1
|
McCarthy AA, Basu S, Bernaudat F, Blakeley MP, Bowler MW, Carpentier P, Effantin G, Engilberge S, Flot D, Gabel F, Gajdos L, Kamps JJAG, Kandiah E, Linares R, Martel A, Melnikov I, Mossou E, Mueller-Dieckmann C, Nanao M, Nurizzo D, Pernot P, Popov A, Royant A, de Sanctis D, Schoehn G, Talon R, Tully MD, Soler-Lopez M. Current and future perspectives for structural biology at the Grenoble EPN campus: a comprehensive overview. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:577-594. [PMID: 40226912 PMCID: PMC12067332 DOI: 10.1107/s1600577525002012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/03/2025] [Indexed: 04/15/2025]
Abstract
The European Photon and Neutron campus in Grenoble is a unique site, encompassing the European Synchrotron Radiation Facility Extremely Brilliant Source, the Institut Laue-Langevin, the European Molecular Biology Laboratory and the Institut de Biologie Structurale. Here, we present an overview of the structural biology beamlines, instruments and support facilities available on the EPN campus. These include advanced macromolecular crystallography using neutrons or X-rays, small-angle X-ray or neutron scattering, cryogenic electron microscopy, and spectroscopy. These highly complementary experimental approaches support cutting-edge research for integrated structural biology in our large user community. This article emphasizes our significant contributions to the field, outlines current advancements made and provides insights into our future prospects, offering readers a comprehensive understanding of the EPN campus's role in advancing integrated structural biology research.
Collapse
Affiliation(s)
| | - Shibom Basu
- European Molecular Biology Laboratory (EMBL)GrenobleFrance
| | - Florent Bernaudat
- European Synchrotron Radiation Facility (ESRF)GrenobleFrance
- Institut Laue–Langevin (ILL)GrenobleFrance
| | | | | | - Philippe Carpentier
- European Synchrotron Radiation Facility (ESRF)GrenobleFrance
- Univ. Grenoble Alpes, CNRS, CEA, IRIG–LCBM UMR 5249, Grenoble, France
| | - Gregory Effantin
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Sylvain Engilberge
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - David Flot
- European Synchrotron Radiation Facility (ESRF)GrenobleFrance
| | - Frank Gabel
- Institut Laue–Langevin (ILL)GrenobleFrance
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | | | | | | | - Romain Linares
- European Molecular Biology Laboratory (EMBL)GrenobleFrance
| | | | - Igor Melnikov
- European Synchrotron Radiation Facility (ESRF)GrenobleFrance
| | - Estelle Mossou
- European Synchrotron Radiation Facility (ESRF)GrenobleFrance
| | | | - Max Nanao
- European Synchrotron Radiation Facility (ESRF)GrenobleFrance
| | - Didier Nurizzo
- European Synchrotron Radiation Facility (ESRF)GrenobleFrance
| | - Petra Pernot
- European Synchrotron Radiation Facility (ESRF)GrenobleFrance
| | - Alexander Popov
- European Synchrotron Radiation Facility (ESRF)GrenobleFrance
| | - Antoine Royant
- European Synchrotron Radiation Facility (ESRF)GrenobleFrance
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | | | - Guy Schoehn
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Romain Talon
- European Synchrotron Radiation Facility (ESRF)GrenobleFrance
| | - Mark D. Tully
- European Synchrotron Radiation Facility (ESRF)GrenobleFrance
| | | |
Collapse
|
2
|
Miyauchi K, Kimura S, Akiyama N, Inoue K, Ishiguro K, Vu TS, Srisuknimit V, Koyama K, Hayashi G, Soma A, Nagao A, Shirouzu M, Okamoto A, Waldor MK, Suzuki T. A tRNA modification with aminovaleramide facilitates AUA decoding in protein synthesis. Nat Chem Biol 2025; 21:522-531. [PMID: 39300229 PMCID: PMC11938285 DOI: 10.1038/s41589-024-01726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/09/2024] [Indexed: 09/22/2024]
Abstract
Modified tRNA anticodons are critical for proper mRNA translation during protein synthesis. It is generally thought that almost all bacterial tRNAsIle use a modified cytidine-lysidine (L)-at the first position (34) of the anticodon to decipher the AUA codon as isoleucine (Ile). Here we report that tRNAsIle from plant organelles and a subset of bacteria contain a new cytidine derivative, designated 2-aminovaleramididine (ava2C). Like L34, ava2C34 governs both Ile-charging ability and AUA decoding. Cryo-electron microscopy structural analyses revealed molecular details of codon recognition by ava2C34 with a specific interaction between its terminal amide group and an mRNA residue 3'-adjacent to the AUA codon. These findings reveal the evolutionary variation of an essential tRNA modification and demonstrate the molecular basis of AUA decoding mediated by a unique tRNA modification.
Collapse
Affiliation(s)
- Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Satoshi Kimura
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Naho Akiyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Kazuki Inoue
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kensuke Ishiguro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Thien-Son Vu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Veerasak Srisuknimit
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Kenta Koyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Gosuke Hayashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Biomolecular Engineering, Nagoya University, Nagoya, Japan
| | - Akiko Soma
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Jangra M, Travin DY, Aleksandrova EV, Kaur M, Darwish L, Koteva K, Klepacki D, Wang W, Tiffany M, Sokaribo A, Coombes BK, Vázquez-Laslop N, Polikanov YS, Mankin AS, Wright GD. A broad-spectrum lasso peptide antibiotic targeting the bacterial ribosome. Nature 2025; 640:1022-1030. [PMID: 40140562 DOI: 10.1038/s41586-025-08723-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/30/2025] [Indexed: 03/28/2025]
Abstract
Lasso peptides (biologically active molecules with a distinct structurally constrained knotted fold) are natural products that belong to the class of ribosomally synthesized and post-translationally modified peptides1-3. Lasso peptides act on several bacterial targets4,5, but none have been reported to inhibit the ribosome, one of the main targets of antibiotics in the bacterial cell6,7. Here we report the identification and characterization of the lasso peptide antibiotic lariocidin and its internally cyclized derivative lariocidin B, produced by Paenibacillus sp. M2, which has broad-spectrum activity against a range of bacterial pathogens. We show that lariocidins inhibit bacterial growth by binding to the ribosome and interfering with protein synthesis. Structural, genetic and biochemical data show that lariocidins bind at a unique site in the small ribosomal subunit, where they interact with the 16S ribosomal RNA and aminoacyl-tRNA, inhibiting translocation and inducing miscoding. Lariocidin is unaffected by common resistance mechanisms, has a low propensity for generating spontaneous resistance, shows no toxicity to human cells, and has potent in vivo activity in a mouse model of Acinetobacter baumannii infection. Our identification of ribosome-targeting lasso peptides uncovers new routes towards the discovery of alternative protein-synthesis inhibitors and offers a novel chemical scaffold for the development of much-needed antibacterial drugs.
Collapse
MESH Headings
- Ribosomes/drug effects
- Ribosomes/metabolism
- Ribosomes/chemistry
- Anti-Bacterial Agents/pharmacology
- Anti-Bacterial Agents/chemistry
- Anti-Bacterial Agents/metabolism
- Animals
- Mice
- Protein Biosynthesis/drug effects
- Humans
- Paenibacillus/metabolism
- Paenibacillus/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 16S/chemistry
- Peptides, Cyclic/pharmacology
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/metabolism
- Female
- Models, Molecular
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- Bacteria/drug effects
- Bacteria/growth & development
- Peptides/pharmacology
- Peptides/chemistry
- Microbial Sensitivity Tests
Collapse
Affiliation(s)
- Manoj Jangra
- David Braley Centre for Antibiotics Discovery, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Dmitrii Y Travin
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Elena V Aleksandrova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Manpreet Kaur
- David Braley Centre for Antibiotics Discovery, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Lena Darwish
- David Braley Centre for Antibiotics Discovery, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Kalinka Koteva
- David Braley Centre for Antibiotics Discovery, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Dorota Klepacki
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Wenliang Wang
- David Braley Centre for Antibiotics Discovery, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Maya Tiffany
- David Braley Centre for Antibiotics Discovery, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Akosiererem Sokaribo
- David Braley Centre for Antibiotics Discovery, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Brian K Coombes
- David Braley Centre for Antibiotics Discovery, McMaster University, Hamilton, Ontario, Canada
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nora Vázquez-Laslop
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Yury S Polikanov
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Alexander S Mankin
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Gerard D Wright
- David Braley Centre for Antibiotics Discovery, McMaster University, Hamilton, Ontario, Canada.
- M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
4
|
Aleksashin NA, Langeberg CJ, Shelke RR, Yin T, Cate JD. RNA elements required for the high efficiency of West Nile virus-induced ribosomal frameshifting. Nucleic Acids Res 2025; 53:gkae1248. [PMID: 39698810 PMCID: PMC11797035 DOI: 10.1093/nar/gkae1248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
West Nile virus (WNV) requires programmed -1 ribosomal frameshifting for translation of the viral genome. The efficiency of WNV frameshifting is among the highest known. However, it remains unclear why WNV exhibits such a high frameshifting efficiency. Here, we employed dual-luciferase reporter assays in multiple human cell lines to probe the RNA requirements for highly efficient frameshifting by the WNV genome. We find that both the sequence and structure of a predicted RNA pseudoknot downstream of the slippery sequence-the codons in the genome on which frameshifting occurs-are required for efficient frameshifting. We also show that multiple proposed RNA secondary structures downstream of the slippery sequence are inconsistent with efficient frameshifting. We also find that the base of the pseudoknot structure likely is unfolded prior to frameshifting. Finally, we show that many mutations in the WNV slippery sequence allow efficient frameshifting, but often result in aberrant shifting into other reading frames. Mutations in the slippery sequence also support a model in which frameshifting occurs concurrent with or after ribosome translocation. These results provide a comprehensive analysis of the molecular determinants of WNV-programmed ribosomal frameshifting and provide a foundation for the development of new antiviral strategies targeting viral gene expression.
Collapse
Affiliation(s)
- Nikolay A Aleksashin
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Conner J Langeberg
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rohan R Shelke
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Tianhao Yin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jamie H D Cate
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Lee M, Wakigawa T, Jia Q, Liu C, Huang R, Huang S, Nagao A, Suzuki T, Tomita K, Iwasaki S, Takeuchi-Tomita N. Selection of initiator tRNA and start codon by mammalian mitochondrial initiation factor 3 in leaderless mRNA translation. Nucleic Acids Res 2025; 53:gkaf021. [PMID: 39878211 PMCID: PMC11775629 DOI: 10.1093/nar/gkaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/04/2025] [Accepted: 01/28/2025] [Indexed: 01/31/2025] Open
Abstract
The mammalian mitochondrial protein synthesis system produces 13 essential subunits of oxidative phosphorylation (OXPHOS) complexes. Translation initiation in mammalian mitochondria is characterized by the use of leaderless messenger RNAs (mRNAs) and non-AUG start codons, where the proofreading function of IF-3mt still remains elusive. Here, we developed a reconstituted mammalian mitochondrial translation system using in vitro transcribed and native mitochondrial transfer RNAs (tRNAs) to investigate IF-3mt's proofreading function. Similar to bacterial IF-3, IF-3mt permits an initiator tRNA to participate in initiation by discriminating the three G-C pairs in its anticodon stem, and by the cognate interactions of its anticodon with the AUG start codon. As a result, IF-3mt promotes the accurate initiation of leaderless mRNAs. Nevertheless, IF-3mt can also facilitate initiation from the non-AUG(AUA) start codon through its unique N- and C-terminal extensions, in concert with the 5-methylcytidine (m5C) or 5-formylcytidine (f5C) modification at the anticodon wobble position of mt-tRNAMet. This is partly because the IF-3mt-specific N- and C-terminal extensions and the KKGK-motif favor leaderless mRNA initiation and relax non-AUG start codon discrimination. Analyses of IF-3mt-depleted human cells revealed that IF-3mt indeed participates in translating the open reading frames (ORFs) of leaderless mRNAs, as well as the internal ORFs of dicistronic mRNAs.
Collapse
MESH Headings
- Codon, Initiator/metabolism
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Humans
- RNA, Transfer, Met/metabolism
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/chemistry
- Mitochondria/genetics
- Mitochondria/metabolism
- Animals
- Protein Biosynthesis
- Peptide Chain Initiation, Translational
- Anticodon
- RNA, Mitochondrial
Collapse
Affiliation(s)
- Muhoon Lee
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Taisei Wakigawa
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Qimin Jia
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Chang Liu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Ruiyuan Huang
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Shuai Huang
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Shintaro Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Nono Takeuchi-Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| |
Collapse
|
6
|
Hasnain SS. 30 years of Journal of Synchrotron Radiation and synchrotron science. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:1-9. [PMID: 39556510 PMCID: PMC11708846 DOI: 10.1107/s1600577524010798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Journal of Synchrotron Radiation (JSR) came into being with the publication of its inaugural issue in October 1994 that contained 15 full articles comprising 100 pages. Thirty years of JSR has coincided with several Nobel Prizes that have arisen from the work undertaken on synchrotron radiation sources, with the first of these awarded to Sir John Walker in 1997, just three years after the launch of JSR, and celebrated on the front cover of the journal's July 1999 issue. This article provides an insight into the motivation as well as the journey of establishing this important journal for the IUCr and the synchrotron radiation community which has continued to grow. We also highlight some of the well cited papers for each of the five-year-periods during these 30 years and demonstrate how the journal has become the natural home for all aspects of synchrotron radiation science and technology.
Collapse
Affiliation(s)
- S. Samar Hasnain
- Molecular Biophysics Group, Life Sciences Building, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolL69 7ZBUnited Kingdom
| |
Collapse
|
7
|
Mori Y, Tanaka S. Stabilization Mechanism of Initiator Transfer RNA in the Small Ribosomal Subunit from Coarse-Grained Molecular Simulations. J Phys Chem B 2024; 128:12059-12065. [PMID: 39603259 DOI: 10.1021/acs.jpcb.4c04966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Proteins play a variety of roles in biological phenomena in cells. Proteins are synthesized by the ribosome, which is a large molecular complex composed of proteins and nucleic acids. Among the many molecules involved in the process of protein synthesis, tRNA is one of the essential molecules. In this study, coarse-grained molecular dynamics simulations were performed to understand how the tRNA molecule is stabilized in the ribosome, and the free energy along the dissociation path of the tRNA was calculated. We found that some ribosomal proteins, which are components of the ribosome, are involved in the stabilization of the tRNA. The positively charged amino acid residues in the C-terminal region of the ribosomal proteins are particularly important for stabilization. These findings contribute to our understanding of the molecular evolution of protein synthesis in terms of the ribosome, which is a universal component of life.
Collapse
Affiliation(s)
- Yoshiharu Mori
- Graduate School of System Informatics, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Shigenori Tanaka
- Graduate School of System Informatics, Kobe University, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
8
|
Aleksandrova EV, Ma CX, Klepacki D, Alizadeh F, Vázquez-Laslop N, Liang JH, Polikanov YS, Mankin AS. Macrolones target bacterial ribosomes and DNA gyrase and can evade resistance mechanisms. Nat Chem Biol 2024; 20:1680-1690. [PMID: 39039256 PMCID: PMC11686707 DOI: 10.1038/s41589-024-01685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024]
Abstract
Growing resistance toward ribosome-targeting macrolide antibiotics has limited their clinical utility and urged the search for superior compounds. Macrolones are synthetic macrolide derivatives with a quinolone side chain, structurally similar to DNA topoisomerase-targeting fluoroquinolones. While macrolones show enhanced activity, their modes of action have remained unknown. Here, we present the first structures of ribosome-bound macrolones, showing that the macrolide part occupies the macrolide-binding site in the ribosomal exit tunnel, whereas the quinolone moiety establishes new interactions with the tunnel. Macrolones efficiently inhibit both the ribosome and DNA topoisomerase in vitro. However, in the cell, they target either the ribosome or DNA gyrase or concurrently both of them. In contrast to macrolide or fluoroquinolone antibiotics alone, dual-targeting macrolones are less prone to select resistant bacteria carrying target-site mutations or to activate inducible macrolide resistance genes. Furthermore, because some macrolones engage Erm-modified ribosomes, they retain activity even against strains with constitutive erm resistance genes.
Collapse
Affiliation(s)
- Elena V Aleksandrova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Cong-Xuan Ma
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Dorota Klepacki
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Faezeh Alizadeh
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Noller HF. The ribosome comes to life. Cell 2024; 187:6486-6500. [PMID: 39547209 DOI: 10.1016/j.cell.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024]
Abstract
The ribosome, together with its tRNA substrates, links genotype to phenotype by translating the genetic information carried by mRNA into protein. During the past half-century, the structure and mechanisms of action of the ribosome have emerged from mystery and confusion. It is now evident that the ribosome is an ancient RNA-based molecular machine of staggering structural complexity and that it is fundamentally similar in all living organisms. The three central functions of protein synthesis-decoding, catalysis of peptide bond formation, and translocation of mRNA and tRNA-are based on elegant mechanisms that evolved from the properties of RNA, the founding macromolecule of life. Moreover, all three of these functions (and even life itself) seem to proceed in defiance of entropy. Protein synthesis thus appears to exploit both the energy of GTP hydrolysis and peptide bond formation to constrain the directionality and accuracy of events taking place on the ribosome.
Collapse
Affiliation(s)
- Harry F Noller
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
10
|
Costello A, Peterson AA, Chen PH, Bagirzadeh R, Lanster DL, Badran AH. Genetic Code Expansion History and Modern Innovations. Chem Rev 2024; 124:11962-12005. [PMID: 39466033 DOI: 10.1021/acs.chemrev.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The genetic code is the foundation for all life. With few exceptions, the translation of nucleic acid messages into proteins follows conserved rules, which are defined by codons that specify each of the 20 proteinogenic amino acids. For decades, leading research groups have developed a catalogue of innovative approaches to extend nature's amino acid repertoire to include one or more noncanonical building blocks in a single protein. In this review, we summarize advances in the history of in vitro and in vivo genetic code expansion, and highlight recent innovations that increase the scope of biochemically accessible monomers and codons. We further summarize state-of-the-art knowledge in engineered cellular translation, as well as alterations to regulatory mechanisms that improve overall genetic code expansion. Finally, we distill existing limitations of these technologies into must-have improvements for the next generation of technologies, and speculate on future strategies that may be capable of overcoming current gaps in knowledge.
Collapse
Affiliation(s)
- Alan Costello
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Alexander A Peterson
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Rustam Bagirzadeh
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - David L Lanster
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Ahmed H Badran
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| |
Collapse
|
11
|
Codispoti S, Yamaguchi T, Makarov M, Giacobelli VG, Mašek M, Kolář MH, Sanchez Rocha AC, Fujishima K, Zanchetta G, Hlouchová K. The interplay between peptides and RNA is critical for protoribosome compartmentalization and stability. Nucleic Acids Res 2024; 52:12689-12700. [PMID: 39340303 PMCID: PMC11551759 DOI: 10.1093/nar/gkae823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The ribosome, owing to its exceptional conservation, harbours a remarkable molecular fossil known as the protoribosome. It surrounds the peptidyl transferase center (PTC), responsible for peptide bond formation. While previous studies have demonstrated the PTC activity in RNA alone, our investigation reveals the intricate roles of the ribosomal protein fragments (rPeptides) within the ribosomal core. This research highlights the significance of rPeptides in stability and coacervation of two distinct protoribosomal evolutionary stages. The 617nt 'big' protoribosome model, which associates with rPeptides specifically, exhibits a structurally defined and rigid nature, further stabilized by the peptides. In contrast, the 136nt 'small' model, previously linked to peptidyltransferase activity, displays greater structural flexibility. While this construct interacts with rPeptides with lower specificity, they induce coacervation of the 'small' protoribosome across a wide concentration range, which is concomitantly dependent on the RNA sequence and structure. Moreover, these conditions protect RNA from degradation. This phenomenon suggests a significant evolutionary advantage in the RNA-protein interaction at the early stages of ribosome evolution. The distinct properties of the two protoribosomal stages suggest that rPeptides initially provided compartmentalization and prevented RNA degradation, preceding the emergence of specific RNA-protein interactions crucial for the ribosomal structural integrity.
Collapse
Affiliation(s)
- Simone Codispoti
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Segrate 20054, Italy
| | - Tomoko Yamaguchi
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 12800, Czech Republic
| | - Mikhail Makarov
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 12800, Czech Republic
| | - Valerio G Giacobelli
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 12800, Czech Republic
| | - Martin Mašek
- Department of Physical Chemistry, University of Chemistry and Technology, Technicka 5, 16628 Prague, Czech Republic
| | - Michal H Kolář
- Department of Physical Chemistry, University of Chemistry and Technology, Technicka 5, 16628 Prague, Czech Republic
| | | | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa 252-0882, Japan
| | - Giuliano Zanchetta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Segrate 20054, Italy
| | - Klára Hlouchová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague 12800, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, Prague 16610, Czech Republic
| |
Collapse
|
12
|
Lahry K, Datta M, Varshney U. Genetic analysis of translation initiation in bacteria: An initiator tRNA-centric view. Mol Microbiol 2024; 122:772-788. [PMID: 38410838 DOI: 10.1111/mmi.15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Translation of messenger RNA (mRNA) in bacteria occurs in the steps of initiation, elongation, termination, and ribosome recycling. The initiation step comprises multiple stages and uses a special transfer RNA (tRNA) called initiator tRNA (i-tRNA), which is first aminoacylated and then formylated using methionine and N10-formyl-tetrahydrofolate (N10-fTHF), respectively. Both methionine and N10-fTHF are produced via one-carbon metabolism, linking translation initiation with active cellular metabolism. The fidelity of i-tRNA binding to the ribosomal peptidyl-site (P-site) is attributed to the structural features in its acceptor stem, and the highly conserved three consecutive G-C base pairs (3GC pairs) in the anticodon stem. The acceptor stem region is important in formylation of the amino acid attached to i-tRNA and in its initial binding to the P-site. And, the 3GC pairs are crucial in transiting the i-tRNA through various stages of initiation. We utilized the feature of 3GC pairs to investigate the nuanced layers of scrutiny that ensure fidelity of translation initiation through i-tRNA abundance and its interactions with the components of the translation apparatus. We discuss the importance of i-tRNA in the final stages of ribosome maturation, as also the roles of the Shine-Dalgarno sequence, ribosome heterogeneity, initiation factors, ribosome recycling factor, and coevolution of the translation apparatus in orchestrating a delicate balance between the fidelity of initiation and/or its leakiness to generate proteome plasticity in cells to confer growth fitness advantages in response to the dynamic nutritional states.
Collapse
Affiliation(s)
- Kuldeep Lahry
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Madhurima Datta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
13
|
Marshall W, Baum B, Fairhall A, Heisenberg CP, Koslover E, Liu A, Mao Y, Mogilner A, Nelson CM, Paluch EK, Trepat X, Yap A. Where physics and biology meet. Curr Biol 2024; 34:R950-R960. [PMID: 39437734 DOI: 10.1016/j.cub.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
As part of this special issue on physics and biology, we invited several leading experts that bridge these disciplines to provide their views on the reciprocal contributions of each field and the benefits and challenges of working across physics and biology: introduction provided by Wallace Marshall.
Collapse
|
14
|
Aleksashin NA, Langeberg CJ, Shelke RR, Yin T, Cate JHD. RNA elements required for the high efficiency of West Nile Virus-induced ribosomal frameshifting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618579. [PMID: 39464146 PMCID: PMC11507841 DOI: 10.1101/2024.10.16.618579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
West Nile Virus (WNV), a member of the Flaviviridae family, requires programmed -1 ribosomal frameshifting (PRF) for translation of the viral genome. The efficiency of WNV frameshifting is among the highest observed to date. Despite structural similarities to frameshifting sites in other viruses, it remains unclear why WNV exhibits such a high frameshifting efficiency. Here we employed dual-luciferase reporter assays in multiple human cell lines to probe the RNA requirements for highly efficient frameshifting by the WNV genome. We find that both the sequence and structure of a predicted RNA pseudoknot downstream of the slippery sequence-the codons in the genome on which frameshifting occurs-are required for efficient frameshifting. We also show that multiple proposed RNA secondary structures downstream of the slippery sequence are inconsistent with efficient frameshifting. We mapped the most favorable distance between the slippery site and the pseudoknot essential for optimal frameshifting, and found the base of the pseudoknot structure likely is unfolded prior to frameshifting. Finally, we find that many mutations in the WNV slippery sequence allow efficient frameshifting, but often result in aberrant shifting into other reading frames. Mutations in the slippery sequence also support a model in which frameshifting occurs concurrent with or after translocation of the mRNA and tRNA on the ribosome. These results provide a comprehensive analysis of the molecular determinants of WNV-programmed ribosomal frameshifting and provide a foundation for the development of new antiviral strategies targeting viral gene expression.
Collapse
Affiliation(s)
- Nikolay A. Aleksashin
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Conner J. Langeberg
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Rohan R. Shelke
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Tianhao Yin
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Jamie H. D. Cate
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
- Department of Chemistry, University of California-Berkeley, Berkeley, CA, USA
| |
Collapse
|
15
|
Jiang H, Liu G, Gao Y, Gan J, Chen D, Murchie AIH. Cofactor binding triggers rapid conformational remodelling of the active site of a methyltransferase ribozyme. J Biol Chem 2024; 300:107863. [PMID: 39374779 PMCID: PMC11566860 DOI: 10.1016/j.jbc.2024.107863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
The methyltransferase ribozyme SMRZ-1 utilizes S-adenosyl-methionine (SAM) and Cu (II) ions to methylate RNA. A comparison of the SAM-bound and unbound RNA structures has shown a conformational change in the RNA. However, the contribution of specific interactions and the role of a pseudo-triplex motif in the catalytic center on the methylation reaction is not completely understood. In this study, we have used atomic substitutions and mutational analysis to investigate the reaction specificity and the key interactions required for catalysis. Substitution of the fluorescent nucleotide 2-aminopurine within the active ribozyme enabled the conformational dynamics of the RNA upon co-factor binding to be explored using fluorescence spectroscopy. We show that fast co-factor binding (t1/2 ∼ 0.7 s) drives a conformational change in the RNA to facilitate methyl group transfer. The importance of stacking interactions at the pseudo-triplex motif and chelation of the Cu (II) ion were shown to be essential for SAM binding.
Collapse
Affiliation(s)
- Hengyi Jiang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Getong Liu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanqing Gao
- Department of Physiology and Biophysics, Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianhua Gan
- Department of Physiology and Biophysics, Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Dongrong Chen
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Alastair I H Murchie
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Chatterjee P, Ghosal P, Shit S, Biswas A, Mallik S, Allabun S, Othman M, Ali AH, Elshiekh E, Soufiene BO. Ribosomal computing: implementation of the computational method. BMC Bioinformatics 2024; 25:321. [PMID: 39358680 PMCID: PMC11448306 DOI: 10.1186/s12859-024-05945-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Several computational and mathematical models of protein synthesis have been explored to accomplish the quantitative analysis of protein synthesis components and polysome structure. The effect of gene sequence (coding and non-coding region) in protein synthesis, mutation in gene sequence, and functional model of ribosome needs to be explored to investigate the relationship among protein synthesis components further. Ribosomal computing is implemented by imitating the functional property of protein synthesis. RESULT In the proposed work, a general framework of ribosomal computing is demonstrated by developing a computational model to present the relationship between biological details of protein synthesis and computing principles. Here, mathematical abstractions are chosen carefully without probing into intricate chemical details of the micro-operations of protein synthesis for ease of understanding. This model demonstrates the cause and effect of ribosome stalling during protein synthesis and the relationship between functional protein and gene sequence. Moreover, it also reveals the computing nature of ribosome molecules and other protein synthesis components. The effect of gene mutation on protein synthesis is also explored in this model. CONCLUSION The computational model for ribosomal computing is implemented in this work. The proposed model demonstrates the relationship among gene sequences and protein synthesis components. This model also helps to implement a simulation environment (a simulator) for generating protein chains from gene sequences and can spot the problem during protein synthesis. Thus, this simulator can identify a disease that can happen due to a protein synthesis problem and suggest precautions for it.
Collapse
Affiliation(s)
| | | | - Sahadeb Shit
- Kazi Nazrul University, Asansol, West Bengal, India
| | | | - Saurav Mallik
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, USA
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ, 02115, USA
| | - Sarah Allabun
- Department of Medical Education, College of Medicine, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Manal Othman
- Department of Medical Education, College of Medicine, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Almubarak Hassan Ali
- Division of Radiology, Department of Medicine, College of Medicine and surgery, King Khalid University (KKU), Abha, Aseer, Kingdom of Saudi Arabia
| | - E Elshiekh
- Department of Radiological Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ben Othman Soufiene
- PRINCE Laboratory Research, ISITcom, Hammam Sousse, University of Sousse, Sousse, Tunisia.
| |
Collapse
|
17
|
Mattingly JM, Nguyen HA, Roy B, Fredrick K, Dunham CM. Structural analysis of noncanonical translation initiation complexes. J Biol Chem 2024; 300:107743. [PMID: 39222680 PMCID: PMC11497404 DOI: 10.1016/j.jbc.2024.107743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Translation initiation is a highly regulated, multi-step process that is critical for efficient and accurate protein synthesis. In bacteria, initiation begins when mRNA, initiation factors, and a dedicated initiator fMet-tRNAfMet bind the small (30S) ribosomal subunit. Specific binding of fMet-tRNAfMet in the peptidyl (P) site is mediated by the inspection of the fMet moiety by initiation factor IF2 and of three conserved G-C base pairs in the tRNA anticodon stem by the 30S head domain. Tandem A-minor interactions form between 16S ribosomal RNA nucleotides A1339 and G1338 and tRNA base pairs G30-C40 and G29-C41, respectively. Swapping the G30-C40 pair of tRNAfMet with C-G (called tRNAfMet M1) reduces discrimination against the noncanonical start codon CUG in vitro, suggesting crosstalk between the gripping of the anticodon stem and recognition of the start codon. Here, we solved electron cryomicroscopy structures of Escherichia coli 70S initiation complexes containing the fMet-tRNAfMet M1 variant paired to the noncanonical CUG start codon, in the presence or absence of IF2 and the non-hydrolyzable GTP analog GDPCP, alongside structures of 70S initiation complexes containing this tRNAfMet variant paired to the canonical bacterial start codons AUG, GUG, and UUG. We find that the M1 mutation weakens A-minor interactions between tRNAfMet and 16S nucleotides A1339 and G1338, with IF2 strengthening the interaction of G1338 with the tRNA minor groove. These structures suggest how even slight changes to the recognition of the fMet-tRNAfMet anticodon stem by the ribosome can impact the start codon selection.
Collapse
MESH Headings
- Escherichia coli/metabolism
- Escherichia coli/genetics
- RNA, Transfer, Met/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- Peptide Chain Initiation, Translational
- Cryoelectron Microscopy
- Escherichia coli Proteins/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Anticodon/metabolism
- Anticodon/chemistry
- Codon, Initiator/metabolism
- Ribosome Subunits, Small, Bacterial/metabolism
- Ribosome Subunits, Small, Bacterial/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
Collapse
Affiliation(s)
- Jacob M Mattingly
- Department of Chemistry, Emory University, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia, USA
| | - Ha An Nguyen
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| | - Bappaditya Roy
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Kurt Fredrick
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
18
|
McCann HM, Meade CD, Banerjee B, Penev PI, Dean Williams L, Petrov AS. RiboVision2: A Web Server for Advanced Visualization of Ribosomal RNAs. J Mol Biol 2024; 436:168556. [PMID: 39237196 DOI: 10.1016/j.jmb.2024.168556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 09/07/2024]
Abstract
RiboVision2 is a web server designed to visualize phylogenetic, structural, and evolutionary properties of ribosomal RNAs simultaneously at the levels of primary, secondary, and three-dimensional structure and in the context of full ribosomal complexes. RiboVision2 instantly computes and displays a broad variety of data; it has no login requirements, is open-source, free for all users, and available at https://ribovision2.chemistry.gatech.edu.
Collapse
Affiliation(s)
- Holly M McCann
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Caeden D Meade
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Biswajit Banerjee
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Petar I Penev
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Loren Dean Williams
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anton S Petrov
- NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
19
|
Rizo J, Encarnación-Guevara S. Bacterial protein acetylation: mechanisms, functions, and methods for study. Front Cell Infect Microbiol 2024; 14:1408947. [PMID: 39027134 PMCID: PMC11254643 DOI: 10.3389/fcimb.2024.1408947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Lysine acetylation is an evolutionarily conserved protein modification that changes protein functions and plays an essential role in many cellular processes, such as central metabolism, transcriptional regulation, chemotaxis, and pathogen virulence. It can alter DNA binding, enzymatic activity, protein-protein interactions, protein stability, or protein localization. In prokaryotes, lysine acetylation occurs non-enzymatically and by the action of lysine acetyltransferases (KAT). In enzymatic acetylation, KAT transfers the acetyl group from acetyl-CoA (AcCoA) to the lysine side chain. In contrast, acetyl phosphate (AcP) is the acetyl donor of chemical acetylation. Regardless of the acetylation type, the removal of acetyl groups from acetyl lysines occurs only enzymatically by lysine deacetylases (KDAC). KATs are grouped into three main superfamilies based on their catalytic domain sequences and biochemical characteristics of catalysis. Specifically, members of the GNAT are found in eukaryotes and prokaryotes and have a core structural domain architecture. These enzymes can acetylate small molecules, metabolites, peptides, and proteins. This review presents current knowledge of acetylation mechanisms and functional implications in bacterial metabolism, pathogenicity, stress response, translation, and the emerging topic of protein acetylation in the gut microbiome. Additionally, the methods used to elucidate the biological significance of acetylation in bacteria, such as relative quantification and stoichiometry quantification, and the genetic code expansion tool (CGE), are reviewed.
Collapse
Affiliation(s)
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
20
|
Ishida S, Ngo PHT, Gundlach A, Ellington A. Engineering Ribosomal Machinery for Noncanonical Amino Acid Incorporation. Chem Rev 2024; 124:7712-7730. [PMID: 38829723 DOI: 10.1021/acs.chemrev.3c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The introduction of noncanonical amino acids into proteins has enabled researchers to modify fundamental physicochemical and functional properties of proteins. While the alteration of the genetic code, via the introduction of orthogonal aminoacyl-tRNA synthetase:tRNA pairs, has driven many of these efforts, the various components involved in the process of translation are important for the development of new genetic codes. In this review, we will focus on recent advances in engineering ribosomal machinery for noncanonical amino acid incorporation and genetic code modification. The engineering of the ribosome itself will be considered, as well as the many factors that interact closely with the ribosome, including both tRNAs and accessory factors, such as the all-important EF-Tu. Given the success of genome re-engineering efforts, future paths for radical alterations of the genetic code will require more expansive alterations in the translation machinery.
Collapse
Affiliation(s)
- Satoshi Ishida
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Phuoc H T Ngo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Arno Gundlach
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
21
|
Ero R, Leppik M, Reier K, Liiv A, Remme J. Ribosomal RNA modification enzymes stimulate large ribosome subunit assembly in E. coli. Nucleic Acids Res 2024; 52:6614-6628. [PMID: 38554109 PMCID: PMC11194073 DOI: 10.1093/nar/gkae222] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Ribosomal RNA modifications are introduced by specific enzymes during ribosome assembly in bacteria. Deletion of individual modification enzymes has a minor effect on bacterial growth, ribosome biogenesis, and translation, which has complicated the definition of the function of the enzymes and their products. We have constructed an Escherichia coli strain lacking 10 genes encoding enzymes that modify 23S rRNA around the peptidyl-transferase center. This strain exhibits severely compromised growth and ribosome assembly, especially at lower temperatures. Re-introduction of the individual modification enzymes allows for the definition of their functions. The results demonstrate that in addition to previously known RlmE, also RlmB, RlmKL, RlmN and RluC facilitate large ribosome subunit assembly. RlmB and RlmKL have functions in ribosome assembly independent of their modification activities. While the assembly stage specificity of rRNA modification enzymes is well established, this study demonstrates that there is a mutual interdependence between the rRNA modification process and large ribosome subunit assembly.
Collapse
MESH Headings
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/metabolism
- Escherichia coli Proteins/genetics
- Methyltransferases/metabolism
- Methyltransferases/genetics
- Ribosome Subunits, Large/metabolism
- Ribosome Subunits, Large/genetics
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Large, Bacterial/genetics
- Ribosomes/metabolism
- Ribosomes/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/chemistry
Collapse
Affiliation(s)
- Rya Ero
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Margus Leppik
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Kaspar Reier
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Aivar Liiv
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Jaanus Remme
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| |
Collapse
|
22
|
Wu Y, Ni MT, Wang YH, Wang C, Hou H, Zhang X, Zhou J. Structural basis of translation inhibition by a valine tRNA-derived fragment. Life Sci Alliance 2024; 7:e202302488. [PMID: 38599770 PMCID: PMC11009984 DOI: 10.26508/lsa.202302488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Translational regulation by non-coding RNAs is a mechanism commonly used by cells to fine-tune gene expression. A fragment derived from an archaeal valine tRNA (Val-tRF) has been previously identified to bind the small subunit of the ribosome and inhibit translation in Haloferax volcanii Here, we present three cryo-electron microscopy structures of Val-tRF bound to the small subunit of Sulfolobus acidocaldarius ribosomes at resolutions between 4.02 and 4.53 Å. Within these complexes, Val-tRF was observed to bind to conserved RNA-interacting sites, including the ribosomal decoding center. The binding of Val-tRF destabilizes helices h24, h44, and h45 and the anti-Shine-Dalgarno sequence of 16S rRNA. The binding position of this molecule partially overlaps with the translation initiation factor aIF1A and occludes the mRNA P-site codon. Moreover, we found that the binding of Val-tRF is associated with steric hindrance of the H69 base of 23S rRNA in the large ribosome subunit, thereby preventing 70S assembly. Our data exemplify how tRNA-derived fragments bind to ribosomes and provide new insights into the mechanisms underlying translation inhibition by Val-tRFs.
Collapse
Affiliation(s)
- Yun Wu
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Meng-Ting Ni
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ying-Hui Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chen Wang
- Center for Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai Hou
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an Shaanxi, China
| | - Xing Zhang
- Center for Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Singh V, Itoh Y, Del'Olio S, Hassan A, Naschberger A, Flygaard RK, Nobe Y, Izumikawa K, Aibara S, Andréll J, Whitford PC, Barrientos A, Taoka M, Amunts A. Mitoribosome structure with cofactors and modifications reveals mechanism of ligand binding and interactions with L1 stalk. Nat Commun 2024; 15:4272. [PMID: 38769321 PMCID: PMC11106087 DOI: 10.1038/s41467-024-48163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
The mitoribosome translates mitochondrial mRNAs and regulates energy conversion that is a signature of aerobic life forms. We present a 2.2 Å resolution structure of human mitoribosome together with validated mitoribosomal RNA (rRNA) modifications, including aminoacylated CP-tRNAVal. The structure shows how mitoribosomal proteins stabilise binding of mRNA and tRNA helping to align it in the decoding center, whereas the GDP-bound mS29 stabilizes intersubunit communication. Comparison between different states, with respect to tRNA position, allowed us to characterize a non-canonical L1 stalk, and molecular dynamics simulations revealed how it facilitates tRNA transitions in a way that does not require interactions with rRNA. We also report functionally important polyamines that are depleted when cells are subjected to an antibiotic treatment. The structural, biochemical, and computational data illuminate the principal functional components of the translation mechanism in mitochondria and provide a description of the structure and function of the human mitoribosome.
Collapse
Affiliation(s)
- Vivek Singh
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
| | - Yuzuru Itoh
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 113-0033, Tokyo, Japan
| | - Samuel Del'Olio
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Asem Hassan
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, 02115, USA
| | - Andreas Naschberger
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Rasmus Kock Flygaard
- Department of Molecular Biology and Genetics, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Keiichi Izumikawa
- Department of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Shintaro Aibara
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
| | - Juni Andréll
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Paul C Whitford
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, 02115, USA
| | - Antoni Barrientos
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden.
- Westlake University, Hangzhou, China.
| |
Collapse
|
24
|
Hengardi MT, Liang C, Madivannan K, Yang LK, Koduru L, Kanagasundaram Y, Arumugam P. Reversing the directionality of reactions between non-oxidative pentose phosphate pathway and glycolytic pathway boosts mycosporine-like amino acid production in Saccharomyces cerevisiae. Microb Cell Fact 2024; 23:121. [PMID: 38725068 PMCID: PMC11080194 DOI: 10.1186/s12934-024-02365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/15/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Mycosporine-like amino acids (MAAs) are a class of strongly UV-absorbing compounds produced by cyanobacteria, algae and corals and are promising candidates for natural sunscreen components. Low MAA yields from natural sources, coupled with difficulties in culturing its native producers, have catalyzed synthetic biology-guided approaches to produce MAAs in tractable microbial hosts like Escherichia coli, Saccharomyces cerevisiae and Corynebacterium glutamicum. However, the MAA titres obtained in these hosts are still low, necessitating a thorough understanding of cellular factors regulating MAA production. RESULTS To delineate factors that regulate MAA production, we constructed a shinorine (mycosporine-glycine-serine) producing yeast strain by expressing the four MAA biosynthetic enzymes from Nostoc punctiforme in Saccharomyces cerevisiae. We show that shinorine is produced from the pentose phosphate pathway intermediate sedoheptulose 7-phosphate (S7P), and not from the shikimate pathway intermediate 3-dehydroquinate (3DHQ) as previously suggested. Deletions of transaldolase (TAL1) and phosphofructokinase (PFK1/PFK2) genes boosted S7P/shinorine production via independent mechanisms. Unexpectedly, the enhanced S7P/shinorine production in the PFK mutants was not entirely due to increased flux towards the pentose phosphate pathway. We provide multiple lines of evidence in support of a reversed pathway between glycolysis and the non-oxidative pentose phosphate pathway (NOPPP) that boosts S7P/shinorine production in the phosphofructokinase mutant cells. CONCLUSION Reversing the direction of flux between glycolysis and the NOPPP offers a novel metabolic engineering strategy in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Miselle Tiana Hengardi
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore.
- NUS Graduate School for Integrated Sciences and Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore.
| | - Cui Liang
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore, 138602, Singapore
| | - Keshiniy Madivannan
- Innovation & Enterprise, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Singapore, 138632, Singapore
| | - Lay Kien Yang
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore
| | - Lokanand Koduru
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Yoganathan Kanagasundaram
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore
| | - Prakash Arumugam
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, Singapore, 138869, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
25
|
Su M, Roberts SJ, Sutherland JD. Initial Amino Acid:Codon Assignments and Strength of Codon:Anticodon Binding. J Am Chem Soc 2024; 146:12857-12863. [PMID: 38676654 PMCID: PMC11082893 DOI: 10.1021/jacs.4c03644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
The ribosome brings 3'-aminoacyl-tRNA and 3'-peptidyl-tRNAs together to enable peptidyl transfer by binding them in two major ways. First, their anticodon loops are bound to mRNA, itself anchored at the ribosomal subunit interface, by contiguous anticodon:codon pairing augmented by interactions with the decoding center of the small ribosomal subunit. Second, their acceptor stems are bound by the peptidyl transferase center, which aligns the 3'-aminoacyl- and 3'-peptidyl-termini for optimal interaction of the nucleophilic amino group and electrophilic ester carbonyl group. Reasoning that intrinsic codon:anticodon binding might have been a major contributor to bringing tRNA 3'-termini into proximity at an early stage of ribosomal peptide synthesis, we wondered if primordial amino acids might have been assigned to those codons that bind the corresponding anticodon loops most tightly. By measuring the binding of anticodon stem loops to short oligonucleotides, we determined that family-box codon:anticodon pairings are typically tighter than split-box codon:anticodon pairings. Furthermore, we find that two family-box anticodon stem loops can tightly bind a pair of contiguous codons simultaneously, whereas two split-box anticodon stem loops cannot. The amino acids assigned to family boxes correspond to those accessible by what has been termed cyanosulfidic chemistry, supporting the contention that these limited amino acids might have been the first used in primordial coded peptide synthesis.
Collapse
Affiliation(s)
- Meng Su
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge
Biomedical Campus, Cambridge CB2 0QH, U.K.
| | - Samuel J. Roberts
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge
Biomedical Campus, Cambridge CB2 0QH, U.K.
| | - John D. Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge
Biomedical Campus, Cambridge CB2 0QH, U.K.
| |
Collapse
|
26
|
Pietras PJ, Wasilewska-Burczyk A, Pepłowska K, Marczak Ł, Tyczewska A, Grzywacz K. Dynamic protein composition of Saccharomyces cerevisiae ribosomes in response to multiple stress conditions reflects alterations in translation activity. Int J Biol Macromol 2024; 268:132004. [PMID: 38697435 DOI: 10.1016/j.ijbiomac.2024.132004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Ribosomes, intercellular macromolecules responsible for translation in the cell, are composed of RNAs and proteins. While rRNA makes the scaffold of the ribosome and directs the catalytic steps of protein synthesis, ribosomal proteins play a role in the assembly of the subunits and are essential for the proper structure and function of the ribosome. To date researchers identified heterogeneous ribosomes in different developmental and growth stages. We hypothesized that under stress conditions the heterogeneity of the ribosomes may provide means to prepare the cells for quick recovery. Therefore the aim of the study was the identification of heterogeneity of ribosomal proteins within the ribosomes in response to eleven stress conditions in Saccharomyces cerevisiae, by means of a liquid chromatography/high resolution mass spectrometry (LC-HRMS) and translation activity tests. Out of the total of 74 distinct ribosomal proteins identified in the study 14 small ribosomal subunit (RPS) and 8 large ribosomal subunit (RPL) proteins displayed statistically significant differential abundances within the ribosomes under stress. Additionally, significant alterations in the ratios of 7 ribosomal paralog proteins were observed. Accordingly, the translational activity of yeast ribosomes was altered after UV exposure, during sugar starvation, cold shock, high salt, anaerobic conditions, and amino acid starvation.
Collapse
Affiliation(s)
- Piotr J Pietras
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | | | - Kamila Pepłowska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Agata Tyczewska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Kamilla Grzywacz
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland.
| |
Collapse
|
27
|
Akiyama N, Ishiguro K, Yokoyama T, Miyauchi K, Nagao A, Shirouzu M, Suzuki T. Structural insights into the decoding capability of isoleucine tRNAs with lysidine and agmatidine. Nat Struct Mol Biol 2024; 31:817-825. [PMID: 38538915 DOI: 10.1038/s41594-024-01238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 01/31/2024] [Indexed: 05/21/2024]
Abstract
The anticodon modifications of transfer RNAs (tRNAs) finetune the codon recognition on the ribosome for accurate translation. Bacteria and archaea utilize the modified cytidines, lysidine (L) and agmatidine (agm2C), respectively, in the anticodon of tRNAIle to decipher AUA codon. L and agm2C contain long side chains with polar termini, but their functions remain elusive. Here we report the cryogenic electron microscopy structures of tRNAsIle recognizing the AUA codon on the ribosome. Both modifications interact with the third adenine of the codon via a unique C-A geometry. The side chains extend toward 3' direction of the mRNA, and the polar termini form hydrogen bonds with 2'-OH of the residue 3'-adjacent to the AUA codon. Biochemical analyses demonstrated that AUA decoding is facilitated by the additional interaction between the polar termini of the modified cytidines and 2'-OH of the fourth mRNA residue. We also visualized cyclic N6-threonylcarbamoyladenosine (ct6A), another tRNA modification, and revealed a molecular basis how ct6A contributes to efficient decoding.
Collapse
MESH Headings
- RNA, Transfer, Ile/chemistry
- RNA, Transfer, Ile/metabolism
- RNA, Transfer, Ile/genetics
- Cryoelectron Microscopy
- Anticodon/chemistry
- Anticodon/metabolism
- Ribosomes/metabolism
- Ribosomes/chemistry
- Nucleic Acid Conformation
- Models, Molecular
- Codon/genetics
- Lysine/metabolism
- Lysine/chemistry
- Lysine/analogs & derivatives
- Cytidine/analogs & derivatives
- Cytidine/chemistry
- Cytidine/metabolism
- RNA, Transfer/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- Protein Biosynthesis
- Pyrimidine Nucleosides
Collapse
Affiliation(s)
- Naho Akiyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kensuke Ishiguro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Takeshi Yokoyama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
28
|
Ponnusamy T, Velusamy P, Shanmughapriya S. Mrs2-mediated mitochondrial magnesium uptake is essential for the regulation of MCU-mediated mitochondrial Ca 2+ uptake and viability. Mitochondrion 2024; 76:101877. [PMID: 38599304 DOI: 10.1016/j.mito.2024.101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/07/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Mitochondrial Ca2+ uptake is essential in regulating bioenergetics, cell death, and cytosolic Ca2+ transients. Mitochondrial Calcium Uniporter (MCU) mediates the mitochondrial Ca2+ uptake. Though MCU regulation by MICUs is unequivocally established, there needs to be more knowledge of whether divalent cations regulate MCU. Here, we set out to understand the mitochondrial matrix Mg2+-dependent regulation of MCU activity. We showed that decreased matrix [Mg2+] is associated with increased MCU activity and significantly prompted mitochondrial permeability transition pore opening. Our findings support the critical role of mMg2+ in regulating MCU activity.
Collapse
Affiliation(s)
- Thiruvelselvan Ponnusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Prema Velusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Santhanam Shanmughapriya
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
29
|
Fontecilla-Camps JC. Reflections on the Origin of Coded Protein Biosynthesis. Biomolecules 2024; 14:518. [PMID: 38785925 PMCID: PMC11117964 DOI: 10.3390/biom14050518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
The principle of continuity posits that some central features of primordial biocatalytic mechanisms should still be present in the genetically dependent pathway of protein synthesis, a crucial step in the emergence of life. Key bimolecular reactions of this process are catalyzed by DNA-dependent RNA polymerases, aminoacyl-tRNA synthetases, and ribosomes. Remarkably, none of these biocatalysts contribute chemically active groups to their respective reactions. Instead, structural and functional studies have demonstrated that nucleotidic α-phosphate and β-d-ribosyl 2' OH and 3' OH groups can help their own catalysis, a process which, consequently, has been called "substrate-assisted". Furthermore, upon binding, the substrates significantly lower the entropy of activation, exclude water from these catalysts' active sites, and are readily positioned for a reaction. This binding mode has been described as an "entropy trap". The combination of this effect with substrate-assisted catalysis results in reactions that are stereochemically and mechanistically simpler than the ones found in most modern enzymes. This observation is consistent with the way in which primordial catalysts could have operated; it may also explain why, thanks to their complementary reactivities, β-d-ribose and phosphate were naturally selected to be the central components of early coding polymers.
Collapse
|
30
|
Aseev LV, Koledinskaya LS, Boni IV. Extraribosomal Functions of Bacterial Ribosomal Proteins-An Update, 2023. Int J Mol Sci 2024; 25:2957. [PMID: 38474204 DOI: 10.3390/ijms25052957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Ribosomal proteins (r-proteins) are abundant, highly conserved, and multifaceted cellular proteins in all domains of life. Most r-proteins have RNA-binding properties and can form protein-protein contacts. Bacterial r-proteins govern the co-transcriptional rRNA folding during ribosome assembly and participate in the formation of the ribosome functional sites, such as the mRNA-binding site, tRNA-binding sites, the peptidyl transferase center, and the protein exit tunnel. In addition to their primary role in a cell as integral components of the protein synthesis machinery, many r-proteins can function beyond the ribosome (the phenomenon known as moonlighting), acting either as individual regulatory proteins or in complexes with various cellular components. The extraribosomal activities of r-proteins have been studied over the decades. In the past decade, our understanding of r-protein functions has advanced significantly due to intensive studies on ribosomes and gene expression mechanisms not only in model bacteria like Escherichia coli or Bacillus subtilis but also in little-explored bacterial species from various phyla. The aim of this review is to update information on the multiple functions of r-proteins in bacteria.
Collapse
Affiliation(s)
- Leonid V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Irina V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
31
|
Hong HR, Prince CR, Tetreault DD, Wu L, Feaga HA. YfmR is a translation factor that prevents ribosome stalling and cell death in the absence of EF-P. Proc Natl Acad Sci U S A 2024; 121:e2314437121. [PMID: 38349882 PMCID: PMC10895253 DOI: 10.1073/pnas.2314437121] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
Protein synthesis is performed by the ribosome and a host of highly conserved elongation factors. Elongation factor P (EF-P) prevents ribosome stalling at difficult-to-translate sequences, such as polyproline tracts. In bacteria, phenotypes associated with efp deletion range from modest to lethal, suggesting that some species encode an additional translation factor that has similar function to EF-P. Here we identify YfmR as a translation factor that is essential in the absence of EF-P in Bacillus subtilis. YfmR is an ABCF ATPase that is closely related to both Uup and EttA, ABCFs that bind the ribosomal E-site and are conserved in more than 50% of bacterial genomes. We show that YfmR associates with actively translating ribosomes and that depleting YfmR from Δefp cells causes severe ribosome stalling at a polyproline tract in vivo. YfmR depletion from Δefp cells was lethal and caused reduced levels of actively translating ribosomes. Our results therefore identify YfmR as an important translation factor that is essential in B. subtilis in the absence of EF-P.
Collapse
Affiliation(s)
- Hye-Rim Hong
- Department of Microbiology, Cornell University, Ithaca, NY14853
| | | | | | - Letian Wu
- Department of Microbiology, Cornell University, Ithaca, NY14853
| | | |
Collapse
|
32
|
Ali Z, Kukhta T, Trant JF, Sharma P. An Atlas of the base inter-RNA stacks involved in bacterial translation. Biophys Chem 2024; 305:107144. [PMID: 38061282 DOI: 10.1016/j.bpc.2023.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Nucleobase-specific noncovalent interactions play a crucial role in translation. Herein, we provide a comprehensive analysis of the stacks between different RNA components in the crystal structures of the bacterial ribosome caught at different translation stages. Analysis of tRNA||rRNA stacks reveals distinct behaviour; both the A-and E-site tRNAs exhibit unique stacking patterns with 23S rRNA bases, while P-site tRNAs stack with 16S rRNA bases. Furthermore, E-site stacks exhibit diverse face orientations and ring topologies-rare for inter-chain RNA interactions-with higher average interaction energies than A or P-site stacks. This suggests that stacking may be essential for stabilizing tRNA progression through the E-site. Additionally, mRNA||rRNA stacks reveal other geometries, which depend on the tRNA binding site, whereas 16S rRNA||23S rRNA stacks highlight the importance of specific bases in maintaining the integrity of the translational complex by linking the two rRNAs. Furthermore, tRNA||mRNA stacks exhibit distinct geometries and energetics at the E-site, indicating their significance during tRNA translocation and elimination. Overall, both A and E-sites display a more diverse distribution of inter-RNA stacks compared to the P-site. Stacking interactions in the active ribosome are not simply accidental byproducts of biochemistry but are likely invoked to compensate and support the integrity and dynamics of translation.
Collapse
MESH Headings
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Ribosomes/chemistry
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Nucleic Acid Conformation
Collapse
Affiliation(s)
- Zakir Ali
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Teagan Kukhta
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada; We-Spark Health Institute, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada; Binary Star Research Services, LaSalle, ON N9J 3X8, Canada.
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India; Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada.
| |
Collapse
|
33
|
Kumar N, Sharma S, Kaushal PS. Cryo- EM structure of the mycobacterial 70S ribosome in complex with ribosome hibernation promotion factor RafH. Nat Commun 2024; 15:638. [PMID: 38245551 PMCID: PMC10799931 DOI: 10.1038/s41467-024-44879-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Ribosome hibernation is a key survival strategy bacteria adopt under environmental stress, where a protein, hibernation promotion factor (HPF), transitorily inactivates the ribosome. Mycobacterium tuberculosis encounters hypoxia (low oxygen) as a major stress in the host macrophages, and upregulates the expression of RafH protein, which is crucial for its survival. The RafH, a dual domain HPF, an orthologue of bacterial long HPF (HPFlong), hibernates ribosome in 70S monosome form, whereas in other bacteria, the HPFlong induces 70S ribosome dimerization and hibernates its ribosome in 100S disome form. Here, we report the cryo- EM structure of M. smegmatis, a close homolog of M. tuberculosis, 70S ribosome in complex with the RafH factor at an overall 2.8 Å resolution. The N- terminus domain (NTD) of RafH binds to the decoding center, similarly to HPFlong NTD. In contrast, the C- terminus domain (CTD) of RafH, which is larger than the HPFlong CTD, binds to a distinct site at the platform binding center of the ribosomal small subunit. The two domain-connecting linker regions, which remain mostly disordered in earlier reported HPFlong structures, interact mainly with the anti-Shine Dalgarno sequence of the 16S rRNA.
Collapse
Affiliation(s)
- Niraj Kumar
- Structural Biology & Translation Regulation Laboratory, UNESCO-DBT, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India
| | - Shivani Sharma
- Structural Biology & Translation Regulation Laboratory, UNESCO-DBT, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India
| | - Prem S Kaushal
- Structural Biology & Translation Regulation Laboratory, UNESCO-DBT, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India.
| |
Collapse
|
34
|
Srivastava M, Dukeshire MR, Mir Q, Omoru OB, Manzourolajdad A, Janga SC. Experimental and computational methods for studying the dynamics of RNA-RNA interactions in SARS-COV2 genomes. Brief Funct Genomics 2024; 23:46-54. [PMID: 36752040 PMCID: PMC10799312 DOI: 10.1093/bfgp/elac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/24/2022] [Accepted: 11/11/2022] [Indexed: 02/09/2023] Open
Abstract
Long-range ribonucleic acid (RNA)-RNA interactions (RRI) are prevalent in positive-strand RNA viruses, including Beta-coronaviruses, and these take part in regulatory roles, including the regulation of sub-genomic RNA production rates. Crosslinking of interacting RNAs and short read-based deep sequencing of resulting RNA-RNA hybrids have shown that these long-range structures exist in severe acute respiratory syndrome coronavirus (SARS-CoV)-2 on both genomic and sub-genomic levels and in dynamic topologies. Furthermore, co-evolution of coronaviruses with their hosts is navigated by genetic variations made possible by its large genome, high recombination frequency and a high mutation rate. SARS-CoV-2's mutations are known to occur spontaneously during replication, and thousands of aggregate mutations have been reported since the emergence of the virus. Although many long-range RRIs have been experimentally identified using high-throughput methods for the wild-type SARS-CoV-2 strain, evolutionary trajectory of these RRIs across variants, impact of mutations on RRIs and interaction of SARS-CoV-2 RNAs with the host have been largely open questions in the field. In this review, we summarize recent computational tools and experimental methods that have been enabling the mapping of RRIs in viral genomes, with a specific focus on SARS-CoV-2. We also present available informatics resources to navigate the RRI maps and shed light on the impact of mutations on the RRI space in viral genomes. Investigating the evolution of long-range RNA interactions and that of virus-host interactions can contribute to the understanding of new and emerging variants as well as aid in developing improved RNA therapeutics critical for combating future outbreaks.
Collapse
Affiliation(s)
- Mansi Srivastava
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, 535 West Michigan Street, Indianapolis, Indiana 46202, USA
- Department of Biology, Indiana University, 1001 East 3 St, Bloomington, Indiana 47405, USA
| | - Matthew R Dukeshire
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, 535 West Michigan Street, Indianapolis, Indiana 46202, USA
| | - Quoseena Mir
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, 535 West Michigan Street, Indianapolis, Indiana 46202, USA
| | - Okiemute Beatrice Omoru
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, 535 West Michigan Street, Indianapolis, Indiana 46202, USA
| | - Amirhossein Manzourolajdad
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, 535 West Michigan Street, Indianapolis, Indiana 46202, USA
- Department of Computer Science, Colgate University, Hamilton, NY, USA
| | - Sarath Chandra Janga
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, 535 West Michigan Street, Indianapolis, Indiana 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Medical Research and Library Building, 975 West Walnut Street, Indianapolis, Indiana 46202, USA
- Centre for Computational Biology and Bioinformatics, Indiana University School of Medicine, 5021 Health Information and Translational Sciences (HITS), 410 West 10th Street, Indianapolis, Indiana 46202, USA
| |
Collapse
|
35
|
Phelps GA, Cheramie MN, Fernando DM, Selchow P, Meyer CJ, Waidyarachchi SL, Dharuman S, Liu J, Meuli M, Molin MD, Killam BY, Murphy PA, Reeve SM, Wilt LA, Anderson SM, Yang L, Lee RB, Temrikar ZH, Lukka PB, Meibohm B, Polikanov YS, Hobbie SN, Böttger EC, Sander P, Lee RE. Development of 2nd generation aminomethyl spectinomycins that overcome native efflux in Mycobacterium abscessus. Proc Natl Acad Sci U S A 2024; 121:e2314101120. [PMID: 38165935 PMCID: PMC10786304 DOI: 10.1073/pnas.2314101120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/11/2023] [Indexed: 01/04/2024] Open
Abstract
Mycobacterium abscessus (Mab), a nontuberculous mycobacterial (NTM) species, is an emerging pathogen with high intrinsic drug resistance. Current standard-of-care therapy results in poor outcomes, demonstrating the urgent need to develop effective antimycobacterial regimens. Through synthetic modification of spectinomycin (SPC), we have identified a distinct structural subclass of N-ethylene linked aminomethyl SPCs (eAmSPCs) that are up to 64-fold more potent against Mab over the parent SPC. Mechanism of action and crystallography studies demonstrate that the eAmSPCs display a mode of ribosomal inhibition consistent with SPC. However, they exert their increased antimicrobial activity through enhanced accumulation, largely by circumventing efflux mechanisms. The N-ethylene linkage within this series plays a critical role in avoiding TetV-mediated efflux, as lead eAmSPC 2593 displays a mere fourfold susceptibility improvement against Mab ΔtetV, in contrast to the 64-fold increase for SPC. Even a minor shortening of the linkage by a single carbon, akin to 1st generation AmSPC 1950, results in a substantial increase in MICs and a 16-fold rise in susceptibility against Mab ΔtetV. These shifts suggest that longer linkages might modify the kinetics of drug expulsion by TetV, ultimately shifting the equilibrium towards heightened intracellular concentrations and enhanced antimicrobial efficacy. Furthermore, lead eAmSPCs were also shown to synergize with various classes of anti-Mab antibiotics and retain activity against clinical isolates and other mycobacterial strains. Encouraging pharmacokinetic profiles coupled with robust efficacy in Mab murine infection models suggest that eAmSPCs hold the potential to be developed into treatments for Mab and other NTM infections.
Collapse
Affiliation(s)
- Gregory A. Phelps
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN38103
| | - Martin N. Cheramie
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Dinesh M. Fernando
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Petra Selchow
- Institute of Medical Microbiology, University of Zurich, ZurichCH-8006, Switzerland
| | - Christopher J. Meyer
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Samanthi L. Waidyarachchi
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Suresh Dharuman
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Michael Meuli
- Institute of Medical Microbiology, University of Zurich, ZurichCH-8006, Switzerland
- National Reference Center for Mycobacteria, ZurichCH-8006, Switzerland
| | - Michael Dal Molin
- Institute of Medical Microbiology, University of Zurich, ZurichCH-8006, Switzerland
| | - Benjamin Y. Killam
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL60607
| | - Patricia A. Murphy
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Stephanie M. Reeve
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Laura A. Wilt
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Shelby M. Anderson
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Robin B. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Zaid H. Temrikar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN38163
| | - Pradeep B. Lukka
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN38163
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN38163
| | - Yury S. Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL60607
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL60607
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL60607
| | - Sven N. Hobbie
- Institute of Medical Microbiology, University of Zurich, ZurichCH-8006, Switzerland
| | - Erik C. Böttger
- Institute of Medical Microbiology, University of Zurich, ZurichCH-8006, Switzerland
- National Reference Center for Mycobacteria, ZurichCH-8006, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, ZurichCH-8006, Switzerland
- National Reference Center for Mycobacteria, ZurichCH-8006, Switzerland
| | - Richard E. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105
| |
Collapse
|
36
|
Garaeva N, Fatkhullin B, Murzakhanov F, Gafurov M, Golubev A, Bikmullin A, Glazyrin M, Kieffer B, Jenner L, Klochkov V, Aganov A, Rogachev A, Ivankov O, Validov S, Yusupov M, Usachev K. Structural aspects of RimP binding on small ribosomal subunit from Staphylococcus aureus. Structure 2024; 32:74-82.e5. [PMID: 38000368 DOI: 10.1016/j.str.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/18/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023]
Abstract
Ribosome biogenesis is an energy-intense multistep process where even minimal defects can cause severe phenotypes up to cell death. Ribosome assembly is facilitated by biogenesis factors such as ribosome assembly factors. These proteins facilitate the interaction of ribosomal proteins with rRNA and correct rRNA folding. One of these maturation factors is RimP which is required for efficient 16S rRNA processing and 30S ribosomal subunit assembly. Here, we describe the binding mode of Staphylococcus aureus RimP to the small ribosomal subunit and present a 4.2 Å resolution cryo-EM reconstruction of the 30S-RimP complex. Together with the solution structure of RimP solved by NMR spectroscopy and RimP-uS12 complex analysis by EPR, DEER, and SAXS approaches, we show the specificity of RimP binding to the 30S subunit from S. aureus. We believe the results presented in this work will contribute to the understanding of the RimP role in the ribosome assembly mechanism.
Collapse
Affiliation(s)
- Nataliia Garaeva
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation; Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russian Federation
| | - Bulat Fatkhullin
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67400 Illkirch, France; Institute of Protein Research RAS, 4 Institutskaya, Pushchino 142290, Russian Federation
| | - Fadis Murzakhanov
- Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
| | - Marat Gafurov
- Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
| | - Alexander Golubev
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation
| | - Aydar Bikmullin
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russian Federation
| | - Maxim Glazyrin
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation
| | - Bruno Kieffer
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67400 Illkirch, France
| | - Lasse Jenner
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67400 Illkirch, France
| | - Vladimir Klochkov
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
| | - Albert Aganov
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
| | - Andrey Rogachev
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russian Federation; Joint Institute for Nuclear Research, Dubna 141980, Russian Federation
| | - Oleksandr Ivankov
- Joint Institute for Nuclear Research, Dubna 141980, Russian Federation
| | - Shamil Validov
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation; Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russian Federation
| | - Marat Yusupov
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation; Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67400 Illkirch, France.
| | - Konstantin Usachev
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation; Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russian Federation.
| |
Collapse
|
37
|
Semchonok DA, Kyrilis FL, Hamdi F, Kastritis PL. Cryo-EM of a heterogeneous biochemical fraction elucidates multiple protein complexes from a multicellular thermophilic eukaryote. J Struct Biol X 2023; 8:100094. [PMID: 37638207 PMCID: PMC10451023 DOI: 10.1016/j.yjsbx.2023.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/29/2023] Open
Abstract
Biomolecular complexes and their interactions govern cellular structure and function. Understanding their architecture is a prerequisite for dissecting the cell's inner workings, but their higher-order assembly is often transient and challenging for structural analysis. Here, we performed cryo-EM on a single, highly heterogeneous biochemical fraction derived from Chaetomium thermophilum cell extracts to visualize the biomolecular content of the multicellular eukaryote. After cryo-EM single-particle image processing, results showed that a simultaneous three-dimensional structural characterization of multiple chemically diverse biomacromolecules is feasible. Namely, the thermophilic, eukaryotic complexes of (a) ATP citrate-lyase, (b) Hsp90, (c) 20S proteasome, (d) Hsp60 and (e) UDP-glucose pyrophosphorylase were characterized. In total, all five complexes have been structurally dissected in a thermophilic eukaryote in a total imaged sample area of 190.64 μm2, and two, in particular, 20S proteasome and Hsp60, exhibit side-chain resolution features. The C. thermophilum Hsp60 near-atomic model was resolved at 3.46 Å (FSC = 0.143) and shows a hinge-like conformational change of its equatorial domain, highly similar to the one previously shown for its bacterial orthologue, GroEL. This work demonstrates that cryo-EM of cell extracts will greatly accelerate the structural analysis of cellular complexes and provide unprecedented opportunities to annotate architectures of biomolecules in a holistic approach.
Collapse
Affiliation(s)
- Dmitry A. Semchonok
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
| | - Fotis L. Kyrilis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Farzad Hamdi
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
| | - Panagiotis L. Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, Halle/Saale, Germany
| |
Collapse
|
38
|
Ni J, Li S, Lai Y, Wang Z, Wang D, Tan Y, Fan Y, Lu J, Yao YF. Global profiling of ribosomal protein acetylation reveals essentiality of acetylation homeostasis in maintaining ribosome assembly and function. Nucleic Acids Res 2023; 51:10411-10427. [PMID: 37742082 PMCID: PMC10602876 DOI: 10.1093/nar/gkad768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/15/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Acetylation is a global post-translational modification that regulates various cellular processes. Bacterial acetylomic studies have revealed extensive acetylation of ribosomal proteins. However, the role of acetylation in regulating ribosome function remains poorly understood. In this study, we systematically profiled ribosomal protein acetylation and identified a total of 289 acetylated lysine residues in 52 ribosomal proteins (r-proteins) from Salmonella Typhimurium. The majority of acetylated lysine residues of r-proteins were found to be regulated by both acetyltransferase Pat and metabolic intermediate acetyl phosphate. Our results show that acetylation plays a critical role in the assembly of the mature 70S ribosome complex by modulating r-proteins binding to rRNA. Moreover, appropriate acetylation is important for the interactions between elongation factors and polysomes, as well as regulating ribosome translation efficiency and fidelity. Dysregulation of acetylation could alter bacterial sensitivity to ribosome-targeting antibiotics. Collectively, our data suggest that the acetylation homeostasis of ribosomes is crucial for their assembly and function. Furthermore, this mechanism may represent a universal response to environmental signals across different cell types.
Collapse
Affiliation(s)
- Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuxian Li
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanan Lai
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zuoqiang Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yongcong Tan
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yongqiang Fan
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai 200025, China
| |
Collapse
|
39
|
Yang J, Zhang L, Qiao W, Luo Y. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e353. [PMID: 37674971 PMCID: PMC10477518 DOI: 10.1002/mco2.353] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Tuberculosis (TB) remains a significant public health concern in the 21st century, especially due to drug resistance, coinfection with diseases like immunodeficiency syndrome (AIDS) and coronavirus disease 2019, and the lengthy and costly treatment protocols. In this review, we summarize the pathogenesis of TB infection, therapeutic targets, and corresponding modulators, including first-line medications, current clinical trial drugs and molecules in preclinical assessment. Understanding the mechanisms of Mycobacterium tuberculosis (Mtb) infection and important biological targets can lead to innovative treatments. While most antitubercular agents target pathogen-related processes, host-directed therapy (HDT) modalities addressing immune defense, survival mechanisms, and immunopathology also hold promise. Mtb's adaptation to the human host involves manipulating host cellular mechanisms, and HDT aims to disrupt this manipulation to enhance treatment effectiveness. Our review provides valuable insights for future anti-TB drug development efforts.
Collapse
Affiliation(s)
- Jiaxing Yang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Laiying Zhang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Wenliang Qiao
- Department of Thoracic Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Lung Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
| | - Youfu Luo
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
40
|
Bubunenko MG, Korepanov AP. The P-Site Loop of the Universally Conserved Bacterial Ribosomal Protein L5 Is Required for Maintaining Both Translation Rate and Fidelity. Int J Mol Sci 2023; 24:14285. [PMID: 37762588 PMCID: PMC10531944 DOI: 10.3390/ijms241814285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
The bacterial ribosomal 5S rRNA-binding protein L5 is universally conserved (uL5). It contains the so-called P-site loop (PSL), which contacts the P-site tRNA in the ribosome. Certain PSL mutations in yeast are lethal, suggesting that the loop plays an important role in translation. In this work, for the first time, a viable Escherichia coli strain was obtained with the deletion of the major part of the PSL (residues 73-80) of the uL5 protein. The deletion conferred cold sensitivity and drastically reduced the growth rate and overall protein synthesizing capacity of the mutant. Translation rate is decreased in mutant cells as compared to the control. At the same time, the deletion causes increased levels of -1 frameshifting and readthrough of all three stop codons. In general, the results show that the PSL of the uL5 is required for maintaining both the accuracy and rate of protein synthesis in vivo.
Collapse
Affiliation(s)
- Mikhail G. Bubunenko
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Alexey P. Korepanov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
41
|
Mao G, Srivastava AS, Wu S, Kosek D, Kirsebom LA. Importance of residue 248 in Escherichia coli RNase P RNA mediated cleavage. Sci Rep 2023; 13:14140. [PMID: 37644068 PMCID: PMC10465520 DOI: 10.1038/s41598-023-41203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
tRNA genes are transcribed as precursors and RNase P generates the matured 5' end of tRNAs. It has been suggested that residue - 1 (the residue immediately 5' of the scissile bond) in the pre-tRNA interacts with the well-conserved bacterial RNase P RNA (RPR) residue A248 (Escherichia coli numbering). The way A248 interacts with residue - 1 is not clear. To gain insight into the role of A248, we analyzed cleavage as a function of A248 substitutions and N-1 nucleobase identity by using pre-tRNA and three model substrates. Our findings are consistent with a model where the structural topology of the active site varies and depends on the identity of the nucleobases at, and in proximity to, the cleavage site and their potential to interact. This leads to positioning of Mg2+ that activates the water that acts as the nucleophile resulting in efficient and correct cleavage. We propose that in addition to be involved in anchoring the substrate the role of A248 is to exclude bulk water from access to the amino acid acceptor stem, thereby preventing non-specific hydrolysis of the pre-tRNA. Finally, base stacking is discussed as a way to protect functionally important base-pairing interactions from non-specific hydrolysis, thereby ensuring high fidelity during RNA processing and the decoding of mRNA.
Collapse
Affiliation(s)
- Guanzhong Mao
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden
| | - Abhishek S Srivastava
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden
| | - Shiying Wu
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden
| | - David Kosek
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden.
| |
Collapse
|
42
|
van den Elzen A, Helena-Bueno K, Brown CR, Chan LI, Melnikov S. Ribosomal proteins can hold a more accurate record of bacterial thermal adaptation compared to rRNA. Nucleic Acids Res 2023; 51:8048-8059. [PMID: 37395434 PMCID: PMC10450194 DOI: 10.1093/nar/gkad560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023] Open
Abstract
Ribosomal genes are widely used as 'molecular clocks' to infer evolutionary relationships between species. However, their utility as 'molecular thermometers' for estimating optimal growth temperature of microorganisms remains uncertain. Previously, some estimations were made using the nucleotide composition of ribosomal RNA (rRNA), but the universal application of this approach was hindered by numerous outliers. In this study, we aimed to address this problem by identifying additional indicators of thermal adaptation within the sequences of ribosomal proteins. By comparing sequences from 2021 bacteria with known optimal growth temperature, we identified novel indicators among the metal-binding residues of ribosomal proteins. We found that these residues serve as conserved adaptive features for bacteria thriving above 40°C, but not at lower temperatures. Furthermore, the presence of these metal-binding residues exhibited a stronger correlation with the optimal growth temperature of bacteria compared to the commonly used correlation with the 16S rRNA GC content. And an even more accurate correlation was observed between the optimal growth temperature and the YVIWREL amino acid content within ribosomal proteins. Overall, our work suggests that ribosomal proteins contain a more accurate record of bacterial thermal adaptation compared to rRNA. This finding may simplify the analysis of unculturable and extinct species.
Collapse
Affiliation(s)
| | - Karla Helena-Bueno
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Charlotte R Brown
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Lewis I Chan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Sergey V Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
43
|
Seely SM, Parajuli NP, De Tarafder A, Ge X, Sanyal S, Gagnon MG. Molecular basis of the pleiotropic effects by the antibiotic amikacin on the ribosome. Nat Commun 2023; 14:4666. [PMID: 37537169 PMCID: PMC10400623 DOI: 10.1038/s41467-023-40416-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
Aminoglycosides are a class of antibiotics that bind to ribosomal RNA and exert pleiotropic effects on ribosome function. Amikacin, the semisynthetic derivative of kanamycin, is commonly used for treating severe infections with multidrug-resistant, aerobic Gram-negative bacteria. Amikacin carries the 4-amino-2-hydroxy butyrate (AHB) moiety at the N1 amino group of the central 2-deoxystreptamine (2-DOS) ring, which may confer amikacin a unique ribosome inhibition profile. Here we use in vitro fast kinetics combined with X-ray crystallography and cryo-EM to dissect the mechanisms of ribosome inhibition by amikacin and the parent compound, kanamycin. Amikacin interferes with tRNA translocation, release factor-mediated peptidyl-tRNA hydrolysis, and ribosome recycling, traits attributed to the additional interactions amikacin makes with the decoding center. The binding site in the large ribosomal subunit proximal to the 3'-end of tRNA in the peptidyl (P) site lays the groundwork for rational design of amikacin derivatives with improved antibacterial properties.
Collapse
Affiliation(s)
- Savannah M Seely
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Narayan P Parajuli
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Arindam De Tarafder
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden.
| | - Matthieu G Gagnon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
44
|
Singh V, Itoh Y, Del'Olio S, Hassan A, Naschberger A, Flygaard RK, Nobe Y, Izumikawa K, Aibara S, Andréll J, Whitford PC, Barrientos A, Taoka M, Amunts A. Structure of mitoribosome reveals mechanism of mRNA binding, tRNA interactions with L1 stalk, roles of cofactors and rRNA modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542018. [PMID: 37503168 PMCID: PMC10369894 DOI: 10.1101/2023.05.24.542018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The mitoribosome translates mitochondrial mRNAs and regulates energy conversion that is a signature of aerobic life forms. We present a 2.2 Å resolution structure of human mitoribosome together with validated mitoribosomal RNA (rRNA) modifications, including aminoacylated CP-tRNA Val . The structure shows how mitoribosomal proteins stabilise binding of mRNA and tRNA helping to align it in the decoding center, whereas the GDP-bound mS29 stabilizes intersubunit communication. Comparison between different states, with respect to tRNA position, allowed to characterize a non-canonical L1 stalk, and molecular dynamics simulations revealed how it facilitates tRNA transition in a way that does not require interactions with rRNA. We also report functionally important polyamines that are depleted when cells are subjected to an antibiotic treatment. The structural, biochemical, and computational data illuminate the principal functional components of the translation mechanism in mitochondria and provide the most complete description so far of the structure and function of the human mitoribosome.
Collapse
|
45
|
Addabbo RM, Hutchinson RB, Allaman HJ, Dalphin MD, Mecha MF, Liu Y, Staikos A, Cavagnero S. Critical Beginnings: Selective Tuning of Solubility and Structural Accuracy of Newly Synthesized Proteins by the Hsp70 Chaperone System. J Phys Chem B 2023; 127:3990-4014. [PMID: 37130318 PMCID: PMC10829761 DOI: 10.1021/acs.jpcb.2c08485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Proteins are particularly prone to aggregation immediately after release from the ribosome, and it is therefore important to elucidate the role of chaperones during these key steps of protein life. The Hsp70 and trigger factor (TF) chaperone systems interact with nascent proteins during biogenesis and immediately post-translationally. It is unclear, however, whether these chaperones can prevent formation of soluble and insoluble aggregates. Here, we address this question by monitoring the solubility and structural accuracy of globin proteins biosynthesized in an Escherichia coli cell-free system containing different concentrations of the bacterial Hsp70 and TF chaperones. We find that Hsp70 concentrations required to grant solubility to newly synthesized proteins are extremely sensitive to client-protein sequence. Importantly, Hsp70 concentrations yielding soluble client proteins are insufficient to prevent formation of soluble aggregates. In fact, for some aggregation-prone protein variants, avoidance of soluble-aggregate formation demands Hsp70 concentrations that exceed cellular levels in E. coli. In all, our data highlight the prominent role of soluble aggregates upon nascent-protein release from the ribosome and show the limitations of the Hsp70 chaperone system in the case of highly aggregation-prone proteins. These results demonstrate the need to devise better strategies to prevent soluble-aggregate formation upon release from the ribosome.
Collapse
Affiliation(s)
- Rayna M. Addabbo
- Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, 53706, U.S.A
| | - Rachel B. Hutchinson
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| | - Heather J. Allaman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| | - Matthew D. Dalphin
- Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, 53706, U.S.A
| | - Miranda F. Mecha
- Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, 53706, U.S.A
| | - Yue Liu
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| | - Alexios Staikos
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| | - Silvia Cavagnero
- Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, 53706, U.S.A
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A
| |
Collapse
|
46
|
Holm M, Natchiar SK, Rundlet EJ, Myasnikov AG, Watson ZL, Altman RB, Wang HY, Taunton J, Blanchard SC. mRNA decoding in human is kinetically and structurally distinct from bacteria. Nature 2023; 617:200-207. [PMID: 37020024 PMCID: PMC10156603 DOI: 10.1038/s41586-023-05908-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
In all species, ribosomes synthesize proteins by faithfully decoding messenger RNA (mRNA) nucleotide sequences using aminoacyl-tRNA substrates. Current knowledge of the decoding mechanism derives principally from studies on bacterial systems1. Although key features are conserved across evolution2, eukaryotes achieve higher-fidelity mRNA decoding than bacteria3. In human, changes in decoding fidelity are linked to ageing and disease and represent a potential point of therapeutic intervention in both viral and cancer treatment4-6. Here we combine single-molecule imaging and cryogenic electron microscopy methods to examine the molecular basis of human ribosome fidelity to reveal that the decoding mechanism is both kinetically and structurally distinct from that of bacteria. Although decoding is globally analogous in both species, the reaction coordinate of aminoacyl-tRNA movement is altered on the human ribosome and the process is an order of magnitude slower. These distinctions arise from eukaryote-specific structural elements in the human ribosome and in the elongation factor eukaryotic elongation factor 1A (eEF1A) that together coordinate faithful tRNA incorporation at each mRNA codon. The distinct nature and timing of conformational changes within the ribosome and eEF1A rationalize how increased decoding fidelity is achieved and potentially regulated in eukaryotic species.
Collapse
Affiliation(s)
- Mikael Holm
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - S Kundhavai Natchiar
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Emily J Rundlet
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, New York, NY, USA
| | - Alexander G Myasnikov
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
- Dubochet Center for Imaging (DCI), EPFL, Lausanne, Switzerland
| | - Zoe L Watson
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Roger B Altman
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Hao-Yuan Wang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Scott C Blanchard
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA.
- Chemical Biology & Therapeutics, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
47
|
Lomakin IB, Devarkar SC, Patel S, Grada A, Bunick C. Sarecycline inhibits protein translation in Cutibacterium acnes 70S ribosome using a two-site mechanism. Nucleic Acids Res 2023; 51:2915-2930. [PMID: 36864821 PMCID: PMC10085706 DOI: 10.1093/nar/gkad103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 03/04/2023] Open
Abstract
Acne vulgaris is a chronic disfiguring skin disease affecting ∼1 billion people worldwide, often having persistent negative effects on physical and mental health. The Gram-positive anaerobe, Cutibacterium acnes is implicated in acne pathogenesis and is, therefore, a main target for antibiotic-based acne therapy. We determined a 2.8-Å resolution structure of the 70S ribosome of Cutibacterium acnes by cryogenic electron microscopy and discovered that sarecycline, a narrow-spectrum antibiotic against Cutibacterium acnes, may inhibit two active sites of this bacterium's ribosome in contrast to the one site detected previously on the model ribosome of Thermus thermophilus. Apart from the canonical binding site at the mRNA decoding center, the second binding site for sarecycline exists at the nascent peptide exit tunnel, reminiscent of the macrolides class of antibiotics. The structure also revealed Cutibacterium acnes-specific features of the ribosomal RNA and proteins. Unlike the ribosome of the Gram-negative bacterium Escherichia coli, Cutibacterium acnes ribosome has two additional proteins, bS22 and bL37, which are also present in the ribosomes of Mycobacterium smegmatis and Mycobacterium tuberculosis. We show that bS22 and bL37 have antimicrobial properties and may be involved in maintaining the healthy homeostasis of the human skin microbiome.
Collapse
Affiliation(s)
- Ivan B Lomakin
- Department of Dermatology, Yale University School of Medicine, New Haven, CT06520, USA
| | - Swapnil C Devarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520, USA
| | - Shivali Patel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520, USA
| | - Ayman Grada
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Christopher G Bunick
- Department of Dermatology, Yale University School of Medicine, New Haven, CT06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520, USA
- Program in Translational Biomedicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
48
|
Yu T, Jiang J, Yu Q, Li X, Zeng F. Structural Insights into the Distortion of the Ribosomal Small Subunit at Different Magnesium Concentrations. Biomolecules 2023; 13:biom13030566. [PMID: 36979501 PMCID: PMC10046523 DOI: 10.3390/biom13030566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Magnesium ions are abundant and play indispensable functions in the ribosome. A decrease in Mg2+ concentration causes 70S ribosome dissociation and subsequent unfolding. Structural distortion at low Mg2+ concentrations has been observed in an immature pre50S, while the structural changes in mature subunits have not yet been studied. Here, we purified the 30S subunits of E. coli cells under various Mg2+ concentrations and analyzed their structural distortion by cryo-electron microscopy. Upon systematically interrogating the structural heterogeneity within the 1 mM Mg2+ dataset, we observed 30S particles with different levels of structural distortion in the decoding center, h17, and the 30S head. Our model showed that, when the Mg2+ concentration decreases, the decoding center distorts, starting from h44 and followed by the shifting of h18 and h27, as well as the dissociation of ribosomal protein S12. Mg2+ deficiency also eliminates the interactions between h17, h10, h15, and S16, resulting in the movement of h17 towards the tip of h6. More flexible structures were observed in the 30S head and platform, showing high variability in these regions. In summary, the structures resolved here showed several prominent distortion events in the decoding center and h17. The requirement for Mg2+ in ribosomes suggests that the conformational changes reported here are likely shared due to a lack of cellular Mg2+ in all domains of life.
Collapse
Affiliation(s)
- Ting Yu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Shenzhen 518055, China
| | - Junyi Jiang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Shenzhen 518055, China
| | - Qianxi Yu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Shenzhen 518055, China
| | - Xin Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Shenzhen 518055, China
| | - Fuxing Zeng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Shenzhen 518055, China
| |
Collapse
|
49
|
Nguyen H, Hoffer E, Fagan C, Maehigashi T, Dunham C. Structural basis for reduced ribosomal A-site fidelity in response to P-site codon-anticodon mismatches. J Biol Chem 2023; 299:104608. [PMID: 36924943 PMCID: PMC10140155 DOI: 10.1016/j.jbc.2023.104608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
Rapid and accurate translation is essential in all organisms to produce properly folded and functional proteins. mRNA codons that define the protein coding sequences are decoded by tRNAs on the ribosome in the aminoacyl (A) binding site. The mRNA codon and the tRNA anticodon interaction is extensively monitored by the ribosome to ensure accuracy in tRNA selection. While other polymerases that synthesize DNA and RNA can correct for misincorporations, the ribosome is unable to correct mistakes. Instead, when a misincorporation occurs, the mismatched tRNA-mRNA pair moves to the peptidyl (P) site and from this location, causes a reduction in the fidelity at the A site, triggering post-peptidyl transfer quality control. This reduced fidelity allows for additional incorrect tRNAs to be accepted and for release factor 2 (RF2) to recognize sense codons, leading to hydrolysis of the aberrant peptide. Here, we present crystal structures of the ribosome containing a tRNALys in the P site with a U•U mismatch with the mRNA codon. We find that when the mismatch occurs in the second position of the P-site codon-anticodon interaction, the first nucleotide of the A-site codon flips from the mRNA path to engage highly conserved 16S rRNA nucleotide A1493 in the decoding center. We propose that this mRNA nucleotide mispositioning leads to reduced fidelity at the A site. Further, this state may provide an opportunity for RF2 to initiate premature termination before erroneous nascent chains disrupt the cellular proteome.
Collapse
Affiliation(s)
- HaAn Nguyen
- Department of Chemistry, Emory University, Atlanta, GA USA; Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
| | - EricD Hoffer
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA; Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, GA USA
| | - CrystalE Fagan
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA; Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, GA USA
| | - Tatsuya Maehigashi
- Department of Chemistry, Emory University, Atlanta, GA USA; Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
| | - ChristineM Dunham
- Department of Chemistry, Emory University, Atlanta, GA USA; Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA.
| |
Collapse
|
50
|
Wada A, Ueta M, Wada C. The Discovery of Ribosomal Protein bL31 from Escherichia coli: A Long Story Revisited. Int J Mol Sci 2023; 24:ijms24043445. [PMID: 36834855 PMCID: PMC9966373 DOI: 10.3390/ijms24043445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Ribosomal protein bL31 in Escherichia coli was initially detected as a short form (62 amino acids) using Kaltschmidt and Wittmann's two-dimensional polyacrylamide gel electrophoresis (2D PAGE), but the intact form (70 amino acids) was subsequently identified by means of Wada's improved radical-free and highly reducing (RFHR) 2D PAGE, which was consistent with the analysis of its encoding gene rpmE. Ribosomes routinely prepared from the K12 wild-type strain contained both forms of bL31. ΔompT cells, which lack protease 7, only contained intact bL31, suggesting that protease 7 cleaves intact bL31 and generates short bL31 during ribosome preparation from wild-type cells. Intact bL31 was required for subunit association, and its eight cleaved C-terminal amino acids contributed to this function. 70S ribosomes protected bL31 from cleavage by protease 7, but free 50S did not. In vitro translation was assayed using three systems. The translational activities of wild-type and ΔrpmE ribosomes were 20% and 40% lower than those of ΔompT ribosomes, which contained one copy of intact bL31. The deletion of bL31 reduces cell growth. A structural analysis predicted that bL31 spans the 30S and 50S subunits, consistent with its functions in 70S association and translation. It is important to re-analyze in vitro translation with ribosomes containing only intact bL31.
Collapse
|