1
|
Zhou H, Liu X, Gao X, Wang Y, Ye L, Wu J, Xiang M. Soil pH and total phosphorus regulate bacterial community assembly in slope restoration areas of the Tibetan Plateau's metal mining areas. ENVIRONMENTAL RESEARCH 2025; 275:121432. [PMID: 40113060 DOI: 10.1016/j.envres.2025.121432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Microbial community development is a crucial aspect of soil restoration. The employment of frame beams in conjunction with external soil has demonstrated efficacy in the rehabilitation of degraded roadside ecosystems within mining regions. Nonetheless, the effects of frame beams on the composition and stability of soil bacterial communities remain inadequately comprehended. We conducted a one-time soil sampling on a three-year restored slope in a large-scale metal mining area on the Tibetan Plateau, providing a snapshot of the current conditions and evaluating the restoration progress. Frame beams with external soil covers were applied at three different altitudes: A1 (4800-5000 m), A2 (4500-4700 m), and A3 (4200-4400 m). Restoration significantly altered bacterial community composition compared with controls. Proteobacteria had a higher relative abundance in the restoration area (average: 31.16 %), whereas Acidobacteriota were more abundant in the control area (average: 24.68 %). In the restoration area, soil bacterial α-diversity increased as elevation decreased, with the Shannon index rising from 5.34 (A1) to 5.82 (A3), suggesting that bacterial communities at higher altitudes are more sensitive to environmental conditions. Species turnover was the primary driving factor of β-diversity, accounting for 96.26 % under A1, 94.71 % under A2, and 91.94 % under A3, respectively. The nearest taxon index of bacterial communities shifted from negative to positive along the elevation gradient (-0.25 to 1.14), indicating an increasing trend toward community clustering. Within the bacterial co-occurrence network, soil pH and total phosphorus contribute significantly to network strength, closeness, and betweenness. Concluding, soil pH and total phosphorus were identified as key factors shaping bacterial diversity and assembly mechanisms. Our research contributes to the development of effective soil restoration strategies for alpine mining regions, providing insights into microbial community assembly and stability mechanisms.
Collapse
Affiliation(s)
- Huanyu Zhou
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaotong Liu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xianlei Gao
- School of Ecology and Environment, Tibet University, Lhasa, 850000, Tibet, China
| | - Yan Wang
- Lhasa Plateau Biological Research Institute, Lhasa, 850000, Tibet, China
| | - Lanlan Ye
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Junxi Wu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Mingxue Xiang
- State Key Laboratory of Plateau Ecology and Agriculture in the Three River Headwaters Region, Qinghai University, Xining, 810018, China.
| |
Collapse
|
2
|
Zakem EJ, McNichol J, Weissman JL, Raut Y, Xu L, Halewood ER, Carlson CA, Dutkiewicz S, Fuhrman JA, Levine NM. Functional biogeography of marine microbial heterotrophs. Science 2025; 388:eado5323. [PMID: 40403069 DOI: 10.1126/science.ado5323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/31/2024] [Accepted: 03/06/2025] [Indexed: 05/24/2025]
Abstract
Heterotrophic bacteria and archaea ("heteroprokaryotes") drive global carbon cycling, but how to quantitatively organize their functional complexity remains unclear. We generated a global-scale understanding of marine heteroprokaryotic functional biogeography by synthesizing genetic sequencing data with a mechanistic marine ecosystem model. We incorporated heteroprokaryotic diversity into the trait-based model along two axes: substrate lability and growth strategy. Using genetic sequences along three ocean transects, we compiled 21 heteroprokaryotic guilds and estimated their degree of optimization for rapid growth (copiotrophy). Data and model consistency indicated that gradients in grazing and substrate lability predominantly set biogeographical patterns, and we identified deep-ocean "slow copiotrophs" whose ecological interactions control the surface accumulation of dissolved organic carbon.
Collapse
Affiliation(s)
- Emily J Zakem
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| | - Jesse McNichol
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - J L Weissman
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY, USA
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Department of Biology, The City College of New York, New York, NY, USA
| | - Yubin Raut
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Liang Xu
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| | - Elisa R Halewood
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, CA, USA
| | - Craig A Carlson
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, CA, USA
| | - Stephanie Dutkiewicz
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Sustainability Science and Strategy, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Naomi M Levine
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Silva V, Brito I, Alexandre A. The Vineyard Microbiome: How Climate and the Main Edaphic Factors Shape Microbial Communities. Microorganisms 2025; 13:1092. [PMID: 40431264 PMCID: PMC12114118 DOI: 10.3390/microorganisms13051092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
The soil microbiome is a complex system that encompasses millions of microbes including archaea, bacteria, fungi, protozoa and viruses. The role of abiotic factors is crucial in shaping the distribution patterns of microorganisms, its abundance and also the interactions between species, from local to the global level. In the particular case of the vineyard, the microbial communities have a potential impact in both the grapevine development and health and, later on, in the grape production and quality. The present review focuses on how the composition of soil microbial communities is influenced by climate and several edaphic factors, such as soil moisture, soil nutrients and soil pH. It also discusses the role of microorganisms and their metabolic activity on the fermentation process, influencing the sensorial characterisation of the wine and suggesting the definition of a microbial terroir.
Collapse
Affiliation(s)
- Vanessa Silva
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, IIFA-Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7002-554 Évora, Portugal;
| | - Isabel Brito
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Department of Biology, School of Science and Technology, Universidade de Évora, Pólo da Mitra, Ap. 94, 7002-554 Évora, Portugal;
| | - Ana Alexandre
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Department of Biology, School of Science and Technology, Universidade de Évora, Pólo da Mitra, Ap. 94, 7002-554 Évora, Portugal;
| |
Collapse
|
4
|
Peng Z, Zhang Y, Li X, Gao H, Liu Y, An Y, Qian X, Wei G, Jiao S. Trait-Based Life History Strategies Shape Bacterial Niche Breadth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405947. [PMID: 40344501 PMCID: PMC12120777 DOI: 10.1002/advs.202405947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 04/17/2025] [Indexed: 05/11/2025]
Abstract
The ecological niche represents a fundamental property of organisms, reflecting their diversity of utilized resources or environmental tolerances across space and time. Despite a wealth of studies revealing that not all bacteria being everywhere, the key traits that determine niche breadth have remained unclear. Here, bacterial niche breadth based on a large-scale soil survey across a wide range of environmental gradients at a national-scale is characterized, and evaluated their life-history traits utilizing over 2000 bacterial genomic datasets from the Genome Taxonomy Database (GTDB). A positive relationship between gene functional diversity and niche breadth is found, and identified a key set of bacterial traits associated with niche breadth, which are assigned to five life-history categories, encompassing growth, competition, stress tolerance, resource acquisition, and dispersal ability. The traits of these categories are captured by distinct clusters in the full dimensionality of trait space, suggesting that a broad-niche taxon may indeed possess multiple facets of life history strategies essential for survival in diverse environments. Bacterial taxa with wider niche breadth maximized a diversity of traits associated with different life history strategies, whereas specialists tended to harbor a smaller number of traits associated with fewer life history strategies. Together, this study offers new insights into developing a trait-based understanding of bacterial niche breadth from the perspective of life history theory.
Collapse
Affiliation(s)
- Ziheng Peng
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| | - Yiran Zhang
- College of Natural Resources and EnvironmentNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| | - Xiaomeng Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| | - Hang Gao
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| | - Yu Liu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| | - Yining An
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| | - Xun Qian
- College of Natural Resources and EnvironmentNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| | - Gehong Wei
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| | - Shuo Jiao
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingShaanxi712100P. R. China
| |
Collapse
|
5
|
Salamzade R, Kalan LR. Context matters: assessing the impacts of genomic background and ecology on microbial biosynthetic gene cluster evolution. mSystems 2025; 10:e0153824. [PMID: 39992097 PMCID: PMC11915812 DOI: 10.1128/msystems.01538-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
Encoded within many microbial genomes, biosynthetic gene clusters (BGCs) underlie the synthesis of various secondary metabolites that often mediate ecologically important functions. Several studies and bioinformatics methods developed over the past decade have advanced our understanding of both microbial pangenomes and BGC evolution. In this minireview, we first highlight challenges in broad evolutionary analysis of BGCs, including delineation of BGC boundaries and clustering of BGCs across genomes. We further summarize key findings from microbial comparative genomics studies on BGC conservation across taxa and habitats and discuss the potential fitness effects of BGCs in different settings. Afterward, recent research showing the importance of genomic context on the production of secondary metabolites and the evolution of BGCs is highlighted. These studies draw parallels to recent, broader, investigations on gene-to-gene associations within microbial pangenomes. Finally, we describe mechanisms by which microbial pangenomes and BGCs evolve, ranging from the acquisition or origination of entire BGCs to micro-evolutionary trends of individual biosynthetic genes. An outlook on how expansions in the biosynthetic capabilities of some taxa might support theories that open pangenomes are the result of adaptive evolution is also discussed. We conclude with remarks about how future work leveraging longitudinal metagenomics across diverse ecosystems is likely to significantly improve our understanding on the evolution of microbial genomes and BGCs.
Collapse
Affiliation(s)
- Rauf Salamzade
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lindsay R. Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Wang J, Lv G, Yang J, He X, Wang H, Li W. Impacts of plant root traits and microbial functional attributes on soil respiration components in the desert-oasis ecotone. FRONTIERS IN PLANT SCIENCE 2025; 16:1511277. [PMID: 40007957 PMCID: PMC11850576 DOI: 10.3389/fpls.2025.1511277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025]
Abstract
Dividing soil respiration (Rs) into autotrophic respiration (Ra) and heterotrophic respiration (Rh) represents a pivotal step in deciphering how Rs responds to environmental perturbations. Nevertheless, in arid ecosystems beset by environmental stress, the partitioning of Rs and the underlying mechanisms through which microbial and root traits govern the distinct components remain poorly understood. This study was strategically designed to investigate Rs and its components (Ra and Rh), soil properties, and root traits within the desert-oasis ecotone (encompassing the river bank, transitional zone, and desert margin) of northwest China. Employing metagenomics, we quantitatively characterized microbial taxonomic attributes (i.e., taxonomic composition) and functional attributes (specifically, functional genes implicated in microbial carbon metabolism). Field measurements during the growing season of 2019 unveiled a pronounced decline in soil respiration rates along the environmental gradient from the river bank to the desert margin. The mean soil respiration rate was recorded as 1.82 ± 0.41 μmol m-2 s-1 at the river bank, 0.49 ± 0.15 μmol m-2 s-1 in the transitional zone, and a meager 0.45 ± 0.12 μmol m-2 s-1 in the desert margin. Concomitantly, the Ra and Rh components exhibited a similar trend throughout the study period, with Rh emerging as the dominant driver of Rs. Utilizing random forest modeling, we unearthed significant associations between microbial taxonomic and functional features and Rs components. Notably, both Ra and Rh displayed robust positive correlations with the abundance of phosphatidylinositol glycan A, a key player in microbial carbon metabolism. Partial least squares path modeling further elucidated that soil properties and microbial functions exerted direct and positive influences on both Ra and Rh, whereas taxonomic features failed to register a significant impact. When considering the combined effects of biotic and abiotic factors, microbial functional attributes emerged as the linchpin in dictating Rs composition. Collectively, these findings suggest that a trait-based approach holds great promise in more effectively revealing the response mechanisms of Rs composition to environmental changes, thereby offering novel vistas for future investigations into carbon cycling in terrestrial soils.
Collapse
Affiliation(s)
- Jinlong Wang
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Guanghui Lv
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Jianjun Yang
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Xuemin He
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Hengfang Wang
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Wenjing Li
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| |
Collapse
|
7
|
An L, Lu X, Zhang P, Sun J, Cong B, Sa R, He D. Effects of continuous cropping on bacterial community diversity and soil metabolites in soybean roots. Front Microbiol 2025; 16:1534809. [PMID: 39996076 PMCID: PMC11847879 DOI: 10.3389/fmicb.2025.1534809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
The alternating planting of corn and soybeans is regarded as an effective strategy in addressing the challenges faced in soybean cultivation. However, the precise mechanisms that control the bacterial microbiome in soybean roots in the soil, particularly in continuous cropping and rotational corn-soybean farming rotations, are remain unclear. This study employed both field and pot positioning experiments, using high-throughput and generic metabolomics sequencing techniques to explore the dynamics between soybean plants, root microflora, and soil metabolites, especially in the context of continuous cropping and fluctuating corn-soybean crop rotation. The process that included rotating corn soybeans significantly enhanced their grain yield, dry weight, soil nitrogen concentration, urease activity, as well as the accumulation of nitrogen, phosphorus, and potassium in various plant organs, compared to the traditional practice of continuous soybean cultivation. There is a significant reduction in the transit of bacterial operational taxonomic units (OTUs) from the rhizosphere to the endosphere through rhizoplane. The number of bacterial OTUs that are consumed and enriched on rhizoplane is greater than those that are enriched and absorbed in the endosphere. Continuous cropping practices significantly boost Burkholderiales, whereas chloroplast microorganisms significantly improve crop rotation techniques. Soil environmental factors, such as urease and accessible phosphorus, are crucial in establishing the relative prevalence of Rhodanobacter and other bacterial groups. Soil metabolites, such as benzyl alcohol, show a positive correlation with Cyanobacteria, while acidic compounds, such as D-arabinitol, are positively linked with Burkholderiales. This study indicates that the rotation of corn and soybean crops facilitates the growth of soybeans, increases nutrient accumulation in both plants and soil, enhances the presence of beneficial bacteria, and improves soybean yields.
Collapse
Affiliation(s)
- Liwei An
- Pratacultural College, Inner Mongolia Minzu University, Tongliao, China
| | - Xinnan Lu
- Agriculturalc College, Inner Mongolia Minzu University, Tongliao, China
| | - Pengyu Zhang
- Inner Mongolia Agronomy and Animal Husbandry Technology Extension Center, Hohhot, China
| | - Jiayao Sun
- Tongliao Institute of Agricultural and Animal Husbandry Sciences, Tongliao, China
| | - Baiming Cong
- Tongliao Institute of Agricultural and Animal Husbandry Sciences, Tongliao, China
| | - Rula Sa
- Pratacultural College, Inner Mongolia Minzu University, Tongliao, China
| | - Dexin He
- Agriculturalc College, Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
8
|
Zhao L, Luo Z, Hu Z, Zhang Y, Zhao T, Zhong Y, Wang X. Linking phylogenetic niche conservatism in bacterial communities in sorghum root compartments revealed by the Hongyingzi cultivar. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:134-145. [PMID: 39506791 DOI: 10.1111/plb.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024]
Abstract
The root system harbours complex bacterial communities, which are critical for plant growth and health. Significant differences exist between bacterial communities in the root compartments; however, limited reports have explored their phylogenetic composition and niche conservatism in the root system of sorghum. We used the sorghum Hongyingzi cultivar as test plant, and applied 16S rRNA high-throughput sequencing and various statistical approaches. Phylogenetic composition of bacterial communities in root compartments were primarily driven by closely related species with similar environmental adaptations. We also found evidence of phylogenetic niche conservatism in bacterial communities for edaphic factors in the various root compartments, with pH and available N playing essential roles in shaping community composition. Environmental threshold analysis revealed threshold ranges of dominant taxa for pH and available N, indicating wider adaptive thresholds for more abundant taxa. Reconstruction of ancestral states suggested evolutionary changes in adaptability of certain bacterial taxa to edaphic factors, suggesting a shift towards slightly acidic, high N environments and reflecting the prolonged mutual interaction between bacteria and plants in cultivated soils. These findings enhance our understanding of environmental responses and evolutionary dynamics of root-associated microbiota in young sorghum plants and provide novel insights into ecological adaptations, shedding light on their responses to environmental factors. Our study contributes to a better understanding of the ecological dynamics of root-associated microbiota and offers analytical pathways for exploring the nutritional regulation of root microbiota.
Collapse
Affiliation(s)
- L Zhao
- Department of Liquor Brewing Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Z Luo
- Department of Liquor Brewing Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Z Hu
- Department of Liquor Brewing Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Y Zhang
- Department of Liquor Brewing Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - T Zhao
- Department of Liquor Brewing Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - Y Zhong
- Department of Liquor Brewing Engineering, Moutai Institute, Renhuai, Guizhou, China
| | - X Wang
- Department of Liquor Brewing Engineering, Moutai Institute, Renhuai, Guizhou, China
| |
Collapse
|
9
|
Lemieux-Labonté V, Pathmanathan JS, Terrat Y, Tromas N, Simard A, Haase CG, Lausen CL, Willis CKR, Lapointe FJ. Pseudogymnoascus destructans invasion stage impacts the skin microbial functions of highly vulnerable Myotis lucifugus. FEMS Microbiol Ecol 2024; 100:fiae138. [PMID: 39400741 PMCID: PMC11523048 DOI: 10.1093/femsec/fiae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 06/06/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024] Open
Abstract
The role of the skin microbiome in resistance and susceptibility of wildlife to fungal pathogens has been examined from a taxonomic perspective but skin microbial function, in the context of fungal infection, has yet to be studied. Our objective was to understand effects of a bat fungal pathogen site infection status and course of invasion on skin microbial function. We sampled seven hibernating colonies of Myotis lucifugus covering three-time points over the course of Pseudogymnoascus destructans (Pd) invasion and white nose syndrome (pre-invasion, epidemic, and established). Our results support three new hypotheses about Pd and skin functional microbiome: (1) there is an important effect of Pd invasion stage, especially at the epidemic stage; (2) disruption by the fungus at the epidemic stage could decrease anti-fungal functions with potential negative effects on the microbiome and bat health; (3) the collection site might have a larger influence on microbiomes at the pre-invasion stage rather than at epidemic and established stages. Future studies with larger sample sizes and using meta-omics approaches will help confirm these hypotheses, and determine the influence of the microbiome on wildlife survival to fungal disease.
Collapse
Affiliation(s)
| | - Jananan S Pathmanathan
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, Paris, 75005, France
| | - Yves Terrat
- Département de sciences biologiques, Université de Montréal, Montréal, Québec, H2V 0B3, Canada
| | - Nicolas Tromas
- Département de sciences biologiques, Université de Montréal, Montréal, Québec, H2V 0B3, Canada
| | - Anouk Simard
- Ministère de l’Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, G1R 5V7, Canada
| | - Catherine G Haase
- Department of Biology, Austin Peay State University, Clarksville, TN, 37044, United States
| | - Cori L Lausen
- Wildlife Conservation Society Canada, Kaslo, British-Columbia, V0G 1M0, Canada
| | - Craig K R Willis
- Department of Biology and Centre for Forest Interdisciplinary Research, University of Winnipeg, Winnipeg, Manitoba, R3B 2E9, Canada
| | | |
Collapse
|
10
|
Nahon SMR, Trindade FC, Yoshiura CA, Martins GC, da Costa IRC, Costa PHDO, Herrera H, Balestrin D, Godinho TDO, Marchiori BM, Valadares RBDS. Impact of Agroforestry Practices on Soil Microbial Diversity and Nutrient Cycling in Atlantic Rainforest Cocoa Systems. Int J Mol Sci 2024; 25:11345. [PMID: 39518901 PMCID: PMC11545550 DOI: 10.3390/ijms252111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Microorganisms are critical indicators of soil quality due to their essential role in maintaining ecosystem services. However, anthropogenic activities can disrupt the vital metabolic functions of these microorganisms. Considering that soil biology is often underestimated and traditional assessment methods do not capture its complexity, molecular methods can be used to assess soil health more effectively. This study aimed to identify the changes in soil microbial diversity and activity under different cocoa agroforestry systems, specially focusing on taxa and functions associated to carbon and nitrogen cycling. Soils from three different cocoa agroforestry systems, including a newly established agroforestry with green fertilization (GF), rubber (Hevea brasiliensis)-cocoa intercropping (RC), and cocoa plantations under Cabruca (cultivated under the shave of native forest) (CAB) were analyzed and compared using metagenomic and metaproteomic approaches. Samples from surrounding native forest and pasture were used in the comparison, representing natural and anthropomorphic ecosystems. Metagenomic analysis revealed a significant increase in Proteobacteria and Basidiomycota and the genes associated with dissimilatory nitrate reduction in the RC and CAB areas. The green fertilization area showed increased nitrogen cycling activity, demonstrating the success of the practice. In addition, metaproteomic analyses detected enzymes such as dehydrogenases in RC and native forest soils, indicating higher metabolic activity in these soils. These findings underscore the importance of soil management strategies to enhance soil productivity, diversity, and overall soil health. Molecular tools are useful to demonstrate how changes in agricultural practices directly influence the microbial community, affecting soil health.
Collapse
Affiliation(s)
- Sayure Mariana Raad Nahon
- Programa de Pós-Graduação em Biotecnologia Aplicada à Agropecuária, Universidade Federal Rural da Amazônia (UFRA), Belém 66077-830, PA, Brazil
- Instituto Tecnológico Vale (ITV), Rua Boaventura da Silva, 955, Belém 66050-090, PA, Brazil
| | - Felipe Costa Trindade
- Instituto Tecnológico Vale (ITV), Rua Boaventura da Silva, 955, Belém 66050-090, PA, Brazil
| | - Caio Augusto Yoshiura
- Instituto Tecnológico Vale (ITV), Rua Boaventura da Silva, 955, Belém 66050-090, PA, Brazil
| | | | | | | | - Héctor Herrera
- Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
- Center for Biodiversity and Ecological Sustainability, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Diego Balestrin
- Reserva Natural Vale, Rodovia BR 101, km 122 s/n Zona Rural, Linhares 29900-111, ES, Brazil
| | | | - Bia Makiyama Marchiori
- Reserva Natural Vale, Rodovia BR 101, km 122 s/n Zona Rural, Linhares 29900-111, ES, Brazil
| | | |
Collapse
|
11
|
Li L, Li C, Guo H, Liu Y, Sheng J, Guo S, Shen Q, Ling N, Guo J. Enhanced carbon use efficiency and warming resistance of soil microorganisms under organic amendment. ENVIRONMENT INTERNATIONAL 2024; 192:109043. [PMID: 39369561 DOI: 10.1016/j.envint.2024.109043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/30/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
The frequency and intensity of extreme weather events, including rapid temperature fluctuations, are increasing because of climate change. Long-term fertilization practices have been observed to alter microbial physiology and community structure, thereby affecting soil carbon sequestration. However, the effects of warming on the carbon sequestration potential of soil microbes adapted to long-term fertilization remain poorly understood. In this study, we utilized 18O isotope labeling to assess microbial carbon use efficiency (CUE) and employed stable isotope probing (SIP) with 18O-H2O to identify growing taxa in response to temperature changes (5-35 °C). Organic amendment with manure or straw residue significantly increased microbial CUE by 86-181 % compared to unfertilized soils. The microorganisms inhabiting organic amended soils displayed greater resistance of microbial CUE to high temperatures (25-35 °C) compared to those inhabiting soils fertilized only with minerals. Microbial growth patterns determined by the classification of taxa into incorporators or non-incorporators based on 18O incorporation into DNA exhibited limited phylogenetic conservation in response to temperature changes. Microbial clusters were identified by grouping taxa with similar growth patterns across different temperatures. Organic amendments enriched microbial clusters associated with increased CUE, whereas clusters in unfertilized or mineral-only fertilized soils were linked to decreased CUE. Specifically, shifts in the composition of growing bacteria were correlated with enhanced microbial CUE, whereas modifications in the composition of growing fungi were associated with diminished CUE. Notably, the responses of microbial CUE to temperature fluctuations were primarily driven by changes in the bacterial composition. Overall, our findings demonstrate that organic amendments enhance soil microbial CUE and promote the enrichment of specific microbial clusters that are better equipped to cope with temperature changes. This study establishes a theoretical foundation for manipulating soil microbes to enhance carbon sequestration under global climate scenarios.
Collapse
Affiliation(s)
- Ling Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu, China
| | - Chenhua Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Hanyue Guo
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunhua Liu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Jiandong Sheng
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Ling
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu, China
| | - Junjie Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
12
|
Litchman E, Villéger S, Zinger L, Auguet JC, Thuiller W, Munoz F, Kraft NJB, Philippot L, Violle C. Refocusing the microbial rare biosphere concept through a functional lens. Trends Ecol Evol 2024; 39:923-936. [PMID: 38987022 DOI: 10.1016/j.tree.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
The influential concept of the rare biosphere in microbial ecology has underscored the importance of taxa occurring at low abundances yet potentially playing key roles in communities and ecosystems. Here, we refocus the concept of rare biosphere through a functional trait-based lens and provide a framework to characterize microbial functional rarity, a combination of numerical scarcity across space or time and trait distinctiveness. We demonstrate how this novel interpretation of the rare biosphere, rooted in microbial functions, can enhance our mechanistic understanding of microbial community structure. It also sheds light on functionally distinct microbes, directing conservation efforts towards taxa harboring rare yet ecologically crucial functions.
Collapse
Affiliation(s)
- Elena Litchman
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA; Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA.
| | | | - Lucie Zinger
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France; Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300, CNRS, Institut de Recherche pour le Développement (IRD), Toulouse INP, Université Toulouse 3 Paul Sabatier, Toulouse, France
| | | | - Wilfried Thuiller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - François Munoz
- Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - Nathan J B Kraft
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laurent Philippot
- Université Bourgogne Franche-Comté, INRAE, Institut Agro Dijon, Agroecology, Dijon, France
| | - Cyrille Violle
- CEFE, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
13
|
Cocksedge E, Stat M, Suzzi AL, Gaston TF, Huggett MJ. Spatial and environmental drivers of temperate estuarine archaeal communities. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106703. [PMID: 39182434 DOI: 10.1016/j.marenvres.2024.106703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Archaea play a crucial role in the global biogeochemical cycling of elements and nutrients, helping to maintain the functional stability of estuarine systems. This study characterised the abundance and diversity of archaeal communities and identified the environmental conditions shaping these microbial communities within six temperate estuaries along approximately 500 km of the New South Wales coastline, Australia. Estuarine sediments were found to exhibit significantly higher species richness than planktonic communities, with representative sequences from the Crenarchaeota phylum characterising each environment. Ordinate analyses revealed catchment characteristics as the strongest drivers of community variability. Our results also provide evidence supporting distance-decay patterns of archaeal biogeography across intermediate scales within and between temperate estuaries, contributing to a growing body of evidence revealing the extent spatial scales play in shaping microbial communities. This study expands our understanding of microbial diversity in temperate estuaries, with a specific focus on archaeal community structure and their role in maintaining ecosystem stability.
Collapse
Affiliation(s)
- Emily Cocksedge
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia.
| | - Michael Stat
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia
| | - Alessandra L Suzzi
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia
| | - Troy F Gaston
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia
| | - Megan J Huggett
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, 2258, Australia; Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
14
|
Eren AM, Banfield JF. Modern microbiology: Embracing complexity through integration across scales. Cell 2024; 187:5151-5170. [PMID: 39303684 PMCID: PMC11450119 DOI: 10.1016/j.cell.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Microbes were the only form of life on Earth for most of its history, and they still account for the vast majority of life's diversity. They convert rocks to soil, produce much of the oxygen we breathe, remediate our sewage, and sustain agriculture. Microbes are vital to planetary health as they maintain biogeochemical cycles that produce and consume major greenhouse gases and support large food webs. Modern microbiologists analyze nucleic acids, proteins, and metabolites; leverage sophisticated genetic tools, software, and bioinformatic algorithms; and process and integrate complex and heterogeneous datasets so that microbial systems may be harnessed to address contemporary challenges in health, the environment, and basic science. Here, we consider an inevitably incomplete list of emergent themes in our discipline and highlight those that we recognize as the archetypes of its modern era that aim to address the most pressing problems of the 21st century.
Collapse
Affiliation(s)
- A Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity, 26129 Oldenburg, Germany; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany; Marine Biological Laboratory, Woods Hole, MA, USA; Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA; Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Department of Environmental Science Policy, and Management, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
15
|
Yao L, Wu J, Liu S, Xing H, Wang P, Gao W, Wu Z, Zhou Q. Distinct drivers of bacterial community assembly processes in riverine islands in the middle and lower reaches of the Yangtze River. Microbiol Spectr 2024; 12:e0081824. [PMID: 38869307 PMCID: PMC11302259 DOI: 10.1128/spectrum.00818-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/02/2024] [Indexed: 06/14/2024] Open
Abstract
Riverine islands are widespread alluvium wetlands developed in large rivers, and bacterial communities are crucial to their ecological function, yet their assembly processes are rarely addressed. The ecosystem services provided by the middle and the lower Yangtze are primarily threatened by pollution discharge from agricultural land use, and resource overutilization (e.g., embankments), respectively. Here, we assessed bacterial community assembly processes and their drivers within riverine islands in the middle Yangtze River (MR islands) and those in the lower reach (LR islands). A significant distance-decay relationship was observed, although the turnover rate was lower than that of the terrestrial ecosystem with less connectivity. Deterministic and stochastic processes jointly shaped community patterns, and the influence of stochastic increased from 26% in MR islands to 59% for those in LR islands. Meanwhile, the bacterial community in MR islands was controlled more by inorganic nitrogen availability, whereas those in LR islands were governed by pH and EC, although those factors explained a limited fraction of variation in the bacterial community. Potential indicator taxa (affiliated with Nocardioides and Lysobacter) characterized the waterway transport pollution. Overall, our study demonstrated that bacterial community dissimilarity and the importance of dispersal limitation increased concurrently along the flow direction, while distinct local factors further determined bacterial community compositions by selecting habitat-specificity taxa and particularly metabolism function. These findings enhanced our understanding of the mechanisms driving changes in bacterial communities of riverine islands subject to increased anthropogenic impacts.IMPORTANCERivers are among the most threatened ecosystems globally and face multiple stressors related to human activity. However, linkages between microbial diversity patterns and assembly processes in rivers remain unclear, especially in riverine islands developed in large rivers. Our findings reveal that distinct factors result in divergent bacterial community compositions and functional profiles in the riverine islands in the middle Yangtze and those in the lower Yangtze, with substantial differentiation in deterministic and stochastic processes that jointly contribute to bacterial community assemblages. Additionally, keystone species may play important metabolic roles in coping with human-related disturbances. This study provides an improved understanding of relationships between microbial diversity patterns and ecosystem functions under environmental changes in large river ecosystems.
Collapse
Affiliation(s)
- Lu Yao
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia
| | - Junmei Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shouzhuang Liu
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Hao Xing
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Pei Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wenjuan Gao
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhenbin Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Qiaohong Zhou
- Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
16
|
Zhao Y, Zhu-Barker X, Cai K, Wang S, Wright AL, Jiang X. Quest for the Nitrogen-Metabolic Versatility of Microorganisms in Soil and Marine Ecosystems. Microorganisms 2024; 12:1283. [PMID: 39065052 PMCID: PMC11278940 DOI: 10.3390/microorganisms12071283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 07/28/2024] Open
Abstract
Whether nitrogen (N)-metabolic versatility is a common trait of N-transforming microbes or if it only occurs in a few species is still unknown. We collected 83 soil samples from six soil types across China, retrieved 19 publicly available metagenomic marine sample data, and analyzed the functional traits of N-transforming microorganisms using metagenomic sequencing. More than 38% and 35% of N-transforming species in soil and marine ecosystems, respectively, encoded two or more N-pathways, although N-transforming species differed greatly between them. Furthermore, in both soil and marine ecosystems, more than 80% of nitrifying and N-fixing microorganisms at the species level were N-metabolic versatile. This study reveals that N-metabolic versatility is a common trait of N-transforming microbes, which could expand our understanding of the functional traits of drivers of nitrogen biogeochemistry.
Collapse
Affiliation(s)
- Yongpeng Zhao
- College of Resources and Environment, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Xia Zhu-Barker
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53709, USA
| | - Kai Cai
- College of Resources and Environment, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Shuling Wang
- College of Resources and Environment, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Alan L. Wright
- Indian River Research & Education Center, University of Florida-IFAS, Fort Pierce, FL 34945, USA
| | - Xianjun Jiang
- College of Resources and Environment, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, China
| |
Collapse
|
17
|
Graham EB, Garayburu-Caruso VA, Wu R, Zheng J, McClure R, Jones GD. Genomic fingerprints of the world's soil ecosystems. mSystems 2024; 9:e0111223. [PMID: 38722174 PMCID: PMC11237643 DOI: 10.1128/msystems.01112-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/25/2024] [Indexed: 06/19/2024] Open
Abstract
Despite the explosion of soil metagenomic data, we lack a synthesized understanding of patterns in the distribution and functions of soil microorganisms. These patterns are critical to predictions of soil microbiome responses to climate change and resulting feedbacks that regulate greenhouse gas release from soils. To address this gap, we assay 1,512 manually curated soil metagenomes using complementary annotation databases, read-based taxonomy, and machine learning to extract multidimensional genomic fingerprints of global soil microbiomes. Our objective is to uncover novel biogeographical patterns of soil microbiomes across environmental factors and ecological biomes with high molecular resolution. We reveal shifts in the potential for (i) microbial nutrient acquisition across pH gradients; (ii) stress-, transport-, and redox-based processes across changes in soil bulk density; and (iii) greenhouse gas emissions across biomes. We also use an unsupervised approach to reveal a collection of soils with distinct genomic signatures, characterized by coordinated changes in soil organic carbon, nitrogen, and cation exchange capacity and in bulk density and clay content that may ultimately reflect soil environments with high microbial activity. Genomic fingerprints for these soils highlight the importance of resource scavenging, plant-microbe interactions, fungi, and heterotrophic metabolisms. Across all analyses, we observed phylogenetic coherence in soil microbiomes-more closely related microorganisms tended to move congruently in response to soil factors. Collectively, the genomic fingerprints uncovered here present a basis for global patterns in the microbial mechanisms underlying soil biogeochemistry and help beget tractable microbial reaction networks for incorporation into process-based models of soil carbon and nutrient cycling.IMPORTANCEWe address a critical gap in our understanding of soil microorganisms and their functions, which have a profound impact on our environment. We analyzed 1,512 global soils with advanced analytics to create detailed genetic profiles (fingerprints) of soil microbiomes. Our work reveals novel patterns in how microorganisms are distributed across different soil environments. For instance, we discovered shifts in microbial potential to acquire nutrients in relation to soil acidity, as well as changes in stress responses and potential greenhouse gas emissions linked to soil structure. We also identified soils with putative high activity that had unique genomic characteristics surrounding resource acquisition, plant-microbe interactions, and fungal activity. Finally, we observed that closely related microorganisms tend to respond in similar ways to changes in their surroundings. Our work is a significant step toward comprehending the intricate world of soil microorganisms and its role in the global climate.
Collapse
Affiliation(s)
- Emily B. Graham
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | | | - Ruonan Wu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jianqiu Zheng
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ryan McClure
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Gerrad D. Jones
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
18
|
Wang B, Hu K, Li C, Zhang Y, Hu C, Liu Z, Ding J, Chen L, Zhang W, Fang J, Zhang H. Geographic distribution of bacterial communities of inland waters in China. ENVIRONMENTAL RESEARCH 2024; 249:118337. [PMID: 38325783 DOI: 10.1016/j.envres.2024.118337] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
Microorganisms are integral to freshwater ecological functions and, reciprocally, their activity and diversity are shaped by the ecosystem state. Yet, the diversity of bacterial community and its driving factors at a large scale remain elusive. To bridge this knowledge gap, we delved into an analysis of 16S RNA gene sequences extracted from 929 water samples across China. Our analyses revealed that inland water bacterial communities showed a weak latitudinal diversity gradient. We found 530 bacterial genera with high relative abundance of hgcI clade. Among them, 29 core bacterial genera were identified, that is strongly linked to mean annual temperature and nutrient loadings. We also detected a non-linear response of bacterial network complexity to the increasing of human pressure. Mantel analysis suggested that MAT, HPI and P loading were the major factors driving bacterial communities in inland waters. The map of taxa abundance showed that the abundant CL500-29 marine group in eastern and southern China indicated high eutrophication risk. Our findings enhance our understanding of the diversity and large-scale biogeographic pattern of bacterial communities of inland waters and have important implications for microbial ecology.
Collapse
Affiliation(s)
- Binhao Wang
- School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China
| | - Kaiming Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chuqiao Li
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yinan Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chao Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhiquan Liu
- School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China
| | - Jiafeng Ding
- School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China
| | - Lin Chen
- Hangzhou Xixi National Wetland Park Ecology & Culture Research Center, Hangzhou, 310030, China; Zhejiang Xixi Wetland Ecosystem National Observation and Research Station, Hangzhou, 310030, China
| | - Wei Zhang
- Hangzhou Xixi National Wetland Park Ecology & Culture Research Center, Hangzhou, 310030, China; Zhejiang Xixi Wetland Ecosystem National Observation and Research Station, Hangzhou, 310030, China
| | - Jing Fang
- Hangzhou Xixi National Wetland Park Ecology & Culture Research Center, Hangzhou, 310030, China; Zhejiang Xixi Wetland Ecosystem National Observation and Research Station, Hangzhou, 310030, China
| | - Hangjun Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China; Hangzhou International Urbanology Research Center and Center for Zhejiang Urban Governance Studies, Hangzhou, 311121, China.
| |
Collapse
|
19
|
Lausch A, Selsam P, Pause M, Bumberger J. Monitoring vegetation- and geodiversity with remote sensing and traits. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230058. [PMID: 38342219 PMCID: PMC10859235 DOI: 10.1098/rsta.2023.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/28/2023] [Indexed: 02/13/2024]
Abstract
Geodiversity has shaped and structured the Earth's surface at all spatio-temporal scales, not only through long-term processes but also through medium- and short-term processes. Geodiversity is, therefore, a key control and regulating variable in the overall development of landscapes and biodiversity. However, climate change and land use intensity are leading to major changes and disturbances in bio- and geodiversity. For sustainable ecosystem management, temporal, economically viable and standardized monitoring is needed to monitor and model the effects and changes in vegetation- and geodiversity. RS approaches have been used for this purpose for decades. However, to understand in detail how RS approaches capture vegetation- and geodiversity, the aim of this paper is to describe how five features of vegetation- and geodiversity are captured using RS technologies, namely: (i) trait diversity, (ii) phylogenetic/genese diversity, (iii) structural diversity, (iv) taxonomic diversity and (v) functional diversity. Trait diversity is essential for establishing the other four. Traits provide a crucial interface between in situ, close-range, aerial and space-based RS monitoring approaches. The trait approach allows complex data of different types and formats to be linked using the latest semantic data integration techniques, which will enable ecosystem integrity monitoring and modelling in the future. This article is part of the Theo Murphy meeting issue 'Geodiversity for science and society'.
Collapse
Affiliation(s)
- Angela Lausch
- Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Department of Physical Geography and Geoecology, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 4, 06120 Halle, Germany
- Department of Architecture, Facility Management and Geoinformation, Institute for Geoinformation and Surveying, Bauhausstraße 8, 06846 Dessau, Germany
| | - Peter Selsam
- Department of Monitoring and Exploration Technologies, and
| | - Marion Pause
- Department of Architecture, Facility Management and Geoinformation, Institute for Geoinformation and Surveying, Bauhausstraße 8, 06846 Dessau, Germany
| | - Jan Bumberger
- Department of Monitoring and Exploration Technologies, and
- Research Data Management-RDM, Helmholtz Centre for Environmental Research UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| |
Collapse
|
20
|
Zhao X, Wang J, Liu Q, Du W, Yang S, Cai P, Ni J. Multifunctionality promotes the prosperity of riverine planktonic diatoms in plateau. ENVIRONMENTAL RESEARCH 2024; 246:118148. [PMID: 38191040 DOI: 10.1016/j.envres.2024.118148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Interpreting the biogeographic distribution and underlying mechanisms of functional traits not only contributes to revealing the spatiotemporal dynamics of species biodiversity but also helps to maintain ecological stability during environmental variations. However, little is known about the functional profiles of diatom communities over large river systems. Herein, we provided the first blueprints about the spatiotemporal distributions and driving forces of functional traits for both planktonic and sedimentary diatoms over the 6030 km continuum of the Yangtze River, with the help of the high-throughput sequencing and functional identification. By investigating the 28 functional traits affiliated into five categories, we found that planktonic diatom functions showed clearer landform-heterogeneity patterns (ANOSIM R = 0.336) than sedimentary functions (ANOSIM R = 0.172) along the river, represented by life-forms and ecological-guilds prominent in water-plateau as well as cell-sizes and life-forms particularly in sediment-plateau. Planktonic diatom functions also displayed higher richness and network complexity in plateau (richness: 58.70 ± 9.30, network edges: 65) than in non-plateau regions (23.82 ± 13.16, 16), promoting the stability and robustness of diatom functions against the high-radiation and low-temperature plateau environment. Environmental selection (mainly exerted by PAR, UV, and Tw) played crucial roles in determining the functional variations of planktonic diatoms (explaining 80.5%) rather than sedimentary diatoms (14.5%) between plateau and non-plateau regions. Meanwhile, planktonic diatom traits within life-forms were identified to be well responsive to the ecological environment quality (r = 0.56-0.60, P < 0.001) in the Yangtze. This study provided comprehensive insights into the multifunctionality of diatoms and their responses to environmental disturbance and environment quality, which helps to develop effective strategies for maintaining ecological stability in changing river environments.
Collapse
Affiliation(s)
- Xiaohui Zhao
- School of Water Resources and Hydropower Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Jiawen Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China; College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, PR China.
| | - Qingxiang Liu
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, PR China
| | - Wenran Du
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China; College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, PR China
| | - Shanqing Yang
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, PR China
| | - Pinggui Cai
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China; College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, PR China
| | - Jinren Ni
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, PR China
| |
Collapse
|
21
|
Lumian J, Sumner DY, Grettenberger CL, Jungblut AD, Irber L, Pierce-Ward NT, Brown CT. Biogeographic distribution of five Antarctic cyanobacteria using large-scale k-mer searching with sourmash branchwater. Front Microbiol 2024; 15:1328083. [PMID: 38440141 PMCID: PMC10909832 DOI: 10.3389/fmicb.2024.1328083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
Cyanobacteria form diverse communities and are important primary producers in Antarctic freshwater environments, but their geographic distribution patterns in Antarctica and globally are still unresolved. There are however few genomes of cultured cyanobacteria from Antarctica available and therefore metagenome-assembled genomes (MAGs) from Antarctic cyanobacteria microbial mats provide an opportunity to explore distribution of uncultured taxa. These MAGs also allow comparison with metagenomes of cyanobacteria enriched communities from a range of habitats, geographic locations, and climates. However, most MAGs do not contain 16S rRNA gene sequences, making a 16S rRNA gene-based biogeography comparison difficult. An alternative technique is to use large-scale k-mer searching to find genomes of interest in public metagenomes. This paper presents the results of k-mer based searches for 5 Antarctic cyanobacteria MAGs from Lake Fryxell and Lake Vanda, assigned the names Phormidium pseudopriestleyi FRX01, Microcoleus sp. MP8IB2.171, Leptolyngbya sp. BulkMat.35, Pseudanabaenaceae cyanobacterium MP8IB2.15, and Leptolyngbyaceae cyanobacterium MP9P1.79 in 498,942 unassembled metagenomes from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA). The Microcoleus sp. MP8IB2.171 MAG was found in a wide variety of environments, the P. pseudopriestleyi MAG was found in environments with challenging conditions, the Leptolyngbyaceae cyanobacterium MP9P1.79 MAG was only found in Antarctica, and the Leptolyngbya sp. BulkMat.35 and Pseudanabaenaceae cyanobacterium MP8IB2.15 MAGs were found in Antarctic and other cold environments. The findings based on metagenome matches and global comparisons suggest that these Antarctic cyanobacteria have distinct distribution patterns ranging from locally restricted to global distribution across the cold biosphere and other climatic zones.
Collapse
Affiliation(s)
- Jessica Lumian
- Department of Earth and Planetary Sciences, Microbiology Graduate Group, University of California Davis, Davis, CA, United States
| | - Dawn Y. Sumner
- Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, United States
| | - Christen L. Grettenberger
- Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, United States
- Department of Environmental Toxicology, University of California Davis, Davis, CA, United States
| | - Anne D. Jungblut
- Department of Science, The Natural History Museum, London, United Kingdom
| | - Luiz Irber
- Population Health and Reproduction, University of California Davis, Davis, CA, United States
| | - N. Tessa Pierce-Ward
- Population Health and Reproduction, University of California Davis, Davis, CA, United States
| | - C. Titus Brown
- Population Health and Reproduction, University of California Davis, Davis, CA, United States
| |
Collapse
|
22
|
Liang S, Zhang W, Grossart HP, Gadd GM, Liu W, Yang Y. The unique climate shapes distinct life-history traits of abundant bacteria in Tibetan Plateau grassland soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168353. [PMID: 37935266 DOI: 10.1016/j.scitotenv.2023.168353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
The unique geographical patterns of the Qinghai-Tibet Plateau have shaped the different climatic characteristics of the Lhasa and Nyang River watersheds. However, our understanding of climate-dependent life history strategies in riparian grasslands is very limited. In this research, we have compared the causes and consequences of variations in the composition of soil abundant and rare bacterial taxa in the Nyang and Lhasa River watersheds. The results showed that the abundant bacteria, rather than the rare bacteria, exhibited distinct life history strategies between the Lhasa and Nyang watersheds that were a consequence of climate patterns. The wetter climate of the Nyang watershed led to a high ratio of r-strategists among the abundant bacteria (Abundant K:r = 0.323), while in the less favourable climate of the Lhasa watershed, K-strategists were more common among the soil abundant bacteria (Abundant K:r = 0.542). The assembly processes of abundant and rare bacteria in the Lhasa region under relatively harsh climatic conditions seemed to be more affected by variable selection than those in the Nyang region. Moreover, abundant bacteria in the Lhasa region developed stronger potentially cooperative relationships and exhibited a stronger metabolic capacity than those in the Nyang region. The 26 different functional genes identified in LS were highly associated with 38 abundant bacterial species. In contrast, the 16 identified functional genes in NY were highly correlated with 16 abundant bacterial species. These results provide new insights into climate-dependent life history strategies of soil bacterial communities with different abundances in riparian grasslands of the Tibetan Plateau. Contrasting the life history strategies of bacterial taxa with different abundances contributes to a better mechanistic knowledge of their impact on ecosystem functioning under current and future effects of global climate change.
Collapse
Affiliation(s)
- Shuxin Liang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China; Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Weihong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan 430074, China
| | - Hans-Peter Grossart
- Leibniz-Institute for Freshwater Ecology and Inland Fisheries (IGB), Neuglobsow 16775, Germany; Institute for Biochemistry and Biology, Potsdam University, Potsdam 14469, Germany
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK; State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing 102249, China
| | - Wenzhi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan 430074, China.
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan 430074, China.
| |
Collapse
|
23
|
Barbour KM, Martiny JBH. Investigating eco-evolutionary processes of microbial community assembly in the wild using a model leaf litter system. THE ISME JOURNAL 2024; 18:wrae043. [PMID: 38506671 PMCID: PMC11008689 DOI: 10.1093/ismejo/wrae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Microbial communities are not the easiest to manipulate experimentally in natural ecosystems. However, leaf litter-topmost layer of surface soil-is uniquely suitable to investigate the complexities of community assembly. Here, we reflect on over a decade of collaborative work to address this topic using leaf litter as a model system in Southern California ecosystems. By leveraging a number of methodological advantages of the system, we have worked to demonstrate how four processes-selection, dispersal, drift, and diversification-contribute to bacterial and fungal community assembly and ultimately impact community functioning. Although many dimensions remain to be investigated, our initial results demonstrate that both ecological and evolutionary processes occur simultaneously to influence microbial community assembly. We propose that the development of additional and experimentally tractable microbial systems will be enormously valuable to test the role of eco-evolutionary processes in natural settings and their implications in the face of rapid global change.
Collapse
Affiliation(s)
- Kristin M Barbour
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, United States
| | - Jennifer B H Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, United States
| |
Collapse
|
24
|
Espada‐Hinojosa S, Karthäuser C, Srivastava A, Schuster L, Winter T, de Oliveira AL, Schulz F, Horn M, Sievert S, Bright M. Comparative genomics of a vertically transmitted thiotrophic bacterial ectosymbiont and its close free-living relative. Mol Ecol Resour 2024; 24:e13889. [PMID: 38010882 PMCID: PMC10952691 DOI: 10.1111/1755-0998.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/31/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023]
Abstract
Thiotrophic symbioses between sulphur-oxidizing bacteria and various unicellular and metazoan eukaryotes are widespread in reducing marine environments. The giant colonial ciliate Zoothamnium niveum, however, is the only host of thioautotrophic symbionts that has been cultivated along with its symbiont, the vertically transmitted ectosymbiont Candidatus Thiobius zoothamnicola (short Thiobius). Because theoretical predictions posit a smaller genome in vertically transmitted endosymbionts compared to free-living relatives, we investigated whether this is true also for an ectosymbiont. We used metagenomics to recover the high-quality draft genome of this bacterial symbiont. For comparison we have also sequenced a closely related free-living cultured but not formally described strain Milos ODIII6 (short ODIII6). We then performed comparative genomics to assess the functional capabilities at gene, metabolic pathway and trait level. 16S rRNA gene trees and average amino acid identity confirmed the close phylogenetic relationship of both bacteria. Indeed, Thiobius has about a third smaller genome than its free-living relative ODIII6, with reduced metabolic capabilities and fewer functional traits. The functional capabilities of Thiobius were a subset of those of the more versatile ODIII6, which possessed additional genes for oxygen, sulphur and hydrogen utilization and for the acquisition of phosphorus illustrating features that may be adaptive for the unstable environmental conditions at hydrothermal vents. In contrast, Thiobius possesses genes potentially enabling it to utilize lactate and acetate heterotrophically, compounds that may be provided as byproducts by the host. The present study illustrates the effect of strict host-dependence of a bacterial ectosymbiont on genome evolution and host adaptation.
Collapse
Affiliation(s)
| | - Clarissa Karthäuser
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Abhishek Srivastava
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | - Lukas Schuster
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
- Present address:
Deakin UniversityBurwoodAustralia
| | - Teresa Winter
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | - André Luiz de Oliveira
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
- Present address:
Max Planck Institute for Marine MicrobiologyBremenGermany
| | - Frederik Schulz
- Center for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
- Present address:
DOE Joint Genome InstituteBerkeleyCaliforniaUSA
| | - Matthias Horn
- Center for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
| | - Stefan Sievert
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Monika Bright
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| |
Collapse
|
25
|
Wang Y, Huang Y, Zeng Q, Liu D, An S. Biogeographic distribution of autotrophic bacteria was more affected by precipitation than by soil properties in an arid area. Front Microbiol 2023; 14:1303469. [PMID: 38173682 PMCID: PMC10761425 DOI: 10.3389/fmicb.2023.1303469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Autotrophic bacteria play an important role in carbon dioxide fixation and are widespread in terrestrial ecosystems. However, the biogeographic patterns of autotrophic bacteria and the driving factors still remain poorly understood. Methods Herein, we conducted a 391-km north to south transect (mean annual precipitation <600 mm) survey in the Loess Plateau of China, to investigate the biogeographic distributions of autotrophic bacteria (RubisCO cbbL and cbbM genes) and the environmental drivers across different latitude sites with clear vegetational and climatic gradients. Results and discussion The soils in northern region with lower precipitation are dominated by grassland/forest, which is typically separated from the soils in southern region with higher precipitation. The community structure of autotrophic bacterial cbbL and cbbM genes generally differed between the soils in the southern and northern Loess Plateau, suggesting that precipitation and its related land use practices/ecosystem types, rather than local soil properties, are more important in shaping the soil autotrophic microorganisms. The cbbL-containing generalist OTUs were almost equally abundant across the northern and southern Loess Plateau, while the cbbM-containing bacterial taxa were more prevalent in the low precipitation northern region. Such differences indicate differentiate distribution patterns of cbbM- and cbbL-containing bacteria across the north to south transect. Our results suggest that the community composition and the differentiate distributions of soil cbbL- and cbbM-containing bacterial communities depend on precipitation and the related ecosystem types in the north to south transect in the Loess Plateau of China.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi Province, China
| | - Yimei Huang
- College of Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province, China
| | - Quanchao Zeng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Dong Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi Province, China
| |
Collapse
|
26
|
Wang M, Pu W, Wang S, Zeng X, Sui X, Wang X. pH-Related Changes in Soil Bacterial Communities in the Sanjiang Plain, Northeast China. Microorganisms 2023; 11:2950. [PMID: 38138094 PMCID: PMC10745975 DOI: 10.3390/microorganisms11122950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Soil bacteria are crucial components of terrestrial ecosystems, playing an important role in soil biogeochemical cycles. Although bacterial community diversity and composition are regulated by many abiotic and biotic factors, how soil physiochemical properties impact the soil bacteria community diversity and composition in wetland ecosystems remains largely unknown. In this study, we used high-throughput sequencing technology to investigate the diversity and composition of a soil bacterial community, as well as used the structural equation modeling (SEM) method to investigate the relationships of the soil's physicochemical properties (i.e., soil pH, soil organic carbon (SOC), total nitrogen (TN), ammonium nitrogen (NH4+N), electrical conductivity (EC) and nitrate nitrogen (NO3-N)), and soil bacterial community structures in three typical wetland sites in the Sanjiang Plain wetland. Our results showed that the soil physicochemical properties significantly changed the α and β-diversity of the soil bacteria communities, e.g., soil TN, NH4+N, NO3-N, and SOC were the main soil factors affecting the soil bacterial α-diversity. The soil TN and pH were the key soil factors affecting the soil bacterial community. Our results suggest that changes in soil pH indirectly affect soil bacterial communities by altering the soil nitrogenous nutrient content.
Collapse
Affiliation(s)
- Mingyu Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (M.W.); (W.P.); (S.W.)
| | - Wenmiao Pu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (M.W.); (W.P.); (S.W.)
| | - Shenzheng Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (M.W.); (W.P.); (S.W.)
| | - Xiannan Zeng
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150088, China;
| | - Xin Sui
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (M.W.); (W.P.); (S.W.)
| | - Xin Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (M.W.); (W.P.); (S.W.)
| |
Collapse
|
27
|
Wattenburger CJ, Buckley DH. Land use alters bacterial growth dynamics in soil. Environ Microbiol 2023; 25:3239-3254. [PMID: 37783513 DOI: 10.1111/1462-2920.16514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Microbial growth and mortality are major determinants of soil carbon cycling. We measured in situ growth dynamics of individual bacterial taxa in cropped and successional soils in response to a resource pulse. We hypothesized that land use imposes selection pressures on growth characteristics. We estimated growth and death for 453 and 73 taxa, respectively. The average generation time was 5.04 ± 6.28 (SD; range 0.7-63.5) days. Lag times were shorter in cultivated than successional soils and resource amendment decreased lag times. Taxa exhibiting the greatest growth response also exhibited the greatest mortality, indicative of boom-and-bust dynamics. We observed a bimodal growth rate distribution, representing fast- and slow-growing clusters. Both clusters grew more rapidly in successional soils, which had more organic matter, than cultivated soils. Resource amendment increased the growth rate of the slower growing but not the faster-growing cluster via a mixture of increased growth rates and species turnover, indicating that competitive dynamics constrain growth rates in situ. These two clusters show that copiotrophic bacteria in soils may be subdivided into different life history groups and that these subgroups respond independently to land use and resource availability.
Collapse
Affiliation(s)
- Cassandra J Wattenburger
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Daniel H Buckley
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
28
|
Jiraska L, Jones B, Knight SJ, Lennox J, Goddard MR. Soil and bark biodiversity forms discrete islands between vineyards that are not affected by distance or management regime. Environ Microbiol 2023; 25:3655-3670. [PMID: 37905675 DOI: 10.1111/1462-2920.16513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023]
Abstract
Within geographic regions, the existing data suggest that physical habitat (bark, soil, etc.) is the strongest factor determining agroecosystem microbial community assemblage, followed by geographic location (site), and then management regime (organic, conventional, etc.). The data also suggest community similarities decay with increasing geographic distance. However, integrated hypotheses for these observations have not been developed. We formalized and tested such hypotheses by sequencing 3.8 million bacterial 16S, fungal ITS2 and non-fungal eukaryotic COI barcodes deriving from 108 samples across two habitats (soil and bark) from six vineyards sites under conventional or conservation management. We found both habitat and site significantly affected community assemblage, with habitat the stronger for bacteria only, but there was no effect of management. There was no evidence for community similarity distance-decay within sites within each habitat. While communities significantly differed between vineyard sites, there was no evidence for between site community similarity distance-decay apart from bark bacterial communities, and no correlations with soil and bark pH apart from soil bacterial communities. Thus, within habitats, vineyard sites represent discrete biodiversity islands, and while bacterial, fungal and non-fungal eukaryotic biodiversity mostly differs between sites, the distance by which they are separated does not define how different they are.
Collapse
Affiliation(s)
- Lucie Jiraska
- The School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Beatrix Jones
- The School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Sarah J Knight
- The School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jed Lennox
- The School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Matthew R Goddard
- The School of Biological Sciences, University of Auckland, Auckland, New Zealand
- The School of Life and Environmental Sciences, University of Lincoln, Lincoln, UK
| |
Collapse
|
29
|
Van Nuland ME, Daws SC, Bailey JK, Schweitzer JA, Busby PE, Peay KG. Above- and belowground fungal biodiversity of Populus trees on a continental scale. Nat Microbiol 2023; 8:2406-2419. [PMID: 37973868 DOI: 10.1038/s41564-023-01514-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023]
Abstract
Understanding drivers of terrestrial fungal communities over large scales is an important challenge for predicting the fate of ecosystems under climate change and providing critical ecological context for bioengineering plant-microbe interactions in model systems. We conducted an extensive molecular and microscopy field study across the contiguous United States measuring natural variation in the Populus fungal microbiome among tree species, plant niche compartments and key symbionts. Our results show clear biodiversity hotspots and regional endemism of Populus-associated fungal communities explained by a combination of climate, soil and geographic factors. Modelling climate change impacts showed a deterioration of Populus mycorrhizal associations and an increase in potentially pathogenic foliar endophyte diversity and prevalence. Geographic differences among these symbiont groups in their sensitivity to environmental change are likely to influence broader forest health and ecosystem function. This dataset provides an above- and belowground atlas of Populus fungal biodiversity at a continental scale.
Collapse
Affiliation(s)
- Michael E Van Nuland
- Department of Biology, Stanford University, Stanford, CA, USA.
- Society for the Protection of Underground Networks, SPUN, Dover, DE, USA.
| | - S Caroline Daws
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Joseph K Bailey
- Ecology and Evolutionary Biology Department, University of Tennessee, Knoxville, TN, USA
| | - Jennifer A Schweitzer
- Ecology and Evolutionary Biology Department, University of Tennessee, Knoxville, TN, USA
| | - Posy E Busby
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Kabir G Peay
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| |
Collapse
|
30
|
Lin R, Wu H, Kong X, Ren H, Lu Z. Ribosomal RNA gene operon copy number, a functional trait indicating the hydrocarbon degradation level of bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132100. [PMID: 37523962 DOI: 10.1016/j.jhazmat.2023.132100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The lack of universal indicators for predicting microbial biodegradation potential and assessing remediation effects limits the generalization of bioremediation. The community-level ribosomal RNA gene operon (rrn) copy number, an important functional trait, has the potential to serve as a key indicator of the bioremediation of organic pollutants. A meta-analysis based on 1275 samples from 26 hydrocarbon-related studies revealed a positive relationship between the microbial hydrocarbon biodegradation level and the community-level rrn copy number in soil, seawater and culture. Subsequently, a microcosm experiment was performed to decipher the community-level rrn copy number response mechanism during total petroleum hydrocarbon (TPH) biodegradation. The treatment combining straw with resuscitation-promoting factor (Rpf) exhibited the highest community-level rrn copy number and the most effective biodegradation compared with other treatments, and the initial TPH content (20,000 mg kg-1) was reduced by 67.67% after 77 days of incubation. TPH biodegradation rate was positively correlated with the average community-level rrn copy number (p = 0.001, R2 = 0.5781). Both meta and community analyses showed that rrn copy number may reflect the potential of hydrocarbon degradation and microbial dormancy. Our findings provide insight into the applicability of the community-level rrn copy number to assess bacterial biodegradation for pollution remediation.
Collapse
Affiliation(s)
- Renzhang Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Xiangyu Kong
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Hao Ren
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
31
|
Walkup J, Dang C, Mau RL, Hayer M, Schwartz E, Stone BW, Hofmockel KS, Koch BJ, Purcell AM, Pett-Ridge J, Wang C, Hungate BA, Morrissey EM. The predictive power of phylogeny on growth rates in soil bacterial communities. ISME COMMUNICATIONS 2023; 3:73. [PMID: 37454187 PMCID: PMC10349831 DOI: 10.1038/s43705-023-00281-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Predicting ecosystem function is critical to assess and mitigate the impacts of climate change. Quantitative predictions of microbially mediated ecosystem processes are typically uninformed by microbial biodiversity. Yet new tools allow the measurement of taxon-specific traits within natural microbial communities. There is mounting evidence of a phylogenetic signal in these traits, which may support prediction and microbiome management frameworks. We investigated phylogeny-based trait prediction using bacterial growth rates from soil communities in Arctic, boreal, temperate, and tropical ecosystems. Here we show that phylogeny predicts growth rates of soil bacteria, explaining an average of 31%, and up to 58%, of the variation within ecosystems. Despite limited overlap in community composition across these ecosystems, shared nodes in the phylogeny enabled ancestral trait reconstruction and cross-ecosystem predictions. Phylogenetic relationships could explain up to 38% (averaging 14%) of the variation in growth rates across the highly disparate ecosystems studied. Our results suggest that shared evolutionary history contributes to similarity in the relative growth rates of related bacteria in the wild, allowing phylogeny-based predictions to explain a substantial amount of the variation in taxon-specific functional traits, within and across ecosystems.
Collapse
Affiliation(s)
- Jeth Walkup
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Chansotheary Dang
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Rebecca L Mau
- Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Bram W Stone
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Benjamin J Koch
- Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Alicia M Purcell
- Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jennifer Pett-Ridge
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, USA
- University of California Merced, Life & Environmental Sciences Department, Merced, CA, 95343, USA
| | - Chao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, LN, China
| | - Bruce A Hungate
- Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Ember M Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
32
|
Kim HS, Park K, Jo HY, Kwon MJ. Weathering extents and anthropogenic influences shape the soil bacterial community along a subsurface zonation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162570. [PMID: 36889395 DOI: 10.1016/j.scitotenv.2023.162570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Subsurface environments are composed of various active soil layers with dynamic biogeochemical interactions. We investigated soil bacterial community composition and geochemical properties along a vertical soil profile, which was categorized into surface, unsaturated, groundwater fluctuated, and saturated zones, in a testbed site formerly used as farmland for several decades. We hypothesized that weathering extent and anthropogenic inputs influence changes in the community structure and assembly processes and have distinct contributions along the subsurface zonation. Elemental distribution in each zone was strongly affected by the extent of chemical weathering. A 16S rRNA gene analysis indicated that bacterial richness (alpha diversity) was highest in the surface zone, and also higher in the fluctuated zone, than in unsaturated and saturated zones due to the effects of high organic matter, high nutrient levels, and/or aerobic conditions. Redundancy analysis showed that major elements (P, Na), a trace element (Pb), NO3, and the weathering extent were key driving forces shaping bacterial community composition along the subsurface zonation. Assembly processes were governed by specific ecological niches, such as homogeneous selection, in the unsaturated, fluctuated, and saturated zones, while in the surface zone, they were dominated by dispersal limitation. These findings together suggest that the vertical variation in soil bacterial community assembly is zone-specific and shaped by the relative influences of deterministic vs. stochastic processes. Our results provide novel insights into the relationships between bacterial communities, environmental factors, and anthropogenic influences (e.g., fertilization, groundwater, soil contamination), and into the roles of specific ecological niches and subsurface biogeochemical processes in these relationships.
Collapse
Affiliation(s)
- Han-Suk Kim
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | - Kanghyun Park
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | - Ho Young Jo
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
33
|
Dutta A, Connors E, Trinh R, Erazo N, Dasarathy S, Ducklow HW, Steinberg DK, Schofield OM, Bowman JS. Depth drives the distribution of microbial ecological functions in the coastal western Antarctic Peninsula. Front Microbiol 2023; 14:1168507. [PMID: 37275172 PMCID: PMC10232865 DOI: 10.3389/fmicb.2023.1168507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/25/2023] [Indexed: 06/07/2023] Open
Abstract
The Antarctic marine environment is a dynamic ecosystem where microorganisms play an important role in key biogeochemical cycles. Despite the role that microbes play in this ecosystem, little is known about the genetic and metabolic diversity of Antarctic marine microbes. In this study we leveraged DNA samples collected by the Palmer Long Term Ecological Research (LTER) project to sequence shotgun metagenomes of 48 key samples collected across the marine ecosystem of the western Antarctic Peninsula (wAP). We developed an in silico metagenomics pipeline (iMAGine) for processing metagenomic data and constructing metagenome-assembled genomes (MAGs), identifying a diverse genomic repertoire related to the carbon, sulfur, and nitrogen cycles. A novel analytical approach based on gene coverage was used to understand the differences in microbial community functions across depth and region. Our results showed that microbial community functions were partitioned based on depth. Bacterial members harbored diverse genes for carbohydrate transformation, indicating the availability of processes to convert complex carbons into simpler bioavailable forms. We generated 137 dereplicated MAGs giving us a new perspective on the role of prokaryotes in the coastal wAP. In particular, the presence of mixotrophic prokaryotes capable of autotrophic and heterotrophic lifestyles indicated a metabolically flexible community, which we hypothesize enables survival under rapidly changing conditions. Overall, the study identified key microbial community functions and created a valuable sequence library collection for future Antarctic genomics research.
Collapse
Affiliation(s)
- Avishek Dutta
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
- Department of Geology, University of Georgia, Athens, GA, United States
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States
| | - Elizabeth Connors
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Rebecca Trinh
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States
| | - Natalia Erazo
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Srishti Dasarathy
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Hugh W. Ducklow
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States
| | - Deborah K. Steinberg
- Department of Biological Science, College of William & Mary, Virginia Institute of Marine Science, Gloucester Point, VA, United States
| | - Oscar M. Schofield
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Jeff S. Bowman
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
34
|
Liu H, Li FY, Liu J, Shi C, Tang K, Yang Q, Liu Y, Fu Q, Gao X, Wang N, Guo W. The reciprocal changes in dominant species with complete metabolic functions explain the decoupling phenomenon of microbial taxonomic and functional composition in a grassland. Front Microbiol 2023; 14:1113157. [PMID: 37007478 PMCID: PMC10060659 DOI: 10.3389/fmicb.2023.1113157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
The decoupling of microbial functional and taxonomic components refers to the phenomenon that a drastic change in microbial taxonomic composition leads to no or only a gentle change in functional composition. Although many studies have identified this phenomenon, the mechanisms underlying it are still unclear. Here we demonstrate, using metagenomics data from a steppe grassland soil under different grazing and phosphorus addition treatments, that there is no “decoupling” in the variation of taxonomic and metabolic functional composition of the microbial community within functional groups at species level. In contrast, the high consistency and complementarity between the abundance and functional gene diversity of two dominant species made metabolic functions unaffected by grazing and phosphorus addition. This complementarity between the two dominant species shapes a bistability pattern that differs from functional redundancy in that only two species cannot form observable redundancy in a large microbial community. In other words, the “monopoly” of metabolic functions by the two most abundant species leads to the disappearance of functional redundancy. Our findings imply that for soil microbial communities, the impact of species identity on metabolic functions is much greater than that of species diversity, and it is more important to monitor the dynamics of key dominant microorganisms for accurately predicting the changes in the metabolic functions of the ecosystems.
Collapse
Affiliation(s)
- Huaiqiang Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Frank Yonghong Li
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Hohhot, China
- *Correspondence: Frank Yonghong Li,
| | - Jiayue Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Chunjun Shi
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Kuanyan Tang
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Qianhui Yang
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yu Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Qiang Fu
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Xiaotian Gao
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Ning Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Wei Guo
- Ministry of Education Key Laboratory of Ecology and Resource Use on the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
35
|
Arias-Real R, Menéndez M, Muñoz I, Pascoal C. Drying shapes the ecological niche of aquatic fungi with implications on ecosystem functioning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160374. [PMID: 36427710 DOI: 10.1016/j.scitotenv.2022.160374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Fungi are among the most abundant and diverse organisms on Earth and play pivotal roles in global carbon processing, nutrient cycling and food webs. Despite their abundant and functional importance, little is known about the patterns and mechanisms governing their community composition in intermittent rivers and ephemeral streams, which are the most common fluvial ecosystems globally. Thus far, it is known that aquatic fungi have evolved various life-history strategies and functional adaptations to cope with drying. Nevertheless, some of these adaptations have a metabolic cost and trade-offs between growth, reproduction and dispersion that may affect ecosystem functioning. Thus, understanding their ecological strategies along a gradient of drying is crucial to assess how species will respond to global change and to identify meaningful taxa to maintain ecosystem functions. By combining in situ hydrological information with a niche-based approach, we analysed the role of drying in explaining the spatial segregation of fungal species, and we determined their specialization and affinity over a gradient of drying. In addition, we estimated whether species niches are good predictors of two key ecosystem processes: organic matter decomposition and fungal biomass accrual. Overall, we found that annual drying duration and frequency were the most influential variables upon species niche differentiation across the 15 studied streams. Our cluster analysis identified four drying niche-based groups with contrasting distributions and responses over the drying gradient: drying-sensitive, partly tolerant to drying, generalist, and drying-resistant specialist. In addition, we found that species belonging to the drying specialist group showed a weak contribution to both ecosystem processes, suggesting trade-offs between drying resistance strategies and the energy invested in growth. Taken together, our results suggest that increased water scarcity may jeopardise the capacity of aquatic fungi to guarantee ecosystem functioning and to maintain biogeochemical cycles despite their ability to cope with drying.
Collapse
Affiliation(s)
- Rebeca Arias-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain.
| | - Margarita Menéndez
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain
| | - Isabel Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain
| | - Cláudia Pascoal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
36
|
Zhong X, Chen Z, Ding K, Liu WS, Baker AJM, Fei YH, He H, Wang Y, Jin C, Wang S, Tang YT, Chao Y, He Z, Qiu R. Heavy metal contamination affects the core microbiome and assembly processes in metal mine soils across Eastern China. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130241. [PMID: 36308929 DOI: 10.1016/j.jhazmat.2022.130241] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Mining activities in metal mine areas cause serious environmental pollution, thereby imposing stresses to soil ecosystems. Investigating the ecological pattern underlying contaminated soil microbial diversity is essential to understand ecosystem responses to environment changes. Here we collected 624 soil samples from 49 representative metal mines across eastern China and analyzed their soil microbial diversity and biogeographic patterns by using 16 S rRNA gene amplicons. The results showed that deterministic factors dominated in regulating the microbial community in non-contaminated and contaminated soils. Soil pH played a key role in climatic influences on the heavy metal-contaminated soil microbial community. A core microbiome consisting of 25 taxa, which could be employed for the restoration of contaminated soils, was identified. Unlike the non-contaminated soil, stochastic processes were important in shaping the heavy metal-contaminated soil microbial community. The largest source of variations in the soil microbial community was land use type. This result suggests that varied specific ecological remediation strategy ought to be developed for differed land use types. These findings will enhance our understanding of the microbial responses to anthropogenically induced environmental changes and will further help to improve the practices of soil heavy metal contamination remediation.
Collapse
Affiliation(s)
- Xi Zhong
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ziwu Chen
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Kengbo Ding
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Wen-Shen Liu
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Alan J M Baker
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia; Centre for Mine Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ying-Heng Fei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Huan He
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yujie Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chao Jin
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zhili He
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
37
|
Liu H, Zhang H, Powell J, Delgado‐Baquerizo M, Wang J, Singh B. Warmer and drier ecosystems select for smaller bacterial genomes in global soils. IMETA 2023; 2:e70. [PMID: 38868347 PMCID: PMC10989973 DOI: 10.1002/imt2.70] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 06/14/2024]
Abstract
Bacterial genome size reflects bacterial evolutionary processes and metabolic lifestyles, with implications for microbial community assembly and ecosystem functions. However, to understand the extent of genome-mediated microbial responses to environmental selections, we require studies that observe genome size distributions along environmental gradients representing different conditions that soil bacteria normally encounter. In this study, we used surface soils collected from 237 sites across the globe and analyzed how environmental conditions (e.g., soil carbon and nutrients, aridity, pH, and temperature) affect soil bacterial occurrences and genome size at the community level using bacterial community profiling. We used a joint species distribution model to quantify the effects of environments on species occurrences and found that aridity was a major regulator of genome size with warmer and drier environments selecting bacteria with smaller genomes. Drought-induced physiological constraints on bacterial growth (e.g., water scarcity for cell metabolisms) may have led to these correlations. This finding suggests that increasing cover by warmer and drier ecosystems may result in bacterial genome simplifications by a reduction of genome size.
Collapse
Affiliation(s)
- Hongwei Liu
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Haiyang Zhang
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
- College of Life SciencesHebei UniversityBaodingChina
| | - Jeff Powell
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Manuel Delgado‐Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento EcosistemicoInstituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSICSevillaSpain
- Unidad Asociada CSIC‐UPO (BioFun)Universidad Pablo de OlavideSevillaSpain
| | - Juntao Wang
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
- Global Centre for Land‐Based InnovationWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Brajesh Singh
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
- Global Centre for Land‐Based InnovationWestern Sydney UniversityPenrithNew South WalesAustralia
| |
Collapse
|
38
|
Kokate PP, Bales E, Joyner D, Hazen TC, Techtmann SM. Biogeographic patterns in populations of marine Pseudoalteromonas atlantica isolates. FEMS Microbiol Lett 2023; 370:fnad081. [PMID: 37573136 DOI: 10.1093/femsle/fnad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 08/11/2023] [Indexed: 08/14/2023] Open
Abstract
Intra-specific genomic diversity is well documented in microbes. The question, however, remains whether natural selection or neutral evolution is the major contributor to this diversity. We undertook this study to estimate genomic diversity in Pseudoalteromonas atlantica populations and whether the diversity, if present, could be attributed to environmental factors or distance effects. We isolated and sequenced twenty-three strains of P. atlantica from three geographically distant deep marine basins and performed comparative genomic analyses to study the genomic diversity of populations among these basins. Average nucleotide identity followed a strictly geographical pattern. In two out of three locations, the strains within the location exhibited >99.5% identity, whereas, among locations, the strains showed <98.11% identity. Phylogenetic and pan-genome analysis also reflected the biogeographical separation of the strains. Strains from the same location shared many accessory genes and clustered closely on the phylogenetic tree. Phenotypic diversity between populations was studied in ten out of twenty-three strains testing carbon and nitrogen source utilization and osmotolerance. A genetic basis for phenotypic diversity could be established in most cases but was apparently not influenced by local environmental conditions. Our study suggests that neutral evolution may have a substantial role in the biodiversity of P. atlantica.
Collapse
Affiliation(s)
- Prajakta P Kokate
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, United States
| | - Erika Bales
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN 37996, United States
| | - Dominique Joyner
- Department of Civil and Environmental Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, United States
| | - Terry C Hazen
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN 37996, United States
- Department of Civil and Environmental Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, United States
| | - Stephen M Techtmann
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, United States
| |
Collapse
|
39
|
pH and Nitrate Drive Bacterial Diversity in Oil Reservoirs at a Localized Geographic Scale. Microorganisms 2023; 11:microorganisms11010151. [PMID: 36677443 PMCID: PMC9865607 DOI: 10.3390/microorganisms11010151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Oil reservoirs are one of the most important deep subsurface biospheres. They are inhabited by diverse microorganisms including bacteria and archaea with diverse metabolic activities. Although recent studies have investigated the microbial communities in oil reservoirs at large geographic scales, it is still not clear how the microbial communities assemble, as the variation in the environment may be confounded with geographic distance. In this work, the microbial communities in oil reservoirs from the same oil field were identified at a localized geographic scale. We found that although the injected water contained diverse exogenous microorganisms, this had little effect on the microbial composition of the produced water. The Neutral Community Model analysis showed that both bacterial and archaeal communities are dispersal limited even at a localized scale. Further analysis showed that both pH and nitrate concentrations drive the assembly of bacterial communities, of which nitrate negatively correlated with bacterial alpha diversity and pH differences positively correlated with the dissimilarity of bacterial communities. In contrast, the physiochemical parameters had little effect on archaeal communities at the localized scale. Our results suggest that the assembly of microbial communities in oil reservoirs is scale- and taxonomy-dependent. Our work provides a comprehensive analysis of microbial communities in oil reservoirs at a localized geographic scale, which improves the understanding of the assembly of the microbial communities in oil reservoirs.
Collapse
|
40
|
Liu KL, Chen BY, Zhang B, Wang RH, Wang CS. Understory vegetation diversity, soil properties and microbial community response to different thinning intensities in Cryptomeria japonica var. sinensis plantations. Front Microbiol 2023; 14:1117384. [PMID: 36925469 PMCID: PMC10011715 DOI: 10.3389/fmicb.2023.1117384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Soil microorganisms are the key factors in elucidating the effects of thinning on tree growth performance, but the effects of vegetation and soil on the species composition and function of soil microorganisms after thinning are still not well elaborated. Methods The effects of thinning on understory vegetation diversity, soil physicochemical properties and soil microbial community composition were investigated in a thinning trial plantation of Cryptomeria japonica var. sinensis, including four thinning intensities (control: 0%, LIT: 20%, MIT: 30% and HIT: 40%), and the relationships of the microbial community structure with the understory vegetation diversity and soil properties were assessed. Results The results showed that thinning had a greater effect on the diversity of the shrub layer than the herb layer. The soil bulk density and the contents of soil organic matter, total potassium and nitrogen increased with increasing thinning intensities. The Shannon and Chao indices of soil bacteria and fungi were significantly lower in the LIT, MIT and HIT treatments than in the control. Thinning can significantly increase the abundance of Proteobacteria and Actinobacteria, and higher thinning intensities led to a higher relative abundance of Ascomycota and a lower relative abundance of Basidiomycota, Rozellomycota, and Mortierellomycota. Redundancy analysis indicated that soil physicochemical properties rather than understory vegetation diversity were the main drivers of microbial communities, and fungi were more sensitive to soil properties than bacteria. Functional prediction showed that thinning significantly reduced the potential risk of human diseases and plant pathogens, and the nitrogen fixation capacity of bacteria was the highest in the HIT treatment. Thinning significantly increased the relative abundance of cellulolysis and soil saprotrophs in bacteria and fungi. Conclusion The findings provide important insights into the effects of thinning on C. japonica var. sinensis plantation ecosystems, which is essential for developing thinning strategies to promote their ecological and economic benefits.
Collapse
Affiliation(s)
- Kai-Li Liu
- College of Forestry, Central South University of Forestry & Technology, Changsha, China.,Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China.,National Long-term Scientific Research Base of Central and Subtropical Forestry, Changsha, China
| | - Bo-Yao Chen
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Bin Zhang
- College of Forestry, Central South University of Forestry & Technology, Changsha, China.,National Long-term Scientific Research Base of Central and Subtropical Forestry, Changsha, China
| | - Rui-Hui Wang
- College of Forestry, Central South University of Forestry & Technology, Changsha, China.,National Long-term Scientific Research Base of Central and Subtropical Forestry, Changsha, China
| | - Chun-Sheng Wang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| |
Collapse
|
41
|
Miao X, Wang E, Zhou Y, Zhan Y, Yan N, Chen C, Li Q. Effect of ginsenosides on microbial community and enzyme activity in continuous cropping soil of ginseng. Front Microbiol 2023; 14:1060282. [PMID: 37213491 PMCID: PMC10196390 DOI: 10.3389/fmicb.2023.1060282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/07/2023] [Indexed: 05/23/2023] Open
Abstract
Root exudates contain plant metabolites secreted by the roots into the soil, such as ginsenosides secreted by the ginseng root. However, little is known about ginseng root exudate and its impact on the chemical and microbial properties of soil. In this study, the effect of increasing concentrations of ginsenosides on the chemical and microbial properties of soil was tested. Chemical analysis and high-throughput sequencing techniques were used to evaluate the soil chemical properties and microbial characteristics following exogenous application of 0.1 mg·L-1, 1 mg·L-1, and 10 mg·L-1 ginsenosides. Ginsenosides application significantly altered soil enzyme activities; SOM-dominated physicochemical properties were significantly reduced which altered the composition and structure of the soil microbial community. In particular, treatment with 10 mg∙L-1 ginsenosides significantly increased the relative abundance of pathogenic fungi such as Fusarium, Gibberella and Neocosmospora. These findings indicate that ginsenosides in root exudates are important factors that may lead to increased deterioration of soil during ginseng cultivation and provided new research direction for the subsequent study on the mechanism of interaction between ginsenosides and soil microbial communities.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiong Li
- *Correspondence: Qiong Li, ; Changbao Chen,
| |
Collapse
|
42
|
Lin Q, De Vrieze J, Fang X, Li L, Li X. Microbial life strategy with high rRNA operon copy number facilitates the energy and nutrient flux in anaerobic digestion. WATER RESEARCH 2022; 226:119307. [PMID: 36332298 DOI: 10.1016/j.watres.2022.119307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Microbial life strategy, reflected by rRNA operon (rrn) copy number, determines microbial ecological roles. However, the relationship between microbial life strategy and the energy and nutrient flux in anaerobic digestion (AD) remains elusive. This study investigated microbial rrn copy number and expression ratio using amplicon sequencing of 16S rRNA gene and 16S rRNA, and monitored CH4 daily production to approximate the status of energy and nutrient flux in semi-continuous AD. A significantly positive correlation between the mean rrn copy number of microbial communities in digestate and CH4 daily production was detected in the control treatment fed swine manure. The reduced feedstock complexity, by replacing parts of swine manure with fructose or apple waste, weakened the correlation. When feedstock complexity was increased again, the correlation was strengthened again. Similar results were detected in mean rrn expression ratio of microbial communities. The responses of mean rrn copy number and expression ratio of communities to feedstock addition differed between the reduced feedstock complexity and the control treatment, as well as between in digestate and in straw. Our findings reveal a novel relationship between microbial community life strategy and the energy and nutrient flux, and the roles of feedstock characteristics therein in AD.
Collapse
Affiliation(s)
- Qiang Lin
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Xiaoyu Fang
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lingjuan Li
- Department of Biology, University of Antwerp, 2610, Wilrijk, Belgium
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
43
|
De Oliveira AL, Srivastava A, Espada‐Hinojosa S, Bright M. The complete and closed genome of the facultative generalist Candidatus Endoriftia persephone from deep-sea hydrothermal vents. Mol Ecol Resour 2022; 22:3106-3123. [PMID: 35699368 PMCID: PMC9796809 DOI: 10.1111/1755-0998.13668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 01/07/2023]
Abstract
The mutualistic interactions between Riftia pachyptila and its endosymbiont Candidatus Endoriftia persephone (short Endoriftia) have been extensively researched. However, the closed Endoriftia genome is still lacking. Here, by employing single-molecule real-time sequencing we present the closed chromosomal sequence of Endoriftia. In contrast to theoretical predictions of enlarged and mobile genetic element-rich genomes related to facultative endosymbionts, the closed Endoriftia genome is streamlined with fewer than expected coding sequence regions, insertion-, prophage-sequences and transposase-coding sequences. Automated and manually curated functional analyses indicated that Endoriftia is more versatile regarding sulphur metabolism than previously reported. We identified the presence of two identical rRNA operons and two long CRISPR regions in the closed genome. Additionally, pangenome analyses revealed the presence of three types of secretion systems (II, IV and VI) in the different Endoriftia populations indicating lineage-specific adaptations. The in depth mobilome characterization identified the presence of shared genomic islands in the different Endoriftia drafts and in the closed genome, suggesting that the acquisition of foreign DNA predates the geographical dispersal of the different endosymbiont populations. Finally, we found no evidence of epigenetic regulation in Endoriftia, as revealed by gene screenings and absence of methylated modified base motifs in the genome. As a matter of fact, the restriction-modification system seems to be dysfunctional in Endoriftia, pointing to a higher importance of molecular memory-based immunity against phages via spacer incorporation into CRISPR system. The Endoriftia genome is the first closed tubeworm endosymbiont to date and will be valuable for future gene oriented and evolutionary comparative studies.
Collapse
Affiliation(s)
| | - Abhishek Srivastava
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | | | - Monika Bright
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| |
Collapse
|
44
|
Benchmarking Community-Wide Estimates of Growth Potential from Metagenomes Using Codon Usage Statistics. mSystems 2022; 7:e0074522. [PMID: 36190138 PMCID: PMC9600850 DOI: 10.1128/msystems.00745-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Trait inference from mixed-species assemblages is a central problem in microbial ecology. Frequently, sequencing information from an environment is available, but phenotypic measurements from individual community members are not. With the increasing availability of molecular data for microbial communities, bioinformatic approaches that map metagenome to (meta)phenotype are needed. Recently, we developed a tool, gRodon, that enables the prediction of the maximum growth rate of an organism from genomic data on the basis of codon usage patterns. Our work and that of other groups suggest that such predictors can be applied to mixed-species communities in order to derive estimates of the average community-wide maximum growth rate. Here, we present an improved maximum growth rate predictor designed for metagenomes that corrects a persistent GC bias in the original gRodon model for metagenomic prediction. We benchmark this predictor with simulated metagenomic data sets to show that it has superior performance on mixed-species communities relative to earlier models. We go on to provide guidance on data preprocessing and show that calling genes from assembled contigs rather than directly from reads dramatically improves performance. Finally, we apply our predictor to large-scale metagenomic data sets from marine and human microbiomes to illustrate how community-wide growth prediction can be a powerful approach for hypothesis generation. Altogether, we provide an updated tool with clear guidelines for users about the uses and pitfalls of metagenomic prediction of the average community-wide maximal growth rate. IMPORTANCE Microbes dominate nearly every known habitat, and therefore tools to survey the structure and function of natural microbial communities are much needed. Metagenomics, in which the DNA content of an entire community of organisms is sequenced all at once, allows us to probe the genetic diversity contained in a habitat. Yet, mapping metagenomic information to the actual traits of community members is a difficult and largely unsolved problem. Here, we present and validate a tool that allows users to predict the average maximum growth rate of a microbial community directly from metagenomic data. Maximum growth rate is a fundamental characteristic of microbial species that can give us a great deal of insight into their ecological role, and by applying our community-level predictor to large-scale metagenomic data sets from marine and human-associated microbiomes, we show how community-wide growth prediction can be a powerful approach for hypothesis generation.
Collapse
|
45
|
Chen H, Jing Q, Liu X, Zhou X, Fang C, Li B, Zhou S, Nie M. Microbial respiratory thermal adaptation is regulated by r-/K-strategy dominance. Ecol Lett 2022; 25:2489-2499. [PMID: 36134698 DOI: 10.1111/ele.14106] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
Microbial thermal adaptation is considered to be one of the core mechanisms affecting soil carbon cycling. However, the role of microbial community composition in controlling thermal adaptation is poorly understood. Using microbial communities from the rhizosphere and bulk soils in an 8-year warming experiment as a model, we experimentally demonstrate that respiratory thermal adaptation was much stronger in microbial K-strategist-dominated bulk soils than in microbial r-strategist-dominated rhizosphere soils. Soil carbon availability exerted strong selection on the dominant ecological strategy of the microbial community, indirectly influencing respiratory thermal adaptation. Our findings shed light on the linchpin of the dominant ecological strategy exhibited by the microbial community in determining its respiratory thermal adaptation, with implications for understanding soil carbon losses under warming.
Collapse
Affiliation(s)
- Hongyang Chen
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingfang Jing
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Xiang Liu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xuhui Zhou
- Northeast Asia ecosystem Carbon sink research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Changming Fang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Bo Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China.,Centre for Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming, China
| | - Shurong Zhou
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Ming Nie
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
46
|
A ridge-to-reef ecosystem microbial census reveals environmental reservoirs for animal and plant microbiomes. Proc Natl Acad Sci U S A 2022; 119:e2204146119. [PMID: 35960845 PMCID: PMC9388140 DOI: 10.1073/pnas.2204146119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Because microbiome research generally focuses on a single host or habitat, we know comparatively little about the diversity and distribution of microbiomes at a landscape scale. Our study demonstrates that most of the microbial diversity present within a watershed is maintained within environmental substrates like soil or stream water, and microbiomes of organisms are generally subsets of those that are lower on the food chain. This result challenges the notion that sources of microbial inoculum are likeliest derived from close relatives. By identifying sources of shared microbial diversity within the landscape, we can better understand the origins and assembly processes of symbiotic microbes and how this might abet global conservation, restoration, or bio-engineering goals, such as preserving biodiversity and ecosystem services. Microbes are found in nearly every habitat and organism on the planet, where they are critical to host health, fitness, and metabolism. In most organisms, few microbes are inherited at birth; instead, acquiring microbiomes generally involves complicated interactions between the environment, hosts, and symbionts. Despite the criticality of microbiome acquisition, we know little about where hosts’ microbes reside when not in or on hosts of interest. Because microbes span a continuum ranging from generalists associating with multiple hosts and habitats to specialists with narrower host ranges, identifying potential sources of microbial diversity that can contribute to the microbiomes of unrelated hosts is a gap in our understanding of microbiome assembly. Microbial dispersal attenuates with distance, so identifying sources and sinks requires data from microbiomes that are contemporary and near enough for potential microbial transmission. Here, we characterize microbiomes across adjacent terrestrial and aquatic hosts and habitats throughout an entire watershed, showing that the most species-poor microbiomes are partial subsets of the most species-rich and that microbiomes of plants and animals are nested within those of their environments. Furthermore, we show that the host and habitat range of a microbe within a single ecosystem predicts its global distribution, a relationship with implications for global microbial assembly processes. Thus, the tendency for microbes to occupy multiple habitats and unrelated hosts enables persistent microbiomes, even when host populations are disjunct. Our whole-watershed census demonstrates how a nested distribution of microbes, following the trophic hierarchies of hosts, can shape microbial acquisition.
Collapse
|
47
|
Karaoz U, Brodie EL. microTrait: A Toolset for a Trait-Based Representation of Microbial Genomes. FRONTIERS IN BIOINFORMATICS 2022; 2:918853. [PMID: 36304272 PMCID: PMC9580909 DOI: 10.3389/fbinf.2022.918853] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2023] Open
Abstract
Remote sensing approaches have revolutionized the study of macroorganisms, allowing theories of population and community ecology to be tested across increasingly larger scales without much compromise in resolution of biological complexity. In microbial ecology, our remote window into the ecology of microorganisms is through the lens of genome sequencing. For microbial organisms, recent evidence from genomes recovered from metagenomic samples corroborate a highly complex view of their metabolic diversity and other associated traits which map into high physiological complexity. Regardless, during the first decades of this omics era, microbial ecological research has primarily focused on taxa and functional genes as ecological units, favoring breadth of coverage over resolution of biological complexity manifested as physiological diversity. Recently, the rate at which provisional draft genomes are generated has increased substantially, giving new insights into ecological processes and interactions. From a genotype perspective, the wide availability of genome-centric data requires new data synthesis approaches that place organismal genomes center stage in the study of environmental roles and functional performance. Extraction of ecologically relevant traits from microbial genomes will be essential to the future of microbial ecological research. Here, we present microTrait, a computational pipeline that infers and distills ecologically relevant traits from microbial genome sequences. microTrait maps a genome sequence into a trait space, including discrete and continuous traits, as well as simple and composite. Traits are inferred from genes and pathways representing energetic, resource acquisition, and stress tolerance mechanisms, while genome-wide signatures are used to infer composite, or life history, traits of microorganisms. This approach is extensible to any microbial habitat, although we provide initial examples of this approach with reference to soil microbiomes.
Collapse
Affiliation(s)
- Ulas Karaoz
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Eoin L. Brodie
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, United States
| |
Collapse
|
48
|
Honeyman AS, Fegel TS, Peel HF, Masters NA, Vuono DC, Kleiber W, Rhoades CC, Spear JR. Statistical Learning and Uncommon Soil Microbiota Explain Biogeochemical Responses after Wildfire. Appl Environ Microbiol 2022; 88:e0034322. [PMID: 35703548 PMCID: PMC9275219 DOI: 10.1128/aem.00343-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
Wildfires are a perennial event globally, and the biogeochemical underpinnings of soil responses at relevant spatial and temporal scales are unclear. Soil biogeochemical processes regulate plant growth and nutrient losses that affect water quality, yet the response of soil after variable intensity fire is difficult to explain and predict. To address this issue, we examined two wildfires in Colorado, United States, across the first and second postfire years and leveraged statistical learning (SL) to predict and explain biogeochemical responses. We found that SL predicts biogeochemical responses in soil after wildfire with surprising accuracy. Of the 13 biogeochemical analytes analyzed in this study, 9 are best explained with a hybrid microbiome + biogeochemical SL model. Biogeochemical-only models best explain 3 features, and 1 feature is explained equally well with the hybrid and biogeochemical-only models. In some cases, microbiome-only SL models are also effective (such as predicting NH4+). Whenever a microbiome component is employed, selected features always involve uncommon soil microbiota (i.e., the "rare biosphere" [existing at <1% mean relative abundance]). Here, we demonstrate that SL paired with DNA sequence and biogeochemical data predicts environmental features in postfire soils, although this approach could likely be applied to any biogeochemical system. IMPORTANCE Soil biogeochemical processes are critical to plant growth and water quality and are substantially disturbed by wildfire. However, soil responses to fire are difficult to predict. To address this issue, we developed a large environmental data set that tracks postfire changes in soil and used statistical learning (SL) to build models that exploit complex data to make predictions about biogeochemical responses. Here, we show that SL depends upon uncommon microbiota in soil (the "rare biosphere") to make surprisingly accurate predictions about soil biogeochemical responses to wildfire. Using SL to explain variation in a natively chaotic environmental system is mechanism independent. Likely, the approach that we describe for combining SL with microbiome and biogeochemical parameters has practical applications across a range of issues in the environmental sciences where predicting responses would be useful.
Collapse
Affiliation(s)
- Alexander S. Honeyman
- Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Timothy S. Fegel
- Rocky Mountain Research Station, USDA Forest Service, Fort Collins, Colorado, USA
| | - Henry F. Peel
- Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Nicole A. Masters
- Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - David C. Vuono
- Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - William Kleiber
- Applied Mathematics, University of Colorado, Boulder, Colorado, USA
| | - Charles C. Rhoades
- Rocky Mountain Research Station, USDA Forest Service, Fort Collins, Colorado, USA
| | - John R. Spear
- Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado, USA
| |
Collapse
|
49
|
Ba D, Qimei D, Zhao W, Wang Y. Patterns of microbial communities were shaped by bioavailable P along the elevation gradient of Shergyla Mountain, as determined by analysis of phospholipid fatty acids. PLoS One 2022; 17:e0271101. [PMID: 35816472 PMCID: PMC9273077 DOI: 10.1371/journal.pone.0271101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022] Open
Abstract
The distribution pattern of the microbial community in mountains is an important component of biodiversity research. Many environmental factors vary significantly with elevation on a relatively small scale in subalpine and alpine environments. These factors may markedly affect microbial community composition and function. In this study, we analyzed phospholipid fatty acid (PLFA) profiles and phosphorus (P) fractions in soils from 9 sites along an elevation gradient (3500–4100 m above sea level (a.s.l.)) of the Shergyla Mountain, Tibet in China. Many biomarker PLFAs indicated that there were biogeochemical trends of the microbial distribution patterns of some soil microorganisms, which were most often increasing, U-shaped and unimodal trends along the elevation gradient. A redundancy analysis (RDA) and correlations indicated that P factors (e.g., Resin-Pi, NaHCO3-Pi and NaHCO3-Po) were more important in controlling the microbial PLFA distribution pattern than other factors (e.g., MAT, MAP, pH, TOC, TN and soil moisture) in this study area. Microorganisms are strongly associated with P fractions. Our results suggested that microbial communities were subjected to P stresses and that the distribution patterns of microbial communities were shaped by bioavailable P along the elevation gradient. Our work also hints that P geochemical processes drive the microbial diversity of the Shergyla Mountains.
Collapse
Affiliation(s)
- Duo Ba
- Bureau of Ecology and Environment of Naqu City, Tibet Autonomous Region, Lhasa, China
| | | | - Wei Zhao
- Department of Ecology and Environment of Tibet Autonomous Region, Lhasa, China
| | - Yang Wang
- Xizang Autonomous Region Development and Reform Commission, Lhasa, Tibet Autonomous Region, China
- * E-mail:
| |
Collapse
|
50
|
Saberi M, Ghomi H, Andreasen C. Eco-friendly approach to improve traits of winter wheat by combining cold plasma treatments and carbonization of subtropical biomass waste. Sci Rep 2022; 12:11218. [PMID: 35780177 PMCID: PMC9250529 DOI: 10.1038/s41598-022-15286-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/21/2022] [Indexed: 12/03/2022] Open
Abstract
This study aims to improve the quality and quantity of winter wheat by using the potential of combining the use of cold plasma and waste biorefinery products for improving wheat yield. Plasma was applied by a radio frequency (RF) plasma reactor operated with air for 180 s and 50 W. The waste biorefinery products, including pyroligneous acid, biochar, and azolla compost, were used as plant nutrition. The effects of cold plasma treatment and waste biorefinery products were determined by measuring plant photosynthesis, grain yield, and content of chlorophyll, carotenoids, anthocyanin, protein, and starch. The experiment was conducted during the cropping seasons 2016-18 in a randomized complete block design with four replications. The combination of cold plasma and pyroligneous acid increased the grain yield up to 40.0%. The photosynthesis rate was improved up to 39.3%, and total chlorophyll content up to 48.3% in both years. Seed plasma treatment combined with biochar application increased the starch content by 36.8%. Adding azolla compost increased the protein content by 35.4%. Using seed plasma treatment with biochar increased the microbial biomass carbon by 16.0%. The application of plasma and azolla compost increased the microbial biomass nitrogen by 29.0%.
Collapse
Affiliation(s)
- Mahin Saberi
- Department of Agricultural Science, Tarbiat Modares University, Tehran, Iran.
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark.
| | - Hamid Ghomi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Christian Andreasen
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|