1
|
Wardoyo EH, Sugawara Y, Nakano S, Zuo H, Elahi S, Arai C, Kondo K, Kuntaman K, Sugai M. Genomic characterization of extended-spectrum β-lactamase-producing Escherichia coli spread among chickens and healthy residents in Lombok, Indonesia. Appl Environ Microbiol 2025; 91:e0236424. [PMID: 40214227 DOI: 10.1128/aem.02364-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/09/2025] [Indexed: 05/22/2025] Open
Abstract
Extended-spectrum β-lactamase-producing Escherichia coli (ESBL-Ec) poses a substantial public health challenge, particularly in developing countries where antimicrobial resistance is a growing concern. Although extensive research has documented the prevalence and impact of ESBL-Ec in clinical settings and farm animals, the intricate relationship between poultry farming practices and human health remains unclear. To elucidate the genomic relationships between isolates from chickens and humans, we conducted a whole-genome sequencing analysis of 200 E. coli isolates derived from chickens, chicken farmers, and non-farmer volunteers in Lombok, Indonesia. The isolates exhibited considerable diversity, with 78 distinct sequence types (STs) identified by multilocus sequence typing. Of these, 35% (n = 70) and 6% (n = 12) were positive for ESBL and AmpC-type β-lactamase genes, respectively, with blaCTX-M-55 being the most prevalent (n = 41). The most prevalent STs among those carrying ESBL or AmpC genes were ST48, ST1485, ST1727, and ST2690. Phylogenetic analysis of publicly available data indicated that ST1485, ST1727, and ST2690 strains had an indigenous spread in this region, whereas the ST48 isolates originated from different sources. The blaCTX-M-55 gene was identified in 22 different STs, predominantly carried by an IncHI1A-type plasmid, suggesting horizontal transmission of the plasmid over the clonal barrier. Long-read sequencing analysis of representative isolates revealed the presence of additional resistance genes against different classes of antibiotics, suggesting that the acquisition of the IncHI1A-type plasmid contributes to multidrug resistance in recipient clones. Our analysis provides unique insights into the dissemination of multidrug-resistant ESBL-Ec strains in Lombok, where humans and chickens are in close proximity.IMPORTANCEWe performed a genomic comparison of ESBL-producing E. coli (ESBL-Ec) isolated from chickens, chicken farmers, and non-farmers on Lombok Island, where indigenous chicken farming, which involves close proximity of humans and chickens, is a major industry. The detection of the same ESBL-Ec clones in both chickens and farmers indicated the potential of a zoonotic transmission pathway for antibiotic-resistant bacteria. Moreover, the presence of a common plasmid carrying an ESBL gene along with other antimicrobial resistance genes in various E. coli clonal groups highlights the dissemination of resistance determinants within both poultry and human populations. This cross-species amplification of antimicrobial resistance poses a substantial risk to public health, as it can lead to the proliferation of multidrug-resistant bacterial infections, complicating treatment options and increasing the burden on healthcare systems. Addressing these issues is crucial for implementing effective antimicrobial stewardship and improving biosecurity practices in poultry farming.
Collapse
Affiliation(s)
- Eustachius Hagni Wardoyo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Microbiology Department, Faculty of Medicine and Health Sciences, University of Mataram, Lombok, Indonesia
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satoshi Nakano
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hui Zuo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shaheem Elahi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Chika Arai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kohei Kondo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kuntaman Kuntaman
- Department of Microbiology, Faculty of Medicine, University of Wijaya Kusuma Surabaya, Surabaya, Indonesia
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
2
|
Moutacharrif S, Haichar FEZ, Meyer S, Ribot C, Reverchon S, Nasser W, Hommais F. The Power Duo: How the Interplay Between Nucleoid-Associated Proteins and Small Noncoding RNAs Orchestrates the Cellular Regulatory Symphony. Mol Microbiol 2025. [PMID: 40186492 DOI: 10.1111/mmi.15359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 04/07/2025]
Abstract
In bacteria, the regulation of gene expression involves complex networks that integrate both transcriptional and posttranscriptional mechanisms. At the transcriptional level, nucleoid-associated proteins (NAPs) such as H-NS, HU, Lrp, IHF, Fis and Hfq are key players as they not only compact bacterial DNA but also regulate transcription. Small noncoding RNAs (sRNAs), on the other hand, are known to affect bacterial gene expression posttranscriptionally by base pairing with the target mRNA, but they can also be involved in nucleoid condensation. Interestingly, certain NAPs also influence the function of sRNAs and, conversely, sRNAs themselves can modulate the activity of NAPs, creating a complex bidirectional regulatory network. Here, we summarise the current knowledge of the major NAPs, focusing on the specific role of Hfq. Examples of the regulation of NAPs by sRNAs, the regulation of sRNAs by NAPs and the role of sRNAs in nucleoid structuring are also discussed. This review focuses on the cross-talk between NAPs and sRNAs in an attempt to understand how this interplay works to orchestrate the functioning of the cell.
Collapse
Affiliation(s)
- Sara Moutacharrif
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Feth El Zahar Haichar
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Sam Meyer
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Cecile Ribot
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Sylvie Reverchon
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - William Nasser
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Florence Hommais
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
3
|
Gao Y, Xie N, Ma T, Tan C, Wang Z, Zhang R, Ma S, Deng Z, Wang Y, Shen J. VirBR counter-silences HppX3 to promote conjugation of blaNDM-IncX3 plasmids. Nucleic Acids Res 2025; 53:gkaf182. [PMID: 40103225 PMCID: PMC11915502 DOI: 10.1093/nar/gkaf182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/02/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
New Delhi metallo-β-lactamases (NDM), encoded by the blaNDM gene, mediate carbapenem resistance, posing serious threats to public health due to their global presence across diverse hosts and environments. The blaNDM is prominently carried by the IncX3 plasmid, which encodes a Type IV secretion system (T4SS) responsible for plasmid conjugation. This T4SS has been shown to be phenotypically silenced by a plasmid-borne H-NS family protein; however, the underlying mechanisms of both silencing and silencing relief remain unclear. Herein, we identified HppX3, an H-NS family protein encoded by the IncX3 plasmid, as a transcription repressor. HppX3 binds to the T4SS promoter (PactX), downregulates T4SS expression, thereby inhibits plasmid conjugation. RNA-seq analysis revealed that T4SS genes are co-regulated by HppX3 and VirBR, a transcription activator encoded by the same plasmid. Mechanistically, VirBR acts as a counter-silencer by displacing HppX3 from PactX, restoring T4SS expression and promoting plasmid conjugation. A similar counter-silencing mechanism was identified in the T4SSs of IncX1 and IncX2 plasmids. These findings provide new insights into the regulatory mechanisms controlling T4SS expression on multiple IncX plasmids, including the IncX3, explaining the persistence and widespread of blaNDM-IncX3 plasmid, and highlight potential strategies to combat the spread of NDM-positive Enterobacterales by targeting plasmid-encoded regulators.
Collapse
Affiliation(s)
- Yuan Gao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Ning Xie
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Tengfei Ma
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chun E Tan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Zhuo Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Rong Zhang
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou 310009, China
| | - Shizhen Ma
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Zhaoju Deng
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
- Large Animal Clinical Veterinary Research Center, College of Clinical Medicine, China Agricultural University, Beijing 100193, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
4
|
Wang X, Fu C, Chen M, Wu Y, Chen Y, Chen Y, Li L. Fitness and adaptive evolution of a Rhodococcus sp. harboring dioxin-catabolic plasmids. World J Microbiol Biotechnol 2025; 41:51. [PMID: 39865154 DOI: 10.1007/s11274-025-04270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
Catabolic plasmids are critical factors in the degradation of recalcitrant xenobiotics, such as dioxins. Understanding the persistence and evolution of native catabolic plasmids is pivotal for controlling their function in microbial remediation. Here, we track the fitness and evolution of Rhodococcus sp. strain p52 harboring dioxin-catabolic plasmids under nonselective conditions without contaminant. Growth curve analysis and competition experiments demonstrated that pDF01 imposed fitness costs, whereas pDF02 conferred fitness benefits. During stability tests, pDF01 tended to be lost from the population, while pDF02 maintained at least one copy in the cell until proliferation of the 400th generation. Genome-wide gene expression profiling combined with codon usage bias analysis revealed that the high expression of pDF01 genes involved in dibenzofuran catabolism and regulation caused metabolic burdens. In contrast, potential cooperation between the pDF02-encoded short-chain dehydrogenase/reductase family oxidoreductase and the redox cofactor mycofactocin, which synthetic genes are located on the chromosome, may explain the benefit of pDF02. The fitness cost imposed by pDF01 was alleviated during adaptive evolution and was associated with the transcriptional downregulation of the dibenzofuran degradation genes on pDF01, and the global regulation of genome-wide gene expression involving basic metabolism, transport, and signal transduction. This study broadens our understandings on the persistence and evolution of dioxin-catabolic mega-plasmids, thus paving the way for the bioremediation of recalcitrant xenobiotic pollution in the environment.
Collapse
Affiliation(s)
- Xu Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China
| | - Changai Fu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China
| | - Meng Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China
- Marine Genomics and Biotechnology Program, Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China
| | - Yanan Wu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China
| | - Yu Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China
| | - Yan Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China
| | - Li Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China.
| |
Collapse
|
5
|
Ulrich NJ, Miller SR. Integration of horizontally acquired light-harvesting genes into an ancestral regulatory network in the cyanobacterium Acaryochloris marina MBIC11017. mBio 2024; 15:e0242324. [PMID: 39555914 PMCID: PMC11633204 DOI: 10.1128/mbio.02423-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
The acquisition of new capabilities by horizontal gene transfer (HGT) shapes the distribution of traits during microbial diversification. In the Chlorophyll (Chl) d-producing cyanobacterium Acaryochloris marina, the genes involved in the production and disassembly of the light-harvesting phycobiliprotein phycocyanin (PC) were lost in the A. marina common ancestor but then subsequently regained via HGT in A. marina strain MBIC11017. However, it remains unknown how the HGT-acquired PC genes in MBIC11017 have been reintegrated into its existing regulatory network after tens of millions of years since their loss. Here, we investigated potential mechanisms of regulatory assimilation of PC genes by comparing the transcriptomes of A. marina strain MBIC11017 and a PC-lacking close relative under both low irradiance far-red light and high irradiance white light. We found that PC assembly and degradation processes have been re-assimilated into a conserved ancestral response to high light. Further, we identified putative regulatory elements that were likely co-transferred with PC genes and could be recognized by A. marina's pre-existing light response machinery. This study offers insights into how HGT-acquired genes can be reintegrated into an existing transcriptional regulatory network that has evolved in their absence.IMPORTANCEHorizontal gene transfer, the asymmetric movement of genetic information between donor and recipient organisms, is an important mechanism for acquiring new traits. In order for newly acquired gene content to be retained, it must be integrated into the genetic repertoire and regulatory networks of the recipient cell. In a strain of the Chlorophyll d-producing cyanobacterium Acaryochloris marina, the recent reacquisition of the genes required to produce the light-harvesting pigment phycocyanin offers a rare opportunity to understand the mechanisms underlying the regulatory assimilation of an acquired complex trait in bacteria. The significance in our research is in characterizing how an ancestrally lost, complex trait can be reintegrated into a conserved regulatory network, even after millions of years.
Collapse
Affiliation(s)
- Nikea J. Ulrich
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Scott R. Miller
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
6
|
Schumacher MA, Singh RR, Salinas R. Structure of the E. coli nucleoid-associated protein YejK reveals a novel DNA binding clamp. Nucleic Acids Res 2024; 52:7354-7366. [PMID: 38832628 PMCID: PMC11229321 DOI: 10.1093/nar/gkae459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Nucleoid-associated proteins (NAPs) play central roles in bacterial chromosome organization and DNA processes. The Escherichia coli YejK protein is a highly abundant, yet poorly understood NAP. YejK proteins are conserved among Gram-negative bacteria but show no homology to any previously characterized DNA-binding protein. Hence, how YejK binds DNA is unknown. To gain insight into YejK structure and its DNA binding mechanism we performed biochemical and structural analyses on the E. coli YejK protein. Biochemical assays demonstrate that, unlike many NAPs, YejK does not show a preference for AT-rich DNA and binds non-sequence specifically. A crystal structure revealed YejK adopts a novel fold comprised of two domains. Strikingly, each of the domains harbors an extended arm that mediates dimerization, creating an asymmetric clamp with a 30 Å diameter pore. The lining of the pore is electropositive and mutagenesis combined with fluorescence polarization assays support DNA binding within the pore. Finally, our biochemical analyses on truncated YejK proteins suggest a mechanism for YejK clamp loading. Thus, these data reveal YejK contains a newly described DNA-binding motif that functions as a novel clamp.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC 27710, USA
| | - Rajiv R Singh
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC 27710, USA
| | - Raul Salinas
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
7
|
Hustmyer CM, Landick R. Bacterial chromatin proteins, transcription, and DNA topology: Inseparable partners in the control of gene expression. Mol Microbiol 2024; 122:81-112. [PMID: 38847475 PMCID: PMC11260248 DOI: 10.1111/mmi.15283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
DNA in bacterial chromosomes is organized into higher-order structures by DNA-binding proteins called nucleoid-associated proteins (NAPs) or bacterial chromatin proteins (BCPs). BCPs often bind to or near DNA loci transcribed by RNA polymerase (RNAP) and can either increase or decrease gene expression. To understand the mechanisms by which BCPs alter transcription, one must consider both steric effects and the topological forces that arise when DNA deviates from its fully relaxed double-helical structure. Transcribing RNAP creates DNA negative (-) supercoils upstream and positive (+) supercoils downstream whenever RNAP and DNA are unable to rotate freely. This (-) and (+) supercoiling generates topological forces that resist forward translocation of DNA through RNAP unless the supercoiling is constrained by BCPs or relieved by topoisomerases. BCPs also may enhance topological stress and overall can either inhibit or aid transcription. Here, we review current understanding of how RNAP, BCPs, and DNA topology interplay to control gene expression.
Collapse
Affiliation(s)
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison
- Department of Bacteriology, University of Wisconsin-Madison
| |
Collapse
|
8
|
Pal A, Andersson DI. Bacteria can compensate the fitness costs of amplified resistance genes via a bypass mechanism. Nat Commun 2024; 15:2333. [PMID: 38485998 PMCID: PMC10940297 DOI: 10.1038/s41467-024-46571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Antibiotic heteroresistance is a phenotype in which a susceptible bacterial population includes a small subpopulation of cells that are more resistant than the main population. Such resistance can arise by tandem amplification of DNA regions containing resistance genes that in single copy are not sufficient to confer resistance. However, tandem amplifications often carry fitness costs, manifested as reduced growth rates. Here, we investigated if and how these fitness costs can be genetically ameliorated. We evolved four clinical isolates of three bacterial species that show heteroresistance to tobramycin, gentamicin and tetracyclines at increasing antibiotic concentrations above the minimal inhibitory concentration (MIC) of the main susceptible population. This led to a rapid enrichment of resistant cells with up to an 80-fold increase in the resistance gene copy number, an increased MIC, and severely reduced growth rates. When further evolved in the presence of antibiotic, these strains acquired compensatory resistance mutations and showed a reduction in copy number while maintaining high-level resistance. A deterministic model indicated that the loss of amplified units was driven mainly by their fitness costs and that the compensatory mutations did not affect the loss rate of the gene amplifications. Our findings suggest that heteroresistance mediated by copy number changes can facilitate and precede the evolution towards stable resistance.
Collapse
Affiliation(s)
- Ankita Pal
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23, Uppsala, Sweden.
| |
Collapse
|
9
|
Allain M, Mahérault AC, Gachet B, Martinez C, Condamine B, Magnan M, Kempf I, Denamur E, Landraud L. Dissemination of IncI plasmid encoding bla CTX-M-1 is not hampered by its fitness cost in the pig's gut. Antimicrob Agents Chemother 2023; 67:e0011123. [PMID: 37702541 PMCID: PMC10583664 DOI: 10.1128/aac.00111-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/01/2023] [Indexed: 09/14/2023] Open
Abstract
Multiresistance plasmids belonging to the IncI incompatibility group have become one of the most pervasive plasmid types in extended-spectrum beta-lactamase-producing Escherichia coli of animal origin. The extent of the burden imposed on the bacterial cell by these plasmids seems to modulate the emergence of "epidemic" plasmids. However, in vivo data in the natural environment of the strains are scarce. Here, we investigated the cost of a bla CTX-M-1-IncI1 epidemic plasmid in a commensal E. coli animal strain, UB12-RC, before and after oral inoculation of 15 6- to 8-week- old specific-pathogen-free pigs. Growth rate in rich medium was determined on (i) UB12-RC and derivatives, with or without plasmid, in vivo and/or in vitro evolved, and (ii) strains that acquired the plasmid in the gut during the experiment. Although bla CTX-M-1-IncI1 plasmid imposed no measurable burden on the recipient strain after conjugation and during the longitudinal carriage in the pig's gut, we observed a significant difference in the bacterial growth rate between IncI1 plasmid-carrying and plasmid-free isolates collected during in vivo carriage. Only a few mutations on the chromosome of the UB12-RC derivatives were detected by whole-genome sequencing. RNA-Seq analysis of a selected set of these strains showed that transcriptional responses to the bla CTX-M-1-IncI1 acquisition were limited, affecting metabolism, stress response, and motility functions. Our data suggest that the effect of IncI plasmid on host cells is limited, fitness cost being insufficient to act as a barrier to IncI plasmid spread among natural population of E. coli in the gut niche.
Collapse
Affiliation(s)
- Margaux Allain
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Microbiologie Hygiène, Hôpital Louis Mourier, Colombes, France
| | - Anne Claire Mahérault
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Microbiologie Hygiène, Hôpital Louis Mourier, Colombes, France
| | - Benoit Gachet
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Caroline Martinez
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Bénédicte Condamine
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Mélanie Magnan
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Isabelle Kempf
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Erick Denamur
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, France
| | - Luce Landraud
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Microbiologie Hygiène, Hôpital Louis Mourier, Colombes, France
| |
Collapse
|
10
|
Carey ME, Dyson ZA, Ingle DJ, Amir A, Aworh MK, Chattaway MA, Chew KL, Crump JA, Feasey NA, Howden BP, Keddy KH, Maes M, Parry CM, Van Puyvelde S, Webb HE, Afolayan AO, Alexander AP, Anandan S, Andrews JR, Ashton PM, Basnyat B, Bavdekar A, Bogoch II, Clemens JD, da Silva KE, De A, de Ligt J, Diaz Guevara PL, Dolecek C, Dutta S, Ehlers MM, Francois Watkins L, Garrett DO, Godbole G, Gordon MA, Greenhill AR, Griffin C, Gupta M, Hendriksen RS, Heyderman RS, Hooda Y, Hormazabal JC, Ikhimiukor OO, Iqbal J, Jacob JJ, Jenkins C, Jinka DR, John J, Kang G, Kanteh A, Kapil A, Karkey A, Kariuki S, Kingsley RA, Koshy RM, Lauer AC, Levine MM, Lingegowda RK, Luby SP, Mackenzie GA, Mashe T, Msefula C, Mutreja A, Nagaraj G, Nagaraj S, Nair S, Naseri TK, Nimarota-Brown S, Njamkepo E, Okeke IN, Perumal SPB, Pollard AJ, Pragasam AK, Qadri F, Qamar FN, Rahman SIA, Rambocus SD, Rasko DA, Ray P, Robins-Browne R, Rongsen-Chandola T, Rutanga JP, Saha SK, Saha S, Saigal K, Sajib MSI, Seidman JC, Shakya J, Shamanna V, Shastri J, Shrestha R, Sia S, Sikorski MJ, Singh A, Smith AM, Tagg KA, Tamrakar D, Tanmoy AM, Thomas M, Thomas MS, et alCarey ME, Dyson ZA, Ingle DJ, Amir A, Aworh MK, Chattaway MA, Chew KL, Crump JA, Feasey NA, Howden BP, Keddy KH, Maes M, Parry CM, Van Puyvelde S, Webb HE, Afolayan AO, Alexander AP, Anandan S, Andrews JR, Ashton PM, Basnyat B, Bavdekar A, Bogoch II, Clemens JD, da Silva KE, De A, de Ligt J, Diaz Guevara PL, Dolecek C, Dutta S, Ehlers MM, Francois Watkins L, Garrett DO, Godbole G, Gordon MA, Greenhill AR, Griffin C, Gupta M, Hendriksen RS, Heyderman RS, Hooda Y, Hormazabal JC, Ikhimiukor OO, Iqbal J, Jacob JJ, Jenkins C, Jinka DR, John J, Kang G, Kanteh A, Kapil A, Karkey A, Kariuki S, Kingsley RA, Koshy RM, Lauer AC, Levine MM, Lingegowda RK, Luby SP, Mackenzie GA, Mashe T, Msefula C, Mutreja A, Nagaraj G, Nagaraj S, Nair S, Naseri TK, Nimarota-Brown S, Njamkepo E, Okeke IN, Perumal SPB, Pollard AJ, Pragasam AK, Qadri F, Qamar FN, Rahman SIA, Rambocus SD, Rasko DA, Ray P, Robins-Browne R, Rongsen-Chandola T, Rutanga JP, Saha SK, Saha S, Saigal K, Sajib MSI, Seidman JC, Shakya J, Shamanna V, Shastri J, Shrestha R, Sia S, Sikorski MJ, Singh A, Smith AM, Tagg KA, Tamrakar D, Tanmoy AM, Thomas M, Thomas MS, Thomsen R, Thomson NR, Tupua S, Vaidya K, Valcanis M, Veeraraghavan B, Weill FX, Wright J, Dougan G, Argimón S, Keane JA, Aanensen DM, Baker S, Holt KE. Global diversity and antimicrobial resistance of typhoid fever pathogens: Insights from a meta-analysis of 13,000 Salmonella Typhi genomes. eLife 2023; 12:e85867. [PMID: 37697804 PMCID: PMC10506625 DOI: 10.7554/elife.85867] [Show More Authors] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 08/02/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND The Global Typhoid Genomics Consortium was established to bring together the typhoid research community to aggregate and analyse Salmonella enterica serovar Typhi (Typhi) genomic data to inform public health action. This analysis, which marks 22 years since the publication of the first Typhi genome, represents the largest Typhi genome sequence collection to date (n=13,000). METHODS This is a meta-analysis of global genotype and antimicrobial resistance (AMR) determinants extracted from previously sequenced genome data and analysed using consistent methods implemented in open analysis platforms GenoTyphi and Pathogenwatch. RESULTS Compared with previous global snapshots, the data highlight that genotype 4.3.1 (H58) has not spread beyond Asia and Eastern/Southern Africa; in other regions, distinct genotypes dominate and have independently evolved AMR. Data gaps remain in many parts of the world, and we show the potential of travel-associated sequences to provide informal 'sentinel' surveillance for such locations. The data indicate that ciprofloxacin non-susceptibility (>1 resistance determinant) is widespread across geographies and genotypes, with high-level ciprofloxacin resistance (≥3 determinants) reaching 20% prevalence in South Asia. Extensively drug-resistant (XDR) typhoid has become dominant in Pakistan (70% in 2020) but has not yet become established elsewhere. Ceftriaxone resistance has emerged in eight non-XDR genotypes, including a ciprofloxacin-resistant lineage (4.3.1.2.1) in India. Azithromycin resistance mutations were detected at low prevalence in South Asia, including in two common ciprofloxacin-resistant genotypes. CONCLUSIONS The consortium's aim is to encourage continued data sharing and collaboration to monitor the emergence and global spread of AMR Typhi, and to inform decision-making around the introduction of typhoid conjugate vaccines (TCVs) and other prevention and control strategies. FUNDING No specific funding was awarded for this meta-analysis. Coordinators were supported by fellowships from the European Union (ZAD received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 845681), the Wellcome Trust (SB, Wellcome Trust Senior Fellowship), and the National Health and Medical Research Council (DJI is supported by an NHMRC Investigator Grant [GNT1195210]).
Collapse
Affiliation(s)
- Megan E Carey
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge Biomedical CampusCambridgeUnited Kingdom
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
- IAVI, Chelsea & Westminster HospitalLondonUnited Kingdom
| | - Zoe A Dyson
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Danielle J Ingle
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of MelbourneMelbourneAustralia
| | | | - Mabel K Aworh
- Nigeria Field Epidemiology and Laboratory Training ProgrammeAbujaNigeria
- College of Veterinary Medicine, North Carolina State UniversityRaleighUnited States
| | | | - Ka Lip Chew
- National University HospitalSingaporeSingapore
| | - John A Crump
- Centre for International Health, University of OtagoDunedinNew Zealand
| | - Nicholas A Feasey
- Department of Clinical Sciences, Liverpool School of Tropical MedicineLiverpoolUnited Kingdom
- Malawi-Liverpool Wellcome Programme, Kamuzu University of Health SciencesBlantyreMalawi
| | - Benjamin P Howden
- Centre for Pathogen Genomics, Department of Microbiology and Immunology, University of Melbourne at Doherty Institute for Infection and ImmunityMelbourneAustralia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | | | - Mailis Maes
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Christopher M Parry
- Department of Clinical Sciences, Liverpool School of Tropical MedicineLiverpoolUnited Kingdom
| | - Sandra Van Puyvelde
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge Biomedical CampusCambridgeUnited Kingdom
- University of AntwerpAntwerpBelgium
| | - Hattie E Webb
- Centers for Disease Control and PreventionAtlantaUnited States
| | - Ayorinde Oluwatobiloba Afolayan
- Global Health Research Unit (GHRU) for the Genomic Surveillance of Antimicrobial Resistance, Faculty of Pharmacy, University of IbadanIbadanNigeria
| | | | - Shalini Anandan
- Department of Clinical Microbiology, Christian Medical CollegeVelloreIndia
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford UniversityStanfordUnited States
| | - Philip M Ashton
- Malawi-Liverpool Wellcome ProgrammeBlantyreMalawi
- Institute of Infection, Veterinary and Ecological Sciences, University of LiverpoolLiverpoolUnited Kingdom
| | - Buddha Basnyat
- Oxford University Clinical Research Unit NepalKathmanduNepal
| | | | - Isaac I Bogoch
- Department of Medicine, Division of Infectious Diseases, University of TorontoTorontoCanada
| | - John D Clemens
- International Vaccine InstituteSeoulRepublic of Korea
- International Centre for Diarrhoeal Disease ResearchDhakaBangladesh
- UCLA Fielding School of Public HealthLos AngelesUnited States
- Korea UniversitySeoulRepublic of Korea
| | - Kesia Esther da Silva
- Division of Infectious Diseases and Geographic Medicine, Stanford UniversityStanfordUnited States
| | - Anuradha De
- Topiwala National Medical CollegeMumbaiIndia
| | - Joep de Ligt
- ESR, Institute of Environmental Science and Research Ltd., PoriruaWellingtonNew Zealand
| | | | - Christiane Dolecek
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Shanta Dutta
- ICMR - National Institute of Cholera & Enteric DiseasesKolkataIndia
| | - Marthie M Ehlers
- Department of Medical Microbiology, Faculty of Health Sciences, University of PretoriaPretoriaSouth Africa
- Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory ServicePretoriaSouth Africa
| | | | | | - Gauri Godbole
- United Kingdom Health Security AgencyLondonUnited Kingdom
| | - Melita A Gordon
- Institute of Infection, Veterinary and Ecological Sciences, University of LiverpoolLiverpoolUnited Kingdom
| | - Andrew R Greenhill
- Federation University AustraliaChurchillAustralia
- Papua New Guinea Institute of Medical ResearchGorokaPapua New Guinea
| | - Chelsey Griffin
- Centers for Disease Control and PreventionAtlantaUnited States
| | - Madhu Gupta
- Post Graduate Institute of Medical Education and ResearchChandigarhIndia
| | | | - Robert S Heyderman
- Research Department of Infection, Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | | | - Juan Carlos Hormazabal
- Bacteriologia, Subdepartamento de Enfermedades Infecciosas, Departamento de Laboratorio Biomedico, Instituto de Salud Publica de Chile (ISP)SantiagoChile
| | - Odion O Ikhimiukor
- Global Health Research Unit (GHRU) for the Genomic Surveillance of Antimicrobial Resistance, Faculty of Pharmacy, University of IbadanIbadanNigeria
| | - Junaid Iqbal
- Department of Pediatrics and Child Health, Aga Khan UniversityKarachiPakistan
| | - Jobin John Jacob
- Department of Clinical Microbiology, Christian Medical CollegeVelloreIndia
| | - Claire Jenkins
- United Kingdom Health Security AgencyLondonUnited Kingdom
| | | | - Jacob John
- Department of Community Health, Christian Medical CollegeVelloreIndia
| | - Gagandeep Kang
- Department of Community Health, Christian Medical CollegeVelloreIndia
| | - Abdoulie Kanteh
- Medical Research Council Unit The Gambia at London School Hygiene & Tropical MedicineFajaraGambia
| | - Arti Kapil
- All India Institute of Medical SciencesDelhiIndia
| | | | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research InstituteNairobiKenya
| | | | | | - AC Lauer
- Centers for Disease Control and PreventionAtlantaUnited States
| | - Myron M Levine
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, Maryland, USABaltimoreUnited States
| | | | - Stephen P Luby
- Division of Infectious Diseases and Geographic Medicine, Stanford UniversityStanfordUnited States
| | - Grant Austin Mackenzie
- Medical Research Council Unit The Gambia at London School Hygiene & Tropical MedicineFajaraGambia
| | - Tapfumanei Mashe
- National Microbiology Reference LaboratoryHarareZimbabwe
- World Health OrganizationHarareZimbabwe
| | | | - Ankur Mutreja
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Geetha Nagaraj
- Central Research Laboratory, Kempegowda Institute of Medical SciencesBengaluruIndia
| | | | - Satheesh Nair
- United Kingdom Health Security AgencyLondonUnited Kingdom
| | | | | | | | - Iruka N Okeke
- Global Health Research Unit (GHRU) for the Genomic Surveillance of Antimicrobial Resistance, Faculty of Pharmacy, University of IbadanIbadanNigeria
| | | | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of OxfordOxfordUnited Kingdom
- The NIHR Oxford Biomedical Research CentreOxfordUnited Kingdom
| | | | - Firdausi Qadri
- International Centre for Diarrhoeal Disease ResearchDhakaBangladesh
| | - Farah N Qamar
- Department of Pediatrics and Child Health, Aga Khan UniversityKarachiPakistan
| | | | - Savitra Devi Rambocus
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - David A Rasko
- Department of Microbiology and Immunology, University of Maryland School of MedicineBaltimoreUnited States
- Institute for Genome Sciences, University of Maryland School of MedicineBaltimoreUnited States
| | - Pallab Ray
- Post Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Roy Robins-Browne
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of MelbourneMelbourneAustralia
- Murdoch Children’s Research Institute, Royal Children’s HospitalParkvilleAustralia
| | | | | | | | | | | | - Mohammad Saiful Islam Sajib
- Child Health Research FoundationDhakaBangladesh
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of GlasgowGlasgowUnited Kingdom
| | | | - Jivan Shakya
- Dhulikhel HospitalDhulikhelNepal
- Institute for Research in Science and TechnologyKathmanduNepal
| | - Varun Shamanna
- Central Research Laboratory, Kempegowda Institute of Medical SciencesBengaluruIndia
| | - Jayanthi Shastri
- Topiwala National Medical CollegeMumbaiIndia
- Kasturba Hospital for Infectious DiseasesMumbaiIndia
| | - Rajeev Shrestha
- Center for Infectious Disease Research & Surveillance, Dhulikhel Hospital, Kathmandu University HospitalDhulikhelNepal
| | - Sonia Sia
- Research Institute for Tropical Medicine, Department of HealthMuntinlupa CityPhilippines
| | - Michael J Sikorski
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, Maryland, USABaltimoreUnited States
- Department of Microbiology and Immunology, University of Maryland School of MedicineBaltimoreUnited States
- Institute for Genome Sciences, University of Maryland School of MedicineBaltimoreUnited States
| | | | - Anthony M Smith
- Centre for Enteric Diseases, National Institute for Communicable DiseasesJohannesburgSouth Africa
| | - Kaitlin A Tagg
- Centers for Disease Control and PreventionAtlantaUnited States
| | - Dipesh Tamrakar
- Center for Infectious Disease Research & Surveillance, Dhulikhel Hospital, Kathmandu University HospitalDhulikhelNepal
| | | | - Maria Thomas
- Christian Medical College, LudhianaLudhianaIndia
| | | | | | | | - Siaosi Tupua
- Ministry of Health, Government of SamoaApiaSamoa
| | | | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | | | | | - Jackie Wright
- ESR, Institute of Environmental Science and Research Ltd., PoriruaWellingtonNew Zealand
| | - Gordon Dougan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Silvia Argimón
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of OxfordOxfordUnited Kingdom
| | - Jacqueline A Keane
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - David M Aanensen
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of OxfordOxfordUnited Kingdom
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge Biomedical CampusCambridgeUnited Kingdom
- IAVI, Chelsea & Westminster HospitalLondonUnited Kingdom
| | - Kathryn E Holt
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
| |
Collapse
|
11
|
Huang C, Pham HQ, Zhu L, Wang R, Law OK, Lin SL, Nie QC, Zhang L, Wang X, Lau TCK. Comparative Analysis of Transcriptome and Proteome Revealed the Common Metabolic Pathways Induced by Prevalent ESBL Plasmids in Escherichia coli. Int J Mol Sci 2023; 24:14009. [PMID: 37762311 PMCID: PMC10531281 DOI: 10.3390/ijms241814009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic resistance has emerged as one of the most significant threats to global public health. Plasmids, which are highly efficient self-replicating genetic vehicles, play a critical role in the dissemination of drug-resistant genes. Previous studies have mainly focused on drug-resistant genes only, often neglecting the complete functional role of multidrug-resistant (MDR) plasmids in bacteria. In this study, we conducted a comprehensive investigation of the transcriptomes and proteomes of Escherichia coli J53 transconjugants harboring six major MDR plasmids of different incompatibility (Inc) groups, which were clinically isolated from patients. The RNA-seq analysis revealed that MDR plasmids influenced the gene expression in the bacterial host, in particular, the genes related to metabolic pathways. A proteomic analysis demonstrated the plasmid-induced regulation of several metabolic pathways including anaerobic respiration and the utilization of various carbon sources such as serine, threonine, sialic acid, and galactarate. These findings suggested that MDR plasmids confer a growth advantage to bacterial hosts in the gut, leading to the expansion of plasmid-carrying bacteria over competitors without plasmids. Moreover, this study provided insights into the versatility of prevalent MDR plasmids in moderating the cellular gene network of bacteria, which could potentially be utilized in therapeutics development for bacteria carrying MDR plasmids.
Collapse
Affiliation(s)
- Chuan Huang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Hoa-Quynh Pham
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Lina Zhu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Rui Wang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Oi-Kwan Law
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Shu-Ling Lin
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Qi-Chang Nie
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Liang Zhang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Xin Wang
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Terrence Chi-Kong Lau
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Cooke MB, Herman C. Conjugation's Toolkit: the Roles of Nonstructural Proteins in Bacterial Sex. J Bacteriol 2023; 205:e0043822. [PMID: 36847532 PMCID: PMC10029717 DOI: 10.1128/jb.00438-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Bacterial conjugation, a form of horizontal gene transfer, relies on a type 4 secretion system (T4SS) and a set of nonstructural genes that are closely linked. These nonstructural genes aid in the mobile lifestyle of conjugative elements but are not part of the T4SS apparatus for conjugative transfer, such as the membrane pore and relaxosome, or the plasmid maintenance and replication machineries. While these nonstructural genes are not essential for conjugation, they assist in core conjugative functions and mitigate the cellular burden on the host. This review compiles and categorizes known functions of nonstructural genes by the stage of conjugation they modulate: dormancy, transfer, and new host establishment. Themes include establishing a commensalistic relationship with the host, manipulating the host for efficient T4SS assembly and function and assisting in conjugative evasion of recipient cell immune functions. These genes, taken in a broad ecological context, play important roles in ensuring proper propagation of the conjugation system in a natural environment.
Collapse
Affiliation(s)
- Matthew B. Cooke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
13
|
When bacteria are phage playgrounds: interactions between viruses, cells, and mobile genetic elements. Curr Opin Microbiol 2022; 70:102230. [PMID: 36335712 DOI: 10.1016/j.mib.2022.102230] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Studies of viral adaptation have focused on the selective pressures imposed by hosts. However, there is increasing evidence that interactions between viruses, cells, and other mobile genetic elements are determinant to the success of infections. These interactions are often associated with antagonism and competition, but sometimes involve cooperation or parasitism. We describe two key types of interactions - defense systems and genetic regulation - that allow the partners of the interaction to destroy or control the others. These interactions evolve rapidly by genetic exchanges, including among competing partners. They are sometimes followed by functional diversification. Gene exchanges also facilitate the emergence of cross-talk between elements in the same bacterium. In the end, these processes produce multilayered networks of interactions that shape the outcome of viral infections.
Collapse
|
14
|
Bean EL, McLellan LK, Grossman AD. Activation of the integrative and conjugative element Tn916 causes growth arrest and death of host bacteria. PLoS Genet 2022; 18:e1010467. [PMID: 36279314 PMCID: PMC9632896 DOI: 10.1371/journal.pgen.1010467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Integrative and conjugative elements (ICEs) serve as major drivers of bacterial evolution. These elements often confer some benefit to host cells, including antibiotic resistance, metabolic capabilities, or pathogenic determinants. ICEs can also have negative effects on host cells. Here, we investigated the effects of the ICE (conjugative transposon) Tn916 on host cells. Because Tn916 is active in a relatively small subpopulation of host cells, we developed a fluorescent reporter system for monitoring activation of Tn916 in single cells. Using this reporter, we found that cell division was arrested in cells of Bacillus subtilis and Enterococcus faecalis (a natural host for Tn916) that contained an activated (excised) Tn916. Furthermore, most of the cells with the activated Tn916 subsequently died. We also observed these phenotypes on the population level in B. subtilis utilizing a modified version of Tn916 that can be activated in the majority of cells. We identified two genes (orf17 and orf16) in Tn916 that were sufficient to cause growth defects in B. subtilis and identified a single gene, yqaR, that is in a defective phage (skin) in the B. subtilis chromosome that was required for this phenotype. These three genes were only partially responsible for the growth defect caused by Tn916, indicating that Tn916 possesses multiple mechanisms to affect growth and viability of host cells. These results highlight the complex relationships that conjugative elements have with their host cells and the interplay between mobile genetic elements.
Collapse
Affiliation(s)
- Emily L. Bean
- Department of Biology Massachusetts, Institute of Technology Cambridge, Massachusetts, United States of America
| | - Lisa K. McLellan
- Department of Biology Massachusetts, Institute of Technology Cambridge, Massachusetts, United States of America
| | - Alan D. Grossman
- Department of Biology Massachusetts, Institute of Technology Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
Squire MS, Townsend HA, Islam A, Actis LA. Light Regulates Acinetobacter baumannii Chromosomal and pAB3 Plasmid Genes at 37°C. J Bacteriol 2022; 204:e0003222. [PMID: 35604222 PMCID: PMC9210970 DOI: 10.1128/jb.00032-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
The opportunistic pathogen A. baumannii has a remarkable capacity to persist in the hospital environment and cause devastating human infections. This capacity can be attributed partly to the sensing and regulatory systems that enable this pathogen to modify its physiology based on environmental cues. One of the signals that A. baumannii senses and responds to is light through the sensing and regulatory roles of the BlsA photoreceptor protein in cells cultured at temperatures below 30°C. This report presents evidence that a light stimulon is operational at 37°C, a condition at which the BlsA production and activity are drastically impaired. Global transcriptional analysis showed that the 37°C light stimulon includes the differential expression of chromosomal genes encoding a wide range of functions that are known to be involved in the adaptation to different metabolic conditions, as well as virulence and persistence in the host and the medical environment. Unexpectedly, the 37°C light stimulon also includes the differential expression of conjugation functions encoded by pAB3 plasmid genes. Our work further demonstrates that the TetR1 and H-NS regulators encoded by this conjugative plasmid control the expression of H2O2 resistance and surface motility, respectively. Furthermore, our data showed that pAB3 has an overall negative effect on the expression of these phenotypes and plays no significant virulence role. Although the nature of the bacterial factors and the mechanisms by which the regulation is attained at 37°C remain unknown, taken together, our work expands the current knowledge about light sensing and gene regulation in A. baumannii. IMPORTANCE As a facultative pathogen, Acinetobacter baumannii persists in various environments by sensing different environmental cues, including light. This report provides evidence of light-dependent regulation at 37°C of the expression of genes coding for a wide range of functions, including those involved in the conjugation of the pAB3 plasmid. Although this plasmid affects the expression of virulence traits when tested under laboratory conditions, it does not have a significant impact when tested using ex vivo and in vivo experimental models. These findings provide a better understanding of the interplay between light regulation and plasmid persistence in the pathobiology of A. baumannii.
Collapse
Affiliation(s)
| | | | - Aminul Islam
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| | - Luis A. Actis
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| |
Collapse
|
16
|
Forrest D, Warman EA, Erkelens AM, Dame RT, Grainger DC. Xenogeneic silencing strategies in bacteria are dictated by RNA polymerase promiscuity. Nat Commun 2022; 13:1149. [PMID: 35241653 PMCID: PMC8894471 DOI: 10.1038/s41467-022-28747-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Horizontal gene transfer facilitates dissemination of favourable traits among bacteria. However, foreign DNA can also reduce host fitness: incoming sequences with a higher AT content than the host genome can misdirect transcription. Xenogeneic silencing proteins counteract this by modulating RNA polymerase binding. In this work, we compare xenogeneic silencing strategies of two distantly related model organisms: Escherichia coli and Bacillus subtilis. In E. coli, silencing is mediated by the H-NS protein that binds extensively across horizontally acquired genes. This prevents spurious non-coding transcription, mostly intragenic in origin. By contrast, binding of the B. subtilis Rok protein is more targeted and mostly silences expression of functional mRNAs. The difference reflects contrasting transcriptional promiscuity in E. coli and B. subtilis, largely attributable to housekeeping RNA polymerase σ factors. Thus, whilst RNA polymerase specificity is key to the xenogeneic silencing strategy of B. subtilis, transcriptional promiscuity must be overcome to silence horizontally acquired DNA in E. coli. Bacteria use specific silencing proteins to prevent spurious transcription of horizontally acquired DNA. Here, Forrest et al. describe differences in silencing strategies between E. coli and Bacillus subtilis, driven by the respective specificities of the silencing protein and the RNA polymerase in each organism.
Collapse
Affiliation(s)
- David Forrest
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Emily A Warman
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Amanda M Erkelens
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - David C Grainger
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK.
| |
Collapse
|
17
|
Hammer-Dedet F, Aujoulat F, Jumas-Bilak E, Licznar-Fajardo P. Persistence and Dissemination Capacities of a BlaNDM-5-Harboring IncX-3 Plasmid in Escherichia coli Isolated from an Urban River in Montpellier, France. Antibiotics (Basel) 2022; 11:antibiotics11020196. [PMID: 35203799 PMCID: PMC8868147 DOI: 10.3390/antibiotics11020196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
To investigate the capacities of persistence and dissemination of blaNDM-5 within Escherichia coli and in aquatic environment, we characterized E. coli (sequence type 636) strains B26 and B28 isolated one month apart from the same urban river in Montpellier, France. The two isolates carried a pTsB26 plasmid, which sized 45,495 Kb, harbored blaNDM-5 gene and belonged to IncX-3 incompatibility group. pTsB26 was conjugative in vitro at high frequency, it was highly stable after 400 generations and it exerted no fitness cost on its host. blaNDM-5harboring plasmids are widely dispersed in E. coli all around the world, with no lineage specialization. The genomic comparison between B26 and B28 stated that the two isolates probably originated from the same clone, suggesting the persistence of pTsB26 in an E. coli host in aquatic environment.
Collapse
Affiliation(s)
- Florence Hammer-Dedet
- HSM, University Montpellier, CNRS, IRD, 34090 Montpellier, France; (F.H.-D.); (F.A.)
| | - Fabien Aujoulat
- HSM, University Montpellier, CNRS, IRD, 34090 Montpellier, France; (F.H.-D.); (F.A.)
| | - Estelle Jumas-Bilak
- HSM, University of Montpellier, CNRS, IRD, CHU Montpellier, 34090 Montpellier, France;
| | - Patricia Licznar-Fajardo
- HSM, University of Montpellier, CNRS, IRD, CHU Montpellier, 34090 Montpellier, France;
- Correspondence:
| |
Collapse
|
18
|
Baomo L, Lili S, Moran RA, van Schaik W, Chao Z. Temperature-Regulated IncX3 Plasmid Characteristics and the Role of Plasmid-Encoded H-NS in Thermoregulation. Front Microbiol 2022; 12:765492. [PMID: 35069472 PMCID: PMC8770905 DOI: 10.3389/fmicb.2021.765492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/17/2021] [Indexed: 12/03/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are a critical public health problem worldwide. Globally, IncX3-type plasmids have emerged as the predominant vehicles carrying the metallo-β-lactamase gene bla NDM. Although bla NDM-bearing IncX3 plasmids have been found in various hosts from diverse environments, whether their transfer and persistence properties vary under different conditions and what factors influence any variation is unknown. By observing the effects of different temperatures on IncX3 plasmid conjugation rates, stability, and effects on host fitness in Escherichia coli, we demonstrate that temperature is an important determinant of plasmid phenotypes. The IncX3 plasmid pGZIncX3 transferred at highest frequencies, was most stable and imposed lower fitness costs at 37°C. Temperature-regulated variation in pGZIncX3 properties involved a thermoregulated plasmid-encoded H-NS-like protein, which was produced at higher levels at 30°C and 42°C and inhibited the expression of type IV secretion system genes involved in conjugation. These findings suggest that bla NDM-bearing IncX3 plasmids are adapted to carriage by enterobacteria that colonize mammalian hosts and could explain the rapid dissemination of these plasmids among human-associated species, particularly in hospital settings.
Collapse
Affiliation(s)
- Liu Baomo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shui Lili
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Robert A. Moran
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Willem van Schaik
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Zhuo Chao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
19
|
Cai W, Tang F, Jiang L, Li R, Wang Z, Liu Y. Histone-Like Nucleoid Structuring Protein Modulates the Fitness of tet(X4)-Bearing IncX1 Plasmids in Gram-Negative Bacteria. Front Microbiol 2021; 12:763288. [PMID: 34858374 PMCID: PMC8632487 DOI: 10.3389/fmicb.2021.763288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
The emergence of plasmid-mediated tigecycline resistance gene tet(X4) poses a challenging threat to public health. Based on the analysis of tet(X4)-positive plasmids in the NCBI database, we found that the IncX1-type plasmid is one of the most common vectors for spreading tet(X4) gene, but the mechanisms by which these plasmids adapt to host bacteria and maintain the persistence of antibiotic resistance genes (ARGs) remain unclear. Herein, we investigated the underlying mechanisms of how host bacteria modulate the fitness cost of IncX1 plasmids carrying tet(X4) gene. Interestingly, we found that the tet(X4)-bearing IncX1 plasmids encoding H-NS protein imposed low or no fitness cost in Escherichia coli and Klebsiella pneumoniae; instead, they partially promoted the virulence and biofilm formation in host bacteria. Regression analysis revealed that the expression of hns gene in plasmids was positively linked to the relative fitness of host bacteria. Furthermore, when pCE2::hns was introduced, the fitness of tet(X4)-positive IncX1 plasmid pRF55-1 without hns gene was significantly improved, indicating that hns mediates the improvement of fitness. Finally, we showed that the expression of hns gene is negatively correlated with the expression of tet(X4) gene, suggesting that the regulatory effect of H-NS on adaptability may be attributed to its inhibitory effect on the expression of ARGs. Together, our findings suggest the important role of plasmid-encoded H-NS protein in modulating the fitness of tet(X4)-bearing IncX1 plasmids, which shed new insight into the dissemination of tet(X4) gene in a biological environment.
Collapse
Affiliation(s)
- Wenhui Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Feifei Tang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Lijie Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
20
|
Interplay between Bacterial Clones and Plasmids in the Spread of Antibiotic Resistance Genes in the Gut: Lessons from a Temporal Study in Veal Calves. Appl Environ Microbiol 2021; 87:e0135821. [PMID: 34613750 DOI: 10.1128/aem.01358-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intestinal carriage of extended spectrum β-lactamase (ESBL)-producing Escherichia coli is a frequent, increasing, and worrying phenomenon, but little is known about the molecular scenario and the evolutionary forces at play. We screened 45 veal calves, known to have high prevalence of carriage, for ESBL-producing E. coli on 514 rectal swabs (one randomly selected colony per sample) collected over 6 months. We characterized the bacterial clones and plasmids carrying blaESBL genes with a combination of genotyping methods, whole genome sequencing, and conjugation assays. One hundred and seventy-three ESBL-producing E. coli isolates [blaCTX-M-1 (64.7%), blaCTX-M-14 (33.5%), or blaCTX-M-15 (1.8%)] were detected, belonging to 32 bacterial clones, mostly of phylogroup A. Calves were colonized successively by different clones with a trend in decreasing carriage. The persistence of a clone in a farm was significantly associated with the number of calves colonized. Despite a high diversity of E. coli clones and blaCTX-M-carrying plasmids, few blaCTX-M gene/plasmid/chromosomal background combinations dominated, due to (i) efficient colonization of bacterial clones and/or (ii) successful plasmid spread in various bacterial clones. The scenario "clone versus plasmid spread" depended on the farm. Thus, epistatic interactions between resistance genes, plasmids, and bacterial clones contribute to optimize fitness in specific environments. IMPORTANCE The gut microbiota is the epicenter of the emergence of resistance. Considerable amount of knowledge on the molecular mechanisms of resistance has been accumulated, but the ecological and evolutionary forces at play in nature are less studied. In this context, we performed a field work on temporal intestinal carriage of extended spectrum β-lactamase (ESBL)-producing Escherichia coli in veal farms. Veal calves are animals with one of the highest levels of ESBL producing E. coli fecal carriage, due to early high antibiotic exposure. We were able to show that calves were colonized successively by different ESBL-producing E. coli clones, and that two main scenarios were at play in the spread of blaCTX-M genes among calves: efficient colonization of several calves by a few bacterial clones and successful plasmid spread in various bacterial clones. Such knowledge should help develop new strategies to fight the emergence of antibiotic-resistance.
Collapse
|
21
|
Fitzgerald SF, Lupolova N, Shaaban S, Dallman TJ, Greig D, Allison L, Tongue SC, Evans J, Henry MK, McNeilly TN, Bono JL, Gally DL. Genome structural variation in Escherichia coli O157:H7. Microb Genom 2021; 7. [PMID: 34751643 PMCID: PMC8743559 DOI: 10.1099/mgen.0.000682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human zoonotic pathogen Escherichia coli O157:H7 is defined by its extensive prophage repertoire including those that encode Shiga toxin, the factor responsible for inducing life-threatening pathology in humans. As well as introducing genes that can contribute to the virulence of a strain, prophage can enable the generation of large-chromosomal rearrangements (LCRs) by homologous recombination. This work examines the types and frequencies of LCRs across the major lineages of the O157:H7 serotype. We demonstrate that LCRs are a major source of genomic variation across all lineages of E. coli O157:H7 and by using both optical mapping and Oxford Nanopore long-read sequencing prove that LCRs are generated in laboratory cultures started from a single colony and that these variants can be recovered from colonized cattle. LCRs are biased towards the terminus region of the genome and are bounded by specific prophages that share large regions of sequence homology associated with the recombinational activity. RNA transcriptional profiling and phenotyping of specific structural variants indicated that important virulence phenotypes such as Shiga-toxin production, type-3 secretion and motility can be affected by LCRs. In summary, E. coli O157:H7 has acquired multiple prophage regions over time that act to continually produce structural variants of the genome. These findings raise important questions about the significance of this prophage-mediated genome contingency to enhance adaptability between environments.
Collapse
Affiliation(s)
- Stephen F Fitzgerald
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Nadejda Lupolova
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Sharif Shaaban
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Timothy J Dallman
- Gastrointestinal Bacterial Reference Unit, 61 Colindale Avenue, Public Health England, NW9 5EQ London, UK
| | - David Greig
- Gastrointestinal Bacterial Reference Unit, 61 Colindale Avenue, Public Health England, NW9 5EQ London, UK
| | - Lesley Allison
- Scottish E. coli O157/VTEC Reference Laboratory, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
| | - Sue C Tongue
- Epidemiology Research Unit (Inverness), Department of Veterinary and Animal Science, Northern Faculty, Scotland's Rural College (SRUC), Scotland, IV2 5NA, UK
| | - Judith Evans
- Epidemiology Research Unit (Inverness), Department of Veterinary and Animal Science, Northern Faculty, Scotland's Rural College (SRUC), Scotland, IV2 5NA, UK
| | - Madeleine K Henry
- Epidemiology Research Unit (Inverness), Department of Veterinary and Animal Science, Northern Faculty, Scotland's Rural College (SRUC), Scotland, IV2 5NA, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 OPZ, UK
| | - James L Bono
- United States Department of Agriculture, Agricultural Research Service, US Meat Animal Research Center, Clay Center, Nebraska, USA
| | - David L Gally
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| |
Collapse
|
22
|
Guzmán NM, Esquerra-Ruvira B, Mojica FJM. Digging into the lesser-known aspects of CRISPR biology. Int Microbiol 2021; 24:473-498. [PMID: 34487299 PMCID: PMC8616872 DOI: 10.1007/s10123-021-00208-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
A long time has passed since regularly interspaced DNA repeats were discovered in prokaryotes. Today, those enigmatic repetitive elements termed clustered regularly interspaced short palindromic repeats (CRISPR) are acknowledged as an emblematic part of multicomponent CRISPR-Cas (CRISPR associated) systems. These systems are involved in a variety of roles in bacteria and archaea, notably, that of conferring protection against transmissible genetic elements through an adaptive immune-like response. This review summarises the present knowledge on the diversity, molecular mechanisms and biology of CRISPR-Cas. We pay special attention to the most recent findings related to the determinants and consequences of CRISPR-Cas activity. Research on the basic features of these systems illustrates how instrumental the study of prokaryotes is for understanding biology in general, ultimately providing valuable tools for diverse fields and fuelling research beyond the mainstream.
Collapse
Affiliation(s)
- Noemí M Guzmán
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Belén Esquerra-Ruvira
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Francisco J M Mojica
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain.
- Instituto Multidisciplinar para el Estudio del Medio, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
23
|
Hall JPJ, Wright RCT, Harrison E, Muddiman KJ, Wood AJ, Paterson S, Brockhurst MA. Plasmid fitness costs are caused by specific genetic conflicts enabling resolution by compensatory mutation. PLoS Biol 2021; 19:e3001225. [PMID: 34644303 PMCID: PMC8544851 DOI: 10.1371/journal.pbio.3001225] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/25/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
Plasmids play an important role in bacterial genome evolution by transferring genes between lineages. Fitness costs associated with plasmid carriage are expected to be a barrier to gene exchange, but the causes of plasmid fitness costs are poorly understood. Single compensatory mutations are often sufficient to completely ameliorate plasmid fitness costs, suggesting that such costs are caused by specific genetic conflicts rather than generic properties of plasmids, such as their size, metabolic burden, or gene expression level. By combining the results of experimental evolution with genetics and transcriptomics, we show here that fitness costs of 2 divergent large plasmids in Pseudomonas fluorescens are caused by inducing maladaptive expression of a chromosomal tailocin toxin operon. Mutations in single genes unrelated to the toxin operon, and located on either the chromosome or the plasmid, ameliorated the disruption associated with plasmid carriage. We identify one of these compensatory loci, the chromosomal gene PFLU4242, as the key mediator of the fitness costs of both plasmids, with the other compensatory loci either reducing expression of this gene or mitigating its deleterious effects by up-regulating a putative plasmid-borne ParAB operon. The chromosomal mobile genetic element Tn6291, which uses plasmids for transmission, remained up-regulated even in compensated strains, suggesting that mobile genetic elements communicate through pathways independent of general physiological disruption. Plasmid fitness costs caused by specific genetic conflicts are unlikely to act as a long-term barrier to horizontal gene transfer (HGT) due to their propensity for amelioration by single compensatory mutations, helping to explain why plasmids are so common in bacterial genomes.
Collapse
Affiliation(s)
- James P. J. Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Rosanna C. T. Wright
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Katie J. Muddiman
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - A. Jamie Wood
- Department of Biology, University of York, York, United Kingdom
- Department of Mathematics, University of York, York, United Kingdom
| | - Steve Paterson
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michael A. Brockhurst
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
24
|
Le C, Pimentel C, Tuttobene MR, Subils T, Escalante J, Nishimura B, Arriaga S, Rodgers D, Bonomo RA, Sieira R, Tolmasky ME, Ramírez MS. Involvement of the Histone-Like Nucleoid Structuring Protein (H-NS) in Acinetobacter baumannii's Natural Transformation. Pathogens 2021; 10:1083. [PMID: 34578115 PMCID: PMC8470039 DOI: 10.3390/pathogens10091083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
Most Acinetobacter baumannii strains are naturally competent. Although some information is available about factors that enhance or reduce the frequency of the transformation of this bacterium, the regulatory elements and mechanisms are barely understood. In this article, we describe studies on the role of the histone-like nucleoid structuring protein, H-NS, in the regulation of the expression of genes related to natural competency and the ability to uptake foreign DNA. The expression levels of the natural transformation-related genes pilA, pilT, pilQ, comEA, comEC, comF, and drpA significantly increased in a Δhns derivative of A. baumannii A118. The complementation of the mutant with a recombinant plasmid harboring hns restored the expression levels of six of these genes (pilT remained expressed at high levels) to those of the wild-type strain. The transformation frequency of the A. baumannii A118 Δhns strain was significantly higher than that of the wild-type. Similar, albeit not identical, there were consequences when hns was deleted from the hypervirulent A. baumannii AB5075 strain. In the AB5075 complemented strain, the reduction in gene expression in a few cases was not so pronounced that it reached wild-type levels, and the expression of comEA was enhanced further. In conclusion, the expression of all seven transformation-related genes was enhanced after deleting hns in A. baumannii A118 and AB5075, and these modifications were accompanied by an increase in the cells' transformability. The results highlight a role of H-NS in A. baumannii's natural competence.
Collapse
Affiliation(s)
- Casin Le
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (D.R.); (M.E.T.)
| | - Camila Pimentel
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (D.R.); (M.E.T.)
| | - Marisel R. Tuttobene
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina;
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario S2002LRK, Argentina
| | - Tomás Subils
- Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-UNR), Rosario S2002LRK, Argentina;
| | - Jenny Escalante
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (D.R.); (M.E.T.)
| | - Brent Nishimura
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (D.R.); (M.E.T.)
| | - Susana Arriaga
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (D.R.); (M.E.T.)
| | - Deja Rodgers
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (D.R.); (M.E.T.)
| | - Robert A. Bonomo
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA;
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Rodrigo Sieira
- Fundación Instituto Leloir—IIBBA CONICET, Buenos Aires C1405BWE, Argentina;
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (D.R.); (M.E.T.)
| | - María Soledad Ramírez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (D.R.); (M.E.T.)
| |
Collapse
|
25
|
Plasmid-encoded H-NS controls extracellular matrix composition in a modern Acinetobacter baumannii urinary isolate. J Bacteriol 2021; 203:e0027721. [PMID: 34398664 DOI: 10.1128/jb.00277-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii is emerging as a multidrug-resistant (MDR) nosocomial pathogen of increasing threat to human health worldwide. The recent MDR urinary isolate UPAB1 carries the plasmid pAB5, a member of a family of large conjugative plasmids (LCP). LCP encode several antibiotic resistance genes and repress the type VI secretion system (T6SS) to enable their dissemination, employing two TetR transcriptional regulators. Furthermore, pAB5 controls the expression of additional chromosomally encoded genes, impacting UPAB1 virulence. Here we show that a pAB5-encoded H-NS transcriptional regulator represses the synthesis of the exopolysaccharide PNAG and the expression of a previously uncharacterized three-gene cluster that encodes a protein belonging to the CsgG/HfaB family. Members of this protein family are involved in amyloid or polysaccharide formation in other species. Deletion of the CsgG homolog abrogated PNAG production and CUP pili formation, resulting in a subsequent reduction in biofilm formation. Although this gene cluster is widely distributed in Gram-negative bacteria, it remains largely uninvestigated. Our results illustrate the complex cross-talks that take place between plasmids and the chromosomes of their bacterial host, which in this case can contribute to the pathogenesis of Acinetobacter. IMPORTANCE The opportunistic human pathogen Acinetobacter baumannii displays the highest reported rates of multidrug resistance among Gram-negative pathogens. Many A. baumannii strains carry large conjugative plasmids like pAB5. In recent years, we have witnessed an increase in knowledge about the regulatory cross-talks between plasmids and bacterial chromosomes. Here we show that pAB5 controls the composition of the bacterial extracellular matrix, resulting in a drastic reduction in biofilm formation. The association between biofilm formation, virulence, and antibiotic resistance is well-documented. Therefore, understanding the factors involved in the regulation of biofilm formation in Acinetobacter has remarkable therapeutic potential.
Collapse
|
26
|
Amemiya HM, Schroeder J, Freddolino PL. Nucleoid-associated proteins shape chromatin structure and transcriptional regulation across the bacterial kingdom. Transcription 2021; 12:182-218. [PMID: 34499567 PMCID: PMC8632127 DOI: 10.1080/21541264.2021.1973865] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023] Open
Abstract
Genome architecture has proven to be critical in determining gene regulation across almost all domains of life. While many of the key components and mechanisms of eukaryotic genome organization have been described, the interplay between bacterial DNA organization and gene regulation is only now being fully appreciated. An increasing pool of evidence has demonstrated that the bacterial chromosome can reasonably be thought of as chromatin, and that bacterial chromosomes contain transcriptionally silent and transcriptionally active regions analogous to heterochromatin and euchromatin, respectively. The roles played by histones in eukaryotic systems appear to be shared across a range of nucleoid-associated proteins (NAPs) in bacteria, which function to compact, structure, and regulate large portions of bacterial chromosomes. The broad range of extant NAPs, and the extent to which they differ from species to species, has raised additional challenges in identifying and characterizing their roles in all but a handful of model bacteria. Here we review the regulatory roles played by NAPs in several well-studied bacteria and use the resulting state of knowledge to provide a working definition for NAPs, based on their function, binding pattern, and expression levels. We present a screening procedure which can be applied to any species for which transcriptomic data are available. Finally, we note that NAPs tend to play two major regulatory roles - xenogeneic silencers and developmental regulators - and that many unrecognized potential NAPs exist in each bacterial species examined.
Collapse
Affiliation(s)
- Haley M. Amemiya
- University of Michigan Medical School, Ann Arbor, MI, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jeremy Schroeder
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter L. Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Liu B, Shui L, Zhou K, Jiang Y, Li X, Guan J, Li Q, Zhuo C. Impact of Plasmid-Encoded H-NS-like Protein on blaNDM-1-Bearing IncX3 Plasmid in Escherichia coli. J Infect Dis 2021; 221:S229-S236. [PMID: 32176784 DOI: 10.1093/infdis/jiz567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND This study was performed to assess the role of the histone-like nucleoid-structuring (H-NS)-like protein, carried by blaNDM-1-encoding IncX3-type plasmids, in the dissemination of IncX3 plasmids. METHODS The blaNDM-1-encoding IncX3 plasmids were analyzed using southern blot, conjugation, and competition assays. Virulence was evaluated with a Galleria mellonella infection model. An hns-knockout IncX3 plasmid was also constructed to identify the functions of plasmid-borne H-NS-like protein in Escherichia coli. RESULTS The assasys detected blaNDM-1-encoding IncX3-type plasmids with similar fingerprint patterns in all New Delhi metallo-β-lactamase (NDM) 1-producing carbapenem-resistant Enterobacteriaceae. The IncX3 plasmid conferred a fitness advantage to E. coli J53 but had no effect on host virulence. Moreover, the transconjugation frequency of the hns-null IncX3 plasmid pHN330-△hns was increased by 2.5-fold compared with the wild type. This was caused by up-regulation of conjugation-related plasmid-borne genes and the partition-related gene, in the J330-pHN330-△hns strain. In addition, decreased virulence was detected with this variant. CONCLUSIONS Our results highlight the important role of IncX3 plasmids in the dissemination of blaNDM-1 in south China. Plasmid-encoded H-NS-like protein can inhibit plasmid conjugation, partition, and the expression of related genes, in addition to promoting virulence in the host.
Collapse
Affiliation(s)
- Baomo Liu
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lili Shui
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Ying Jiang
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyu Li
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Guan
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qi Li
- Pulmonary and Critical Care Medicine Center, Chinese PLA Respiratory Disease Institute, Xinqiao hospital, Army Medical University, Shapingba District, Chongqing, China
| | - Chao Zhuo
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
28
|
Monárrez R, Okeke IN. A plasmid-encoded papB paralogue modulates autoaggregation of Escherichia coli transconjugants. BMC Res Notes 2020; 13:565. [PMID: 33317611 PMCID: PMC7734786 DOI: 10.1186/s13104-020-05405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/28/2020] [Indexed: 11/16/2022] Open
Abstract
Objective Plasmids are key to antimicrobial resistance transmission among enteric bacteria. It is becoming increasingly clear that resistance genes alone do not account for the selective advantage of plasmids and bacterial strains that harbor them. Deletion of a 32 Kb fitness-conferring region of pMB2, a conjugative resistance plasmid, produced a hyper-autoaggregation phenotype in laboratory Escherichia coli. This study sought to determine the genetic basis for hyper-autoaggregation conferred by the pMB2-derived mini-plasmid. Results The 32 Kb fragment deleted from pMB2 included previously characterized nutrient acquisition genes as well as putative transposase and integrase genes, a 272 bp papB/ pefB-like gene, and several open-reading frames of unknown function. We cloned the papB/ pefB paralogue and found it sufficient to temper the hyper-autoaggregation phenotype. Hyper-autoaggregation conferred by the mini-plasmid did not occur in a fim-negative background. This study has identified and characterized a gene capable of down-regulating host adhesins and has shown that trans-acting papB/pefB paralogues can occur outside the context of an adhesin cluster. This plasmid-mediated modification of a bacterial host’s colonization program may optimize horizontal transfer of the mobile element bearing the genes.
Collapse
Affiliation(s)
- Rubén Monárrez
- Department of Biology, Haverford College, Haverford, Pennsylvania, USA
| | - Iruka N Okeke
- Department of Biology, Haverford College, Haverford, Pennsylvania, USA. .,Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria.
| |
Collapse
|
29
|
A bacteriophage mimic of the bacterial nucleoid-associated protein Fis. Biochem J 2020; 477:1345-1362. [PMID: 32207815 PMCID: PMC7166090 DOI: 10.1042/bcj20200146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 11/17/2022]
Abstract
We report the identification and characterization of a bacteriophage λ-encoded protein, NinH. Sequence homology suggests similarity between NinH and Fis, a bacterial nucleoid-associated protein (NAP) involved in numerous DNA topology manipulations, including chromosome condensation, transcriptional regulation and phage site-specific recombination. We find that NinH functions as a homodimer and is able to bind and bend double-stranded DNA in vitro. Furthermore, NinH shows a preference for a 15 bp signature sequence related to the degenerate consensus favored by Fis. Structural studies reinforced the proposed similarity to Fis and supported the identification of residues involved in DNA binding which were demonstrated experimentally. Overexpression of NinH proved toxic and this correlated with its capacity to associate with DNA. NinH is the first example of a phage-encoded Fis-like NAP that likely influences phage excision-integration reactions or bacterial gene expression.
Collapse
|
30
|
Prieto A, Bernabeu M, Falgenhauer L, Chakraborty T, Hüttener M, Juárez A. Overexpression of the third H-NS paralogue H-NS2 compensates fitness loss in hns mutants of the enteroaggregative Escherichia coli strain 042. Sci Rep 2020; 10:18131. [PMID: 33093592 PMCID: PMC7582179 DOI: 10.1038/s41598-020-75204-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/07/2020] [Indexed: 11/10/2022] Open
Abstract
Members of the H-NS protein family play a role both in the chromosome architecture and in the regulation of gene expression in bacteria. The genomes of the enterobacteria encode an H-NS paralogue, the StpA protein. StpA displays specific regulatory properties and provides a molecular backup for H-NS. Some enterobacteria also encode third H-NS paralogues. This is the case of the enteroaggregative E. coli (EAEC) strain 042, which encodes the hns, stpA and hns2 genes. We provide in this paper novel information about the role of the H-NS2 protein in strain 042. A C > T transition in the hns2 promoter leading to increased H-NS2 expression is readily selected in hns mutants. Increased H-NS2 expression partially compensates for H-NS loss. H-NS2 levels are critical for the strain 042 fitness. Under some circumstances, high H-NS2 expression levels dictated by the mutant hns2 promoter can be deleterious. The selection of T > C revertants or of clones harboring insertional inactivations of the hns2 gene can then occur. Temperature also plays a relevant role in the H-NS2 regulatory activity. At 37 °C, H-NS2 targets a subset of the H-NS repressed genes contributing to their silencing. When temperature drops to 25 °C, the repressory ability of H-NS2 is significantly reduced. At low temperature, H-NS plays the main repressory role.
Collapse
Affiliation(s)
- A Prieto
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - M Bernabeu
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - L Falgenhauer
- Institute of Hygiene and Environmental Medicine, Justus Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany.,German Center for Infection Research DZIF, Partner Site Giessen-Marburg-Langen, Campus, Giessen, Germany
| | - T Chakraborty
- German Center for Infection Research DZIF, Partner Site Giessen-Marburg-Langen, Campus, Giessen, Germany.,Institute of Medical Microbiology, Justus-Liebig University, Schubertstrasse 81, 35392, Giessen, Germany
| | - M Hüttener
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - A Juárez
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain. .,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
31
|
Fitzgerald S, Kary SC, Alshabib EY, MacKenzie KD, Stoebel D, Chao TC, Cameron ADS. Redefining the H-NS protein family: a diversity of specialized core and accessory forms exhibit hierarchical transcriptional network integration. Nucleic Acids Res 2020; 48:10184-10198. [PMID: 32894292 PMCID: PMC7544231 DOI: 10.1093/nar/gkaa709] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/07/2020] [Accepted: 08/23/2020] [Indexed: 12/27/2022] Open
Abstract
H-NS is a nucleoid structuring protein and global repressor of virulence and horizontally-acquired genes in bacteria. H-NS can interact with itself or with homologous proteins, but protein family diversity and regulatory network overlap remain poorly defined. Here, we present a comprehensive phylogenetic analysis that revealed deep-branching clades, dispelling the presumption that H-NS is the progenitor of varied molecular backups. Each clade is composed exclusively of either chromosome-encoded or plasmid-encoded proteins. On chromosomes, stpA and newly discovered hlpP are core genes in specific genera, whereas hfp and newly discovered hlpC are sporadically distributed. Six clades of H-NS plasmid proteins (Hpp) exhibit ancient and dedicated associations with plasmids, including three clades with fidelity for plasmid incompatibility groups H, F or X. A proliferation of H-NS homologs in Erwiniaceae includes the first observation of potentially co-dependent H-NS forms. Conversely, the observed diversification of oligomerization domains may facilitate stable co-existence of divergent homologs in a genome. Transcriptomic and proteomic analysis in Salmonella revealed regulatory crosstalk and hierarchical control of H-NS homologs. We also discovered that H-NS is both a repressor and activator of Salmonella Pathogenicity Island 1 gene expression, and both regulatory modes are restored by Sfh (HppH) in the absence of H-NS.
Collapse
Affiliation(s)
- Stephen Fitzgerald
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Stefani C Kary
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Ebtihal Y Alshabib
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Keith D MacKenzie
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Daniel M Stoebel
- Department of Biology, Harvey Mudd College, Claremont, CA 91711, USA
| | - Tzu-Chiao Chao
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute of Environmental Change and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Andrew D S Cameron
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
32
|
Kawano H, Suzuki-Minakuchi C, Sugiyama D, Watanabe N, Takahashi Y, Okada K, Nojiri H. A Novel Small RNA on the Pseudomonas putida KT2440 Chromosome Is Involved in the Fitness Cost Imposed by IncP-1 Plasmid RP4. Front Microbiol 2020; 11:1328. [PMID: 32655527 PMCID: PMC7324555 DOI: 10.3389/fmicb.2020.01328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Plasmids can provide advantageous traits to host bacteria, although they may impose a fitness cost. Chromosome-encoded factors are important for regulating the expression of genes on plasmids, and host chromosomes may differ in terms of their interactions with a given plasmid. Accordingly, differences in fitness cost loading and compensatory co-evolution may occur for various host chromosome/plasmid combinations. However, the mechanisms of compensatory evolution are highly divergent and require further insights. Here, we reveal novel evolutionally mechanisms of Pseudomonas putida KT2440 to improve the fitness cost imposed by the incompatibility P-1 (IncP-1) multidrug resistance plasmid RP4. A mixed culture of RP4-harboring and -free KT2440 cells was serially transferred every 24 h under non-selective conditions. Initially, the proportion of RP4-harboring cells decreased rapidly, but it immediately recovered, suggesting that the fitness of RP4-harboring strains improved during cultivation. Larger-sized colonies appeared during 144-h mixed culture, and evolved strains isolated from larger-sized colonies showed higher growth rates and fitness than those of the ancestral strain. Whole-genome sequencing revealed that evolved strains had one of two mutations in the same intergenic region of the chromosome. Based on the research of another group, this region is predicted to contain a stress-inducible small RNA (sRNA). Identification of the transcriptional start site in this sRNA indicated that one mutation occurred within the sRNA region, whereas the other was in its promoter region. Quantitative reverse-transcription PCR showed that the expression of this sRNA was strongly induced by RP4 carriage in the ancestral strain but repressed in the evolved strains. When the sRNA region was overexpressed in the RP4-free strain, the fitness decreased, and the colony size became smaller. Using transcriptome analysis, we also showed that the genes involved in amino acid metabolism and stress responses were differentially transcribed by overexpression of the sRNA region. These results indicate that the RP4-inducible chromosomal sRNA was responsible for the fitness cost of RP4 on KT2440 cells, where this sRNA is of key importance in host evolution toward rapid amelioration of the cost.
Collapse
Affiliation(s)
- Hibiki Kawano
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Chiho Suzuki-Minakuchi
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Daisuke Sugiyama
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Natsuki Watanabe
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Yurika Takahashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
Genome and sequence determinants governing the expression of horizontally acquired DNA in bacteria. ISME JOURNAL 2020; 14:2347-2357. [PMID: 32514119 PMCID: PMC7608860 DOI: 10.1038/s41396-020-0696-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 01/23/2023]
Abstract
While horizontal gene transfer is prevalent across the biosphere, the regulatory features that enable expression and functionalization of foreign DNA remain poorly understood. Here, we combine high-throughput promoter activity measurements and large-scale genomic analysis of regulatory regions to investigate the cross-compatibility of regulatory elements (REs) in bacteria. Functional characterization of thousands of natural REs in three distinct bacterial species revealed distinct expression patterns according to RE and recipient phylogeny. Host capacity to activate foreign promoters was proportional to their genomic GC content, while many low GC regulatory elements were both broadly active and had more transcription start sites across hosts. The difference in expression capabilities could be explained by the influence of the host GC content on the stringency of the AT-rich canonical σ70 motif necessary for transcription initiation. We further confirm the generalizability of this model and find widespread GC content adaptation of the σ70 motif in a set of 1,545 genomes from all major bacterial phyla. Our analysis identifies a key mechanism by which the strength of the AT-rich σ70 motif relative to a host's genomic GC content governs the capacity for expression of acquired DNA. These findings shed light on regulatory adaptation in the context of evolving genomic composition.
Collapse
|
34
|
Nakamura T, Suzuki-Minakuchi C, Kawano H, Kanesaki Y, Kawasaki S, Okada K, Nojiri H. H-NS Family Proteins Drastically Change Their Targets in Response to the Horizontal Transfer of the Catabolic Plasmid pCAR1. Front Microbiol 2020; 11:1099. [PMID: 32547524 PMCID: PMC7273181 DOI: 10.3389/fmicb.2020.01099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/04/2020] [Indexed: 01/20/2023] Open
Abstract
H-NS family proteins regulate the expression of many genes by preferably binding to AT-rich genomic regions and altering DNA topology. They are found in both bacterial chromosomes and plasmids, and plasmid-encoded H-NS family proteins have sometimes been suggested to act as a molecular backup of the chromosomally encoded ones. Pmr is an H-NS family protein encoded on the catabolic plasmid pCAR1, which belongs to incompatibility P-7 group. We have investigated the function of Pmr in Pseudomonas putida KT2440, where two H-NS family proteins (TurA and TurB) encoded on the chromosome are expressed predominantly. Previous transcriptome analyses suggested that TurA, TurB, and Pmr cooperatively regulate numerous genes, but the differentially transcribed genes in KT2440ΔturA(pCAR1), KT2440ΔturB(pCAR1), and KT2440(pCAR1Δpmr) compared with those in KT2440(pCAR1) were somewhat different. Here, we performed RNA sequencing analyses to compare the differentially transcribed genes after the deletion of turA or turB in KT2440, and turA, turB or pmr in KT2440(pCAR1). Three pCAR1-free strains (KT2440, KT2440ΔturA, KT2440ΔturB) and four pCAR1-harboring strains [KT2440(pCAR1), KT2440ΔturA(pCAR1), KT2440ΔturB(pCAR1), KT2440(pCAR1Δpmr)], grown until the log and stationary phases, were used. In KT2440, TurA was the major H-NS family protein regulating a large number and wide range of genes, and both TurA and TurB were suggested to functionally compensate each other, particularly during the stationary phase. In KT2440(pCAR1), the numbers of differentially transcribed genes after the deletion of turA or turB drastically increased compared to those in KT2440. Notably, more than half of the differentially transcribed genes in KT2440ΔturA and KT2440ΔturB did not overlap with those in KT2440ΔturA(pCAR1) and KT2440ΔturB(pCAR1). This dynamic change could be explained by the acquisition of pCAR1 itself and the expression of Pmr. After pCAR1 was transferred into the host, TurA and TurB could be detached from the chromosome of KT2440 and they could newly bind to pCAR1. Moreover, Pmr could reconstitute the chromosome-binding heteromeric oligomers which were formed by TurA and TurB. Our study revealed that horizontal transfer of a plasmid changes the transcriptional network of the chromosomally encoded H-NS family proteins.
Collapse
Affiliation(s)
- Taisuke Nakamura
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Chiho Suzuki-Minakuchi
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Hibiki Kawano
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Shinji Kawasaki
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
35
|
Mitić D, Radovčić M, Markulin D, Ivančić-Baće I. StpA represses CRISPR-Cas immunity in H-NS deficient Escherichia coli. Biochimie 2020; 174:136-143. [PMID: 32353388 DOI: 10.1016/j.biochi.2020.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/24/2022]
Abstract
Functional CRISPR-Cas systems provide many bacteria and most archaea with adaptive immunity against invading DNA elements. CRISPR arrays store DNA fragments of previous infections while products of cas genes provide immunity by integrating new DNA fragments and using this information to recognize and destroy invading DNA. Escherichia coli contains the CRISPR-Cas type I-E system in which foreign DNA targets are recognized by Cascade, a crRNA-guided complex comprising five proteins (CasA, CasB, CasC, CasD, CasE), and degraded by Cas3. In E. coli the CRISPR-Cas type I-E system is repressed by the histone-like nucleoid-structuring protein H-NS. H-NS repression can be relieved either by inactivation of the hns gene or by elevated levels of the H-NS antagonist LeuO, which induces higher transcript levels of cas genes than was observed for Δhns cells. This suggests that derepression in Δhns cells is incomplete and that an additional repressor could be involved in the silencing. One such candidate is the H-NS paralog protein StpA, which has DNA binding preferences similar to those of H-NS. Here we show that overexpression of StpA in Δhns cells containing anti-lambda spacers abolishes resistance to λvir infection and reduces transcription of the casA gene. In cells lacking hns and stpA genes, the transcript levels of the casA gene are higher than Δhns and similar to wt cells overexpressing LeuO. Taken together, these results suggest that Cascade genes in E. coli are repressed by the StpA protein when H-NS is absent.
Collapse
Affiliation(s)
- Damjan Mitić
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia.
| | - Marin Radovčić
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia.
| | - Dora Markulin
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia.
| | - Ivana Ivančić-Baće
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia.
| |
Collapse
|
36
|
Ma T, Fu J, Xie N, Ma S, Lei L, Zhai W, Shen Y, Sun C, Wang S, Shen Z, Wang Y, Walsh TR, Shen J. Fitness Cost of blaNDM-5-Carrying p3R-IncX3 Plasmids in Wild-Type NDM-Free Enterobacteriaceae. Microorganisms 2020; 8:microorganisms8030377. [PMID: 32156014 PMCID: PMC7143814 DOI: 10.3390/microorganisms8030377] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/31/2022] Open
Abstract
The wide dissemination of New Delhi metallo-β-lactamase genes (blaNDM) has resulted in the treatment failure of most available β-lactam antibiotics, with IncX3-type blaNDM-5-carrying plasmids recognised as having spread worldwide. In China, bacteria carrying these plasmids are increasingly being detected from diverse samples, including hospitals, communities, livestock and poultry, and the environment, suggesting that IncX3 plasmids are becoming a vital vehicle for blaNDM dissemination. To elucidate the fitness cost of these plasmids on the bacterial host, we collected blaNDM-negative strains from different sources and tested their ability to acquire the blaNDM-5-harboring p3R-IncX3 plasmid. We then measured changes in antimicrobial susceptibility, growth kinetics, and biofilm formation following plasmid acquisition. Overall, 70.7% (29/41) of our Enterobacteriaceae recipients successfully acquired the blaNDM-5-harboring p3R-IncX3 plasmid. Contrary to previous plasmid burden theory, 75.9% (22/29) of the transconjugates showed little fitness cost as a result of plasmid acquisition, with 6.9% (2/29) of strains exhibiting enhanced growth compared with their respective wild-type strains. Following plasmid acquisition, all transconjugates demonstrated resistance to most β-lactams, while several strains showed enhanced biofilm formation, further complicating treatment and prevention measures. Moreover, the highly virulent Escherichia coli sequence type 131 strain that already harbored mcr-1 also demonstrated the ability to acquire the blaNDM-5-carrying p3R-IncX3 plasmid, resulting in further limited therapeutic options. This low fitness cost may partly explain the rapid global dissemination of blaNDM-5-harboring IncX3 plasmids. Our study highlights the growing threat of IncX3 plasmids in spreading blaNDM-5.
Collapse
Affiliation(s)
- Tengfei Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Jiani Fu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Ning Xie
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Shizhen Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Lei Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Weishuai Zhai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Yingbo Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Chengtao Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Shaolin Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Zhangqi Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
| | - Timothy R. Walsh
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
- Department of Medical Microbiology and Infectious Disease, Institute of Infection & Immunity, Heath Park Hospital, Cardiff CF14 4XN, UK
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.M.); (J.F.); (S.M.); (L.L.); (W.Z.); (Y.S.); (C.S.); (S.W.); (Z.S.); (T.R.W.)
- Correspondence:
| |
Collapse
|
37
|
The evolutionary puzzle of Escherichia coli ST131. INFECTION GENETICS AND EVOLUTION 2020; 81:104265. [PMID: 32112974 DOI: 10.1016/j.meegid.2020.104265] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/22/2020] [Accepted: 02/26/2020] [Indexed: 01/02/2023]
Abstract
The abrupt expansion of Escherichia coli sequence type (ST) 131 is unmatched among Gram negative bacteria. In many ways, ST131 can be considered a real-world model for the complexities involved in the evolution of a multidrug resistant pathogen. While much progress has been made on our insights into the organism's population structure, pathogenicity and drug resistance profile, significant gaps in our knowledge remain. Whole genome studies have shed light on key mutations and genes that have been selected against the background of antibiotics, but in most cases such events are inferred and not supported by experimental data. Notable examples include the unknown fitness contribution made by specific plasmids, genomic islands and compensatory mutations. Furthermore, questions remain like why this organism in particular achieved such considerable success in such a short time span, compared to other more pathogenic and resistant clones. Herein, we document what is known regarding the genetics of this organism since its first description in 2008, but also highlight where work remains to be done for a truly comprehensive understanding of the biology of ST131, in order to account for its dramatic rise to prominence.
Collapse
|
38
|
Horizontally Acquired Homologs of Xenogeneic Silencers: Modulators of Gene Expression Encoded by Plasmids, Phages and Genomic Islands. Genes (Basel) 2020; 11:genes11020142. [PMID: 32013150 PMCID: PMC7074111 DOI: 10.3390/genes11020142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 02/08/2023] Open
Abstract
Acquisition of mobile elements by horizontal gene transfer can play a major role in bacterial adaptation and genome evolution by providing traits that contribute to bacterial fitness. However, gaining foreign DNA can also impose significant fitness costs to the host bacteria and can even produce detrimental effects. The efficiency of horizontal acquisition of DNA is thought to be improved by the activity of xenogeneic silencers. These molecules are a functionally related group of proteins that possess affinity for the acquired DNA. Binding of xenogeneic silencers suppresses the otherwise uncontrolled expression of genes from the newly acquired nucleic acid, facilitating their integration to the bacterial regulatory networks. Even when the genes encoding for xenogeneic silencers are part of the core genome, homologs encoded by horizontally acquired elements have also been identified and studied. In this article, we discuss the current knowledge about horizontally acquired xenogeneic silencer homologs, focusing on those encoded by genomic islands, highlighting their distribution and the major traits that allow these proteins to become part of the host regulatory networks.
Collapse
|
39
|
Vial L, Hommais F. Plasmid-chromosome cross-talks. Environ Microbiol 2019; 22:540-556. [PMID: 31782608 DOI: 10.1111/1462-2920.14880] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022]
Abstract
Plasmids can be acquired by recipient bacteria at a significant cost while conferring them advantageous traits. To counterbalance the costs of plasmid carriage, both plasmids and host bacteria have developed a tight regulatory network that may involve a cross-talk between the chromosome and the plasmids. Although plasmid regulation by chromosomal regulators is generally well known, chromosome regulation by plasmid has been far less investigated. Yet, a growing number of studies have highlighted an impact of plasmids on their host bacteria. Here, we describe the plasmid-chromosome cross-talk from the plasmid point of view. We summarize data about the chromosomal adaptive mutations generated by plasmid carriage; the impact of the loss of a domesticated plasmid or the gain of a new plasmid. Then, we present the control of plasmid-encoded regulators on chromosomal gene expression. The involvement of regulators homologous to chromosome-encoded proteins is illustrated by the H-NS-like proteins, and by the Rap-Phr system. Finally, plasmid-specific regulators of chromosomal gene expression are presented, which highlight the involvement of transcription factors and sRNAs. A comprehensive analysis of the mechanisms that allow a given plasmid to impact the chromosome of bacterium will help to understand the tight cross-talk between plasmids and the chromosome.
Collapse
Affiliation(s)
- Ludovic Vial
- Université de Lyon, 69622, Lyon, France.,Université Lyon 1, 69622, Villeurbanne, France.,CNRS, UMR 5557 Ecologie Microbienne, 69622, Villeurbanne, France.,INRA, UMR1418 Ecologie Microbienne, 69622, Villeurbanne, France
| | - Florence Hommais
- Université de Lyon, 69622, Lyon, France.,Université Lyon 1, 69622, Villeurbanne, France.,CNRS, UMR 5240 Microbiologie Adaptation et Pathogénie, 69622, Villeurbanne, France
| |
Collapse
|
40
|
Qin L, Erkelens AM, Ben Bdira F, Dame RT. The architects of bacterial DNA bridges: a structurally and functionally conserved family of proteins. Open Biol 2019; 9:190223. [PMID: 31795918 PMCID: PMC6936261 DOI: 10.1098/rsob.190223] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Every organism across the tree of life compacts and organizes its genome with architectural chromatin proteins. While eukaryotes and archaea express histone proteins, the organization of bacterial chromosomes is dependent on nucleoid-associated proteins. In Escherichia coli and other proteobacteria, the histone-like nucleoid structuring protein (H-NS) acts as a global genome organizer and gene regulator. Functional analogues of H-NS have been found in other bacterial species: MvaT in Pseudomonas species, Lsr2 in actinomycetes and Rok in Bacillus species. These proteins complement hns- phenotypes and have similar DNA-binding properties, despite their lack of sequence homology. In this review, we focus on the structural and functional characteristics of these four architectural proteins. They are able to bridge DNA duplexes, which is key to genome compaction, gene regulation and their response to changing conditions in the environment. Structurally the domain organization and charge distribution of these proteins are conserved, which we suggest is at the basis of their conserved environment responsive behaviour. These observations could be used to find and validate new members of this protein family and to predict their response to environmental changes.
Collapse
Affiliation(s)
- L. Qin
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - A. M. Erkelens
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - F. Ben Bdira
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - R. T. Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
41
|
Pfeifer E, Hünnefeld M, Popa O, Frunzke J. Impact of Xenogeneic Silencing on Phage-Host Interactions. J Mol Biol 2019; 431:4670-4683. [PMID: 30796986 PMCID: PMC6925973 DOI: 10.1016/j.jmb.2019.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 01/21/2023]
Abstract
Phages, viruses that prey on bacteria, are the most abundant and diverse inhabitants of the Earth. Temperate bacteriophages can integrate into the host genome and, as so-called prophages, maintain a long-term association with their host. The close relationship between host and virus has significantly shaped microbial evolution and phage elements may benefit their host by providing new functions. Nevertheless, the strong activity of phage promoters and potentially toxic gene products may impose a severe fitness burden and must be tightly controlled. In this context, xenogeneic silencing (XS) proteins, which can recognize foreign DNA elements, play an important role in the acquisition of novel genetic information and facilitate the evolution of regulatory networks. Currently known XS proteins fall into four classes (H-NS, MvaT, Rok and Lsr2) and have been shown to follow a similar mode of action by binding to AT-rich DNA and forming an oligomeric nucleoprotein complex that silences gene expression. In this review, we focus on the role of XS proteins in phage-host interactions by highlighting the important function of XS proteins in maintaining the lysogenic state and by providing examples of how phages fight back by encoding inhibitory proteins that disrupt XS functions in the host. Sequence analysis of available phage genomes revealed the presence of genes encoding Lsr2-type proteins in the genomes of phages infecting Actinobacteria. These data provide an interesting perspective for future studies to elucidate the impact of phage-encoded XS homologs on the phage life cycle and phage-host interactions.
Collapse
Affiliation(s)
- Eugen Pfeifer
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany.
| | - Max Hünnefeld
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Ovidiu Popa
- Heinrich Heine Universität Düsseldorf, Institute for Quantitative and Theoretical Biology, 40223 Düsseldorf, Germany
| | - Julia Frunzke
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany.
| |
Collapse
|
42
|
Takano S, Fukuda K, Koto A, Miyazaki R. A novel system of bacterial cell division arrest implicated in horizontal transmission of an integrative and conjugative element. PLoS Genet 2019; 15:e1008445. [PMID: 31609967 PMCID: PMC6812849 DOI: 10.1371/journal.pgen.1008445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/24/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022] Open
Abstract
Integrative and conjugative elements (ICEs) are widespread mobile DNA elements in the prokaryotic world. ICEs are usually retained within the bacterial chromosome, but can be excised and transferred from a donor to a new recipient cell, even of another species. Horizontal transmission of ICEclc, a prevalent ICE in proteobacteria, only occurs from developed specialized transfer competent (tc) cells in the donor population. tc cells become entirely dedicated to the ICE transmission at the cost of cell proliferation. The cell growth impairment is mediated by two ICEclc located genes, parA and shi, but the mechanistic and dynamic details of this process are unknown. To better understand the function of ParA and Shi, we followed their intracellular behavior from fluorescent protein fusions, and studied host cell division at single-cell level. Superresolution imaging revealed that ParA-mCherry colocalized with the host nucleoid while Shi-GFP was enriched at the membrane during the growth impairment. Despite being enriched at different cellular locations, the two proteins showed in vivo interactions, and mutations in the Walker A motif of ParA dislocalized both ParA and Shi. In addition, ParA mutations in the ATPase motif abolished the growth arrest on the host cell. Time-lapse microscopy revealed that ParA and Shi initially delay cell division, suggesting an extension of the S phase of cells, but eventually completely inhibit cell elongation. The parA-shi locus is highly conserved in other ICEclc-related elements, and expressing ParA-Shi from ICEclc in other proteobacterial species caused similar growth arrest, suggesting that the system functions similarly across hosts. The results of our study provide mechanistic insight into the novel and unique system on ICEs and help to understand such epistatic interaction between ICE genes and host physiology that entails efficient horizontal gene transfer.
Collapse
Affiliation(s)
- Sotaro Takano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Kohei Fukuda
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Akiko Koto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, Japan
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
43
|
Luque A, Paytubi S, Sánchez-Montejo J, Gibert M, Balsalobre C, Madrid C. Crosstalk between bacterial conjugation and motility is mediated by plasmid-borne regulators. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:708-717. [PMID: 31309702 DOI: 10.1111/1758-2229.12784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Plasmid conjugation is a major horizontal gene transfer mechanism. The acquisition of a plasmid may cause a perturbation of the cell functions in addition to provide advantageous properties for the recipient cell, such as the gaining of antibiotic resistances. The interplay between plasmid and chromosomal functions has been studied using the IncHI1 plasmid R27. Plasmids of the incompatibility group HI1, isolated from several Gram-negative pathogens, are associated with the spread of multidrug resistance. Their conjugation is tightly regulated by temperature, being repressed at temperatures within the host (37°C). In this report, we described that at permissive temperature, when conjugation of plasmid R27 is prompted, a reduction in the motility of the cells is observed. This reduction is mediated by the plasmid-encoded regulators TrhR/TrhY, which together with HtdA form a plasmid-borne regulatory circuit controlling R27 conjugation. TrhR/TrhY, required to induce R27 conjugation, is responsible for the downregulation of the flagella synthesis and the consequent decrease in motility. TrhR/TrhY repress, direct or indirectly, the expression of the specific flagellar sigma subunit FliA and, consequently, the expression of all genes located bellow in the flagellar expression cascade.
Collapse
Affiliation(s)
- Ainara Luque
- Secció de Microbiologia, Virologia i Biotecnologia. Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Sonia Paytubi
- Secció de Microbiologia, Virologia i Biotecnologia. Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Javier Sánchez-Montejo
- Secció de Microbiologia, Virologia i Biotecnologia. Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Marta Gibert
- Secció de Microbiologia, Virologia i Biotecnologia. Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Carlos Balsalobre
- Secció de Microbiologia, Virologia i Biotecnologia. Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Cristina Madrid
- Secció de Microbiologia, Virologia i Biotecnologia. Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| |
Collapse
|
44
|
Canals R, Chaudhuri RR, Steiner RE, Owen SV, Quinones-Olvera N, Gordon MA, Baym M, Ibba M, Hinton JCD. The fitness landscape of the African Salmonella Typhimurium ST313 strain D23580 reveals unique properties of the pBT1 plasmid. PLoS Pathog 2019; 15:e1007948. [PMID: 31560731 PMCID: PMC6785131 DOI: 10.1371/journal.ppat.1007948] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/09/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
We have used a transposon insertion sequencing (TIS) approach to establish the fitness landscape of the African Salmonella enterica serovar Typhimurium ST313 strain D23580, to complement our previous comparative genomic and functional transcriptomic studies. We used a genome-wide transposon library with insertions every 10 nucleotides to identify genes required for survival and growth in vitro and during infection of murine macrophages. The analysis revealed genomic regions important for fitness under two in vitro growth conditions. Overall, 724 coding genes were required for optimal growth in LB medium, and 851 coding genes were required for growth in SPI-2-inducing minimal medium. These findings were consistent with the essentiality analyses of other S. Typhimurium ST19 and S. Typhi strains. The global mutagenesis approach also identified 60 sRNAs and 413 intergenic regions required for growth in at least one in vitro growth condition. By infecting murine macrophages with the transposon library, we identified 68 genes that were required for intra-macrophage replication but did not impact fitness in vitro. None of these genes were unique to S. Typhimurium D23580, consistent with a high conservation of gene function between S. Typhimurium ST313 and ST19 and suggesting that novel virulence factors are not involved in the interaction of strain D23580 with murine macrophages. We discovered that transposon insertions rarely occurred in many pBT1 plasmid-encoded genes (36), compared with genes carried by the pSLT-BT virulence plasmid and other bacterial plasmids. The key essential protein encoded by pBT1 is a cysteinyl-tRNA synthetase, and our enzymological analysis revealed that the plasmid-encoded CysRSpBT1 had a lower ability to charge tRNA than the chromosomally-encoded CysRSchr enzyme. The presence of aminoacyl-tRNA synthetases in plasmids from a range of Gram-negative and Gram-positive bacteria suggests that plasmid-encoded essential genes are more common than had been appreciated.
Collapse
Affiliation(s)
- Rocío Canals
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Roy R Chaudhuri
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Rebecca E Steiner
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America.,Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Siân V Owen
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Natalia Quinones-Olvera
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Melita A Gordon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi, Central Africa
| | - Michael Baym
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America.,Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Jay C D Hinton
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
45
|
Dorman CJ, Ní Bhriain N. CRISPR-Cas, DNA Supercoiling, and Nucleoid-Associated Proteins. Trends Microbiol 2019; 28:19-27. [PMID: 31519332 DOI: 10.1016/j.tim.2019.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022]
Abstract
In this opinion article we highlight links between the H-NS nucleoid-associated protein, variable DNA topology, the regulation of CRISPR-cas locus expression, CRISPR-Cas activity, and the recruitment of novel genetic information by the CRISPR array. We propose that the requirement that the invading mobile genetic element be negatively supercoiled limits effective CRISPR action to a window in the bacterial growth cycle when DNA topology is optimal, and that this same window is used for the efficient integration of new spacer sequences at the CRISPR array. H-NS silences CRISPR promoters, and we propose that antagonists of H-NS, such as the LeuO transcription factor, provide a basis for a stochastic genetic switch that acts at random in each cell in the bacterial population. In addition, we wish to propose a mechanism by which mobile genetic elements can suppress CRISPR-cas transcription using H-NS homologues. Although the individual components of this network are known, we propose a new model in which they are integrated and linked to the physiological state of the bacterium. The model provides a basis for cell-to-cell variation in the expression and performance of CRISPR systems in bacterial populations.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Trinity College Dublin, Dublin 2, Ireland.
| | - Niamh Ní Bhriain
- Department of Microbiology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
46
|
Diel B, Dequivre M, Wisniewski‐Dyé F, Vial L, Hommais F. A novel plasmid‐transcribed regulatory sRNA, QfsR, controls chromosomal polycistronic gene expression in
Agrobacterium fabrum. Environ Microbiol 2019; 21:3063-3075. [DOI: 10.1111/1462-2920.14704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/04/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Benjamin Diel
- Université de Lyon F‐69622 Lyon France
- Université Lyon 1 F‐69622 Villeurbanne France
- CNRSUMR 5240 Microbiologie Adaptation et Pathogénie F‐69622 Villeurbanne France
- CNRSUMR 5557 Ecologie Microbienne F‐69622 Villeurbanne France
- INRAUMR1418 Ecologie Microbienne F‐69622 Villeurbanne France
| | - Magali Dequivre
- Université de Lyon F‐69622 Lyon France
- Université Lyon 1 F‐69622 Villeurbanne France
- CNRSUMR 5240 Microbiologie Adaptation et Pathogénie F‐69622 Villeurbanne France
| | - Florence Wisniewski‐Dyé
- Université de Lyon F‐69622 Lyon France
- Université Lyon 1 F‐69622 Villeurbanne France
- CNRSUMR 5557 Ecologie Microbienne F‐69622 Villeurbanne France
- INRAUMR1418 Ecologie Microbienne F‐69622 Villeurbanne France
| | - Ludovic Vial
- Université de Lyon F‐69622 Lyon France
- Université Lyon 1 F‐69622 Villeurbanne France
- CNRSUMR 5557 Ecologie Microbienne F‐69622 Villeurbanne France
- INRAUMR1418 Ecologie Microbienne F‐69622 Villeurbanne France
| | - Florence Hommais
- Université de Lyon F‐69622 Lyon France
- Université Lyon 1 F‐69622 Villeurbanne France
- CNRSUMR 5240 Microbiologie Adaptation et Pathogénie F‐69622 Villeurbanne France
| |
Collapse
|
47
|
Flores-Ríos R, Quatrini R, Loyola A. Endogenous and Foreign Nucleoid-Associated Proteins of Bacteria: Occurrence, Interactions and Effects on Mobile Genetic Elements and Host's Biology. Comput Struct Biotechnol J 2019; 17:746-756. [PMID: 31303979 PMCID: PMC6606824 DOI: 10.1016/j.csbj.2019.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023] Open
Abstract
Mobile Genetic Elements (MGEs) are mosaics of functional gene modules of diverse evolutionary origin and are generally divergent from the hosts´ genetic background. Existing biases in base composition and codon usage of these elements` genes impose transcription and translation limitations that may affect the physical and regulatory integration of MGEs in new hosts. Stable appropriation of the foreign DNA depends on a number of host factors among which are the Nucleoid-Associated Proteins (NAPs). These small, basic, highly abundant proteins bind and bend DNA, altering its topology and folding, thereby affecting all known essential DNA metabolism related processes. Both chromosomally- (endogenous) and MGE- (foreign) encoded NAPs have been shown to exist in bacteria. While the role of host-encoded NAPs in xenogeneic silencing of both episomal (plasmids) and integrative MGEs (pathogenicity islands and prophages) is well acknowledged, less is known about the role of MGE-encoded NAPs in the foreign elements biology or their influence on the host's chromosome expression dynamics. Here we review existing literature on the topic, present examples on the positive and negative effects that endogenous and foreign NAPs exert on global transcriptional gene expression, MGE integrative and excisive recombination dynamics, persistence and transfer to suitable hosts and discuss the nature and relevance of synergistic and antagonizing higher order interactions between diverse types of NAPs.
Collapse
Affiliation(s)
| | - Raquel Quatrini
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, Santiago, Chile.,Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Alejandra Loyola
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, Santiago, Chile
| |
Collapse
|
48
|
Spreading Patterns of NDM-Producing Enterobacteriaceae in Clinical and Environmental Settings in Yangon, Myanmar. Antimicrob Agents Chemother 2019; 63:AAC.01924-18. [PMID: 30530602 DOI: 10.1128/aac.01924-18] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 12/05/2018] [Indexed: 01/23/2023] Open
Abstract
The spread of carbapenemase-producing Enterobacteriaceae (CPE), contributing to widespread carbapenem resistance, has become a global concern. However, the specific dissemination patterns of carbapenemase genes have not been intensively investigated in developing countries, including Myanmar, where NDM-type carbapenemases are spreading in clinical settings. In the present study, we phenotypically and genetically characterized 91 CPE isolates obtained from clinical (n = 77) and environmental (n = 14) samples in Yangon, Myanmar. We determined the dissemination of plasmids harboring genes encoding NDM-1 and its variants using whole-genome sequencing and plasmid analysis. IncFII plasmids harboring bla NDM-5 and IncX3 plasmids harboring bla NDM-4 or bla NDM-7 were the most prevalent plasmid types identified among the isolates. The IncFII plasmids were predominantly carried by clinical isolates of Escherichia coli, and their clonal expansion was observed within the same ward of a hospital. In contrast, the IncX3 plasmids were found in phylogenetically divergent isolates from clinical and environmental samples classified into nine species, suggesting widespread dissemination of plasmids via horizontal transfer. Half of the environmental isolates were found to possess IncX3 plasmids, and this type of plasmid was confirmed to transfer more effectively to recipient organisms at a relatively low temperature (25°C) compared to the IncFII plasmid. Moreover, various other plasmid types were identified harboring bla NDM-1, including IncFIB, IncFII, IncL/M, and IncA/C2, among clinical isolates of Klebsiella pneumoniae or Enterobacter cloacae complex. Overall, our results highlight three distinct patterns of the dissemination of bla NDM-harboring plasmids among CPE isolates in Myanmar, contributing to a better understanding of their molecular epidemiology and dissemination in a setting of endemicity.
Collapse
|
49
|
Yano H, Shintani M, Tomita M, Suzuki H, Oshima T. Reconsidering plasmid maintenance factors for computational plasmid design. Comput Struct Biotechnol J 2018; 17:70-81. [PMID: 30619542 PMCID: PMC6312765 DOI: 10.1016/j.csbj.2018.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/08/2018] [Accepted: 12/09/2018] [Indexed: 12/18/2022] Open
Abstract
Plasmids are genetic parasites of microorganisms. The genomes of naturally occurring plasmids are expected to be polished via natural selection to achieve long-term persistence in the microbial cell population. However, plasmid genomes are extremely diverse, and the rules governing plasmid genomes are not fully understood. Therefore, computationally designing plasmid genomes optimized for model and nonmodel organisms remains challenging. Here, we summarize current knowledge of the plasmid genome organization and the factors that can affect plasmid persistence, with the aim of constructing synthetic plasmids for use in gram-negative bacteria. Then, we introduce publicly available resources, plasmid data, and bioinformatics tools that are useful for computational plasmid design.
Collapse
Affiliation(s)
- Hirokazu Yano
- Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Masaki Shintani
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1, Hamamatsu 432-8561, Japan
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 3-5-1, Hamamatsu 432-8561, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 14-1, Baba-cho, Tsuruoka, Yamagata 997-0035, Japan
- Faculty of Environment and Information Studies, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Haruo Suzuki
- Institute for Advanced Biosciences, Keio University, 14-1, Baba-cho, Tsuruoka, Yamagata 997-0035, Japan
- Faculty of Environment and Information Studies, Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
| | - Taku Oshima
- Department of Biotechnology, Toyama Prefectural University, 5180, Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
50
|
San Millan A, Toll-Riera M, Qi Q, Betts A, Hopkinson RJ, McCullagh J, MacLean RC. Integrative analysis of fitness and metabolic effects of plasmids in Pseudomonas aeruginosa PAO1. THE ISME JOURNAL 2018; 12:3014-3024. [PMID: 30097663 PMCID: PMC6246594 DOI: 10.1038/s41396-018-0224-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/09/2018] [Accepted: 05/25/2018] [Indexed: 01/25/2023]
Abstract
Horizontal gene transfer (HGT) mediated by the spread of plasmids fuels evolution in prokaryotes. Although plasmids provide bacteria with new adaptive genes, they also produce physiological alterations that often translate into a reduction in bacterial fitness. The fitness costs associated with plasmids represent an important limit to plasmid maintenance in bacterial communities, but their molecular origins remain largely unknown. In this work, we combine phenomics, transcriptomics and metabolomics to study the fitness effects produced by a collection of diverse plasmids in the opportunistic pathogen Pseudomonas aeruginosa PAO1. Using this approach, we scan the physiological changes imposed by plasmids and test the generality of some main mechanisms that have been proposed to explain the cost of HGT, including increased biosynthetic burden, reduced translational efficiency, and impaired chromosomal replication. Our results suggest that the fitness effects of plasmids have a complex origin, since none of these mechanisms could individually provide a general explanation for the cost of plasmid carriage. Interestingly, our results also showed that plasmids alter the expression of a common set of metabolic genes in PAO1, and produce convergent changes in host cell metabolism. These surprising results suggest that there is a common metabolic response to plasmids in P. aeruginosa PAO1.
Collapse
Affiliation(s)
- Alvaro San Millan
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK.
- Department of Microbiology, Hospital Universitario Ramon y Cajal (IRYCIS) and Network Research Centre for Epidemiology and Public Health (CIBERESP), 28034, Madrid, Spain.
| | - Macarena Toll-Riera
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK.
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Quartier Sorge-Bâtiment Génopode, 1015, Lausanne, Switzerland.
| | - Qin Qi
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK
| | - Alex Betts
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK
| | - Richard J Hopkinson
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
- Leicester Institute of Structural and Chemical Biology and Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - James McCullagh
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - R Craig MacLean
- Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|