1
|
Tong H, Petyuk VA, Sendtner M, Sood A, Bennett DA, Capuano AW, Arvanitakis Z. Alzheimer's disease-related cortical proteins modify the association of brain insulin signaling with cognitive decline. J Alzheimers Dis 2025; 104:667-677. [PMID: 40183406 PMCID: PMC12124455 DOI: 10.1177/13872877251319463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
BackgroundBrain insulin signaling has been associated with both Alzheimer's disease (AD) pathology and cognitive decline, but the mechanisms remain unclear.ObjectiveTo examine whether AD-related cortically-expressed proteins modify the association of brain insulin signaling and cognitive decline.MethodsParticipants included 116 autopsied members of the Religious Orders Study (58 with diabetes matched to 58 without, by age at death, sex, and education) who had both postmortem brain (prefrontal cortex) insulin signaling (by ELISA and immunohistochemistry, including RAC-alpha serine/threonine-protein kinase or AKT1) and AD-related cortical protein measurements. Levels of five AD-related proteins including insulin-like growth factor-binding protein-5 (IGFBP-5) and inositol-tetrakisphosphate 1-kinase (ITPK1) were measured using quantitative proteomics. We conducted adjusted linear mixed model analyses to examine associations of insulin signaling measures and AD-related proteins with longitudinally assessed cognitive function.ResultsHigher levels of IGFBP-5 and lower levels of ITPK1 were each associated with higher levels of AKT1 phosphorylation (pT308AKT1 /total AKT1). Additionally, higher levels of AKT1 phosphorylation were associated with faster decline in global cognition and most cognitive domains. IGFBP-5 partially mediated the association of AKT1 phosphorylation with the decline rate of global cognition and cognitive domains including perceptual speed and visuospatial abilities. Further, ITPK1 had an interaction with AKT1 phosphorylation on decline of global cognition and domains including episodic memory, perceptual speed, and visuospatial abilities.ConclusionsAD-related proteins IGFBP-5 and ITPK1 are each associated with insulin signaling AKT1 phosphorylation in the postmortem human brain. Moreover, IGFBP-5 mediates, while ITPK1 moderates, the association between AKT1 phosphorylation and late-life cognitive decline.
Collapse
Affiliation(s)
- Han Tong
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ajay Sood
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Ana W Capuano
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
2
|
Lee JH, Jung IR, Tu-Sekine B, Jin S, Anokye-Danso F, Ahima RS, Kim SF. Loss of Skeletal Muscle Inositol Polyphosphate Multikinase Disrupts Glucose Regulation and Limits Exercise Capacity. Int J Mol Sci 2025; 26:2395. [PMID: 40141045 PMCID: PMC11942489 DOI: 10.3390/ijms26062395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Inositol phosphates are critical signaling messengers involved in a wide range of biological pathways, and inositol polyphosphate multikinase (IPMK) functions as a rate-limiting enzyme for inositol polyphosphate metabolism. IPMK has been implicated in cellular metabolism, but its function at the systemic level is still poorly understood. Since skeletal muscle is a major contributor to energy homeostasis, we have developed a mouse model in which skeletal muscle IPMK is specifically deleted and examined how a loss of IPMK affects whole-body metabolism. Here, we report that skeletal-muscle-specific IPMK knockout mice exhibited a ~12% increase in body weight compared to WT controls (p < 0.05). These mice also showed a significantly impaired glucose tolerance, as indicated by their ~50% higher blood glucose levels during GTT. Additionally, exercise capacity was reduced by ~45% in IPMK-MKO mice, demonstrating a decline in endurance. Moreover, these metabolic alterations were accompanied by a 2.5-fold increase in skeletal muscle triglyceride accumulation, suggesting impaired lipid metabolism. Further analysis revealed that IPMK-deficient myocytes exhibited 30% lower β-oxidation rates. Thus, our results suggest that IPMK mediates whole-body metabolism by regulating muscle metabolism and may be potentially targeted for the treatment of metabolic syndromes.
Collapse
Affiliation(s)
| | | | | | | | | | - Rexford S. Ahima
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, MD 21218, USA; (J.-H.L.); (I.-R.J.); (B.T.-S.); (F.A.-D.)
| | - Sangwon F. Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, MD 21218, USA; (J.-H.L.); (I.-R.J.); (B.T.-S.); (F.A.-D.)
| |
Collapse
|
3
|
Ng MY, Wang H, Zhang H, Prucker I, Perera L, Goncharova E, Wamiru A, Jessen HJ, Stanley RE, Shears SB, Luo J, O'Keefe BR, Wilson BAP. Biochemical and biophysical characterization of inositol-tetrakisphosphate 1-kinase inhibitors. J Biol Chem 2025; 301:108274. [PMID: 39922495 PMCID: PMC11927698 DOI: 10.1016/j.jbc.2025.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/10/2025] Open
Abstract
Inositol phosphates (IPs) and inositol pyrophosphate play critical roles in many biological processes such as signaling molecules in pathways responsible for cellular functions involved in growth and maintenance. The biosynthesis of IPs is carried out by a family of inositol phosphate kinases. In mammals, Inositol tetrakisphosphate kinase-1 (ITPK1) phosphorylates inositol-1,3,4-trisphosphate (Ins(1,3,4)P3) and inositol-3,4,5,6-tetrakisphosphate (IP4), generating inositol-1,3,4,5,6-pentakisphosphate (IP5), which can be further phosphorylated to become inositol hexakisphosphate (IP6). ITPK1 also possesses phosphatase activity that can convert IP5 back to IP4; therefore, ITPK1 may serve as a regulatory step in IP6 production. IP6 utilization has been implicated in processes fundamental to cellular sustainability that are severely perturbed in many disease states including RNA editing, DNA repair, chromatin structure organization, and ubiquitin ligation. Therefore, ITPK1, with no known inhibitors in the literature, is a potential molecular target for modulating important processes in several human diseases. By independently coupling ITPK1 phosphatase and kinase activities to luciferase activity, we have developed and used biochemical high-throughput assays to discover eight ITPK1 inhibitors. Further analysis revealed that three of these leads inhibit ITPK1 in an ATP-competitive manner, with low micromolar to nanomolar affinities. We further demonstrate that the most potent ITPK1 inhibitor can regulate cellular ITPK1 activity. We determined the crystal structure of ITPK1 in complex with this inhibitor at a resolution of 2.25 Å. This work provides insight into the design of potential next-generation inhibitors.
Collapse
Affiliation(s)
- Martin Y Ng
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Huanchen Wang
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Haibo Zhang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Isabel Prucker
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Ekaterina Goncharova
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Antony Wamiru
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany; Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Robin E Stanley
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Stephen B Shears
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA; Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland, USA.
| | - Brice A P Wilson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA.
| |
Collapse
|
4
|
Kim S, Bhandari R, Brearley CA, Saiardi A. The inositol phosphate signalling network in physiology and disease. Trends Biochem Sci 2024; 49:969-985. [PMID: 39317578 DOI: 10.1016/j.tibs.2024.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024]
Abstract
Combinatorial substitution of phosphate groups on the inositol ring gives rise to a plethora of inositol phosphates (InsPs) and inositol pyrophosphates (PP-InsPs). These small molecules constitute an elaborate metabolic and signalling network that influences nearly every cellular function. This review delves into the knowledge accumulated over the past decades regarding the biochemical principles and significance of InsP metabolism. We focus on the biological actions of InsPs in mammals, with an emphasis on recent findings regarding specific target proteins. We further discuss the roles of InsP metabolism in contributing to physiological homeostasis and pathological conditions. A deeper understanding of InsPs and their metabolic pathways holds the potential to address unresolved questions and propel advances towards therapeutic applications.
Collapse
Affiliation(s)
- Seyun Kim
- Department of Biological Sciences, KAIST Stem Cell Center, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India.
| | - Charles A Brearley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Adolfo Saiardi
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
5
|
Heitmann T, Liao G, Ernst G, Poslusney M, van Kralingen T, Li Y, Masi M, DePasquale M, Buchler I, Wei H, Carr GV, Shlevkov E, Lu M, Jessen H, Barrow JC. Identification and Characterization of a Blood-Brain Barrier Penetrant Inositol Hexakisphosphate Kinase (IP6K) Inhibitor. J Med Chem 2024; 67:13639-13665. [PMID: 39096294 DOI: 10.1021/acs.jmedchem.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Inositol hexakisphosphate kinases (IP6Ks) have been studied for their role in glucose homeostasis, metabolic disease, fatty liver disease, chronic kidney disease, neurological development, and psychiatric disease. IP6Ks phosphorylate inositol hexakisphosphate (IP6) to the pyrophosphate, 5-diphosphoinositol-1,2,3,4,6-pentakisphosphate (5-IP7). Most of the currently known potent IP6K inhibitors contain a critical carboxylic acid which limits blood-brain barrier (BBB) penetration. In this work, the synthesis and testing of a variety of carboxylic acid isosteres resulted in several new compounds with improved BBB penetration. The most promising compound has an IP6K1 IC50 of 16 nM with an improved brain/plasma ratio and a favorable pharmacokinetic profile. This series of brain penetrant compounds may be used to investigate the role of IP6Ks in CNS disorders.
Collapse
Affiliation(s)
- Tyler Heitmann
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Gangling Liao
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Glen Ernst
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Michael Poslusney
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Thomas van Kralingen
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Ye Li
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Megan Masi
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Michael DePasquale
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Ingrid Buchler
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Huijun Wei
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Gregory V Carr
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Evgeny Shlevkov
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Mengsi Lu
- Institute of Organic Chemistry and CIBSS─Centre for Integrative Biological Signaling Studies, Albert-Ludwigs-University, Albertstr. 21, Freiburg 79104, Germany
| | - Henning Jessen
- Institute of Organic Chemistry and CIBSS─Centre for Integrative Biological Signaling Studies, Albert-Ludwigs-University, Albertstr. 21, Freiburg 79104, Germany
| | - James C Barrow
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
6
|
Lee JH, Jung IR, Tu-Sekine B, Jin S, Anokye-Danso F, Ahima RS, Kim SF. Genetic Deletion of Skeletal Muscle Inositol Polyphosphate Multikinase Disrupts Glucose Homeostasis and Impairs Exercise Tolerance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605526. [PMID: 39131310 PMCID: PMC11312436 DOI: 10.1101/2024.07.28.605526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Inositol phosphates are critical signaling messengers involved in a wide range of biological pathways in which inositol polyphosphate multikinase (IPMK) functions as a rate-limiting enzyme for inositol polyphosphate metabolism. IPMK has been implicated in cellular metabolism, but its function at the systemic level is still poorly understood. Since skeletal muscle is a major contributor to energy homeostasis, we have developed a mouse model in which skeletal muscle IPMK is specifically deleted and examined how a loss of IPMK affects whole-body metabolism. Here, we report that mice in which IPMK knockout is deleted, specifically in the skeletal muscle, displayed an increased body weight, disrupted glucose tolerance, and reduced exercise tolerance under the normal diet. Moreover, these changes were associated with an increased accumulation of triglyceride in skeletal muscle. Furthermore, we have confirmed that a loss of IPMK led to reduced beta-oxidation, increased triglyceride accumulation, and impaired insulin response in IPMK-deficient muscle cells. Thus, our results suggest that IPMK mediates the whole-body metabolism via regulating muscle metabolism and may be potentially targeted for the treatment of metabolic syndromes.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA. 21224
| | - Ik-Rak Jung
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA. 21224
| | - Becky Tu-Sekine
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA. 21224
| | - Sunghee Jin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA. 21224
| | - Frederick Anokye-Danso
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA. 21224
| | - Rexford S Ahima
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA. 21224
| | - Sangwon F Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA. 21224
| |
Collapse
|
7
|
Chakkour M, Greenberg ML. Insights into the roles of inositol hexakisphosphate kinase 1 (IP6K1) in mammalian cellular processes. J Biol Chem 2024; 300:107116. [PMID: 38403246 PMCID: PMC11065760 DOI: 10.1016/j.jbc.2024.107116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/27/2024] Open
Abstract
Inositol phosphates and their metabolites play a significant role in several biochemical pathways, gene expression regulation, and phosphate homeostasis. Among the different inositol phosphates, inositol hexakisphosphate (IP6) is a substrate of inositol hexakisphosphate kinases (IP6Ks), which phosphorylate one or more of the IP6 phosphate groups. Pyrophosphorylation of IP6 leads to the formation of inositol pyrophosphates, high-energy signaling molecules that mediate physiological processes through their ability to modify target protein activities, either by directly binding to their target protein or by pyrophosphorylating protein serine residues. 5-diphosphoinositol pentakisphosphate, the most abundant inositol pyrophosphate in mammals, has been extensively studied and found to be significantly involved in a wide range of physiological processes. Three IP6K (IP6K1, IP6K2, and IP6K3) isoforms regulate IP7 synthesis in mammals. Here, we summarize our current understanding of IP6K1's roles in cytoskeletal remodeling, trafficking, cellular migration, metabolism, gene expression, DNA repair, and immunity. We also briefly discuss current gaps in knowledge, highlighting the need for further investigation.
Collapse
Affiliation(s)
- Mohamed Chakkour
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
8
|
Mihiret YE, Schaaf G, Kamleitner M. Protein pyrophosphorylation by inositol phosphates: a novel post-translational modification in plants? FRONTIERS IN PLANT SCIENCE 2024; 15:1347922. [PMID: 38455731 PMCID: PMC10917965 DOI: 10.3389/fpls.2024.1347922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024]
Abstract
Inositol pyrophosphates (PP-InsPs) are energy-rich molecules harboring one or more diphosphate moieties. PP-InsPs are found in all eukaryotes evaluated and their functional versatility is reflected in the various cellular events in which they take part. These include, among others, insulin signaling and intracellular trafficking in mammals, as well as innate immunity and hormone and phosphate signaling in plants. The molecular mechanisms by which PP-InsPs exert such functions are proposed to rely on the allosteric regulation via direct binding to proteins, by competing with other ligands, or by protein pyrophosphorylation. The latter is the focus of this review, where we outline a historical perspective surrounding the first findings, almost 20 years ago, that certain proteins can be phosphorylated by PP-InsPs in vitro. Strikingly, in vitro phosphorylation occurs by an apparent enzyme-independent but Mg2+-dependent transfer of the β-phosphoryl group of an inositol pyrophosphate to an already phosphorylated serine residue at Glu/Asp-rich protein regions. Ribosome biogenesis, vesicle trafficking and transcription are among the cellular events suggested to be modulated by protein pyrophosphorylation in yeast and mammals. Here we discuss the latest efforts in identifying targets of protein pyrophosphorylation, pointing out the methodological challenges that have hindered the full understanding of this unique post-translational modification, and focusing on the latest advances in mass spectrometry that finally provided convincing evidence that PP-InsP-mediated pyrophosphorylation also occurs in vivo. We also speculate about the relevance of this post-translational modification in plants in a discussion centered around the protein kinase CK2, whose activity is critical for pyrophosphorylation of animal and yeast proteins. This enzyme is widely present in plant species and several of its functions overlap with those of PP-InsPs. Until now, there is virtually no data on pyrophosphorylation of plant proteins, which is an exciting field that remains to be explored.
Collapse
Affiliation(s)
| | | | - Marília Kamleitner
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
9
|
Mondal I, Halder AK, Pattanayak N, Mandal SK, Cordeiro MNDS. Shaping the Future of Obesity Treatment: In Silico Multi-Modeling of IP6K1 Inhibitors for Obesity and Metabolic Dysfunction. Pharmaceuticals (Basel) 2024; 17:263. [PMID: 38399478 PMCID: PMC10891520 DOI: 10.3390/ph17020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Recent research has uncovered a promising approach to addressing the growing global health concern of obesity and related disorders. The inhibition of inositol hexakisphosphate kinase 1 (IP6K1) has emerged as a potential therapeutic strategy. This study employs multiple ligand-based in silico modeling techniques to investigate the structural requirements for benzisoxazole derivatives as IP6K1 inhibitors. Firstly, we developed linear 2D Quantitative Structure-Activity Relationship (2D-QSAR) models to ensure both their mechanistic interpretability and predictive accuracy. Then, ligand-based pharmacophore modeling was performed to identify the essential features responsible for the compounds' high activity. To gain insights into the 3D requirements for enhanced potency against the IP6K1 enzyme, we employed multiple alignment techniques to set up 3D-QSAR models. Given the absence of an available X-ray crystal structure for IP6K1, a reliable homology model for the enzyme was developed and structurally validated in order to perform structure-based analyses on the selected dataset compounds. Finally, molecular dynamic simulations, using the docked poses of these compounds, provided further insights. Our findings consistently supported the mechanistic interpretations derived from both ligand-based and structure-based analyses. This study offers valuable guidance on the design of novel IP6K1 inhibitors. Importantly, our work exclusively relies on non-commercial software packages, ensuring accessibility for reproducing the reported models.
Collapse
Affiliation(s)
- Ismail Mondal
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur 713206, India; (I.M.); (A.K.H.); (N.P.); (S.K.M.)
| | - Amit Kumar Halder
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur 713206, India; (I.M.); (A.K.H.); (N.P.); (S.K.M.)
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Nirupam Pattanayak
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur 713206, India; (I.M.); (A.K.H.); (N.P.); (S.K.M.)
| | - Sudip Kumar Mandal
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur 713206, India; (I.M.); (A.K.H.); (N.P.); (S.K.M.)
| | - Maria Natalia D. S. Cordeiro
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
10
|
Qi J, Shi L, Zhu L, Chen Y, Zhu H, Cheng W, Chen AF, Fu C. Functions, Mechanisms, and therapeutic applications of the inositol pyrophosphates 5PP-InsP 5 and InsP 8 in mammalian cells. J Cardiovasc Transl Res 2024; 17:197-215. [PMID: 37615888 DOI: 10.1007/s12265-023-10427-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
Water-soluble myo-inositol phosphates have long been characterized as second messengers. The signaling properties of these compounds are determined by the number and arrangement of phosphate groups on the myo-inositol backbone. Recently, higher inositol phosphates with pyrophosphate groups were recognized as signaling molecules. 5-Diphosphoinositol 1,2,3,4,6-pentakisphosphate (5PP-InsP5) is the most abundant isoform, constituting more than 90% of intracellular inositol pyrophosphates. 5PP-InsP5 can be further phosphorylated to 1,5-bisdiphosphoinositol 2,3,4,6-tetrakisphosphate (InsP8). These two molecules, 5PP-InsP5 and InsP8, are present in various subcellular compartments, where they participate in regulating diverse cellular processes such as cell death, energy homeostasis, and cytoskeletal dynamics. The synthesis and metabolism of inositol pyrophosphates are subjected to tight regulation, allowing for their highly specific functions. Blocking the 5PP-InsP5/InsP8 signaling pathway by inhibiting the biosynthesis of 5PP-InsP5 demonstrates therapeutic benefits in preclinical studies, and thus holds promise as a therapeutic approach for certain diseases treatment, such as metabolic disorders.
Collapse
Affiliation(s)
- Ji Qi
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Linhui Shi
- Department of Critical Care Unit, Ningbo Medical Center Li Huili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Limei Zhu
- Department of Trauma Orthopedics, Ningbo No.6 Hospital, Ningbo, 315040, China
| | - Yuanyuan Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hong Zhu
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Weiwei Cheng
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Chenglai Fu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
11
|
Bhat SA, Malla AB, Oddi V, Sen J, Bhandari R. Inositol hexakisphosphate kinase 1 is essential for cell junction integrity in the mouse seminiferous epithelium. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119596. [PMID: 37742721 DOI: 10.1016/j.bbamcr.2023.119596] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Inositol hexakisphosphate kinases (IP6Ks) are enzymes that catalyse the synthesis of the inositol pyrophosphate 5-IP7 which is involved in the regulation of many physiological processes in mammals. The IP6K paralog IP6K1 is expressed at high levels in the mammalian testis, and its deletion leads to sterility in male mice. Here, we show that the loss of IP6K1 in mice causes a delay in the first wave of spermatogenesis. Testes from juvenile Ip6k1 knockout mice show downregulation of transcripts that are involved in cell adhesion and formation of the testis-specific inter-Sertoli cell impermeable junction complex known as the blood-testis barrier (BTB). We demonstrate that loss of IP6K1 in the mouse testis causes BTB disruption associated with transcriptional misregulation of the tight junction protein claudin 3, and subcellular mislocalization of the gap junction protein connexin 43. In addition to BTB disruption, we also observe a loss of germ cell adhesion in the seminiferous epithelium of Ip6k1 knockout mice, ultimately resulting in premature sloughing of round spermatids into the epididymis. Mechanistically, we show that loss of IP6K1 in the testis enhances cofilin dephosphorylation in conjunction with increased AKT/ERK and integrin signalling, resulting in destabilization of the actin-based cytoskeleton in Sertoli cells and germ cell loss.
Collapse
Affiliation(s)
- Sameer Ahmed Bhat
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India
| | - Aushaq Bashir Malla
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India; Manipal Academy of Higher Education, Manipal 576104, India
| | - Vineesha Oddi
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India
| | - Jayraj Sen
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India; Graduate Studies, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India.
| |
Collapse
|
12
|
Aguirre T, Dornan GL, Hostachy S, Neuenschwander M, Seyffarth C, Haucke V, Schütz A, von Kries JP, Fiedler D. An unconventional gatekeeper mutation sensitizes inositol hexakisphosphate kinases to an allosteric inhibitor. eLife 2023; 12:RP88982. [PMID: 37843983 PMCID: PMC10578927 DOI: 10.7554/elife.88982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Inositol hexakisphosphate kinases (IP6Ks) are emerging as relevant pharmacological targets because a multitude of disease-related phenotypes has been associated with their function. While the development of potent IP6K inhibitors is gaining momentum, a pharmacological tool to distinguish the mammalian isozymes is still lacking. Here, we implemented an analog-sensitive approach for IP6Ks and performed a high-throughput screen to identify suitable lead compounds. The most promising hit, FMP-201300, exhibited high potency and selectivity toward the unique valine gatekeeper mutants of IP6K1 and IP6K2, compared to the respective wild-type (WT) kinases. Biochemical validation experiments revealed an allosteric mechanism of action that was corroborated by hydrogen deuterium exchange mass spectrometry measurements. The latter analysis suggested that displacement of the αC helix, caused by the gatekeeper mutation, facilitates the binding of FMP-201300 to an allosteric pocket adjacent to the ATP-binding site. FMP-201300 therefore serves as a valuable springboard for the further development of compounds that can selectively target the three mammalian IP6Ks; either as analog-sensitive kinase inhibitors or as an allosteric lead compound for the WT kinases.
Collapse
Affiliation(s)
- Tim Aguirre
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Institut für Chemie, Humboldt-Universität zu BerlinBerlinGermany
| | - Gillian L Dornan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Sarah Hostachy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | | | - Carola Seyffarth
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Anja Schütz
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | | | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Institut für Chemie, Humboldt-Universität zu BerlinBerlinGermany
| |
Collapse
|
13
|
Heitmann T, Barrow JC. The Role of Inositol Hexakisphosphate Kinase in the Central Nervous System. Biomolecules 2023; 13:1317. [PMID: 37759717 PMCID: PMC10526494 DOI: 10.3390/biom13091317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Inositol is a unique biological small molecule that can be phosphorylated or even further pyrophosphorylated on each of its six hydroxyl groups. These numerous phosphorylation states of inositol along with the kinases and phosphatases that interconvert them comprise the inositol phosphate signaling pathway. Inositol hexakisphosphate kinases, or IP6Ks, convert the fully mono-phosphorylated inositol to the pyrophosphate 5-IP7 (also denoted IP7). There are three isoforms of IP6K: IP6K1, 2, and 3. Decades of work have established a central role for IP6Ks in cell signaling. Genetic and pharmacologic manipulation of IP6Ks in vivo and in vitro has shown their importance in metabolic disease, chronic kidney disease, insulin signaling, phosphate homeostasis, and numerous other cellular and physiologic processes. In addition to these peripheral processes, a growing body of literature has shown the role of IP6Ks in the central nervous system (CNS). IP6Ks have a key role in synaptic vesicle regulation, Akt/GSK3 signaling, neuronal migration, cell death, autophagy, nuclear translocation, and phosphate homeostasis. IP6Ks' regulation of these cellular processes has functional implications in vivo in behavior and CNS anatomy.
Collapse
Affiliation(s)
- Tyler Heitmann
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, 725 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
- The Lieber Institute for Brain Development, 855 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
| | - James C. Barrow
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, 725 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
- The Lieber Institute for Brain Development, 855 North Wolfe Street Suite 300, Baltimore, MD 21205, USA
| |
Collapse
|
14
|
Ritter K, Jork N, Unmüßig AS, Köhn M, Jessen HJ. Assigning the Absolute Configuration of Inositol Poly- and Pyrophosphates by NMR Using a Single Chiral Solvating Agent. Biomolecules 2023; 13:1150. [PMID: 37509185 PMCID: PMC10377360 DOI: 10.3390/biom13071150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Inositol phosphates constitute a family of highly charged messenger molecules that play diverse roles in cellular processes. The various phosphorylation patterns they exhibit give rise to a vast array of different compounds. To fully comprehend the biological interconnections, the precise molecular identification of each compound is crucial. Since the myo-inositol scaffold possesses an internal mirror plane, enantiomeric pairs can be formed. Most commonly employed methods for analyzing InsPs have been geared towards resolving regioisomers, but they have not been capable of resolving enantiomers. In this study, we present a general approach for enantiomer assignment using NMR measurements. To achieve this goal, we used 31P-NMR in the presence of L-arginine amide as a chiral solvating agent, which enables the differentiation of enantiomers. Using chemically synthesized standard compounds allows for an unambiguous assignment of the enantiomers. This method was applied to highly phosphorylated inositol pyrophosphates, as well as to lowly phosphorylated inositol phosphates and bisphosphonate analogs. Our method will facilitate the assignment of biologically relevant isomers when isolating naturally occurring compounds from biological specimens.
Collapse
Affiliation(s)
- Kevin Ritter
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Jork
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Anne-Sophie Unmüßig
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Maja Köhn
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Institute of Biology 3, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- BIOSS-Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
15
|
Pipercevic J, Kohl B, Gerasimaite R, Comte-Miserez V, Hostachy S, Müntener T, Agustoni E, Jessen HJ, Fiedler D, Mayer A, Hiller S. Inositol pyrophosphates activate the vacuolar transport chaperone complex in yeast by disrupting a homotypic SPX domain interaction. Nat Commun 2023; 14:2645. [PMID: 37156835 PMCID: PMC10167327 DOI: 10.1038/s41467-023-38315-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 04/25/2023] [Indexed: 05/10/2023] Open
Abstract
Many proteins involved in eukaryotic phosphate homeostasis are regulated by SPX domains. In yeast, the vacuolar transporter chaperone (VTC) complex contains two such domains, but mechanistic details of its regulation are not well understood. Here, we show at the atomic level how inositol pyrophosphates interact with SPX domains of subunits Vtc2 and Vtc3 to control the activity of the VTC complex. Vtc2 inhibits the catalytically active VTC subunit Vtc4 by homotypic SPX-SPX interactions via the conserved helix α1 and the previously undescribed helix α7. Binding of inositol pyrophosphates to Vtc2 abrogates this interaction, thus activating the VTC complex. Accordingly, VTC activation is also achieved by site-specific point mutations that disrupt the SPX-SPX interface. Structural data suggest that ligand binding induces reorientation of helix α1 and exposes the modifiable helix α7, which might facilitate its post-translational modification in vivo. The variable composition of these regions within the SPX domain family might contribute to the diversified SPX functions in eukaryotic phosphate homeostasis.
Collapse
Affiliation(s)
- Joka Pipercevic
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Bastian Kohl
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Ruta Gerasimaite
- Department of Immunobiology, University of Lausanne, Chemin des Boveresses 155, CP51 1066, Epalinges, Switzerland
- Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Véronique Comte-Miserez
- Department of Immunobiology, University of Lausanne, Chemin des Boveresses 155, CP51 1066, Epalinges, Switzerland
| | - Sarah Hostachy
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Thomas Müntener
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Elia Agustoni
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Henning Jacob Jessen
- Institute of Organic Chemistry, University of Freiburg, Albertstraße 21, 79104, Freiburg, Germany
| | - Dorothea Fiedler
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Chemin des Boveresses 155, CP51 1066, Epalinges, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland.
| |
Collapse
|
16
|
Kurz L, Schmieder P, Veiga N, Fiedler D. One Scaffold, Two Conformations: The Ring-Flip of the Messenger InsP8 Occurs under Cytosolic Conditions. Biomolecules 2023; 13:biom13040645. [PMID: 37189392 DOI: 10.3390/biom13040645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Inositol poly- and pyrophosphates (InsPs and PP-InsPs) are central eukaryotic messengers. These very highly phosphorylated molecules can exist in two distinct conformations, a canonical one with five phosphoryl groups in equatorial positions, and a “flipped” conformation with five axial substituents. Using 13C-labeled InsPs/PP-InsPs, the behavior of these molecules was investigated by 2D-NMR under solution conditions reminiscent of a cytosolic environment. Remarkably, the most highly phosphorylated messenger 1,5(PP)2-InsP4 (also termed InsP8) readily adopts both conformations at physiological conditions. Environmental factors—such as pH, metal cation composition, and temperature—strongly influence the conformational equilibrium. Thermodynamic data revealed that the transition of InsP8 from the equatorial to the axial conformation is, in fact, an exothermic process. The speciation of InsPs and PP-InsPs also affects their interaction with protein binding partners; addition of Mg2+ decreased the binding constant Kd of InsP8 to an SPX protein domain. The results illustrate that PP-InsP speciation reacts very sensitively to solution conditions, suggesting it might act as an environment-responsive molecular switch.
Collapse
Affiliation(s)
- Leonie Kurz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Nicolás Veiga
- Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República (UdelaR), Av. Gral. Flores 2124, Montevideo 11800, Uruguay
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
17
|
Li H, Datunashvili M, Reyes RC, Voglmaier SM. Inositol hexakisphosphate kinases differentially regulate trafficking of vesicular glutamate transporters 1 and 2. Front Cell Neurosci 2022; 16:926794. [PMID: 35936490 PMCID: PMC9355605 DOI: 10.3389/fncel.2022.926794] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Inositol pyrophosphates have been implicated in cellular signaling and membrane trafficking, including synaptic vesicle (SV) recycling. Inositol hexakisphosphate kinases (IP6Ks) and their product, diphosphoinositol pentakisphosphate (PP-IP5 or IP7), directly and indirectly regulate proteins important in vesicle recycling by the activity-dependent bulk endocytosis pathway (ADBE). In the present study, we show that two isoforms, IP6K1 and IP6K3, are expressed in axons. The role of the kinases in SV recycling are investigated using pharmacologic inhibition, shRNA knockdown, and IP6K1 and IP6K3 knockout mice. Live-cell imaging experiments use optical reporters of SV recycling based on vesicular glutamate transporter isoforms, VGLUT1- and VGLUT2-pHluorins (pH), which recycle differently. VGLUT1-pH recycles by classical AP-2 dependent endocytosis under moderate stimulation conditions, while VGLUT2-pH recycles using AP-1 and AP-3 adaptor proteins as well. Using a short stimulus to release the readily releasable pool (RRP), we show that IP6K1 KO increases exocytosis of both VGLUT1-and VGLUT2-pH, while IP6K3 KO decreases the amount of both transporters in the RRP. In electrophysiological experiments we measure glutamate signaling with short stimuli and under the intense stimulation conditions that trigger bulk endocytosis. IP6K1 KO increases synaptic facilitation and IP6K3 KO decreases facilitation compared to wild type in CA1 hippocampal Schaffer collateral synapses. After intense stimulation, the rate of endocytosis of VGLUT2-pH, but not VGLUT1-pH, is increased by knockout, knockdown, and pharmacologic inhibition of IP6Ks. Thus IP6Ks differentially affect the endocytosis of two SV protein cargos that use different endocytic pathways. However, while IP6K1 KO and IP6K3 KO exert similar effects on endocytosis after stimulation, the isoforms exert different effects on exocytosis earlier in the stimulus and on the early phase of glutamate release. Taken together, the data indicate a role for IP6Ks both in exocytosis early in the stimulation period and in endocytosis, particularly under conditions that may utilize AP-1/3 adaptors.
Collapse
|
18
|
Tu-Sekine B, Kim SF. The Inositol Phosphate System-A Coordinator of Metabolic Adaptability. Int J Mol Sci 2022; 23:6747. [PMID: 35743190 PMCID: PMC9223660 DOI: 10.3390/ijms23126747] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
All cells rely on nutrients to supply energy and carbon building blocks to support cellular processes. Over time, eukaryotes have developed increasingly complex systems to integrate information about available nutrients with the internal state of energy stores to activate the necessary processes to meet the immediate and ongoing needs of the cell. One such system is the network of soluble and membrane-associated inositol phosphates that coordinate the cellular responses to nutrient uptake and utilization from growth factor signaling to energy homeostasis. In this review, we discuss the coordinated interactions of the inositol polyphosphates, inositol pyrophosphates, and phosphoinositides in major metabolic signaling pathways to illustrate the central importance of the inositol phosphate signaling network in nutrient responses.
Collapse
Affiliation(s)
- Becky Tu-Sekine
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, MD 21224, USA;
| | - Sangwon F. Kim
- Department of Medicine and Neuroscience, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
19
|
Zhou Y, Mukherjee S, Huang D, Chakraborty M, Gu C, Zong G, Stashko MA, Pearce KH, Shears SB, Chakraborty A, Wang H, Wang X. Development of Novel IP6K Inhibitors for the Treatment of Obesity and Obesity-Induced Metabolic Dysfunctions. J Med Chem 2022; 65:6869-6887. [PMID: 35467861 PMCID: PMC9383042 DOI: 10.1021/acs.jmedchem.2c00220] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Obesity and obesity-induced metabolic dysfunctions are significant risk factors for nonalcoholic fatty liver disease and cardiovascular diseases. Thus, obesity is an economic and social burden in developed countries. Blocking the synthesis of inositol pyrophosphates by inositol hexakisphosphate kinase (IP6K) has been identified as a potential therapeutic strategy for obesity and related diseases. We have developed a novel and potent IP6K inhibitor 20 (UNC7467) (IC50 values: IP6K1 8.9 nM; IP6K2 4.9 nM; IP6K3 1320 nM). Inositol phosphate profiling of the HCT116 colon cancer cell line demonstrates that 20 reduced levels of inositol pyrophosphates by 66-81%, without significantly perturbing levels of other inositol phosphates. Furthermore, intraperitoneal injection of 20 in diet-induced obese mice improved glycemic profiles, ameliorated hepatic steatosis, and reduced weight gain without altering food intake. Thus, inhibitor 20 can be used as an in vivo probe for IP6K-related research. Moreover, it may have therapeutic relevance in treating obesity and related diseases.
Collapse
Affiliation(s)
- Yubai Zhou
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sandip Mukherjee
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, M370, Schwitalla Hall, 1402 South Grand Boulevard, Saint Louis, Missouri 63104, United States
| | - Daowei Huang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Molee Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, M370, Schwitalla Hall, 1402 South Grand Boulevard, Saint Louis, Missouri 63104, United States
| | - Chunfang Gu
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - Guangning Zong
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - Michael A Stashko
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kenneth H Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephen B Shears
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - Anutosh Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, M370, Schwitalla Hall, 1402 South Grand Boulevard, Saint Louis, Missouri 63104, United States
| | - Huanchen Wang
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
20
|
Nagpal L, Kornberg MD, Snyder SH. Inositol hexakisphosphate kinase-2 non-catalytically regulates mitophagy by attenuating PINK1 signaling. Proc Natl Acad Sci U S A 2022; 119:e2121946119. [PMID: 35353626 PMCID: PMC9169102 DOI: 10.1073/pnas.2121946119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Inositol pyrophosphates, such as 5-diphosphoinositol pentakisphosphate (IP7), are generated by a family of inositol hexakisphosphate kinases (IP6Ks), of which IP6K2 has been implicated in various cellular functions including neuroprotection. Absence of IP6K2 causes impairment of oxidative phosphorylation regulated by creatine kinase-B. In the present study, we show that IP6K2 is involved in attenuation of PINK1-mediated mitochondrial autophagy (mitophagy) in the brain. Up-regulation of dynamin-related protein (Drp-1), as well as increased expression of mitochondrial biogenesis markers (PGC1-α and NRF-1) in the cerebella of IP6K2-deleted mice (IP6K2-knockout), point to the involvement of IP6K2 in the regulation of mitochondrial fission. Knockdown of IP6K2 also leads to augmented glycolysis, potentially as a compensatory mechanism for decreased mitochondrial respiration. Overexpressing IP6K2 as well as IP6K2-kinase dead mutant in IP6K2-knockdown N2A cells reverses the expression of mitophagy markers, demonstrating that IP6K2-induced mitoprotection is catalytically/kinase independent. IP6K2 supplementation in K2-PINK1 double-knockdown N2A cells fails to reverse the expression of the mitophagic marker, LC3-II, indicating that the mitoprotective effect of IP6K2 is dependent on PINK1. Overall, our study reveals a key neuroprotective role of IP6K2 in the prevention of PINK1-mediated mitophagy in the brain.
Collapse
Affiliation(s)
- Latika Nagpal
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Michael D. Kornberg
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
21
|
Whole Body Ip6k1 Deletion Protects Mice from Age-Induced Weight Gain, Insulin Resistance and Metabolic Dysfunction. Int J Mol Sci 2022; 23:ijms23042059. [PMID: 35216174 PMCID: PMC8878859 DOI: 10.3390/ijms23042059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
(1) Background: We previously demonstrated that disruption of IP6K1 improves metabolism, protecting mice from high-fat diet-induced obesity, insulin resistance, and non-alcoholic fatty liver disease and steatohepatitis. Age-induced metabolic dysfunction is a major risk factor for metabolic diseases. The involvement of IP6K1 in this process is unknown. (2) Methods: Here, we compared body and fat mass, insulin sensitivity, energy expenditure and serum-, adipose tissue- and liver-metabolic parameters of chow-fed, aged, wild type (aWT) and whole body Ip6k1 knockout (aKO) mice. (3) Results: IP6K1 was upregulated in the adipose tissue and liver of aWT mice compared to young WT mice. Moreover, Ip6k1 deletion blocked age-induced increase in body- and fat-weight and insulin resistance in mice. aKO mice oxidized carbohydrates more efficiently. The knockouts displayed reduced levels of serum insulin, triglycerides, and non-esterified fatty acids. Ip6k1 deletion partly protected age-induced decline of the thermogenic uncoupling protein UCP1 in inguinal white adipose tissue. Targets inhibited by IP6K1 activity such as the insulin sensitivity- and energy expenditure-inducing protein kinases, protein kinase B (PKB/Akt) and AMP-activated protein kinase (AMPK), were activated in the adipose tissue and liver of aKO mice. (4) Conclusions: Ip6k1 deletion maintains healthy metabolism in aging and thus, targeting this kinase may delay the development of age-induced metabolic dysfunction.
Collapse
|
22
|
Lee S, Park BB, Kwon H, Kim V, Jeon JS, Lee R, Subedi M, Lim T, Ha H, An D, Kim J, Kim D, Kim SK, Kim S, Byun Y. TNP and its analogs: Modulation of IP6K and CYP3A4 inhibition. J Enzyme Inhib Med Chem 2021; 37:269-279. [PMID: 34894957 PMCID: PMC8667942 DOI: 10.1080/14756366.2021.2000404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Inositol hexakisphosphate kinase (IP6K) is an important mammalian enzyme involved in various biological processes such as insulin signalling and blood clotting. Recent analyses on drug metabolism and pharmacokinetic properties on TNP (N2-(m-trifluorobenzyl), N6-(p-nitrobenzyl)purine), a pan-IP6K inhibitor, have suggested that it may inhibit cytochrome P450 (CYP450) enzymes and induce unwanted drug-drug interactions in the liver. In this study, we confirmed that TNP inhibits CYP3A4 in type I binding mode more selectively than the other CYP450 isoforms. In an effort to find novel purine-based IP6K inhibitors with minimal CYP3A4 inhibition, we designed and synthesised 15 TNP analogs. Structure-activity relationship and biochemical studies, including ADP-Glo kinase assay and quantification of cell-based IP7 production, showed that compound 9 dramatically reduced CYP3A4 inhibition while retaining IP6K-inhibitory activity. Compound 9 can be a tool molecule for structural optimisation of purine-based IP6K inhibitors.
Collapse
Affiliation(s)
- Seulgi Lee
- Department of Biological Sciences, KAIST, Daejeon, South Korea
| | | | - Hongmok Kwon
- College of Pharmacy, Korea University, Sejong, South Korea
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Jang Su Jeon
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Rowoon Lee
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Milan Subedi
- College of Pharmacy, Korea University, Sejong, South Korea
| | - Taehyeong Lim
- College of Pharmacy, Korea University, Sejong, South Korea
| | - Hyunsoo Ha
- College of Pharmacy, Korea University, Sejong, South Korea
| | - Dongju An
- Department of Biological Sciences, KAIST, Daejeon, South Korea
| | - Jaehoon Kim
- Department of Biological Sciences, KAIST, Daejeon, South Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Seyun Kim
- Department of Biological Sciences, KAIST, Daejeon, South Korea.,KAIST Institute for the BioCentury, KAIST, Daejeon, South Korea
| | - Youngjoo Byun
- Department of Biological Sciences, KAIST, Daejeon, South Korea.,Biomedical Research Center, Korea University Guro Hospital, Seoul, South Korea
| |
Collapse
|
23
|
Mukherjee S, Chakraborty M, Ulmasov B, McCommis K, Zhang J, Carpenter D, Msengi EN, Haubner J, Guo C, Pike DP, Ghoshal S, Ford DA, Neuschwander-Tetri BA, Chakraborty A. Pleiotropic actions of IP6K1 mediate hepatic metabolic dysfunction to promote nonalcoholic fatty liver disease and steatohepatitis. Mol Metab 2021; 54:101364. [PMID: 34757046 PMCID: PMC8609165 DOI: 10.1016/j.molmet.2021.101364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 10/23/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Obesity and insulin resistance greatly increase the risk of nonalcoholic fatty liver disease and steatohepatitis (NAFLD/NASH). We have previously discovered that whole-body and adipocyte-specific Ip6k1deletion protects mice from high-fat-diet-induced obesity and insulin resistance due to improved adipocyte thermogenesis and insulin signaling. Here, we aimed to determine the impact of hepatocyte-specific and whole-body Ip6k1 deletion (HKO and Ip6k1-KO or KO) on liver metabolism and NAFLD/NASH. METHODS Body weight and composition; energy expenditure; glycemic profiles; and serum and liver metabolic, inflammatory, fibrotic and toxicity parameters were assessed in mice fed Western and high-fructose diet (HFrD) (WD: 40% kcal fat, 1.25% cholesterol, no added choline and HFrD: 60% kcal fructose). Mitochondrial oxidative capacity was evaluated in isolated hepatocytes. RNA-Seq was performed in liver samples. Livers from human NASH patients were analyzed by immunoblotting and mass spectrometry. RESULTS HKO mice displayed increased hepatocyte mitochondrial oxidative capacity and improved insulin sensitivity but were not resistant to body weight gain. Improved hepatocyte metabolism partially protected HKO mice from NAFLD/NASH. In contrast, enhanced whole-body metabolism and reduced body fat accumulation significantly protected whole-body Ip6k1-KO mice from NAFLD/NASH. Mitochondrial oxidative pathways were upregulated, whereas gluconeogenic and fibrogenic pathways were downregulated in Ip6k1-KO livers. Furthermore, IP6K1 was upregulated in human NASH livers and interacted with the enzyme O-GlcNAcase that reduces protein O-GlcNAcylation. Protein O-GlcNAcylation was found to be reduced in Ip6k1-KO and HKO mouse livers. CONCLUSION Pleiotropic actions of IP6K1 in the liver and other metabolic tissues mediate hepatic metabolic dysfunction and NAFLD/NASH, and thus IP6K1 deletion may be a potential treatment target for this disease.
Collapse
Affiliation(s)
- Sandip Mukherjee
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Molee Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Barbara Ulmasov
- Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Kyle McCommis
- Department of Biochemistry, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Danielle Carpenter
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Eliwaza Naomi Msengi
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Jake Haubner
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Chun Guo
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Daniel P Pike
- Department of Biochemistry, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Sarbani Ghoshal
- Department of Biological Sc. and Geology, QCC-CUNY, Bayside, NY, USA
| | - David A Ford
- Department of Biochemistry, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Brent A Neuschwander-Tetri
- Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Anutosh Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.
| |
Collapse
|
24
|
Zhang X, Li N, Zhang J, Zhang Y, Yang X, Luo Y, Zhang B, Xu Z, Zhu Z, Yang X, Yan Y, Lin B, Wang S, Chen D, Ye C, Ding Y, Lou M, Wu Q, Hou Z, Zhang K, Liang Z, Wei A, Wang B, Wang C, Jiang N, Zhang W, Xiao G, Ma C, Ren Y, Qi X, Han W, Wang C, Rao F. 5-IP 7 is a GPCR messenger mediating neural control of synaptotagmin-dependent insulin exocytosis and glucose homeostasis. Nat Metab 2021; 3:1400-1414. [PMID: 34663975 DOI: 10.1038/s42255-021-00468-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 09/02/2021] [Indexed: 11/08/2022]
Abstract
5-diphosphoinositol pentakisphosphate (5-IP7) is a signalling metabolite linked to various cellular processes. How extracellular stimuli elicit 5-IP7 signalling remains unclear. Here we show that 5-IP7 in β cells mediates parasympathetic stimulation of synaptotagmin-7 (Syt7)-dependent insulin release. Mechanistically, vagal stimulation and activation of muscarinic acetylcholine receptors triggers Gαq-PLC-PKC-PKD-dependent signalling and activates IP6K1, the 5-IP7 synthase. Whereas both 5-IP7 and its precursor IP6 compete with PIP2 for binding to Syt7, Ca2+ selectively binds 5-IP7 with high affinity, freeing Syt7 to enable fusion of insulin-containing vesicles with the cell membrane. β-cell-specific IP6K1 deletion diminishes insulin secretion and glucose clearance elicited by muscarinic stimulation, whereas mice carrying a phosphorylation-mimicking, hyperactive IP6K1 mutant display augmented insulin release, congenital hyperinsulinaemia and obesity. These phenotypes are absent in mice lacking Syt7. Our study proposes a new conceptual framework for inositol pyrophosphate physiology in which 5-IP7 acts as a GPCR second messenger at the interface between peripheral nervous system and metabolic organs, transmitting Gq-coupled GPCR stimulation to unclamp Syt7-dependent, and perhaps other, exocytotic events.
Collapse
Affiliation(s)
- Xiaozhe Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Na Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jun Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yanshen Zhang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoli Yang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yifan Luo
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Bobo Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhixue Xu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhenhua Zhu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xiuyan Yang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuan Yan
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Biao Lin
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Da Chen
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Caichao Ye
- Department of Physics and Shenzhen Institute for Quantum Science & Technology, Southern University of Science and Technology, Shenzhen, China
| | - Yan Ding
- National Institute of Biological Sciences, Beijing, China
| | - Mingliang Lou
- National Institute of Biological Sciences, Beijing, China
| | - Qingcui Wu
- National Institute of Biological Sciences, Beijing, China
| | - Zhanfeng Hou
- National Institute of Biological Sciences, Beijing, China
| | - Keren Zhang
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Shenzhen, China
| | - Ziming Liang
- Department of Hepatic Surgery, the Third People's Hospital of Shenzhen and the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Anqi Wei
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Bianbian Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Changhe Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Nan Jiang
- Department of Hepatic Surgery, the Third People's Hospital of Shenzhen and the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Wenqing Zhang
- Department of Physics and Shenzhen Institute for Quantum Science & Technology, Southern University of Science and Technology, Shenzhen, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Ren
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Shenzhen, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing, China
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore, Singapore
- Center for Neuro-Metabolism and Regeneration Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Chao Wang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Feng Rao
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
25
|
Sandström J, Balian A, Lockowandt R, Fornander T, Nordenskjöld B, Lindström L, Pérez-Tenorio G, Stål O. IP6K2 predicts favorable clinical outcome of primary breast cancer. Mol Clin Oncol 2021; 14:94. [PMID: 33767863 PMCID: PMC7976380 DOI: 10.3892/mco.2021.2256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/09/2021] [Indexed: 01/15/2023] Open
Abstract
The inositol hexakisphosphate kinase (IP6K) 1 and 2 genes are localized at 3p21.31, a highly altered gene-dense chromosomal region in cancer. The IP6Ks convert IP6 to IP7, which inhibits activation of the tumor-promoting PI3K/Akt/mTOR signaling pathway. IP6K2 has been suggested to be involved in p53-induced apoptosis, while IP6K1 may stimulate tumor growth and migration. The present study aimed to elucidate the role of the two IP6Ks in predicting outcome in patients with breast cancer. To the best of our knowledge, the role of IP6K was analyzed for the first time in tumors from three cohorts of patients with breast cancer; one Swedish low-risk cohort, one Dutch cohort and the TCGA dataset. Analyses of gene -and protein expression and subcellular localization were included. IP6K2 gene expression was associated with ER positivity and nuclear p-Akt. Improved prognosis was detected with high IP6K2 gene expression compared with low IP6K2 gene expression in systemically untreated patients in the Swedish low-risk and Dutch cohorts. In the TCGA dataset, IP6K2 prognostic value was significant when selecting for tumors with wild-type TP53. A multivariable analysis testing IP6K2 against other cancer-related genes at 3p.21.31, including IP6K1 and clinical biomarkers, revealed that IP6K2 was associated with decreased risk of distant recurrence. IP6K1 was associated with increased risk of distant recurrence in the multivariable test and protein analysis revealed trends of worse prognosis with high IP6K1 in the cytoplasm. The expression levels of IP6K1 and IP6K2 were associated to a high extent; however, a diverging prognostic value of the two genes was observed in breast cancer. The present data suggest that IP6K2 can be a favorable prognostic factor, while IP6K1 may not be.
Collapse
Affiliation(s)
- Josefine Sandström
- Department of Biomedical and Clinical Sciences and Department of Oncology, Linköping University, 581 83 Linköping, Sweden
| | - Alien Balian
- Department of Biomedical and Clinical Sciences and Department of Oncology, Linköping University, 581 83 Linköping, Sweden
| | - Rebecca Lockowandt
- Department of Biomedical and Clinical Sciences and Department of Oncology, Linköping University, 581 83 Linköping, Sweden
| | - Tommy Fornander
- Department of Oncology-Pathology, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Bo Nordenskjöld
- Department of Biomedical and Clinical Sciences and Department of Oncology, Linköping University, 581 83 Linköping, Sweden
| | - Linda Lindström
- Department of Biosciences and Nutrition, Karolinska Institute, 141 83 Stockholm, Sweden
| | - Gizeh Pérez-Tenorio
- Department of Biomedical and Clinical Sciences and Department of Oncology, Linköping University, 581 83 Linköping, Sweden
| | - Olle Stål
- Department of Biomedical and Clinical Sciences and Department of Oncology, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
26
|
Barker CJ, Tessaro FHG, Ferreira SDS, Simas R, Ayala TS, Köhler M, Rajasekaran SS, Martins JO, Darè E, Berggren PO. XPR1 Mediates the Pancreatic β-Cell Phosphate Flush. Diabetes 2021; 70:111-118. [PMID: 32826297 PMCID: PMC7881847 DOI: 10.2337/db19-0633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/17/2020] [Indexed: 11/13/2022]
Abstract
Glucose-stimulated insulin secretion is the hallmark of the pancreatic β-cell, a critical player in the regulation of blood glucose concentration. In 1974, the remarkable observation was made that an efflux of intracellular inorganic phosphate (Pi) accompanied the events of stimulated insulin secretion. The mechanism behind this "phosphate flush," its association with insulin secretion, and its regulation have since then remained a mystery. We recapitulated the phosphate flush in the MIN6m9 β-cell line and pseudoislets. We demonstrated that knockdown of XPR1, a phosphate transporter present in MIN6m9 cells and pancreatic islets, prevented this flush. Concomitantly, XPR1 silencing led to intracellular Pi accumulation and a potential impact on Ca2+ signaling. XPR1 knockdown slightly blunted first-phase glucose-stimulated insulin secretion in MIN6m9 cells, but had no significant impact on pseudoislet secretion. In keeping with other cell types, basal Pi efflux was stimulated by inositol pyrophosphates, and basal intracellular Pi accumulated following knockdown of inositol hexakisphosphate kinases. However, the glucose-driven phosphate flush occurred despite inositol pyrophosphate depletion. Finally, while it is unlikely that XPR1 directly affects exocytosis, it may protect Ca2+ signaling. Thus, we have revealed XPR1 as the missing mediator of the phosphate flush, shedding light on a 45-year-old mystery.
Collapse
Affiliation(s)
- Christopher J Barker
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Fernando Henrique Galvão Tessaro
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University São Paulo, São Paulo, Brazil
| | - Sabrina de Souza Ferreira
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University São Paulo, São Paulo, Brazil
| | - Rafael Simas
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Thais S Ayala
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University São Paulo, São Paulo, Brazil
| | - Martin Köhler
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | | | - Joilson O Martins
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University São Paulo, São Paulo, Brazil
| | - Elisabetta Darè
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Qiu D, Wilson MS, Eisenbeis VB, Harmel RK, Riemer E, Haas TM, Wittwer C, Jork N, Gu C, Shears SB, Schaaf G, Kammerer B, Fiedler D, Saiardi A, Jessen HJ. Analysis of inositol phosphate metabolism by capillary electrophoresis electrospray ionization mass spectrometry. Nat Commun 2020; 11:6035. [PMID: 33247133 PMCID: PMC7695695 DOI: 10.1038/s41467-020-19928-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/06/2020] [Indexed: 12/22/2022] Open
Abstract
The analysis of myo-inositol phosphates (InsPs) and myo-inositol pyrophosphates (PP-InsPs) is a daunting challenge due to the large number of possible isomers, the absence of a chromophore, the high charge density, the low abundance, and the instability of the esters and anhydrides. Given their importance in biology, an analytical approach to follow and understand this complex signaling hub is desirable. Here, capillary electrophoresis (CE) coupled to electrospray ionization mass spectrometry (ESI-MS) is implemented to analyze complex mixtures of InsPs and PP-InsPs with high sensitivity. Stable isotope labeled (SIL) internal standards allow for matrix-independent quantitative assignment. The method is validated in wild-type and knockout mammalian cell lines and in model organisms. SIL-CE-ESI-MS enables the accurate monitoring of InsPs and PP-InsPs arising from compartmentalized cellular synthesis pathways, by feeding cells with either [13C6]-myo-inositol or [13C6]-D-glucose. In doing so, we provide evidence for the existence of unknown inositol synthesis pathways in mammals, highlighting the potential of this method to dissect inositol phosphate metabolism and signalling. Myo-Inositol phosphates (InsPs) and pyrophosphates (PP-InsPs) are important second messengers but their analysis remains challenging. Here, the authors develop a capillary electrophoresis-mass spectrometry method for the identification and quantitation of InsP and PP-InsP isomers in cells and tissues.
Collapse
Affiliation(s)
- Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany.
| | - Miranda S Wilson
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Verena B Eisenbeis
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Robert K Harmel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Esther Riemer
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany
| | - Thomas M Haas
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Christopher Wittwer
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Nikolaus Jork
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Chunfang Gu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Stephen B Shears
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany
| | - Bernd Kammerer
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Adolfo Saiardi
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK.
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany. .,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
28
|
Minini M, Senni A, Unfer V, Bizzarri M. The Key Role of IP 6K: A Novel Target for Anticancer Treatments? Molecules 2020; 25:molecules25194401. [PMID: 32992691 PMCID: PMC7583815 DOI: 10.3390/molecules25194401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
Inositol and its phosphate metabolites play a pivotal role in several biochemical pathways and gene expression regulation: inositol pyrophosphates (PP-IPs) have been increasingly appreciated as key signaling modulators. Fluctuations in their intracellular levels hugely impact the transfer of phosphates and the phosphorylation status of several target proteins. Pharmacological modulation of the proteins associated with PP-IP activities has proved to be beneficial in various pathological settings. IP7 has been extensively studied and found to play a key role in pathways associated with PP-IP activities. Three inositol hexakisphosphate kinase (IP6K) isoforms regulate IP7 synthesis in mammals. Genomic deletion or enzymic inhibition of IP6K1 has been shown to reduce cell invasiveness and migration capacity, protecting against chemical-induced carcinogenesis. IP6K1 could therefore be a useful target in anticancer treatment. Here, we summarize the current understanding that established IP6K1 and the other IP6K isoforms as possible targets for cancer therapy. However, it will be necessary to determine whether pharmacological inhibition of IP6K is safe enough to begin clinical study. The development of safe and selective inhibitors of IP6K isoforms is required to minimize undesirable effects.
Collapse
Affiliation(s)
- Mirko Minini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Department of Surgery ‘P. Valdoni’, Sapienza University of Rome, 00161 Rome, Italy
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.M.); (M.B.)
| | - Alice Senni
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Department of Surgery ‘P. Valdoni’, Sapienza University of Rome, 00161 Rome, Italy
| | - Vittorio Unfer
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.M.); (M.B.)
| |
Collapse
|
29
|
Abstract
The specific non-invasive control of intracellular signaling events requires advanced tools that enter cells by diffusion and are controllable by light. Here, we detail the synthesis and application of membrane-permeant caged inositol pyrophosphates with respect to cell entry and cell distribution. We recently published the synthesis of these tools as well as their effect on PH-domain localization in HeLa cells and oscillations of the intracellular calcium concentration in β-cells, which are known to drive insulin secretion. In this chapter, we discuss the possibilities and limitations when using cell-penetrating inositol pyrophosphates. We provide a detailed protocol for the application in live mouse β-cells and we discuss the image analysis needed for following effects on calcium signaling.
Collapse
|
30
|
Greene E, Mallmann B, Wilson JW, Cowieson AJ, Dridi S. Monitoring Phytate Hydrolysis Using Serial Blood Sampling and Feather Myo-Inositol Levels in Broilers. Front Physiol 2020; 11:736. [PMID: 32676038 PMCID: PMC7333251 DOI: 10.3389/fphys.2020.00736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/08/2020] [Indexed: 12/23/2022] Open
Abstract
Phytate forms insoluble precipitates with various cations that are recalcitrant to digestion in poultry. Dietary supplementation with exogenous phytase has been shown to improve phytate solubility and digestibility and, in turn, improve animal growth performance. Although the kinetics of phytate hydrolysis by exogenous phytase are well described in vitro, the progression of the reaction in vivo is still not well defined. The aim of the present study was, therefore, to monitor the kinetic variation of myo-inositol (myo-Ins) levels in both circulation and feather following exogenous phytase supplementation. In experiment 1, 4 week-old male broilers were individually housed with ad libitum access to water and a standard commercial diet. Birds were maintained under environmental temperature of 24°C and 30% RH. Birds were cannulated in the cutaneous ulnar vein on the right wing and remained untouched for 3 days. On the day of the experiment, birds were randomly divided into three body weight-matched groups and fed either the control diet, the control diet-supplemented with myo-Ins or Ronozyme HiPhos (0.06%, DSM Nutritional Products, Switzerland) for 10 h. In the experiment 2, birds were fed only HiPhos for 30 h. Growing feathers and blood were collected at baseline and then every 2 h for 10 h (experiment 1) and 30 h (experiment 2) post-prandially. Plasma and feather myo-Ins levels were determined by UHPLC-MS/MS. The relative expression of inositol polyphosphate-1-phosphatase (INPP1), inositol hexakisphosphate kinase 1-3 (IP6K1-3), inositol-3-phosphate synthase (ISYNA), and multiple inositol-polyphosphate phosphatase 1 (MNPP1) genes in blood and feathers was determined by real-time qPCR using 2–ΔΔCt method. Plasma and feather myo-Ins levels were significantly increased by HiPhos at 6 h to 8 h post-prandial. The mRNA abundances of INPP1, IP6K1, and ISYNA in the circulation were significantly down regulated at all periods compared to the baseline levels. IP6K2, IP6K3, and MINPP1 gene expression, however, was up regulated at 8 h post-prandial and then returned to the baseline levels. In feathers, the expression of INPP1 was induced at 8 h post-prandial and remained higher compared to the baseline. The expression of IP6K2, IP6K3, and MINPP1 was down regulated during the first 10 h and then returned to baseline levels for the rest of the post-prandial period. Taken together, our data show that phytase modulates the expression of genes associated with myo-Ins metabolism and generates release of myo-Ins in both circulation and feather at 6–10 h post-feeding. Feather myo-Ins concentration could be used as a non-invasive method to monitor phytate hydrolysis in practice.
Collapse
Affiliation(s)
- Elizabeth Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Barbara Mallmann
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | | | | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
31
|
Bittner T, Wittwer C, Hauke S, Wohlwend D, Mundinger S, Dutta AK, Bezold D, Dürr T, Friedrich T, Schultz C, Jessen HJ. Photolysis of Caged Inositol Pyrophosphate InsP 8 Directly Modulates Intracellular Ca 2+ Oscillations and Controls C2AB Domain Localization. J Am Chem Soc 2020; 142:10606-10611. [PMID: 32459478 DOI: 10.1021/jacs.0c01697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inositol pyrophosphates constitute a family of hyperphosphorylated signaling molecules involved in the regulation of glucose uptake and insulin sensitivity. While our understanding of the biological roles of inositol heptaphosphates (PP-InsP5) has greatly improved, the functions of the inositol octaphosphates ((PP)2-InsP4) have remained unclear. Here we present the synthesis of two enantiomeric cell-permeant and photocaged (PP)2-InsP4 derivatives and apply them to study the functions in living β-cells. Photorelease of the naturally occurring isomer 1,5-(PP)2-InsP4 led to an immediate and concentration-dependent reduction of intracellular calcium oscillations, while other caged inositol pyrophosphates (3,5-(PP)2-InsP4, 5-PP-InsP5, 1-PP-InsP5, 3-PP-InsP5) showed no immediate effect. Furthermore, uncaging of 1,5-(PP)2-InsP4 but not 3,5-(PP)2-InsP4 induced translocation of the C2AB domain of granuphilin from the plasma membrane to the cytosol. Granuphilin is involved in membrane docking of secretory vesicles. This suggests that 1,5-(PP)2-InsP4 impacts β-cell activity by regulating granule localization and/or priming and calcium signaling in concert.
Collapse
Affiliation(s)
- Tamara Bittner
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Christopher Wittwer
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Sebastian Hauke
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Daniel Wohlwend
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Stephan Mundinger
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Amit K Dutta
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Dominik Bezold
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Tobias Dürr
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Thorsten Friedrich
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany
| | - Carsten Schultz
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.,Department of Chemical Physiology and Biochemistry, Oregon Health & Science University (OHSU), Sam Jackson Park Road, Portland, Oregon 97239-3098, United States
| | - Henning J Jessen
- Department of Chemistry and Pharmacy, Albert-Ludwigs University Freiburg, Albertstrasse 21, 79104 Freiburg i.B., Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, 79104 Freiburg i.B., Germany.,Freiburg Research Institute for Advanced Studies (FRIAS), Albert-Ludwigs University Freiburg, Albertstrasse 19, 79104 Freiburg i.B., Germany
| |
Collapse
|
32
|
Inositol Pyrophosphates: Signaling Molecules with Pleiotropic Actions in Mammals. Molecules 2020; 25:molecules25092208. [PMID: 32397291 PMCID: PMC7249018 DOI: 10.3390/molecules25092208] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Inositol pyrophosphates (PP-IPs) such as 5-diphosphoinositol pentakisphosphate (5-IP7) are inositol metabolites containing high-energy phosphoanhydride bonds. Biosynthesis of PP-IPs is mediated by IP6 kinases (IP6Ks) and PPIP5 kinases (PPIP5Ks), which transfer phosphate to inositol hexakisphosphate (IP6). Pleiotropic actions of PP-IPs are involved in many key biological processes, including growth, vesicular remodeling, and energy homeostasis. PP-IPs function to regulate their target proteins through allosteric interactions or protein pyrophosphorylation. This review summarizes the current understanding of how PP-IPs control mammalian cellular signaling networks in physiology and disease.
Collapse
|
33
|
Mukherjee S, Haubner J, Chakraborty A. Targeting the Inositol Pyrophosphate Biosynthetic Enzymes in Metabolic Diseases. Molecules 2020; 25:molecules25061403. [PMID: 32204420 PMCID: PMC7144392 DOI: 10.3390/molecules25061403] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
In mammals, a family of three inositol hexakisphosphate kinases (IP6Ks) synthesizes the inositol pyrophosphate 5-IP7 from IP6. Genetic deletion of Ip6k1 protects mice from high fat diet induced obesity, insulin resistance and fatty liver. IP6K1 generated 5-IP7 promotes insulin secretion from pancreatic β-cells, whereas it reduces insulin signaling in metabolic tissues by inhibiting the protein kinase Akt. Thus, IP6K1 promotes high fat diet induced hyperinsulinemia and insulin resistance in mice while its deletion has the opposite effects. IP6K1 also promotes fat accumulation in the adipose tissue by inhibiting the protein kinase AMPK mediated energy expenditure. Genetic deletion of Ip6k3 protects mice from age induced fat accumulation and insulin resistance. Accordingly, the pan IP6K inhibitor TNP [N2-(m-trifluorobenzyl), N6-(p-nitrobenzyl)purine] ameliorates obesity, insulin resistance and fatty liver in diet induced obese mice by improving Akt and AMPK mediated insulin sensitivity and energy expenditure. TNP also protects mice from bone loss, myocardial infarction and ischemia reperfusion injury. Thus, the IP6K pathway is a potential target in obesity and other metabolic diseases. Here, we summarize the studies that established IP6Ks as a potential target in metabolic diseases. Further studies will reveal whether inhibition of this pathway has similar pleiotropic benefits on metabolic health of humans.
Collapse
|
34
|
Lu H, Cowieson AJ, Wilson JW, Ajuwon KM, Adeola O. Extra-phosphoric effects of super dosing phytase on growth performance of pigs is not solely due to release of myo-inositol. J Anim Sci 2019; 97:3898-3906. [PMID: 31284292 DOI: 10.1093/jas/skz232] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/06/2019] [Indexed: 12/20/2022] Open
Abstract
Two experiments were conducted to determine the effects of myo-inositol and phytase on growth performance, plasma metabolites, and nutrient digestibility of growing pigs. In experiment 1, 96 growing pigs with average initial body weight (BW) of 26.2 kg were used in a 25-d growth performance study. Pigs were assigned to four dietary treatments with three pigs per pen and eight replicate pens per treatment in a randomized complete block design. The four treatments were control diet (CD); CD + 2 g/kg inositol; CD + 1,000 FYT/kg phytase and CD + 3,000 FYT/kg phytase. Pigs were weighed individually every week. On day 25, blood sample was collected from one pig per pen to measure plasma metabolites concentrations. In experiment 2, 16 barrows (initial BW 34.8 ± 8.2 kg) were surgically fitted with T-cannulas. Pigs were allotted to four blocks based on BW and assigned to a quadruplicate 4 × 2 incomplete Latin square design with same four dietary treatments and two periods. Ileal digesta samples were collected from each pig on days 6 and 7 of each period to determine apparent ileal digestibility (AID) of nutrients. Phytase supplementation increased final BW and average daily gain (ADG) compared with CD (P < 0.05) with no effects on average daily feed intake (ADFI) and gain to feed (G:F) was higher in 3,000 FYT/kg phytase (P < 0.05). Inositol supplementation had no effects on growth performance. Plasma myo-inositol concentration was increased by inositol supplementation, and 3,000 FYT/kg phytase increased myo-inositol in the plasma by 97.2% (P < 0.05). Plasma P concentration was increased by 1,000 or 3,000 FYT/kg phytase with no effects on alkaline phosphatase (ALP), glucose, triglycerides (TAG), calcium (Ca), and urea concentrations. Phytase supplementation reduced (P < 0.05) the phytate-P concentration in the ileal digesta and increased the digestibility of phytate-P and total P with no effects on the AID of dry matter (DM), gross energy (GE), nitrogen (N), and Ca. In conclusion, the beneficial effects of 3,000 FYT/kg phytase on feed efficiency may due to the increased release of both myo-inositol and phosphorus (P), and may not be solely due to myo-inositol release by this level of phytase.
Collapse
Affiliation(s)
- Hang Lu
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| | | | | | - Kolapo M Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| | - Olayiwola Adeola
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| |
Collapse
|
35
|
Lu H, Kühn I, Bedford MR, Whitfield H, Brearley C, Adeola O, Ajuwon KM. Effect of phytase on intestinal phytate breakdown, plasma inositol concentrations, and glucose transporter type 4 abundance in muscle membranes of weanling pigs1. J Anim Sci 2019; 97:3907-3919. [PMID: 31294448 DOI: 10.1093/jas/skz234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022] Open
Abstract
The objective of this present study was to determine the effects of phytase dosing on growth performance, mineral digestibility, phytate breakdown, and the level of glucose transporter type 4 (GLUT4) in muscle plasma membranes of weanling pigs. A total of 160 barrows were used in a randomized completely block design and assigned to 4 treatments for a 7-wk study. Depending on the feeding phase, diets differed in dietary calcium (Ca) and phosphorus (P) levels (positive control [PC]: 8 to 6.8g/kg Ca; 7.3 to 6.3 g/kg P; negative control [NC]: 5.5 to 5.2 g/kg Ca; 5.4 to 4.7 g/kg P). NC diets were supplemented with phytase at 0 (NC); 500 (NC + 500 FTU); or 2,000 FTU/kg (NC + 2,000 FTU) phytase units/kg. Blood was collected after fasting (day 48) or feeding (day 49) for measurement of plasma inositol concentrations. On day 49, 2 pigs per pen were euthanized, and duodenal and ileal digesta samples were collected to determine inositol phosphates (InsP6-2) concentrations. High phytase supplementation increased BW on days 21, 35, and 49 (P < 0.05). Over the entire feeding period, ADG, ADFI, and feed efficiency were increased by NC + 2,000 FTU compared with the other treatments (P < 0.05). Postprandial plasma inositol concentration was increased in NC + 2,000 (P < 0.01), but there was only a tendency (P = 0.06) of a higher fasting plasma inositol concentration in this group. Inositol concentrations in the portal vein plasma (day 49) were not different among treatments. Duodenal digesta InsP5 and InsP6 concentrations were similar in PC and NC, but higher in these 2 treatments (P < 0.05) than those supplemented with phytase. Phytase supplementation decreased InsP6-4, resulting in increased InsP3-2 and myo-inositol concentrations. Similar effects were found in ileal contents. Compared with NC, phytase supplementation resulted in greater cumulative InsP6-2 disappearance (93.6% vs. 72.8% vs. 25.0%, for NC + 2,000 FTU, NC + 500 FTU and NC, respectively, P < 0.01) till the distal ileum. Longissimus dorsi muscle plasma membrane GLUT4 concentration was increased by NC + 2,000 FTU (P < 0.01) compared with NC. In summary, high phytase supplementation increased growth performance of nursery pigs. The higher myo-inositol release from phytate could contribute to the increased expression of GLUT4 in muscle plasma membranes. Further investigation is needed to determine whether this is associated with enhanced cellular glucose uptake and utilization.
Collapse
Affiliation(s)
- Hang Lu
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| | - Imke Kühn
- AB Vista, Feldbergstrasse, Darmstadt, Germany
| | | | - Hayley Whitfield
- School of Biological Sciences, University East Anglia, Norwich, UK
| | - Charles Brearley
- School of Biological Sciences, University East Anglia, Norwich, UK
| | - Olayiwola Adeola
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| | - Kolapo M Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN
| |
Collapse
|
36
|
ITPK1 mediates the lipid-independent synthesis of inositol phosphates controlled by metabolism. Proc Natl Acad Sci U S A 2019; 116:24551-24561. [PMID: 31754032 PMCID: PMC6900528 DOI: 10.1073/pnas.1911431116] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inositol phosphates (IPs) are a class of signaling molecules regulating cell physiology. The best-characterized IP, the calcium release factor IP3, is generated by phospholipase C hydrolysis of phosphoinositides lipids. For historical and technical reasons, IPs synthesis is believed to originate from the lipid-generated IP3. While this is true in yeast, our work has demonstrated that other organisms use a “soluble” (nonlipid) route to synthesize IPs. This soluble pathway depends on the metabolic status of the cells, and is under the control of the kinase ITPK1, which phosphorylates inositol monophosphate likely generated from glucose. The data shed light on the evolutionary origin of IPs, signaling and tightening the link between these small molecules and basic metabolism. Inositol phosphates (IPs) comprise a network of phosphorylated molecules that play multiple signaling roles in eukaryotes. IPs synthesis is believed to originate with IP3 generated from PIP2 by phospholipase C (PLC). Here, we report that in mammalian cells PLC-generated IPs are rapidly recycled to inositol, and uncover the enzymology behind an alternative “soluble” route to synthesis of IPs. Inositol tetrakisphosphate 1-kinase 1 (ITPK1)—found in Asgard archaea, social amoeba, plants, and animals—phosphorylates I(3)P1 originating from glucose-6-phosphate, and I(1)P1 generated from sphingolipids, to enable synthesis of IP6. We also found using PAGE mass assay that metabolic blockage by phosphate starvation surprisingly increased IP6 levels in a ITPK1-dependent manner, establishing a route to IP6 controlled by cellular metabolic status, that is not detectable by traditional [3H]-inositol labeling. The presence of ITPK1 in archaeal clades thought to define eukaryogenesis indicates that IPs had functional roles before the appearance of the eukaryote.
Collapse
|
37
|
Randall TA, Gu C, Li X, Wang H, Shears SB. A two-way switch for inositol pyrophosphate signaling: Evolutionary history and biological significance of a unique, bifunctional kinase/phosphatase. Adv Biol Regul 2019; 75:100674. [PMID: 31776069 DOI: 10.1016/j.jbior.2019.100674] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 11/25/2022]
Abstract
The inositol pyrophosphates (PP-InsPs) are a unique subgroup of intracellular signals with diverse functions, many of which can be viewed as reflecting an overarching role in metabolic homeostasis. Thus, considerable attention is paid to the enzymes that synthesize and metabolize the PP-InsPs. One of these enzyme families - the diphosphoinositol pentakisphosphate kinases (PPIP5Ks) - provides an extremely rare example of separate kinase and phosphatase activities being present within the same protein. Herein, we review the current state of structure/function insight into the PPIP5Ks, the separate specialized activities of the two metazoan PPIP5K genes, and we describe a phylogenetic analysis that places PPIP5K evolutionary origin within the Excavata, the very earliest of eukaryotes. These different aspects of PPIP5K biology are placed in the context of a single, overriding question. Why are they bifunctional: i.e., what is the particular significance of the ability to turn PP-InsP signaling on or off from two separate 'switches' in a single protein?
Collapse
Affiliation(s)
- Thomas A Randall
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Chunfang Gu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Xingyao Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Huanchen Wang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Stephen B Shears
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
38
|
Zhang Z, Liu H, Liu J. Akt activation: A potential strategy to ameliorate insulin resistance. Diabetes Res Clin Pract 2019; 156:107092. [PMID: 29111280 DOI: 10.1016/j.diabres.2017.10.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 09/24/2017] [Accepted: 10/02/2017] [Indexed: 02/08/2023]
Abstract
Insulin resistance is a hallmark of type 2 diabetes and obesity while the mechanism remains unclear. Current therapy to treat type 2 diabetes is metformin, the 5'-monophosphate-activated protein kinase (AMPK) activator, owing to the ability to augment peripheral glucose uptake. However, metformin also displays limitations, as AMPK activation remains intact and regular in most type 2 diabetes and metformin does not seem to facilitate peripheral insulin resistance. Evidence has shown that PI3K-Akt/PKB pathway could be induced via insulin and act as an important effector. Akt/PKB is capable of inducing a great number of downstream molecules, such as translocating glucose transporters GLUTs to the cell membrane thus increase glucose uptake. Hence, any defect in Akt/PKB pathway along with the downstream molecules could lead to insulin resistance. Inositol pyrophosphates, synthesized by inositol hexakisphosphate (IP6) kinase 1 (IP6K1) and competitive with 3,4,5-bisphosphate (PIP3) to bind the PH domain of Akt/PKB, demonstrate the ability to inhibit Akt signaling. In addition, IP6K1 knockout mice present increased insulin sensitivity and obesity resistance, indicating a novel therapeutic target in confronting insulin resistance. Taken together, we conclude that Akt activation is another potential strategy to ameliorate insulin resistance.
Collapse
Affiliation(s)
- Zhengyi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Huadong Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
39
|
Lev S, Li C, Desmarini D, Sorrell TC, Saiardi A, Djordjevic JT. Fungal Kinases With a Sweet Tooth: Pleiotropic Roles of Their Phosphorylated Inositol Sugar Products in the Pathogenicity of Cryptococcus neoformans Present Novel Drug Targeting Opportunities. Front Cell Infect Microbiol 2019; 9:248. [PMID: 31380293 PMCID: PMC6660261 DOI: 10.3389/fcimb.2019.00248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022] Open
Abstract
Invasive fungal pathogens cause more than 300 million serious human infections and 1.6 million deaths per year. A clearer understanding of the mechanisms by which these fungi cause disease is needed to identify novel targets for urgently needed therapies. Kinases are key components of the signaling and metabolic circuitry of eukaryotic cells, which include fungi, and kinase inhibition is currently being exploited for the treatment of human diseases. Inhibiting evolutionarily divergent kinases in fungal pathogens is a promising avenue for antifungal drug development. One such group of kinases is the phospholipase C1-dependent inositol polyphosphate kinases (IPKs), which act sequentially to transfer a phosphoryl group to a pre-phosphorylated inositol sugar (IP). This review focuses on the roles of fungal IPKs and their IP products in fungal pathogenicity, as determined predominantly from studies performed in the model fungal pathogen Cryptococcus neoformans, and compares them to what is known in non-pathogenic model fungi and mammalian cells to highlight potential drug targeting opportunities.
Collapse
Affiliation(s)
- Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School-Westmead, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Cecilia Li
- Sydney Medical School-Westmead, The University of Sydney, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology-Public Health, NSW Health Pathology, Westmead Hospital, Sydney, NSW, Australia
| | - Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School-Westmead, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Tania C Sorrell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School-Westmead, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Adolfo Saiardi
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Julianne T Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School-Westmead, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
40
|
Kim J, Darè E, Rajasekaran SS, Ryu SH, Berggren PO, Barker CJ. Inositol pyrophosphates and Akt/PKB: Is the pancreatic β-cell the exception to the rule? Cell Signal 2019; 58:131-136. [DOI: 10.1016/j.cellsig.2019.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/14/2022]
|
41
|
De Rango F, Crocco P, Iannone F, Saiardi A, Passarino G, Dato S, Rose G. Inositol Polyphosphate Multikinase ( IPMK), a Gene Coding for a Potential Moonlighting Protein, Contributes to Human Female Longevity. Genes (Basel) 2019; 10:genes10020125. [PMID: 30744060 PMCID: PMC6410091 DOI: 10.3390/genes10020125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 01/03/2023] Open
Abstract
Biogerontological research highlighted a complex and dynamic connection between aging, health and longevity, partially determined by genetic factors. Multifunctional proteins with moonlighting features, by integrating different cellular activities in the space and time, may explain part of this complexity. Inositol Polyphosphate Multikinase (IPMK) is a potential moonlighting protein performing multiple unrelated functions. Initially identified as a key enzyme for inositol phosphates synthesis, small messengers regulating many aspects of cell physiology, IPMK is now implicated in a number of metabolic pathways affecting the aging process. IPMK regulates basic transcription, telomere homeostasis, nutrient-sensing, metabolism and oxidative stress. Here, we tested the hypothesis that the genetic variability of IPMK may affect human longevity. Single-SNP (single nuclear polymorphism), haplotype-based association tests as well as survival analysis pointed to the relevance of six out of fourteen genotyped SNPs for female longevity. In particular, haplotype analysis refined the association highlighting two SNPs, rs2790234 and rs6481383, as major contributing variants for longevity in women. Our work, the first to investigate the association between variants of IPMK and longevity, supports IPMK as a novel gender-specific genetic determinant of human longevity, playing a role in the complex network of genetic factors involved in human survival.
Collapse
Affiliation(s)
- Francesco De Rango
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| | - Paolina Crocco
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| | - Francesca Iannone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| | - Adolfo Saiardi
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| | - Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| |
Collapse
|
42
|
Inositol hexakisphosphate kinase 3 promotes focal adhesion turnover via interactions with dynein intermediate chain 2. Proc Natl Acad Sci U S A 2019; 116:3278-3287. [PMID: 30718399 DOI: 10.1073/pnas.1817001116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cells express a family of three inositol hexakisphosphate kinases (IP6Ks). Although sharing the same enzymatic activity, individual IP6Ks mediate different cellular processes. Here we report that IP6K3 is enriched at the leading edge of migrating cells where it associates with dynein intermediate chain 2 (DIC2). Using immunofluorescence microscopy and total internal reflection fluorescence microscopy, we found that DIC2 and IP6K3 are recruited interdependently to the leading edge of migrating cells, where they function coordinately to enhance the turnover of focal adhesions. Deletion of IP6K3 causes defects in cell motility and neuronal dendritic growth, eventually leading to brain malformations. Our results reveal a mechanism whereby IP6K3 functions in coordination with DIC2 in a confined intracellular microenvironment to promote focal adhesion turnover.
Collapse
|
43
|
Hauke S, Dutta AK, Eisenbeis VB, Bezold D, Bittner T, Wittwer C, Thakor D, Pavlovic I, Schultz C, Jessen HJ. Photolysis of cell-permeant caged inositol pyrophosphates controls oscillations of cytosolic calcium in a β-cell line. Chem Sci 2019; 10:2687-2692. [PMID: 30996985 PMCID: PMC6419925 DOI: 10.1039/c8sc03479f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022] Open
Abstract
β-Cells respond directly to the intracellular photochemical release of caged inositol pyrophosphate isomers with modulations of oscillations in cytosolic Ca2+.
Among many cellular functions, inositol pyrophosphates (PP-InsPs) are metabolic messengers involved in the regulation of glucose uptake, insulin sensitivity, and weight gain. However, their mechanisms of action are still poorly understood. So far, the influence of PP-InsPs on cellular metabolism has been studied by overexpression or knockout/inhibition of relevant metabolizing kinases (IP6Ks, PPIP5Ks). These approaches are, inter alia, limited by time-resolution and potential compensation mechanisms. Here, we describe the synthesis of cell-permeant caged PP-InsPs as tools to rapidly modulate intracellular levels of defined isomers of PP-InsPs in a genetically non-perturbed cellular environment. We show that caged prometabolites readily enter live cells where they are enzymatically converted into still inactive, metabolically stable, photocaged PP-InsPs. Upon light-triggered release of 5-PP-InsP5, the major cellular inositol pyrophosphate, oscillations of intracellular Ca2+ levels in MIN6 cells were transiently reduced to spontaneously recover again. In contrast, uncaging of 1-PP-InsP5, a minor cellular isomer, was without effect. These results provide evidence that PP-InsPs play an active role in regulating [Ca2+]i oscillations, a key element in triggering exocytosis and secretion in β-cells.
Collapse
Affiliation(s)
- S Hauke
- EMBL, Heidelberg , 69117 Heidelberg , Germany .
| | - A K Dutta
- University of Freiburg , Institute of Organic Chemistry , 79104 Freiburg , Germany .
| | - V B Eisenbeis
- University of Freiburg , Institute of Organic Chemistry , 79104 Freiburg , Germany .
| | - D Bezold
- University of Freiburg , Institute of Organic Chemistry , 79104 Freiburg , Germany .
| | - T Bittner
- University of Freiburg , Institute of Organic Chemistry , 79104 Freiburg , Germany .
| | - C Wittwer
- University of Freiburg , Institute of Organic Chemistry , 79104 Freiburg , Germany .
| | - D Thakor
- University of Freiburg , Institute of Organic Chemistry , 79104 Freiburg , Germany .
| | - I Pavlovic
- University of Freiburg , Institute of Organic Chemistry , 79104 Freiburg , Germany .
| | - C Schultz
- EMBL, Heidelberg , 69117 Heidelberg , Germany . .,OHSU , Dept. Physiology & Pharmacology , Portland , OR , USA .
| | - H J Jessen
- University of Freiburg , Institute of Organic Chemistry , 79104 Freiburg , Germany .
| |
Collapse
|
44
|
Effects of supplementation with betaine and superdosed phytase on semen characteristics of boars during and after mild heat stress. ACTA ACUST UNITED AC 2018. [DOI: 10.15232/pas.2018-01742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Fu C, Rojas T, Chin AC, Cheng W, Bernstein IA, Albacarys LK, Wright WW, Snyder SH. Multiple aspects of male germ cell development and interactions with Sertoli cells require inositol hexakisphosphate kinase-1. Sci Rep 2018; 8:7039. [PMID: 29728588 PMCID: PMC5935691 DOI: 10.1038/s41598-018-25468-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/19/2018] [Indexed: 12/30/2022] Open
Abstract
Inositol hexakisphosphate kinase-1 (IP6K1) is required for male fertility, but the underlying mechanisms have been elusive. Here, we report that IP6K1 is required for multiple aspects of male germ cell development. This development requires selective interactions between germ cells and Sertoli cells, namely apical ectoplasmic specialization. Spermiation (sperm release) requires tubulobulbar complexes. We found that the apical ectoplasmic specialization and tubulobulbar complexes were poorly formed or disrupted in IP6K1 KOs. Deletion of IP6K1 elicited several aberrations, including: 1, sloughing off of round germ cells; 2, disorientation and malformation of elongating/elongated spermatids; 3, degeneration of acrosomes; 4, defects in germ-Sertoli cell interactions and 5, failure of spermiation. Eventually the sperm cells were not released but phagocytosed by Sertoli cells leading to an absence of sperm in the epididymis.
Collapse
Affiliation(s)
- Chenglai Fu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China. .,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Tomas Rojas
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Alfred C Chin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Weiwei Cheng
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Isaac A Bernstein
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lauren K Albacarys
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - William W Wright
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Solomon H Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
46
|
Li SA, Jiang WD, Feng L, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Yang J, Tang X, Shi HQ, Zhou XQ. Dietary myo-inositol deficiency decreased intestinal immune function related to NF-κB and TOR signaling in the intestine of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 76:333-346. [PMID: 29544771 DOI: 10.1016/j.fsi.2018.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 01/26/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
In this study, we investigated the effects of dietary myo-inositol on the intestinal immune barrier function and related signaling pathway in young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp (221.33 ± 0.84 g) were fed six diets containing graded levels of myo-inositol (27.0, 137.9, 286.8, 438.6, 587.7 and 737.3 mg/kg) for 10 weeks. After the growth trial, fish were challenged with Aeromonas hydrophila. The results indicated that compared with the optimal dietary myo-inositol level, myo-inositol deficiency (27.0 mg/kg diet): (1) decreased lysozyme (LZ) and acid phosphatase (ACP) activities, as well as complement 3 (C3), C4 and immunoglobulin M (IgM) contents in the proximal intestine (PI), middle intestine (MI) and distal intestine (DI) of young grass carp (P < 0.05). (2) down-regulated the mRNA levels of anti-microbial substance: liver expressed antimicrobial peptide (LEAP) 2A, LEAP-2B, hepcidin, β-defensin-1 and mucin2 in the PI, MI and DI of young grass carp (P < 0.05). (3) up-regulated pro-inflammatory cytokines [IL-1β (not in DI), TNF-α and IL-8], nuclear factor kappa B P65 (not NF-κB P52), c-Rel, IκB kinaseα (IKKα), IKKβ and IKKγ mRNA levels in the PI, MI and DI of young grass carp (P < 0.05); and down-regulated pro-inflammatory cytokines IL-15 (not in DI) and inhibitor of κBα (IκBα) mRNA levels (P < 0.05). (4) down-regulated the mRNA levels of anti-inflammatory cytokines [IL-10 (not in DI), IL-11, IL-4/13B (not IL-4/13A), TGF-β1 and TGF-β2], target of rapamycin (TOR), eIF4E-binding proteins 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6k1) in the PI, MI and DI of young grass carp (P < 0.05). All data indicated that myo-inositol deficiency could decrease fish intestine immunity and cause inflammation under infection of A. hydrophila. Finally, the optimal dietary myo-inositol levels for the ACP and LZ activities in the DI were estimated to be 415.1 and 296.9 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Shuang-An Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Juan Yang
- Enterprise Technology Center, Tongwei Co., Ltd, Chengdu 610041, China
| | - Xu Tang
- Chengdu Mytech Biotech Co., Ltd., Chengdu 610222, Sichuan, China
| | - He-Qun Shi
- Guangzhou Cohoo Bio-tech Research & Development Centre, Guangzhou 510663, Guangdong, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
47
|
Chakraborty A. The inositol pyrophosphate pathway in health and diseases. Biol Rev Camb Philos Soc 2018; 93:1203-1227. [PMID: 29282838 PMCID: PMC6383672 DOI: 10.1111/brv.12392] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Inositol pyrophosphates (IPPs) are present in organisms ranging from plants, slime moulds and fungi to mammals. Distinct classes of kinases generate different forms of energetic diphosphate-containing IPPs from inositol phosphates (IPs). Conversely, polyphosphate phosphohydrolase enzymes dephosphorylate IPPs to regenerate the respective IPs. IPPs and/or their metabolizing enzymes regulate various cell biological processes by modulating many proteins via diverse mechanisms. In the last decade, extensive research has been conducted in mammalian systems, particularly in knockout mouse models of relevant enzymes. Results obtained from these studies suggest impacts of the IPP pathway on organ development, especially of brain and testis. Conversely, deletion of specific enzymes in the pathway protects mice from various diseases such as diet-induced obesity (DIO), type-2 diabetes (T2D), fatty liver, bacterial infection, thromboembolism, cancer metastasis and aging. Furthermore, pharmacological inhibition of the same class of enzymes in mice validates the therapeutic importance of this pathway in cardio-metabolic diseases. This review critically analyses these findings and summarizes the significance of the IPP pathway in mammalian health and diseases. It also evaluates benefits and risks of targeting this pathway in disease therapies. Finally, future directions of mammalian IPP research are discussed.
Collapse
Affiliation(s)
- Anutosh Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, U.S.A
| |
Collapse
|
48
|
Rajasekaran SS, Kim J, Gaboardi GC, Gromada J, Shears SB, Dos Santos KT, Nolasco EL, Ferreira SDS, Illies C, Köhler M, Gu C, Ryu SH, Martins JO, Darè E, Barker CJ, Berggren PO. Inositol hexakisphosphate kinase 1 is a metabolic sensor in pancreatic β-cells. Cell Signal 2018. [PMID: 29522819 PMCID: PMC5899964 DOI: 10.1016/j.cellsig.2018.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Diphosphoinositol pentakisphosphate (IP7) is critical for the exocytotic capacity of the pancreatic β-cell, but its regulation by the primary instigator of β-cell exocytosis, glucose, is unknown. The high Km for ATP of the IP7-generating enzymes, the inositol hexakisphosphate kinases (IP6K1 and 2) suggests that these enzymes might serve as metabolic sensors in insulin secreting β-cells and act as translators of disrupted metabolism in diabetes. We investigated this hypothesis and now show that glucose stimulation, which increases the ATP/ADP ratio, leads to an early rise in IP7 concentration in β-cells. RNAi mediated knock down of the IP6K1 isoform inhibits both glucose-mediated increase in IP7 and first phase insulin secretion, demonstrating that IP6K1 integrates glucose metabolism and insulin exocytosis. In diabetic mouse islets the deranged ATP/ADP levels under both basal and glucose-stimulated conditions are mirrored in both disrupted IP7 generation and insulin release. Thus the unique metabolic sensing properties of IP6K1 guarantees appropriate concentrations of IP7 and thereby both correct basal insulin secretion and intact first phase insulin release. In addition, our data suggest that a specific cell signaling defect, namely, inappropriate IP7 generation may be an essential convergence point integrating multiple metabolic defects into the commonly observed phenotype in diabetes. Glucose increases IP7 levels transiently through IP6K1 in pancreatic β-cells. IP6K1 decodes glucose-driven increases in ATP/ADP ratio into 1st phase insulin release. IP7 production and insulin release mirror perturbed metabolism in diabetic islets. IP6K1 acts as a β-cell metabolic sensor under normal and pathological conditions.
Collapse
Affiliation(s)
- Subu Surendran Rajasekaran
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Jaeyoon Kim
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gian-Carlo Gaboardi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | | | - Stephen B Shears
- Signal Transduction Laboratory/Inositol Signaling Group, NIEHS, Building 101, Room F239,111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Karen Tiago Dos Santos
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden; Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eduardo Lima Nolasco
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden; Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sabrina de Souza Ferreira
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden; Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Christopher Illies
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Martin Köhler
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Chunfang Gu
- Signal Transduction Laboratory/Inositol Signaling Group, NIEHS, Building 101, Room F239,111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Joilson O Martins
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elisabetta Darè
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Christopher J Barker
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden.
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
49
|
Brown NW, Marmelstein AM, Fiedler D. Chemical tools for interrogating inositol pyrophosphate structure and function. Chem Soc Rev 2018; 45:6311-6326. [PMID: 27462803 DOI: 10.1039/c6cs00193a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The inositol pyrophosphates (PP-InsPs) are a unique group of intracellular messengers that represent some of the most highly phosphorylated molecules in nature. Genetic perturbation of the PP-InsP biosynthetic network indicates a central role for these metabolites in maintaining cellular energy homeostasis and in controlling signal transduction networks. However, despite their discovery over two decades ago, elucidating their physiologically relevant isomers, the biochemical pathways connecting these molecules to their associated phenotypes, and their modes of signal transduction has often been stymied by technical challenges. Many of the advances in understanding these molecules to date have been facilitated by the total synthesis of the various PP-InsP isomers and by the development of new methods that are capable of identifying their downstream signalling partners. Chemical tools have also been developed to distinguish between the proposed PP-InsP signal transduction mechanisms: protein binding, and a covalent modification of proteins termed protein pyrophosphorylation. In this article, we review these recent developments, discuss how they have helped to illuminate PP-InsP structure and function, and highlight opportunities for future discovery.
Collapse
Affiliation(s)
- Nathaniel W Brown
- Princeton University, Frick Chemistry Laboratory, Washington Road, Princeton, NJ 08544, USA and Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str 10, 13125 Berlin, Berlin, Germany.
| | - Alan M Marmelstein
- Princeton University, Frick Chemistry Laboratory, Washington Road, Princeton, NJ 08544, USA and Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str 10, 13125 Berlin, Berlin, Germany.
| | - Dorothea Fiedler
- Princeton University, Frick Chemistry Laboratory, Washington Road, Princeton, NJ 08544, USA and Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str 10, 13125 Berlin, Berlin, Germany.
| |
Collapse
|
50
|
Fu C, Tyagi R, Chin AC, Rojas T, Li RJ, Guha P, Bernstein IA, Rao F, Xu R, Cha JY, Xu J, Snowman AM, Semenza GL, Snyder SH. Inositol Polyphosphate Multikinase Inhibits Angiogenesis via Inositol Pentakisphosphate-Induced HIF-1α Degradation. Circ Res 2017; 122:457-472. [PMID: 29279301 DOI: 10.1161/circresaha.117.311983] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 12/17/2022]
Abstract
RATIONALE Inositol polyphosphate multikinase (IPMK) and its major product inositol pentakisphosphate (IP5) regulate a variety of cellular functions, but their role in vascular biology remains unexplored. OBJECTIVE We have investigated the role of IPMK in regulating angiogenesis. METHODS AND RESULTS Deletion of IPMK in fibroblasts induces angiogenesis in both in vitro and in vivo models. IPMK deletion elicits a substantial increase of VEGF (vascular endothelial growth factor), which mediates the regulation of angiogenesis by IPMK. The regulation of VEGF by IPMK requires its catalytic activity. IPMK is predominantly nuclear and regulates gene transcription. However, IPMK does not apparently serve as a transcription factor for VEGF. HIF (hypoxia-inducible factor)-1α is a major determinant of angiogenesis and induces VEGF transcription. IPMK deletion elicits a major enrichment of HIF-1α protein and thus VEGF. HIF-1α is constitutively ubiquitinated by pVHL (von Hippel-Lindau protein) followed by proteasomal degradation under normal conditions. However, HIF-1α is not recognized and ubiquitinated by pVHL in IPMK KO (knockout) cells. IP5 reinstates the interaction of HIF-1α and pVHL. HIF-1α prolyl hydroxylation, which is prerequisite for pVHL recognition, is interrupted in IPMK-deleted cells. IP5 promotes HIF-1α prolyl hydroxylation and thus pVHL-dependent degradation of HIF-1α. Deletion of IPMK in mouse brain increases HIF-1α/VEGF levels and vascularization. The increased VEGF in IPMK KO disrupts blood-brain barrier and enhances brain blood vessel permeability. CONCLUSIONS IPMK, via its product IP5, negatively regulates angiogenesis by inhibiting VEGF expression. IP5 acts by enhancing HIF-1α hydroxylation and thus pVHL-dependent degradation of HIF-1α.
Collapse
Affiliation(s)
- Chenglai Fu
- From the Solomon H. Snyder Department of Neuroscience (C.F., R.T., A.C.C., T.R., P.G., I.A.B., F.R., R.X., J.Y.C., J.X., A.M.S., S.H.S.), Department of Pharmacology and Molecular Sciences (R.-J.L., S.H.S.), Institute for Cell Engineering (G.L.S.), McKusick-Nathans Institute of Genetic Medicine (G.L.S.), Department of Pediatrics (G.L.S.), Department of Medicine (G.L.S.), Department of Oncology (G.L.S.), Department of Radiation Oncology (G.L.S.), Department of Biological Chemistry (G.L.S.), and Department of Psychiatry and Behavioral Sciences (S.H.S.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richa Tyagi
- From the Solomon H. Snyder Department of Neuroscience (C.F., R.T., A.C.C., T.R., P.G., I.A.B., F.R., R.X., J.Y.C., J.X., A.M.S., S.H.S.), Department of Pharmacology and Molecular Sciences (R.-J.L., S.H.S.), Institute for Cell Engineering (G.L.S.), McKusick-Nathans Institute of Genetic Medicine (G.L.S.), Department of Pediatrics (G.L.S.), Department of Medicine (G.L.S.), Department of Oncology (G.L.S.), Department of Radiation Oncology (G.L.S.), Department of Biological Chemistry (G.L.S.), and Department of Psychiatry and Behavioral Sciences (S.H.S.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alfred C Chin
- From the Solomon H. Snyder Department of Neuroscience (C.F., R.T., A.C.C., T.R., P.G., I.A.B., F.R., R.X., J.Y.C., J.X., A.M.S., S.H.S.), Department of Pharmacology and Molecular Sciences (R.-J.L., S.H.S.), Institute for Cell Engineering (G.L.S.), McKusick-Nathans Institute of Genetic Medicine (G.L.S.), Department of Pediatrics (G.L.S.), Department of Medicine (G.L.S.), Department of Oncology (G.L.S.), Department of Radiation Oncology (G.L.S.), Department of Biological Chemistry (G.L.S.), and Department of Psychiatry and Behavioral Sciences (S.H.S.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tomas Rojas
- From the Solomon H. Snyder Department of Neuroscience (C.F., R.T., A.C.C., T.R., P.G., I.A.B., F.R., R.X., J.Y.C., J.X., A.M.S., S.H.S.), Department of Pharmacology and Molecular Sciences (R.-J.L., S.H.S.), Institute for Cell Engineering (G.L.S.), McKusick-Nathans Institute of Genetic Medicine (G.L.S.), Department of Pediatrics (G.L.S.), Department of Medicine (G.L.S.), Department of Oncology (G.L.S.), Department of Radiation Oncology (G.L.S.), Department of Biological Chemistry (G.L.S.), and Department of Psychiatry and Behavioral Sciences (S.H.S.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ruo-Jing Li
- From the Solomon H. Snyder Department of Neuroscience (C.F., R.T., A.C.C., T.R., P.G., I.A.B., F.R., R.X., J.Y.C., J.X., A.M.S., S.H.S.), Department of Pharmacology and Molecular Sciences (R.-J.L., S.H.S.), Institute for Cell Engineering (G.L.S.), McKusick-Nathans Institute of Genetic Medicine (G.L.S.), Department of Pediatrics (G.L.S.), Department of Medicine (G.L.S.), Department of Oncology (G.L.S.), Department of Radiation Oncology (G.L.S.), Department of Biological Chemistry (G.L.S.), and Department of Psychiatry and Behavioral Sciences (S.H.S.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Prasun Guha
- From the Solomon H. Snyder Department of Neuroscience (C.F., R.T., A.C.C., T.R., P.G., I.A.B., F.R., R.X., J.Y.C., J.X., A.M.S., S.H.S.), Department of Pharmacology and Molecular Sciences (R.-J.L., S.H.S.), Institute for Cell Engineering (G.L.S.), McKusick-Nathans Institute of Genetic Medicine (G.L.S.), Department of Pediatrics (G.L.S.), Department of Medicine (G.L.S.), Department of Oncology (G.L.S.), Department of Radiation Oncology (G.L.S.), Department of Biological Chemistry (G.L.S.), and Department of Psychiatry and Behavioral Sciences (S.H.S.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Isaac A Bernstein
- From the Solomon H. Snyder Department of Neuroscience (C.F., R.T., A.C.C., T.R., P.G., I.A.B., F.R., R.X., J.Y.C., J.X., A.M.S., S.H.S.), Department of Pharmacology and Molecular Sciences (R.-J.L., S.H.S.), Institute for Cell Engineering (G.L.S.), McKusick-Nathans Institute of Genetic Medicine (G.L.S.), Department of Pediatrics (G.L.S.), Department of Medicine (G.L.S.), Department of Oncology (G.L.S.), Department of Radiation Oncology (G.L.S.), Department of Biological Chemistry (G.L.S.), and Department of Psychiatry and Behavioral Sciences (S.H.S.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Feng Rao
- From the Solomon H. Snyder Department of Neuroscience (C.F., R.T., A.C.C., T.R., P.G., I.A.B., F.R., R.X., J.Y.C., J.X., A.M.S., S.H.S.), Department of Pharmacology and Molecular Sciences (R.-J.L., S.H.S.), Institute for Cell Engineering (G.L.S.), McKusick-Nathans Institute of Genetic Medicine (G.L.S.), Department of Pediatrics (G.L.S.), Department of Medicine (G.L.S.), Department of Oncology (G.L.S.), Department of Radiation Oncology (G.L.S.), Department of Biological Chemistry (G.L.S.), and Department of Psychiatry and Behavioral Sciences (S.H.S.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Risheng Xu
- From the Solomon H. Snyder Department of Neuroscience (C.F., R.T., A.C.C., T.R., P.G., I.A.B., F.R., R.X., J.Y.C., J.X., A.M.S., S.H.S.), Department of Pharmacology and Molecular Sciences (R.-J.L., S.H.S.), Institute for Cell Engineering (G.L.S.), McKusick-Nathans Institute of Genetic Medicine (G.L.S.), Department of Pediatrics (G.L.S.), Department of Medicine (G.L.S.), Department of Oncology (G.L.S.), Department of Radiation Oncology (G.L.S.), Department of Biological Chemistry (G.L.S.), and Department of Psychiatry and Behavioral Sciences (S.H.S.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jiyoung Y Cha
- From the Solomon H. Snyder Department of Neuroscience (C.F., R.T., A.C.C., T.R., P.G., I.A.B., F.R., R.X., J.Y.C., J.X., A.M.S., S.H.S.), Department of Pharmacology and Molecular Sciences (R.-J.L., S.H.S.), Institute for Cell Engineering (G.L.S.), McKusick-Nathans Institute of Genetic Medicine (G.L.S.), Department of Pediatrics (G.L.S.), Department of Medicine (G.L.S.), Department of Oncology (G.L.S.), Department of Radiation Oncology (G.L.S.), Department of Biological Chemistry (G.L.S.), and Department of Psychiatry and Behavioral Sciences (S.H.S.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jing Xu
- From the Solomon H. Snyder Department of Neuroscience (C.F., R.T., A.C.C., T.R., P.G., I.A.B., F.R., R.X., J.Y.C., J.X., A.M.S., S.H.S.), Department of Pharmacology and Molecular Sciences (R.-J.L., S.H.S.), Institute for Cell Engineering (G.L.S.), McKusick-Nathans Institute of Genetic Medicine (G.L.S.), Department of Pediatrics (G.L.S.), Department of Medicine (G.L.S.), Department of Oncology (G.L.S.), Department of Radiation Oncology (G.L.S.), Department of Biological Chemistry (G.L.S.), and Department of Psychiatry and Behavioral Sciences (S.H.S.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Adele M Snowman
- From the Solomon H. Snyder Department of Neuroscience (C.F., R.T., A.C.C., T.R., P.G., I.A.B., F.R., R.X., J.Y.C., J.X., A.M.S., S.H.S.), Department of Pharmacology and Molecular Sciences (R.-J.L., S.H.S.), Institute for Cell Engineering (G.L.S.), McKusick-Nathans Institute of Genetic Medicine (G.L.S.), Department of Pediatrics (G.L.S.), Department of Medicine (G.L.S.), Department of Oncology (G.L.S.), Department of Radiation Oncology (G.L.S.), Department of Biological Chemistry (G.L.S.), and Department of Psychiatry and Behavioral Sciences (S.H.S.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gregg L Semenza
- From the Solomon H. Snyder Department of Neuroscience (C.F., R.T., A.C.C., T.R., P.G., I.A.B., F.R., R.X., J.Y.C., J.X., A.M.S., S.H.S.), Department of Pharmacology and Molecular Sciences (R.-J.L., S.H.S.), Institute for Cell Engineering (G.L.S.), McKusick-Nathans Institute of Genetic Medicine (G.L.S.), Department of Pediatrics (G.L.S.), Department of Medicine (G.L.S.), Department of Oncology (G.L.S.), Department of Radiation Oncology (G.L.S.), Department of Biological Chemistry (G.L.S.), and Department of Psychiatry and Behavioral Sciences (S.H.S.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Solomon H Snyder
- From the Solomon H. Snyder Department of Neuroscience (C.F., R.T., A.C.C., T.R., P.G., I.A.B., F.R., R.X., J.Y.C., J.X., A.M.S., S.H.S.), Department of Pharmacology and Molecular Sciences (R.-J.L., S.H.S.), Institute for Cell Engineering (G.L.S.), McKusick-Nathans Institute of Genetic Medicine (G.L.S.), Department of Pediatrics (G.L.S.), Department of Medicine (G.L.S.), Department of Oncology (G.L.S.), Department of Radiation Oncology (G.L.S.), Department of Biological Chemistry (G.L.S.), and Department of Psychiatry and Behavioral Sciences (S.H.S.), Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|