limited. This long-standing debate calls for a test in bacteria and archaea, the most ancient and diverse forms of life with unique population genetic properties. Using a likelihood-based framework, we show that pulsed evolution is not only present but also prevalent and predominant in microbial genomic trait evolution. We detected two distinct types of pulsed evolution (small frequent and large rare jumps) that are predicted by the punctuated equilibrium and quantum evolution theories. Our findings suggest that major bacterial lineages could have originated in quick bursts and that pulsed evolution is a common theme across the tree of life.
Collapse
Affiliation(s)
- Yingnan Gao
- Department of Biology, University of Virginia, Charlottesville, VA 22094, USA
| | - Martin Wu
- Department of Biology, University of Virginia, Charlottesville, VA 22094, USA
| |
Collapse
|
32
|
Preska Steinberg A, Lin M, Kussell E. Core genes can have higher recombination rates than accessory genes within global microbial populations. eLife 2022; 11:78533. [PMID: 35801696 PMCID: PMC9444244 DOI: 10.7554/elife.78533] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
Recombination is essential to microbial evolution, and is involved in the spread of antibiotic resistance, antigenic variation, and adaptation to the host niche. However, assessing the impact of homologous recombination on accessory genes which are only present in a subset of strains of a given species remains challenging due to their complex phylogenetic relationships. Quantifying homologous recombination for accessory genes (which are important for niche-specific adaptations) in comparison to core genes (which are present in all strains and have essential functions) is critical to understanding how selection acts on variation to shape species diversity and genome structures of bacteria. Here, we apply a computationally efficient, non-phylogenetic approach to measure homologous recombination rates in the core and accessory genome using >100,000 whole genome sequences from Streptococcus pneumoniae and several additional species. By analyzing diverse sets of sequence clusters, we show that core genes often have higher recombination rates than accessory genes, and for some bacterial species the associated effect sizes for these differences are pronounced. In a subset of species, we find that gene frequency and homologous recombination rate are positively correlated. For S. pneumoniae and several additional species, we find that while the recombination rate is higher for the core genome, the mutational divergence is lower, indicating that divergence-based homologous recombination barriers could contribute to differences in recombination rates between the core and accessory genome. Homologous recombination may therefore play a key role in increasing the efficiency of selection in the most conserved parts of the genome.
Collapse
Affiliation(s)
| | - Mingzhi Lin
- Department of Biology, New York University, New York, United States
| | - Edo Kussell
- Department of Biology, New York University, New York, United States
| |
Collapse
|
33
|
White H, Vos M, Sheppard SK, Pascoe B, Raymond B. Signatures of selection in core and accessory genomes indicate different ecological drivers of diversification among Bacillus cereus clades. Mol Ecol 2022; 31:3584-3597. [PMID: 35510788 PMCID: PMC9324797 DOI: 10.1111/mec.16490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
Bacterial clades are often ecologically distinct, despite extensive horizontal gene transfer (HGT). How selection works on different parts of bacterial pan-genomes to drive and maintain the emergence of clades is unclear. Focusing on the three largest clades in the diverse and well-studied Bacillus cereus sensu lato group, we identified clade-specific core genes (present in all clade members) and then used clade-specific allelic diversity to identify genes under purifying and diversifying selection. Clade-specific accessory genes (present in a subset of strains within a clade) were characterized as being under selection using presence/absence in specific clades. Gene ontology analyses of genes under selection revealed that different gene functions were enriched in different clades. Furthermore, some gene functions were enriched only amongst clade-specific core or accessory genomes. Genes under purifying selection were often clade-specific, while genes under diversifying selection showed signs of frequent HGT. These patterns are consistent with different selection pressures acting on both the core and the accessory genomes of different clades and can lead to ecological divergence in both cases. Examining variation in allelic diversity allows us to uncover genes under clade-specific selection, allowing ready identification of strains and their ecological niche.
Collapse
Affiliation(s)
- Hugh White
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| | - Michiel Vos
- European Centre for Environment and Human HealthUniversity of Exeter Medical SchoolEnvironment and Sustainability InstitutePenryn CampusUK
| | - Samuel K. Sheppard
- Milner Centre for EvolutionDepartment of Biology & BiotechnologyUniversity of BathBathUK
| | - Ben Pascoe
- Milner Centre for EvolutionDepartment of Biology & BiotechnologyUniversity of BathBathUK
| | - Ben Raymond
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| |
Collapse
|
34
|
Khedkar S, Smyshlyaev G, Letunic I, Maistrenko OM, Coelho LP, Orakov A, Forslund SK, Hildebrand F, Luetge M, Schmidt TSB, Barabas O, Bork P. Landscape of mobile genetic elements and their antibiotic resistance cargo in prokaryotic genomes. Nucleic Acids Res 2022; 50:3155-3168. [PMID: 35323968 PMCID: PMC8989519 DOI: 10.1093/nar/gkac163] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/30/2022] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
Prokaryotic Mobile Genetic Elements (MGEs) such as transposons, integrons, phages and plasmids, play important roles in prokaryotic evolution and in the dispersal of cargo functions like antibiotic resistance. However, each of these MGE types is usually annotated and analysed individually, hampering a global understanding of phylogenetic and environmental patterns of MGE dispersal. We thus developed a computational framework that captures diverse MGE types, their cargos and MGE-mediated horizontal transfer events, using recombinases as ubiquitous MGE marker genes and pangenome information for MGE boundary estimation. Applied to ∼84k genomes with habitat annotation, we mapped 2.8 million MGE-specific recombinases to six operational MGE types, which together contain on average 13% of all the genes in a genome. Transposable elements (TEs) dominated across all taxa (∼1.7 million occurrences), outnumbering phages and phage-like elements (<0.4 million). We recorded numerous MGE-mediated horizontal transfer events across diverse phyla and habitats involving all MGE types, disentangled and quantified the extent of hitchhiking of TEs (17%) and integrons (63%) with other MGE categories, and established TEs as dominant carriers of antibiotic resistance genes. We integrated all these findings into a resource (proMGE.embl.de), which should facilitate future studies on the large mobile part of genomes and its horizontal dispersal.
Collapse
Affiliation(s)
- Supriya Khedkar
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Georgy Smyshlyaev
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany.,Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Ivica Letunic
- Biobyte solutions GmbH, Bothestr 142, 69117 Heidelberg, Germany
| | - Oleksandr M Maistrenko
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Askarbek Orakov
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Sofia K Forslund
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany.,Max Delbrück Centre for Molecular Medicine, Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin and Max-Delbrück Center, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Falk Hildebrand
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Mechthild Luetge
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Thomas S B Schmidt
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Orsolya Barabas
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany.,Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany.,Max Delbrück Centre for Molecular Medicine, Berlin, Germany.,Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.,Yonsei Frontier Lab (YFL), Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
35
|
Li H, Meier-Kolthoff JP, Hu C, Wang Z, Zhu J, Zheng W, Tian Y, Guo F. Panoramic Insights into Microevolution and Macroevolution of A Prevotella copri-containing Lineage in Primate Guts. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:334-349. [PMID: 35123073 PMCID: PMC9684210 DOI: 10.1016/j.gpb.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/23/2021] [Accepted: 11/01/2021] [Indexed: 01/05/2023]
Abstract
Prevotella copri and its related taxa are widely detected in mammalian gut microbiomes and have been linked with an enterotype in humans. However, their microevolution and macroevolution among hosts are poorly characterized. In this study, extensively collected marker genes and genomes were analyzed to trace their evolutionary history, host specificity, and biogeographic distribution. Investigations based on marker genes and genomes suggest that a P. copri-containing lineage (PCL) harbors diverse species in higher primates. Firstly, P. copri in the human gut consisted of multiple groups exhibiting high genomic divergence and conspicuous but non-strict biogeographic patterns. Most African strains with high genomic divergence from other strains were phylogenetically located at the root of the species, indicating the co-evolutionary history of P. copri and Homo sapiens. Secondly, although long-term co-evolution between PCL and higher primates was revealed, sporadic signals of co-speciation and extensive host jumping of PCL members were suggested among higher primates. Metagenomic and phylogenetic analyses indicated that P. copri and other PCL species found in domesticated mammals had been recently transmitted from humans. Thirdly, strong evidence was found on the extensively horizontal transfer of genes (e.g., genes encoding carbohydrate-active enzymes) among sympatric P. copri groups and PCL species in the same primate host. Our study provides panoramic insights into the combined effects of vertical and horizontal transmission, as well as potential niche adaptation, on the microevolutionary and macroevolutionary history for an enterotype-representative lineage.
Collapse
Affiliation(s)
- Hao Li
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, D-38124 Braunschweig, Germany
| | - Canxin Hu
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhongjie Wang
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jun Zhu
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Wei Zheng
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yun Tian
- School of Life Sciences, Xiamen University, Xiamen 361102, China,Fujian Provincial Universities Key Laboratory of Microbial Resource, Xiamen University, Xiamen 361102, China
| | - Feng Guo
- School of Life Sciences, Xiamen University, Xiamen 361102, China,Fujian Provincial Universities Key Laboratory of Microbial Resource, Xiamen University, Xiamen 361102, China,Corresponding author.
| |
Collapse
|
36
|
Simha A, Hoz CPDL, Carley L. Moving beyond the “diversity paradox”: the limitations of competition-based frameworks in understanding species diversity. Am Nat 2022; 200:89-100. [DOI: 10.1086/720002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Mourkas E, Yahara K, Bayliss SC, Calland JK, Johansson H, Mageiros L, Muñoz-Ramirez ZY, Futcher G, Méric G, Hitchings MD, Sandoval-Motta S, Torres J, Jolley KA, Maiden MCJ, Ellström P, Waldenström J, Pascoe B, Sheppard SK. Host ecology regulates interspecies recombination in bacteria of the genus Campylobacter. eLife 2022; 11:e73552. [PMID: 35191377 PMCID: PMC8912921 DOI: 10.7554/elife.73552] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/20/2022] [Indexed: 01/16/2023] Open
Abstract
Horizontal gene transfer (HGT) can allow traits that have evolved in one bacterial species to transfer to another. This has potential to rapidly promote new adaptive trajectories such as zoonotic transfer or antimicrobial resistance. However, for this to occur requires gaps to align in barriers to recombination within a given time frame. Chief among these barriers is the physical separation of species with distinct ecologies in separate niches. Within the genus Campylobacter, there are species with divergent ecologies, from rarely isolated single-host specialists to multihost generalist species that are among the most common global causes of human bacterial gastroenteritis. Here, by characterizing these contrasting ecologies, we can quantify HGT among sympatric and allopatric species in natural populations. Analyzing recipient and donor population ancestry among genomes from 30 Campylobacter species, we show that cohabitation in the same host can lead to a six-fold increase in HGT between species. This accounts for up to 30% of all SNPs within a given species and identifies highly recombinogenic genes with functions including host adaptation and antimicrobial resistance. As described in some animal and plant species, ecological factors are a major evolutionary force for speciation in bacteria and changes to the host landscape can promote partial convergence of distinct species through HGT.
Collapse
Affiliation(s)
- Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious DiseasesTokyoJapan
| | - Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Jessica K Calland
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Håkan Johansson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus UniversityKalmarSweden
| | - Leonardos Mageiros
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Zilia Y Muñoz-Ramirez
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro SocialMexico CityMexico
| | - Grant Futcher
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | | | - Santiago Sandoval-Motta
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro SocialMexico CityMexico
| | - Javier Torres
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro SocialMexico CityMexico
| | - Keith A Jolley
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| | | | - Patrik Ellström
- Department of Medical Sciences, Zoonosis Science Centre, Uppsala UniversityUppsalaSweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus UniversityKalmarSweden
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
- Faculty of Veterinary Medicine, Chiang Mai UniversityChiang MaiThailand
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
38
|
Koh XP, Shen Z, Woo CF, Yu Y, Lun HI, Cheung SW, Kwan JKC, Lau SCK. Genetic and Ecological Diversity of Escherichia coli and Cryptic Escherichia Clades in Subtropical Aquatic Environments. Front Microbiol 2022; 13:811755. [PMID: 35250929 PMCID: PMC8891540 DOI: 10.3389/fmicb.2022.811755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli not only inhabit the large intestines of human and warm-blooded animals but could also persist in the external environment. However, current knowledge was largely based on host-associated strains. Moreover, cryptic Escherichia clades that were often misidentified as E. coli by conventional diagnostic methods were discovered. Failure to distinguish them from E. coli sensu stricto could lead to inaccurate conclusions about the population genetics of E. coli. Based on seven housekeeping genes, we determine the genetic and ecological diversity of E. coli and cryptic clades as they occupy aquatic habitats with different characteristics and human impact levels in subtropical Hong Kong. Contrary to previous reports, clade II was the most abundant cryptic lineage co-isolated with E. coli, being especially abundant in relatively pristine subtropical aquatic environments. The phylogenetically distinct cryptic clades and E. coli showed limited recombination and significant genetic divergence. Analyses indicated that these clade II strains were ecologically differentiated from typical E. coli; some may even represent novel environmental Escherichia clades that were closely related to the original clade II strains of fecal origins. E. coli of diverse origins exhibited clonality amidst divergent genotypes STs, echoing other studies in that recombination in housekeeping genes was insufficient to disrupt phylogenetic signals of the largely clonal E. coli. Notably, environmental E. coli were less diverse than fecal isolates despite contributing many new alleles and STs. Finally, we demonstrated that human activities influenced the distribution of E. coli and clade II in a small aquatic continuum. Moving from relatively pristine sites toward areas with higher human disturbance, the abundance of clade II isolates and new E. coli genotypes reduces, while E. coli bearing class I integrons and belonging to CCs of public health concern accumulates. Altogether, this work revealed the new genetic diversity of E. coli and cryptic clades embedded in selected subtropical aquatic habitats, especially relatively pristine sites, which will aid a more thorough understanding of the extent of their genetic and functional variations in relation to diverse habitats with varied conditions.
Collapse
Affiliation(s)
- Xiu Pei Koh
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Zhiyong Shen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Chun Fai Woo
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Yanping Yu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Hau In Lun
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Sze Wan Cheung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
| | - Joseph Kai Cho Kwan
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Stanley Chun Kwan Lau
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- *Correspondence: Stanley Chun Kwan Lau,
| |
Collapse
|
39
|
Bansept F, Obeng N, Schulenburg H, Traulsen A. Modeling host-associating microbes under selection. THE ISME JOURNAL 2021; 15:3648-3656. [PMID: 34158630 PMCID: PMC8630024 DOI: 10.1038/s41396-021-01039-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
The concept of fitness is often reduced to a single component, such as the replication rate in a given habitat. For species with multi-step life cycles, this can be an unjustified oversimplification, as every step of the life cycle can contribute to the overall reproductive success in a specific way. In particular, this applies to microbes that spend part of their life cycles associated to a host. In this case, there is a selection pressure not only on the replication rates, but also on the phenotypic traits associated to migrating from the external environment to the host and vice-versa (i.e., the migration rates). Here, we investigate a simple model of a microbial lineage living, replicating, migrating and competing in and between two compartments: a host and an environment. We perform a sensitivity analysis on the overall growth rate to determine the selection gradient experienced by the microbial lineage. We focus on the direction of selection at each point of the phenotypic space, defining an optimal way for the microbial lineage to increase its fitness. We show that microbes can adapt to the two-compartment life cycle through either changes in replication or migration rates, depending on the initial values of the traits, the initial distribution across the two compartments, the intensity of competition, and the time scales involved in the life cycle versus the time scale of adaptation (which determines the adequate probing time to measure fitness). Overall, our model provides a conceptual framework to study the selection on microbes experiencing a host-associated life cycle.
Collapse
Affiliation(s)
- Florence Bansept
- grid.419520.b0000 0001 2222 4708Max-Planck-Institute for Evolutionary Biology, Ploen, Germany
| | - Nancy Obeng
- grid.9764.c0000 0001 2153 9986Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany
| | - Hinrich Schulenburg
- grid.419520.b0000 0001 2222 4708Max-Planck-Institute for Evolutionary Biology, Ploen, Germany ,grid.9764.c0000 0001 2153 9986Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany
| | - Arne Traulsen
- grid.419520.b0000 0001 2222 4708Max-Planck-Institute for Evolutionary Biology, Ploen, Germany
| |
Collapse
|
40
|
Kollár J, Poulíčková A, Dvořák P. On the relativity of species, or the probabilistic solution to the species problem. Mol Ecol 2021; 31:411-418. [PMID: 34626519 DOI: 10.1111/mec.16218] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 09/17/2021] [Accepted: 09/30/2021] [Indexed: 11/28/2022]
Abstract
For centuries, both scientists and philosophers have discussed the nature of species resulting in c. 35 species concepts proposed to date. However, in our opinion, none of them incorporated neither recent advances in evolutionary genomics nor dimensionality of species in befitting depth. Our attempt to do so resulted in the following conclusions. Due to the continuous nature of evolution (regardless of its rate and constancy), species are inevitably undefinable as natural discontinuous units (except those originating in saltatory speciation) whenever the time dimension is taken into consideration. Therefore, the very existence of species as a natural discontinuous entity is relative to its dimensionality. A direct consequence of the relativity of species is the duality of speciators (e.g., incipient species) meaning that, in a given time, they may be perceived as both being and not being a species. Finally, the most accurate way to reflect both the relativity of species and the duality of speciators in species delimitation is probabilistic. While the novelty of these ideas may be questionable, they still deserve more extensive attention from the biological community. Here, we hope to draw such attention by outlining one of the possible pathways towards a new kind of probabilistic species delimitation methods based on the probability of irreversible divergence of evolutionary lineages. We anticipate that our probabilistic view of speciation has the potential to facilitate some of the most serious and universal issues of current taxonomy and to ensure unity of the species-level taxonomy across the tree of life.
Collapse
Affiliation(s)
- Jan Kollár
- Department of Botany, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Aloisie Poulíčková
- Department of Botany, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Petr Dvořák
- Department of Botany, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
41
|
Osvatic JT, Wilkins LGE, Leibrecht L, Leray M, Zauner S, Polzin J, Camacho Y, Gros O, van Gils JA, Eisen JA, Petersen JM, Yuen B. Global biogeography of chemosynthetic symbionts reveals both localized and globally distributed symbiont groups. Proc Natl Acad Sci U S A 2021; 118:e2104378118. [PMID: 34272286 PMCID: PMC8307296 DOI: 10.1073/pnas.2104378118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the ocean, most hosts acquire their symbionts from the environment. Due to the immense spatial scales involved, our understanding of the biogeography of hosts and symbionts in marine systems is patchy, although this knowledge is essential for understanding fundamental aspects of symbiosis such as host-symbiont specificity and evolution. Lucinidae is the most species-rich and widely distributed family of marine bivalves hosting autotrophic bacterial endosymbionts. Previous molecular surveys identified location-specific symbiont types that "promiscuously" form associations with multiple divergent cooccurring host species. This flexibility of host-microbe pairings is thought to underpin their global success, as it allows hosts to form associations with locally adapted symbionts. We used metagenomics to investigate the biodiversity, functional variability, and genetic exchange among the endosymbionts of 12 lucinid host species from across the globe. We report a cosmopolitan symbiont species, Candidatus Thiodiazotropha taylori, associated with multiple lucinid host species. Ca. T. taylori has achieved more success at dispersal and establishing symbioses with lucinids than any other symbiont described thus far. This discovery challenges our understanding of symbiont dispersal and location-specific colonization and suggests both symbiont and host flexibility underpin the ecological and evolutionary success of the lucinid symbiosis.
Collapse
Affiliation(s)
- Jay T Osvatic
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria
| | - Laetitia G E Wilkins
- Genome and Biomedical Sciences Facility, Genome Center, University of California, Davis, CA 95616
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, 28209 Bremen, Germany
| | - Lukas Leibrecht
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria
| | - Matthieu Leray
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Republic of Panama
| | - Sarah Zauner
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria
| | - Julia Polzin
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria
| | - Yolanda Camacho
- Centro de Investigación en Ciencias del Mar y Limnología, Escuela de Biología, Universidad de Costa Rica, San Pedro 11501-2060, Costa Rica
| | - Olivier Gros
- UMR 7205, Institut de Systématique, Évolution, Biodiversité, Equipe Biologie de la Mangrove, Département de Biologie, Université des Antilles, 97159 Pointe-à-Pitre Cedex, Guadeloupe
| | - Jan A van Gils
- Royal Netherlands Institute for Sea Research,1790 AB Den Burg, The Netherlands
| | - Jonathan A Eisen
- Genome and Biomedical Sciences Facility, Genome Center, University of California, Davis, CA 95616
- Department of Evolution and Ecology, University of California, Davis, CA 95616
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616
| | - Jillian M Petersen
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria;
| | - Benedict Yuen
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
42
|
D'Aeth JC, van der Linden MPG, McGee L, de Lencastre H, Turner P, Song JH, Lo SW, Gladstone RA, Sá-Leão R, Ko KS, Hanage WP, Breiman RF, Beall B, Bentley SD, Croucher NJ. The role of interspecies recombination in the evolution of antibiotic-resistant pneumococci. eLife 2021; 10:e67113. [PMID: 34259624 PMCID: PMC8321556 DOI: 10.7554/elife.67113] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/16/2021] [Indexed: 12/27/2022] Open
Abstract
Multidrug-resistant Streptococcus pneumoniae emerge through the modification of core genome loci by interspecies homologous recombinations, and acquisition of gene cassettes. Both occurred in the otherwise contrasting histories of the antibiotic-resistant S. pneumoniae lineages PMEN3 and PMEN9. A single PMEN3 clade spread globally, evading vaccine-induced immunity through frequent serotype switching, whereas locally circulating PMEN9 clades independently gained resistance. Both lineages repeatedly integrated Tn916-type and Tn1207.1-type elements, conferring tetracycline and macrolide resistance, respectively, through homologous recombination importing sequences originating in other species. A species-wide dataset found over 100 instances of such interspecific acquisitions of resistance cassettes and flanking homologous arms. Phylodynamic analysis of the most commonly sampled Tn1207.1-type insertion in PMEN9, originating from a commensal and disrupting a competence gene, suggested its expansion across Germany was driven by a high ratio of macrolide-to-β-lactam consumption. Hence, selection from antibiotic consumption was sufficient for these atypically large recombinations to overcome species boundaries across the pneumococcal chromosome.
Collapse
Affiliation(s)
- Joshua C D'Aeth
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College LondonLondonUnited Kingdom
| | - Mark PG van der Linden
- Institute for Medical Microbiology, National Reference Center for Streptococci, University Hospital RWTH AachenAachenGermany
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and PreventionAtlantaUnited States
| | - Herminia de Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica, Universidade Nova de LisboaOeirasPortugal
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller UniversityNew YorkUnited States
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for ChildrenSiem ReapCambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Jae-Hoon Song
- Department of Molecular Cell Biology, Sungkyunkwan University School of MedicineSuwonRepublic of Korea
| | - Stephanie W Lo
- Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Rebecca A Gladstone
- Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica, Universidade Nova de LisboaOeirasPortugal
| | - Kwan Soo Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of MedicineSuwonRepublic of Korea
| | - William P Hanage
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Robert F Breiman
- Department of Global Health, Rollins School of Public Health, Emory UniversityAtlantaUnited States
| | - Bernard Beall
- Respiratory Diseases Branch, Centers for Disease Control and PreventionAtlantaUnited States
| | - Stephen D Bentley
- Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
43
|
Serrano E, Torres R, Alonso JC. Nucleoid-associated Rok differentially affects chromosomal transformation on Bacillus subtilis recombination-deficient cells. Environ Microbiol 2021; 23:3318-3331. [PMID: 33973337 DOI: 10.1111/1462-2920.15562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/05/2021] [Indexed: 11/29/2022]
Abstract
Rok, a Bacillus subtilis nucleoid-associated protein (NAP), negatively regulates competence development and silences xenogeneic genes. We show that rok inactivation increases rpoB482 natural intraspecies chromosomal transformation (CT) and plasmid transformation to a different extent. In ΔaddAB, ΔrecO, recF15, ΔrecU, ΔruvAB or rec+ cells intraspecies CT significantly increases, but the ΔrecD2 mutation reduces, and the ΔrecX, ΔradA or ΔdprA mutation further decreases CT in the Δrok context when compared to rok+ cells. These observations support the idea that rok inactivation, by altering the topology of the recipient DNA, differentially affects the integration of homologous DNA in rec-deficient strains, and in minor extent the competent subpopulation size. The impairment of other NAP (Hbsu or LrpC) also increased intra- and interspecies CT (nonself-DNA, ~8% nucleotide sequence divergence) in rec+ cells, but differentially reduced both types of CTs in certain rec-deficient strains. We describe that rok inactivation significantly stimulates intra and interspecies CT but differentially reduces them in transformation-deficient cells, perhaps by altering the nucleoid architecture. We extend the observation to other NAPs (Hbsu, LrpC).
Collapse
Affiliation(s)
- Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, 28049, Spain
| | - Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, 28049, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, 28049, Spain
| |
Collapse
|
44
|
Harrow GL, Lees JA, Hanage WP, Lipsitch M, Corander J, Colijn C, Croucher NJ. Negative frequency-dependent selection and asymmetrical transformation stabilise multi-strain bacterial population structures. THE ISME JOURNAL 2021; 15:1523-1538. [PMID: 33408365 PMCID: PMC8115253 DOI: 10.1038/s41396-020-00867-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Streptococcus pneumoniae can be divided into many strains, each a distinct set of isolates sharing similar core and accessory genomes, which co-circulate within the same hosts. Previous analyses suggested the short-term vaccine-associated dynamics of S. pneumoniae strains may be mediated through multi-locus negative frequency-dependent selection (NFDS), which maintains accessory loci at equilibrium frequencies. Long-term simulations demonstrated NFDS stabilised clonally-evolving multi-strain populations through preventing the loss of variation through drift, based on polymorphism frequencies, pairwise genetic distances and phylogenies. However, allowing symmetrical recombination between isolates evolving under multi-locus NFDS generated unstructured populations of diverse genotypes. Replication of the observed data improved when multi-locus NFDS was combined with recombination that was instead asymmetrical, favouring deletion of accessory loci over insertion. This combination separated populations into strains through outbreeding depression, resulting from recombinants with reduced accessory genomes having lower fitness than their parental genotypes. Although simplistic modelling of recombination likely limited these simulations' ability to maintain some properties of genomic data as accurately as those lacking recombination, the combination of asymmetrical recombination and multi-locus NFDS could restore multi-strain population structures from randomised initial populations. As many bacteria inhibit insertions into their chromosomes, this combination may commonly underlie the co-existence of strains within a niche.
Collapse
Affiliation(s)
- Gabrielle L Harrow
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - John A Lees
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - William P Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Parasites & Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Caroline Colijn
- Parasites & Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
45
|
Hernández-Hernández T, Miller EC, Román-Palacios C, Wiens JJ. Speciation across the Tree of Life. Biol Rev Camb Philos Soc 2021; 96:1205-1242. [PMID: 33768723 DOI: 10.1111/brv.12698] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023]
Abstract
Much of what we know about speciation comes from detailed studies of well-known model systems. Although there have been several important syntheses on speciation, few (if any) have explicitly compared speciation among major groups across the Tree of Life. Here, we synthesize and compare what is known about key aspects of speciation across taxa, including bacteria, protists, fungi, plants, and major animal groups. We focus on three main questions. Is allopatric speciation predominant across groups? How common is ecological divergence of sister species (a requirement for ecological speciation), and on what niche axes do species diverge in each group? What are the reproductive isolating barriers in each group? Our review suggests the following patterns. (i) Based on our survey and projected species numbers, the most frequent speciation process across the Tree of Life may be co-speciation between endosymbiotic bacteria and their insect hosts. (ii) Allopatric speciation appears to be present in all major groups, and may be the most common mode in both animals and plants, based on non-overlapping ranges of sister species. (iii) Full sympatry of sister species is also widespread, and may be more common in fungi than allopatry. (iv) Full sympatry of sister species is more common in some marine animals than in terrestrial and freshwater ones. (v) Ecological divergence of sister species is widespread in all groups, including ~70% of surveyed species pairs of plants and insects. (vi) Major axes of ecological divergence involve species interactions (e.g. host-switching) and habitat divergence. (vii) Prezygotic isolation appears to be generally more widespread and important than postzygotic isolation. (viii) Rates of diversification (and presumably speciation) are strikingly different across groups, with the fastest rates in plants, and successively slower rates in animals, fungi, and protists, with the slowest rates in prokaryotes. Overall, our study represents an initial step towards understanding general patterns in speciation across all organisms.
Collapse
Affiliation(s)
- Tania Hernández-Hernández
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A.,Catedrática CONACYT asignada a LANGEBIO-UGA Cinvestav, Libramiento Norte Carretera León Km 9.6, 36821, Irapuato, Guanajuato, Mexico
| | - Elizabeth C Miller
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - Cristian Román-Palacios
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| |
Collapse
|
46
|
Sloan WT, Nnaji CF, Lunn M, Curtis TP, Colloms SD, Couto JM, Pinto AJ, Connelly S, Rosser SJ. Drift dynamics in microbial communities and the effective community size. Environ Microbiol 2021; 23:2473-2483. [PMID: 33684262 DOI: 10.1111/1462-2920.15453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/26/2021] [Accepted: 03/03/2021] [Indexed: 11/26/2022]
Abstract
The structure and diversity of all open microbial communities are shaped by individual births, deaths, speciation and immigration events; the precise timings of these events are unknowable and unpredictable. This randomness is manifest as ecological drift in the population dynamics, the importance of which has been a source of debate for decades. There are theoretical reasons to suppose that drift would be imperceptible in large microbial communities, but this is at odds with circumstantial evidence that effects can be seen even in huge, complex communities. To resolve this dichotomy we need to observe dynamics in simple systems where key parameters, like migration, birth and death rates can be directly measured. We monitored the dynamics in the abundance of two genetically modified strains of Escherichia coli, with tuneable growth characteristics, that were mixed and continually fed into 10 identical chemostats. We demonstrated that the effects of demographic (non-environmental) stochasticity are very apparent in the dynamics. However, they do not conform to the most parsimonious and commonly applied mathematical models, where each stochastic event is independent. For these simple models to reproduce the observed dynamics we need to invoke an 'effective community size', which is smaller than the census community size.
Collapse
Affiliation(s)
- William T Sloan
- School of Engineering, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Chioma F Nnaji
- School of Engineering, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Mary Lunn
- Department of Statistics, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB, UK
| | - Thomas P Curtis
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Sean D Colloms
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Jillian M Couto
- School of Engineering, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Ameet J Pinto
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Stephanie Connelly
- School of Engineering, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Susan J Rosser
- School of Biological Sciences, Roger Land Building, Alexander Crum Brown Road, The King's Buildings, Edinburgh, EH9 3FF, UK
| |
Collapse
|
47
|
Li Y, Sun ZZ, Rong JC, Xie BB. Comparative genomics reveals broad genetic diversity, extensive recombination and nascent ecological adaptation in Micrococcus luteus. BMC Genomics 2021; 22:124. [PMID: 33602135 PMCID: PMC7890812 DOI: 10.1186/s12864-021-07432-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/08/2021] [Indexed: 01/21/2023] Open
Abstract
Background Micrococcus luteus is a group of actinobacteria that is widely used in biotechnology and is being thought as an emerging nosocomial pathogen. With one of the smallest genomes of free-living actinobacteria, it is found in a wide range of environments, but intraspecies genetic diversity and adaptation strategies to various environments remain unclear. Here, comparative genomics, phylogenomics, and genome-wide association studies were used to investigate the genomic diversity, evolutionary history, and the potential ecological differentiation of the species. Results High-quality genomes of 66 M. luteus strains were downloaded from the NCBI GenBank database and core and pan-genome analysis revealed a considerable intraspecies heterogeneity. Phylogenomic analysis, gene content comparison, and average nucleotide identity calculation consistently indicated that the species has diverged into three well-differentiated clades. Population structure analysis further suggested the existence of an unknown ancestor or the fourth, yet unsampled, clade. Reconstruction of gene gain/loss events along the evolutionary history revealed both early events that contributed to the inter-clade divergence and recent events leading to the intra-clade diversity. We also found convincing evidence that recombination has played a key role in the evolutionary process of the species, with upto two-thirds of the core genes having been affected by recombination. Furthermore, distribution of mammal-associated strains (including pathogens) on the phylogenetic tree suggested that the last common ancestor had a free-living lifestyle, and a few recently diverged lineages have developed a mammal-associated lifestyle separately. Consistently, genome-wide association analysis revealed that mammal-associated strains from different lineages shared genes functionally relevant to the host-associated lifestyle, indicating a recent ecological adaption to the new host-associated habitats. Conclusions These results revealed high intraspecies genomic diversity of M. luteus and highlighted that gene gain/loss events and extensive recombination events played key roles in the genome evolution. Our study also indicated that, as a free-living species, some lineages have recently developed or are developing a mammal-associated lifestyle. This study provides insights into the mechanisms that drive the genome evolution and adaption to various environments of a bacterial species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07432-5.
Collapse
Affiliation(s)
- Yisong Li
- Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zhong-Zhi Sun
- Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jin-Cheng Rong
- Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Bin-Bin Xie
- Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
48
|
Hoetzinger M, Pitt A, Huemer A, Hahn MW. Continental-Scale Gene Flow Prevents Allopatric Divergence of Pelagic Freshwater Bacteria. Genome Biol Evol 2021; 13:6126423. [PMID: 33674852 PMCID: PMC7936036 DOI: 10.1093/gbe/evab019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Allopatric divergence is one of the principal mechanisms for speciation of macro-organisms. Microbes by comparison are assumed to disperse more freely and to be less limited by dispersal barriers. However, thermophilic prokaryotes restricted to geothermal springs have shown clear signals of geographic isolation, but robust studies on this topic for microbes with less strict habitat requirements are scarce. Furthermore, it has only recently been recognized that homologous recombination among conspecific individuals provides species coherence in a wide range of prokaryotes. Recombination barriers thus may define prokaryotic species boundaries, yet, the extent to which geographic distance between populations gives rise to such barriers is an open question. Here, we investigated gene flow and population structure in a widespread species of pelagic freshwater bacteria, Polynucleobacter paneuropaeus. Through comparative genomics of 113 conspecific strains isolated from freshwater lakes and ponds located across a North–South range of more than 3,000 km, we were able to reconstruct past gene flow events. The species turned out to be highly recombinogenic as indicated by significant signs of gene transfer and extensive genome mosaicism. Although genomic differences increased with spatial distance on a regional scale (<170 km), such correlations were mostly absent on larger scales up to 3,400 km. We conclude that allopatric divergence in European P. paneuropaeus is minor, and that effective gene flow across the sampled geographic range in combination with a high recombination efficacy maintains species coherence.
Collapse
Affiliation(s)
- Matthias Hoetzinger
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria.,Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE-75651, Sweden
| | - Alexandra Pitt
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Andrea Huemer
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Martin W Hahn
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| |
Collapse
|
49
|
Young JPW, Moeskjær S, Afonin A, Rahi P, Maluk M, James EK, Cavassim MIA, Rashid MHO, Aserse AA, Perry BJ, Wang ET, Velázquez E, Andronov EE, Tampakaki A, Flores Félix JD, Rivas González R, Youseif SH, Lepetit M, Boivin S, Jorrin B, Kenicer GJ, Peix Á, Hynes MF, Ramírez-Bahena MH, Gulati A, Tian CF. Defining the Rhizobium leguminosarum Species Complex. Genes (Basel) 2021; 12:111. [PMID: 33477547 PMCID: PMC7831135 DOI: 10.3390/genes12010111] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteria currently included in Rhizobium leguminosarum are too diverse to be considered a single species, so we can refer to this as a species complex (the Rlc). We have found 429 publicly available genome sequences that fall within the Rlc and these show that the Rlc is a distinct entity, well separated from other species in the genus. Its sister taxon is R. anhuiense. We constructed a phylogeny based on concatenated sequences of 120 universal (core) genes, and calculated pairwise average nucleotide identity (ANI) between all genomes. From these analyses, we concluded that the Rlc includes 18 distinct genospecies, plus 7 unique strains that are not placed in these genospecies. Each genospecies is separated by a distinct gap in ANI values, usually at approximately 96% ANI, implying that it is a 'natural' unit. Five of the genospecies include the type strains of named species: R. laguerreae, R. sophorae, R. ruizarguesonis, "R. indicum" and R. leguminosarum itself. The 16S ribosomal RNA sequence is remarkably diverse within the Rlc, but does not distinguish the genospecies. Partial sequences of housekeeping genes, which have frequently been used to characterize isolate collections, can mostly be assigned unambiguously to a genospecies, but alleles within a genospecies do not always form a clade, so single genes are not a reliable guide to the true phylogeny of the strains. We conclude that access to a large number of genome sequences is a powerful tool for characterizing the diversity of bacteria, and that taxonomic conclusions should be based on all available genome sequences, not just those of type strains.
Collapse
Affiliation(s)
| | - Sara Moeskjær
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
| | - Alexey Afonin
- Laboratory for Genetics of Plant-Microbe Interactions, ARRIAM, Pushkin, 196608 Saint-Petersburg, Russia;
| | - Praveen Rahi
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411007, India;
| | - Marta Maluk
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; (M.M.); (E.K.J.)
| | - Euan K. James
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; (M.M.); (E.K.J.)
| | - Maria Izabel A. Cavassim
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA;
| | - M. Harun-or Rashid
- Biotechnology Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh 2202, Bangladesh;
| | - Aregu Amsalu Aserse
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland;
| | - Benjamin J. Perry
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand;
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad De México 11340, Mexico;
| | - Encarna Velázquez
- Departamento de Microbiología y Genética, Universidad de Salamanca, Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Unidad Asociada Grupo de Interacción planta-microorganismo (Universidad de Salamanca-IRNASA-CSIC), 37007 Salamanca, Spain; (E.V.); (R.R.G.)
| | - Evgeny E. Andronov
- Department of Microbial Monitoring, ARRIAM, Pushkin, 196608 Saint-Petersburg, Russia;
| | - Anastasia Tampakaki
- Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855 Athens, Greece;
| | - José David Flores Félix
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal;
| | - Raúl Rivas González
- Departamento de Microbiología y Genética, Universidad de Salamanca, Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Unidad Asociada Grupo de Interacción planta-microorganismo (Universidad de Salamanca-IRNASA-CSIC), 37007 Salamanca, Spain; (E.V.); (R.R.G.)
| | - Sameh H. Youseif
- Department of Microbial Genetic Resources, National Gene Bank (NGB), Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Marc Lepetit
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d’Azur, CNRS, 06903 Sophia Antipolis, France;
| | - Stéphane Boivin
- Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR INRAE-IRD-CIRAD-UM2-SupAgro, Campus International de Baillarguet, TA-A82/J, CEDEX 05, 34398 Montpellier, France;
| | - Beatriz Jorrin
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK;
| | - Gregory J. Kenicer
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK;
| | - Álvaro Peix
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Unidad Asociada Grupo de Interacción Planta-Microorganismo (Universidad de Salamanca-IRNASA-CSIC), 37008 Salamanca, Spain;
| | - Michael F. Hynes
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
| | - Martha Helena Ramírez-Bahena
- Departamento de Didáctica de las Matemáticas y de las Ciencias Experimentales. Universidad de Salamanca, 37008 Salamanca, Spain;
| | - Arvind Gulati
- Microbial Prospection, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176 061, India;
| | - Chang-Fu Tian
- State Key Laboratory of Agrobiotechnology, Rhizobium Research Center, and College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
50
|
Hammond JA, Gordon EA, Socarras KM, Chang Mell J, Ehrlich GD. Beyond the pan-genome: current perspectives on the functional and practical outcomes of the distributed genome hypothesis. Biochem Soc Trans 2020; 48:2437-2455. [PMID: 33245329 PMCID: PMC7752077 DOI: 10.1042/bst20190713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023]
Abstract
The principle of monoclonality with regard to bacterial infections was considered immutable prior to 30 years ago. This view, espoused by Koch for acute infections, has proven inadequate regarding chronic infections as persistence requires multiple forms of heterogeneity among the bacterial population. This understanding of bacterial plurality emerged from a synthesis of what-were-then novel technologies in molecular biology and imaging science. These technologies demonstrated that bacteria have complex life cycles, polymicrobial ecologies, and evolve in situ via the horizontal exchange of genic characters. Thus, there is an ongoing generation of diversity during infection that results in far more highly complex microbial communities than previously envisioned. This perspective is based on the fundamental tenet that the bacteria within an infecting population display genotypic diversity, including gene possession differences, which result from horizontal gene transfer mechanisms including transformation, conjugation, and transduction. This understanding is embodied in the concepts of the supragenome/pan-genome and the distributed genome hypothesis (DGH). These paradigms have fostered multiple researches in diverse areas of bacterial ecology including host-bacterial interactions covering the gamut of symbiotic relationships including mutualism, commensalism, and parasitism. With regard to the human host, within each of these symbiotic relationships all bacterial species possess attributes that contribute to colonization and persistence; those species/strains that are pathogenic also encode traits for invasion and metastases. Herein we provide an update on our understanding of bacterial plurality and discuss potential applications in diagnostics, therapeutics, and vaccinology based on perspectives provided by the DGH with regard to the evolution of pathogenicity.
Collapse
Affiliation(s)
- Jocelyn A. Hammond
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, U.S.A
| | - Emma A. Gordon
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, U.S.A
| | - Kayla M. Socarras
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Center for Surgical Infections and Biofilms, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, U.S.A
| | - Joshua Chang Mell
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Meta-omics Shared Resource Facility, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, U.S.A
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Center for Surgical Infections and Biofilms, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, U.S.A
- Meta-omics Shared Resource Facility, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, U.S.A
- Department of Otolaryngology – Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, U.S.A
| |
Collapse
|