1
|
Emura N, Wavreil FDM, Fries A, Yajima M. The evolutionary modifications of a GoLoco motif in the AGS protein facilitate micromere formation in the sea urchin embryo. eLife 2024; 13:RP100086. [PMID: 39714020 DOI: 10.7554/elife.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
The evolutionary introduction of asymmetric cell division (ACD) into the developmental program facilitates the formation of a new cell type, contributing to developmental diversity and, eventually, species diversification. The micromere of the sea urchin embryo may serve as one of those examples: an ACD at the 16-cell stage forms micromeres unique to echinoids among echinoderms. We previously reported that a polarity factor, activator of G-protein signaling (AGS), plays a crucial role in micromere formation. However, AGS and its associated ACD factors are present in all echinoderms and across most metazoans. This raises the question of what evolutionary modifications of AGS protein or its surrounding molecular environment contributed to the evolutionary acquisition of micromeres only in echinoids. In this study, we learned that the GoLoco motifs at the AGS C-terminus play critical roles in regulating micromere formation in sea urchin embryos. Further, other echinoderms' AGS or chimeric AGS that contain the C-terminus of AGS orthologs from various organisms showed varied localization and function in micromere formation. In contrast, the sea star or the pencil urchin orthologs of other ACD factors were consistently localized at the vegetal cortex in the sea urchin embryo, suggesting that AGS may be a unique variable factor that facilitates ACD diversity among echinoderms. Consistently, sea urchin AGS appears to facilitate micromere-like cell formation and accelerate the enrichment timing of the germline factor Vasa during early embryogenesis of the pencil urchin, an ancestral type of sea urchin. Based on these observations, we propose that the molecular evolution of a single polarity factor facilitates ACD diversity while preserving the core ACD machinery among echinoderms and beyond during evolution.
Collapse
Affiliation(s)
- Natsuko Emura
- Department of Molecular Biology, Cellular Biology, Biochemistry, Brown University, Providence, United States
| | - Florence D M Wavreil
- Department of Molecular Biology, Cellular Biology, Biochemistry, Brown University, Providence, United States
| | - Annaliese Fries
- Department of Molecular Biology, Cellular Biology, Biochemistry, Brown University, Providence, United States
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology, Biochemistry, Brown University, Providence, United States
| |
Collapse
|
2
|
Chen T, Ren C, Wong NK, Yan A, Sun C, Fan D, Luo P, Jiang X, Zhang L, Ruan Y, Li J, Wu X, Huo D, Huang J, Li X, Wu F, E Z, Cheng C, Zhang X, Wang Y, Hu C. The Holothuria leucospilota genome elucidates sacrificial organ expulsion and bioadhesive trap enriched with amyloid-patterned proteins. Proc Natl Acad Sci U S A 2023; 120:e2213512120. [PMID: 37036994 PMCID: PMC10120082 DOI: 10.1073/pnas.2213512120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 02/04/2023] [Indexed: 04/12/2023] Open
Abstract
Some tropical sea cucumbers of the family Holothuriidae can efficiently repel or even fatally ensnare predators by sacrificially ejecting a bioadhesive matrix termed the Cuvierian organ (CO), so named by the French zoologist Georges Cuvier who first described it in 1831. Still, the precise mechanisms for how adhesiveness genetically arose in CO and how sea cucumbers perceive and transduce danger signals for CO expulsion during defense have remained unclear. Here, we report the first high-quality, chromosome-level genome assembly of Holothuria leucospilota, an ecologically significant sea cucumber with prototypical CO. The H. leucospilota genome reveals characteristic long-repeat signatures in CO-specific outer-layer proteins, analogous to fibrous proteins of disparate species origins, including spider spidroin and silkworm fibroin. Intriguingly, several CO-specific proteins occur with amyloid-like patterns featuring extensive intramolecular cross-β structures readily stainable by amyloid indicator dyes. Distinct proteins within the CO connective tissue and outer surface cooperate to give the expelled matrix its apparent tenacity and adhesiveness, respectively. Genomic evidence offers further hints that H. leucospilota directly transduces predator-induced mechanical pressure onto the CO surface through mediation by transient receptor potential channels, which culminates in acetylcholine-triggered CO expulsion in part or in entirety. Evolutionarily, innovative events in two distinct regions of the H. leucospilota genome have apparently spurred CO's differentiation from the respiratory tree to a lethal defensive organ against predators.
Collapse
Affiliation(s)
- Ting Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| | - Chunhua Ren
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou515041, China
| | - Aifen Yan
- School of Medicine, Foshan University, Foshan528225, China
| | - Caiyun Sun
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou510275, China
- Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
| | - Dingding Fan
- EasyATGC Limited Liability Company, Shenzhen518081, China
| | - Peng Luo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| | - Xiao Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| | - Lvping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| | - Yao Ruan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jiaxi Li
- School of Medicine, Foshan University, Foshan528225, China
| | - Xiaofen Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Da Huo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jiasheng Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xiaomin Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Feifei Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Zixuan E
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Chuhang Cheng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning530007, China
| | - Xin Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yanhong Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| | - Chaoqun Hu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning530007, China
| |
Collapse
|
3
|
Gold DA, Vermeij GJ. Deep resilience: An evolutionary perspective on calcification in an age of ocean acidification. Front Physiol 2023; 14:1092321. [PMID: 36818444 PMCID: PMC9935589 DOI: 10.3389/fphys.2023.1092321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
The success of today's calcifying organisms in tomorrow's oceans depends, in part, on the resilience of their skeletons to ocean acidification. To the extent this statement is true there is reason to have hope. Many marine calcifiers demonstrate resilience when exposed to environments that mimic near-term ocean acidification. The fossil record similarly suggests that resilience in skeletons has increased dramatically over geologic time. This "deep resilience" is seen in the long-term stability of skeletal chemistry, as well as a decreasing correlation between skeletal mineralogy and extinction risk over time. Such resilience over geologic timescales is often attributed to genetic canalization-the hardening of genetic pathways due to the evolution of increasingly complex regulatory systems. But paradoxically, our current knowledge on biomineralization genetics suggests an opposing trend, where genes are co-opted and shuffled at an evolutionarily rapid pace. In this paper we consider two possible mechanisms driving deep resilience in skeletons that fall outside of genetic canalization: microbial co-regulation and macroevolutionary trends in skeleton structure. The mechanisms driving deep resilience should be considered when creating risk assessments for marine organisms facing ocean acidification and provide a wealth of research avenues to explore.
Collapse
|
4
|
Nanglu K, Cole SR, Wright DF, Souto C. Worms and gills, plates and spines: the evolutionary origins and incredible disparity of deuterostomes revealed by fossils, genes, and development. Biol Rev Camb Philos Soc 2023; 98:316-351. [PMID: 36257784 DOI: 10.1111/brv.12908] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Deuterostomes are the major division of animal life which includes sea stars, acorn worms, and humans, among a wide variety of ecologically and morphologically disparate taxa. However, their early evolution is poorly understood, due in part to their disparity, which makes identifying commonalities difficult, as well as their relatively poor early fossil record. Here, we review the available morphological, palaeontological, developmental, and molecular data to establish a framework for exploring the origins of this important and enigmatic group. Recent fossil discoveries strongly support a vermiform ancestor to the group Hemichordata, and a fusiform active swimmer as ancestor to Chordata. The diverse and anatomically bewildering variety of forms among the early echinoderms show evidence of both bilateral and radial symmetry. We consider four characteristics most critical for understanding the form and function of the last common ancestor to Deuterostomia: Hox gene expression patterns, larval morphology, the capacity for biomineralization, and the morphology of the pharyngeal region. We posit a deuterostome last common ancestor with a similar antero-posterior gene regulatory system to that found in modern acorn worms and cephalochordates, a simple planktonic larval form, which was later elaborated in the ambulacrarian lineage, the ability to secrete calcium minerals in a limited fashion, and a pharyngeal respiratory region composed of simple pores. This animal was likely to be motile in adult form, as opposed to the sessile origins that have been historically suggested. Recent debates regarding deuterostome monophyly as well as the wide array of deuterostome-affiliated problematica further suggest the possibility that those features were not only present in the last common ancestor of Deuterostomia, but potentially in the ur-bilaterian. The morphology and development of the early deuterostomes, therefore, underpin some of the most significant questions in the study of metazoan evolution.
Collapse
Affiliation(s)
- Karma Nanglu
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Selina R Cole
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK, 73072, USA.,School of Geosciences, University of Oklahoma, 100 E Boyd Street, Norman, OK, 73019, USA
| | - David F Wright
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK, 73072, USA.,School of Geosciences, University of Oklahoma, 100 E Boyd Street, Norman, OK, 73019, USA
| | - Camilla Souto
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,School of Natural Sciences & Mathematics, Stockton University, 101 Vera King Farris Dr, Galloway, NJ, 08205, USA
| |
Collapse
|
5
|
Mongiardino Koch N, Thompson JR, Hiley AS, McCowin MF, Armstrong AF, Coppard SE, Aguilera F, Bronstein O, Kroh A, Mooi R, Rouse GW. Phylogenomic analyses of echinoid diversification prompt a re-evaluation of their fossil record. eLife 2022; 11:72460. [PMID: 35315317 PMCID: PMC8940180 DOI: 10.7554/elife.72460] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 03/03/2022] [Indexed: 12/25/2022] Open
Abstract
Echinoids are key components of modern marine ecosystems. Despite a remarkable fossil record, the emergence of their crown group is documented by few specimens of unclear affinities, rendering their early history uncertain. The origin of sand dollars, one of its most distinctive clades, is also unclear due to an unstable phylogenetic context. We employ 18 novel genomes and transcriptomes to build a phylogenomic dataset with a near-complete sampling of major lineages. With it, we revise the phylogeny and divergence times of echinoids, and place their history within the broader context of echinoderm evolution. We also introduce the concept of a chronospace - a multidimensional representation of node ages - and use it to explore methodological decisions involved in time calibrating phylogenies. We find the choice of clock model to have the strongest impact on divergence times, while the use of site-heterogeneous models and alternative node prior distributions show minimal effects. The choice of loci has an intermediate impact, affecting mostly deep Paleozoic nodes, for which clock-like genes recover dates more congruent with fossil evidence. Our results reveal that crown group echinoids originated in the Permian and diversified rapidly in the Triassic, despite the relative lack of fossil evidence for this early diversification. We also clarify the relationships between sand dollars and their close relatives and confidently date their origins to the Cretaceous, implying ghost ranges spanning approximately 50 million years, a remarkable discrepancy with their rich fossil record.
Collapse
Affiliation(s)
- Nicolás Mongiardino Koch
- Department of Earth & Planetary Sciences, Yale University, New Haven, United States.,Scripps Institution of Oceanography, University of California San Diego, La Jolla, United States
| | - Jeffrey R Thompson
- Department of Earth Sciences, Natural History Museum, London, United Kingdom.,University College London Center for Life's Origins and Evolution, London, United Kingdom
| | - Avery S Hiley
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, United States
| | - Marina F McCowin
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, United States
| | - A Frances Armstrong
- Department of Invertebrate Zoology and Geology, California Academy of Sciences, San Francisco, United States
| | - Simon E Coppard
- Bader International Study Centre, Queen's University, Herstmonceux Castle, East Sussex, United Kingdom
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Omri Bronstein
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Steinhardt Museum of Natural History, Tel-Aviv, Israel
| | - Andreas Kroh
- Department of Geology and Palaeontology, Natural History Museum Vienna, Vienna, Austria
| | - Rich Mooi
- Department of Invertebrate Zoology and Geology, California Academy of Sciences, San Francisco, United States
| | - Greg W Rouse
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, United States
| |
Collapse
|
6
|
Zhang L, He J, Tan P, Gong Z, Qian S, Miao Y, Zhang HY, Tu G, Chen Q, Zhong Q, Han G, He J, Wang M. The genome of an apodid holothuroid (Chiridota heheva) provides insights into its adaptation to a deep-sea reducing environment. Commun Biol 2022; 5:224. [PMID: 35273345 PMCID: PMC8913654 DOI: 10.1038/s42003-022-03176-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/16/2022] [Indexed: 11/09/2022] Open
Abstract
Cold seeps and hydrothermal vents are deep-sea reducing environments that are characterized by lacking oxygen and photosynthesis-derived nutrients. Most animals acquire nutrition in cold seeps or hydrothermal vents by maintaining epi- or endosymbiotic relationship with chemoautotrophic microorganisms. Although several seep- and vent-dwelling animals hosting symbiotic microbes have been well-studied, the genomic basis of adaptation to deep-sea reducing environment in nonsymbiotic animals is still lacking. Here, we report a high-quality genome of Chiridota heheva Pawson & Vance, 2004, which thrives by extracting organic components from sediment detritus and suspended material, as a reference for nonsymbiotic animal's adaptation to deep-sea reducing environments. The expansion of the aerolysin-like protein family in C. heheva compared with other echinoderms might be involved in the disintegration of microbes during digestion. Moreover, several hypoxia-related genes (Pyruvate Kinase M2, PKM2; Phospholysine Phosphohistidine Inorganic Pyrophosphate Phosphatase, LHPP; Poly(A)-specific Ribonuclease Subunit PAN2, PAN2; and Ribosomal RNA Processing 9, RRP9) were subject to positive selection in the genome of C. heheva, which contributes to their adaptation to hypoxic environments.
Collapse
Affiliation(s)
- Long Zhang
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Jian He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Peipei Tan
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Zhen Gong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shiyu Qian
- School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yuanyuan Miao
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Han-Yu Zhang
- Hainan Key Laboratory of Marine Georesource and Prospecting, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Guangxian Tu
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Qi Chen
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Qiqi Zhong
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Guanzhu Han
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jianguo He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China. .,Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, 525435, China.
| | - Muhua Wang
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China. .,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, 525435, China.
| |
Collapse
|
7
|
Pinsino A, Di Bernardo M. Immunosafe(r)-by-design nanoparticles: Molecular targets and cell signaling pathways in a next-generation model proxy for humans. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:325-350. [PMID: 35534111 DOI: 10.1016/bs.apcsb.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanotechnology research covers a wide field of studies pointing to design and shape complex matter in a scale between 1 and 100nm, with unique size-depending properties and applications. The value and potential of engineered nanoparticles in human diagnostics and therapies essentially relay on their safety and biocompatibility. Entering a cell, in fact, these particles take complex interactions with the surrounding biological environment, dramatically changing their own identity. The formation of a custom-made protein corona is the first signal of their interplay with the cell defensive mechanisms, and a major issue in their application in medicine. Preliminary in-depth studies in model organisms have been developed to assess immunological safety and competence in facing the host immune system and its defensive response. New affordable animal models are emerging in pilot nano-response and safety studies. Sea urchins, benthic marine Echinoderms, have a wide and very efficient immune system working with innate defense mechanisms and are widely used in immune studies. Nano-safety studies have been showing that the sea urchin Paracentrotus lividus displays an excellent sensing system and high defensive capability, joined to the availability of easily accessible immune cells. As in mammals, nanoparticle recognition and interaction activate specific signaling pathways, metabolic rewiring and homeostasis maintenance. In this chapter, we point to the value of planning new research and developing nano-immune studies using an easy nonmammalian next-generation model, able to unravel new specific response mechanisms to nanoparticles.
Collapse
Affiliation(s)
- Annalisa Pinsino
- Consiglio Nazionale delle Ricerche, Istituto di Farmacologia Traslazionale (IFT), Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Palermo, Italy.
| | - Maria Di Bernardo
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Palermo, Italy
| |
Collapse
|
8
|
Abstract
The micromeres of the sea urchin embryo are distinct from other blastomeres. After they arise through an asymmetric cell division at the 8- to 16-cell stage, micromeres immediately function as organizers. They also commit themselves to specific cell fates such as larval skeletogenic cells and primordial germ cells, while other blastomeres remain plastic and uncommitted at the 16-cell stage. In the phylum Echinodermata, only the sea urchin (class Echinoidea) embryo forms micromeres that serve as apparent organizers during early embryogenesis. Therefore, it is considered that micromeres are the derived features and that modification(s) of the developmental system allowed evolutionary introduction of this unique cell lineage. In this chapter, we summarize the both historic and recent observations that demonstrate unique properties of micromeres and discuss how this lineage of micromeres may have arisen during echinoderm evolution.
Collapse
Affiliation(s)
- Natsuko Emura
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, RI, United States
| | - Mamiko Yajima
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
9
|
Ballarin L, Karahan A, Salvetti A, Rossi L, Manni L, Rinkevich B, Rosner A, Voskoboynik A, Rosental B, Canesi L, Anselmi C, Pinsino A, Tohumcu BE, Jemec Kokalj A, Dolar A, Novak S, Sugni M, Corsi I, Drobne D. Stem Cells and Innate Immunity in Aquatic Invertebrates: Bridging Two Seemingly Disparate Disciplines for New Discoveries in Biology. Front Immunol 2021; 12:688106. [PMID: 34276677 PMCID: PMC8278520 DOI: 10.3389/fimmu.2021.688106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
The scopes related to the interplay between stem cells and the immune system are broad and range from the basic understanding of organism's physiology and ecology to translational studies, further contributing to (eco)toxicology, biotechnology, and medicine as well as regulatory and ethical aspects. Stem cells originate immune cells through hematopoiesis, and the interplay between the two cell types is required in processes like regeneration. In addition, stem and immune cell anomalies directly affect the organism's functions, its ability to cope with environmental changes and, indirectly, its role in ecosystem services. However, stem cells and immune cells continue to be considered parts of two branches of biological research with few interconnections between them. This review aims to bridge these two seemingly disparate disciplines towards much more integrative and transformative approaches with examples deriving mainly from aquatic invertebrates. We discuss the current understanding of cross-disciplinary collaborative and emerging issues, raising novel hypotheses and comments. We also discuss the problems and perspectives of the two disciplines and how to integrate their conceptual frameworks to address basic equations in biology in a new, innovative way.
Collapse
Affiliation(s)
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli, Mersin, Turkey
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Pisa, Italy
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Pisa, Italy
| | - Lucia Manni
- Department of Biology, University of Padua, Padua, Italy
| | - Baruch Rinkevich
- Department of Biology, Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Amalia Rosner
- Department of Biology, Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Ayelet Voskoboynik
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, United States
- Department of Biology, Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Regenerative Medicine and Stem Cells, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Laura Canesi
- Department of Earth Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Chiara Anselmi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, United States
| | - Annalisa Pinsino
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Begüm Ece Tohumcu
- Middle East Technical University, Institute of Marine Sciences, Erdemli, Mersin, Turkey
| | - Anita Jemec Kokalj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andraž Dolar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Novak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
10
|
Piovani L, Czarkwiani A, Ferrario C, Sugni M, Oliveri P. Ultrastructural and molecular analysis of the origin and differentiation of cells mediating brittle star skeletal regeneration. BMC Biol 2021; 19:9. [PMID: 33461552 PMCID: PMC7814545 DOI: 10.1186/s12915-020-00937-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/02/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Regeneration is the ability to re-grow body parts or tissues after trauma, and it is widespread across metazoans. Cells involved in regeneration can arise from a pool of undifferentiated proliferative cells or be recruited from pre-existing differentiated tissues. Both mechanisms have been described in different phyla; however, the cellular and molecular mechanisms employed by different animals to restore lost tissues as well as the source of cells involved in regeneration remain largely unknown. Echinoderms are a clade of deuterostome invertebrates that show striking larval and adult regenerative abilities in all extant classes. Here, we use the brittle star Amphiura filiformis to investigate the origin and differentiation of cells involved in skeletal regeneration using a combination of microscopy techniques and molecular markers. RESULTS Our ultrastructural analyses at different regenerative stages identify a population of morphologically undifferentiated cells which appear in close contact with the proliferating epithelium of the regenerating aboral coelomic cavity. These cells express skeletogenic marker genes, such as the transcription factor alx1 and the differentiation genes c-lectin and msp130L, and display a gradient of morphological differentiation from the aboral coelomic cavity towards the epidermis. Cells closer to the epidermis, which are in contact with developing spicules, have the morphology of mature skeletal cells (sclerocytes), and express several skeletogenic transcription factors and differentiation genes. Moreover, as regeneration progresses, sclerocytes show a different combinatorial expression of genes in various skeletal elements. CONCLUSIONS We hypothesize that sclerocyte precursors originate from the epithelium of the proliferating aboral coelomic cavity. As these cells migrate towards the epidermis, they differentiate and start secreting spicules. Moreover, our study shows that molecular and cellular processes involved in skeletal regeneration resemble those used during skeletal development, hinting at a possible conservation of developmental programmes during adult regeneration. Finally, we highlight that many genes involved in echinoderm skeletogenesis also play a role in vertebrate skeleton formation, suggesting a possible common origin of the deuterostome endoskeleton pathway.
Collapse
Affiliation(s)
- Laura Piovani
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133, Milan, Italy
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Center for Life Origins and Evolution, University College London, London, UK
| | - Anna Czarkwiani
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Present Address: DFG-Center for Regenerative Therapies Technische Universität Dresden (CRTD), Dresden, Germany
| | - Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria, 16, 20133, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133, Milan, Italy.
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria, 16, 20133, Milan, Italy.
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133, Milan, Italy.
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, London, UK.
- Center for Life Origins and Evolution, University College London, London, UK.
| |
Collapse
|
11
|
Devens HR, Davidson PL, Deaker DJ, Smith KE, Wray GA, Byrne M. Ocean acidification induces distinct transcriptomic responses across life history stages of the sea urchin Heliocidaris erythrogramma. Mol Ecol 2020; 29:4618-4636. [PMID: 33002253 PMCID: PMC8994206 DOI: 10.1111/mec.15664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 09/01/2023]
Abstract
Ocean acidification (OA) from seawater uptake of rising carbon dioxide emissions impairs development in marine invertebrates, particularly in calcifying species. Plasticity in gene expression is thought to mediate many of these physiological effects, but how these responses change across life history stages remains unclear. The abbreviated lecithotrophic development of the sea urchin Heliocidaris erythrogramma provides a valuable opportunity to analyse gene expression responses across a wide range of life history stages, including the benthic, post-metamorphic juvenile. We measured the transcriptional response to OA in H. erythrogramma at three stages of the life cycle (embryo, larva, and juvenile) in a controlled breeding design. The results reveal a broad range of strikingly stage-specific impacts of OA on transcription, including changes in the number and identity of affected genes; the magnitude, sign, and variance of their expression response; and the developmental trajectory of expression. The impact of OA on transcription was notably modest in relation to gene expression changes during unperturbed development and much smaller than genetic contributions from parentage. The latter result suggests that natural populations may provide an extensive genetic reservoir of resilience to OA. Taken together, these results highlight the complexity of the molecular response to OA, its substantial life history stage specificity, and the importance of contextualizing the transcriptional response to pH stress in light of normal development and standing genetic variation to better understand the capacity for marine invertebrates to adapt to OA.
Collapse
Affiliation(s)
| | | | - Dione J Deaker
- School of Life and Environmental Science, The University of Sydney, Sydney, NSW, Australia
| | - Kathryn E Smith
- The Laboratory, The Marine Biological Association, Plymouth, UK
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Maria Byrne
- School of Life and Environmental Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Omori A, Shibata TF, Akasaka K. Gene expression analysis of three homeobox genes throughout early and late development of a feather star Anneissia japonica. Dev Genes Evol 2020; 230:305-314. [PMID: 32671457 DOI: 10.1007/s00427-020-00665-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 07/08/2020] [Indexed: 11/26/2022]
Abstract
Crinoids are considered as the most basal extant echinoderms. They retain aboral nervous system with a nerve center, which has been degraded in the eleutherozoan echinoderms. To investigate the evolution of patterning of the nervous systems in crinoids, we examined temporal and spatial expression patterns of three neural patterning-related homeobox genes, six3, pax6, and otx, throughout the development of a feather star Anneissia japonica. These genes were involved in the patterning of endomesodermal tissues instead of the ectodermal neural tissues in the early planktonic stages. In the stages after larval attachment, the expression of these genes was mainly observed in the podia and the oral nervous systems instead of the aboral nerve center. Our results indicate the involvement of these three genes in the formation of oral nervous system in the common ancestor of the echinoderms and suggest that the aboral nerve center is not evolutionally related to the brain of other bilaterians.
Collapse
Affiliation(s)
- Akihito Omori
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, 87 Tassha, Sado, Niigata, 952-2135, Japan.
- Misaki Marine Biological Station, School of Science, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa, 238-0225, Japan.
| | - Tomoko F Shibata
- Misaki Marine Biological Station, School of Science, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa, 238-0225, Japan
| | - Koji Akasaka
- Misaki Marine Biological Station, School of Science, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa, 238-0225, Japan
| |
Collapse
|
13
|
Eckmair B, Jin C, Karlsson NG, Abed-Navandi D, Wilson IBH, Paschinger K. Glycosylation at an evolutionary nexus: the brittle star Ophiactis savignyi expresses both vertebrate and invertebrate N-glycomic features. J Biol Chem 2020; 295:3173-3188. [PMID: 32001617 DOI: 10.1074/jbc.ra119.011703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/17/2020] [Indexed: 12/21/2022] Open
Abstract
Echinoderms are among the most primitive deuterostomes and have been used as model organisms to understand chordate biology because of their close evolutionary relationship to this phylogenetic group. However, there are almost no data available regarding the N-glycomic capacity of echinoderms, which are otherwise known to produce a diverse set of species-specific glycoconjugates, including ones heavily modified by fucose, sulfate, and sialic acid residues. To increase the knowledge of diversity of carbohydrate structures within this phylum, here we conducted an in-depth analysis of N-glycans from a brittle star (Ophiactis savignyi) as an example member of the class Ophiuroidea. To this end, we performed a multi-step N-glycan analysis by HPLC and various exoglyosidase and chemical treatments in combination with MALDI-TOF MS and MS/MS. Using this approach, we found a wealth of hybrid and complex oligosaccharide structures reminiscent of those in higher vertebrates as well as some classical invertebrate glycan structures. 70% of these N-glycans were anionic, carrying either sialic acid, sulfate, or phosphate residues. In terms of glycophylogeny, our data position the brittle star between invertebrates and vertebrates and confirm the high diversity of N-glycosylation in lower organisms.
Collapse
Affiliation(s)
- Barbara Eckmair
- Department für Chemie, Universität für Bodenkultur Wien, 1190 Wien, Austria
| | - Chunsheng Jin
- Institutionen för Biomedicin, Göteborgs Universitet, 405 30 Göteborg, Sweden
| | - Niclas G Karlsson
- Institutionen för Biomedicin, Göteborgs Universitet, 405 30 Göteborg, Sweden
| | | | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur Wien, 1190 Wien, Austria
| | | |
Collapse
|
14
|
Erkenbrack EM, Thompson JR. Cell type phylogenetics informs the evolutionary origin of echinoderm larval skeletogenic cell identity. Commun Biol 2019; 2:160. [PMID: 31069269 PMCID: PMC6499829 DOI: 10.1038/s42003-019-0417-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/04/2019] [Indexed: 01/19/2023] Open
Abstract
The multiplicity of cell types comprising multicellular organisms begs the question as to how cell type identities evolve over time. Cell type phylogenetics informs this question by comparing gene expression of homologous cell types in distantly related taxa. We employ this approach to inform the identity of larval skeletogenic cells of echinoderms, a clade for which there are phylogenetically diverse datasets of spatial gene expression patterns. We determined ancestral spatial expression patterns of alx1, ets1, tbr, erg, and vegfr, key components of the skeletogenic gene regulatory network driving identity of the larval skeletogenic cell. Here we show ancestral state reconstructions of spatial gene expression of extant eleutherozoan echinoderms support homology and common ancestry of echinoderm larval skeletogenic cells. We propose larval skeletogenic cells arose in the stem lineage of eleutherozoans during a cell type duplication event that heterochronically activated adult skeletogenic cells in a topographically distinct tissue in early development.
Collapse
Affiliation(s)
- Eric M. Erkenbrack
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511 USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516 USA
| | - Jeffrey R. Thompson
- Department of Geosciences, Baylor University, Waco, TX 76706 USA
- Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089-0740 USA
| |
Collapse
|
15
|
Topper TP, Guo J, Clausen S, Skovsted CB, Zhang Z. A stem group echinoderm from the basal Cambrian of China and the origins of Ambulacraria. Nat Commun 2019; 10:1366. [PMID: 30911013 PMCID: PMC6433856 DOI: 10.1038/s41467-019-09059-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 02/15/2019] [Indexed: 11/21/2022] Open
Abstract
Deuterostomes are a morphologically disparate clade, encompassing the chordates (including vertebrates), the hemichordates (the vermiform enteropneusts and the colonial tube-dwelling pterobranchs) and the echinoderms (including starfish). Although deuterostomes are considered monophyletic, the inter-relationships between the three clades remain highly contentious. Here we report, Yanjiahella biscarpa, a bilaterally symmetrical, solitary metazoan from the early Cambrian (Fortunian) of China with a characteristic echinoderm-like plated theca, a muscular stalk reminiscent of the hemichordates and a pair of feeding appendages. Our phylogenetic analysis indicates that Y. biscarpa is a stem-echinoderm and not only is this species the oldest and most basal echinoderm, but it also predates all known hemichordates, and is among the earliest deuterostomes. This taxon confirms that echinoderms acquired plating before pentaradial symmetry and that their history is rooted in bilateral forms. Yanjiahella biscarpa shares morphological similarities with both enteropneusts and echinoderms, indicating that the enteropneust body plan is ancestral within hemichordates. The early evolution of the deuterostomes is not well resolved. Here, Topper and colleagues investigate the early Cambrian metazoan Yanjiahella biscarpa, concluding that it is a stem echinoderm, is among the oldest known deuterstomes, and supports an ancestral enteropneust body plan in hemichordates.
Collapse
Affiliation(s)
- Timothy P Topper
- Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics and Department of Geology, Northwest University, 710069, Xi'an, China. .,Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, 104 05, Stockholm, Sweden. .,Department of Earth Sciences, Durham University, Durham, DH1 3LE, UK.
| | - Junfeng Guo
- School of Earth Science and Resources, Key Laboratory for the study of Focused Magmatism and Giant Ore Deposits, MLR, Chang'an University, 710054, Xi'an, China
| | | | - Christian B Skovsted
- Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, 104 05, Stockholm, Sweden
| | - Zhifei Zhang
- Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics and Department of Geology, Northwest University, 710069, Xi'an, China
| |
Collapse
|
16
|
Li Y, Wang R, Xun X, Wang J, Bao L, Thimmappa R, Ding J, Jiang J, Zhang L, Li T, Lv J, Mu C, Hu X, Zhang L, Liu J, Li Y, Yao L, Jiao W, Wang Y, Lian S, Zhao Z, Zhan Y, Huang X, Liao H, Wang J, Sun H, Mi X, Xia Y, Xing Q, Lu W, Osbourn A, Zhou Z, Chang Y, Bao Z, Wang S. Sea cucumber genome provides insights into saponin biosynthesis and aestivation regulation. Cell Discov 2018; 4:29. [PMID: 29951224 PMCID: PMC6018497 DOI: 10.1038/s41421-018-0030-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/18/2018] [Accepted: 04/08/2018] [Indexed: 12/27/2022] Open
Abstract
Echinoderms exhibit several fascinating evolutionary innovations that are rarely seen in the animal kingdom, but how these animals attained such features is not well understood. Here we report the sequencing and analysis of the genome and extensive transcriptomes of the sea cucumber Apostichopus japonicus, a species from a special echinoderm group with extraordinary potential for saponin synthesis, aestivation and organ regeneration. The sea cucumber does not possess a reorganized Hox cluster as previously assumed for all echinoderms, and the spatial expression of Hox7 and Hox11/13b potentially guides the embryo-to-larva axial transformation. Contrary to the typical production of lanosterol in animal cholesterol synthesis, the oxidosqualene cyclase of sea cucumber produces parkeol for saponin synthesis and has "plant-like" motifs suggestive of convergent evolution. The transcriptional factors Klf2 and Egr1 are identified as key regulators of aestivation, probably exerting their effects through a clock gene-controlled process. Intestinal hypometabolism during aestivation is driven by the DNA hypermethylation of various metabolic gene pathways, whereas the transcriptional network of intestine regeneration involves diverse signaling pathways, including Wnt, Hippo and FGF. Decoding the sea cucumber genome provides a new avenue for an in-depth understanding of the extraordinary features of sea cucumbers and other echinoderms.
Collapse
Affiliation(s)
- Yuli Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Ruijia Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Xiaogang Xun
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Lisui Bao
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637 USA
| | - Ramesha Thimmappa
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH United Kingdom
| | - Jun Ding
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023 China
| | - Jingwei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023 China
| | - Liheng Zhang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023 China
| | - Tianqi Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Jia Lv
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Chuang Mu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Jing Liu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Yuqiang Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Lijie Yao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Wenqian Jiao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Yangfan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Shanshan Lian
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Zelong Zhao
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023 China
| | - Yaoyao Zhan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023 China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Huan Liao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Jia Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Hongzhen Sun
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Xue Mi
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Yu Xia
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Wei Lu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH United Kingdom
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023 China
| | - Yaqing Chang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023 China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|
17
|
Paleogenomics of echinoids reveals an ancient origin for the double-negative specification of micromeres in sea urchins. Proc Natl Acad Sci U S A 2018; 114:5870-5877. [PMID: 28584090 DOI: 10.1073/pnas.1610603114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Establishing a timeline for the evolution of novelties is a common, unifying goal at the intersection of evolutionary and developmental biology. Analyses of gene regulatory networks (GRNs) provide the ability to understand the underlying genetic and developmental mechanisms responsible for the origin of morphological structures both in the development of an individual and across entire evolutionary lineages. Accurately dating GRN novelties, thereby establishing a timeline for GRN evolution, is necessary to answer questions about the rate at which GRNs and their subcircuits evolve, and to tie their evolution to paleoenvironmental and paleoecological changes. Paleogenomics unites the fossil record and all aspects of deep time, with modern genomics and developmental biology to understand the evolution of genomes in evolutionary time. Recent work on the regulatory genomic basis of development in cidaroid echinoids, sand dollars, heart urchins, and other nonmodel echinoderms provides an ideal dataset with which to explore GRN evolution in a comparative framework. Using divergence time estimation and ancestral state reconstructions, we have determined the age of the double-negative gate (DNG), the subcircuit which specifies micromeres and skeletogenic cells in Strongylocentrotus purpuratus We have determined that the DNG has likely been used for euechinoid echinoid micromere specification since at least the Late Triassic. The innovation of the DNG thus predates the burst of post-Paleozoic echinoid morphological diversification that began in the Early Jurassic. Paleogenomics has wide applicability for the integration of deep time and molecular developmental data, and has wide utility in rigorously establishing timelines for GRN evolution.
Collapse
|
18
|
Dylus DV, Czarkwiani A, Blowes LM, Elphick MR, Oliveri P. Developmental transcriptomics of the brittle star Amphiura filiformis reveals gene regulatory network rewiring in echinoderm larval skeleton evolution. Genome Biol 2018; 19:26. [PMID: 29490679 PMCID: PMC5831733 DOI: 10.1186/s13059-018-1402-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
Background Amongst the echinoderms the class Ophiuroidea is of particular interest for its phylogenetic position, ecological importance and developmental and regenerative biology. However, compared to other echinoderms, notably echinoids (sea urchins), relatively little is known about developmental changes in gene expression in ophiuroids. To address this issue, we have generated and assembled a large RNAseq data set of four key stages of development in the brittle star Amphiura filiformis and a de novo reference transcriptome of comparable quality to that of a model echinoderm—the sea urchin Strongylocentrotus purpuratus. Furthermore, we provide access to the new data via a web interface: http://www.echinonet.eu/shiny/Amphiura_filiformis/. Results We have identified highly conserved genes associated with the development of a biomineralised skeleton. We also identify important class-specific characters, including the independent duplication of the msp130 class of genes in different echinoderm classes and the unique occurrence of spicule matrix (sm) genes in echinoids. Using a new quantification pipeline for our de novo transcriptome, validated with other methodologies, we find major differences between brittle stars and sea urchins in the temporal expression of many transcription factor genes. This divergence in developmental regulatory states is more evident in early stages of development when cell specification begins, rather than when cells initiate differentiation. Conclusions Our findings indicate that there has been a high degree of gene regulatory network rewiring and clade-specific gene duplication, supporting the hypothesis of a convergent evolution of larval skeleton development in echinoderms. Electronic supplementary material The online version of this article (10.1186/s13059-018-1402-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David V Dylus
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.,CoMPLEX/SysBio, UCL, Gower Street, London, WC1E 6BT, UK.,Present address: Department of Computational Biology, UNIL, Genopode, 1005, Lausanne, Switzerland
| | - Anna Czarkwiani
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Liisa M Blowes
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.,Present address: Centre for Cell Biology & Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Paola Oliveri
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK. .,Centre for Life's Origins and Evolution (CLOE), UCL, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
19
|
Erwin DH. Eric Davidson and deep time. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2017; 39:29. [PMID: 29030723 DOI: 10.1007/s40656-017-0156-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Eric Davidson had a deep and abiding interest in the role developmental mechanisms played in generating evolutionary patterns documented in deep time, from the origin of the euechinoids to the processes responsible for the morphological architectures of major animal clades. Although not an evolutionary biologist, Davidson's interests long preceded the current excitement over comparative evolutionary developmental biology. Here I discuss three aspects at the intersection between his research and evolutionary patterns in deep time: First, understanding the mechanisms of body plan formation, particularly those associated with the early diversification of major metazoan clades. Second, a critique of early claims about ancestral metazoans based on the discoveries of highly conserved genes across bilaterian animals. Third, Davidson's own involvement in paleontology through a collaborative study of the fossil embryos from the Ediacaran Doushantuo Formation in south China.
Collapse
Affiliation(s)
- Douglas H Erwin
- Department of Paleobiology, MRC-121, National Museum of Natural History, Washington, DC, 20013-7012, USA.
| |
Collapse
|
20
|
Cohen BL, Pisera A. Crinoid phylogeny: new interpretation of the main Permo-Triassic divergence, comparisons with echinoids and brachiopods, and EvoDevo interpretations of major morphological variations. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bernard L. Cohen
- University of Glasgow; Wolfson Link Building; Glasgow G12 8QQ UK
| | - Andrzej Pisera
- Institute of Paleobiology; Polish Academy of Sciences; ul. Twarda 51/55 00-818 Warszawa Poland
| |
Collapse
|
21
|
Rahman IA, Zamora S, Falkingham PL, Phillips JC. Cambrian cinctan echinoderms shed light on feeding in the ancestral deuterostome. Proc Biol Sci 2016; 282:20151964. [PMID: 26511049 DOI: 10.1098/rspb.2015.1964] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reconstructing the feeding mode of the latest common ancestor of deuterostomes is key to elucidating the early evolution of feeding in chordates and allied phyla; however, it is debated whether the ancestral deuterostome was a tentaculate feeder or a pharyngeal filter feeder. To address this, we evaluated the hydrodynamics of feeding in a group of fossil stem-group echinoderms (cinctans) using computational fluid dynamics. We simulated water flow past three-dimensional digital models of a Cambrian fossil cinctan in a range of possible life positions, adopting both passive tentacular feeding and active pharyngeal filter feeding. The results demonstrate that an orientation with the mouth facing downstream of the current was optimal for drag and lift reduction. Moreover, they show that there was almost no flow to the mouth and associated marginal groove under simulations of passive feeding, whereas considerable flow towards the animal was observed for active feeding, which would have enhanced the transport of suspended particles to the mouth. This strongly suggests that cinctans were active pharyngeal filter feeders, like modern enteropneust hemichordates and urochordates, indicating that the ancestral deuterostome employed a similar feeding strategy.
Collapse
Affiliation(s)
- Imran A Rahman
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
| | - Samuel Zamora
- Instituto Geológico y Minero de España, C/Manuel Lasala, 44 - 9° B, Zaragoza 50006, Spain
| | - Peter L Falkingham
- School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Jeremy C Phillips
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
| |
Collapse
|
22
|
Affiliation(s)
- David J Bottjer
- Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089-0740, United States
| |
Collapse
|
23
|
Karakostis K, Zanella-Cléon I, Immel F, Guichard N, Dru P, Lepage T, Plasseraud L, Matranga V, Marin F. A minimal molecular toolkit for mineral deposition? Biochemistry and proteomics of the test matrix of adult specimens of the sea urchin Paracentrotus lividus. J Proteomics 2016; 136:133-44. [DOI: 10.1016/j.jprot.2016.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/22/2015] [Accepted: 01/04/2016] [Indexed: 12/16/2022]
|
24
|
The phylogeny, evolutionary developmental biology, and paleobiology of the Deuterostomia: 25 years of new techniques, new discoveries, and new ideas. ORG DIVERS EVOL 2016. [DOI: 10.1007/s13127-016-0270-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Dylus DV, Czarkwiani A, Stångberg J, Ortega-Martinez O, Dupont S, Oliveri P. Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks. EvoDevo 2016; 7:2. [PMID: 26759711 PMCID: PMC4709884 DOI: 10.1186/s13227-015-0039-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 11/20/2022] Open
Abstract
Background The evolutionary mechanisms involved in shaping complex gene regulatory networks (GRN) that encode for morphologically similar structures in distantly related animals remain elusive. In this context, echinoderm larval skeletons found in brittle stars and sea urchins provide an ideal system. Here, we characterize for the first time the development of the larval skeleton in the ophiuroid Amphiura filiformis and compare it systematically with its counterpart in sea urchin. Results We show that ophiuroids and euechinoids, that split at least 480 Million years ago (Mya), have remarkable similarities in tempo and mode of skeletal development. Despite morphological and ontological similarities, our high-resolution study of the dynamics of genetic regulatory states in A. filiformis highlights numerous differences in the architecture of their underlying GRNs. Importantly, the A.filiformispplx, the closest gene to the sea urchin double negative gate (DNG) repressor pmar1, fails to drive the skeletogenic program in sea urchin, showing important evolutionary differences in protein function. hesC, the second repressor of the DNG, is co-expressed with most of the genes that are repressed in sea urchin, indicating the absence of direct repression of tbr, ets1/2, and delta in A. filiformis. Furthermore, the absence of expression in later stages of brittle star skeleton development of key regulatory genes, such as foxb and dri, shows significantly different regulatory states. Conclusion Our data fill up an important gap in the picture of larval mesoderm in echinoderms and allows us to explore the evolutionary implications relative to the recently established phylogeny of echinoderm classes. In light of recent studies on other echinoderms, our data highlight a high evolutionary plasticity of the same nodes throughout evolution of echinoderm skeletogenesis. Finally, gene duplication, protein function diversification, and cis-regulatory element evolution all contributed to shape the regulatory program for larval skeletogenesis in different branches of echinoderms. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0039-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Viktor Dylus
- Research Department of Genetics, Evolution and Environment, University College London, Room 426, Darwin Building, Gower Street, London, WC1E 6BT UK ; CoMPLEX/SysBio, UCL, Gower Street, London, WC1E 6BT UK ; Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Anna Czarkwiani
- Research Department of Genetics, Evolution and Environment, University College London, Room 426, Darwin Building, Gower Street, London, WC1E 6BT UK
| | - Josefine Stångberg
- Research Department of Genetics, Evolution and Environment, University College London, Room 426, Darwin Building, Gower Street, London, WC1E 6BT UK ; Research Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Olga Ortega-Martinez
- Department of Biological and Environmental Sciences, Sven Lovén Centre for Marine Sciences, University of Gothenburg, Kristineberg 566, 451 78 Fiskebäckskil, Sweden
| | - Sam Dupont
- Department of Biological and Environmental Sciences, Sven Lovén Centre for Marine Sciences, University of Gothenburg, Kristineberg 566, 451 78 Fiskebäckskil, Sweden
| | - Paola Oliveri
- Research Department of Genetics, Evolution and Environment, University College London, Room 426, Darwin Building, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
26
|
Christensen AB, Herman JL, Elphick MR, Kober KM, Janies D, Linchangco G, Semmens DC, Bailly X, Vinogradov SN, Hoogewijs D. Phylogeny of Echinoderm Hemoglobins. PLoS One 2015; 10:e0129668. [PMID: 26247465 PMCID: PMC4527676 DOI: 10.1371/journal.pone.0129668] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/12/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recent genomic information has revealed that neuroglobin and cytoglobin are the two principal lineages of vertebrate hemoglobins, with the latter encompassing the familiar myoglobin and α-globin/β-globin tetramer hemoglobin, and several minor groups. In contrast, very little is known about hemoglobins in echinoderms, a phylum of exclusively marine organisms closely related to vertebrates, beyond the presence of coelomic hemoglobins in sea cucumbers and brittle stars. We identified about 50 hemoglobins in sea urchin, starfish and sea cucumber genomes and transcriptomes, and used Bayesian inference to carry out a molecular phylogenetic analysis of their relationship to vertebrate sequences, specifically, to assess the hypothesis that the neuroglobin and cytoglobin lineages are also present in echinoderms. RESULTS The genome of the sea urchin Strongylocentrotus purpuratus encodes several hemoglobins, including a unique chimeric 14-domain globin, 2 androglobin isoforms and a unique single androglobin domain protein. Other strongylocentrotid genomes appear to have similar repertoires of globin genes. We carried out molecular phylogenetic analyses of 52 hemoglobins identified in sea urchin, brittle star and sea cucumber genomes and transcriptomes, using different multiple sequence alignment methods coupled with Bayesian and maximum likelihood approaches. The results demonstrate that there are two major globin lineages in echinoderms, which are related to the vertebrate neuroglobin and cytoglobin lineages. Furthermore, the brittle star and sea cucumber coelomic hemoglobins appear to have evolved independently from the cytoglobin lineage, similar to the evolution of erythroid oxygen binding globins in cyclostomes and vertebrates. CONCLUSION The presence of echinoderm globins related to the vertebrate neuroglobin and cytoglobin lineages suggests that the split between neuroglobins and cytoglobins occurred in the deuterostome ancestor shared by echinoderms and vertebrates.
Collapse
Affiliation(s)
- Ana B. Christensen
- Biology Department, Lamar University, Beaumont, Texas, United States of America
| | - Joseph L. Herman
- Department of Statistics, University of Oxford, Oxford, OX1 3TG, United Kingdom
- Division of Mathematical Biology, National Institute of Medical Research, London, NW7 1AA, United Kingdom
| | - Maurice R. Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Kord M. Kober
- Department of Ecology & Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Daniel Janies
- College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States of America
| | - Gregorio Linchangco
- College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States of America
| | - Dean C. Semmens
- School of Biological & Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Xavier Bailly
- Marine Plants and Biomolecules, Station Biologique de Roscoff, 2968 Roscoff, France
| | - Serge N. Vinogradov
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States of America
| | - David Hoogewijs
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
27
|
Cameron RA, Kudtarkar P, Gordon SM, Worley KC, Gibbs RA. Do echinoderm genomes measure up? Mar Genomics 2015; 22:1-9. [PMID: 25701080 PMCID: PMC4489978 DOI: 10.1016/j.margen.2015.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 11/19/2022]
Abstract
Echinoderm genome sequences are a corpus of useful information about a clade of animals that serve as research models in fields ranging from marine ecology to cell and developmental biology. Genomic information from echinoids has contributed to insights into the gene interactions that drive the developmental process at the molecular level. Such insights often rely heavily on genomic information and the kinds of questions that can be asked thus depend on the quality of the sequence information. Here we describe the history of echinoderm genomic sequence assembly and present details about the quality of the data obtained. All of the sequence information discussed here is posted on the echinoderm information web system, Echinobase.org.
Collapse
Affiliation(s)
- R Andrew Cameron
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA, USA.
| | - Parul Kudtarkar
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA, USA
| | - Susan M Gordon
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA, USA
| | - Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
28
|
Evolutionary rewiring of gene regulatory network linkages at divergence of the echinoid subclasses. Proc Natl Acad Sci U S A 2015; 112:E4075-84. [PMID: 26170318 DOI: 10.1073/pnas.1509845112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evolution of animal body plans occurs with changes in the encoded genomic programs that direct development, by alterations in the structure of encoded developmental gene-regulatory networks (GRNs). However, study of this most fundamental of evolutionary processes requires experimentally tractable, phylogenetically divergent organisms that differ morphologically while belonging to the same monophyletic clade, plus knowledge of the relevant GRNs operating in at least one of the species. These conditions are met in the divergent embryogenesis of the two extant, morphologically distinct, echinoid (sea urchin) subclasses, Euechinoidea and Cidaroidea, which diverged from a common late Paleozoic ancestor. Here we focus on striking differences in the mode of embryonic skeletogenesis in a euechinoid, the well-known model Strongylocentrotus purpuratus (Sp), vs. the cidaroid Eucidaris tribuloides (Et). At the level of descriptive embryology, skeletogenesis in Sp and Et has long been known to occur by distinct means. The complete GRN controlling this process is known for Sp. We carried out targeted functional analyses on Et skeletogenesis to identify the presence, or demonstrate the absence, of specific regulatory linkages and subcircuits key to the operation of the Sp skeletogenic GRN. Remarkably, most of the canonical design features of the Sp skeletogenic GRN that we examined are either missing or operate differently in Et. This work directly implies a dramatic reorganization of genomic regulatory circuitry concomitant with the divergence of the euechinoids, which began before the end-Permian extinction.
Collapse
|
29
|
Buckley KM, Rast JP. Diversity of animal immune receptors and the origins of recognition complexity in the deuterostomes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:179-189. [PMID: 25450907 DOI: 10.1016/j.dci.2014.10.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/01/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
Invertebrate animals are characterized by extraordinary diversity in terms of body plan, life history and life span. The past impression that invertebrate immune responses are controlled by relatively simple innate systems is increasingly contradicted by genomic analyses that reveal significant evolutionary novelty and complexity. One accessible measure of this complexity is the multiplicity of genes encoding homologs of pattern recognition receptors. These multigene families vary significantly in size, and their sequence character suggests that they vary in function. At the same time, certain aspects of downstream signaling appear to be conserved. Here, we analyze five major classes of immune recognition receptors from newly available animal genome sequences. These include the Toll-like receptors (TLR), Nod-like receptors (NLR), SRCR domain scavenger receptors, peptidoglycan recognition proteins (PGRP), and Gram negative binding proteins (GNBP). We discuss innate immune complexity in the invertebrate deuterostomes, which was first recognized in sea urchins, within the wider context of emerging genomic information across animal phyla.
Collapse
MESH Headings
- Animals
- Biodiversity
- Evolution, Molecular
- Genetic Variation
- Genome/genetics
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Invertebrates/classification
- Invertebrates/genetics
- Invertebrates/immunology
- Multigene Family/genetics
- Multigene Family/immunology
- Phylogeny
- Receptors, Immunologic/classification
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Pattern Recognition/genetics
- Receptors, Pattern Recognition/immunology
- Receptors, Scavenger/genetics
- Receptors, Scavenger/immunology
- Species Specificity
- Toll-Like Receptors/genetics
- Toll-Like Receptors/immunology
Collapse
Affiliation(s)
- Katherine M Buckley
- Department of Immunology and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada.
| | - Jonathan P Rast
- Department of Immunology and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
30
|
Pinsino A, Matranga V. Sea urchin immune cells as sentinels of environmental stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:198-205. [PMID: 25463510 DOI: 10.1016/j.dci.2014.11.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Abstract
Echinoderms, an ancient and very successful phylum of marine invertebrates, play a central role in the maintenance of ecosystem integrity and are constantly exposed to environmental pressure, including: predation, changes in temperature and pH, hypoxia, pathogens, UV radiation, metals, toxicants, and emerging pollutants like nanomaterials. The annotation of the sea urchin genome, so closely related to humans and other vertebrate genomes, revealed an unusually complex immune system, which may be the basis for why sea urchins can adapt to different marine environments and survive even in hazardous conditions. In this review, we give a brief overview of the morphological features and recognized functions of echinoderm immune cells with a focus on studies correlating stress and immunity in the sea urchin. Immune cells from adult Paracentrotus lividus, which have been introduced in the last fifteen years as sentinels of environmental stress, are valid tools to uncover basic molecular and regulatory mechanisms of immune responses, supporting their use in immunological research. Here we summarize laboratory and field studies that reveal the amenability of sea urchin immune cells for toxicological testing.
Collapse
Affiliation(s)
- Annalisa Pinsino
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy.
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy.
| |
Collapse
|
31
|
Rafiq K, Shashikant T, McManus CJ, Ettensohn CA. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins. Development 2014; 141:950-61. [PMID: 24496631 DOI: 10.1242/dev.105585] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A central challenge of developmental and evolutionary biology is to understand the transformation of genetic information into morphology. Elucidating the connections between genes and anatomy will require model morphogenetic processes that are amenable to detailed analysis of cell/tissue behaviors and to systems-level approaches to gene regulation. The formation of the calcified endoskeleton of the sea urchin embryo is a valuable experimental system for developing such an integrated view of the genomic regulatory control of morphogenesis. A transcriptional gene regulatory network (GRN) that underlies the specification of skeletogenic cells (primary mesenchyme cells, or PMCs) has recently been elucidated. In this study, we carried out a genome-wide analysis of mRNAs encoded by effector genes in the network and uncovered transcriptional inputs into many of these genes. We used RNA-seq to identify >400 transcripts differentially expressed by PMCs during gastrulation, when these cells undergo a striking sequence of behaviors that drives skeletal morphogenesis. Our analysis expanded by almost an order of magnitude the number of known (and candidate) downstream effectors that directly mediate skeletal morphogenesis. We carried out genome-wide analysis of (1) functional targets of Ets1 and Alx1, two pivotal, early transcription factors in the PMC GRN, and (2) functional targets of MAPK signaling, a pathway that plays an essential role in PMC specification. These studies identified transcriptional inputs into >200 PMC effector genes. Our work establishes a framework for understanding the genomic regulatory control of a major morphogenetic process and has important implications for reconstructing the evolution of biomineralization in metazoans.
Collapse
Affiliation(s)
- Kiran Rafiq
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
32
|
Ettensohn CA. Encoding anatomy: Developmental gene regulatory networks and morphogenesis. Genesis 2013; 51:383-409. [PMID: 23436627 DOI: 10.1002/dvg.22380] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Charles A. Ettensohn
- Department of Biological Sciences; Carnegie Mellon University; Pittsburgh; Pennsylvania
| |
Collapse
|
33
|
Bulgakov AA, Eliseikina MG, Kovalchuk SN, Petrova IY, Likhatskaya GN, Shamshurina EV, Rasskazov VA. Mannan-binding lectin of the sea urchin Strongylocentrotus nudus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:73-86. [PMID: 22696119 DOI: 10.1007/s10126-012-9460-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/18/2012] [Indexed: 06/01/2023]
Abstract
A novel lectin specific to low-branched mannans (MBL-SN) was isolated from coelomic plasma of the sea urchin Strongylocentrotus nudus by combining anion-exchange liquid chromatography on DEAE Toyopearl 650 M, affinity chromatography on mannan-Sepharose and gel filtration on the Sephacryl S-200. The molecular mass of MBL-SN was estimated by sodium dodecyl sulphate polyacrylamide gel electrophoresis under non-reducing conditions to be about 34 kDa. MBL-SN was shown to be a dimer with two identical subunits of about 17 kDa. The native MBL-SN exists as a tetramer. The physico-chemical properties of MBL-SN indicate that it belongs to C-type mannan-binding lectins. The cDNA encoding MBL-SN was cloned from the total cDNA of S. nudus coelomocytes and encodes a 17-kDa protein of 144 amino acid residues that contains a single carbohydrate-recognition domain of C-type lectins. Prediction of the MBL-SN tertiary structure using comparative modelling revealed that MBL-SN is an α/β-protein with eight β-strands and two α-helices. Comparison of the MBL-SN model with available three-dimensional structures of C-type lectins revealed that they share a common fold pattern.
Collapse
Affiliation(s)
- Aleksandr A Bulgakov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, Stoletya Vladivostoku Str. 159, Vladivostok 690022, Russia.
| | | | | | | | | | | | | |
Collapse
|
34
|
The oldest echinoderm faunas from Gondwana show that echinoderm body plan diversification was rapid. Nat Commun 2013; 4:1385. [DOI: 10.1038/ncomms2391] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/14/2012] [Indexed: 11/08/2022] Open
|
35
|
Shiomi K, Yamazaki A, Kagawa M, Kiyomoto M, Yamaguchi M. Par6 regulates skeletogenesis and gut differentiation in sea urchin larvae. Dev Genes Evol 2012; 222:269-78. [PMID: 22903233 DOI: 10.1007/s00427-012-0409-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/15/2012] [Indexed: 12/30/2022]
Abstract
Partitioning-defective (par) genes were originally identified as genes that are essential for the asymmetric division of the Caenorhabditis elegans zygote. Studies have since revealed that the gene products are part of an evolutionarily conserved PAR-atypical protein kinase C system involved in cell polarity in various biological contexts. In this study, we analyzed the function of par6 during sea urchin morphogenesis by morpholino-mediated knockdown and by manipulation swapping of the primary mesenchyme cells (PMCs). Loss of Par6 resulted in defects in skeletogenesis and gut differentiation in larvae. Phenotypic analyses of chimeras constructed by PMC swapping showed that Par6 in non-PMCs is required for differentiation of archenteron into functional gut. In contrast, Par6 in both PMCs and ectodermal cells cooperatively regulates skeletogenesis. We suggest that Par6 in PMCs plays an immediate role in the deposition of biomineral in the syncytial cable, whereas Par6 in ectoderm may stabilize skeletal rods via an unknown signal(s).
Collapse
Affiliation(s)
- Kosuke Shiomi
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | | | | | | | | |
Collapse
|
36
|
Cameron CB, Bishop CD. Biomineral ultrastructure, elemental constitution and genomic analysis of biomineralization-related proteins in hemichordates. Proc Biol Sci 2012; 279:3041-8. [PMID: 22496191 PMCID: PMC3385480 DOI: 10.1098/rspb.2012.0335] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/20/2012] [Indexed: 12/22/2022] Open
Abstract
Here, we report the discovery and characterization of biominerals in the acorn worms Saccoglossus bromophenolosus and Ptychodera flava galapagos (Phylum: Hemichordata). Using electron microscopy, X-ray microprobe analyses and confocal Raman spectroscopy, we show that hemichordate biominerals are small CaCO(3) aragonitic elements restricted to specialized epidermal structures, and in S. bromophenolosus, are apparently secreted by sclerocytes. Investigation of urchin biomineralizing proteins in the translated genome and expressed sequence tag (EST) libraries of Saccoglossus kowalevskii indicates that three members of the urchin MSP-130 family, a carbonic anhydrase and a matrix metaloprotease are present and transcribed during the development of S. kowalevskii. The SM family of proteins is absent from the hemichordate genome. These results increase the number of phyla known to biomineralize and suggest that some of the gene-regulatory 'toolkit', if not mineralized tissue themselves, may have been present in the common ancestor to hemichordates and echinoderms.
Collapse
Affiliation(s)
- C B Cameron
- Département de Sciences Biologiques, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, Quebec, Canada, H3C 3J7.
| | | |
Collapse
|
37
|
Zamora S, Rahman IA, Smith AB. Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. PLoS One 2012; 7:e38296. [PMID: 22701623 PMCID: PMC3368939 DOI: 10.1371/journal.pone.0038296] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 05/01/2012] [Indexed: 02/02/2023] Open
Abstract
Echinoderms are unique in being pentaradiate, having diverged from the ancestral bilaterian body plan more radically than any other animal phylum. This transformation arises during ontogeny, as echinoderm larvae are initially bilateral, then pass through an asymmetric phase, before giving rise to the pentaradiate adult. Many fossil echinoderms are radial and a few are asymmetric, but until now none have been described that show the original bilaterian stage in echinoderm evolution. Here we report new fossils from the early middle Cambrian of southern Europe that are the first echinoderms with a fully bilaterian body plan as adults. Morphologically they are intermediate between two of the most basal classes, the Ctenocystoidea and Cincta. This provides a root for all echinoderms and confirms that the earliest members were deposit feeders not suspension feeders.
Collapse
Affiliation(s)
- Samuel Zamora
- Department of Palaeontology, The Natural History Museum, London, United Kingdom
| | - Imran A. Rahman
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew B. Smith
- Department of Palaeontology, The Natural History Museum, London, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Kondo M, Akasaka K. Current Status of Echinoderm Genome Analysis - What do we Know? Curr Genomics 2012; 13:134-43. [PMID: 23024605 PMCID: PMC3308324 DOI: 10.2174/138920212799860643] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 09/20/2011] [Accepted: 09/30/2011] [Indexed: 11/22/2022] Open
Abstract
Echinoderms have long served as model organisms for a variety of biological research, especially in the field of developmental biology. Although the genome of the purple sea urchin Strongylocentrotus purpuratus has been sequenced, it is the only echinoderm whose whole genome sequence has been reported. Nevertheless, data is rapidly accumulating on the chromosomes and genomic sequences of all five classes of echinoderms, including the mitochondrial genomes and Hox genes. This blossoming new data will be essential for estimating the phylogenetic relationships among echinoderms, and also to examine the underlying mechanisms by which the diverse morphologies of echinoderms have arisen.
Collapse
Affiliation(s)
- Mariko Kondo
- Misaki Marine Biological Station, Graduate School of Science, and Center for Marine Biology, The University of Tokyo, Japan
| | | |
Collapse
|
39
|
Du H, Bao Z, Hou R, Wang S, Su H, Yan J, Tian M, Li Y, Wei W, Lu W, Hu X, Wang S, Hu J. Transcriptome sequencing and characterization for the sea cucumber Apostichopus japonicus (Selenka, 1867). PLoS One 2012; 7:e33311. [PMID: 22428017 PMCID: PMC3299772 DOI: 10.1371/journal.pone.0033311] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/07/2012] [Indexed: 01/01/2023] Open
Abstract
Background Sea cucumbers are a special group of marine invertebrates. They occupy a taxonomic position that is believed to be important for understanding the origin and evolution of deuterostomes. Some of them such as Apostichopus japonicus represent commercially important aquaculture species in Asian countries. Many efforts have been devoted to increasing the number of expressed sequence tags (ESTs) for A. japonicus, but a comprehensive characterization of its transcriptome remains lacking. Here, we performed the large-scale transcriptome profiling and characterization by pyrosequencing diverse cDNA libraries from A. japonicus. Results In total, 1,061,078 reads were obtained by 454 sequencing of eight cDNA libraries representing different developmental stages and adult tissues in A. japonicus. These reads were assembled into 29,666 isotigs, which were further clustered into 21,071 isogroups. Nearly 40% of the isogroups showed significant matches to known proteins based on sequence similarity. Gene ontology (GO) and KEGG pathway analyses recovered diverse biological functions and processes. Candidate genes that were potentially involved in aestivation were identified. Transcriptome comparison with the sea urchin Strongylocentrotus purpuratus revealed similar patterns of GO term representation. In addition, 4,882 putative orthologous genes were identified, of which 202 were not present in the non-echinoderm organisms. More than 700 simple sequence repeats (SSRs) and 54,000 single nucleotide polymorphisms (SNPs) were detected in the A. japonicus transcriptome. Conclusion Pyrosequencing was proven to be efficient in rapidly identifying a large set of genes for the sea cucumber A. japonicus. Through the large-scale transcriptome sequencing as well as public EST data integration, we performed a comprehensive characterization of the A. japonicus transcriptome and identified candidate aestivation-related genes. A large number of potential genetic markers were also identified from the A. japonicus transcriptome. This transcriptome resource would lay an important foundation for future genetic or genomic studies on this species.
Collapse
Affiliation(s)
- Huixia Du
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhenmin Bao
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Rui Hou
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shan Wang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Hailin Su
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jingjing Yan
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Meilin Tian
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yan Li
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Wen Wei
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wei Lu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoli Hu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shi Wang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- * E-mail: (SW); (JH)
| | - Jingjie Hu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- * E-mail: (SW); (JH)
| |
Collapse
|
40
|
Davidson EH. Evolutionary bioscience as regulatory systems biology. Dev Biol 2011; 357:35-40. [PMID: 21320483 PMCID: PMC3135751 DOI: 10.1016/j.ydbio.2011.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/02/2011] [Accepted: 02/06/2011] [Indexed: 01/14/2023]
Abstract
At present several entirely different explanatory approaches compete to illuminate the mechanisms by which animal body plans have evolved. Their respective relevance is briefly considered here in the light of modern knowledge of genomes and the regulatory processes by which development is controlled. Just as development is a system property of the regulatory genome, causal explanation of evolutionary change in developmental process must be considered at a system level. Here I enumerate some mechanistic consequences that follow from the conclusion that evolution of the body plan has occurred by alteration of the structure of developmental gene regulatory networks. The hierarchy and multiple additional design features of these networks act to produce Boolean regulatory state specification functions at upstream phases of development of the body plan. These are created by the logic outputs of network subcircuits, and in modern animals these outputs are impervious to continuous adaptive variation unlike genes operating more peripherally in the network.
Collapse
Affiliation(s)
- Eric H Davidson
- Division of Biology, California Institute of Technology, Pasadena, 91125, USA.
| |
Collapse
|
41
|
|
42
|
RAHMAN IMRANA, ZAMORA SAMUEL. The oldest cinctan carpoid (stem-group Echinodermata), and the evolution of the water vascular system. Zool J Linn Soc 2009. [DOI: 10.1111/j.1096-3642.2008.00517.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
43
|
Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. Proc Natl Acad Sci U S A 2009; 106:14908-13. [PMID: 19706486 DOI: 10.1073/pnas.0902350106] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Paleogenomics seeks to reconstruct ancestral genomes from the genes of today's species. The characterization of paleo-duplications represented by 11,737 orthologs and 4,382 paralogs identified in five species belonging to three of the agronomically most important subfamilies of grasses, that is, Ehrhartoideae (rice) Panicoideae (sorghum, maize), and Pooideae (wheat, barley), permitted us to propose a model for an ancestral genome with a minimal size of 33.6 Mb structured in five proto-chromosomes containing at least 9,138 predicted proto-genes. It appears that only four major evolutionary shuffling events (alpha, beta, gamma, and delta) explain the divergence of these five cereal genomes during their evolution from a common paleo-ancestor. Comparative analysis of ancestral gene function with rice as a reference indicated that five categories of genes were preferentially modified during evolution. Furthermore, alignments between the five grass proto-chromosomes and the recently identified seven eudicot proto-chromosomes indicated that additional very active episodes of genome rearrangements and gene mobility occurred during angiosperm evolution. If one compares the pace of primate evolution of 90 million years (233 species) to 60 million years of the Poaceae (10,000 species), change in chromosome structure through speciation has accelerated significantly in plants.
Collapse
|
44
|
Ettensohn CA. Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis. Development 2009; 136:11-21. [PMID: 19060330 DOI: 10.1242/dev.023564] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Significant new insights have emerged from the analysis of a gene regulatory network (GRN) that underlies the development of the endoskeleton of the sea urchin embryo. Comparative studies have revealed ways in which this GRN has been modified (and conserved) during echinoderm evolution, and point to mechanisms associated with the evolution of a new cell lineage. The skeletogenic GRN has also recently been used to study the long-standing problem of developmental plasticity. Other recent findings have linked this transcriptional GRN to morphoregulatory proteins that control skeletal anatomy. These new studies highlight powerful new ways in which GRNs can be used to dissect development and the evolution of morphogenesis.
Collapse
Affiliation(s)
- Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
45
|
Ehrlich H, Koutsoukos PG, Demadis KD, Pokrovsky OS. Principles of demineralization: Modern strategies for the isolation of organic frameworks. Micron 2008; 39:1062-91. [DOI: 10.1016/j.micron.2008.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/08/2008] [Accepted: 02/10/2008] [Indexed: 11/16/2022]
|
46
|
|
47
|
Killian CE, Wilt FH. Molecular Aspects of Biomineralization of the Echinoderm Endoskeleton. Chem Rev 2008; 108:4463-74. [DOI: 10.1021/cr0782630] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Christopher E. Killian
- Department of Molecular and Cell Biology, University of California, Berkeley, 142 Life Sciences Addition, Berkeley, California 94720-3200
| | - Fred H. Wilt
- Department of Molecular and Cell Biology, University of California, Berkeley, 142 Life Sciences Addition, Berkeley, California 94720-3200
| |
Collapse
|
48
|
Raff RA. Origins of the other metazoan body plans: the evolution of larval forms. Philos Trans R Soc Lond B Biol Sci 2008; 363:1473-9. [PMID: 18192188 DOI: 10.1098/rstb.2007.2237] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bilaterian animal body plan origins are not solely about adult forms. Most animals have larvae with body plans, ontogenies and ecologies distinct from adults. There are two primary hypotheses for larval origins. The first hypothesis suggests that the first animals were small pelagic forms similar to modern larvae, with adult bilaterian body plans evolved subsequently. The second hypothesis suggests that adult bilaterian body plans evolved first and that larval body plans arose by interpolation of features into direct-developing ontogenies. The two hypotheses have different consequences for understanding parsimony in evolution of larvae and of developmental genetic mechanisms. If primitive metazoans were like modern larvae and distinct adult forms evolved independently, there should be little commonality of patterning genes among adult body plans. However, sharing of patterning genes is observed. If larvae arose by co-option of adult bilaterian-expressed genes into independently evolved larval forms, larvae may show morphological convergence, but with distinct patterning genes, and this is observed. Thus, comparative studies of gene expression support independent origins of larval features. Precambrian and Cambrian embryonic fossils are also consistent with direct development of the adult as being primitive, with planktonic larvae arising during the Cambrian. Larvae have continued to co-opt genes and evolve new features, allowing study of developmental evolution.
Collapse
Affiliation(s)
- Rudolf A Raff
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
49
|
Swalla BJ, Smith AB. Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives. Philos Trans R Soc Lond B Biol Sci 2008; 363:1557-68. [PMID: 18192178 DOI: 10.1098/rstb.2007.2246] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Deuterostomes are a monophyletic group of animals that include the vertebrates, invertebrate chordates, ambulacrarians and xenoturbellids. Fossil representatives from most major deuterostome groups, including some phylum-level crown groups, are found in the Lower Cambrian, suggesting that evolutionary divergence occurred in the Late Precambrian, in agreement with some molecular clock estimates. Molecular phylogenies, larval morphology and the adult heart/kidney complex all support echinoderms and hemichordates as a sister grouping (Ambulacraria). Xenoturbellids are a relatively newly discovered phylum of worm-like deuterostomes that lacks a fossil record, but molecular evidence suggests that these animals are a sister group to the Ambulacraria. Within the chordates, cephalochordates share large stretches of chromosomal synteny with the vertebrates, have a complete Hox complex and are sister group to the vertebrates based on ribosomal and mitochondrial gene evidence. In contrast, tunicates have a highly derived adult body plan and are sister group to the vertebrates based on the analyses of concatenated genomic sequences. Cephalochordates and hemichordates share gill slits and an acellular cartilage, suggesting that the ancestral deuterostome also shared these features. Gene network data suggest that the deuterostome ancestor had an anterior-posterior body axis specified by Hox and Wnt genes, a dorsoventral axis specified by a BMP/chordin gradient, and was bilaterally symmetrical with left-right asymmetry determined by expression of nodal.
Collapse
Affiliation(s)
- Billie J Swalla
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.
| | | |
Collapse
|
50
|
Gao F, Davidson EH. Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution. Proc Natl Acad Sci U S A 2008; 105:6091-6. [PMID: 18413604 PMCID: PMC2329712 DOI: 10.1073/pnas.0801201105] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Indexed: 11/18/2022] Open
Abstract
Of the five echinoderm classes, only the modern sea urchins (euechinoids) generate a precociously specified embryonic micromere lineage that ingresses before gastrulation and then secretes the biomineral embryonic skeleton. The gene regulatory network (GRN) underlying the specification and differentiation of this lineage is now known. Many of the same differentiation genes as are used in the biomineralization of the embryo skeleton are also used to make the similar biomineral of the spines and test plates of the adult body. Here, we determine the components of the regulatory state upstream of these differentiation genes that are shared between embryonic and adult skeletogenesis. An abrupt "break point" in the micromere GRN is thus revealed, on one side of which most of the regulatory genes are used in both, and on the other side of which the regulatory apparatus is entirely micromere-specific. This reveals the specific linkages of the micromere GRN forged in the evolutionary process by which the skeletogenic gene batteries were caused to be activated in the embryonic micromere lineage. We also show, by comparison with adult skeletogenesis in the sea star, a distant echinoderm outgroup, that the regulatory apparatus responsible for driving the skeletogenic differentiation gene batteries is an ancient pleisiomorphic aspect of the echinoderm-specific regulatory heritage.
Collapse
Affiliation(s)
- Feng Gao
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125
| | - Eric H. Davidson
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|