1
|
Hamzah M, Meitinger F, Ohta M. PLK4: Master Regulator of Centriole Duplication and Its Therapeutic Potential. Cytoskeleton (Hoboken) 2025. [PMID: 40257113 DOI: 10.1002/cm.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/10/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
Centrosomes catalyze the assembly of a microtubule-based bipolar spindle, essential for the precise chromosome segregation during cell division. At the center of this process lies Polo-Like Kinase 4 (PLK4), the master regulator that controls the duplication of the centriolar core to ensure the correct balance of two centrosomes per dividing cell. Disruptions in centrosome number or function can lead to genetic disorders such as primary microcephaly or drive tumorigenesis via centrosome amplification. In this context, several chemical inhibitors of PLK4 have emerged as promising therapeutic candidates. The inhibition of PLK4 results in the emergence of acentrosomal cells, which undergo prolonged and error-prone mitosis. This aberrant mitotic duration triggers a "mitotic stopwatch" mechanism that activates the tumor suppressor p53, halting cellular proliferation. However, in a multitude of cancers, the efficacy of this mitotic surveillance mechanism is compromised by mutations that incapacitate p53. Recent investigations have unveiled p53-independent vulnerabilities in cancers characterized by chromosomal gain or amplification of 17q23, which encodes for the ubiquitin ligase TRIM37, in response to PLK4 inhibition, particularly in neuroblastoma and breast cancer. This review encapsulates the latest advancements in our understanding of centriole duplication and acentrosomal cell division in the context of TRIM37 amplification, positioning PLK4 as a compelling target for innovative cancer therapeutics.
Collapse
Affiliation(s)
- Muhammad Hamzah
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Franz Meitinger
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Midori Ohta
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
2
|
Leça N, Barbosa F, Rodriguez-Calado S, Esposito Verza A, Moura M, Pedroso PD, Pinto I, Artes E, Bange T, Sunkel CE, Barisic M, Maresca TJ, Conde C. Proximity-based activation of AURORA A by MPS1 potentiates error correction. Curr Biol 2025; 35:1935-1947.e8. [PMID: 40203828 PMCID: PMC12014372 DOI: 10.1016/j.cub.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/29/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025]
Abstract
Faithful cell division relies on mitotic chromosomes becoming bioriented with each pair of sister kinetochores bound to microtubules oriented toward opposing spindle poles. Erroneous kinetochore-microtubule attachments often form during early mitosis but are destabilized through the phosphorylation of outer kinetochore proteins by centromeric AURORA B kinase (ABK) and centrosomal AURORA A kinase (AAK), thus allowing for re-establishment of attachments until biorientation is achieved.1,2,3,4,5,6,7,8,9 MPS1-mediated phosphorylation of NDC80 has also been shown to directly weaken the kinetochore-microtubule interface in yeast.10 In human cells, MPS1 has been proposed to transiently accumulate at end-on attached kinetochores11 and phosphorylate SKA3 to promote microtubule release.12 Whether MPS1 directly targets NDC80 and/or promotes the activity of AURORA kinases in metazoans remains unclear. Here, we report a novel mechanism involving communication between kinetochores and centrosomes, wherein MPS1 acts upstream of AAK to promote error correction. MPS1 on pole-proximal kinetochores phosphorylates the C-lobe of AAK, thereby increasing its activation at centrosomes. This proximity-based activation ensures the establishment of a robust AAK activity gradient that locally destabilizes mal-oriented kinetochores near spindle poles. Accordingly, MPS1 depletion from Drosophila cells causes severe chromosome misalignment and erroneous kinetochore-microtubule attachments, which can be rescued by tethering either MPS1 or constitutively active AAK mutants to centrosomes. Proximity-based activation of AAK by MPS1 also occurs in human cells to promote AAK-mediated phosphorylation of the NDC80 N-terminal tail. These findings uncover an MPS1-AAK crosstalk that is required for efficient error correction, showcasing the ability of kinetochores to modulate centrosome outputs to ensure proper chromosome segregation.
Collapse
Affiliation(s)
- Nelson Leça
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Francisca Barbosa
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Sergi Rodriguez-Calado
- Cell Division and Cytoskeleton, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Arianna Esposito Verza
- Department of Mechanistic Cell Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Margarida Moura
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paulo D Pedroso
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Inês Pinto
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Elena Artes
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestrasse 31, 80336 Munich, Germany
| | - Tanja Bange
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestrasse 31, 80336 Munich, Germany
| | - Claudio E Sunkel
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Departamento de Biologia Molecular, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Thomas J Maresca
- Biology Department, University of Massachusetts, 611 North Pleasant Street, Amherst, MA 01003-9297, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, 611 North Pleasant Street, Amherst, MA 01003-9297, USA.
| | - Carlos Conde
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Departamento de Biologia Molecular, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
3
|
Nagy A, Kovacs L, Rangone H, Fu J, Ladinsky M, Glover DM. Interactions of N- and C-terminal parts of Ana1 permitting centriole duplication but not elongation. Open Biol 2025; 15:240325. [PMID: 39904373 PMCID: PMC11793955 DOI: 10.1098/rsob.240325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 01/09/2025] [Indexed: 02/06/2025] Open
Abstract
The conserved process of centriole duplication requires the establishment of a Sas6-centred cartwheel initiated by Plk4's phosphorylation of Ana1/STIL. Subsequently, the centriole undergoes conversion to a centrosome requiring its radial expansion and elongation, mediated by a network requiring interactions between Cep135, Ana1/Cep295 and Asterless/Cep152. Here, we show that mutant alleles encoding overlapping N- and C-terminal parts of Ana1 are capable of intragenic complementation to rescue radial expansion. This permits the recruitment of Asl and thereby centriole duplication and mechanosensory cilia formation to restore the coordination defects of these mutants. This genetic combination also rescues centriole duplication in the male germ line but does not rescue the elongation of the triplet microtubule-containing centrioles of primary spermatocytes. Consequently, these males are coordinated but sterile. Such centriole elongation is rescued by the continuous, full-length Ana1 sequence. We define a region that when deleted within otherwise intact Ana1 does not permit primary spermatocyte centrioles to elongate but still allows recruitment of Asl. Our findings point to differing demands upon the physical organization of Ana1 for the distinct processes of radial expansion and elongation of centrioles.
Collapse
Affiliation(s)
- Agota Nagy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125, USA
| | - Levente Kovacs
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125, USA
- Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Helene Rangone
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, UK
| | - Jingyan Fu
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, UK
| | - Mark Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125, USA
| | - David M. Glover
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125, USA
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, UK
| |
Collapse
|
4
|
Leça N, Barbosa F, Rodriguez-Calado S, Moura M, Pedroso PD, Pinto I, Verza AE, Bange T, Sunkel CE, Barisic M, Maresca TJ, Conde C. Proximity-based activation of AURORA A by MPS1 potentiates error correction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598300. [PMID: 38948877 PMCID: PMC11213139 DOI: 10.1101/2024.06.11.598300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Faithfull cell division relies on mitotic chromosomes becoming bioriented with each pair of sister kinetochores bound to microtubules oriented toward opposing spindle poles. Erroneous kinetochore-microtubule attachments often form during early mitosis, but are destabilized through the phosphorylation of outer kinetochore proteins by centromeric AURORA B kinase (ABK) and centrosomal AURORA A kinase (AAK), thus allowing for re-establishment of attachments until biorientation is achieved. MPS1-mediated phosphorylation of NDC80 has also been shown to directly weaken the kinetochore-microtubule interface in yeast. In human cells, MPS1 has been proposed to transiently accumulate at end-on attached kinetochores and phosphorylate SKA3 to promote microtubule release. Whether MPS1 directly targets NDC80 and/or promotes the activity of AURORA kinases in metazoans remains unclear. Here, we report a novel mechanism involving communication between kinetochores and centrosomes, wherein MPS1 acts upstream of AAK to promote error correction. MPS1 on pole-proximal kinetochores phosphorylates the C-lobe of AAK thereby increasing its activation at centrosomes. This proximity-based activation ensures the establishment of a robust AAK activity gradient that locally destabilizes mal-oriented kinetochores near spindle poles. Accordingly, MPS1 depletion from Drosophila cells causes severe chromosome misalignment and erroneous kinetochore-microtubule attachments, which can be rescued by tethering either MPS1 or constitutively active AAK mutants to centrosomes. Proximity-based activation of AAK by MPS1 also occurs in human cells to promote AAK-mediated phosphorylation of the NDC80 N-terminal tail. These findings uncover an MPS1-AAK cross-talk that is required for efficient error correction, showcasing the ability of kinetochores to modulate centrosome outputs to ensure proper chromosome segregation.
Collapse
|
5
|
Panda P, Ladinsky MS, Glover DM. 9-fold symmetry is not essential for centriole elongation and formation of new centriole-like structures. Nat Commun 2024; 15:4467. [PMID: 38796459 PMCID: PMC11127918 DOI: 10.1038/s41467-024-48831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/14/2024] [Indexed: 05/28/2024] Open
Abstract
As daughter centrioles assemble during G2, they recruit conserved Ana3/RTTN followed by its partner Rcd4/PPP1R35. Together, this contributes to the subsequent recruitment of Ana1/CEP295, required for the centriole's conversion to a centrosome. Here, we show that Rcd4/PPP1R35 is also required to maintain 9-fold centriole symmetry in the Drosophila male germline; its absence causes microtubule triplets to disperse into a reduced number of doublet or singlet microtubules. rcd4-null mutant spermatocytes display skinny centrioles that elongate normally and localize centriolar components correctly. Mutant spermatocytes also have centrioles of normal girth that splay at their proximal ends when induced to elongate by Ana1 overexpression. Skinny and splayed spermatid centrioles can still recruit a proximal centriole-like (PCL) structure marking a capability to initiate features of centriole duplication in developing sperm. Thus, stable 9-fold symmetry of microtubule triplets is not essential for centriole growth, correct longitudinal association of centriole components, and aspects of centriole duplication.
Collapse
Affiliation(s)
- Pallavi Panda
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - David M Glover
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
6
|
Bakshi A, Iturra FE, Alamban A, Rosas-Salvans M, Dumont S, Aydogan MG. Cytoplasmic division cycles without the nucleus and mitotic CDK/cyclin complexes. Cell 2023; 186:4694-4709.e16. [PMID: 37832525 PMCID: PMC10659773 DOI: 10.1016/j.cell.2023.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 05/11/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Cytoplasmic divisions are thought to rely on nuclear divisions and mitotic signals. We demonstrate in Drosophila embryos that cytoplasm can divide repeatedly without nuclei and mitotic CDK/cyclin complexes. Cdk1 normally slows an otherwise faster cytoplasmic division cycle, coupling it with nuclear divisions, and when uncoupled, cytoplasm starts dividing before mitosis. In developing embryos where CDK/cyclin activity can license mitotic microtubule (MT) organizers like the spindle, cytoplasmic divisions can occur without the centrosome, a principal organizer of interphase MTs. However, centrosomes become essential in the absence of CDK/cyclin activity, implying that the cytoplasm can employ either the centrosome-based interphase or CDK/cyclin-dependent mitotic MTs to facilitate its divisions. Finally, we present evidence that autonomous cytoplasmic divisions occur during unperturbed fly embryogenesis and that they may help extrude mitotically stalled nuclei during blastoderm formation. We postulate that cytoplasmic divisions occur in cycles governed by a yet-to-be-uncovered clock mechanism autonomous from CDK/cyclin complexes.
Collapse
Affiliation(s)
- Anand Bakshi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fabio Echegaray Iturra
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrew Alamban
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Miquel Rosas-Salvans
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sophie Dumont
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Mustafa G Aydogan
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
7
|
Sperling AL, Fabian DK, Garrison E, Glover DM. A genetic basis for facultative parthenogenesis in Drosophila. Curr Biol 2023; 33:3545-3560.e13. [PMID: 37516115 PMCID: PMC11044649 DOI: 10.1016/j.cub.2023.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/04/2023] [Accepted: 07/05/2023] [Indexed: 07/31/2023]
Abstract
Facultative parthenogenesis enables sexually reproducing organisms to switch between sexual and asexual parthenogenetic reproduction. To gain insights into this phenomenon, we sequenced the genomes of sexually reproducing and parthenogenetic strains of Drosophila mercatorum and identified differences in the gene expression in their eggs. We then tested whether manipulating the expression of candidate gene homologs identified in Drosophila mercatorum could lead to facultative parthenogenesis in the non-parthenogenetic species Drosophila melanogaster. This identified a polygenic system whereby increased expression of the mitotic protein kinase polo and decreased expression of a desaturase, Desat2, caused facultative parthenogenesis in the non-parthenogenetic species that was enhanced by increased expression of Myc. The genetically induced parthenogenetic Drosophila melanogaster eggs exhibit de novo centrosome formation, fusion of the meiotic products, and the onset of development to generate predominantly triploid offspring. Thus, we demonstrate a genetic basis for sporadic facultative parthenogenesis in an animal.
Collapse
Affiliation(s)
- Alexis L Sperling
- University of Cambridge, Department of Genetics, Downing Street, Cambridge CB2 3EH, UK.
| | - Daniel K Fabian
- University of Cambridge, Department of Genetics, Downing Street, Cambridge CB2 3EH, UK
| | - Erik Garrison
- University of Tennessee Health Science Center, S Manassas Street, Memphis, TN 38103, USA
| | - David M Glover
- University of Cambridge, Department of Genetics, Downing Street, Cambridge CB2 3EH, UK; Division of Biology and Biological Engineering, California Institute of Technology, East California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
8
|
Ryniawec JM, Buster DW, Slevin LK, Boese CJ, Amoiroglou A, Dean SM, Slep KC, Rogers GC. Polo-like kinase 4 homodimerization and condensate formation regulate its own protein levels but are not required for centriole assembly. Mol Biol Cell 2023; 34:ar80. [PMID: 37163316 PMCID: PMC10398880 DOI: 10.1091/mbc.e22-12-0572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/11/2023] Open
Abstract
Polo-like kinase 4 (Plk4) is the master-regulator of centriole assembly, and cell cycle-dependent regulation of its activity maintains proper centrosome number. During most of the cell cycle, Plk4 levels are nearly undetectable due to its ability to autophosphorylate and trigger its own ubiquitin-mediated degradation. However, during mitotic exit, Plk4 forms a single aggregate on the centriole surface to stimulate centriole duplication. Whereas most Polo-like kinase family members are monomeric, Plk4 is unique because it forms homodimers. Notably, Plk4 trans-autophosphorylates a degron near its kinase domain, a critical step in autodestruction. While it is thought that the purpose of homodimerization is to promote trans-autophosphorylation, this has not been tested. Here, we generated separation-of-function Plk4 mutants that fail to dimerize and show that homodimerization creates a binding site for the Plk4 activator, Asterless. Surprisingly, however, Plk4 dimer mutants are catalytically active in cells, promote centriole assembly, and can trans-autophosphorylate through concentration-dependent condensate formation. Moreover, we mapped and then deleted the weak-interacting regions within Plk4 that mediate condensation and conclude that dimerization and condensation are not required for centriole assembly. Our findings suggest that Plk4 dimerization and condensation function simply to down-regulate Plk4 and suppress centriole overduplication.
Collapse
Affiliation(s)
- John M. Ryniawec
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Daniel W. Buster
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Lauren K. Slevin
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599
| | - Cody J. Boese
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Anastasia Amoiroglou
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Spencer M. Dean
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Kevin C. Slep
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599
| | - Gregory C. Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
9
|
Sperling AL, Glover DM. Parthenogenesis in dipterans: a genetic perspective. Proc Biol Sci 2023; 290:20230261. [PMID: 36946111 PMCID: PMC10031431 DOI: 10.1098/rspb.2023.0261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Parthenogenesis has been documented in almost every phylum of animals, and yet this phenomenon is largely understudied. It has particular importance in dipterans since some parthenogenetic species are also disease vectors and agricultural pests. Here, we present a catalogue of parthenogenetic dipterans, although it is likely that many more remain to be identified, and we discuss how their developmental biology and interactions with diverse environments may be linked to different types of parthenogenetic reproduction. We discuss how the advances in genetics and genomics have identified chromosomal loci associated with parthenogenesis. In particular, a polygenic cause of facultative parthenogenesis has been uncovered in Drosophila mercatorum, allowing the corresponding genetic variants to be tested for their ability to promote parthenogenesis in another species, Drosophila melanogaster. This study probably identifies just one of many routes that could be followed in the evolution of parthenogenesis. We attempt to account for why the phenomenon has evolved so many times in the dipteran order and why facultative parthenogenesis appears particularly prevalent. We also discuss the significance of coarse genomic changes, including non-disjunction, aneuploidy, and polyploidy and how, together with changes to specific genes, these might relate to both facultative and obligate parthenogenesis in dipterans and other parthenogenetic animals.
Collapse
Affiliation(s)
- A. L. Sperling
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - D. M. Glover
- Department of Genetics, University of Cambridge, Cambridge, UK
- California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
10
|
Plk4 Is a Novel Substrate of Protein Phosphatase 5. Int J Mol Sci 2023; 24:ijms24032033. [PMID: 36768356 PMCID: PMC9917060 DOI: 10.3390/ijms24032033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
The conserved Ser/Thr protein phosphatase 5 (PP5) is involved in the regulation of key cellular processes, including DNA damage repair and cell division in eukaryotes. As a co-chaperone of Hsp90, PP5 has been shown to modulate the maturation and activity of numerous oncogenic kinases. Here, we identify a novel substrate of PP5, the Polo-like kinase 4 (Plk4), which is the master regulator of centriole duplication in animal cells. We show that PP5 specifically interacts with Plk4, and is able to dephosphorylate the kinase in vitro and in vivo, which affects the interaction of Plk4 with its partner proteins. In addition, we provide evidence that PP5 and Plk4 co-localize to the centrosomes in Drosophila embryos and cultured cells. We demonstrate that PP5 is not essential; the null mutant flies are viable without a severe mitotic phenotype; however, its loss significantly reduces the fertility of the animals. Our results suggest that PP5 is a novel regulator of the Plk4 kinase in Drosophila.
Collapse
|
11
|
Hirai K, Inoue YH, Matsuda M. Mitotic progression and dual spindle formation caused by spindle association of de novo-formed microtubule-organizing centers in parthenogenetic embryos of Drosophila ananassae. Genetics 2022; 223:6896485. [PMID: 36516293 PMCID: PMC9910410 DOI: 10.1093/genetics/iyac178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 09/17/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Facultative parthenogenesis occurs in many animal species that typically undergo sexual reproduction. In Drosophila, such development from unfertilized eggs involves diploidization after completion of meiosis, but the exact mechanism remains unclear. Here we used a laboratory stock of Drosophila ananassae that has been maintained parthenogenetically to cytologically examine the initial events of parthenogenesis. Specifically, we determined whether the requirements for centrosomes and diploidization that are essential for developmental success can be overcome. As a primal deviation from sexually reproducing (i.e. sexual) strains of the same species, free asters emerged from the de novo formation of centrosome-like structures in the cytosol of unfertilized eggs. Those microtubule-organizing centers had distinct roles in the earliest cycles of parthenogenetic embryos with respect to mitotic progression and arrangement of mitotic spindles. In the first cycle, an anastral bipolar spindle self-assembled around a haploid set of replicated chromosomes. Participation of at least one microtubule-organizing center in the spindle was necessary for mitotic progression into anaphase. In particular, the first mitosis involving a monastral bipolar spindle resulted in haploid daughter nuclei, one of which was associated with a microtubule-organizing center whereas the other was not. Remarkably, in the following cycle, biastral and anastral bipolar spindles formed that were frequently arranged in tandem by sharing an aster with bidirectional connections at their central poles. We propose that, for diploidization of haploid nuclei, unfertilized parthenogenetic embryos utilize dual spindles during the second mitosis, as occurs for the first mitosis in normal fertilized eggs.
Collapse
Affiliation(s)
| | - Yoshihiro H Inoue
- Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Kyoto 606-8585, Japan
| | - Muneo Matsuda
- Department of Biology, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| |
Collapse
|
12
|
Takumi K, Kitagawa D. Experimental and Natural Induction of de novo Centriole Formation. Front Cell Dev Biol 2022; 10:861864. [PMID: 35445021 PMCID: PMC9014216 DOI: 10.3389/fcell.2022.861864] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 01/11/2023] Open
Abstract
In cycling cells, new centrioles are assembled in the vicinity of pre-existing centrioles. Although this canonical centriole duplication is a tightly regulated process in animal cells, centrioles can also form in the absence of pre-existing centrioles; this process is termed de novo centriole formation. De novo centriole formation is triggered by the removal of all pre-existing centrioles in the cell in various manners. Moreover, overexpression of polo-like kinase 4 (Plk4), a master regulatory kinase for centriole biogenesis, can induce de novo centriole formation in some cell types. Under these conditions, structurally and functionally normal centrioles can be formed de novo. While de novo centriole formation is normally suppressed in cells with intact centrioles, depletion of certain suppressor proteins leads to the ectopic formation of centriole-related protein aggregates in the cytoplasm. It has been shown that de novo centriole formation also occurs naturally in some species. For instance, during the multiciliogenesis of vertebrate epithelial cells, massive de novo centriole amplification occurs to form numerous motile cilia. In this review, we summarize the previous findings on de novo centriole formation, particularly under experimental conditions, and discuss its regulatory mechanisms.
Collapse
Affiliation(s)
- Kasuga Takumi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Oh H, Kim SG, Bae SU, Byun SJ, Kim S, Lee JH, Hwang I, Kwon SY, Lee HW. Polo-like kinase 4 as a potential predictive biomarker of chemoradioresistance in locally advanced rectal cancer. J Pathol Transl Med 2022; 56:40-47. [PMID: 34775733 PMCID: PMC8743804 DOI: 10.4132/jptm.2021.10.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Polo-like kinase 4 (PLK4) is a serine/threonine protein kinase located in the centriole of the chromosome during the cell cycle. PLK4 overexpression has been described in a variety of many common human epithelial tumors. Conversely, PLK4 acts as a haploinsufficient tumor suppressor in some situations, highlighting the importance of strict regulation of PLK4 expression, activity, and function. Meanwhile, the importance of chemoradiation resistance in rectal cancer is being emphasized more than ever. We aimed to analyze PLK4 expression and the tumor regression grade (TRG) in patients with rectal cancer, treated with chemoradiotherapy (CRT). METHODS A retrospective study was conducted on 102 patients with rectal cancer who received preoperative CRT. Immunohistochemistry for PLK4 in paraffin-embedded tissue was performed from the biopsy and surgical specimens. RESULTS We found significant association between high expression of PLK4 and poor response to neoadjuvant CRT (according to both Mandard and The Korean Society of Pathologists TRG systems) in the pre-CRT specimens. Other clinicopathologic parameters did not reveal any correlation with PLK4 expression. CONCLUSIONS This study revealed an association between high expression of PLK4 in the pre-CRT specimens and TRG. Our results indicated that PLK4 could potentially be a new predictor for CRT effect in patients with rectal cancer.
Collapse
Affiliation(s)
- Hyunseung Oh
- Department of Pathology, Keimyung University School of Medicine, Daegu,
Korea
| | - Soon Gu Kim
- Department of Education Support Center, Keimyung University School of Medicine, Daegu,
Korea
| | - Sung Uk Bae
- Division of Colorectal Surgery, Department of Surgery, Keimyung University School of Medicine, Daegu,
Korea
| | - Sang Jun Byun
- Department of Radiation Oncology, Keimyung University School of Medicine, Daegu,
Korea
| | - Shin Kim
- Department of Immunology, Keimyung University School of Medicine, Daegu,
Korea
| | - Jae-Ho Lee
- Department of Anatomy, Keimyung University School of Medicine, Daegu,
Korea
| | - Ilseon Hwang
- Department of Pathology, Keimyung University School of Medicine, Daegu,
Korea
| | - Sun Young Kwon
- Department of Pathology, Keimyung University School of Medicine, Daegu,
Korea
| | - Hye Won Lee
- Department of Pathology, Keimyung University School of Medicine, Daegu,
Korea
| |
Collapse
|
14
|
Nabais C, Pessoa D, de-Carvalho J, van Zanten T, Duarte P, Mayor S, Carneiro J, Telley IA, Bettencourt-Dias M. Plk4 triggers autonomous de novo centriole biogenesis and maturation. J Cell Biol 2021; 220:211915. [PMID: 33760919 PMCID: PMC7995200 DOI: 10.1083/jcb.202008090] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/14/2020] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
Centrioles form centrosomes and cilia. In most proliferating cells, centrioles assemble through canonical duplication, which is spatially, temporally, and numerically regulated by the cell cycle and the presence of mature centrioles. However, in certain cell types, centrioles assemble de novo, yet by poorly understood mechanisms. Herein, we established a controlled system to investigate de novo centriole biogenesis, using Drosophila melanogaster egg explants overexpressing Polo-like kinase 4 (Plk4), a trigger for centriole biogenesis. We show that at a high Plk4 concentration, centrioles form de novo, mature, and duplicate, independently of cell cycle progression and of the presence of other centrioles. Plk4 concentration determines the temporal onset of centriole assembly. Moreover, our results suggest that distinct biochemical kinetics regulate de novo and canonical biogenesis. Finally, we investigated which other factors modulate de novo centriole assembly and found that proteins of the pericentriolar material (PCM), and in particular γ-tubulin, promote biogenesis, likely by locally concentrating critical components.
Collapse
Affiliation(s)
| | | | | | | | - Paulo Duarte
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Satyajit Mayor
- National Centre for Biological Sciences, Bangalore, India
| | | | - Ivo A Telley
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | |
Collapse
|
15
|
Tian Y, Wei C, He J, Yan Y, Pang N, Fang X, Liang X, Fu J. Superresolution characterization of core centriole architecture. J Cell Biol 2021; 220:211748. [PMID: 33533934 PMCID: PMC7863704 DOI: 10.1083/jcb.202005103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/29/2020] [Accepted: 01/06/2021] [Indexed: 12/31/2022] Open
Abstract
The centrosome is the main microtubule-organizing center in animal cells. It comprises of two centrioles and the surrounding pericentriolar material. Protein organization at the outer layer of the centriole and outward has been studied extensively; however, an overall picture of the protein architecture at the centriole core has been missing. Here we report a direct view of Drosophila centriolar proteins at ∼50-nm resolution. This reveals a Sas6 ring at the C-terminus, where it overlaps with the C-terminus of Cep135. The ninefold symmetrical pattern of Cep135 is further conveyed through Ana1-Asterless axes that extend past the microtubule wall from between the blades. Ana3 and Rcd4, whose termini are close to Cep135, are arranged in ninefold symmetry that does not match the above axes. During centriole biogenesis, Ana3 and Rcd4 are sequentially loaded on the newly formed centriole and are required for centriole-to-centrosome conversion through recruiting the Cep135-Ana1-Asterless complex. Together, our results provide a spatiotemporal map of the centriole core and implications of how the structure might be built.
Collapse
Affiliation(s)
- Yuan Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chenxi Wei
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jianfeng He
- Tsinghua-Peking Joint Center for Life Sciences and Max Planck Partner Group, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuxuan Yan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Nan Pang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaomin Fang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xin Liang
- Tsinghua-Peking Joint Center for Life Sciences and Max Planck Partner Group, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jingyan Fu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Pereira SG, Dias Louro MA, Bettencourt-Dias M. Biophysical and Quantitative Principles of Centrosome Biogenesis and Structure. Annu Rev Cell Dev Biol 2021; 37:43-63. [PMID: 34314592 DOI: 10.1146/annurev-cellbio-120219-051400] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The centrosome is a main orchestrator of the animal cellular microtubule cytoskeleton. Dissecting its structure and assembly mechanisms has been a goal of cell biologists for over a century. In the last two decades, a good understanding of the molecular constituents of centrosomes has been achieved. Moreover, recent breakthroughs in electron and light microscopy techniques have enabled the inspection of the centrosome and the mapping of its components with unprecedented detail. However, we now need a profound and dynamic understanding of how these constituents interact in space and time. Here, we review the latest findings on the structural and molecular architecture of the centrosome and how its biogenesis is regulated, highlighting how biophysical techniques and principles as well as quantitative modeling are changing our understanding of this enigmatic cellular organelle. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
|
17
|
Lattao R, Rangone H, Llamazares S, Glover DM. Mauve/LYST limits fusion of lysosome-related organelles and promotes centrosomal recruitment of microtubule nucleating proteins. Dev Cell 2021; 56:1000-1013.e6. [PMID: 33725482 PMCID: PMC8024676 DOI: 10.1016/j.devcel.2021.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/17/2020] [Accepted: 02/17/2021] [Indexed: 11/28/2022]
Abstract
Lysosome-related organelles (LROs) are endosomal compartments carrying tissue-specific proteins, which become enlarged in Chediak-Higashi syndrome (CHS) due to mutations in LYST. Here, we show that Drosophila Mauve, a counterpart of LYST, suppresses vesicle fusion events with lipid droplets (LDs) during the formation of yolk granules (YGs), the LROs of the syncytial embryo, and opposes Rab5, which promotes fusion. Mauve localizes on YGs and at spindle poles, and it co-immunoprecipitates with the LDs' component and microtubule-associated protein Minispindles/Ch-TOG. Minispindles levels are increased at the enlarged YGs and diminished around centrosomes in mauve-derived mutant embryos. This leads to decreased microtubule nucleation from centrosomes, a defect that can be rescued by dominant-negative Rab5. Together, this reveals an unanticipated link between endosomal vesicles and centrosomes. These findings establish Mauve/LYST's role in regulating LRO formation and centrosome behavior, a role that could account for the enlarged LROs and centrosome positioning defects at the immune synapse of CHS patients.
Collapse
Affiliation(s)
- Ramona Lattao
- University of Cambridge, Department of Genetics, Downing Street, Cambridge CB23EH, UK.
| | - Hélène Rangone
- University of Cambridge, Department of Genetics, Downing Street, Cambridge CB23EH, UK
| | - Salud Llamazares
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Parc Cientific de Barcelona, C/ Baldiri Reixac 10, 08028 Barcelona, Spain
| | - David M Glover
- University of Cambridge, Department of Genetics, Downing Street, Cambridge CB23EH, UK; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E, California Blvd, Pasadena, CA 91125, USA.
| |
Collapse
|
18
|
Shoda T, Yamazoe K, Tanaka Y, Asano Y, Inoue YH. Orbit/CLASP determines centriole length by antagonising Klp10A in Drosophila spermatocytes. J Cell Sci 2021; 134:jcs251231. [PMID: 33674447 PMCID: PMC8015252 DOI: 10.1242/jcs.251231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
After centrosome duplication, centrioles elongate before M phase. To identify genes required for this process and to understand the regulatory mechanism, we investigated the centrioles in Drosophila premeiotic spermatocytes expressing fluorescently tagged centriolar proteins. We demonstrated that an essential microtubule polymerisation factor, Orbit (the Drosophila CLASP orthologue, encoded by chb), accumulated at the distal end of centrioles and was required for the elongation. Conversely, a microtubule-severing factor, Klp10A, shortened the centrioles. Genetic analyses revealed that these two proteins functioned antagonistically to determine centriole length. Furthermore, Cp110 in the distal tip complex was closely associated with the factors involved in centriolar dynamics at the distal end. We observed loss of centriole integrity, including fragmentation of centrioles and earlier separation of the centriole pairs, in Cp110-null mutant cells either overexpressing Orbit or depleted of Klp10A Excess centriole elongation in the absence of the distal tip complex resulted in the loss of centriole integrity, leading to the formation of multipolar spindle microtubules emanating from centriole fragments, even when they were unpaired. Our findings contribute to understanding the mechanism of centriole integrity, disruption of which leads to chromosome instability in cancer cells.
Collapse
Affiliation(s)
- Tsuyoshi Shoda
- Department of Insect Biomedical Research, Centre for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Kanta Yamazoe
- Department of Insect Biomedical Research, Centre for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Yuri Tanaka
- Department of Insect Biomedical Research, Centre for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Yuki Asano
- Department of Insect Biomedical Research, Centre for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Yoshihiro H Inoue
- Department of Insect Biomedical Research, Centre for Advanced Insect Research Promotion, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| |
Collapse
|
19
|
Zhang X, Wei C, Liang H, Han L. Polo-Like Kinase 4's Critical Role in Cancer Development and Strategies for Plk4-Targeted Therapy. Front Oncol 2021; 11:587554. [PMID: 33777739 PMCID: PMC7994899 DOI: 10.3389/fonc.2021.587554] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (Plks) are critical regulatory molecules during the cell cycle process. This family has five members: Plk1, 2, 3, 4, and 5. Plk4 has been identified as a master regulator of centriole replication, and its aberrant expression is closely associated with cancer development. In this review, we depict the DNA, mRNA, and protein structure of Plk4, and the regulation of Plk4 at a molecular level. Then we list the downstream targets of Plk4 and the hallmarks of cancer associated with these targets. The role of Plk4 in different cancers is also summarized. Finally, we review the inhibitors that target Plk4 in the hope of discovering effective anticancer drugs. From authors' perspective, Plk4 might represent a valuable tumor biomarker and critical target for cancer diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
20
|
Raab CA, Raab M, Becker S, Strebhardt K. Non-mitotic functions of polo-like kinases in cancer cells. Biochim Biophys Acta Rev Cancer 2021; 1875:188467. [PMID: 33171265 DOI: 10.1016/j.bbcan.2020.188467] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Inhibitors of mitotic protein kinases are currently being developed as non-neurotoxic alternatives of microtubule-targeting agents (taxanes, vinca alkaloids) which provide a substantial survival benefit for patients afflicted with different types of solid tumors. Among the mitotic kinases, the cyclin-dependent kinases, the Aurora kinases, the kinesin spindle protein and Polo-like kinases (PLKs) have emerged as attractive targets of cancer therapeutics. The functions of mammalian PLK1-5 are traditionally linked to the regulation of the cell cycle and to the stress response. Especially the key role of PLK1 and PLK4 in cellular growth and proliferation, their overexpression in multiple types of human cancer and their druggability, make them appealing targets for cancer therapy. Inhibitors for PLK1 and PLK4 are currently being tested in multiple cancer trials. The clinical success of microtubule-targeting agents is attributed not solely to the induction of a mitotic arrest in cancer cells, but also to non-mitotic effects like targeting intracellular trafficking on microtubules. This raises the question whether new cancer targets like PLK1 and PLK4 regulate critical non-mitotic functions in tumor cells. In this article we summarize the important roles of PLK1-5 for the regulation of non-mitotic signaling. Due to these functions it is conceivable that inhibitors for PLK1 or PLK4 can target interphase cells, which underscores their attractive potential as cancer drug targets. Moreover, we also describe the contribution of the tumor-suppressors PLK2, PLK3 and PLK5 to cancer cell signaling outside of mitosis. These observations highlight the urgent need to develop highly specific ATP-competitive inhibitors for PLK4 and for PLK1 like the 3rd generation PLK-inhibitor Onvansertib to prevent the inhibition of tumor-suppressor PLKs in- and outside of mitosis. The remarkable feature of PLKs to encompass a unique druggable domain, the polo-box-domain (PBD) that can be found only in PLKs offers the opportunity for the development of inhibitors that target PLKs exclusively. Beyond the development of mono-specific ATP-competitive PLK inhibitors, the PBD as drug target will support the design of new drugs that eradicate cancer cells based on the mitotic and non-mitotic function of PLK1 and PLK4.
Collapse
Affiliation(s)
| | - Monika Raab
- Department of Gynecology, Goethe-University, Frankfurt, Germany
| | - Sven Becker
- Department of Gynecology, Goethe-University, Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, Frankfurt, Germany; German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, Frankfurt, Germany.
| |
Collapse
|
21
|
Use of the Polo-like kinase 4 (PLK4) inhibitor centrinone to investigate intracellular signalling networks using SILAC-based phosphoproteomics. Biochem J 2020; 477:2451-2475. [PMID: 32501498 PMCID: PMC7338032 DOI: 10.1042/bcj20200309] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022]
Abstract
Polo-like kinase 4 (PLK4) is the master regulator of centriole duplication in metazoan organisms. Catalytic activity and protein turnover of PLK4 are tightly coupled in human cells, since changes in PLK4 concentration and catalysis have profound effects on centriole duplication and supernumerary centrosomes, which are associated with aneuploidy and cancer. Recently, PLK4 has been targeted with a variety of small molecule kinase inhibitors exemplified by centrinone, which rapidly induces inhibitory effects on PLK4 and leads to on-target centrosome depletion. Despite this, relatively few PLK4 substrates have been identified unequivocally in human cells, and PLK4 signalling outside centriolar networks remains poorly characterised. We report an unbiased mass spectrometry (MS)-based quantitative analysis of cellular protein phosphorylation in stable PLK4-expressing U2OS human cells exposed to centrinone. PLK4 phosphorylation was itself sensitive to brief exposure to the compound, resulting in PLK4 stabilisation. Analysing asynchronous cell populations, we report hundreds of centrinone-regulated cellular phosphoproteins, including centrosomal and cell cycle proteins and a variety of likely 'non-canonical' substrates. Surprisingly, sequence interrogation of ∼300 significantly down-regulated phosphoproteins reveals an extensive network of centrinone-sensitive [Ser/Thr]Pro phosphorylation sequence motifs, which based on our analysis might be either direct or indirect targets of PLK4. In addition, we confirm that NMYC and PTPN12 are PLK4 substrates, both in vitro and in human cells. Our findings suggest that PLK4 catalytic output directly controls the phosphorylation of a diverse set of cellular proteins, including Pro-directed targets that are likely to be important in PLK4-mediated cell signalling.
Collapse
|
22
|
Fatalska A, Dzhindzhev NS, Dadlez M, Glover DM. Interaction interface in the C-terminal parts of centriole proteins Sas6 and Ana2. Open Biol 2020; 10:200221. [PMID: 33171067 PMCID: PMC7729032 DOI: 10.1098/rsob.200221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
The centriole is a ninefold symmetrical structure found at the core of centrosomes and, as a basal body, at the base of cilia, whose conserved duplication is regulated by Plk4 kinase. Plk4 phosphorylates a single serine residue at the N-terminus of Ana2 to promote Ana2's loading to the site of procentriole formation. Four conserved serines in Ana2's STAN motif are then phosphorylated by Plk4, enabling Sas6 recruitment. Crystallographic data indicate that the coiled-coil domain of Ana2 forms a tetramer but the structure of full-length Ana2 has not been solved. Here, we have employed hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) to uncover the conformational dynamics of Ana2, revealing the high flexibility of this protein with one rigid region. To determine the elusive nature of the interaction surfaces between Ana2 and Sas6, we have confirmed complex formation between the phosphomimetic form of Ana2 (Ana2-4D) and Sas6 in vitro and in vivo. Analysis of this complex by HDX-MS identifies short critical regions required for this interaction, which lie in the C-terminal parts of both proteins. Mutational studies confirmed the relevance of these regions for the Ana2-Sas6 interaction. The Sas6 site required for Ana2 binding is distinct from the site required for Sas6 to bind Gorab and Sas6 is able to bind both these protein partners simultaneously.
Collapse
Affiliation(s)
- Agnieszka Fatalska
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | - Michal Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - David M. Glover
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
23
|
Thaiparambil J, Dong L, Jasso D, Huang JA, El-Zein RA. Mitotic Spindle Apparatus Abnormalities in Chronic Obstructive Pulmonary Disease Cells: A Potential Pathway to Lung Cancer. Cancer Prev Res (Phila) 2020; 13:923-934. [PMID: 32655004 PMCID: PMC7641916 DOI: 10.1158/1940-6207.capr-19-0557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/07/2020] [Accepted: 06/30/2020] [Indexed: 02/03/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a long-term lung disease characterized by irreversible lung damage resulting in airflow limitation, abnormal permanent air-space enlargement, and emphysema. Cigarette smoking is the major cause of COPD with 15% to 30% of smokers developing either disease. About 50% to 80% of patients with lung cancer have preexisting COPD and smokers who have COPD are at an increased risk for developing lung cancer. Therefore, COPD is considered an independent risk for lung cancer, even after adjusting for smoking. A crucial early event in carcinogenesis is the induction of the genomic instability through alterations in the mitotic spindle apparatus. To date, the underlying mechanism by which COPD contributes to lung cancer risk is unclear. We hypothesized that tobacco smoke carcinogens induce mitotic spindle apparatus abnormalities and alter expression of crucial genes leading to increased genomic instability and ultimately tumorigenesis. To test our hypothesis, we assessed the genotoxic effects of a potent tobacco-smoke carcinogen [4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, (NNK)] on bronchial epithelial cells from patients with COPD and normal bronchial epithelial cells and identified genes associated with mitotic spindle defects and chromosome missegregation that also overlap with lung cancer. Our results indicate that exposure to NNK leads to a significantly altered spindle orientation, centrosome amplification, and chromosome misalignment in COPD cells as compared with normal epithelial cells. In addition, we identified several genes (such as AURKA, AURKB, and MAD2L2) that were upregulated and overlap with lung cancer suggesting a potential common pathway in the transition from COPD to lung cancer.
Collapse
Affiliation(s)
- Jose Thaiparambil
- Houston Methodist Cancer Center and Department of Radiology, Houston Methodist Research Institute, Houston, Texas
| | - Lingyun Dong
- Department of Respiratory Medicine, Affiliated Wujiang Hospital of Nantong University, Suzhou, China
| | - Diana Jasso
- Houston Methodist Cancer Center and Department of Radiology, Houston Methodist Research Institute, Houston, Texas
| | - Jian-An Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Randa A El-Zein
- Houston Methodist Cancer Center and Department of Radiology, Houston Methodist Research Institute, Houston, Texas.
| |
Collapse
|
24
|
Principal Postulates of Centrosomal Biology. Version 2020. Cells 2020; 9:cells9102156. [PMID: 32987651 PMCID: PMC7598677 DOI: 10.3390/cells9102156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The centrosome, which consists of two centrioles surrounded by pericentriolar material, is a unique structure that has retained its main features in organisms of various taxonomic groups from unicellular algae to mammals over one billion years of evolution. In addition to the most noticeable function of organizing the microtubule system in mitosis and interphase, the centrosome performs many other cell functions. In particular, centrioles are the basis for the formation of sensitive primary cilia and motile cilia and flagella. Another principal function of centrosomes is the concentration in one place of regulatory proteins responsible for the cell's progression along the cell cycle. Despite the existing exceptions, the functioning of the centrosome is subject to general principles, which are discussed in this review.
Collapse
|
25
|
Chen C, Yamashita YM. Alstrom syndrome gene is a stem-cell-specific regulator of centriole duplication in the Drosophila testis. eLife 2020; 9:59368. [PMID: 32965218 PMCID: PMC7535930 DOI: 10.7554/elife.59368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/22/2020] [Indexed: 12/28/2022] Open
Abstract
Asymmetrically dividing stem cells often show asymmetric behavior of the mother versus daughter centrosomes, whereby the self-renewing stem cell selectively inherits the mother or daughter centrosome. Although the asymmetric centrosome behavior is widely conserved, its biological significance remains largely unclear. Here, we show that Alms1a, a Drosophila homolog of the human ciliopathy gene Alstrom syndrome, is enriched on the mother centrosome in Drosophila male germline stem cells (GSCs). Depletion of alms1a in GSCs, but not in differentiating germ cells, results in rapid loss of centrosomes due to a failure in daughter centriole duplication, suggesting that Alms1a has a stem-cell-specific function in centrosome duplication. Alms1a interacts with Sak/Plk4, a critical regulator of centriole duplication, more strongly at the GSC mother centrosome, further supporting Alms1a’s unique role in GSCs. Our results begin to reveal the unique regulation of stem cell centrosomes that may contribute to asymmetric stem cell divisions.
Collapse
Affiliation(s)
- Cuie Chen
- Life Science Institute, Department of Cell and Developmental Biology, Michigan Medicine, University of Michigan, Ann Arbor, United States
| | - Yukiko M Yamashita
- Life Science Institute, Department of Cell and Developmental Biology, Michigan Medicine, University of Michigan, Ann Arbor, United States.,Howard Hughes Medical Institute, Cambridge, United States.,Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
26
|
Yamamoto S, Kitagawa D. Emerging insights into symmetry breaking in centriole duplication: updated view on centriole duplication theory. Curr Opin Struct Biol 2020; 66:8-14. [PMID: 32956908 DOI: 10.1016/j.sbi.2020.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 11/15/2022]
Abstract
Centriole duplication occurs once per cell cycle. Since only a single daughter centriole is assembled adjacent to each mother centriole, symmetry around the mother centriole must be broken in the process of centriole duplication. Recent studies have established that Plk4, a master kinase for centriole duplication, can self-assemble into condensates, and have suggested that this Plk4 self-assembly is the key to symmetry breaking. Here, we present the current hypotheses for how Plk4 could break symmetry around the mother centriole via autonomous regulation. After this initial symmetry-breaking process, the ring-to-dot conversion of Plk4 around the mother centriole completes the selection of the site for procentriole formation. We also discuss how this dynamic transition contributes to the strict regulation of centriole duplication.
Collapse
Affiliation(s)
- Shohei Yamamoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo 113-0033, Japan.
| |
Collapse
|
27
|
McLamarrah TA, Speed SK, Ryniawec JM, Buster DW, Fagerstrom CJ, Galletta BJ, Rusan NM, Rogers GC. A molecular mechanism for the procentriole recruitment of Ana2. J Cell Biol 2020; 219:132764. [PMID: 31841145 PMCID: PMC7041687 DOI: 10.1083/jcb.201905172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
McLamarrah et al. characterize an early step in centriole duplication. They show that Plk4 hyperphosphorylates Ana2, which increases the affinity of Ana2 for the G-box domain of Sas4, promoting Ana2’s accumulation at the procentriole and, consequently, daughter centriole formation. During centriole duplication, a preprocentriole forms at a single site on the mother centriole through a process that includes the hierarchical recruitment of a conserved set of proteins, including the Polo-like kinase 4 (Plk4), Ana2/STIL, and the cartwheel protein Sas6. Ana2/STIL is critical for procentriole assembly, and its recruitment is controlled by the kinase activity of Plk4, but how this works remains poorly understood. A structural motif called the G-box in the centriole outer wall protein Sas4 interacts with a short region in the N terminus of Ana2/STIL. Here, we show that binding of Ana2 to the Sas4 G-box enables hyperphosphorylation of the Ana2 N terminus by Plk4. Hyperphosphorylation increases the affinity of the Ana2–G-box interaction, and, consequently, promotes the accumulation of Ana2 at the procentriole to induce daughter centriole formation.
Collapse
Affiliation(s)
- Tiffany A McLamarrah
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Sarah K Speed
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - John M Ryniawec
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Daniel W Buster
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Carey J Fagerstrom
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Brian J Galletta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Nasser M Rusan
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| |
Collapse
|
28
|
Panda P, Kovacs L, Dzhindzhev N, Fatalska A, Persico V, Geymonat M, Riparbelli MG, Callaini G, Glover DM. Tissue specific requirement of Drosophila Rcd4 for centriole duplication and ciliogenesis. J Cell Biol 2020; 219:151861. [PMID: 32543652 PMCID: PMC7401805 DOI: 10.1083/jcb.201912154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/01/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022] Open
Abstract
Rcd4 is a poorly characterized Drosophila centriole component whose mammalian counterpart, PPP1R35, is suggested to function in centriole elongation and conversion to centrosomes. Here, we show that rcd4 mutants exhibit fewer centrioles, aberrant mitoses, and reduced basal bodies in sensory organs. Rcd4 interacts with the C-terminal part of Ana3, which loads onto the procentriole during interphase, ahead of Rcd4 and before mitosis. Accordingly, depletion of Ana3 prevents Rcd4 recruitment but not vice versa. We find that neither Ana3 nor Rcd4 participates directly in the mitotic conversion of centrioles to centrosomes, but both are required to load Ana1, which is essential for such conversion. Whereas ana3 mutants are male sterile, reflecting a requirement for Ana3 for centriole development in the male germ line, rcd4 mutants are fertile and have male germ line centrioles of normal length. Thus, Rcd4 is essential in somatic cells but is not absolutely required in spermatogenesis, indicating tissue-specific roles in centriole and basal body formation.
Collapse
Affiliation(s)
- Pallavi Panda
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Levente Kovacs
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - Agnieszka Fatalska
- Department of Genetics, University of Cambridge, Cambridge, UK.,Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Veronica Persico
- Department of Genetics, University of Cambridge, Cambridge, UK.,Department of Life Sciences, University of Siena, Siena, Italy
| | - Marco Geymonat
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | | - David M Glover
- Department of Genetics, University of Cambridge, Cambridge, UK.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
29
|
Kazazian K, Haffani Y, Ng D, Lee CMM, Johnston W, Kim M, Xu R, Pacholzyk K, Zih FSW, Tan J, Smrke A, Pollett A, Wu HST, Swallow CJ. FAM46C/TENT5C functions as a tumor suppressor through inhibition of Plk4 activity. Commun Biol 2020; 3:448. [PMID: 32807875 PMCID: PMC7431843 DOI: 10.1038/s42003-020-01161-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Polo like kinase 4 (Plk4) is a tightly regulated serine threonine kinase that governs centriole duplication. Increased Plk4 expression, which is a feature of many common human cancers, causes centriole overduplication, mitotic irregularities, and chromosomal instability. Plk4 can also promote cancer invasion and metastasis through regulation of the actin cytoskeleton. Herein we demonstrate physical interaction of Plk4 with FAM46C/TENT5C, a conserved protein of unknown function until recently. FAM46C localizes to centrioles, inhibits Plk4 kinase activity, and suppresses Plk4-induced centriole duplication. Interference with Plk4 function by FAM46C was independent of the latter's nucleotidyl transferase activity. In addition, FAM46C restrained cancer cell invasion and suppressed MDA MB-435 cancer growth in a xenograft model, opposing the effect of Plk4. We demonstrate loss of FAM46C in patient-derived colorectal cancer tumor tissue that becomes more profound with advanced clinical stage. These results implicate FAM46C as a tumor suppressor that acts by inhibiting Plk4 activity.
Collapse
Affiliation(s)
- Karineh Kazazian
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada.,Department of Surgical Oncology, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Yosr Haffani
- Laboratory of Physiopathology, Alimentation and Biomolecules LR17ES03, Higher Institute of Biotechnology, Sidi Thabet, University of Manouba, Ariana, 2020, Tunisia
| | - Deanna Ng
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Chae Min Michelle Lee
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Wendy Johnston
- Department of Radiation Oncology, University of Toronto, Toronto, ON, M5T 1P5, Canada
| | - Minji Kim
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Roland Xu
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Karina Pacholzyk
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Francis Si-Wah Zih
- Department of Surgical Oncology, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Julie Tan
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Alannah Smrke
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Aaron Pollett
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hannah Sun-Tsi Wu
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Carol Jane Swallow
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada. .,Department of Surgical Oncology, University of Toronto, Toronto, ON, M5G 2M9, Canada.
| |
Collapse
|
30
|
Debec A, Loppin B, Zheng C, Liu X, Megraw TL. The Enigma of Centriole Loss in the 1182-4 Cell Line. Cells 2020; 9:cells9051300. [PMID: 32456186 PMCID: PMC7290863 DOI: 10.3390/cells9051300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
The Drosophila melanogaster cell line 1182-4, which constitutively lacks centrioles, was established many years ago from haploid embryos laid by females homozygous for the maternal haploid (mh) mutation. This was the first clear example of animal cells regularly dividing in the absence of this organelle. However, the cause of the acentriolar nature of the 1182-4 cell line remained unclear and could not be clearly assigned to a particular genetic event. Here, we detail historically the longstanding mystery of the lack of centrioles in this Drosophila cell line. Recent advances, such as the characterization of the mh gene and the genomic analysis of 1182-4 cells, allow now a better understanding of the physiology of these cells. By combining these new data, we propose three reasonable hypotheses of the genesis of this remarkable phenotype.
Collapse
Affiliation(s)
- Alain Debec
- Institute of Ecology and Environmental Sciences, iEES, Sorbonne University, UPEC, CNRS, IRD, INRA, F-75005 Paris, France
- Correspondence: (A.D.); (B.L.); (T.L.M.)
| | - Benjamin Loppin
- Laboratoire de Biologie et de Modélisation de la Cellule—CNRS UMR 5239, École Normale Supérieure de Lyon, University of Lyon, F-69007 Lyon, France
- Correspondence: (A.D.); (B.L.); (T.L.M.)
| | - Chunfeng Zheng
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300, USA;
| | - Xiuwen Liu
- Department of Computer Science, Florida State University, Tallahassee, FL 32306-4530, USA;
| | - Timothy L. Megraw
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300, USA;
- Correspondence: (A.D.); (B.L.); (T.L.M.)
| |
Collapse
|
31
|
The Singularity of the Drosophila Male Germ Cell Centriole: The Asymmetric Distribution of Sas4 and Sas6. Cells 2020; 9:cells9010115. [PMID: 31947732 PMCID: PMC7016748 DOI: 10.3390/cells9010115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/17/2019] [Accepted: 01/01/2020] [Indexed: 12/18/2022] Open
Abstract
Drosophila spermatocytes have giant centrioles that display unique properties. Both the parent centrioles maintain a distinct cartwheel and nucleate a cilium-like region that persists during the meiotic divisions and organizes a structured sperm axoneme. Moreover, the parent centrioles are morphologically undistinguishable, unlike vertebrate cells in which mother and daughter centrioles have distinct structural features. However, our immunofluorescence analysis of the parent centrioles in mature primary spermatocytes revealed an asymmetric accumulation of the typical Sas4 and Sas6 proteins. Notably, the fluorescence intensity of Sas4 and Sas6 at the daughter centrioles is greater than the intensity found at the mother ones. In contrast, the centrioles of wing imaginal disc cells display an opposite condition in which the loading of Sas4 and Sas6 at the mother centrioles is greater. These data underlie a subtle asymmetry among the parent centrioles and point to a cell type diversity of the localization of the Sas4 and Sas6 proteins.
Collapse
|
32
|
Wen F, Armstrong N, Hou W, Cruz-Cosme R, Obwolo LA, Ishizuka K, Ullah H, Luo MH, Sawa A, Tang Q. Zika virus increases mind bomb 1 levels, causing degradation of pericentriolar material 1 (PCM1) and dispersion of PCM1-containing granules from the centrosome. J Biol Chem 2019; 294:18742-18755. [PMID: 31666336 DOI: 10.1074/jbc.ra119.010973] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/28/2019] [Indexed: 12/25/2022] Open
Abstract
The centrosome is a cytoplasmic nonenveloped organelle functioning as one of the microtubule-organizing centers and composing a centriole center surrounded by pericentriolar material (PCM) granules. PCM consists of many centrosomal proteins, including PCM1 and centrosomal protein 131 (CEP131), and helps maintain centrosome stability. Zika virus (ZIKV) is a flavivirus of the family Flaviviridae whose RNA and viral particles are replicated in the cytoplasm. However, how ZIKV interacts with host cell components during its productive infection stage is incompletely understood. Here, using several primate cell lines, we report that ZIKV infection disrupts and disperses the PCM granules. We demonstrate that PCM1- and CEP131-containing granules are dispersed in ZIKV-infected cells, whereas the centrioles remain intact. We found that ZIKV does not significantly alter cellular skeletal proteins, and, hence, these proteins may not be involved in the interaction between ZIKV and centrosomal proteins. Moreover, ZIKV infection decreased PCM1 and CEP131 protein, but not mRNA, levels. We further found that the protease inhibitor MG132 prevents the decrease in PCM1 and CEP131 levels and centriolar satellite dispersion. Therefore, we hypothesized that ZIKV infection induces proteasomal PCM1 and CEP131 degradation and thereby disrupts the PCM granules. Supporting this hypothesis, we show that ZIKV infection increases levels of mind bomb 1 (MIB1), previously demonstrated to be an E3 ubiquitin ligase for PCM1 and CEP131 and that ZIKV fails to degrade or disperse PCM in MIB1-ko cells. Our results imply that ZIKV infection activates MIB1-mediated ubiquitination that degrades PCM1 and CEP131, leading to PCM granule dispersion.
Collapse
Affiliation(s)
- Fayuan Wen
- Department of Microbiology, Howard University College of Medicine, Washington, D. C. 20059
| | - Najealicka Armstrong
- Department of Microbiology, Howard University College of Medicine, Washington, D. C. 20059
| | - Wangheng Hou
- Department of Microbiology, Howard University College of Medicine, Washington, D. C. 20059
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, Washington, D. C. 20059
| | - Lilian Akello Obwolo
- Department of Microbiology, Howard University College of Medicine, Washington, D. C. 20059
| | - Koko Ishizuka
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Hemayet Ullah
- Department of Biology, Howard University, Washington, D. C. 20059
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, D. C. 20059.
| |
Collapse
|
33
|
Riparbelli MG, Persico V, Callaini G. A transient microtubule-based structure uncovers a new intrinsic asymmetry between the mother centrioles in the early Drosophila spermatocytes. Cytoskeleton (Hoboken) 2019; 75:472-480. [PMID: 30381895 DOI: 10.1002/cm.21503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/27/2018] [Accepted: 10/25/2018] [Indexed: 12/23/2022]
Abstract
Parent centrioles are characterized in most organisms by individual morphological traits and have distinct asymmetries that provide different functional properties. By contrast, mother and daughter centrioles are morphologically undistinguishable during Drosophila male gametogenesis. Here we report the presence of previously unrecognized microtubule-based structures that extend into the peripheral cytoplasm of the Drosophila polar spermatocytes at the onset of the first meiosis and are positive for the typical centriolar protein Sas-4 and for the kinesin-like protein Klp10A. These structures have a short lifespan and are no longer found in early apolar spermatocytes. Remarkably, each polar spermatocyte holds only one microtubule-based structure that is associated with one of the sister centriole pairs and specifically with the mother centriole. These findings reveal an inherent asymmetry between the parent centrioles at the onset of male meiosis and also uncover unexpected functional properties between the mother centrioles of the same cells.
Collapse
|
34
|
Persico V, Callaini G, Riparbelli MG. The Microtubule-Depolymerizing Kinesin-13 Klp10A Is Enriched in the Transition Zone of the Ciliary Structures of Drosophila melanogaster. Front Cell Dev Biol 2019; 7:173. [PMID: 31497602 PMCID: PMC6713071 DOI: 10.3389/fcell.2019.00173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
The precursor of the flagellar axoneme is already present in the primary spermatocytes of Drosophila melanogaster. During spermatogenesis each primary spermatocyte shows a centriole pair that moves to the cell membrane and organizes an axoneme-based structure, the cilium-like region (CLR). The CLRs persist through the meiotic divisions and are inherited by young spermatids. During spermatid differentiation the ciliary caps elongate giving rise to the sperm axoneme. Mutations in Klp10A, a kinesin-13 of Drosophila, results in defects of centriole/CLR organization in spermatocytes and of ciliary cap assembly in elongating spermatids. Reduced Klp10A expression also results in strong structural defects of sensory type I neurons. We show, here, that this protein displays a peculiar localization during male gametogenesis. The Klp10A signal is first detected at the distal ends of the centrioles when they dock to the plasma membrane of young primary spermatocytes. At the onset of the first meiotic prometaphase, when the CLRs reach their full size, Klp10A is enriched in a distinct narrow area at the distal end of the centrioles and persists in elongating spermatids at the base of the ciliary cap. We conclude that Klp10A could be a core component of the ciliary transition zone in Drosophila.
Collapse
Affiliation(s)
| | - Giuliano Callaini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | |
Collapse
|
35
|
Joukov V, De Nicolo A. The Centrosome and the Primary Cilium: The Yin and Yang of a Hybrid Organelle. Cells 2019; 8:E701. [PMID: 31295970 PMCID: PMC6678760 DOI: 10.3390/cells8070701] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/27/2022] Open
Abstract
Centrosomes and primary cilia are usually considered as distinct organelles, although both are assembled with the same evolutionary conserved, microtubule-based templates, the centrioles. Centrosomes serve as major microtubule- and actin cytoskeleton-organizing centers and are involved in a variety of intracellular processes, whereas primary cilia receive and transduce environmental signals to elicit cellular and organismal responses. Understanding the functional relationship between centrosomes and primary cilia is important because defects in both structures have been implicated in various diseases, including cancer. Here, we discuss evidence that the animal centrosome evolved, with the transition to complex multicellularity, as a hybrid organelle comprised of the two distinct, but intertwined, structural-functional modules: the centriole/primary cilium module and the pericentriolar material/centrosome module. The evolution of the former module may have been caused by the expanding cellular diversification and intercommunication, whereas that of the latter module may have been driven by the increasing complexity of mitosis and the requirement for maintaining cell polarity, individuation, and adhesion. Through its unique ability to serve both as a plasma membrane-associated primary cilium organizer and a juxtanuclear microtubule-organizing center, the animal centrosome has become an ideal integrator of extracellular and intracellular signals with the cytoskeleton and a switch between the non-cell autonomous and the cell-autonomous signaling modes. In light of this hypothesis, we discuss centrosome dynamics during cell proliferation, migration, and differentiation and propose a model of centrosome-driven microtubule assembly in mitotic and interphase cells. In addition, we outline the evolutionary benefits of the animal centrosome and highlight the hierarchy and modularity of the centrosome biogenesis networks.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia.
| | | |
Collapse
|
36
|
Abstract
Centrosome amplification is a feature of multiple tumour types and has been postulated to contribute to both tumour initiation and tumour progression. This chapter focuses on the mechanisms by which an increase in centrosome number might lead to an increase or decrease in tumour progression and the role of proteins that regulate centrosome number in driving tumorigenesis.
Collapse
Affiliation(s)
- Arunabha Bose
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sorab N Dalal
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India.
- Homi Bhabha National Institute, Mumbai, Maharashtra, India.
| |
Collapse
|
37
|
Blake-Hedges C, Megraw TL. Coordination of Embryogenesis by the Centrosome in Drosophila melanogaster. Results Probl Cell Differ 2019; 67:277-321. [PMID: 31435800 PMCID: PMC11725063 DOI: 10.1007/978-3-030-23173-6_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The first 3 h of Drosophila melanogaster embryo development are exemplified by rapid nuclear divisions within a large syncytium, transforming the zygote to the cellular blastoderm after 13 successive cleavage divisions. As the syncytial embryo develops, it relies on centrosomes and cytoskeletal dynamics to transport nuclei, maintain uniform nuclear distribution throughout cleavage cycles, ensure generation of germ cells, and coordinate cellularization. For the sake of this review, we classify six early embryo stages that rely on processes coordinated by the centrosome and its regulation of the cytoskeleton. The first stage features migration of one of the female pronuclei toward the male pronucleus following maturation of the first embryonic centrosomes. Two subsequent stages distribute the nuclei first axially and then radially in the embryo. The remaining three stages involve centrosome-actin dynamics that control cortical plasma membrane morphogenesis. In this review, we highlight the dynamics of the centrosome and its role in controlling the six stages that culminate in the cellularization of the blastoderm embryo.
Collapse
Affiliation(s)
- Caitlyn Blake-Hedges
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| | - Timothy L Megraw
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
38
|
Boese CJ, Nye J, Buster DW, McLamarrah TA, Byrnes AE, Slep KC, Rusan NM, Rogers GC. Asterless is a Polo-like kinase 4 substrate that both activates and inhibits kinase activity depending on its phosphorylation state. Mol Biol Cell 2018; 29:2874-2886. [PMID: 30256714 PMCID: PMC6249866 DOI: 10.1091/mbc.e18-07-0445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 11/26/2022] Open
Abstract
Centriole assembly initiates when Polo-like kinase 4 (Plk4) interacts with a centriole "targeting-factor." In Drosophila, Asterless/Asl (Cep152 in humans) fulfills the targeting role. Interestingly, Asl also regulates Plk4 levels. The N-terminus of Asl (Asl-A; amino acids 1-374) binds Plk4 and promotes Plk4 self-destruction, although it is unclear how this is achieved. Moreover, Plk4 phosphorylates the Cep152 N-terminus, but the functional consequence is unknown. Here, we show that Plk4 phosphorylates Asl and mapped 13 phospho-residues in Asl-A. Nonphosphorylatable alanine (13A) and phosphomimetic (13PM) mutants did not alter Asl function, presumably because of the dominant role of the Asl C-terminus in Plk4 stabilization and centriolar targeting. To address how Asl-A phosphorylation specifically affects Plk4 regulation, we generated Asl-A fragment phospho-mutants and expressed them in cultured Drosophila cells. Asl-A-13A stimulated kinase activity by relieving Plk4 autoinhibition. In contrast, Asl-A-13PM inhibited Plk4 activity by a novel mechanism involving autophosphorylation of Plk4's kinase domain. Thus, Asl-A's phosphorylation state determines which of Asl-A's two opposing effects are exerted on Plk4. Initially, nonphosphorylated Asl binds Plk4 and stimulates its kinase activity, but after Asl is phosphorylated, a negative-feedback mechanism suppresses Plk4 activity. This dual regulatory effect by Asl-A may limit Plk4 to bursts of activity that modulate centriole duplication.
Collapse
Affiliation(s)
- Cody J. Boese
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Jonathan Nye
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Daniel W. Buster
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Tiffany A. McLamarrah
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Amy E. Byrnes
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kevin C. Slep
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Nasser M. Rusan
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Gregory C. Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
39
|
Montenegro Gouveia S, Zitouni S, Kong D, Duarte P, Ferreira Gomes B, Sousa AL, Tranfield EM, Hyman A, Loncarek J, Bettencourt-Dias M. PLK4 is a microtubule-associated protein that self-assembles promoting de novo MTOC formation. J Cell Sci 2018; 132:jcs.219501. [PMID: 30237222 PMCID: PMC6398482 DOI: 10.1242/jcs.219501] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/10/2018] [Indexed: 01/09/2023] Open
Abstract
The centrosome is an important microtubule-organising centre (MTOC) in animal cells. It consists of two barrel-shaped structures, the centrioles, surrounded by the pericentriolar material (PCM), which nucleates microtubules. Centrosomes can form close to an existing structure (canonical duplication) or de novo. How centrosomes form de novo is not known. The master driver of centrosome biogenesis, PLK4, is critical for the recruitment of several centriole components. Here, we investigate the beginning of centrosome biogenesis, taking advantage of Xenopus egg extracts, where PLK4 can induce de novo MTOC formation (
Eckerdt et al., 2011; Zitouni et al., 2016). Surprisingly, we observe that in vitro, PLK4 can self-assemble into condensates that recruit α- and β-tubulins. In Xenopus extracts, PLK4 assemblies additionally recruit STIL, a substrate of PLK4, and the microtubule nucleator γ-tubulin, forming acentriolar MTOCs de novo. The assembly of these robust microtubule asters is independent of dynein, similar to what is found for centrosomes. We suggest a new mechanism of action for PLK4, where it forms a self-organising catalytic scaffold that recruits centriole components, PCM factors and α- and β-tubulins, leading to MTOC formation. This article has an associated First Person interview with the first author of the paper. Summary: PLK4 binds to microtubules and self-assembles into condensates that recruit tubulin and trigger de novo microtubule-organising centre formation in vitro.
Collapse
Affiliation(s)
- Susana Montenegro Gouveia
- Cell Cycle Regulation Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Sihem Zitouni
- Cell Cycle Regulation Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Dong Kong
- Laboratory of Protein Dynamics and Signalling, National Institutes of Health/National Cancer Institute/Center for Cancer Research, Frederick, MD 21702, USA
| | - Paulo Duarte
- Cell Cycle Regulation Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Beatriz Ferreira Gomes
- Max Planck Institute of Molecular Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Ana Laura Sousa
- Cell Cycle Regulation Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Erin M Tranfield
- Cell Cycle Regulation Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Anthony Hyman
- Max Planck Institute of Molecular Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signalling, National Institutes of Health/National Cancer Institute/Center for Cancer Research, Frederick, MD 21702, USA
| | - Monica Bettencourt-Dias
- Cell Cycle Regulation Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| |
Collapse
|
40
|
Leda M, Holland AJ, Goryachev AB. Autoamplification and Competition Drive Symmetry Breaking: Initiation of Centriole Duplication by the PLK4-STIL Network. iScience 2018; 8:222-235. [PMID: 30340068 PMCID: PMC6197440 DOI: 10.1016/j.isci.2018.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022] Open
Abstract
Centrioles, the cores of centrosomes and cilia, duplicate every cell cycle to ensure their faithful inheritance. How only a single procentriole is produced on each mother centriole remains enigmatic. We propose the first mechanistic biophysical model for procentriole initiation which posits that interactions between kinase PLK4 and its activator-substrate STIL are central for procentriole initiation. The model recapitulates the transition from a uniform "ring" of PLK4 surrounding the mother centriole to a single PLK4 "spot" that initiates procentriole assembly. This symmetry breaking requires autocatalytic activation of PLK4 and enhanced centriolar anchoring of PLK4 by phosphorylated STIL. We find that in situ degradation of active PLK4 cannot break symmetry. The model predicts that competition between transient PLK4 activity maxima for PLK4-STIL complexes destabilizes the PLK4 ring and produces instead a single PLK4 spot. Weakening of competition by overexpression of PLK4 and STIL causes progressive addition of supernumerary procentrioles, as observed experimentally.
Collapse
Affiliation(s)
- Marcin Leda
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF UK
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF UK.
| |
Collapse
|
41
|
Shahid U, Singh P. Emerging Picture of Deuterosome-Dependent Centriole Amplification in MCCs. Cells 2018; 7:E152. [PMID: 30262752 PMCID: PMC6210342 DOI: 10.3390/cells7100152] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
Multiciliated cells (MCCs) have several hair-like structures called cilia, which are required to propel substances on their surface. A cilium is organized from a basal body which resembles a hollow microtubule structure called a centriole. In terminally differentiated MCCs, hundreds of new basal bodies/centrioles are formed via two parallel pathways: the centriole- and deuterosome-dependent pathways. The deuterosome-dependent pathway is also referred to as "de novo" because unlike the centriole-dependent pathway which requires pre-existing centrioles, in the de novo pathway multiple new centrioles are organized around non-microtubule structures called deuterosomes. In the last five years, some deuterosome-specific markers have been identified and concurrent advancements in the super-resolution techniques have significantly contributed to gaining insights about the major stages of centriole amplification during ciliogenesis. Altogether, a new picture is emerging which also challenges the previous notion that deuterosome pathway is de novo. This review is primarily focused on studies that have contributed towards the better understanding of deuterosome-dependent centriole amplification and presents a developing model about the major stages identified during this process.
Collapse
Affiliation(s)
- Umama Shahid
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagour Road, Karwar 342037, India.
| | - Priyanka Singh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagour Road, Karwar 342037, India.
| |
Collapse
|
42
|
Tillery MML, Blake-Hedges C, Zheng Y, Buchwalter RA, Megraw TL. Centrosomal and Non-Centrosomal Microtubule-Organizing Centers (MTOCs) in Drosophila melanogaster. Cells 2018; 7:E121. [PMID: 30154378 PMCID: PMC6162459 DOI: 10.3390/cells7090121] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022] Open
Abstract
The centrosome is the best-understood microtubule-organizing center (MTOC) and is essential in particular cell types and at specific stages during Drosophila development. The centrosome is not required zygotically for mitosis or to achieve full animal development. Nevertheless, centrosomes are essential maternally during cleavage cycles in the early embryo, for male meiotic divisions, for efficient division of epithelial cells in the imaginal wing disc, and for cilium/flagellum assembly in sensory neurons and spermatozoa. Importantly, asymmetric and polarized division of stem cells is regulated by centrosomes and by the asymmetric regulation of their microtubule (MT) assembly activity. More recently, the components and functions of a variety of non-centrosomal microtubule-organizing centers (ncMTOCs) have begun to be elucidated. Throughout Drosophila development, a wide variety of unique ncMTOCs form in epithelial and non-epithelial cell types at an assortment of subcellular locations. Some of these cell types also utilize the centrosomal MTOC, while others rely exclusively on ncMTOCs. The impressive variety of ncMTOCs being discovered provides novel insight into the diverse functions of MTOCs in cells and tissues. This review highlights our current knowledge of the composition, assembly, and functional roles of centrosomal and non-centrosomal MTOCs in Drosophila.
Collapse
Affiliation(s)
- Marisa M L Tillery
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Caitlyn Blake-Hedges
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Yiming Zheng
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Rebecca A Buchwalter
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| |
Collapse
|
43
|
Kim S, Ma L, Shokhirev MN, Quigley I, Kintner C. Multicilin and activated E2f4 induce multiciliated cell differentiation in primary fibroblasts. Sci Rep 2018; 8:12369. [PMID: 30120325 PMCID: PMC6098136 DOI: 10.1038/s41598-018-30791-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022] Open
Abstract
Multiciliated cells (MCCs) are specialized epithelial cells that project hundreds of motile cilia. To form these cilia, MCCs differentiate by dramatically expanding centriole number, using assembly factors required for centriole duplication during the cell cycle and multiple, novel assembly sites, called the deuterosome. The small coiled-coil protein, Multicilin, acting in a complex with the E2F proteins can initiate multiciliated cell differentiation, but reportedly only in a limited range of epithelial progenitors. To examine the nature of this restricted activity, we analyzed Multicilin activity in primary mouse embryonic fibroblasts (MEFs), a cell type distant from the epithelial lineages where MCCs normally arise. We show that Multicilin transcriptional activity is markedly attenuated in MEFs, where it induces only limited centriole expansion in a small fraction of cells. We further show that this transcriptional block is largely bypassed by expressing Multicilin along with a form of E2f4 where a generic activation domain from HSV1 VP16 (E2f4VP16) is fused to the carboxy terminus. MEFs respond to Multicilin and E2f4VP16 by undergoing massive centriole expansion via the deuterosome pathway, recapitulating a temporal sequence of organelle biogenesis that occurs in epithelial progenitors during MCC differentiation. These results suggest that the pattern of organelle biogenesis occurring in differentiating MCCs is largely determined by the transcriptional changes induced by Multicilin.
Collapse
Affiliation(s)
- Seongjae Kim
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Lina Ma
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | | | - Ian Quigley
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Chris Kintner
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
44
|
Abstract
Mitosis is controlled by reversible protein phosphorylation involving specific kinases and phosphatases. A handful of major mitotic protein kinases, such as the cyclin B-CDK1 complex, the Aurora kinases, and Polo-like kinase 1 (PLK1), cooperatively regulate distinct mitotic processes. Research has identified proteins and mechanisms that integrate these kinases into signaling cascades that guide essential mitotic events. These findings have important implications for our understanding of the mechanisms of mitotic regulation and may advance the development of novel antimitotic drugs. We review collected evidence that in vertebrates, the Aurora kinases serve as catalytic subunits of distinct complexes formed with the four scaffold proteins Bora, CEP192, INCENP, and TPX2, which we deem "core" Aurora cofactors. These complexes and the Aurora-PLK1 cascades organized by Bora, CEP192, and INCENP control crucial aspects of mitosis and all pathways of spindle assembly. We compare the mechanisms of Aurora activation in relation to the different spindle assembly pathways and draw a functional analogy between the CEP192 complex and the chromosomal passenger complex that may reflect the coevolution of centrosomes, kinetochores, and the actomyosin cleavage apparatus. We also analyze the roles and mechanisms of Aurora-PLK1 signaling in the cell and centrosome cycles and in the DNA damage response.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, Saint-Petersburg 197758, Russian Federation.
| | | |
Collapse
|
45
|
Manil-Ségalen M, Łuksza M, Kanaan J, Marthiens V, Lane SIR, Jones KT, Terret ME, Basto R, Verlhac MH. Chromosome structural anomalies due to aberrant spindle forces exerted at gene editing sites in meiosis. J Cell Biol 2018; 217:3416-3430. [PMID: 30082296 PMCID: PMC6168266 DOI: 10.1083/jcb.201806072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 01/17/2023] Open
Abstract
Acentrosomal spindle assembly in mouse oocytes depends on chromosomes and acentriolar microtubule-organizing centers (aMTOCs). Manil-Ségalen et al. observe that Plk4-induced perturbation of aMTOCs coupled to Cre-mediated gene editing generates fragile chromosomes that break when subjected to forces exerted by altered meiosis I spindles. Mouse female meiotic spindles assemble from acentriolar microtubule-organizing centers (aMTOCs) that fragment into discrete foci. These are further sorted and clustered to form spindle poles, thus providing balanced forces for faithful chromosome segregation. To assess the impact of aMTOC biogenesis on spindle assembly, we genetically induced their precocious fragmentation in mouse oocytes using conditional overexpression of Plk4, a master microtubule-organizing center regulator. Excessive microtubule nucleation from these fragmented aMTOCs accelerated spindle assembly dynamics. Prematurely formed spindles promoted the breakage of three different fragilized bivalents, generated by the presence of recombined Lox P sites. Reducing the density of microtubules significantly diminished the extent of chromosome breakage. Thus, improper spindle forces can lead to widely described yet unexplained chromosomal structural anomalies with disruptive consequences on the ability of the gamete to transmit an uncorrupted genome.
Collapse
Affiliation(s)
- Marion Manil-Ségalen
- Collège de France, Centre for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM-U1050, Paris, France
| | - Małgorzata Łuksza
- Collège de France, Centre for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM-U1050, Paris, France
| | - Joanne Kanaan
- Collège de France, Centre for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM-U1050, Paris, France
| | - Véronique Marthiens
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France
| | - Simon I R Lane
- Biological Science, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - Keith T Jones
- Biological Science, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - Marie-Emilie Terret
- Collège de France, Centre for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM-U1050, Paris, France
| | - Renata Basto
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France
| | - Marie-Hélène Verlhac
- Collège de France, Centre for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM-U1050, Paris, France
| |
Collapse
|
46
|
Prakash A, Garcia-Moreno JF, Brown JAL, Bourke E. Clinically Applicable Inhibitors Impacting Genome Stability. Molecules 2018; 23:E1166. [PMID: 29757235 PMCID: PMC6100577 DOI: 10.3390/molecules23051166] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022] Open
Abstract
Advances in technology have facilitated the molecular profiling (genomic and transcriptomic) of tumours, and has led to improved stratification of patients and the individualisation of treatment regimes. To fully realize the potential of truly personalised treatment options, we need targeted therapies that precisely disrupt the compensatory pathways identified by profiling which allow tumours to survive or gain resistance to treatments. Here, we discuss recent advances in novel therapies that impact the genome (chromosomes and chromatin), pathways targeted and the stage of the pathways targeted. The current state of research will be discussed, with a focus on compounds that have advanced into trials (clinical and pre-clinical). We will discuss inhibitors of specific DNA damage responses and other genome stability pathways, including those in development, which are likely to synergistically combine with current therapeutic options. Tumour profiling data, combined with the knowledge of new treatments that affect the regulation of essential tumour signalling pathways, is revealing fundamental insights into cancer progression and resistance mechanisms. This is the forefront of the next evolution of advanced oncology medicine that will ultimately lead to improved survival and may, one day, result in many cancers becoming chronic conditions, rather than fatal diseases.
Collapse
Affiliation(s)
- Anu Prakash
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Juan F Garcia-Moreno
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - James A L Brown
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Emer Bourke
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| |
Collapse
|
47
|
Nabais C, Pereira SG, Bettencourt-Dias M. Noncanonical Biogenesis of Centrioles and Basal Bodies. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:123-135. [PMID: 29686032 DOI: 10.1101/sqb.2017.82.034694] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Centrioles and basal bodies (CBBs) organize centrosomes and cilia within eukaryotic cells. These organelles are composed of microtubules and hundreds of proteins performing multiple functions such as signaling, cytoskeleton remodeling, and cell motility. The CBB is present in all branches of the eukaryotic tree of life and, despite its ultrastructural and protein conservation, there is diversity in its function, occurrence (i.e., presence/absence), and modes of biogenesis across species. In this review, we provide an overview of the multiple pathways through which CBBs are formed in nature, with a special focus on the less studied, noncanonical ways. Despite the differences among each mechanism herein presented, we highlighted some of their common principles. These principles, governing different steps of biogenesis, ensure that CBBs may perform a multitude of functions in a huge diversity of organisms but yet retained their robustness in structure throughout evolution.
Collapse
Affiliation(s)
- Catarina Nabais
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência (IGC), 2780-156 Oeiras, Portugal
| | - Sónia Gomes Pereira
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência (IGC), 2780-156 Oeiras, Portugal
| | | |
Collapse
|
48
|
McLamarrah TA, Buster DW, Galletta BJ, Boese CJ, Ryniawec JM, Hollingsworth NA, Byrnes AE, Brownlee CW, Slep KC, Rusan NM, Rogers GC. An ordered pattern of Ana2 phosphorylation by Plk4 is required for centriole assembly. J Cell Biol 2018; 217:1217-1231. [PMID: 29496738 PMCID: PMC5881488 DOI: 10.1083/jcb.201605106] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/19/2017] [Accepted: 01/19/2018] [Indexed: 12/15/2022] Open
Abstract
Polo-like kinase 4 (Plk4) initiates an early step in centriole assembly by phosphorylating Ana2/STIL, a structural component of the procentriole. Here, we show that Plk4 binding to the central coiled-coil (CC) of Ana2 is a conserved event involving Polo-box 3 and a previously unidentified putative CC located adjacent to the kinase domain. Ana2 is then phosphorylated along its length. Previous studies showed that Plk4 phosphorylates the C-terminal STil/ANa2 (STAN) domain of Ana2/STIL, triggering binding and recruitment of the cartwheel protein Sas6 to the procentriole assembly site. However, the physiological relevance of N-terminal phosphorylation was unknown. We found that Plk4 first phosphorylates the extreme N terminus of Ana2, which is critical for subsequent STAN domain modification. Phosphorylation of the central region then breaks the Plk4-Ana2 interaction. This phosphorylation pattern is important for centriole assembly and integrity because replacement of endogenous Ana2 with phospho-Ana2 mutants disrupts distinct steps in Ana2 function and inhibits centriole duplication.
Collapse
Affiliation(s)
- Tiffany A McLamarrah
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Daniel W Buster
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Brian J Galletta
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD
| | - Cody J Boese
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - John M Ryniawec
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Natalie Ann Hollingsworth
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Amy E Byrnes
- Department of Biochemistry and Biophysics, Program in Molecular and Cellular Biophysics, University of North Carolina, Chapel Hill, NC
| | - Christopher W Brownlee
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Kevin C Slep
- Department of Biology, University of North Carolina, Chapel Hill, NC
| | - Nasser M Rusan
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| |
Collapse
|
49
|
Nigg EA, Schnerch D, Ganier O. Impact of Centrosome Aberrations on Chromosome Segregation and Tissue Architecture in Cancer. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:137-144. [PMID: 29610243 DOI: 10.1101/sqb.2017.82.034421] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Centrosomes determine the disposition of microtubule networks and thereby contribute to regulate cell shape, polarity, and motility, as well as chromosome segregation during cell division. Additionally, centrioles, the core components of centrosomes, are required for the formation of cilia and flagella. Mutations in genes coding for centrosomal and centriolar proteins are responsible for several human diseases, foremost ciliopathies and developmental disorders resulting in small brains (primary microcephaly) or small body size (dwarfism). Moreover, a long-standing postulate implicates numerical and/or structural centrosome aberrations in the etiology of cancer. In this review, we will discuss recent work on the role of centrosome aberrations in the promotion of genome instability and the disruption of tissue architecture, two hallmarks of human cancers. We will emphasize recent studies on the impact of centrosome aberrations on the polarity of epithelial cells cultured in three-dimensional spheroid models. Collectively, the results from these in vitro systems suggest that different types of centrosome aberrations can promote invasive behavior through different pathways. Particularly exciting is recent evidence indicating that centrosome aberrations may trigger the dissemination of potentially metastatic cells through a non-cell-autonomous mechanism.
Collapse
Affiliation(s)
- Erich A Nigg
- Biozentrum, University of Basel, Basel CH-4056, Switzerland
| | | | - Olivier Ganier
- Biozentrum, University of Basel, Basel CH-4056, Switzerland
| |
Collapse
|
50
|
Riparbelli MG, Persico V, Gottardo M, Callaini G. The developing Drosophila eye - a new model to study centriole reduction. J Cell Sci 2018; 131:jcs.211441. [PMID: 29361550 DOI: 10.1242/jcs.211441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/15/2018] [Indexed: 01/06/2023] Open
Abstract
In the developing Drosophila eye, the centrioles of the differentiating retinal cells are not surrounded by the microtubule-nucleating γ-tubulin, suggesting that they are unable to organize functional microtubule-organizing centers. Consistent with this idea, Cnn and Spd-2, which are involved in γ-tubulin recruitment, and the scaffold protein Plp, which plays a role in the organization of the pericentriolar material, are lost in the third-instar larval stage. However, the centrioles maintain their structural integrity, and both the parent centrioles accumulate Asl and Ana1. Although the loading of Asl points to the acquisition of the motherhood condition, the daughter centrioles fail to recruit Plk4 and do not duplicate. However, it is surprising that the mother centrioles that accumulate Plk4 also never duplicate. This suggests that the loading of Plk4 is not sufficient, in this system, to allow centriole duplication. By halfway through pupal life, the centriole number decreases and structural defects, ranging from being incomplete or lacking B-tubules, are detected. Asl, Ana1 and Sas-4 are still present, suggesting that the centriole integrity does not depend on these proteins.
Collapse
Affiliation(s)
- Maria G Riparbelli
- Department of Life Sciences, Via A. Moro 2, University of Siena, 53100 Siena, Italy
| | - Veronica Persico
- Department of Life Sciences, Via A. Moro 2, University of Siena, 53100 Siena, Italy
| | - Marco Gottardo
- Department of Life Sciences, Via A. Moro 2, University of Siena, 53100 Siena, Italy
| | - Giuliano Callaini
- Department of Life Sciences, Via A. Moro 2, University of Siena, 53100 Siena, Italy
| |
Collapse
|