1
|
Schaefke B, Li J, Zhao B, Wang L, Tseng YT. Slumber under pressure: REM sleep and stress response. Prog Neurobiol 2025; 249:102771. [PMID: 40273975 DOI: 10.1016/j.pneurobio.2025.102771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025]
Abstract
Sleep, a state of reduced responsiveness and distinct brain activity, is crucial across the animal kingdom. This review explores the potential adaptive functions of REM sleep in adapting to stress, emphasizing its role in memory consolidation, emotional regulation, and threat processing. We further explore the underlying neural mechanisms linking stress responses to REM sleep. By synthesizing current findings, we propose that REM sleep allows animals to "rehearse" or simulate responses to danger in a secure, offline state, while also maintaining emotional balance. Environmental factors, such as predation risk and social dynamics, further influence REM sleep. This modulation may enhance survival by optimizing stress responses while fulfilling physiological needs in animals. Insights into REM sleep's role in animals may shed light on human sleep in the context of modern stressors and sleep disruptions. This review also explores the complex interplay between stress, immunity, sleep disruptions-particularly involving REM sleep-and their evolutionary underpinnings.
Collapse
Affiliation(s)
- Bernhard Schaefke
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Jingfei Li
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Science, Beijing 10049, China
| | - Binghao Zhao
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, China.
| | - Yu-Ting Tseng
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, China.
| |
Collapse
|
2
|
Konrad C, Voigt B. No effect of napping on episodic foresight and prospective memory in kindergarten children. J Sleep Res 2025; 34:e14387. [PMID: 39511947 PMCID: PMC12069749 DOI: 10.1111/jsr.14387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
Preschool children often have problems in remembering to carry out a planned behaviour. This study investigated the impact of napping on episodic foresight (planning for future events) and prospective memory (remembering to perform an action in the future) in 2-3-year-old children. In a quasi-experimental design, we compared children who napped (nap condition, n = 20) after receiving information about an upcoming problem (episodic foresight task) and a delayed intention (prospective memory task) with those who stayed awake (wake condition, n = 43). We hypothesised that napping would improve performance in the episodic foresight and the prospective memory tasks. Contrary to the hypothesis, napping did not significantly affect children's episodic foresight or prospective memory performance, even after controlling for the group difference in age. Task performance was primarily explained by memory effects and age. Further research that incorporates stricter controls and evaluates pre-nap memory strength is necessary fully to elucidate the complex interplay between napping, age, episodic foresight, and prospective memory performance in young children.
Collapse
Affiliation(s)
- Carolin Konrad
- Clinical Child and Adolescent Psychology, Mental Health Research and Treatment Center, Faculty of PsychologyRuhr University BochumBochumGermany
- German Center for Mental Health(DZPG), partner site Bochum/MarburgBochumGermany
| | - Babett Voigt
- Clinical Child and Adolescent Psychology, Mental Health Research and Treatment Center, Faculty of PsychologyRuhr University BochumBochumGermany
- German Center for Mental Health(DZPG), partner site Bochum/MarburgBochumGermany
| |
Collapse
|
3
|
Fabbri M, Occhionero M, Tonetti L, Costa M, Giudetti F, Rasch B, Natale V. Music cue during slow wave sleep improves visuospatial memory consolidation. J Sleep Res 2025; 34:e14372. [PMID: 39344134 PMCID: PMC12069733 DOI: 10.1111/jsr.14372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
The active system consolidation theory assumes that sleep between encoding and retrieval promotes memory consolidation. In the present study, we cued new memories during slow-wave (SWS) or rapid eye movements (REM) sleep stages by presenting an instrumental music stimuli that had been previously presented during a learning session. In a within-subjects design, 18 participants slept for three nonconsecutive nights (cue during SWS, cue during REM, and no cue during control night) and were trained in a visuo-spatial memory task. The administration of cue during SWS produced better memory accuracy in comparison with REM and the control condition.
Collapse
Affiliation(s)
- Marco Fabbri
- Department of PsychologyUniversity of Campania “Luigi Vanvitelli”CasertaItaly
| | - Miranda Occhionero
- Department of Psychology “Renzo Canestrari”University of BolognaBolognaItaly
| | - Lorenzo Tonetti
- Department of Psychology “Renzo Canestrari”University of BolognaBolognaItaly
| | - Marco Costa
- Department of Psychology “Renzo Canestrari”University of BolognaBolognaItaly
| | - Federica Giudetti
- Department of Psychology “Renzo Canestrari”University of BolognaBolognaItaly
| | - Bjoern Rasch
- Department of PsychologyUniversity of FribourgFribourgSwitzerland
| | - Vincenzo Natale
- Department of Psychology “Renzo Canestrari”University of BolognaBolognaItaly
| |
Collapse
|
4
|
Tort ABL, Laplagne DA, Draguhn A, Gonzalez J. Global coordination of brain activity by the breathing cycle. Nat Rev Neurosci 2025; 26:333-353. [PMID: 40204908 DOI: 10.1038/s41583-025-00920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2025] [Indexed: 04/11/2025]
Abstract
Neuronal activities that synchronize with the breathing rhythm have been found in humans and a host of mammalian species, not only in brain areas closely related to respiratory control or olfactory coding but also in areas linked to emotional and higher cognitive functions. In parallel, evidence is mounting for modulations of perception and action by the breathing cycle. In this Review, we discuss the extent to which brain activity locks to breathing across areas, levels of organization and brain states, and the physiological origins of this global synchrony. We describe how waves of sensory activity evoked by nasal airflow spread through brain circuits, synchronizing neuronal populations to the breathing cycle and modulating faster oscillations, cell assembly formation and cross-area communication, thereby providing a mechanistic link from breathing to neural coding, emotion and cognition. We argue that, through evolution, the breathing rhythm has come to shape network functions across species.
Collapse
Affiliation(s)
- Adriano B L Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.
| | - Diego A Laplagne
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Joaquin Gonzalez
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Neuroscience Institute and Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
5
|
Krone LB, Song SH, Jaramillo V, Violante IR. The Future of Non-Invasive Brain Stimulation in Sleep Medicine. J Sleep Res 2025:e70071. [PMID: 40370279 DOI: 10.1111/jsr.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025]
Abstract
Non-invasive brain stimulation (NIBS) methods carry particular appeal as non-pharmacological approaches to inducing or improving sleep. However, intense research efforts to use transcranial magnetic stimulation (TMS) and electrical stimulation (tES) for sleep modulation have not yet delivered evidence-based NIBS treatments in sleep medicine. The main obstacles lie in insufficiently robust stimulation protocols that affect neurophysiological and self-reported sleep parameters, inadequately controlled-and explained-placebo effects, and heterogeneity in patient populations and outcome parameters. Recent technological advances, e.g., transcranial ultrasound stimulation (TUS) and temporal interference stimulation (TIS), make deep brain structures feasible targets. Real-time approaches, e.g., closed-loop auditory stimulation (CLAS), demonstrate efficacious modulation of different sleep oscillations by tuning stimulation to ongoing brain activity. The identification of sleep-regulatory regions and cell types in the cerebral cortex and thalamus provides new specific targets. To turn this neuroscientific progress into therapeutic advancement, conceptual reframing is warranted. Chronic insomnia may not be optimally suited to demonstrate NIBS efficacy due to the mismatch between self-reported symptoms and polysomnographic sleep parameters. More feasible initial approaches could be to (1) modulate specific sleep oscillations to promote specific sleep functions, (2) modify nightmares and traumatic memories with targeted memory reactivation, (3) increase 'wake intensity' in patients with depression to improve daytime fatigue and elevate sleep pressure and (4) disrupt pathological activity in sleep-dependent epilepsies. Effective treatments in these areas of sleep medicine seem in reach but require rigorously designed clinical trials to identify which NIBS strategies bring real benefit in sleep medicine.
Collapse
Affiliation(s)
- Lukas B Krone
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Seo Ho Song
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Valeria Jaramillo
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
- School of Psychology, University of Surrey, Guildford, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London, London and University of Surrey, Guildford, UK
| | - Ines R Violante
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
6
|
Ibrahim A, Högl B, Stefani A. Sleep as the Foundation of Brain Health. Semin Neurol 2025. [PMID: 40139214 DOI: 10.1055/a-2566-4073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Sleep is a vital function, taking about one-third of a human lifetime, and is essential for achieving and maintaining brain health. From homeostatic neurophysiology to emotional and procedural memory processing to clearance of brain waste, sleep and circadian alignment remain paramount. Yet modern lifestyles and clinical practice often dismiss sleep, resulting in profound long-term repercussions. This chapter examines the roles of sleep and circadian rhythms in memory consolidation, synaptic plasticity, and clearance of metabolic waste, highlighting recent advances in neuroscience research. We explore how insufficient and disordered sleep-a public health concern-can impair cognition, escalate neurodegenerative risks, and compromise neurovascular integrity, thereby impacting brain health. These findings underscore the need for comprehensive screening for disturbed sleep and targeted interventions in clinical practice. Emerging interventions and AI-driven technologies may allow early detection and personalized and individualized treatments and improve outcomes. Overall, this chapter reaffirms that healthy sleep is indispensable at any level of neurological disease prevention-on par with the role of diet and exercise in cardiovascular health-and represents the foundation of brain health.
Collapse
Affiliation(s)
- Abubaker Ibrahim
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Birgit Högl
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Ambra Stefani
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Duan W, Xu Z, Chen D, Wang J, Liu J, Tan Z, Xiao X, Lv P, Wang M, Paller KA, Axmacher N, Wang L. Electrophysiological signatures underlying variability in human memory consolidation. Nat Commun 2025; 16:2472. [PMID: 40074728 PMCID: PMC11903871 DOI: 10.1038/s41467-025-57766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
We experience countless pieces of new information each day, but remembering them later depends on firmly instilling memory storage in the brain. Numerous studies have implicated non-rapid eye movement (NREM) sleep in consolidating memories via interactions between hippocampus and cortex. However, the temporal dynamics of this hippocampal-cortical communication and the concomitant neural oscillations during memory reactivations remains unclear. To address this issue, the present study used the procedure of targeted memory reactivation (TMR) following learning of object-location associations to selectively reactivate memories during human NREM sleep. Cortical pattern reactivation and hippocampal-cortical coupling were measured with intracranial EEG recordings in patients with epilepsy. We found that TMR produced variable amounts of memory enhancement across a set of object-location associations. Successful TMR increased hippocampal ripples and cortical spindles, apparent during two discrete sweeps of reactivation. The first reactivation sweep was accompanied by increased hippocampal-cortical communication and hippocampal ripple events coupled to local cortical activity (cortical ripples and high-frequency broadband activity). In contrast, hippocampal-cortical coupling decreased during the second sweep, while increased cortical spindle activity indicated continued cortical processing to achieve long-term storage. Taken together, our findings show how dynamic patterns of item-level reactivation and hippocampal-cortical communication support memory enhancement during NREM sleep.
Collapse
Affiliation(s)
- Wei Duan
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhansheng Xu
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Dong Chen
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jiali Liu
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Tan
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xue Xiao
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Lv
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mengyang Wang
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Ken A Paller
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, USA
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Liang Wang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Stee W, Legouhy A, Guerreri M, Foti MC, Lina JM, Zhang H, Peigneux P. Shaping the structural dynamics of motor learning through cueing during sleep. Sleep 2025; 48:zsaf006. [PMID: 39798081 DOI: 10.1093/sleep/zsaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted memory reactivation (TMR), involving cueing learned material during posttraining sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and posttraining sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during posttraining sleep affects performance gains and delayed microstructural remodeling, using both standard diffusion tensor imaging and advanced neurite orientation dispersion and density imaging. Sixty healthy young adults participated in a 5 days protocol, undergoing five diffusion-weighted imaging sessions, pre- and post-two motor sequence training sessions, and after a posttraining night of either regular sleep (RS) or TMR. Results demonstrated rapid skill acquisition on day 1, followed by performance stabilization on day 2, and improvement on day 5, in both RS and TMR groups. (Re)training induced widespread microstructural changes in motor-related areas, initially involving the hippocampus, followed by a delayed engagement of the caudate nucleus. Mean Diffusivity changes were accompanied by increased neurite density index in the putamen, suggesting increased neurite density, while free water fraction reduction indicated glial reorganization. TMR-related structural differences emerged in the dorsolateral prefrontal cortex on day 2 and the right cuneus on day 5, suggesting unique sleep TMR-related neural reorganization patterns. Persistence of practice-related structural changes, although moderated over time, suggests a lasting neural network reorganization, partially mediated by sleep TMR.
Collapse
Affiliation(s)
- Whitney Stee
- UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GIGA - Cyclotron Research Centre - In Vivo Imaging, University of Liège (ULiège), Liège, Belgium
| | - Antoine Legouhy
- Department of Computer Science and Centre for Medical Image Computing, University College London (UCL), London, UK
| | - Michele Guerreri
- Department of Computer Science and Centre for Medical Image Computing, University College London (UCL), London, UK
| | | | - Jean-Marc Lina
- Electrical Engineering Department, École De Technologie Supérieure, Montréal, Québec, Canada
- Centre De Recherches Mathématiques, Université de Montréal, Montréal, Québec, Canada
- Center for Advanced Research in Sleep Medicine, Sacré-Coeur Hospital, Montréal, Québec, Canada
| | - Hui Zhang
- Department of Computer Science and Centre for Medical Image Computing, University College London (UCL), London, UK
| | - Philippe Peigneux
- UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GIGA - Cyclotron Research Centre - In Vivo Imaging, University of Liège (ULiège), Liège, Belgium
| |
Collapse
|
9
|
Mar'i J, Zhang R, Mircic S, Serbe-Kamp É, Meier M, Leonhardt A, Drews M, Del Grosso NA, Antony JW, Norman KA, Marzullo TC, Gage GJ. Study while you sleep: using targeted memory reactivation as an independent research project for undergraduates. ADVANCES IN PHYSIOLOGY EDUCATION 2025; 49:1-10. [PMID: 39446136 DOI: 10.1152/advan.00056.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Newly acquired information is stabilized into long-term memory through the process of consolidation. Memories are not static; rather, they are constantly updated via reactivation, and this reactivation occurs preferentially during slow-wave sleep (SWS; also referred to as N3 in humans). Here we present a scalable neuroscience research investigation of memory reactivation using low-cost electroencephalogram (EEG) recording hardware and open-source software for students and educators across the K-12 and higher education spectrum. The investigation uses a method called targeted memory reactivation (TMR), whereby auditory cues that were previously associated with learning are represented during sleep, triggering the recall of stored memories and (through this) strengthening these memories. We demonstrated the efficacy of this technique on seven healthy human subjects (19-35 years old, 3 females, four males). The subjects learned to play a spatial memory game on an app where they associated pictures (e.g., a clock) with locations on a grid while they listened to picture-appropriate sounds (e.g., "tic-toc"); next, they took a nap while undergoing EEG recordings. During SWS, half of the sounds from the game were replayed by the app, while half were substituted with nonlearned sounds. Subjects then played the memory game again after waking. Results showed that spatial recall was improved more for cued than uncued memories, demonstrating the benefits of memory replay during sleep and suggesting that one may intervene in this process to boost recall of specific memories. This research investigation takes advantage of the importance of sleep for memory consolidation and demonstrates improved memory performance by cueing sounds during SWS.NEW & NOTEWORTHY Why study when you could just sleep? We demonstrate how students can perform scalable research investigations to manipulate memory processing during sleep. It is a hands-on way to advance students' understanding of sleep-based memory consolidation and the corresponding neural mechanisms using open-source software and do-it-yourself EEG tools.
Collapse
Affiliation(s)
- Joud Mar'i
- Backyard Brains, Ann Arbor, Michigan, United States
- Mount Holyoke College, South Hadley, Massachusetts, United States
| | - Robert Zhang
- Princeton Neuroscience Institute, Princeton, New Jersey, United States
| | | | - Étienne Serbe-Kamp
- Backyard Brains, Ann Arbor, Michigan, United States
- Max Planck Institute of Neurobiology, Martinsried, Germany
- Ludwig Maximilian University (LMU), München, Germany
- Hirnkastl, München, Germany
| | - Matthias Meier
- Max Planck Institute of Neurobiology, Martinsried, Germany
- Hirnkastl, München, Germany
| | - Aljoscha Leonhardt
- Max Planck Institute of Neurobiology, Martinsried, Germany
- Hirnkastl, München, Germany
| | - Michael Drews
- Max Planck Institute of Neurobiology, Martinsried, Germany
- Hirnkastl, München, Germany
| | - Nicholas A Del Grosso
- Institute for Experimental Epileptology and Cognition Research, Uniklinikum Bonn, Bonn, Germany
| | - James W Antony
- Princeton Neuroscience Institute, Princeton, New Jersey, United States
| | - Kenneth A Norman
- Princeton Neuroscience Institute, Princeton, New Jersey, United States
| | | | | |
Collapse
|
10
|
Picchioni D, Yang FN, de Zwart JA, Wang Y, Mandelkow H, Özbay PS, Chen G, Taylor PA, Lam N, Chappel-Farley MG, Chang C, Liu J, van Gelderen P, Duyn JH. Arousal threshold reveals novel neural markers of sleep depth independently from the conventional sleep stages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.09.607376. [PMID: 39149368 PMCID: PMC11326234 DOI: 10.1101/2024.08.09.607376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Reports of sleep-specific brain activity patterns have been constrained by assessing brain function as it related to the conventional polysomnographic sleep stages. This limits the variety of sleep states and underlying activity patterns that one can discover. The current study used all-night functional MRI sleep data and defined sleep behaviorally with auditory arousal threshold (AAT) to characterize sleep depth better by searching for novel neural markers of sleep depth that are neuroanatomically localized and temporally unrelated to the conventional stages. Functional correlation values calculated in a four-min time window immediately before the determination of AAT were entered into a linear mixed effects model, allowing multiple arousals across the night per subject into the analysis, and compared to models with sleep stage to determine the unique relationships with AAT. These unique relationships were for thalamocerebellar correlations, the relationship between the right language network and the right "default-mode network dorsal medial prefrontal cortex subsystem," and the relationship between thalamus and ventral attention network. These novel neural markers of sleep depth would have remained undiscovered if the data were merely analyzed with the conventional sleep stages.
Collapse
Affiliation(s)
- Dante Picchioni
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Fan Nils Yang
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Jacco A de Zwart
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Yicun Wang
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Department of Radiology, Stony Brook University, USA
| | - Hendrik Mandelkow
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Artificial Intelligence for Image-Guided Therapy, Koninklijke Philips, Netherlands
| | - Pinar S Özbay
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Institute of Biomedical Engineering, Boğaziçi University, Turkey
| | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health, USA
| | - Paul A Taylor
- Scientific and Statistical Computing Core, National Institute of Mental Health, USA
| | - Niki Lam
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- School of Medicine and Dentistry, University of Rochester, USA
| | - Miranda G Chappel-Farley
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Center for Sleep and Circadian Science, University of Pittsburgh, USA
| | - Catie Chang
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Departments of Electrical Engineering and Computer Science, Vanderbilt University, USA
| | - Jiaen Liu
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, USA
| | - Peter van Gelderen
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Jeff H Duyn
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| |
Collapse
|
11
|
Hoffman LJ, Foley JM, Tanrıverdi B, Chein J, Olson IR. Awake targeted memory reactivation doesn't work. Mem Cognit 2025; 53:453-466. [PMID: 38744776 PMCID: PMC11868201 DOI: 10.3758/s13421-024-01576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 05/16/2024]
Abstract
Memories are pliable and can be biased by post-encoding information. In targeted memory reactivation (TMR) studies, participants encode information then sleep, during which time sounds or scents that were previously associated with the encoded images are re-presented in an effort to trigger reactivation of the associated memory traces. Upon subsequent testing, memory for reactivated items is often enhanced. Is sleep essential for this process? The literature on awake TMR is small and findings are mixed. Here, we asked English-speaking adults to learn Japanese vocabulary words. During a subsequent active rest phase, participants played Tetris while sound cues associated with the vocabulary words were presented. Results showed that when memories were reactivated, they were either disrupted (Experiment 1) or unaffected (Experiments 2, 3). These findings indicate that awake TMR is not beneficial, and may actually impair subsequent memory. These findings have important implications for research on memory consolidation and reactivation.
Collapse
Affiliation(s)
- Linda J Hoffman
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Julia M Foley
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Büşra Tanrıverdi
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Jason Chein
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Ingrid R Olson
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA.
| |
Collapse
|
12
|
Bencze D, Marián M, Szőllősi Á, Simor P, Racsmány M. Increase in slow frequency and decrease in alpha and beta power during post-learning rest predict long-term memory success. Cortex 2025; 183:167-182. [PMID: 39662242 DOI: 10.1016/j.cortex.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/26/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Formation of episodic memories is linked to cortico-hippocampal interactions during learning, practice, and post-learning rest, although the role of cortical activity itself in such processes remains elusive. Behaviorally, long-term retention of episodic memories has been shown to be aided by several different practice strategies involving memory reencounters, such as repeated retrieval and repeated study. In a two-session resting state electroencephalography (EEG) experiment, using data from 68 participants, we investigated the electrophysiological predictors of long-term memory success in situations where such reencounters occurred after learning. Participants learned word pairs which were subsequently practiced either by cued recall or repeated studying in a between-subjects design. Participants' cortical activity was recorded before learning (baseline) and after practice during 15-min resting periods. Long-term memory retention after a 7-day period was measured. To assess cortical activity, we analyzed the change in spectral power from the pre-learning baseline to the post-practice resting state recordings. From baseline to post-practice, changes in alpha and beta power were negatively, while slow frequency power change was positively associated with long-term memory performance, regardless of practice strategy. These results are in line with previous observations pointing to the role of specific frequency bands in memory formation and extend them to situations where memory reencounters occur after learning. Our results also highlight that the effectiveness of practice by repeated testing seems to be independent from the beneficial neural mechanisms mirrored by EEG frequency power changes.
Collapse
Affiliation(s)
- Dorottya Bencze
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Institute of Psychology, University of Szeged, Szeged, Hungary
| | - Miklós Marián
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Institute of Psychology, University of Szeged, Szeged, Hungary.
| | - Ágnes Szőllősi
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Institute of Psychology, University of Szeged, Szeged, Hungary; Cognitive Medicine Research Group, Competence Centre for Neurocybernetics of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, University of Szeged, Szeged, Hungary
| | - Péter Simor
- Institute of Psychology, Eötvös Loránd University, Budapest, Hungary; Institute of Behavioral Sciences, Semmelweis University, Budapest, Hungary
| | - Mihály Racsmány
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary; Institute of Psychology, University of Szeged, Szeged, Hungary; Cognitive Medicine Research Group, Competence Centre for Neurocybernetics of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, University of Szeged, Szeged, Hungary
| |
Collapse
|
13
|
Cui L, Wan Y, Lu Y, Meng M, Zhang N. Sleep disturbances and their correlation with memory impairment in patients with Alzheimer's disease and amnestic mild cognitive impairment. J Alzheimers Dis Rep 2025; 9:25424823241309063. [PMID: 40034514 PMCID: PMC11864260 DOI: 10.1177/25424823241309063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/28/2024] [Indexed: 03/05/2025] Open
Abstract
Background Episodic memory impairment is the core clinical feature of patients with typical Alzheimer's disease (AD) at an early stage. Since sleep plays a very important role in memory consolidation, the relationship between memory impairment and sleep disorders in AD patients is worthy of investigation. Objective To investigate sleep disturbances and their correlations with memory impairment in patients with AD and amnestic mild cognitive impairment (aMCI). Methods Forty-three patients with AD, 43 patients with aMCI, and 43 cognitively unimpaired controls (CUCs) were recruited and subjected to memory assessment via the Hopkins Verbal Learning Test-Revised and objective sleep evaluation via polysomnography (PSG). Results The total sleep time and the percentages of nonrapid eye movement (NREM) sleep stage 3 (N3) and the rapid eye movement (REM) were lower, while the percentages of NREM sleep stage 2 (N2) were greater in the AD and aMCI groups than in the CUC group (all p < 0.01). Compared with the CUC group, the AD group also presented a longer sleep latency and higher NREM sleep stage 1 (N1) percentage, apnea-hypopnea index (AHI), periodic limb movements during sleep index (PLMSI), and arousal index (AI). Both total learning scores and delayed recall scores were positively correlated with the N3 sleep percentage and negatively correlated with the AHI and PLMSI (all p < 0.01). Recognition scores were positively correlated with the N3 sleep percentage and negatively correlated with the AI (all p < 0.01). Conclusions Our results suggest that sleep disturbance is correlated with learning and memory disability in AD and aMCI patients. PSG is useful for screening and monitoring AD.
Collapse
Affiliation(s)
- Linyang Cui
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yahui Wan
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Yunyao Lu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Meng
- Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Nan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
14
|
Sheriff A, Zhou G, Sagar V, Morgenthaler JB, Cyr C, Hauner KK, Omidbeigi M, Rosenow JM, Schuele SU, Lane G, Zelano C. Breathing orchestrates synchronization of sleep oscillations in the human hippocampus. Proc Natl Acad Sci U S A 2024; 121:e2405395121. [PMID: 39680758 PMCID: PMC11670218 DOI: 10.1073/pnas.2405395121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/07/2024] [Indexed: 12/18/2024] Open
Abstract
Nested sleep oscillations, emerging from asynchronous states in coordinated bursts, are critical for memory consolidation. Whether these bursts emerge intrinsically or from an underlying rhythm is unknown. Here, we show a previously undescribed respiratory-driven oscillation in the human hippocampus that couples with cardinal sleep oscillations. Further, breathing promotes nesting of ripples in slow oscillations, together suggesting that respiration acts as an intrinsic rhythm to coordinate synchronization of sleep oscillations, providing a unique framework to characterize sleep-related respiratory and memory processes.
Collapse
Affiliation(s)
- Andrew Sheriff
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Guangyu Zhou
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Vivek Sagar
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Justin B. Morgenthaler
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Christopher Cyr
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Katherina K. Hauner
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Mahmoud Omidbeigi
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Joshua M. Rosenow
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Stephan U. Schuele
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Gregory Lane
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Christina Zelano
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
15
|
Yang WY, Huang K, Lin ZJ, Zeng W, Liu X, Liu HB, Zhong ML, Wei J, Liang WD, Wang LF, Chen L. Intranasal Dexmedetomidine for the Management of Preoperative Anxiety-Related Insomnia: A Randomized, Three-Blinded, Clinical Trial Compared with Lorazepam and Placebo. Drug Des Devel Ther 2024; 18:6061-6073. [PMID: 39717197 PMCID: PMC11663697 DOI: 10.2147/dddt.s487463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024] Open
Abstract
Purpose To evaluate the efficacy and safety of intranasal dexmedetomidine (Dex), oral lorazepam, and a placebo in managing preoperative anxiety-related insomnia. Patients and Methods A total of 90 patients exhibiting symptoms of preoperative anxiety and insomnia were randomly assigned to three groups: Dex (receiving 2.5 µg/kg Dex intranasally and starch tablets orally), lorazepam (receiving saline intranasally and 2 mg lorazepam orally), and placebo (receiving saline intranasally and starch tablets orally). Interventions were conducted the night before surgery. The primary outcome was measured using the Leeds Sleep Evaluation Questionnaire (LSEQ) to evaluate changes in sleep quality pre- and post-intervention. Secondary outcomes included monitoring sleep on the night of the intervention, sleep satisfaction scores, changes in vital signs within 2 hours post-intervention, and adverse reaction rates. Results According to sleep assessments using the LSEQ, the Dex group demonstrated significant improvements in ease of getting to sleep (GTS), ease of awakening (AFS), and alertness and behavior after waking (BFW) compared to the lorazepam group (p < 0.05). However, no significant differences were observed in the quality of sleep (QOS) between the two groups (p > 0.05). Sleep monitoring indicated that the Dex group had a median sleep onset latency (SOL) of 19.0 min, significantly shorter than those recorded for the lorazepam group at 33.5 min and the placebo group at 57.0 min (p < 0.001). The total sleep time (TST) and sleep efficiency (SE) were 403.7 min and 84.5% for the Dex group, similar to the lorazepam group (408.6 min, 83.2%)(p >0.999) and superior to the placebo group (278.8 min, 57.4%)(p < 0.001). Sleep satisfaction scores did not significantly differ between the Dex and lorazepam groups (p > 0.999). No serious adverse reactions were reported across the groups. Conclusion Both 2.5 μg/kg intranasal Dex and 2 mg oral lorazepam effectively improved sleep quality in patients with preoperative anxiety-related insomnia. While both treatments were comparable in maintaining sleep, intranasal Dex was more effective in initiating sleep and enhancing daytime functionality than lorazepam.
Collapse
Affiliation(s)
- Wen-yi Yang
- The First Clinical Medical College of Gannan Medical University, Ganzhou, Jiangxi, People’s Republic of China
| | - Kuan Huang
- Anesthesia Surgical Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, People’s Republic of China
- Anesthesia Key Laboratory of Gannan Medical University, Ganzhou, Jiangxi, People’s Republic of China
| | - Zhi-jian Lin
- The First Clinical Medical College of Gannan Medical University, Ganzhou, Jiangxi, People’s Republic of China
| | - Wen Zeng
- Anesthesia Surgical Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, People’s Republic of China
- Anesthesia Key Laboratory of Gannan Medical University, Ganzhou, Jiangxi, People’s Republic of China
| | - Xin Liu
- Anesthesia Surgical Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, People’s Republic of China
- Anesthesia Key Laboratory of Gannan Medical University, Ganzhou, Jiangxi, People’s Republic of China
| | - Hong-bo Liu
- The First Clinical Medical College of Gannan Medical University, Ganzhou, Jiangxi, People’s Republic of China
| | - Mao-lin Zhong
- Anesthesia Surgical Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, People’s Republic of China
- Anesthesia Key Laboratory of Gannan Medical University, Ganzhou, Jiangxi, People’s Republic of China
| | - Jun Wei
- Anesthesia Surgical Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, People’s Republic of China
- Anesthesia Key Laboratory of Gannan Medical University, Ganzhou, Jiangxi, People’s Republic of China
| | - Wei-dong Liang
- Anesthesia Surgical Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, People’s Republic of China
- Anesthesia Key Laboratory of Gannan Medical University, Ganzhou, Jiangxi, People’s Republic of China
| | - Li-feng Wang
- Anesthesia Surgical Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, People’s Republic of China
- Anesthesia Key Laboratory of Gannan Medical University, Ganzhou, Jiangxi, People’s Republic of China
| | - Li Chen
- Anesthesia Surgical Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, People’s Republic of China
- Anesthesia Key Laboratory of Gannan Medical University, Ganzhou, Jiangxi, People’s Republic of China
| |
Collapse
|
16
|
Mittermaier FX, Kalbhenn T, Xu R, Onken J, Faust K, Sauvigny T, Thomale UW, Kaindl AM, Holtkamp M, Grosser S, Fidzinski P, Simon M, Alle H, Geiger JRP. Membrane potential states gate synaptic consolidation in human neocortical tissue. Nat Commun 2024; 15:10340. [PMID: 39668146 PMCID: PMC11638263 DOI: 10.1038/s41467-024-53901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024] Open
Abstract
Synaptic mechanisms that contribute to human memory consolidation remain largely unexplored. Consolidation critically relies on sleep. During slow wave sleep, neurons exhibit characteristic membrane potential oscillations known as UP and DOWN states. Coupling of memory reactivation to these slow oscillations promotes consolidation, though the underlying mechanisms remain elusive. Here, we performed axonal and multineuron patch-clamp recordings in acute human brain slices, obtained from neurosurgeries, to show that sleep-like UP and DOWN states modulate axonal action potentials and temporarily enhance synaptic transmission between neocortical pyramidal neurons. Synaptic enhancement by UP and DOWN state sequences facilitates recruitment of postsynaptic action potentials, which in turn results in long-term stabilization of synaptic strength. In contrast, synapses undergo lasting depression if presynaptic neurons fail to recruit postsynaptic action potentials. Our study offers a mechanistic explanation for how coupling of neural activity to slow waves can cause synaptic consolidation, with potential implications for brain stimulation strategies targeting memory performance.
Collapse
Affiliation(s)
- Franz X Mittermaier
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
| | - Thilo Kalbhenn
- Department of Neurosurgery (Evangelisches Klinikum Bethel), University of Bielefeld Medical Center OWL, Bielefeld, Germany
| | - Ran Xu
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich W Thomale
- Pediatric Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Holtkamp
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sabine Grosser
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pawel Fidzinski
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Matthias Simon
- Department of Neurosurgery (Evangelisches Klinikum Bethel), University of Bielefeld Medical Center OWL, Bielefeld, Germany
| | - Henrik Alle
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
| | - Jörg R P Geiger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany.
| |
Collapse
|
17
|
Tonetti L, Occhionero M, Giovagnoli S, Giudetti F, Briganti E, Natale V. Activity-Based Prospective Memory and Motor Sleep Inertia in Insomnia. Brain Sci 2024; 14:1248. [PMID: 39766447 PMCID: PMC11674338 DOI: 10.3390/brainsci14121248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES The aim of this study is to shed light on activity-based prospective memory upon the awakening and its association with motor sleep inertia in different phenotypes of insomnia disorder. METHODS To this end, 67 patients with insomnia and 51 healthy controls took part in the study. After enrollment, previously proposed actigraphic quantitative criteria were adopted, and the following phenotypes of insomnia disorder were observed in the patient sample: sleep onset (n = 12), maintenance (n = 19), mixed (n = 17), and negative misperception (n = 19). Each participant had used the Micro Motionlogger Watch (Ambulatory Monitoring, Inc., Ardsley, NY, USA) actigraph for one week. Actigraphic recording allowed for a description of both the activity-based prospective memory performance upon the awakening-by computing the time interval between sleep end and the time participants actually remembered to push the event-marker button of the actigraph-and the motor sleep inertia, i.e., the mean motor activity, minute-by-minute, in the first 60 min after sleep end in the morning. RESULTS Compared to healthy controls, a longer time interval was observed between sleep end and activity-based prospective memory performance in patients with mixed and maintenance insomnia. Moreover, a significant association was highlighted between motor sleep inertia and the activity-based prospective memory performance: higher levels of motor activity in those who remembered to perform the memory task early after sleep end, that spread over a longer time interval in maintenance and mixed insomnia. CONCLUSIONS Overall, the present results seem to highlight a more marked cognitive inertia in patients with mixed and maintenance insomnia as well as a significant association between motor and cognitive inertia that spreads over a different time interval according to the phenotype of insomnia.
Collapse
Affiliation(s)
- Lorenzo Tonetti
- Department of Psychology “Renzo Canestrari”, University of Bologna, 40127 Bologna, Italy; (M.O.); (S.G.); (F.G.); (V.N.)
| | - Miranda Occhionero
- Department of Psychology “Renzo Canestrari”, University of Bologna, 40127 Bologna, Italy; (M.O.); (S.G.); (F.G.); (V.N.)
| | - Sara Giovagnoli
- Department of Psychology “Renzo Canestrari”, University of Bologna, 40127 Bologna, Italy; (M.O.); (S.G.); (F.G.); (V.N.)
| | - Federica Giudetti
- Department of Psychology “Renzo Canestrari”, University of Bologna, 40127 Bologna, Italy; (M.O.); (S.G.); (F.G.); (V.N.)
| | - Elena Briganti
- Pediatric Neuromuscular Unit, IRCCS Institute of Neurological Sciences, 40100 Bologna, Italy;
| | - Vincenzo Natale
- Department of Psychology “Renzo Canestrari”, University of Bologna, 40127 Bologna, Italy; (M.O.); (S.G.); (F.G.); (V.N.)
| |
Collapse
|
18
|
Hopkins MA, Tabuchi M. The power of the rocking cradle: improving sleep function by gentle vibration. Sleep 2024; 47:zsae245. [PMID: 39441991 DOI: 10.1093/sleep/zsae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Indexed: 10/25/2024] Open
Affiliation(s)
- Makenzie A Hopkins
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
19
|
Rawson AB, Nalluru S, O'Reilly JX, Barron HC. Memory reactivation generates new, adaptive behaviours that reach beyond direct experience. Sci Rep 2024; 14:30097. [PMID: 39627275 PMCID: PMC11615380 DOI: 10.1038/s41598-024-78906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/05/2024] [Indexed: 12/06/2024] Open
Abstract
Periods of rest and sleep help us find hidden solutions to new problems and infer unobserved relationships between discrete events. However, the mechanisms that formulate these new, adaptive behavioural strategies remain unclear. One possibility is that memory reactivation during periods of rest and sleep has the capacity to generate new knowledge that extends beyond direct experience. Here, we test this hypothesis using a pre-registered study design that includes a rich behavioural paradigm in humans. We use contextual Targeted Memory Reactivation (TMR) to causally manipulate memory reactivation during awake rest. We demonstrate that TMR during rest enhances performance on associative memory tests, with improved discovery of new, non-directly trained associations, and no change observed for directly trained associations. Our findings suggest that memory reactivation during awake rest plays a critical role in extracting new, unobserved associations to support adaptive behavioural strategies such as inference.
Collapse
Affiliation(s)
- Annalise B Rawson
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, UK
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department for Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sumedha Nalluru
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, UK
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department for Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jill X O'Reilly
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Helen C Barron
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, UK.
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department for Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Crowley R, Alderman E, Javadi AH, Tamminen J. A systematic and meta-analytic review of the impact of sleep restriction on memory formation. Neurosci Biobehav Rev 2024; 167:105929. [PMID: 39427809 DOI: 10.1016/j.neubiorev.2024.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Modern life causes a quarter of adults and half of teenagers to sleep for less than is recommended (Kocevska et al., 2021). Given well-documented benefits of sleep on memory, we must understand the cognitive costs of short sleep. We analysed 125 sleep restriction effect sizes from 39 reports involving 1234 participants. Restricting sleep (3-6.5 hours) compared to normal sleep (7-11 hours) negatively affects memory formation with a small effect size (Hedges' g = 0.29, 95 % CI = [0.13, 0.44]). We detected no evidence for publication bias. When sleep restriction effect sizes were compared with 185 sleep deprivation effect sizes (Newbury et al., 2021) no statistically significant difference was found, suggesting that missing some sleep has similar consequences for memory as not sleeping at all. When the analysis was restricted to post-encoding, rather than pre-encoding, sleep loss, sleep deprivation was associated with larger memory impairment than restriction. Our findings are best accounted for by the sequential hypothesis which emphasises complementary roles of slow-wave sleep and REM sleep for memory.
Collapse
Affiliation(s)
- Rebecca Crowley
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| | - Eleanor Alderman
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| | | | - Jakke Tamminen
- Department of Psychology, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom.
| |
Collapse
|
21
|
Perl O, Kemer L, Green A, Arish N, Corcos Y, Arzi A, Dagan Y. Respiration-triggered olfactory stimulation reduces obstructive sleep apnea severity: A prospective pilot study. J Sleep Res 2024; 33:e14236. [PMID: 38740050 PMCID: PMC11597002 DOI: 10.1111/jsr.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
Obstructive sleep apnea is a prevalent sleep-disordered breathing condition characterized by repetitive reduction in breathing during sleep. The current care standard for obstructive sleep apnea is continuous positive air pressure devices, often suffering from low tolerance due to limited adherence. Capitalizing on the unique neurocircuitry of olfactory perception and its retained function during sleep, we conducted a pilot study to test transient, respiration-based olfactory stimulation as a treatment for obstructive sleep apnea markers. Thirty-two patients with obstructive sleep apnea (apnea-hypopnea index ≥ 15 events per hr) underwent two polysomnography sessions, "Odour" and "Control", in random order. In "Odour" nights, patients were presented with transient respiratory-based olfactory stimulation delivered via a computer-controlled commercial olfactometer (Scentific). The olfactometer, equipped with a wireless monitoring, analysed respiratory patterns and presented odour upon detection of respiratory events. No odours were presented in "Control" nights. Following exclusions, 17 patients entered the analysis (four women, 47.4 (10.5) years, body mass index: 29.4 (6.3) kg m-2). We observed that olfactory stimulation during sleep reduced the apnea-hypopnea index ("Odour": 17.2 (20.9), "Control": 28.2 (18.6), z = -3.337, p = 0.000846, BF10 [Bayesian Factor 10]= 57.9), reflecting an average decrease of 31.3% in the number of events. Relatedly, stimulation reduced the oxygen desaturation index by 26.9% ("Odour": 12.5 (15.8), "Control": 25.7 (25.9), z = -3.337, p = 0.000846, BF10 = 9.522). This effect was not linked to the severity of baseline obstructive sleep apnea markers (ρ = -0.042, p = 0.87). Olfactory stimulation did not arouse from sleep or affect sleep structure, measured as time per sleep stage (F1,16 = 0.088, p = 0.77). In conclusion, olfactory stimulation during sleep was effective in reducing the severity of obstructive sleep apnea markers without inducing arousals, and may provide a novel treatment for obstructive sleep apnea, prompting continued research.
Collapse
Affiliation(s)
- Ofer Perl
- Department of NeurobiologyWeizmann Institute of ScienceRehovotIsrael
- Appscent MedicalRa'ananaIsrael
| | - Lilach Kemer
- The Sleep and Fatigue Institute, Assuta Medical CenterTel AvivIsrael
| | - Amit Green
- The Sleep and Fatigue Institute, Assuta Medical CenterTel AvivIsrael
- The Research Institute of Applied Chronobiology, The Academic College of Tel‐HaiTel HaiIsrael
| | - Nissim Arish
- Pulmonary Institute, Sha'are Zedek Medical CenterJerusalemIsrael
- The Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | | | - Anat Arzi
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of MedicineThe Hebrew UniversityJerusalemIsrael
- Department of Cognitive and Brain SciencesHebrew University of JerusalemJerusalemIsrael
| | - Yaron Dagan
- The Sleep and Fatigue Institute, Assuta Medical CenterTel AvivIsrael
- The Research Institute of Applied Chronobiology, The Academic College of Tel‐HaiTel HaiIsrael
| |
Collapse
|
22
|
Stimmell AC, Alday LJ, Marquez Diaz J, Moseley SC, Cushing SD, Salvador EM, Ragsdale SM, Wilber AA. Resting After Learning Facilitates Memory Consolidation and Reverses Spatial Reorientation Impairments in 'New Surroundings' in 3xTg-AD Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.622722. [PMID: 39605595 PMCID: PMC11601299 DOI: 10.1101/2024.11.12.622722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Sleep is an essential component of productive memory consolidation and waste clearance, including pathology associated with Alzheimer's disease (AD). Facilitation of sleep decreases Aβ and tau accumulation and is important for the consolidation of spatial memories. We previously found that 6-month female 3xTg-AD mice were impaired at spatial reorientation. Given the association between sleep and AD, we assessed the impact of added rest on impaired spatial reorientation that we previously observed. We randomly assigned 3xTg-AD mice to a rest (n=7; 50 min pre- & post-task induced rest) or a non-rest group (n=7; mice remained in the home cage pre- & post-task). Mice in both groups were compared to non-Tg, age-matched, non-rest controls (n=6). To confirm that our sleep condition induced sleep, we performed the same experiment with rest sessions for both 3xTg-AD and non-Tg mice (n=6/group) implanted with recording electrodes to capture local field potentials (LFPs), which were used to classify sleep states. Markers of pathology were also assessed in the parietal-hippocampal network, where we previously showed pTau positive cell density predicted spatial reorientation ability (pTau, 6E10, M78, and M22). However, we found that 3xTg-AD rest mice were not impaired at spatial reorientation compared to non-Tg mice and performed better than 3xTg-AD non-rest mice (replicating our previous work). This recovered behavior persisted despite no change in the density of pathology positive cells. Thus, improving sleep in early stages of AD pathology offers a promising approach for facilitating memory consolidation and improving cognition.
Collapse
|
23
|
Whitmore NW, Yamazaki EM, Paller KA. Targeted memory reactivation with sleep disruption does not weaken week-old memories. NPJ SCIENCE OF LEARNING 2024; 9:64. [PMID: 39500927 PMCID: PMC11538536 DOI: 10.1038/s41539-024-00276-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
When memories are reactivated during sleep, they are potentially transformed and strengthened. However, disturbed sleep may make this process ineffective. In a prior study, memories formed shortly before sleep were weakened by auditory stimulation when that stimulation provoked memory reactivation while also disrupting sleep - a procedure known as targeted memory reactivation with sleep disruption (TMR-SD). Here we used TMR-SD to test whether memory weakening occurs for less-fragile memories. Participants first learned locations of 74 objects on a monitor. One week later, TMR-SD auditory cues linked with 50% of the previously learned object locations were presented during sleep. Even though the cues disturbed sleep, memories were not weakened when reactivated in this way, compared to when not reactivated. Whereas memory storage is vulnerable to disruption shortly after learning, this new evidence supports the notion that memory storage gradually gains resistance to the harm caused by reactivation combined with sleep disruption.
Collapse
Affiliation(s)
- Nathan W Whitmore
- Fluid Interfaces Group, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Department of Psychology, Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, 60208-2710, USA
| | - Erika M Yamazaki
- Department of Psychology, Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, 60208-2710, USA
| | - Ken A Paller
- Department of Psychology, Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, 60208-2710, USA.
| |
Collapse
|
24
|
Klaassen AL, Rasch B. Difficulty in artificial word learning impacts targeted memory reactivation and its underlying neural signatures. eLife 2024; 12:RP90930. [PMID: 39495109 PMCID: PMC11534334 DOI: 10.7554/elife.90930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Sleep associated memory consolidation and reactivation play an important role in language acquisition and learning of new words. However, it is unclear to what extent properties of word learning difficulty impact sleep associated memory reactivation. To address this gap, we investigated in 22 young healthy adults the effectiveness of auditory targeted memory reactivation (TMR) during non-rapid eye movement sleep of artificial words with easy and difficult to learn phonotactical properties. Here, we found that TMR of the easy words improved their overnight memory performance, whereas TMR of the difficult words had no effect. By comparing EEG activities after TMR presentations, we found an increase in slow wave density independent of word difficulty, whereas the spindle-band power nested during the slow wave up-states - as an assumed underlying activity of memory reactivation - was significantly higher in the easy/effective compared to the difficult/ineffective condition. Our findings indicate that word learning difficulty by phonotactics impacts the effectiveness of TMR and further emphasize the critical role of prior encoding depth in sleep associated memory reactivation.
Collapse
Affiliation(s)
- Arndt-Lukas Klaassen
- Department of Psychology, Division of Cognitive Biopsychology and Methods, University of FribourgFribourgSwitzerland
- Department of Anesthesiology & Pain Medicine, Inselspital, Bern University Hospital, University of BernBernSwitzerland
| | - Björn Rasch
- Department of Psychology, Division of Cognitive Biopsychology and Methods, University of FribourgFribourgSwitzerland
| |
Collapse
|
25
|
McDevitt EA, Kim G, Turk-Browne NB, Norman KA. The role of REM sleep in neural differentiation of memories in the hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621588. [PMID: 39553942 PMCID: PMC11566016 DOI: 10.1101/2024.11.01.621588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
When faced with a familiar situation, we can use memory to make predictions about what will happen next. If such predictions turn out to be erroneous, the brain can adapt by differentiating the representations of the cues that generated the prediction from the mispredicted item itself, reducing the likelihood of future prediction errors. Prior work by Kim et al. (2017) found that violating a sequential association in a statistical learning paradigm triggered differentiation of the neural representations of the associated items in the hippocampus. Here, we used fMRI to test the preregistered hypothesis that this hippocampal differentiation occurs only when violations are followed by rapid eye movement (REM) sleep. In the morning, participants first learned that some items predict others (e.g., A predicts B) then encountered a violation in which a predicted item (B) failed to appear when expected after its associated item (A); the predicted item later appeared on its own after an unrelated item. Participants were then randomly assigned to one of three conditions: remain awake, take a nap containing non-REM sleep only, or take a nap with both non-REM and REM sleep. While the predicted results were not observed in the preregistered left CA2/3/DG ROI, we did observe evidence for our hypothesis in closely related hippocampal ROIs, uncorrected for multiple comparisons: In right CA2/3/DG, differentiation in the group with REM sleep was greater than in the groups without REM sleep (wake and non-REM nap); this differentiation was item-specific and concentrated in right DG. Differentiation effects were also greater in bilateral DG when the predicted item was more strongly reactivated during the violation. Overall, the results presented here provide initial evidence linking REM sleep to changes in the hippocampal representations of memories in humans.
Collapse
|
26
|
Cai H, Xiao H, Tong C, Dong X, Chen S, Xu F. Influence of odor environments on cognitive efficiency: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174642. [PMID: 38992380 DOI: 10.1016/j.scitotenv.2024.174642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/29/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Cognitive efficiency, characterized by the rapid and accurate processing of information, significantly enhances work and learning outcomes. This efficiency manifests in improved time management, decision-making, learning capabilities, and creativity. While the influence of thermal, acoustic, and lighting conditions on cognitive performance has been extensively studied, the role of olfactory stimuli remains underexplored. Olfactory perception, distinguished by its intensity, speed of perception, and the breadth of stimuli, plays a pivotal role in cognitive efficiency. This review investigates the mechanisms through which odor environments influence cognitive performance. We analyze how odor environments can affect cognitive efficiency through two different scenarios (work and sleep) and pathways (direct and indirect effects). Current research, which mainly focuses on the interplay between odors, emotional responses, and cognitive efficiency through both subjective and objective measures, is thoroughly analyzed. We highlight existing research gaps and suggest future directions for investigating the influence of odor environments on cognitive efficiency. This review aims to establish a theoretical basis for managing and leveraging odor environments in workplace settings.
Collapse
Affiliation(s)
- Hao Cai
- Department of HVAC, College of Urban Construction, Nanjing Tech University, Nanjing 210009, PR China
| | - Hanlin Xiao
- Department of HVAC, College of Urban Construction, Nanjing Tech University, Nanjing 210009, PR China
| | - Chengxin Tong
- Department of HVAC, College of Urban Construction, Nanjing Tech University, Nanjing 210009, PR China
| | - Xian Dong
- Army Engineering University of PLA, Nanjing 210007, China.
| | - Shilong Chen
- Department of HVAC, College of Urban Construction, Nanjing Tech University, Nanjing 210009, PR China
| | - Feng Xu
- Department of HVAC, College of Urban Construction, Nanjing Tech University, Nanjing 210009, PR China
| |
Collapse
|
27
|
Darevsky D, Kim J, Ganguly K. Coupling of Slow Oscillations in the Prefrontal and Motor Cortex Predicts Onset of Spindle Trains and Persistent Memory Reactivations. J Neurosci 2024; 44:e0621242024. [PMID: 39168655 PMCID: PMC11502226 DOI: 10.1523/jneurosci.0621-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/12/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024] Open
Abstract
Sleep is known to drive the consolidation of motor memories. During nonrapid eye movement (NREM) sleep, the close temporal proximity between slow oscillations (SOs) and spindles ("nesting" of SO-spindles) is known to be essential for consolidation, likely because it is closely associated with the reactivation of awake task activity. Interestingly, recent work has found that spindles can occur in temporal clusters or "trains." However, it remains unclear how spindle trains are related to the nesting phenomenon. Here, we hypothesized that spindle trains are more likely when SOs co-occur in the prefrontal and motor cortex. We conducted simultaneous neural recordings in the medial prefrontal cortex (mPFC) and primary motor cortex (M1) of male rats training on the reach-to-grasp motor task. We found that intracortically recorded M1 spindles are organized into distinct temporal clusters. Notably, the occurrence of temporally precise SOs between mPFC and M1 was a strong predictor of spindle trains. Moreover, reactivation of awake task patterns is much more persistent during spindle trains in comparison with that during isolated spindles. Together, our work suggests that the precise coupling of SOs across mPFC and M1 may be a potential driver of spindle trains and persistent reactivation of motor memory during NREM sleep.
Collapse
Affiliation(s)
- David Darevsky
- Bioengineering Graduate Program, University of California San Francisco, San Francisco, California 94143
- Medical Scientist Training Program, University of California San Francisco, San Francisco, California 94143
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California 94121
- Department of Neurology, University of California San Francisco, San Francisco, California 94143
| | - Jaekyung Kim
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California 94121
- Department of Neurology, University of California San Francisco, San Francisco, California 94143
| | - Karunesh Ganguly
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California 94121
- Department of Neurology, University of California San Francisco, San Francisco, California 94143
| |
Collapse
|
28
|
Sifuentes Ortega R, Peigneux P. Does targeted memory reactivation during slow-wave sleep and rapid eye movement sleep have differential effects on mnemonic discrimination and generalization? Sleep 2024; 47:zsae114. [PMID: 38766994 DOI: 10.1093/sleep/zsae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Targeted memory reactivation (TMR), or the presentation of learning-related cues during sleep, has been shown to benefit memory consolidation for specific memory traces when applied during non-rapid eye movement (NREM) sleep. Prior studies suggest that TMR during rapid eye movement (REM) sleep may play a role in memory generalization processes, but evidence remains scarce. We tested the hypothesis that TMR exerts a differential effect on distinct mnemonic processes as a function of the sleep state (REM vs. NREM) in which TMR is delivered. Mnemonic discrimination and generalization of semantic categories were investigated using an adapted version of the Mnemonic Similarity Task, before and after sleep. Forty-eight participants encoded pictures from eight semantic categories, each associated with a sound. In the pre-sleep immediate test, they had to discriminate "old" (targets) from "similar" (lures) or "new" (foils) pictures. During sleep, half of the sounds were replayed in slow wave sleep (SWS) or REM sleep. Recognition, discrimination, and generalization memory indices were tested in the morning. These indices did not differ between SWS and REM TMR groups or reactivated and non-reactivated item categories. Additional results suggest a positive effect of TMR on performance for highly similar items mostly relying on mnemonic discrimination processes. During sleep, EEG activity after cue presentation increased in the delta-theta and sigma band in the SWS group, and in the beta band in the REM TMR group. These results do not support the hypothesis of differential processing of novel memory traces when TMR is administered in distinctive physiological sleep states.
Collapse
Affiliation(s)
- Rebeca Sifuentes Ortega
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN affiliated at Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Philippe Peigneux
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN affiliated at Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
29
|
Schmidig FJ, Geva-Sagiv M, Falach R, Yakim S, Gat Y, Sharon O, Fried I, Nir Y. A visual paired associate learning (vPAL) paradigm to study memory consolidation during sleep. J Sleep Res 2024; 33:e14151. [PMID: 38286437 DOI: 10.1111/jsr.14151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/31/2024]
Abstract
Sleep improves the consolidation and long-term stability of newly formed memories and associations. Most research on human declarative memory and its consolidation during sleep uses word-pair associations requiring exhaustive learning. In the present study, we present the visual paired association learning (vPAL) paradigm, in which participants learn new associations between images of celebrities and animals. The vPAL is based on a one-shot exposure that resembles learning in natural conditions. We tested if vPAL can reveal a role for sleep in memory consolidation by assessing the specificity of memory recognition, and the cued recall performance, before and after sleep. We found that a daytime nap improved the stability of recognition memory and discrimination abilities compared to identical intervals of wakefulness. By contrast, cued recall of associations did not exhibit significant sleep-dependent effects. High-density electroencephalography during naps further revealed an association between sleep spindle density and stability of recognition memory. Thus, the vPAL paradigm opens new avenues for future research on sleep and memory consolidation across ages and heterogeneous populations in health and disease.
Collapse
Affiliation(s)
- Flavio Jean Schmidig
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Geva-Sagiv
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, USA
| | - Rotem Falach
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Yakim
- Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University, Jerusalem, Israel
| | - Yael Gat
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Omer Sharon
- Center for Human Sleep Science, Department of Psychology, University of California, Berkeley, Berkeley, USA
| | - Itzhak Fried
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, USA
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
30
|
Leach S, Krugliakova E, Sousouri G, Snipes S, Skorucak J, Schühle S, Müller M, Ferster ML, Da Poian G, Karlen W, Huber R. Acoustically evoked K-complexes together with sleep spindles boost verbal declarative memory consolidation in healthy adults. Sci Rep 2024; 14:19184. [PMID: 39160150 PMCID: PMC11333484 DOI: 10.1038/s41598-024-67701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Over the past decade, phase-targeted auditory stimulation (PTAS), a neuromodulation approach which presents auditory stimuli locked to the ongoing phase of slow waves during sleep, has shown potential to enhance specific aspects of sleep functions. However, the complexity of PTAS responses complicates the establishment of causality between specific electroencephalographic events and observed benefits. Here, we used down-PTAS during sleep to specifically evoke the early, K-complex (KC)-like response following PTAS without leading to a sustained increase in slow-wave activity throughout the stimulation window. Over the course of two nights, one with down-PTAS, the other without, high-density electroencephalography (hd-EEG) was recorded from 14 young healthy adults. The early response exhibited striking similarities to evoked KCs and was associated with improved verbal memory consolidation via stimulus-evoked spindle events nested into the up-phase of ongoing 1 Hz waves in a central region. These findings suggest that the early, KC-like response is sufficient to boost memory, potentially by orchestrating aspects of the hippocampal-neocortical dialogue.
Collapse
Affiliation(s)
- Sven Leach
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Elena Krugliakova
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Georgia Sousouri
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Mobile Health Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology & Toxicology, University of Zurich, Zurich, Switzerland
| | - Sophia Snipes
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jelena Skorucak
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Selina Schühle
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Manuel Müller
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Maria Laura Ferster
- Mobile Health Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Giulia Da Poian
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Walter Karlen
- Mobile Health Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Institute of Biomedical Engineering, Faculty of Engineering, Computer Science and Psychology, Ulm University, Ulm, Germany
| | - Reto Huber
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
31
|
van der Heijden AC, van der Werf YD, van den Heuvel OA, Talamini LM, van Marle HJF. Targeted memory reactivation to augment treatment in post-traumatic stress disorder. Curr Biol 2024; 34:3735-3746.e5. [PMID: 39116885 DOI: 10.1016/j.cub.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/30/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder with traumatic memories at its core. Post-treatment sleep may offer a unique time window to increase therapeutic efficacy through consolidation of therapeutically modified traumatic memories. Targeted memory reactivation (TMR) enhances memory consolidation by presenting reminder cues (e.g., sounds associated with a memory) during sleep. Here, we applied TMR in PTSD patients to strengthen therapeutic memories during sleep after one treatment session with eye movement desensitization and reprocessing (EMDR). PTSD patients received either slow oscillation (SO) phase-targeted TMR, using modeling-based closed-loop neurostimulation (M-CLNS) with EMDR clicks as a reactivation cue (n = 17), or sham stimulation (n = 16). Effects of TMR on sleep were assessed through high-density polysomnography. Effects on treatment outcome were assessed through subjective, autonomic, and fMRI responses to script-driven imagery (SDI) of the targeted traumatic memory and overall PTSD symptom level. Compared to sham stimulation, TMR led to stimulus-locked increases in SO and spindle dynamics, which correlated positively with PTSD symptom reduction in the TMR group. Given the role of SOs and spindles in memory consolidation, these findings suggest that TMR may have strengthened the consolidation of the EMDR-treatment memory. Clinically, TMR vs. sham stimulation resulted in a larger reduction of avoidance level during SDI. TMR did not disturb sleep or trigger nightmares. Together, these data provide first proof of principle that TMR may be a safe and viable future treatment augmentation strategy for PTSD. The required follow-up studies may implement multi-night TMR or TMR during REM sleep to further establish the clinical effect of TMR for traumatic memories.
Collapse
Affiliation(s)
- Anna C van der Heijden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department Anatomy & Neuroscience, Boelelaan 1081 HV Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Oldenaller 1081 HJ Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Stress Sleep, Boelelaan 1081 HV Amsterdam, the Netherlands; University of Amsterdam, Department of Psychology, Brain & Cognition, Nieuwe Achtergracht 1018 WS Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department Anatomy & Neuroscience, Boelelaan 1081 HV Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Boelelaan 1081 HV Amsterdam, the Netherlands
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department Anatomy & Neuroscience, Boelelaan 1081 HV Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Oldenaller 1081 HJ Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Boelelaan 1081 HV Amsterdam, the Netherlands
| | - Lucia M Talamini
- University of Amsterdam, Department of Psychology, Brain & Cognition, Nieuwe Achtergracht 1018 WS Amsterdam, the Netherlands; University of Amsterdam, Amsterdam Brain and Cognition, Nieuwe Achtergracht 1001 NK Amsterdam, the Netherlands
| | - Hein J F van Marle
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Oldenaller 1081 HJ Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Stress Sleep, Boelelaan 1081 HV Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Oldenaller 1081 HJ Amsterdam, the Netherlands; ARQ National Psychotrauma Center, Nienoord 1112 XE Diemen, the Netherlands.
| |
Collapse
|
32
|
Wang T, Li W, Deng J, Zhang Q, Liu Y, Zheng H. The impact of the physical activity intervention on sleep in children and adolescents with neurodevelopmental disorders: a systematic review and meta-analysis. Front Neurol 2024; 15:1438786. [PMID: 39193141 PMCID: PMC11347421 DOI: 10.3389/fneur.2024.1438786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Objective The purpose of this review was to synthesize the current literature on the relationship between sleep and physical activity in children and adolescents with neurodevelopmental disorders. Methods Articles were searched in PubMed, Web of Science, EBSCO, Cochrane, and Embase until April 2024. The meta-analysis was performed using Review Manager 5.3. Results Our results show that measuring sleep parameters by means of different measuring tools yields different results. Most studies have found no association between sleep and physical activity in children with neurodevelopmental disorders, especially when measured subjectively, such as parent reports and sleep logs. Physical activity interventions had a significant effect on sleep efficiency, wake after sleep onset, and sleep duration when measured objectively using instruments such as wrist actigraphy. Meta-analysis showed that children and adolescents with neurodevelopmental disorders who participated in mind-body activities (SMD = -3.01, 95%CI = -4.15~-1.87, p < 0.001, I2 = 99%) showed significant improvements in sleep, which were sessions lasting more than 12 weeks (SMD = -1.01, p < 0.01, I2 = 97%), performed at least 3 times per week (SMD = -0.81, 95%CI = -1.53~-0.10, p = 0.03, I2 = 95%), and lasted for more than 60 min per session (SMD = -1.55, 95%CI = -2.67~-0.43, p = 0.007, I2 = 97%). However, the results of these subgroup analyses must be interpreted with caution because of the small number of studies included. Conclusion Our results show that measuring sleep parameters by means of different measuring tools yields different results. There was difficulty in interpreting many of the studies included in this meta-analysis, in view of the non-standardization of protocol, especially the ability range of the cohort, duration of the study, recommended exercises, whether the caregivers or researchers supervised the exercise regime/activity, and the practicality of continuing the exercise long-term by caregivers. Systematic review registration Identifier, CRD42024541300.
Collapse
Affiliation(s)
| | | | | | | | - Yongfeng Liu
- School of Sports Training, Chengdu Sport University, Chengdu, Sichuan, China
| | | |
Collapse
|
33
|
Bloxham A, Horton CL. Enhancing and advancing the understanding and study of dreaming and memory consolidation: Reflections, challenges, theoretical clarity, and methodological considerations. Conscious Cogn 2024; 123:103719. [PMID: 38941924 DOI: 10.1016/j.concog.2024.103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 04/24/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024]
Abstract
Empirical investigations that search for a link between dreaming and sleep-dependent memory consolidation have focused on testing for an association between dreaming of what was learned, and improved memory performance for learned material. Empirical support for this is mixed, perhaps owing to the inherent challenges presented by the nature of dreams, and methodological inconsistencies. The purpose of this paper is to address critically prevalent assumptions and practices, with the aim of clarifying and enhancing research on this topic, chiefly by providing a theoretical synthesis of existing models and evidence. Also, it recommends the method of Targeted Memory Reactivation (TMR) as a means for investigating if dream content can be linked to specific cued activations. Other recommendations to enhance research practice and enquiry on this subject are also provided, focusing on the HOW and WHY we search for memory sources in dreams, and what purpose (if any) they might serve.
Collapse
Affiliation(s)
- Anthony Bloxham
- Nottingham Trent University, Nottingham, NG1 4FQ, United Kingdom.
| | | |
Collapse
|
34
|
Fatima K, Varela S, Fatima Y, Lindsay D, Gray M, Cairns A. Impact of sleep on educational outcome of Indigenous Australian children: A systematic review. Aust J Rural Health 2024; 32:672-683. [PMID: 38923728 DOI: 10.1111/ajr.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION The association between quality sleep and improved cognition is well reported in literature. However, very few studies have been undertaken to evaluate the impact of poor sleep on educational outcomes in Indigenous Australian children. OBJECTIVES The objective of this review was to explore the association between sleep and educational outcomes of Indigenous children. METHODS For this systematic review, a literature search covering research articles in academic databases and grey literature sources was conducted to retrieve studies published until March 2022. Eight online e-databases (PubMed, Ovid MEDLINE, CINAHL, SCOPUS, HealthinfoNet, PsycINFO, Cochrane and Google Scholar) were searched for data extraction and two appraisal tools (NIH and CREATE) were used for quality assessment. Studies that explored any aspect of sleep health in relation to educational/academic outcomes in school going Indigenous Australian children aged 5-18 were included in this study. All review articles and studies that focused on physical/ mental disabilities or parent perceptions of sleep and educational outcomes were excluded. A convergent integrated approach was used to collate and synthesize information. RESULTS Only three studies (two cross-sectional and one longitudinal) met the eligibility criteria out of 574 articles. The sample size ranged from 21-50 of 6 to 13 year old children. A strong relationship was indicated between sleep quantity and educational outcomes, in two of the three studies. One study related the sleep fragmentation/shorter sleep schedules of short sleep class and early risers with poorer reading (B = -30.81 to -37.28, p = 0.006 to 0.023), grammar (B = -39.79 to -47.89, p = 0.012-0.013) and numeracy (B = -37.93 to -50.15, p = 0.003 to 0.022) skills compared with long sleep and normative sleep class whereas another reported no significant relation between sleep and educational outcomes. CONCLUSION The review highlights the need for more research to provide evidence of potentially modifiable factors such as sleep and the impact these may have on academic performance.
Collapse
Affiliation(s)
- Khadija Fatima
- Faculty of Healthcare Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sharon Varela
- Murtupuni Centre for Rural and Remote Health, James Cook University, Townsville, Queensland, Australia
| | - Yaqoot Fatima
- Poche Centre for Indigenous Health, The University of Queensland, Toowong, Queensland, Australia
| | | | - Malama Gray
- Centre for Rural and Remote Health, James Cook University, Atherton, Queensland, Australia
| | - Alice Cairns
- Centre for Rural and Remote Health, James Cook University, Atherton, Queensland, Australia
| |
Collapse
|
35
|
Marsh B, Navas-Zuloaga MG, Rosen BQ, Sokolov Y, Delanois JE, Gonzalez OC, Krishnan GP, Halgren E, Bazhenov M. Emergent effects of synaptic connectivity on the dynamics of global and local slow waves in a large-scale thalamocortical network model of the human brain. PLoS Comput Biol 2024; 20:e1012245. [PMID: 39028760 PMCID: PMC11290683 DOI: 10.1371/journal.pcbi.1012245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/31/2024] [Accepted: 06/11/2024] [Indexed: 07/21/2024] Open
Abstract
Slow-wave sleep (SWS), characterized by slow oscillations (SOs, <1Hz) of alternating active and silent states in the thalamocortical network, is a primary brain state during Non-Rapid Eye Movement (NREM) sleep. In the last two decades, the traditional view of SWS as a global and uniform whole-brain state has been challenged by a growing body of evidence indicating that SO can be local and can coexist with wake-like activity. However, the mechanisms by which global and local SOs arise from micro-scale neuronal dynamics and network connectivity remain poorly understood. We developed a multi-scale, biophysically realistic human whole-brain thalamocortical network model capable of transitioning between the awake state and SWS, and we investigated the role of connectivity in the spatio-temporal dynamics of sleep SO. We found that the overall strength and a relative balance between long and short-range synaptic connections determined the network state. Importantly, for a range of synaptic strengths, the model demonstrated complex mixed SO states, where periods of synchronized global slow-wave activity were intermittent with the periods of asynchronous local slow-waves. An increase in the overall synaptic strength led to synchronized global SO, while a decrease in synaptic connectivity produced only local slow-waves that would not propagate beyond local areas. These results were compared to human data to validate probable models of biophysically realistic SO. The model producing mixed states provided the best match to the spatial coherence profile and the functional connectivity estimated from human subjects. These findings shed light on how the spatio-temporal properties of SO emerge from local and global cortical connectivity and provide a framework for further exploring the mechanisms and functions of SWS in health and disease.
Collapse
Affiliation(s)
- Brianna Marsh
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Neuroscience Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - M. Gabriela Navas-Zuloaga
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Burke Q. Rosen
- Neuroscience Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Yury Sokolov
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jean Erik Delanois
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Oscar C. Gonzalez
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Giri P. Krishnan
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Eric Halgren
- Neuroscience Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Departments of Radiology and Neuroscience, University of California San Diego, La Jolla, California, United States of America
| | - Maxim Bazhenov
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Neuroscience Graduate Program, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
36
|
Valdivia G, Espinosa N, Lara-Vasquez A, Caneo M, Inostroza M, Born J, Fuentealba P. Sleep-dependent decorrelation of hippocampal spatial representations. iScience 2024; 27:110076. [PMID: 38883845 PMCID: PMC11176648 DOI: 10.1016/j.isci.2024.110076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/02/2024] [Accepted: 05/19/2024] [Indexed: 06/18/2024] Open
Abstract
Neuronal ensembles are crucial for episodic memory and spatial mapping. Sleep, particularly non-REM (NREM), is vital for memory consolidation, as it triggers plasticity mechanisms through brain oscillations that reactivate neuronal ensembles. Here, we assessed their role in consolidating hippocampal spatial representations during sleep. We recorded hippocampus activity in rats performing a spatial object-place recognition (OPR) memory task, during encoding and retrieval periods, separated by intervening sleep. Successful OPR retrieval correlated with NREM duration, during which cortical oscillations decreased in power and density as well as neuronal spiking, suggesting global downregulation of network excitability. However, neurons encoding specific spatial locations (i.e., place cells) or objects during OPR showed stronger synchrony with brain oscillations compared to non-encoding neurons, and the stability of spatial representations decreased proportionally with NREM duration. Our findings suggest that NREM sleep may promote flexible remapping in hippocampal ensembles, potentially aiding memory consolidation and adaptation to novel spatial contexts.
Collapse
Affiliation(s)
- Gonzalo Valdivia
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Nelson Espinosa
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Ariel Lara-Vasquez
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Mauricio Caneo
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Pablo Fuentealba
- Laboratory of Neural Circuits, Departamento de Psiquiatria, Facultad de Medicina, Pontificia Universidad Catolica de Chile. Santiago, Chile
| |
Collapse
|
37
|
Ness HT, Folvik L, Sneve MH, Grydeland H, Vidal-Piñeiro D, Raud L, Geier OM, Walhovd KB, Fjell AM. Recalled through this day but forgotten next week?-retrieval activity predicts durability of partly consolidated memories. Cereb Cortex 2024; 34:bhae233. [PMID: 38937077 PMCID: PMC11758583 DOI: 10.1093/cercor/bhae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024] Open
Abstract
Even partly consolidated memories can be forgotten given sufficient time, but the brain activity associated with durability of episodic memory at different time scales remains unclear. Here, we aimed to identify brain activity associated with retrieval of partly consolidated episodic memories that continued to be remembered in the future. Forty-nine younger (20 to 38 years; 25 females) and 43 older adults (60 to 80 years, 25 females) were scanned with functional magnetic resonance imaging during associative memory retrieval 12 h post-encoding. Twelve hours is sufficient to allow short-term synaptic consolidation as well as early post-encoding replay to initiate memory consolidation. Successful memory trials were classified into durable and transient source memories based on responses from a memory test ~6 d post-encoding. Results demonstrated that successful retrieval of future durable vs. transient memories was supported by increased activity in a medial prefrontal and ventral parietal area. Individual differences in activation as well as the subjective vividness of memories during encoding were positively related to individual differences in memory performance after 6 d. The results point to a unique and novel aspect of brain activity supporting long-term memory, in that activity during retrieval of memories even after 12 h of consolidation contains information about potential for long-term durability.
Collapse
Affiliation(s)
- Hedda T Ness
- Center for Lifespan Changes in Brain and Cognition,
Department of Psychology, University of Oslo,
Forskningsveien 3A, 0373 Oslo, Norway
| | - Line Folvik
- Center for Lifespan Changes in Brain and Cognition,
Department of Psychology, University of Oslo,
Forskningsveien 3A, 0373 Oslo, Norway
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition,
Department of Psychology, University of Oslo,
Forskningsveien 3A, 0373 Oslo, Norway
| | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition,
Department of Psychology, University of Oslo,
Forskningsveien 3A, 0373 Oslo, Norway
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition,
Department of Psychology, University of Oslo,
Forskningsveien 3A, 0373 Oslo, Norway
| | - Liisa Raud
- Center for Lifespan Changes in Brain and Cognition,
Department of Psychology, University of Oslo,
Forskningsveien 3A, 0373 Oslo, Norway
| | - Oliver M Geier
- Department for Diagnostic Physics, Oslo
University Hospital, Sognsvannsveien 20, 0424
Oslo, Norway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition,
Department of Psychology, University of Oslo,
Forskningsveien 3A, 0373 Oslo, Norway
- Computational Radiology and Artificial Intelligence,
Department of Radiology and Nuclear Medicine, Oslo University
Hospital, Sognsvannsveien 20, 0424 Oslo, Norway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition,
Department of Psychology, University of Oslo,
Forskningsveien 3A, 0373 Oslo, Norway
- Computational Radiology and Artificial Intelligence,
Department of Radiology and Nuclear Medicine, Oslo University
Hospital, Sognsvannsveien 20, 0424 Oslo, Norway
| |
Collapse
|
38
|
Occhionero M, Tonetti L, Giudetti F, Natale V. Activity-Based Prospective Memory in Insomniacs. SENSORS (BASEL, SWITZERLAND) 2024; 24:3612. [PMID: 38894403 PMCID: PMC11175320 DOI: 10.3390/s24113612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE To investigate the activity-based prospective memory performance in patients with insomnia, divided, on the basis of actigraphic evaluation, into sleep onset, maintenance, mixed and negative misperception insomnia. METHODS A total of 153 patients with insomnia (I, 83 females, mean age + SD = 41.37 + 16.19 years) and 121 healthy controls (HC, 78 females, mean age + SD = 36.99 + 14.91 years) wore an actigraph for one week. Insomnia was classified into sleep onset insomnia (SOI), maintenance insomnia (MaI), mixed insomnia (MixI) and negative misperception insomnia (NMI). To study their activity-based prospective memory performance, all the participants were required to push the actigraph event marker button twice, at bedtime (task 1) and at get-up time (task 2). RESULTS Only patients with maintenance and mixed insomnia had a significantly lower accuracy in the activity-based prospective memory task at get-up time compared with the healthy controls. CONCLUSION The results show that maintenance and mixed insomnia involve an impaired activity-based prospective memory performance, while sleep onset and negative misperception insomnia do not seem to be affected. This pattern of results suggests that the fragmentation of sleep may play a role in activity-based prospective memory efficiency at wake-up in the morning.
Collapse
Affiliation(s)
- Miranda Occhionero
- Department of Psychology “Renzo Canestrari”, University of Bologna, 40127 Bologna, Italy; (L.T.); (F.G.); (V.N.)
| | | | | | | |
Collapse
|
39
|
Marsh BM, Navas-Zuloaga MG, Rosen BQ, Sokolov Y, Delanois JE, González OC, Krishnan GP, Halgren E, Bazhenov M. Emergent effects of synaptic connectivity on the dynamics of global and local slow waves in a large-scale thalamocortical network model of the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.15.562408. [PMID: 38617301 PMCID: PMC11014475 DOI: 10.1101/2023.10.15.562408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Slow-wave sleep (SWS), characterized by slow oscillations (SO, <1Hz) of alternating active and silent states in the thalamocortical network, is a primary brain state during Non-Rapid Eye Movement (NREM) sleep. In the last two decades, the traditional view of SWS as a global and uniform whole-brain state has been challenged by a growing body of evidence indicating that SO can be local and can coexist with wake-like activity. However, the understanding of how global and local SO emerges from micro-scale neuron dynamics and network connectivity remains unclear. We developed a multi-scale, biophysically realistic human whole-brain thalamocortical network model capable of transitioning between the awake state and slow-wave sleep, and we investigated the role of connectivity in the spatio-temporal dynamics of sleep SO. We found that the overall strength and a relative balance between long and short-range synaptic connections determined the network state. Importantly, for a range of synaptic strengths, the model demonstrated complex mixed SO states, where periods of synchronized global slow-wave activity were intermittent with the periods of asynchronous local slow-waves. Increase of the overall synaptic strength led to synchronized global SO, while decrease of synaptic connectivity produced only local slow-waves that would not propagate beyond local area. These results were compared to human data to validate probable models of biophysically realistic SO. The model producing mixed states provided the best match to the spatial coherence profile and the functional connectivity estimated from human subjects. These findings shed light on how the spatio-temporal properties of SO emerge from local and global cortical connectivity and provide a framework for further exploring the mechanisms and functions of SWS in health and disease.
Collapse
Affiliation(s)
- Brianna M Marsh
- Department of Medicine, University of California, San Diego
- Neuroscience Graduate Program, University of California, San Diego
| | | | - Burke Q Rosen
- Neuroscience Graduate Program, University of California, San Diego
| | - Yury Sokolov
- Department of Medicine, University of California, San Diego
| | - Jean Erik Delanois
- Department of Medicine, University of California, San Diego
- Department of Computer Science and Engineering, University of California, San Diego
| | | | | | - Eric Halgren
- Neuroscience Graduate Program, University of California, San Diego
- Department of Radiology and Neuroscience, University of California, San Diego
| | - Maxim Bazhenov
- Department of Medicine, University of California, San Diego
- Neuroscience Graduate Program, University of California, San Diego
| |
Collapse
|
40
|
Carbone J, Bibian C, Born J, Forcato C, Diekelmann S. Comparing targeted memory reactivation during slow wave sleep and sleep stage 2. Sci Rep 2024; 14:9057. [PMID: 38643331 PMCID: PMC11032354 DOI: 10.1038/s41598-024-59696-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/15/2024] [Indexed: 04/22/2024] Open
Abstract
Sleep facilitates declarative memory consolidation, which is assumed to rely on the reactivation of newly encoded memories orchestrated by the temporal interplay of slow oscillations (SO), fast spindles and ripples. SO as well as the number of spindles coupled to SO are more frequent during slow wave sleep (SWS) compared to lighter sleep stage 2 (S2). But, it is unclear whether memory reactivation is more effective during SWS than during S2. To test this question, we applied Targeted Memory Reactivation (TMR) in a declarative memory design by presenting learning-associated sound cues during SWS vs. S2 in a counterbalanced within-subject design. Contrary to our hypothesis, memory performance was not significantly better when cues were presented during SWS. Event-related potential (ERP) amplitudes were significantly higher for cues presented during SWS than S2, and the density of SO and SO-spindle complexes was generally higher during SWS than during S2. Whereas SO density increased during and after the TMR period, SO-spindle complexes decreased. None of the parameters were associated with memory performance. These findings suggest that the efficacy of TMR does not depend on whether it is administered during SWS or S2, despite differential processing of memory cues in these sleep stages.
Collapse
Affiliation(s)
- Julia Carbone
- Institute of Medical Psychology and Behavioral Neurobiology, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, Tübingen, Germany
| | - Carlos Bibian
- Institute of Medical Psychology and Behavioral Neurobiology, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Cecilia Forcato
- Laboratorio de Sueño y Memoria, Depto. de Ciencias de La Vida, Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| | - Susanne Diekelmann
- Institute of Medical Psychology and Behavioral Neurobiology, Tübingen, Germany.
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
41
|
Carbone J, Diekelmann S. An update on recent advances in targeted memory reactivation during sleep. NPJ SCIENCE OF LEARNING 2024; 9:31. [PMID: 38622159 PMCID: PMC11018807 DOI: 10.1038/s41539-024-00244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
Targeted Memory Reactivation (TMR) is a noninvasive tool to manipulate memory consolidation during sleep. TMR builds on the brain's natural processes of memory reactivation during sleep and aims to facilitate or bias these processes in a certain direction. The basis of this technique is the association of learning content with sensory cues, such as odors or sounds, that are presented during subsequent sleep to promote memory reactivation. Research on TMR has drastically increased over the last decade with rapid developments. The aim of the present review is to highlight the most recent advances of this research. We focus on effects of TMR on the strengthening of memories in the declarative, procedural and emotional memory domain as well as on ways in which TMR can be used to promote forgetting. We then discuss advanced technical approaches to determine the optimal timing of TMR within the ongoing oscillatory activity of the sleeping brain as well as the specificity of TMR for certain memory contents. We further highlight the specific effects of TMR during REM sleep and in influencing dream content. Finally, we discuss recent evidence for potential applications of TMR for mental health, educational purposes and in the home setting. In conclusion, the last years of research have provided substantial advances in TMR that can guide future endeavors in research and application.
Collapse
Affiliation(s)
- Julia Carbone
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, 72076, Tübingen, Germany
| | - Susanne Diekelmann
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076, Tübingen, Germany.
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, 72070, Tübingen, Germany.
| |
Collapse
|
42
|
Staresina BP. Coupled sleep rhythms for memory consolidation. Trends Cogn Sci 2024; 28:339-351. [PMID: 38443198 DOI: 10.1016/j.tics.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
How do passing moments turn into lasting memories? Sheltered from external tasks and distractions, sleep constitutes an optimal state for the brain to reprocess and consolidate previous experiences. Recent work suggests that consolidation is governed by the intricate interaction of slow oscillations (SOs), spindles, and ripples - electrophysiological sleep rhythms that orchestrate neuronal processing and communication within and across memory circuits. This review describes how sequential SO-spindle-ripple coupling provides a temporally and spatially fine-tuned mechanism to selectively strengthen target memories across hippocampal and cortical networks. Coupled sleep rhythms might be harnessed not only to enhance overnight memory retention, but also to combat memory decline associated with healthy ageing and neurodegenerative diseases.
Collapse
Affiliation(s)
- Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
43
|
Yang W, Sun C, Huszár R, Hainmueller T, Kiselev K, Buzsáki G. Selection of experience for memory by hippocampal sharp wave ripples. Science 2024; 383:1478-1483. [PMID: 38547293 PMCID: PMC11068097 DOI: 10.1126/science.adk8261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024]
Abstract
Experiences need to be tagged during learning for further consolidation. However, neurophysiological mechanisms that select experiences for lasting memory are not known. By combining large-scale neural recordings in mice with dimensionality reduction techniques, we observed that successive maze traversals were tracked by continuously drifting populations of neurons, providing neuronal signatures of both places visited and events encountered. When the brain state changed during reward consumption, sharp wave ripples (SPW-Rs) occurred on some trials, and their specific spike content decoded the trial blocks that surrounded them. During postexperience sleep, SPW-Rs continued to replay those trial blocks that were reactivated most frequently during waking SPW-Rs. Replay content of awake SPW-Rs may thus provide a neurophysiological tagging mechanism to select aspects of experience that are preserved and consolidated for future use.
Collapse
Affiliation(s)
- Wannan Yang
- Neuroscience Institute and Department of Neurology, NYU Grossman School of Medicine, New York University, New York City, NY, USA
- Center for Neural Science, New York University, New York City, NY, USA
| | - Chen Sun
- Mila - Quebec AI Institute, Montréal, Quebec, Canada
| | - Roman Huszár
- Neuroscience Institute and Department of Neurology, NYU Grossman School of Medicine, New York University, New York City, NY, USA
- Center for Neural Science, New York University, New York City, NY, USA
| | - Thomas Hainmueller
- Neuroscience Institute and Department of Neurology, NYU Grossman School of Medicine, New York University, New York City, NY, USA
- Department of Psychiatry, New York University Langone Medical Center, New York City, NY, USA
| | - Kirill Kiselev
- Center for Neural Science, New York University, New York City, NY, USA
| | - György Buzsáki
- Neuroscience Institute and Department of Neurology, NYU Grossman School of Medicine, New York University, New York City, NY, USA
- Center for Neural Science, New York University, New York City, NY, USA
| |
Collapse
|
44
|
Siefert E, Uppuluri S, Mu. J, Tandoc M, Antony J, Schapiro A. Memory reactivation during sleep does not act holistically on object memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.14.571683. [PMID: 38168451 PMCID: PMC10760132 DOI: 10.1101/2023.12.14.571683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Memory reactivation during sleep is thought to facilitate memory consolidation. Most sleep reactivation research has examined how reactivation of specific facts, objects, and associations benefits their overall retention. However, our memories are not unitary, and not all features of a memory persist in tandem over time. Instead, our memories are transformed, with some features strengthened and others weakened. Does sleep reactivation drive memory transformation? We leveraged the Targeted Memory Reactivation technique in an object category learning paradigm to examine this question. Participants (20 female, 14 male) learned three categories of novel objects, where each object had unique, distinguishing features as well as features shared with other members of its category. We used a real-time EEG protocol to cue the reactivation of these objects during sleep at moments optimized to generate reactivation events. We found that reactivation improved memory for distinguishing features while worsening memory for shared features, suggesting a differentiation process. The results indicate that sleep reactivation does not act holistically on object memories, instead supporting a transformation process where some features are enhanced over others.
Collapse
Affiliation(s)
- E.M. Siefert
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - S. Uppuluri
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J. Mu.
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - M.C. Tandoc
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - A.C. Schapiro
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
45
|
Sánchez-Corzo A, Baum DM, Irani M, Hinrichs S, Reisenegger R, Whitaker GA, Born J, Sitaram R, Klinzing JG. Odor cueing of declarative memories during sleep enhances coordinated spindles and slow oscillations. Neuroimage 2024; 287:120521. [PMID: 38244877 DOI: 10.1016/j.neuroimage.2024.120521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024] Open
Abstract
Long-term memories are formed by repeated reactivation of newly encoded information during sleep. This process can be enhanced by using memory-associated reminder cues like sounds and odors. While auditory cueing has been researched extensively, few electrophysiological studies have exploited the various benefits of olfactory cueing. We used high-density electroencephalography in an odor-cueing paradigm that was designed to isolate the neural responses specific to the cueing of declarative memories. We show widespread cueing-induced increases in the duration and rate of sleep spindles. Higher spindle rates were most prominent over centro-parietal areas and largely overlapping with a concurrent increase in the amplitude of slow oscillations (SOs). Interestingly, greater SO amplitudes were linked to a higher likelihood of coupling a spindle and coupled spindles expressed during cueing were more numerous in particular around SO up states. We thus identify temporally and spatially coordinated enhancements of sleep spindles and slow oscillations as a candidate mechanism behind cueing-induced memory processing. Our results further demonstrate the feasibility of studying neural activity patterns linked to such processing using olfactory cueing during sleep.
Collapse
Affiliation(s)
- Andrea Sánchez-Corzo
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile; Multimodal Functional Brain Imaging and Neurorehabilitation Hub, Diagnostic Imaging Department, St. Jude Children's Research Hospital, Memphis, TN, United States; Laboratory for Brain-Machine Interfaces and Neuromodulation, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute of Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul 7820436, Santiago, Chile.
| | - David M Baum
- Laboratory for Brain-Machine Interfaces and Neuromodulation, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute of Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul 7820436, Santiago, Chile.
| | - Martín Irani
- Laboratory for Brain-Machine Interfaces and Neuromodulation, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Psychology, University of Illinois Urbana-Champaign, IL, United States
| | - Svenja Hinrichs
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen 72076, Germany
| | - Renate Reisenegger
- Laboratory for Brain-Machine Interfaces and Neuromodulation, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Neurophysics, Philipps-Universität Marburg, Marburg, Germany; Centre for Mind, Brain and Behavior, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Grace A Whitaker
- Laboratory for Brain-Machine Interfaces and Neuromodulation, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Center for Electrical and Electronics Engineering, Federico Santa María Technical University, Valparaíso 1680, Chile
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen 72076, Germany; Centre for Integrative Neuroscience, University of Tübingen, Tübingen 72076, Germany
| | - Ranganatha Sitaram
- Multimodal Functional Brain Imaging and Neurorehabilitation Hub, Diagnostic Imaging Department, St. Jude Children's Research Hospital, Memphis, TN, United States; Laboratory for Brain-Machine Interfaces and Neuromodulation, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute of Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul 7820436, Santiago, Chile.
| | - Jens G Klinzing
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen 72076, Germany; Centre for Integrative Neuroscience, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
46
|
Nicolas J, Carrier J, Swinnen SP, Doyon J, Albouy G, King BR. Targeted memory reactivation during post-learning sleep does not enhance motor memory consolidation in older adults. J Sleep Res 2024; 33:e14027. [PMID: 37794602 DOI: 10.1111/jsr.14027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 10/06/2023]
Abstract
Targeted memory reactivation (TMR) during sleep enhances memory consolidation in young adults by modulating electrophysiological markers of neuroplasticity. Interestingly, older adults exhibit deficits in motor memory consolidation, an impairment that has been linked to age-related degradations in the same sleep features sensitive to TMR. We hypothesised that TMR would enhance consolidation in older adults via the modulation of these markers. A total of 17 older participants were trained on a motor task involving two auditory-cued sequences. During a post-learning nap, two auditory cues were played: one associated to a learned (i.e., reactivated) sequence and one control. Performance during two delayed re-tests did not differ between reactivated and non-reactivated sequences. Moreover, both associated and control sounds modulated brain responses, yet there were no consistent differences between the auditory cue types. Our results collectively demonstrate that older adults do not benefit from specific reactivation of a motor memory trace by an associated auditory cue during post-learning sleep. Based on previous research, it is possible that auditory stimulation during post-learning sleep could have boosted motor memory consolidation in a non-specific manner.
Collapse
Affiliation(s)
- Judith Nicolas
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium
- LBI - KU Leuven Brain Institute, Leuven, Belgium
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Ile de Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium
- LBI - KU Leuven Brain Institute, Leuven, Belgium
| | - Julien Doyon
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Geneviève Albouy
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium
- LBI - KU Leuven Brain Institute, Leuven, Belgium
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake, Utah, USA
| | - Bradley R King
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake, Utah, USA
| |
Collapse
|
47
|
Abstract
Historically, the human sense of smell has been regarded as the odd stepchild of the senses, especially compared to the sensory bravado of seeing, touching, and hearing. The idea that the human olfaction has little to contribute to our experience of the world is commonplace, though with the emergence of COVID-19 there has rather been a sea change in this understanding. An ever increasing body of work has convincingly highlighted the keen capabilities of the human nose and the sophistication of the human olfactory system. Here, we provide a concise overview of the neuroscience of human olfaction spanning the last 10-15 years, with focus on the peripheral and central mechanisms that underlie how odor information is processed, packaged, parceled, predicted, and perturbed to serve odor-guided behaviors. We conclude by offering some guideposts for harnessing the next decade of olfactory research in all its shapes and forms.
Collapse
Affiliation(s)
| | - Jay A Gottfried
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
48
|
Altunkaya A, Deichsel C, Kreuzer M, Nguyen DM, Wintergerst AM, Rammes G, Schneider G, Fenzl T. Altered sleep behavior strengthens face validity in the ArcAβ mouse model for Alzheimer's disease. Sci Rep 2024; 14:951. [PMID: 38200079 PMCID: PMC10781983 DOI: 10.1038/s41598-024-51560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024] Open
Abstract
Demographic changes will expand the number of senior citizens suffering from Alzheimer's disease (AD). Key aspects of AD pathology are sleep impairments, associated with onset and progression of AD. AD mouse models may provide insights into mechanisms of AD-related sleep impairments. Such models may also help to establish new biomarkers predicting AD onset and monitoring AD progression. The present study aimed to establish sleep-related face validity of a widely used mouse model of AD (ArcAβ model) by comprehensively characterizing its baseline sleep/wake behavior. Chronic EEG recordings were performed continuously on four consecutive days in freely behaving mice. Spectral and temporal sleep/wake parameters were assessed and analyzed. EEG recordings showed decreased non-rapid eye movement sleep (NREMS) and increased wakefulness in transgenic mice (TG). Vigilance state transitions were different in TG mice when compared to wildtype littermates (WT). During NREMS, TG mice had lower power between 1 and 5 Hz and increased power between 5 and 30 Hz. Sleep spindle amplitudes in TG mice were lower. Our study strongly provides sleep-linked face validity for the ArcAβ model. These findings extend the potential of the mouse model to investigate mechanisms of AD-related sleep impairments and the impact of sleep impairments on the development of AD.
Collapse
Affiliation(s)
- Alp Altunkaya
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Cassandra Deichsel
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Duy-Minh Nguyen
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ann-Marie Wintergerst
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Gerhard Schneider
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Fenzl
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
49
|
Chen P, Hao C, Ma N. Sleep spindles consolidate declarative memory with tags: A meta-analysis of adult data. JOURNAL OF PACIFIC RIM PSYCHOLOGY 2024; 18. [DOI: 10.1177/18344909241226761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
Tags are attached to salient information during the wake period, which can preferentially determine what information can be consolidated during sleep. Previous studies demonstrated that spindles during non-rapid eye movement (NREM) sleep give priority to strengthening memory representations with tags, indicating a privileged reactivation of tagged information. The current meta-analysis investigated whether and how spindles can capture different tags to consolidate declarative memory. This study searched the Web of Science, Google Scholar, PubMed, PsycINFO, and OATD databases for studies that spindles consolidate declarative memory with tags. A meta-analysis using a random-effects model was performed. Based on 19 datasets from 18 studies (N = 388), spindles had a medium effect on the consolidation of declarative memory with tags ( r = 0.519). In addition, spindles derived from whole-night sleep and nap studies were positively related to the consolidation of memory representations with tags. These findings reveal the shared mechanism that spindles are actively involved in the prefrontal-hippocampus circuits to consolidate memory with tags.
Collapse
Affiliation(s)
- Peiyao Chen
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Chao Hao
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Ning Ma
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Sleep Research, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health & Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| |
Collapse
|
50
|
Denis D, Cairney SA. Neural reactivation during human sleep. Emerg Top Life Sci 2023; 7:487-498. [PMID: 38054531 PMCID: PMC10754334 DOI: 10.1042/etls20230109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023]
Abstract
Sleep promotes memory consolidation: the process by which newly acquired memories are stabilised, strengthened, and integrated into long-term storage. Pioneering research in rodents has revealed that memory reactivation in sleep is a primary mechanism underpinning sleep's beneficial effect on memory. In this review, we consider evidence for memory reactivation processes occurring in human sleep. Converging lines of research support the view that memory reactivation occurs during human sleep, and is functionally relevant for consolidation. Electrophysiology studies have shown that memory reactivation is tightly coupled to the cardinal neural oscillations of non-rapid eye movement sleep, namely slow oscillation-spindle events. In addition, functional imaging studies have found that brain regions recruited during learning become reactivated during post-learning sleep. In sum, the current evidence paints a strong case for a mechanistic role of neural reactivation in promoting memory consolidation during human sleep.
Collapse
Affiliation(s)
- Dan Denis
- Department of Psychology, University of York, York YO10 5DD, U.K
| | - Scott A. Cairney
- Department of Psychology, University of York, York YO10 5DD, U.K
- York Biomedical Research Institute, University of York, York YO10 5DD, U.K
| |
Collapse
|