1
|
El Khoury A, Somogyi A, Chi Fru E, Saleh F, Chraiki I, Fontaine C, Aubineau J, Rollion-Bard C, Harzhauser M, El Albani A. A battle against arsenic toxicity by Earth's earliest complex life forms. Nat Commun 2025; 16:4388. [PMID: 40389430 PMCID: PMC12089615 DOI: 10.1038/s41467-025-59760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 05/05/2025] [Indexed: 05/21/2025] Open
Abstract
The toxicity of arsenic has challenged life for billions of years, but the timing of when complex organisms first evolved strategies to cope with this threat remains elusive. Here, we study 2.1-billion-year-old (Ga) Francevillian macrofossils, some of Earth's earliest complex life forms, to establish their biogenicity and to ascertain how they managed arsenic toxicity. The studied specimens thrived in low-arsenic marine waters, yet displayed strikingly high levels of arsenic, which was actively sequestered in specialized compartments in their bodies to mitigate toxicity. Upon their death, arsenic was released and incorporated into pyrite nuclei. The patterns observed in the fossils are distinct from abiotic concretions but similar to some seen in later eumetazoans, reinforcing their biological affinity. Our findings highlight that early complex life faced significant arsenic stress, even in low-concentration marine environments, which prompted the development of essential survival mechanisms.
Collapse
Affiliation(s)
- Anna El Khoury
- Université de Poitiers, IC2MP, UMR 7285, CNRS, 86073, Poitiers, France
- NANOSCOPIUM beamline, Synchrotron SOLEIL, 91190, Saint-Aubin, France
| | - Andrea Somogyi
- NANOSCOPIUM beamline, Synchrotron SOLEIL, 91190, Saint-Aubin, France
| | - Ernest Chi Fru
- Cardiff University, School of Earth and Ocean Sciences, CF10 3AT, Cardiff, UK
| | - Farid Saleh
- University of Lausanne, Institute of Earth Sciences, Géopolis, CH-1015, Lausanne, Switzerland.
| | - Ibtissam Chraiki
- Université de Poitiers, IC2MP, UMR 7285, CNRS, 86073, Poitiers, France
| | - Claude Fontaine
- Université de Poitiers, IC2MP, UMR 7285, CNRS, 86073, Poitiers, France
| | - Jérémie Aubineau
- Géosciences Environnement Toulouse (GET), UMR 5563 CNRS, UR 234 IRD, UM 97 UT, CNES, Observatoire Midi-Pyrénées, 31400, Toulouse, France
| | - Claire Rollion-Bard
- Université Paris-Saclay, Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CNRS, CEA, UVSQ, 91191, Gif-sur-Yvette, France
| | - Mathias Harzhauser
- Natural History Museum Vienna, Geological-Palaeontological Department, Burgring 7, 1010, Vienna, Austria
| | | |
Collapse
|
2
|
Naiel MA, Taher ES, Rashed F, Ghazanfar S, Shehata AM, Mohammed NA, Pascalau R, Smuleac L, Ibrahim AM, Abdeen A, Shukry M. The arsenic bioremediation using genetically engineered microbial strains on aquatic environments: An updated overview. Heliyon 2024; 10:e36314. [PMID: 39286167 PMCID: PMC11402758 DOI: 10.1016/j.heliyon.2024.e36314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Heavy metal contamination threatens the aquatic environment and human health. Different physical and chemical procedures have been adopted in many regions; however, their adoption is usually limited since they take longer time, are more expensive, and are ineffective in polluted areas with high heavy metal contents. Thus, biological remediation is considered a suitable applicable method for treating contaminates due to its aquatic-friendly features. Bacteria possess an active metabolism that enables them to thrive and develop in highly contaminated water bodies with arsenic (As). They achieve this by utilizing their genetic structure to selectively target As and deactivate its toxic influences. Therefore, this review extensively inspects the bacterial reactions and interactions with As. In addition, this literature demonstrated the potential of certain genetically engineered bacterial strains to upregulate the expression and activity of specific genes associated with As detoxification. The As resistant mechanisms in bacteria exhibit significant variation depending on the genetics and type of the bacterium, which is strongly affected by the physical water criteria of their surrounding aquatic environment. Moreover, this literature has attempted to establish scientific connections between existing knowledge and suggested sustainable methods for removing As from aquatic bodies by utilizing genetically engineered bacterial strains. We shall outline the primary techniques employed by bacteria to bioremediate As from aquatic environments. Additionally, we will define the primary obstacles that face the wide application of genetically modified bacterial strains for As bioremediation in open water bodies. This review can serve as a target for future studies aiming to implement real-time bioremediation techniques. In addition, potential synergies between the bioremediation technology and other techniques are suggested, which can be employed for As bioremediation.
Collapse
Affiliation(s)
- Mohammed A.E. Naiel
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Abdelrazeq M. Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Nourelhuda A. Mohammed
- Department of Physiology and Biochemistry, Faculty of Medicine, Mutah University, Mutah, 61710, Al-Karak, Jordan
| | - Raul Pascalau
- Department of Agricultural Technologies, Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Romania
| | - Laura Smuleac
- Department of Sustainable Development and Environmental Engineering Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Timisoara, Roman, Romania
| | - Ateya Megahed Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port-Said University, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
3
|
Baumgartner RJ, Van Kranendonk MJ, Caruso S, Campbell KA, Dobson MJ, Teece BL, Verrall M, Homann M, Lalonde S, Visscher PT. Pyritic stromatolites from the Paleoarchean Dresser Formation, Pilbara Craton: Resolving biogenicity and hydrothermally influenced ecosystem dynamics. GEOBIOLOGY 2024; 22:e12610. [PMID: 38979799 DOI: 10.1111/gbi.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024]
Abstract
This study investigates the paleobiological significance of pyritic stromatolites from the 3.48 billion-year-old Dresser Formation, Pilbara Craton. By combining paleoenvironmental analyses with observations from well-preserved stromatolites in newly obtained drill cores, the research reveals stratiform and columnar to domal pyritic structures with wavy to wrinkly laminations and crest thickening, hosted within facies variably influenced by syn-depositional hydrothermal activity. The columnar and domal stromatolites occur in strata with clearly distinguishable primary depositional textures. Mineralogical variability and fine-scale interference textures between the microbialites and the enclosing sediment highlight interplays between microbial and depositional processes. The stromatolites consist of organomineralization - nanoporous pyrite and microspherulitic barite - hosting significant thermally mature organic matter (OM). This includes filamentous organic microstructures encased within nanoporous pyrite, resembling the extracellular polymeric substance (EPS) of microbes. These findings imply biogenicity and support the activity of microbial life in a volcano-sedimentary environment with hydrothermal activity and evaporative cycles. Coupled changes in stromatolite morphology and host facies suggest growth in diverse niches, from dynamic, hydrothermally influenced shallow-water environments to restricted brine pools strongly enriched inSO 4 2 - $$ {\mathrm{SO}}_4^{2-} $$ from seawater and hydrothermal activity. These observations, along with S stable isotope data indicating influence by S metabolisms, and accumulations of biologically significant metals and metalloids (Ni and As) within the microbialites, help constrain microbial processes. Columnar to domal stromatolites in dynamic, hydrothermally influenced shallow water deposits likely formed by microbial communities dominated by phototrophs. Stratiform pyritic structures within barite-rich strata may reflect the prevalence of chemotrophs near hydrothermal venting, where hydrothermal activity and microbial processes influenced barite precipitation. Rapid pyrite precipitation, a putative taphonomic process for preserving microbial remnants, is attributed to microbial sulfate reduction and reduced S sourced from hydrothermal activity. In conclusion, this research underscores the biogenicity of the Dresser stromatolites and advances our understanding of microbial ecosystems in Earth's early history.
Collapse
Affiliation(s)
- Raphael J Baumgartner
- CSIRO Mineral Resources, Australian Resources Research Centre, Kensington, Western Australia, Australia
- School of Biological, Earth and Environmental Sciences, Australian Centre for Astrobiology, The University of New South Wales, Kensington, New South Wales, Australia
| | - Martin J Van Kranendonk
- School of Biological, Earth and Environmental Sciences, Australian Centre for Astrobiology, The University of New South Wales, Kensington, New South Wales, Australia
- School of Earth and Planetary Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Stefano Caruso
- CSIRO Mineral Resources, Australian Resources Research Centre, Kensington, Western Australia, Australia
- School of Biological, Earth and Environmental Sciences, Australian Centre for Astrobiology, The University of New South Wales, Kensington, New South Wales, Australia
| | - Kathleen A Campbell
- School of Environment and Te Ao Mārama, Centre for Fundamental Inquiry, University of Auckland, Auckland, New Zealand
| | - Michaela J Dobson
- School of Environment and Te Ao Mārama, Centre for Fundamental Inquiry, University of Auckland, Auckland, New Zealand
| | - Bronwyn L Teece
- School of Biological, Earth and Environmental Sciences, Australian Centre for Astrobiology, The University of New South Wales, Kensington, New South Wales, Australia
- Origins and Habitability Laboratory, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Michael Verrall
- CSIRO Mineral Resources, Australian Resources Research Centre, Kensington, Western Australia, Australia
| | - Martin Homann
- Department of Earth Sciences, University College London, London, UK
| | - Stefan Lalonde
- European Institute for Marine Studies, Technopôle Brest-Iroise, Plouzané, France
| | - Pieter T Visscher
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| |
Collapse
|
4
|
D'Ermo G, Audebert S, Camoin L, Planer-Friedrich B, Casiot-Marouani C, Delpoux S, Lebrun R, Guiral M, Schoepp-Cothenet B. Quantitative proteomics reveals the Sox system's role in sulphur and arsenic metabolism of phototroph Halorhodospira halophila. Environ Microbiol 2024; 26:e16655. [PMID: 38897608 DOI: 10.1111/1462-2920.16655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
The metabolic process of purple sulphur bacteria's anoxygenic photosynthesis has been primarily studied in Allochromatium vinosum, a member of the Chromatiaceae family. However, the metabolic processes of purple sulphur bacteria from the Ectothiorhodospiraceae and Halorhodospiraceae families remain unexplored. We have analysed the proteome of Halorhodospira halophila, a member of the Halorhodospiraceae family, which was cultivated with various sulphur compounds. This analysis allowed us to reconstruct the first comprehensive sulphur-oxidative photosynthetic network for this family. Some members of the Ectothiorhodospiraceae family have been shown to use arsenite as a photosynthetic electron donor. Therefore, we analysed the proteome response of Halorhodospira halophila when grown under arsenite and sulphide conditions. Our analyses using ion chromatography-inductively coupled plasma mass spectrometry showed that thioarsenates are chemically formed under these conditions. However, they are more extensively generated and converted in the presence of bacteria, suggesting a biological process. Our quantitative proteomics revealed that the SoxAXYZB system, typically dedicated to thiosulphate oxidation, is overproduced under these growth conditions. Additionally, two electron carriers, cytochrome c551/c5 and HiPIP III, are also overproduced. Electron paramagnetic resonance spectroscopy suggested that these transporters participate in the reduction of the photosynthetic Reaction Centre. These results support the idea of a chemically and biologically formed thioarsenate being oxidized by the Sox system, with cytochrome c551/c5 and HiPIP III directing electrons towards the Reaction Centre.
Collapse
Affiliation(s)
- Giulia D'Ermo
- Aix-Marseille Université, CNRS, BIP-UMR 7281, Marseille, France
| | - Stéphane Audebert
- Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Luc Camoin
- Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Centre for Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth, Germany
| | | | - Sophie Delpoux
- Laboratoire HydroSciences Montpellier, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Régine Lebrun
- Aix-Marseille Université, CNRS, IMM-FR3479, Marseille Protéomique, Marseille, France
| | - Marianne Guiral
- Aix-Marseille Université, CNRS, BIP-UMR 7281, Marseille, France
| | | |
Collapse
|
5
|
Osman JR, Castillo J, Sanhueza V, Miller AZ, Novoselov A, Cotoras D, Morales D. Key energy metabolisms in modern living microbialites from hypersaline Andean lagoons of the Salar de Atacama, Chile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173469. [PMID: 38788953 DOI: 10.1016/j.scitotenv.2024.173469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/28/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Microbialites are organosedimentary structures formed mainly due to the precipitation of carbonate minerals, although they can also incorporate siliceous, phosphate, ferric, and sulfate minerals. The minerals' precipitation occurs because of local chemical changes triggered by changes in pH and redox transformations catalyzed by the microbial energy metabolisms. Here, geochemistry, metagenomics, and bioinformatics tools reveal the key energy metabolisms of microbial mats, stromatolites and an endoevaporite distributed across four hypersaline lagoons from the Salar de Atacama. Chemoautotrophic and chemoheterotrophic microorganisms seem to coexist and influence microbialite formation. The microbialite types of each lagoon host unique microbial communities and metabolisms that influence their geochemistry. Among them, photosynthetic, carbon- and nitrogen- fixing and sulfate-reducing microorganisms appear to control the main biogeochemical cycles. Genes associated with non-conventional energy pathways identified in MAGs, such as hydrogen production/consumption, arsenic oxidation/reduction, manganese oxidation and selenium reduction, also contribute to support life in microbialites. The presence of genes encoding for enzymes associated with ureolytic processes in the Cyanobacteria phylum and Gammaproteobacteria class might induce carbonate precipitation in hypersaline environments, contributing to the microbialites formation. To the best of our knowledge, this is the first study characterizing metagenomically microbialites enriched in manganese and identifying metabolic pathways associated with manganese oxidation, selenium reduction, and ureolysis in this ecosystem, which suggests that the geochemistry and bioavailability of energy sources (As, Mn and Se) shapes the microbial metabolisms in the microbialites.
Collapse
Affiliation(s)
- Jorge R Osman
- Instituto de Geología Económica Aplicada (GEA), Universidad de Concepción, Concepción, Chile.
| | - Julio Castillo
- University of the Free State, Department of Microbiology and Biochemistry, Bloemfontein, South Africa
| | - Vilma Sanhueza
- Instituto de Geología Económica Aplicada (GEA), Universidad de Concepción, Concepción, Chile
| | - Ana Z Miller
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Av. Reina Mercedes 10, 41012 Sevilla, Spain
| | - Alexey Novoselov
- Instituto de Geología Económica Aplicada (GEA), Universidad de Concepción, Concepción, Chile
| | - Davor Cotoras
- Laboratorio de Microbiología y Biotecnología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont #964, Independencia, Santiago, Chile
| | - Daniela Morales
- Instituto de Geología Económica Aplicada (GEA), Universidad de Concepción, Concepción, Chile
| |
Collapse
|
6
|
Mehić S, Saltikov C. Genome sequence and characterisation of a freshwater photoarsenotroph, Cereibacter azotoformans strain ORIO, isolated from sediments capable of cyclic light-dark arsenic oxidation and reduction. Environ Microbiol 2023; 25:3738-3752. [PMID: 37974504 DOI: 10.1111/1462-2920.16542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
A freshwater photosynthetic arsenite-oxidizing bacterium, Cereibacter azotoformans strain ORIO, was isolated from Owens River, CA, USA. The waters from Owens River are elevated in arsenic and serve as the headwaters to the Los Angeles Aqueduct. The complete genome sequence of strain ORIO is 4.8 Mb genome (68% G + C content) and comprises two chromosomes and six plasmids. Taxonomic analysis placed ORIO within the Cereibacter genus (formerly Rhodobacter). The ORIO genome contains arxB2 AB1 CD (encoding an arsenite oxidase), arxXSR (regulators) and several ars arsenic resistance genes all co-localised on a 136 kb plasmid, named pORIO3. Phylogenetic analysis of ArxA, the molybdenum-containing arsenite oxidase catalytic subunit, demonstrated photoarsenotrophy is likely to occur within members of the Alphaproteobacteria. ORIO is a mixotroph, oxidises arsenite to arsenate (As(V)) photoheterotrophically, and expresses arxA in cultures grown with arsenite. Further ecophysiology studies with Owens River sediment demonstrated the interconversion of arsenite and As(V) was dependent on light-dark cycling. arxA and arrA (As(V) respiratory reductase) genes were detected in the light-dark cycled sediment metagenomes suggesting syntrophic interactions among arsenotrophs. This work establishes C. azotoformans str. ORIO as a new model organism for studying photoarsenotrophy and light-dark arsenic biogeochemical cycling.
Collapse
Affiliation(s)
- Sanjin Mehić
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Chad Saltikov
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
7
|
Wu YF, Chen J, Xie WY, Peng C, Tang ST, Rosen BP, Kappler A, Zhang J, Zhao FJ. Anoxygenic phototrophic arsenite oxidation by a Rhodobacter strain. Environ Microbiol 2023; 25:1538-1548. [PMID: 36978205 PMCID: PMC10676076 DOI: 10.1111/1462-2920.16380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/18/2023] [Indexed: 03/30/2023]
Abstract
Microbially mediated arsenic redox transformations are key for arsenic speciation and mobility in rice paddies. Whereas anaerobic anoxygenic photosynthesis coupled to arsenite (As(III)) oxidation has been widely examined in arsenic-replete ecosystems, it remains unknown whether this light-dependent process exists in paddy soils. Here, we isolated a phototrophic purple bacteria, Rhodobacter strain CZR27, from an arsenic-contaminated paddy soil and demonstrated its capacity to oxidize As(III) to arsenate (As(V)) using malate as a carbon source photosynthetically. Genome sequencing revealed an As(III)-oxidizing gene cluster (aioXSRBA) encoding an As(III) oxidase. Functional analyses showed that As(III) oxidation under anoxic phototrophic conditions correlated with transcription of the large subunit of the As(III) oxidase aioA gene. Furthermore, the non-As(III) oxidizer Rhodobacter capsulatus SB1003 heterologously expressing aioBA from strain CZR27 was able to oxidize As(III), indicating that aioBA was responsible for the observed As(III) oxidation in strain CZR27. Our study provides evidence for the presence of anaerobic photosynthesis-coupled As(III) oxidation in paddy soils, highlighting the importance of light-dependent, microbe-mediated arsenic redox changes in paddy arsenic biogeochemistry.
Collapse
Affiliation(s)
- Yi-Fei Wu
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | - Wan-Ying Xie
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Peng
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Shi-Tong Tang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | - Andreas Kappler
- Geomicrobiology, Department of Geoscience, University of Tuebingen, Tuebingen 72076, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tuebingen 72076, Germany
| | - Jun Zhang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Rasmussen KL, Stamps BW, Vanzin GF, Ulrich SM, Spear JR. Spatial and temporal dynamics at an actively silicifying hydrothermal system. Front Microbiol 2023; 14:1172798. [PMID: 37206339 PMCID: PMC10188993 DOI: 10.3389/fmicb.2023.1172798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Steep Cone Geyser is a unique geothermal feature in Yellowstone National Park (YNP), Wyoming, actively gushing silicon-rich fluids along outflow channels possessing living and actively silicifying microbial biomats. To assess the geomicrobial dynamics occurring temporally and spatially at Steep Cone, samples were collected at discrete locations along one of Steep Cone's outflow channels for both microbial community composition and aqueous geochemistry analysis during field campaigns in 2010, 2018, 2019, and 2020. Geochemical analysis characterized Steep Cone as an oligotrophic, surface boiling, silicious, alkaline-chloride thermal feature with consistent dissolved inorganic carbon and total sulfur concentrations down the outflow channel ranging from 4.59 ± 0.11 to 4.26 ± 0.07 mM and 189.7 ± 7.2 to 204.7 ± 3.55 μM, respectively. Furthermore, geochemistry remained relatively stable temporally with consistently detectable analytes displaying a relative standard deviation <32%. A thermal gradient decrease of ~55°C was observed from the sampled hydrothermal source to the end of the sampled outflow transect (90.34°C ± 3.38 to 35.06°C ± 7.24). The thermal gradient led to temperature-driven divergence and stratification of the microbial community along the outflow channel. The hyperthermophile Thermocrinis dominates the hydrothermal source biofilm community, and the thermophiles Meiothermus and Leptococcus dominate along the outflow before finally giving way to more diverse and even microbial communities at the end of the transect. Beyond the hydrothermal source, phototrophic taxa such as Leptococcus, Chloroflexus, and Chloracidobacterium act as primary producers for the system, supporting heterotrophic growth of taxa such as Raineya, Tepidimonas, and Meiothermus. Community dynamics illustrate large changes yearly driven by abundance shifts of the dominant taxa in the system. Results indicate Steep Cone possesses dynamic outflow microbial communities despite stable geochemistry. These findings improve our understanding of thermal geomicrobiological dynamics and inform how we can interpret the silicified rock record.
Collapse
Affiliation(s)
- Kalen L. Rasmussen
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Blake W. Stamps
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - Gary F. Vanzin
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | | | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
- *Correspondence: John R. Spear,
| |
Collapse
|
9
|
Yang Y, Xie X, Chen M, Xie Z, Wang J. Effects of Sulfide Input on Arsenate Bioreduction and Its Reduction Product Formation in Sulfidic Groundwater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16987. [PMID: 36554867 PMCID: PMC9779320 DOI: 10.3390/ijerph192416987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Microbes have important impacts on the mobilization of arsenic in groundwater. To study the effects of sulfide on As(V) bioreduction in sulfidic groundwater, Citrobacter sp. JH012-1 isolated from sediments in the Jianghan Plain was used in a microcosm experiment. The results showed that sulfide significantly enhanced As(V) bioreduction as an additional electron donor. The reduction rates of As(V) were 21.8%, 34.5%, 73.6% and 85.9% under 0, 15, 75 and 150 µM sulfide inputting, respectively. The main products of As(V) bioreduction were thioarsenite and orpiment and the concentration of thioarsenite reached to 5.5 and 7.1 µM in the solution with the initial 75 and 150 µM sulfide, respectively. However, under 0 and 15 µM sulfide inputting, the dominant product was arsenite with no thioarsenite accumulation. The decrease in pH enhanced the bioreduction of As(V) and promoted the formation of thioarsenite and orpiment. In addition, the percentage of thioarsenite in total arsenic decreased with the decrease in the ratio of sulfur to arsenic, indicating that the formation of thioarsenite was limited by the concentration of initial sulfide. Therefore, the presence of sulfide had a significant effect on the transformation of arsenic in groundwater. This study provides new insights into the bioreduction of As(V) and the formation of thioarsenite in sulfidic groundwater.
Collapse
Affiliation(s)
- Yang Yang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xi Xie
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Mengna Chen
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Zuoming Xie
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jia Wang
- Changjiang River Scientific Research Institute, Wuhan 430014, China
| |
Collapse
|
10
|
Min D, Cheng L, Liu DF, Liu JQ, Li WW, Yu HQ. Single Strain-Triggered Biogeochemical Cycle of Arsenic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16410-16418. [PMID: 36268776 DOI: 10.1021/acs.est.2c02015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The microbial metabolism of arsenic plays a prominent role in governing the biogeochemical cycle of arsenic. Although diverse microbes are known to be involved in the redox transformation of inorganic arsenic, the underlying mechanisms about the arsenic redox cycle mediated by a single microbial strain remain unclear yet. Herein, we discover that Shewanella putrefaciens CN32, a well-known arsenate-respiring and dissimilatory metal-reducing bacterium, could mediate the reversible arsenic redox transformation under aerobic conditions. Genetic analysis shows that S. putrefaciens CN32 contains both ars and arr operon but lacks an As(III) oxidase encoding gene. Arsenic(V) reduction tests demonstrate that the ars operon is advantageous but not essential for As(V) respiration in S. putrefaciens CN32. The Arr complex encoded by the arr operon not only plays a crucial role in arsenate respiration under anaerobic conditions but also participates in the sequential process of As(V) reduction and As(III) oxidation under aerobic conditions. The Arr enzyme also contributes to the microbial As(III) resistance. The expression and catalysis directionality of Arr in S. putrefaciens CN32 are regulated by the carbon source types. Our results highlight the complexity of arsenic redox biotransformation in environments and provide new insights into the important contribution of Arr to the As biogeochemical cycle in nature.
Collapse
Affiliation(s)
- Di Min
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Lei Cheng
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Jia-Qi Liu
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
de Diego GA, Penas-Steinhardt A, Ferro JP, Palacio MJ, Ossana NA, Eissa BL, Belforte F. Impact of exposure to arsenic on the bacterial microbiota associated with river biofilms in the Pampas region. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106319. [PMID: 36252326 DOI: 10.1016/j.aquatox.2022.106319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 09/10/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Freshwater contamination by arsenic (As) is a worldwide problem. It may be found in Pampean streams of Argentina at concentrations higher than those recommended by international organizations and stipulated by national regulations. Exposure to high As concentrations causes serious consequences to both human health and the environment. The general objective of this work was to evaluate the effect of As on the biofilm microbiota structure from Naveira stream, Luján, Province of Buenos Aires (Coordinates: 34º34'02″ S 59º03'51″ W). The biofilm collected was cultivated in glass aquaria at different As III concentrations (0, 0.2 and 20 mg / L), inside incubation chambers under controlled conditions (16 h light: 8 h dark and 24 ± 1 °C) and constant aeration for 31 d, with partial water renewal every 9 d. We amplified the hypervariable regions V3 and V4 of the bacterial 16S rRNA gene from biofilm bacterial community samples to determine the diversity and abundance of the different taxa. The taxonomic composition of each sample, the alpha diversity of each treatment and the main metabolic pathways were analyzed. Principal Component Analysis of the present phyla and a Linear Discriminant Analysis of the metabolic pathways was also performed. Significant changes were observed in relation to the taxonomic composition of the bacterial community after exposure to the metalloid. However, this effect was not observed at the low concentration used (0.2 mg / L), which is the one that corresponds to ecologically relevant levels. The significantly affected phyla were Verrucomicrobiota, Acidobacteriota, Patescibacteria, Hydrogenedentes and WPS-2. The relative abundances of the Verrucomicrobiota, WPS-2 and Patescibacteria groups were notably decreased in the treatment with high As, while the Acidobacteria group was increased in both treatments with As. The stream samples showed greater bacterial diversity than those grown in the laboratory without As. Finally, it was possible to characterize the metabolic profile of the biofilm developed under natural conditions in the leaves of the aquatic plant Elodea canadensis in the Naveira stream. In addition, results showed that biosynthesis-related pathways were more abundant at the high As concentration treatment (20 mg / L).
Collapse
Affiliation(s)
- G A de Diego
- Programa de Ecofisiología Aplicada (PRODEA), Departamento de Ciencias Básicas, Universidad Nacional de Luján, P.O. Box 221, B6700ZBA Luján, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján - CONICET, P.O. Box 221, B6700ZBA Luján, Argentina.
| | - A Penas-Steinhardt
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina; Laboratorio de Genómica Computacional (GEC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina
| | - J P Ferro
- Programa de Ecofisiología Aplicada (PRODEA), Departamento de Ciencias Básicas, Universidad Nacional de Luján, P.O. Box 221, B6700ZBA Luján, Argentina; Instituto de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján - CONICET, P.O. Box 221, B6700ZBA Luján, Argentina
| | - M J Palacio
- Programa de Ecofisiología Aplicada (PRODEA), Departamento de Ciencias Básicas, Universidad Nacional de Luján, P.O. Box 221, B6700ZBA Luján, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján - CONICET, P.O. Box 221, B6700ZBA Luján, Argentina
| | - N A Ossana
- Programa de Ecofisiología Aplicada (PRODEA), Departamento de Ciencias Básicas, Universidad Nacional de Luján, P.O. Box 221, B6700ZBA Luján, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján - CONICET, P.O. Box 221, B6700ZBA Luján, Argentina
| | - B L Eissa
- Programa de Ecofisiología Aplicada (PRODEA), Departamento de Ciencias Básicas, Universidad Nacional de Luján, P.O. Box 221, B6700ZBA Luján, Argentina; Instituto de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján - CONICET, P.O. Box 221, B6700ZBA Luján, Argentina
| | - F Belforte
- Instituto de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján - CONICET, P.O. Box 221, B6700ZBA Luján, Argentina; Laboratorio de Genómica Computacional (GEC-UNLu), Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina; Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES) CONICET-UNLu, Departamento de Ciencias Básicas- Universidad Nacional de Luján. Av. Constitución y Ruta Nac. N° 5, B6700ZBA Luján, Buenos Aires
| |
Collapse
|
12
|
Papry RI, Miah S, Hasegawa H. Integrated environmental factor-dependent growth and arsenic biotransformation by aquatic microalgae: A review. CHEMOSPHERE 2022; 303:135164. [PMID: 35654229 DOI: 10.1016/j.chemosphere.2022.135164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) is a toxic metalloid posing harming the human food chain through trophic transfer. Microalgae are primary producers, ensuring bioaccumulation and biogeochemical cycling of As in water environment. They are highly efficient at removing As from the environment, making these microscopic organisms eco-friendly and money saving method in As remediation process. However, microalgal growth and As biotransformation potential relies greatly on individual and integrated environmental factors. This review scrutinizes the available literature on the As biotransformation potentials of various marine and freshwater microalgae under individual and integrated stresses of such factors. Various combinations of important factors such as temperature, salinity, concentrations of As (V) and PO43─, pH, light intensity, and length of exposure period are summarized along with the optimum conditions for different microalgae. The effects of environmental factors on microalgal growth, changes in cell shape, and the relationship between As biotransformation and other activities are discussed in detail. Time-dependent As speciation pattern by aquatic microalgae are reviewed. Conceptual models highlighting the microalgal species particularly linked with environmental factor-dependent As biotransformation mechanisms are also summarized. This review will contribute to an in depth understanding of the connection between environmental factors, As uptake, and the biotransformation mechanism of marine and freshwater microalgae from the perspective of As remediation process.
Collapse
Affiliation(s)
- Rimana Islam Papry
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan.
| | - Sohag Miah
- Institute of Forestry and Environmental Sciences, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan.
| |
Collapse
|
13
|
Flores A, Valencia-Marín MF, Chávez-Avila S, Ramírez-Díaz MI, de los Santos-Villalobos S, Meza-Carmen V, del Carmen Orozco-Mosqueda M, Santoyo G. Genome mining, phylogenetic, and functional analysis of arsenic (As) resistance operons in Bacillus strains, isolated from As-rich hot spring microbial mats. Microbiol Res 2022; 264:127158. [DOI: 10.1016/j.micres.2022.127158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/16/2023]
|
14
|
OFF-switching property of quorum sensor LuxR via As(III)-induced insoluble form. J Biosci Bioeng 2022; 133:335-339. [PMID: 35120813 DOI: 10.1016/j.jbiosc.2021.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 11/21/2022]
Abstract
Whole-cell sensors for arsenite detection have been developed exclusively based on the natural arsenite (As(III)) sensory protein ArsR for arsenic metabolism. This study reports that the quorum-sensing LuxR/Plux system from Vibrio fischeri, which is completely unrelated to arsenic metabolism, responds to As(III) in a dose-dependent manner. Due to as many as 9 cysteine residues, which has a high binding affinity with As(III), LuxR underwent As(III)-induced insoluble form, thereby reducing its effective cellular concentration. Accordingly, the expression level of green fluorescent protein under the control of Plux gradually decreased with increasing As(III) concentration in the medium. This is a novel As(III)-detection system that has never been proposed before, with a unique ON-to-OFF transfer function.
Collapse
|
15
|
Bertin PN, Crognale S, Plewniak F, Battaglia-Brunet F, Rossetti S, Mench M. Water and soil contaminated by arsenic: the use of microorganisms and plants in bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9462-9489. [PMID: 34859349 PMCID: PMC8783877 DOI: 10.1007/s11356-021-17817-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/23/2021] [Indexed: 04/16/2023]
Abstract
Owing to their roles in the arsenic (As) biogeochemical cycle, microorganisms and plants offer significant potential for developing innovative biotechnological applications able to remediate As pollutions. This possible use in bioremediation processes and phytomanagement is based on their ability to catalyse various biotransformation reactions leading to, e.g. the precipitation, dissolution, and sequestration of As, stabilisation in the root zone and shoot As removal. On the one hand, genomic studies of microorganisms and their communities are useful in understanding their metabolic activities and their interaction with As. On the other hand, our knowledge of molecular mechanisms and fate of As in plants has been improved by laboratory and field experiments. Such studies pave new avenues for developing environmentally friendly bioprocessing options targeting As, which worldwide represents a major risk to many ecosystems and human health.
Collapse
Affiliation(s)
- Philippe N Bertin
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS - Université de Strasbourg, Strasbourg, France.
| | - Simona Crognale
- Water Research Institute, National Research Council of Italy (IRSA - CNR), Rome, Italy
| | - Frédéric Plewniak
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS - Université de Strasbourg, Strasbourg, France
| | | | - Simona Rossetti
- Water Research Institute, National Research Council of Italy (IRSA - CNR), Rome, Italy
| | - Michel Mench
- Univ. Bordeaux, INRAE, BIOGECO, F-33615, Pessac, France
| |
Collapse
|
16
|
Vignale FA, Lencina AI, Stepanenko TM, Soria MN, Saona LA, Kurth D, Guzmán D, Foster JS, Poiré DG, Villafañe PG, Albarracín VH, Contreras M, Farías ME. Lithifying and Non-Lithifying Microbial Ecosystems in the Wetlands and Salt Flats of the Central Andes. MICROBIAL ECOLOGY 2022; 83:1-17. [PMID: 33730193 DOI: 10.1007/s00248-021-01725-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The wetlands and salt flats of the Central Andes region are unique extreme environments as they are located in high-altitude saline deserts, largely influenced by volcanic activity. Environmental factors, such as ultraviolet (UV) radiation, arsenic content, high salinity, low dissolved oxygen content, extreme daily temperature fluctuation, and oligotrophic conditions, resemble the early Earth and potentially extraterrestrial conditions. The discovery of modern microbialites and microbial mats in the Central Andes during the past decade has increased the interest in this area as an early Earth analog. In this work, we review the current state of knowledge of Central Andes region environments found within lakes, small ponds or puquios, and salt flats of Argentina, Chile, and Bolivia, many of them harboring a diverse range of microbial communities that we have termed Andean Microbial Ecosystems (AMEs). We have integrated the data recovered from all the known AMEs and compared their biogeochemistry and microbial diversity to achieve a better understanding of them and, consequently, facilitate their protection.
Collapse
Affiliation(s)
- Federico A Vignale
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CCT-CONICET, San Miguel de Tucumán, Tucumán, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Agustina I Lencina
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CCT-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Tatiana M Stepanenko
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CCT-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Mariana N Soria
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CCT-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Luis A Saona
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CCT-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Daniel Kurth
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CCT-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Daniel Guzmán
- Centro de Biotecnología (CBT), Facultad de Ciencias y Tecnología, Universidad Mayor de San Simón (UMSS), Cochabamba, Bolivia
| | - Jamie S Foster
- Space Life Science Lab, Department of Microbiology and Cell Science, University of Florida, Merritt Island, FL, USA
| | - Daniel G Poiré
- Centro de Investigaciones Geológicas (CIG), Universidad Nacional de La Plata (UNLP)-CONICET, La Plata, Argentina
| | - Patricio G Villafañe
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CCT-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Virginia H Albarracín
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CCT-CONICET, San Miguel de Tucumán, Tucumán, Argentina
- Centro Integral de Microscopía Electrónica (CIME)-CCT-CONICET, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina
| | | | - María E Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CCT-CONICET, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
17
|
Zhao Z, Meng Y, Wang Y, Lin L, Xie F, Luan F. Anaerobic oxidation of arsenite by bioreduced nontronite. J Environ Sci (China) 2021; 110:21-27. [PMID: 34593191 DOI: 10.1016/j.jes.2021.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/13/2023]
Abstract
The redox state of arsenic controls its toxicity and mobility in the subsurface environment. Understanding the redox reactions of arsenic is particularly important for addressing its environmental behavior. Clay minerals are commonly found in soils and sediments, which are an important host for arsenic. However, limited information is known about the redox reactions between arsenic and structural Fe in clay minerals. In this study, the redox reactions between As(III)/As(V) and structural Fe in nontronite NAu-2 were investigated in anaerobic batch experiments. No oxidation of As(III) was observed by the native Fe(III)-NAu-2. Interestingly, anaerobic oxidation of As(III) to As(V) occurred after Fe(III)-NAu-2 was bioreduced. Furthermore, anaerobic oxidization of As(III) by bioreduced NAu-2 was significantly promoted by increasing Fe(III)-NAu-2 reduction extent and initial As(III) concentrations. Bioreduction of Fe(III)-NAu-2 generated reactive Fe(III)-O-Fe(II) moieties at clay mineral edge sites. Anaerobic oxidation of As(III) was attributed to the strong oxidation activity of the structural Fe(III) within the Fe(III)-O-Fe(II) moieties. Our results provide a potential explanation for the presence of As(V) in the anaerobic subsurface environment. Our findings also highlight that clay minerals can play an important role in controlling the redox state of arsenic in the natural environment.
Collapse
Affiliation(s)
- Ziwang Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Meng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yahua Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leiming Lin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuyu Xie
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fubo Luan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Draft Genome Sequence of the Anaerobic Arsenite-Oxidizing Halomonas sp. Strain ANAO-440, Isolated from an Alkaline Saline Lake in Khovsgol, Mongolia. Microbiol Resour Announc 2021; 10:e0089921. [PMID: 34672708 PMCID: PMC8530029 DOI: 10.1128/mra.00899-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The draft genome sequence of Halomonas sp. strain ANAO-440 contains 3,866 predicted protein-coding sequences. This strain is capable of anaerobic arsenite oxidation and encodes an arxA-type arsenite oxidase within the arxB2AB1CD gene island. This genome sequence provides valuable information regarding the physiological diversity of Arx-dependent arsenite-oxidizing microorganisms.
Collapse
|
19
|
Newsome L, Falagán C. The Microbiology of Metal Mine Waste: Bioremediation Applications and Implications for Planetary Health. GEOHEALTH 2021; 5:e2020GH000380. [PMID: 34632243 PMCID: PMC8490943 DOI: 10.1029/2020gh000380] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 05/13/2023]
Abstract
Mine wastes pollute the environment with metals and metalloids in toxic concentrations, causing problems for humans and wildlife. Microorganisms colonize and inhabit mine wastes, and can influence the environmental mobility of metals through metabolic activity, biogeochemical cycling and detoxification mechanisms. In this article we review the microbiology of the metals and metalloids most commonly associated with mine wastes: arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc. We discuss the molecular mechanisms by which bacteria, archaea, and fungi interact with contaminant metals and the consequences for metal fate in the environment, focusing on long-term field studies of metal-impacted mine wastes where possible. Metal contamination can decrease the efficiency of soil functioning and essential element cycling due to the need for microbes to expend energy to maintain and repair cells. However, microbial communities are able to tolerate and adapt to metal contamination, particularly when the contaminant metals are essential elements that are subject to homeostasis or have a close biochemical analog. Stimulating the development of microbially reducing conditions, for example in constructed wetlands, is beneficial for remediating many metals associated with mine wastes. It has been shown to be effective at low pH, circumneutral and high pH conditions in the laboratory and at pilot field-scale. Further demonstration of this technology at full field-scale is required, as is more research to optimize bioremediation and to investigate combined remediation strategies. Microbial activity has the potential to mitigate the impacts of metal mine wastes, and therefore lessen the impact of this pollution on planetary health.
Collapse
Affiliation(s)
- Laura Newsome
- Camborne School of Mines and Environment and Sustainability InstituteUniversity of ExeterPenrynUK
| | - Carmen Falagán
- Camborne School of Mines and Environment and Sustainability InstituteUniversity of ExeterPenrynUK
| |
Collapse
|
20
|
Seager S, Petkowski JJ, Gao P, Bains W, Bryan NC, Ranjan S, Greaves J. The Venusian Lower Atmosphere Haze as a Depot for Desiccated Microbial Life: A Proposed Life Cycle for Persistence of the Venusian Aerial Biosphere. ASTROBIOLOGY 2021; 21:1206-1223. [PMID: 32787733 DOI: 10.1089/ast.2020.2244] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We revisit the hypothesis that there is life in the venusian clouds to propose a life cycle that resolves the conundrum of how life can persist aloft for hundreds of millions to billions of years. Most discussions of an aerial biosphere in the venusian atmosphere temperate layers never address whether the life-small microbial-type particles-is free floating or confined to the liquid environment inside cloud droplets. We argue that life must reside inside liquid droplets such that it will be protected from a fatal net loss of liquid to the atmosphere, an unavoidable problem for any free-floating microbial life forms. However, the droplet habitat poses a lifetime limitation: Droplets inexorably grow (over a few months) to large enough sizes that are forced by gravity to settle downward to hotter, uninhabitable layers of the venusian atmosphere. (Droplet fragmentation-which would reduce particle size-does not occur in venusian atmosphere conditions.) We propose for the first time that the only way life can survive indefinitely is with a life cycle that involves microbial life drying out as liquid droplets evaporate during settling, with the small desiccated "spores" halting at, and partially populating, the venusian atmosphere stagnant lower haze layer (33-48 km altitude). We, thus, call the venusian lower haze layer a "depot" for desiccated microbial life. The spores eventually return to the cloud layer by upward diffusion caused by mixing induced by gravity waves, act as cloud condensation nuclei, and rehydrate for a continued life cycle. We also review the challenges for life in the extremely harsh conditions of the venusian atmosphere, refuting the notion that the "habitable" cloud layer has an analogy in any terrestrial environment.
Collapse
Affiliation(s)
- Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Janusz J Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Peter Gao
- Department of Astronomy, University of California at Berkeley, California, USA
| | - William Bains
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Noelle C Bryan
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sukrit Ranjan
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jane Greaves
- School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
- Institute of Astronomy, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
21
|
Shoham S, Weinberger A, Kaplan A, Avisar D, Ilan M. Arsenate reducing bacteria isolated from the marine sponge Theonella swinhoei: Bioremediation potential. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112522. [PMID: 34304132 DOI: 10.1016/j.ecoenv.2021.112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) contamination of freshwater resources constitutes a major environmental issue affecting over 200 million people worldwide. Although the use of microorganisms for the bioremediation of As has been well studied, only very few candidates have been identified to date. Here, we investigated bacteria associated with the Red Sea sponge Theonella swinhoei and their potential to reduce As in a low-salinity liquid medium. This Indo-Pacific common sponge has been shown to hyper-accumulate As, at an average concentration of 8600 mg/g-1 in an environment uncontaminated by arsenic or barium. Four isolated strains of bacteria exhibited arsenic reduction potential by transforming inorganic As in the form of arsenate (iAsV) to arsenite (iAsIII). Two of these isolates were identified as Alteromonas macleodii and Pseudovibrio ascidisceicola, and the other two isolates, both belonging to the same species, were identified as Pseudovibrio denitrificans. The four isolates were then cultured in a low-salinity iAsV-rich medium (5 mM) and As concentration was measured over time using a specifically designed high-performance liquid chromatograph coupled to a mass spectrometer (HPLC-MS). Out of the four isolates, A. macleodii and P. ascidisceicola grew successfully in a low-salinity liquid medium and reduced AsV to AsIII at an average rate of 0.094 and 0.083 mM/h, respectively, thereby demonstrating great potential for the bioremediation of As-contaminated groundwater.
Collapse
Affiliation(s)
- Shani Shoham
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Adi Weinberger
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Aviv Kaplan
- Water Research Center, Porter School for Environment and Earth Science, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Dror Avisar
- Water Research Center, Porter School for Environment and Earth Science, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Micha Ilan
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
22
|
Patel A, Tiwari S, Prasad SM. Arsenate and arsenite-induced inhibition and recovery in two diazotrophic cyanobacteria Nostoc muscorum and Anabaena sp.: study on time-dependent toxicity regulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51088-51104. [PMID: 33974205 DOI: 10.1007/s11356-021-13800-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Exposure time, metal bio-accumulation, and upregulation of ascorbate-glutathione (AsA-GSH) cycle are the key factor that provide tolerance against heavy metal stress. Thus, the current study is an endeavor to prove our hypothesis that regulation of arsenate (AsV: 50, 100, and 150 mM) and arsenite (AsIII: 50, 100, and 150 μM) toxicity is time dependent (48-96 h) due to modulation in bio-accumulation pattern, AsA-GSH cycle, and non-enzymatic antioxidants in two paddy field cyanobacteria Nostoc muscorum ATCC27893 and Anabaena sp. PCC7120. After 48 h, reduction in growth associated with increased sensitivity index, As bio-accumulation, and oxidative stress was observed which further intensified after 96 h but the degree of damage was lesser than 48 h. It denotes a significant recovery in growth after 96 h which is correlated with decreased As bio-accumulation and oxidative stress due to increased efficiency of AsA-GSH cycle and non-enzymatic antioxidants. Both the species of As caused significant rise in oxidative biomarkers as evident by in -vitro analysis of O2·-, H2O2, and MDA equivalent contents despite appreciable rise in the activity antioxidative enzymes APX, DHAR, and GR. The study concludes that among both forms of arsenic, AsIII induced more toxic effect on growth by over-accumulating the ROS as evident by weak induction of AsA-GSH cycle to overcome the stress as compared to AsV. Further, with increasing the time exposure, apparent recovery was noticed with the lower doses of AsV, i.e., 50 and 100 mM and AsIII, i.e., 50 and 100 μM; however, the toxicity further aggravated with higher dose of both AsV and AsIII. Study proposes the deleterious impact of AsV and AsIII on cyanobacteria N. muscorum and Anabaena sp. but the toxicity was overcome by time-dependent recovery.
Collapse
Affiliation(s)
- Anuradha Patel
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Sanjesh Tiwari
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
23
|
Phillips AA, Speth DR, Miller LG, Wang XT, Wu F, Medeiros PM, Monteverde DR, Osburn MR, Berelson WM, Betts HL, Wijker RS, Mullin SW, Johnson HA, Orphan VJ, Fischer WW, Sessions AL. Microbial succession and dynamics in meromictic Mono Lake, California. GEOBIOLOGY 2021; 19:376-393. [PMID: 33629529 PMCID: PMC8359280 DOI: 10.1111/gbi.12437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/18/2020] [Accepted: 02/08/2021] [Indexed: 05/30/2023]
Abstract
Mono Lake is a closed-basin, hypersaline, alkaline lake located in Eastern Sierra Nevada, California, that is dominated by microbial life. This unique ecosystem offers a natural laboratory for probing microbial community responses to environmental change. In 2017, a heavy snowpack and subsequent runoff led Mono Lake to transition from annually mixed (monomictic) to indefinitely stratified (meromictic). We followed microbial succession during this limnological shift, establishing a two-year (2017-2018) water-column time series of geochemical and microbiological data. Following meromictic conditions, anoxia persisted below the chemocline and reduced compounds such as sulfide and ammonium increased in concentration from near 0 to ~400 and ~150 µM, respectively, throughout 2018. We observed significant microbial succession, with trends varying by water depth. In the epilimnion (above the chemocline), aerobic heterotrophs were displaced by phototrophic genera when a large bloom of cyanobacteria appeared in fall 2018. Bacteria in the hypolimnion (below the chemocline) had a delayed, but systematic, response reflecting colonization by sediment "seed bank" communities. Phototrophic sulfide-oxidizing bacteria appeared first in summer 2017, followed by microbes associated with anaerobic fermentation in spring 2018, and eventually sulfate-reducing taxa by fall 2018. This slow shift indicated that multi-year meromixis was required to establish a sulfate-reducing community in Mono Lake, although sulfide oxidizers thrive throughout mixing regimes. The abundant green alga Picocystis remained the dominant primary producer during the meromixis event, abundant throughout the water column including in the hypolimnion despite the absence of light and prevalence of sulfide. Our study adds to the growing literature describing microbial resistance and resilience during lake mixing events related to climatic events and environmental change.
Collapse
Affiliation(s)
- Alexandra A. Phillips
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Daan R. Speth
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Laurence G. Miller
- United States Geological Survey, Earth Systems Process DivisionMenlo ParkCAUSA
| | - Xingchen T. Wang
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
- Department of Earth and Environmental SciencesBoston CollegeChestnut HillMAUSA
| | - Fenfang Wu
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | | | - Danielle R. Monteverde
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Magdalena R. Osburn
- Department of Earth and Planetary SciencesNorthwestern UniversityEvanstonILUSA
| | - William M. Berelson
- Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesCAUSA
| | | | - Reto S. Wijker
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Sean W. Mullin
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Hope A. Johnson
- Department of Biological ScienceCalifornia State University FullertonFullertonCAUSA
| | - Victoria J. Orphan
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Woodward W. Fischer
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Geobiology Course 2017
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Geobiology Course 2018
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Alex L. Sessions
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| |
Collapse
|
24
|
Mondal S, Pramanik K, Ghosh SK, Pal P, Mondal T, Soren T, Maiti TK. Unraveling the role of plant growth-promoting rhizobacteria in the alleviation of arsenic phytotoxicity: A review. Microbiol Res 2021; 250:126809. [PMID: 34166969 DOI: 10.1016/j.micres.2021.126809] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
The toxic metalloid arsenic (As), is a major pollutant of soil and water, imposing severe health concerns on human lives. It enters the food chain mainly through As-contaminated crops. The uptake, translocation and accumulation of As in plant tissue are often controlled by certain soil-inhabiting microbial communities. Among them, indigenous, free-living As-resistant plant growth-promoting rhizobacteria (PGPR) plays a pivotal role in As-immobilization. Besides, the plant's inability to withstand As after a threshold level is actively managed by these PGPR increasing As-tolerance in host plants by a synergistic plant-microbe interaction. The dual functionality of As-resistant PGPR i.e., phytostimulation and minimization of As-induced phytotoxic damages are one of the main focal points of this review article. It is known that such PGPR having the functional arsenic-resistant genes (in ars operon) including As-transporters, As-transforming genes contributed to the As accumulation and detoxification/transformation respectively. Apart from assisting in nutrient acquisition and modulating phytohormone levels, As-resistant PGPR also influences the antioxidative defense system in plants by maneuvering multiple enzymatic and non-enzymatic antioxidants. Furthermore, they are effective in reducing membrane damage and electrolyte leakage in plant cells. As-induced photosynthetic damage is also found to be salvaged by As-resistant PGPR. Briefly, the eco-physiological, biochemical and molecular mechanisms of As-resistant PGPR are thus elaborated here with regard to the As-exposed crops.
Collapse
Affiliation(s)
- Sayanta Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, PIN-713104, West Bengal, India.
| | - Krishnendu Pramanik
- Mycology and Plant Pathology Laboratory, Department of Botany, Siksha Bhavana, Visva-Bharati, Santiniketan, Birbhum, PIN-731235, West Bengal, India.
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, PIN-713104, West Bengal, India.
| | - Priyanka Pal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, PIN-713104, West Bengal, India.
| | - Tanushree Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, PIN-713104, West Bengal, India.
| | - Tithi Soren
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, PIN-713104, West Bengal, India.
| | - Tushar Kanti Maiti
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, PIN-713104, West Bengal, India.
| |
Collapse
|
25
|
Saona LA, Soria M, Durán-Toro V, Wörmer L, Milucka J, Castro-Nallar E, Meneses C, Contreras M, Farías ME. Phosphate-Arsenic Interactions in Halophilic Microorganisms of the Microbial Mat from Laguna Tebenquiche: from the Microenvironment to the Genomes. MICROBIAL ECOLOGY 2021; 81:941-953. [PMID: 33388944 DOI: 10.1007/s00248-020-01673-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Arsenic (As) is a metalloid present in the earth's crust and widely distributed in the environment. Due to its high concentrations in the Andean valleys and its chemical similarity with phosphorus (P), its biological role in Andean Microbial Ecosystems (AMEs) has begun to be studied. The AMEs are home to extremophilic microbial communities that form microbial mats, evaporites, and microbialites inhabiting Andean lakes, puquios, or salt flats. In this work, we characterize the biological role of As and the effect of phosphate in AMEs from the Laguna Tebenquiche (Atacama Desert, Chile). Using micro X-ray fluorescence, the distribution of As in microbial mat samples was mapped. Taxonomic and inferred functional profiles were obtained from enriched cultures of microbial mats incubated under As stress and different phosphate conditions. Additionally, representative microorganisms highly resistant to As and able to grow under low phosphate concentration were isolated and studied physiologically. Finally, the genomes of the isolated Salicola sp. and Halorubrum sp. were sequenced to analyze genes related to both phosphate metabolism and As resistance. The results revealed As as a key component of the microbial mat ecosystem: (i) As was distributed across all sections of the microbial mat and represented a significant weight percentage of the mat (0.17 %) in comparison with P (0.40%); (ii) Low phosphate concentration drastically changed the microbial community in microbial mat samples incubated under high salinity and high As concentrations; (iii) Archaea and Bacteria isolated from the microbial mat were highly resistant to arsenate (up to 500 mM), even under low phosphate concentration; (iv) The genomes of the two isolates were predicted to contain key genes in As metabolism (aioAB and arsC/acr3) and the genes predicted to encode the phosphate-specific transport operon (pstSCAB-phoU) are next to the arsC gene, suggesting a functional relationship between these two elements.
Collapse
Affiliation(s)
- L A Saona
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina.
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany.
| | - M Soria
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - V Durán-Toro
- Hydrothermal Geomicrobiology Group, MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - L Wörmer
- Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Str. 8, 28359, Bremen, Germany
| | - J Milucka
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany
| | - E Castro-Nallar
- Facultad de Ciencias de la Vida, Center for Bioinformatics and Integrative Biology, Universidad Andres Bello, Santiago, Chile
| | - C Meneses
- Centro de Biotecnología Vegetal (CBV), FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - M Contreras
- Centro de Ecología Aplicada, Santiago, Chile
| | - M E Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
26
|
Chraiki I, Bouougri EH, Chi Fru E, Lazreq N, Youbi N, Boumehdi A, Aubineau J, Fontaine C, El Albani A. A 571 million-year-old alkaline volcanic lake photosynthesizing microbial community, the Anti-atlas, Morocco. GEOBIOLOGY 2021; 19:105-124. [PMID: 33369021 DOI: 10.1111/gbi.12425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 11/06/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
The Ediacaran period coincides with the emergence of ancestral animal lineages and cyanobacteria capable of thriving in nutrient deficient oceans which together with photosynthetic eukaryotic dominance, culminated in the rapid oxygenation of the Ediacaran atmosphere. However, ecological evidence for the colonization of the Ediacaran terrestrial biosphere by photosynthetic communities and their contribution to the oxygenation of the biosphere at this time is very sparse. Here, we expand the repertoire of Ediacaran habitable environments to a specific microbial community that thrived in an extreme alkaline volcanic lake 571 Myr ago in the Anti-atlas of Morocco. The microbial fabrics preserve evidence of primary growth structures, comprised of two main microbialitic units, with the lower section consisting of irregular and patchy thrombolytic mesoclots associated with composite microbialitic domes. Calcirudite interbeds, dominated by wave-rippled sandy calcarenites and stromatoclasts, fill the interdome troughs and seal the dome tops. A meter-thick epiclastic stromatolite bed grading upwards from a dominantly flat to wavy laminated base, transitions into low convex laminae consisting of decimeter to meter-thick dome-shaped stromatolitic columns, overlies the thrombolitic and composite microbialitic facies. Microbialitic beds constructed during periods of limited clastic input, and underlain by coarse-grained microbialite-derived clasts and by the wave-rippled calcarenites, suggest high-energy events associated with lake expansion. High-resolution microscopy revealed spherulitic aggregates and structures reminiscent of coccoidal microbial cell casts and mineralized extra-polymeric substances (EPS). The primary fabrics and multistage diagenetic features, represented by active carbonate production, photosynthesizing microbial communities, photosynthetic gas bubbles, gas escape structures, and tufted mats, suggest specialized oxygenic photosynthesizers thriving in alkaline volcanic lakes, contributed toward oxygen variability in the Ediacaran terrestrial biosphere.
Collapse
Affiliation(s)
- Ibtissam Chraiki
- Department of Geology, Faculty of Sciences-Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - El Hafid Bouougri
- Department of Geology, Faculty of Sciences-Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Ernest Chi Fru
- Centre for Geobiology and Geochemistry, College of Physical and Engineering Sciences, School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK
| | - Nezha Lazreq
- Department of Geology, Faculty of Sciences-Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Nasrrddine Youbi
- Department of Geology, Faculty of Sciences-Semlalia, Cadi Ayyad University, Marrakesh, Morocco
- Instituto Dom Luiz, University of Lisbon, Lisbon, Portugal
- Faculty of Geology and Geography, Tomsk State University, Tomsk, Russia
| | - Ahmed Boumehdi
- Department of Geology, Faculty of Sciences-Semlalia, Cadi Ayyad University, Marrakesh, Morocco
- Instituto Dom Luiz, University of Lisbon, Lisbon, Portugal
| | | | - Claude Fontaine
- CNRS IC2MP UMR 7285, University of Poitiers, Poitiers, France
| | | |
Collapse
|
27
|
Tsuji JM, Tran N, Schiff SL, Venkiteswaran JJ, Molot LA, Tank M, Hanada S, Neufeld JD. Anoxygenic photosynthesis and iron-sulfur metabolic potential of Chlorobia populations from seasonally anoxic Boreal Shield lakes. THE ISME JOURNAL 2020; 14:2732-2747. [PMID: 32747714 PMCID: PMC7784702 DOI: 10.1038/s41396-020-0725-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/02/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Aquatic environments with high levels of dissolved ferrous iron and low levels of sulfate serve as an important systems for exploring biogeochemical processes relevant to the early Earth. Boreal Shield lakes, which number in the tens of millions globally, commonly develop seasonally anoxic waters that become iron rich and sulfate poor, yet the iron-sulfur microbiology of these systems has been poorly examined. Here we use genome-resolved metagenomics and enrichment cultivation to explore the metabolic diversity and ecology of anoxygenic photosynthesis and iron/sulfur cycling in the anoxic water columns of three Boreal Shield lakes. We recovered four high-completeness and low-contamination draft genome bins assigned to the class Chlorobia (formerly phylum Chlorobi) from environmental metagenome data and enriched two novel sulfide-oxidizing species, also from the Chlorobia. The sequenced genomes of both enriched species, including the novel "Candidatus Chlorobium canadense", encoded the cyc2 gene that is associated with photoferrotrophy among cultured Chlorobia members, along with genes for phototrophic sulfide oxidation. One environmental genome bin also encoded cyc2. Despite the presence of cyc2 in the corresponding draft genome, we were unable to induce photoferrotrophy in "Ca. Chlorobium canadense". Genomic potential for phototrophic sulfide oxidation was more commonly detected than cyc2 among environmental genome bins of Chlorobia, and metagenome and cultivation data suggested the potential for cryptic sulfur cycling to fuel sulfide-based growth. Overall, our results provide an important basis for further probing the functional role of cyc2 and indicate that anoxygenic photoautotrophs in Boreal Shield lakes could have underexplored photophysiology pertinent to understanding Earth's early microbial communities.
Collapse
Affiliation(s)
- J M Tsuji
- University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - N Tran
- University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - S L Schiff
- University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - J J Venkiteswaran
- University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada
| | - L A Molot
- York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - M Tank
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7B, 38124, Braunschweig, Germany
- Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - S Hanada
- Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - J D Neufeld
- University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
28
|
Szyttenholm J, Chaspoul F, Bauzan M, Ducluzeau AL, Chehade MH, Pierrel F, Denis Y, Nitschke W, Schoepp-Cothenet B. The controversy on the ancestral arsenite oxidizing enzyme; deducing evolutionary histories with phylogeny and thermodynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148252. [PMID: 32569664 DOI: 10.1016/j.bbabio.2020.148252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/07/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
The three presently known enzymes responsible for arsenic-using bioenergetic processes are arsenite oxidase (Aio), arsenate reductase (Arr) and alternative arsenite oxidase (Arx), all of which are molybdoenzymes from the vast group referred to as the Mo/W-bisPGD enzyme superfamily. Since arsenite is present in substantial amounts in hydrothermal environments, frequently considered as vestiges of primordial biochemistry, arsenite-based bioenergetics has long been predicted to be ancient. Conflicting scenarios, however, have been put forward proposing either Arr/Arx or Aio as operating in the ancestral metabolism. Phylogenetic data argue in favor of Aio whereas biochemical and physiological data led several authors to propose Arx/Arr as the most ancient anaerobic arsenite metabolizing enzymes. Here we combine phylogenetic approaches with physiological and biochemical experiments to demonstrate that the Arx/Arr enzymes could not have been functional in the Archaean geological eon. We propose that Arr reacts with menaquinones to reduce arsenate whereas Arx reacts with ubiquinone to oxidize arsenite, in line with thermodynamic considerations. The distribution of the quinone biosynthesis pathways, however, clearly indicates that the ubiquinone pathway is recent. An updated phylogeny of Arx furthermore reinforces the hypothesis of a recent emergence of this enzyme. We therefore conclude that anaerobic arsenite redox conversion in the Archaean must have been performed in a metabolism involving Aio.
Collapse
Affiliation(s)
- Julie Szyttenholm
- Aix-Marseille Univ., CNRS, BIP UMR 7281, FR 3479, IMM, 13402 Marseille Cedex 20, France
| | - Florence Chaspoul
- Aix Marseille Univ., CNRS, IRD, IMBE UMR 7263, Faculté de Pharmacie, 13005 Marseille, France
| | - Marielle Bauzan
- Aix-Marseille Univ., CNRS, Plateforme Fermentation, FR3479, IMM, 13402 Marseille Cedex 20, France
| | - Anne-Lise Ducluzeau
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775-7220, USA
| | | | - Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France
| | - Yann Denis
- Aix-Marseille Univ., CNRS, Plateforme Transcriptomique, FR3479, IMM, 13402 Marseille Cedex 20, France
| | - Wolfgang Nitschke
- Aix-Marseille Univ., CNRS, BIP UMR 7281, FR 3479, IMM, 13402 Marseille Cedex 20, France
| | | |
Collapse
|
29
|
Shi K, Wang Q, Wang G. Microbial Oxidation of Arsenite: Regulation, Chemotaxis, Phosphate Metabolism and Energy Generation. Front Microbiol 2020; 11:569282. [PMID: 33072028 PMCID: PMC7533571 DOI: 10.3389/fmicb.2020.569282] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
Arsenic (As) is a metalloid that occurs widely in the environment. The biological oxidation of arsenite [As(III)] to arsenate [As(V)] is considered a strategy to reduce arsenic toxicity and provide energy. In recent years, research interests in microbial As(III) oxidation have been growing, and related new achievements have been revealed. This review focuses on the highlighting of the novel regulatory mechanisms of bacterial As(III) oxidation, the physiological relevance of different arsenic sensing systems and functional relationship between microbial As(III) oxidation and those of chemotaxis, phosphate uptake, carbon metabolism and energy generation. The implication to environmental bioremediation applications of As(III)-oxidizing strains, the knowledge gaps and perspectives are also discussed.
Collapse
Affiliation(s)
- Kaixiang Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qian Wang
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
30
|
Saona LA, Soria M, Villafañe PG, Lencina AI, Stepanenko T, Farías ME. Andean Microbial Ecosystems: Traces in Hypersaline Lakes About Life Origin. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-3-030-46087-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
31
|
Methane, arsenic, selenium and the origins of the DMSO reductase family. Sci Rep 2020; 10:10946. [PMID: 32616801 PMCID: PMC7331816 DOI: 10.1038/s41598-020-67892-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/16/2020] [Indexed: 11/16/2022] Open
Abstract
Mononuclear molybdoenzymes of the dimethyl sulfoxide reductase (DMSOR) family catalyze a number of reactions essential to the carbon, nitrogen, sulfur, arsenic, and selenium biogeochemical cycles. These enzymes are also ancient, with many lineages likely predating the divergence of the last universal common ancestor into the Bacteria and Archaea domains. We have constructed rooted phylogenies for over 1,550 representatives of the DMSOR family using maximum likelihood methods to investigate the evolution of the arsenic biogeochemical cycle. The phylogenetic analysis provides compelling evidence that formylmethanofuran dehydrogenase B subunits, which catalyze the reduction of CO2 to formate during hydrogenotrophic methanogenesis, constitutes the most ancient lineage. Our analysis also provides robust support for selenocysteine as the ancestral ligand for the Mo/W atom. Finally, we demonstrate that anaerobic arsenite oxidase and respiratory arsenate reductase catalytic subunits represent a more ancient lineage of DMSORs compared to aerobic arsenite oxidase catalytic subunits, which evolved from the assimilatory nitrate reductase lineage. This provides substantial support for an active arsenic biogeochemical cycle on the anoxic Archean Earth. Our work emphasizes that the use of chalcophilic elements as substrates as well as the Mo/W ligand in DMSORs has indelibly shaped the diversification of these enzymes through deep time.
Collapse
|
32
|
The Great Oxidation Event expanded the genetic repertoire of arsenic metabolism and cycling. Proc Natl Acad Sci U S A 2020; 117:10414-10421. [PMID: 32350143 PMCID: PMC7229686 DOI: 10.1073/pnas.2001063117] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise of oxygen on the early Earth about 2.4 billion years ago reorganized the redox cycle of harmful metal(loids), including that of arsenic, which doubtlessly imposed substantial barriers to the physiology and diversification of life. Evaluating the adaptive biological responses to these environmental challenges is inherently difficult because of the paucity of fossil records. Here we applied molecular clock analyses to 13 gene families participating in principal pathways of arsenic resistance and cycling, to explore the nature of early arsenic biogeocycles and decipher feedbacks associated with planetary oxygenation. Our results reveal the advent of nascent arsenic resistance systems under the anoxic environment predating the Great Oxidation Event (GOE), with the primary function of detoxifying reduced arsenic compounds that were abundant in Archean environments. To cope with the increased toxicity of oxidized arsenic species that occurred as oxygen built up in Earth's atmosphere, we found that parts of preexisting detoxification systems for trivalent arsenicals were merged with newly emerged pathways that originated via convergent evolution. Further expansion of arsenic resistance systems was made feasible by incorporation of oxygen-dependent enzymatic pathways into the detoxification network. These genetic innovations, together with adaptive responses to other redox-sensitive metals, provided organisms with novel mechanisms for adaption to changes in global biogeocycles that emerged as a consequence of the GOE.
Collapse
|
33
|
Puopolo R, Gallo G, Mormone A, Limauro D, Contursi P, Piochi M, Bartolucci S, Fiorentino G. Identification of a New Heavy-Metal-Resistant Strain of Geobacillus stearothermophilus Isolated from a Hydrothermally Active Volcanic Area in Southern Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2678. [PMID: 32295125 PMCID: PMC7215868 DOI: 10.3390/ijerph17082678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023]
Abstract
Microorganisms thriving in hot springs and hydrothermally active volcanic areas are dynamically involved in heavy-metal biogeochemical cycles; they have developed peculiar resistance systems to cope with such metals which nowadays can be considered among the most permanent and toxic pollutants for humans and the environment. For this reason, their exploitation is functional to unravel mechanisms of toxic-metal detoxification and to address bioremediation of heavy-metal pollution with eco-sustainable approaches. In this work, we isolated a novel strain of the thermophilic bacterium Geobacillus stearothermophilus from the solfataric mud pool in Pisciarelli, a well-known hydrothermally active zone of the Campi Flegrei volcano located near Naples in Italy, and characterized it by ribotyping, 16S rRNA sequencing and mass spectrometry analyses. The minimal inhibitory concentration (MIC) toward several heavy-metal ions indicated that the novel G. stearothermophilus isolate is particularly resistant to some of them. Functional and morphological analyses suggest that it is endowed with metal resistance systems for arsenic and cadmium detoxification.
Collapse
Affiliation(s)
- Rosanna Puopolo
- Dipartimento di Biologia, Università Degli Studi di Napoli Federico II, 80139 Napoli, Italy; (R.P.); (G.G.); (D.L.); (P.C.); (S.B.)
| | - Giovanni Gallo
- Dipartimento di Biologia, Università Degli Studi di Napoli Federico II, 80139 Napoli, Italy; (R.P.); (G.G.); (D.L.); (P.C.); (S.B.)
| | - Angela Mormone
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione Osservatorio Vesuviano, 80125 Napoli, Italy; (A.M.); (M.P.)
| | - Danila Limauro
- Dipartimento di Biologia, Università Degli Studi di Napoli Federico II, 80139 Napoli, Italy; (R.P.); (G.G.); (D.L.); (P.C.); (S.B.)
| | - Patrizia Contursi
- Dipartimento di Biologia, Università Degli Studi di Napoli Federico II, 80139 Napoli, Italy; (R.P.); (G.G.); (D.L.); (P.C.); (S.B.)
| | - Monica Piochi
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione Osservatorio Vesuviano, 80125 Napoli, Italy; (A.M.); (M.P.)
| | - Simonetta Bartolucci
- Dipartimento di Biologia, Università Degli Studi di Napoli Federico II, 80139 Napoli, Italy; (R.P.); (G.G.); (D.L.); (P.C.); (S.B.)
| | - Gabriella Fiorentino
- Dipartimento di Biologia, Università Degli Studi di Napoli Federico II, 80139 Napoli, Italy; (R.P.); (G.G.); (D.L.); (P.C.); (S.B.)
| |
Collapse
|
34
|
McDermott TR, Stolz JF, Oremland RS. Arsenic and the gastrointestinal tract microbiome. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:136-159. [PMID: 31773890 DOI: 10.1111/1758-2229.12814] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Arsenic is a toxin, ranking first on the Agency for Toxic Substances and Disease Registry and the Environmental Protection Agency Priority List of Hazardous Substances. Chronic exposure increases the risk of a broad range of human illnesses, most notably cancer; however, there is significant variability in arsenic-induced disease among exposed individuals. Human genetics is a known component, but it alone cannot account for the large inter-individual variability in the presentation of arsenicosis symptoms. Each part of the gastrointestinal tract (GIT) may be considered as a unique environment with characteristic pH, oxygen concentration, and microbiome. Given the well-established arsenic redox transformation activities of microorganisms, it is reasonable to imagine how the GIT microbiome composition variability among individuals could play a significant role in determining the fate, mobility and toxicity of arsenic, whether inhaled or ingested. This is a relatively new field of research that would benefit from early dialogue aimed at summarizing what is known and identifying reasonable research targets and concepts. Herein, we strive to initiate this dialogue by reviewing known aspects of microbe-arsenic interactions and placing it in the context of potential for influencing host exposure and health risks. We finish by considering future experimental approaches that might be of value.
Collapse
Affiliation(s)
- Timothy R McDermott
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - John F Stolz
- Department of Biological Sciences and Center for Environmental Research and Education, Duquesne University, Pittsburgh, PA, USA
| | | |
Collapse
|
35
|
Barral-Fraga L, Barral MT, MacNeill KL, Martiñá-Prieto D, Morin S, Rodríguez-Castro MC, Tuulaikhuu BA, Guasch H. Biotic and Abiotic Factors Influencing Arsenic Biogeochemistry and Toxicity in Fluvial Ecosystems: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072331. [PMID: 32235625 PMCID: PMC7177459 DOI: 10.3390/ijerph17072331] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/20/2023]
Abstract
This review is focused on the biogeochemistry of arsenic in freshwaters and, especially, on the key role that benthic microalgae and prokaryotic communities from biofilms play together in through speciation, distribution, and cycling. These microorganisms incorporate the dominant iAs (inorganic arsenic) form and may transform it to other arsenic forms through metabolic or detoxifying processes. These transformations have a big impact on the environmental behavior of arsenic because different chemical forms exhibit differences in mobility and toxicity. Moreover, exposure to toxicants may alter the physiology and structure of biofilms, leading to changes in ecosystem function and trophic relations. In this review we also explain how microorganisms (i.e., biofilms) can influence the effects of arsenic exposure on other key constituents of aquatic ecosystems such as fish. At the end, we present two real cases of fluvial systems with different origins of arsenic exposure (natural vs. anthropogenic) that have improved our comprehension of arsenic biogeochemistry and toxicity in freshwaters, the Pampean streams (Argentina) and the Anllóns River (Galicia, Spain). We finish with a briefly discussion of what we consider as future research needs on this topic. This work especially contributes to the general understanding of biofilms influencing arsenic biogeochemistry and highlights the strong impact of nutrient availability on arsenic toxicity for freshwater (micro) organisms.
Collapse
Affiliation(s)
- Laura Barral-Fraga
- Grup de recerca en Ecologia aquàtica continental (GRECO), Departament de Ciències Ambientals, Universitat de Girona, 17071 Girona, Spain;
- LDAR24—Laboratoire Départemental d’Analyse et de Recherche du Département de la Dordogne, 24660 Coulounieix-Chamiers, Périgueux, France
- Correspondence:
| | - María Teresa Barral
- Instituto CRETUS, Departmento de Edafoloxía e Química Agrícola, Facultade de Farmacia, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.T.B.); (D.M.-P.)
| | - Keeley L. MacNeill
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA;
| | - Diego Martiñá-Prieto
- Instituto CRETUS, Departmento de Edafoloxía e Química Agrícola, Facultade de Farmacia, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.T.B.); (D.M.-P.)
| | - Soizic Morin
- INRAE—Institut National de Recherche en Agriculture, Alimentation et Environnement, UR EABX—Equipe ECOVEA, 33612 Cestas Cedex, France;
| | - María Carolina Rodríguez-Castro
- INEDES—Instituto de Ecología y Desarrollo Sustentable (UNLu-CONICET), Universidad Nacional de Luján, 6700 Buenos Aires, Argentina;
- CONICET—Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1425FQB CABA, Argentina
| | - Baigal-Amar Tuulaikhuu
- School of Agroecology, Mongolian University of Life Sciences, Khoroo 11, Ulaanbaatar 17024, Mongolia;
| | - Helena Guasch
- Grup de recerca en Ecologia aquàtica continental (GRECO), Departament de Ciències Ambientals, Universitat de Girona, 17071 Girona, Spain;
- CEAB—Centre d’Estudis Avançats de Blanes, CSIC, Blanes, 17300 Girona, Spain
| |
Collapse
|
36
|
Han YH, Yin DX, Jia MR, Wang SS, Chen Y, Rathinasabapathi B, Chen DL, Ma LQ. Arsenic-resistance mechanisms in bacterium Leclercia adecarboxylata strain As3-1: Biochemical and genomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:1178-1189. [PMID: 31470481 DOI: 10.1016/j.scitotenv.2019.07.098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/06/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Microbial arsenic transformation is important in As biogeochemical cycles in the environment. In this study, a new As-resistant bacterial strain Leclercia adecarboxylata As3-1 was isolated and its associated mechanisms in As resistance and detoxification were evaluated based on genome sequencing and gene annotations. After subjecting strain As3-1 to medium containing arsenate (AsV), AsV reduction occurred and an AsV-enhanced bacterial growth was observed. Strain As3-1 lacked arsenite (AsIII) oxidation ability and displayed lower AsIII resistance than AsV, probably due to its higher AsIII accumulation. Polymerase chain reaction and phylogenetic analysis showed that strain As3-1 harbored a typical AsV reductase gene (arsC) on the plasmids. Genome sequencing and gene annotations identified four operons phoUpstBACS, arsHRBC, arsCRDABC and ttrRSBCA, with 8 additional genes outside the operons that might have involved in As resistance and detoxification in strain As3-1. These included 5 arsC genes explaining why strain As3-1 tolerated high AsV concentrations. Besides ArsC, TtrB, TtrC and TtrA proteins could also be involved in AsV reduction and consequent energy acquisition for bacterial growth. Our data provided a new example of diverse As-regulating systems and AsV-enhanced growth without ArrA in bacteria. The information helps to understand the role of As in selecting microbial systems that can transform and utilize As.
Collapse
Affiliation(s)
- Yong-He Han
- Quangang Petrochemical Research Institute, Fujian Normal University, Quanzhou, Fujian 362801, China; College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350007, China
| | - Dai-Xia Yin
- School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Meng-Ru Jia
- School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shan-Shan Wang
- Quangang Petrochemical Research Institute, Fujian Normal University, Quanzhou, Fujian 362801, China
| | - Yanshan Chen
- School of the Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Bala Rathinasabapathi
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, United States
| | - Deng-Long Chen
- Quangang Petrochemical Research Institute, Fujian Normal University, Quanzhou, Fujian 362801, China; Innovative Center for Eco-Friendly Polymeric Materials, Quanzhou, Fujian 362801, China.
| | - Lena Q Ma
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China; Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
37
|
Ward LM, Idei A, Nakagawa M, Ueno Y, Fischer WW, McGlynn SE. Geochemical and Metagenomic Characterization of Jinata Onsen, a Proterozoic-Analog Hot Spring, Reveals Novel Microbial Diversity including Iron-Tolerant Phototrophs and Thermophilic Lithotrophs. Microbes Environ 2019; 34:278-292. [PMID: 31413226 PMCID: PMC6759342 DOI: 10.1264/jsme2.me19017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hydrothermal systems, including terrestrial hot springs, contain diverse geochemical conditions that vary over short spatial scales due to progressive interactions between reducing hydrothermal fluids, the oxygenated atmosphere, and, in some cases, seawater. At Jinata Onsen on Shikinejima Island, Japan, an intertidal, anoxic, iron-rich hot spring mixes with the oxygenated atmosphere and seawater over short spatial scales, creating diverse chemical potentials and redox pairs over a distance of ~10 m. We characterized geochemical conditions along the outflow of Jinata Onsen as well as the microbial communities present in biofilms, mats, and mineral crusts along its traverse using 16S rRNA gene amplicon and genome-resolved shotgun metagenomic sequencing. Microbial communities significantly changed downstream as temperatures and dissolved iron concentrations decreased and dissolved oxygen increased. Biomass was more limited near the spring source than downstream, and primary productivity appeared to be fueled by the oxidation of ferrous iron and molecular hydrogen by members of Zetaproteobacteria and Aquificae. The microbial community downstream was dominated by oxygenic Cyanobacteria. Cyanobacteria are abundant and active even at ferrous iron concentrations of ~150 μM, which challenges the idea that iron toxicity limited cyanobacterial expansion in Precambrian oceans. Several novel lineages of Bacteria are also present at Jinata Onsen, including previously uncharacterized members of the phyla Chloroflexi and Calditrichaeota, positioning Jinata Onsen as a valuable site for the future characterization of these clades.
Collapse
Affiliation(s)
- Lewis M Ward
- Department of Earth and Planetary Sciences, Harvard University.,Earth-Life Science Institute, Tokyo Institute of Technology.,Division of Geological and Planetary Sciences, California Institute of Technology
| | - Airi Idei
- Department of Biological Sciences, Tokyo Metropolitan University
| | | | - Yuichiro Ueno
- Earth-Life Science Institute, Tokyo Institute of Technology.,Department of Earth and Planetary Sciences, Tokyo Institute of Technology.,Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology
| | - Woodward W Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology
| | | |
Collapse
|
38
|
Ahn AC, Cavalca L, Colombo M, Schuurmans JM, Sorokin DY, Muyzer G. Transcriptomic Analysis of Two Thioalkalivibrio Species Under Arsenite Stress Revealed a Potential Candidate Gene for an Alternative Arsenite Oxidation Pathway. Front Microbiol 2019; 10:1514. [PMID: 31333619 PMCID: PMC6620896 DOI: 10.3389/fmicb.2019.01514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/17/2019] [Indexed: 11/30/2022] Open
Abstract
The genus Thioalkalivibrio includes haloalkaliphilic chemolithoautotrophic sulfur-oxidizing bacteria isolated from various soda lakes worldwide. Some of these lakes possess in addition to their extreme haloalkaline environment also other harsh conditions, to which Thioalkalivibrio needs to adapt. An example is arsenic in soda lakes in eastern California, which is found there in concentrations up to 3000 μM. Arsenic is a widespread element that can be an environmental issue, as it is highly toxic to most organisms. However, resistance mechanisms in the form of detoxification are widespread and some prokaryotes can even use arsenic as an energy source. We first screened the genomes of 76 Thioalkalivibrio strains for the presence of known arsenic oxidoreductases and found 15 putative ArxA (arsenite oxidase) and two putative ArrA (arsenate reductase). Subsequently, we studied the resistance to arsenite in detail in Thioalkalivibrio jannaschii ALM2T, and Thioalkalivibrio thiocyanoxidans ARh2T by comparative genomics and by growing them at different arsenite concentrations followed by arsenic species and transcriptomic analysis. Tv. jannaschii ALM2T, which has been isolated from Mono Lake, an arsenic-rich soda lake, could resist up to 5 mM arsenite, whereas Tv. thiocyanoxidans ARh2T, which was isolated from a Kenyan soda lake, could only grow up to 0.1 mM arsenite. Interestingly, both species oxidized arsenite to arsenate under aerobic conditions, although Tv. thiocyanoxidans ARh2T does not contain any known arsenite oxidases, and in Tv. jannaschii ALM2T, only arxB2 was clearly upregulated. However, we found the expression of a SoeABC-like gene, which we assume might have been involved in arsenite oxidation. Other arsenite stress responses for both strains were the upregulation of the vitamin B12 synthesis pathway, which can be linked to antioxidant activity, and the up- and downregulation of different DsrE/F-like genes whose roles are still unclear. Moreover, Tv. jannaschii ALM2T induced the ars gene operon and the Pst system, and Tv. thiocanoxidans ARh2T upregulated the sox and apr genes as well as different heat shock proteins. Our findings for Thioalkalivibrio confirm previously observed adaptations to arsenic, but also provide new insights into the arsenic stress response and the connection between the arsenic and the sulfur cycle.
Collapse
Affiliation(s)
- Anne-Catherine Ahn
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Lucia Cavalca
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Milena Colombo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - J Merijn Schuurmans
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Dimitry Y Sorokin
- Research Centre of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia.,Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
39
|
Zeng XC, He Z, Chen X, Cao QAD, Li H, Wang Y. Effects of arsenic on the biofilm formations of arsenite-oxidizing bacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:1-10. [PMID: 30173020 DOI: 10.1016/j.ecoenv.2018.08.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Arsenite-oxidizing bacteria (AOB) play a key role in the biogeochemical cycle of arsenic in the environment, and are used for the bioremediation of As contaminated groundwater; however, it is not yet known about how arsenic affects biofilm formations of AOB, and how biofilm formations affect bacterial arsenite-oxidizing activities. To address these issues, we isolated seven novel AOB strains from the arsenic-contaminated soils. They can completely oxidize 1.0 mM As(III) in 22-60 h. Their arsenite oxidase sequences show 43-99% identities to those of other known AOB. Strains Cug1, Cug2, Cug3, Cug4, and Cug6 are able to form biofilms with thickness of 15-95 µm, whereas Cug8 and Cug9 cannot form biofilms. It is interesting to see that arsenite inhibited the biofilm formations of heterotrophic AOB strains, but promoted the biofilm formations of autotrophic strains in a concentration-dependent manner. The arsenite-oxidizing rates of Cug1 and Cug4 biofilms are 31.6% and 27.6% lower than those of their suspension cultures, whereas the biofilm activities of other strains are similar to those of their suspension cultures. The biofilm formation significantly promoted the bacterial resistance to arsenic. This work is the first report on the complex correlations among environmental arsenic, bacterial biofilm formations and bacterial arsenite-oxidizing activities. The data highlight the diverse lifestyle of different AOB under arsenic stress, and provide essential knowledge for the screening of efficient AOB strains used for constructions of bioreactors.
Collapse
Affiliation(s)
- Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430070, People's Republic of China.
| | - Zhong He
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430070, People's Republic of China
| | - Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430070, People's Republic of China
| | - Qian A D Cao
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430070, People's Republic of China
| | - Hao Li
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430070, People's Republic of China
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430070, People's Republic of China
| |
Collapse
|
40
|
Li Y, Tang K, Zhang L, Zhao Z, Xie X, Chen CTA, Wang D, Jiao N, Zhang Y. Coupled Carbon, Sulfur, and Nitrogen Cycles Mediated by Microorganisms in the Water Column of a Shallow-Water Hydrothermal Ecosystem. Front Microbiol 2018; 9:2718. [PMID: 30555427 PMCID: PMC6282030 DOI: 10.3389/fmicb.2018.02718] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
Shallow-water hydrothermal vent ecosystems are distinctly different from deep-sea vents, as other than geothermal, sunlight is one of their primary sources of energy, so their resulting microbial communities differ to some extent. Yet compared with deep-sea systems, less is known about the active microbial community in shallow-water ecosystems. Thus, we studied the community compositions, their metabolic pathways, and possible coupling of microbially driven biogeochemical cycles in a shallow-water hydrothermal vent system off Kueishantao Islet, Taiwan, using high-throughput 16S rRNA sequences and metatranscriptome analyses. Gammaproteobacteria and Epsilonbacteraeota were the major active bacterial groups in the 16S rRNA libraries and the metatranscriptomes, and involved in the carbon, sulfur, and nitrogen metabolic pathways. As core players, Thiomicrospira, Thiomicrorhabdus, Thiothrix, Sulfurovum, and Arcobacter derived energy from the oxidation of reduced sulfur compounds and fixed dissolved inorganic carbon (DIC) by the Calvin-Benson-Bassham (CBB) or reverse tricarboxylic acid cycles. Sox-dependent and reverse sulfate reduction were the main pathways of energy generation, and probably coupled to denitrification by providing electrons to nitrate and nitrite. Sulfur-reducing Nautiliaceae members, accounting for a small proportion in the community, obtained energy by the oxidation of hydrogen, which also supplies metabolic energy for some sulfur-oxidizing bacteria. In addition, ammonia and nitrite oxidation is another type of energy generation in this hydrothermal system, with marker gene sequences belonging to Thaumarchaeota/Crenarchaeota and Nitrospina, respectively, and ammonia and nitrite oxidation was likely coupled to denitrification by providing substrate for nitrate and nitrite reduction to nitric oxide. Moreover, unlike the deep-sea systems, cyanobacteria may also actively participate in major metabolic pathways. This study helps us to better understand biogeochemical processes mediated by microorganisms and possible coupling of the carbon, sulfur, and nitrogen cycles in these unique ecosystems.
Collapse
Affiliation(s)
- Yufang Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lianbao Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zihao Zhao
- Department of Limnology and Bio-Oceanography, University of Vienna, Vienna, Austria
| | - Xiabing Xie
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | | | - Deli Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
41
|
Brasier A, Wacey D, Rogerson M, Guagliardo P, Saunders M, Kellner S, Mercedes-Martin R, Prior T, Taylor C, Matthews A, Reijmer J. A microbial role in the construction of Mono Lake carbonate chimneys? GEOBIOLOGY 2018; 16:540-555. [PMID: 29885252 DOI: 10.1111/gbi.12292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Lacustrine carbonate chimneys are striking, metre-scale constructions. If these were bioinfluenced constructions, they could be priority targets in the search for early and extraterrestrial microbial life. However, there are questions over whether such chimneys are built on a geobiological framework or are solely abiotic geomorphological features produced by mixing of lake and spring waters. Here, we use correlative microscopy to show that microbes were living around Pleistocene Mono Lake carbonate chimneys during their growth. A plausible interpretation, in line with some recent works by others on other lacustrine carbonates, is that benthic cyanobacteria and their associated extracellular organic material (EOM) formed tubular biofilms around rising sublacustrine spring vent waters, binding calcium ions and trapping and binding detrital silicate sediment. Decay of these biofilms would locally have increased calcium and carbonate ion activity, inducing calcite precipitation on and around the biofilms. Early manganese carbonate mineralisation was directly associated with cell walls, potentially related to microbial activity though the precise mechanism remains to be elucidated. Much of the calcite crystal growth was likely abiotic, and no strong evidence for either authigenic silicate growth or a clay mineral precursor framework was observed. Nevertheless, it seems likely that the biofilms provided initial sites for calcite nucleation and encouraged the primary organised crystal growth. We suggest that the nano-, micro- and macroscale fabrics of these Pleistocene Mono Lake chimneys were affected by the presence of centimetre-thick tubular and vertically stacked calcifying microbial mats. Such carbonate chimneys represent a promising macroscale target in the exploration for ancient or extraterrestrial life.
Collapse
Affiliation(s)
| | - David Wacey
- University of Western Australia, Perth, WA, Australia
| | | | | | | | - Siri Kellner
- University of Western Australia, Perth, WA, Australia
| | | | | | - Colin Taylor
- School of Geosciences, University of Aberdeen, Aberdeen, UK
| | | | - John Reijmer
- KFUPM Saudi Arabia, Dhahran, Saudi Arabia
- VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Babilonia J, Conesa A, Casaburi G, Pereira C, Louyakis AS, Reid RP, Foster JS. Comparative Metagenomics Provides Insight Into the Ecosystem Functioning of the Shark Bay Stromatolites, Western Australia. Front Microbiol 2018; 9:1359. [PMID: 29988640 PMCID: PMC6027182 DOI: 10.3389/fmicb.2018.01359] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 06/05/2018] [Indexed: 12/22/2022] Open
Abstract
Stromatolites are organosedimentary build-ups that have formed as a result of the sediment trapping, binding and precipitating activities of microbes. Today, extant systems provide an ideal platform for understanding the structure, composition, and interactions between stromatolite-forming microbial communities and their respective environments. In this study, we compared the metagenomes of three prevalent stromatolite-forming microbial mat types in the Spaven Province of Hamelin Pool, Shark Bay located in Western Australia. These stromatolite-forming mat types included an intertidal pustular mat as well as a smooth and colloform mat types located in the subtidal zone. Additionally, the metagenomes of an adjacent, non-lithifying mat located in the upper intertidal zone were also sequenced for comparative purposes. Taxonomic and functional gene analyses revealed distinctive differences between the lithifying and non-lithifying mat types, which strongly correlated with water depth. Three distinct populations emerged including the upper intertidal non-lithifying mats, the intertidal pustular mats associated with unlaminated carbonate build-ups, and the subtidal colloform and smooth mat types associated with laminated structures. Functional analysis of metagenomes revealed that amongst stromatolite-forming mats there was an enrichment of photosynthesis pathways in the pustular stromatolite-forming mats. In the colloform and smooth stromatolite-forming mats, however, there was an increase in the abundance of genes associated with those heterotrophic metabolisms typically associated with carbonate mineralization, such as sulfate reduction. The comparative metagenomic analyses suggest that stromatolites of Hamelin Pool may form by two distinctive processes that are highly dependent on water depth. These results provide key insight into the potential adaptive strategies and synergistic interactions between microbes and their environments that may lead to stromatolite formation and accretion.
Collapse
Affiliation(s)
- Joany Babilonia
- Space Life Science Lab, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Ana Conesa
- Department of Microbiology and Cell Science, Genetics Institute, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States.,Genomics of Gene Expression Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Giorgio Casaburi
- Space Life Science Lab, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Cecile Pereira
- Department of Microbiology and Cell Science, Genetics Institute, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States.,EURA NOVA, Marseille, France
| | - Artemis S Louyakis
- Space Life Science Lab, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - R Pamela Reid
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| | - Jamie S Foster
- Space Life Science Lab, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| |
Collapse
|
43
|
Rojas P, Rodríguez N, de la Fuente V, Sánchez-Mata D, Amils R, Sanz JL. Microbial diversity associated with the anaerobic sediments of a soda lake (Mono Lake, California, USA). Can J Microbiol 2018; 64:385-392. [DOI: 10.1139/cjm-2017-0657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Soda lakes are inhabited by important haloalkaliphilic microbial communities that are well adapted to these extreme characteristics. The surface waters of the haloalkaline Mono Lake (California, USA) are alkaline but, in contrast to its bottom waters, do not present high salinity. We have studied the microbiota present in the shoreline sediments of Mono Lake using next-generation sequencing techniques. The statistical indexes showed that Bacteria had a higher richness, diversity, and evenness than Archaea. Seventeen phyla and 8 “candidate divisions” were identified among the Bacteria, with a predominance of the phyla Firmicutes, Proteobacteria, and Bacteroidetes. Among the Proteobacteria, there was a notable presence of Rhodoplanes and a high diversity of sulfate-reducing Deltaproteobacteria, in accordance with the high sulfate-reducing activity detected in soda lakes. Numerous families of bacterial fermenters were identified among the Firmicutes. The Bacteroides were represented by several environmental groups that have not yet been isolated. Since final organic matter in anaerobic environments with high sulfate contents is mineralized mainly by sulfate-reducing bacteria, very little methanogenic archaeal biodiversity was detected. Only 2 genera, Methanocalculus and Methanosarcina, were retrieved. The species similarities described indicate that a significant number of the operational taxonomic units identified may represent new species.
Collapse
Affiliation(s)
- Patricia Rojas
- Department of Molecular Biology, Universidad Autónoma de Madrid, Spain
| | | | | | - Daniel Sánchez-Mata
- Department of Pharmacology, Pharmacognosy and Botany, Universidad Complutense de Madrid, Spain
| | - Ricardo Amils
- Centro de Astrobiología (INTA–CSIC), Spain
- Centro de Biología Molecular Severo Ochoa (UAM–CSIC), Universidad Autónoma de Madrid, Spain
| | - José L. Sanz
- Department of Molecular Biology, Universidad Autónoma de Madrid, Spain
| |
Collapse
|
44
|
Oremland RS, Saltikov CW, Stolz JF, Hollibaugh JT. Autotrophic microbial arsenotrophy in arsenic-rich soda lakes. FEMS Microbiol Lett 2018; 364:3940223. [PMID: 28859313 DOI: 10.1093/femsle/fnx146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/07/2017] [Indexed: 01/15/2023] Open
Abstract
A number of prokaryotes are capable of employing arsenic oxy-anions as either electron acceptors [arsenate; As(V)] or electron donors [arsenite; As(III)] to sustain arsenic-dependent growth ('arsenotrophy'). A subset of these microorganisms function as either chemoautotrophs or photoautotrophs, whereby they gain sufficient energy from their redox metabolism of arsenic to completely satisfy their carbon needs for growth by autotrophy, that is the fixation of inorganic carbon (e.g. HCO3-) into their biomass. Here we review what has been learned of these processes by investigations we have undertaken in three soda lakes of the western USA and from the physiological characterizations of the relevant bacteria, which include the critical genes involved, such as respiratory arsenate reductase (arrA) and the discovery of its arsenite-oxidizing counterpart (arxA). When possible, we refer to instances of similar process occurring in other, less extreme ecosystems and by microbes other than haloalkaliphiles.
Collapse
Affiliation(s)
| | - Chad W Saltikov
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, CA 95064, USA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - James T Hollibaugh
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
45
|
Sackett JD, Huerta DC, Kruger BR, Hamilton-Brehm SD, Moser DP. A comparative study of prokaryotic diversity and physicochemical characteristics of Devils Hole and the Ash Meadows Fish Conservation Facility, a constructed analog. PLoS One 2018; 13:e0194404. [PMID: 29543879 PMCID: PMC5854365 DOI: 10.1371/journal.pone.0194404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 02/19/2018] [Indexed: 11/30/2022] Open
Abstract
Devils Hole is the sole natural habitat of the critically endangered Devils Hole pupfish (Cyprinodon diabolis). To establish a backup population, the Ash Meadows Fish Conservation Facility (AMFCF), a full-scale replica of the uppermost 6.7 m of Devils Hole, was constructed by management agencies in the mid-2010s. Despite rigorous efforts to mimic the bathymetric and physical details of the Devils Hole environment, the biogeochemistry and microbiology of the AMFCF refuge tank remain largely unaddressed. We evaluated water physicochemistry and employed Illumina DNA sequencing of 16S rRNA gene libraries to evaluate planktonic and benthic bacterial and archaeal community composition within their respective physicochemical contexts in Devils Hole and AMFCF on the same day. Major ion concentrations were consistent between the two systems, but water temperature and dissolved oxygen dynamics differed. Bioavailable nitrogen (primarily nitrate) was 5x lower in AMFCF. Devils Hole and AMFCF nitrogen:phosphorus molar ratios were 107:1 and 22:1, indicative of different nutrient control mechanisms. Both sites are microbiologically diverse, with over 40 prokaryotic phyla represented at each, with 37 shared between them and nearly than half deriving from candidate divisions. The abundance and composition of predicted photosynthetic primary producers (Cyanobacteria) was markedly different between sites: Devils Hole planktonic and sediment communities were dominated by Oscillatoria spp. (13.2% mean relative abundance), which proved virtually undetectable in AMFCF. Conversely, AMFCF was dominated by a predicted heterotroph from the Verrucomicrobiaceae family (31.7%); which was comparatively rare (<2.4%) in Devils Hole. We propose that the paucity of bioavailable nitrogen in AMFCF, perhaps resulting from physical isolation from allochthonous environmental inputs, is reflected in the microbial assemblage disparity, influences biogeochemical cycling of other dissolved constituents, and may ultimately impact survivorship and recruitment of refuge populations of the Devils Hole pupfish.
Collapse
Affiliation(s)
- Joshua D. Sackett
- Division of Earth and Ecosystems Sciences, Desert Research Institute, Las Vegas, Nevada, United States of America
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
- Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, Nevada, United States of America
| | - Desiree C. Huerta
- Division of Earth and Ecosystems Sciences, Desert Research Institute, Las Vegas, Nevada, United States of America
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Brittany R. Kruger
- Division of Earth and Ecosystems Sciences, Desert Research Institute, Las Vegas, Nevada, United States of America
- Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, Nevada, United States of America
| | - Scott D. Hamilton-Brehm
- Division of Earth and Ecosystems Sciences, Desert Research Institute, Las Vegas, Nevada, United States of America
| | - Duane P. Moser
- Division of Earth and Ecosystems Sciences, Desert Research Institute, Las Vegas, Nevada, United States of America
- Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, Nevada, United States of America
- * E-mail:
| |
Collapse
|
46
|
Burnam-Fink M, Desch SJ, Scalice D, Davis H, Huff CJ, Apai D. Impact of the Arizona NExSS Winter School on Astrobiology Knowledge and Attitudes. ASTROBIOLOGY 2018; 18:365-375. [PMID: 29570410 DOI: 10.1089/ast.2017.1710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Astrobiology is an inherently interdisciplinary area of study, demanding communication across multiple fields: astronomy, geochemistry, planetary science, and so on. Successful communication requires that researchers be aware of the basic findings, open questions, and tools and techniques of allied fields and possess an appreciation and respect for what these fields consider good science. To facilitate this communication between early-career researchers, the Arizona NExSS Winter School was hosted in February 2016, bringing together graduate students and postdoctoral researchers from backgrounds spanning the field of astrobiology. Students virtually attended a scientific Workshop Without Walls and participated in lectures, discussions, field trips, and hands-on activities, culminating in the writing and review of mock proposals by interdisciplinary teams. We assess the impact of the school on interdisciplinarity using a pre- and posttest survey of 24 students, informed by National Science Foundation impact categories (Friedman et al., 2008 ) within the Impact Analysis Method (IAM) described by Davis and Scalice ( 2015 ). We demonstrate that students gained knowledge, especially in fields outside their home discipline. Furthermore, an underlying disciplinary divide between geochemists and planetary scientists on the role of life in planetary evolution is observed and interpreted. These findings demonstrate that the Arizona NExSS Winter School had measurable impact on interdisciplinarity and that the IAM rubric has utility in measuring impact. We make recommendations for further research to understand the interdisciplinary gaps in astrobiology and how best to bridge them. Key Words: Interdisciplinarity-Attitudes-Knowledge-Scientific dialogue-Training. Astrobiology 18, 365-375.
Collapse
Affiliation(s)
- Michael Burnam-Fink
- 1 School of Earth and Space Exploration, Arizona State University , Tempe, Arizona
| | - Steven J Desch
- 1 School of Earth and Space Exploration, Arizona State University , Tempe, Arizona
| | - Daniella Scalice
- 2 NASA Astrobiology Institute , NASA Ames Research Center, Moffett Field, California
| | - Hilarie Davis
- 3 Technology for Learning Consortium, Inc. , Jensen Beach, Florida
| | - Cierra J Huff
- 1 School of Earth and Space Exploration, Arizona State University , Tempe, Arizona
| | - Dániel Apai
- 4 Department of Astronomy/Steward Observatory, University of Arizona , Tucson, Arizona
| |
Collapse
|
47
|
Differences in Temperature and Water Chemistry Shape Distinct Diversity Patterns in Thermophilic Microbial Communities. Appl Environ Microbiol 2017; 83:AEM.01363-17. [PMID: 28821552 DOI: 10.1128/aem.01363-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/11/2017] [Indexed: 01/22/2023] Open
Abstract
This report describes the biodiversity and ecology of microbial mats developed in thermal gradients (20 to 65°C) in the surroundings of three drillings (Chiraleu [CH], Ciocaia [CI], and Mihai Bravu [MB]) tapping a hyperthermal aquifer in Romania. Using a metabarcoding approach, 16S rRNA genes were sequenced from both DNA and RNA transcripts (cDNA) and compared. The relationships between the microbial diversity and the physicochemical factors were explored. Additionally, the cDNA data were used for in silico functionality predictions, bringing new insights into the functional potential and dynamics of these communities. The results showed that each hot spring determined the formation of distinct microbial communities. In the CH mats (40 to 53°C), the abundance of Cyanobacteria decreased with temperature, opposite to those of Chloroflexi and ProteobacteriaEctothiorhodospira, Oscillatoria, and methanogenic archaea dominated the CI communities (20 to 65°C), while the MB microbial mats (53 to 65°C) were mainly composed of Chloroflexi, Hydrogenophilus, Thermi, and Aquificae Alpha-diversity was negatively correlated with the increase in water temperature, while beta-diversity was shaped in each hot spring by the unique combination of physicochemical parameters, regardless of the type of nucleic acid analyzed (DNA versus cDNA). The rank correlation analysis revealed a unique model that associated environmental data with community composition, consisting in the combined effect of Na+, K+, HCO3-, and PO43- concentrations, together with temperature and electrical conductivity. These factors seem to determine the grouping of samples according to location, rather than with the similarities in thermal regimes, showing that other parameters beside temperature are significant drivers of biodiversity.IMPORTANCE Hot spring microbial mats represent a remarkable manifestation of life on Earth and have been intensively studied for decades. Moreover, as hot spring areas are isolated and have a limited exchange of organisms, nutrients, and energy with the surrounding environments, hot spring microbial communities can be used in model studies to elucidate the colonizing potential within extreme settings. Thus, they are of great importance in evolutionary biology, microbial ecology, and exobiology. In spite of all the efforts that have been made, the current understanding of the influence of temperature and water chemistry on the microbial community composition, diversity, and abundance in microbial mats is limited. In this study, the composition and diversity of microbial communities developed in thermal gradients in the vicinity of three hot springs from Romania were investigated, each having particular physicochemical characteristics. Our results expose new factors that could determine the formation of these ecosystems, expanding the current knowledge in this regard.
Collapse
|
48
|
Wu G, Huang L, Jiang H, Peng Y, Guo W, Chen Z, She W, Guo Q, Dong H. Thioarsenate Formation Coupled with Anaerobic Arsenite Oxidation by a Sulfate-Reducing Bacterium Isolated from a Hot Spring. Front Microbiol 2017; 8:1336. [PMID: 28769902 PMCID: PMC5509915 DOI: 10.3389/fmicb.2017.01336] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/30/2017] [Indexed: 11/18/2022] Open
Abstract
Thioarsenates are common arsenic species in sulfidic geothermal waters, yet little is known about their biogeochemical traits. In the present study, a novel sulfate-reducing bacterial strain Desulfotomaculum TC-1 was isolated from a sulfidic hot spring in Tengchong geothermal area, Yunnan Province, China. The arxA gene, encoding anaerobic arsenite oxidase, was successfully amplified from the genome of strain TC-1, indicating it has a potential ability to oxidize arsenite under anaerobic condition. In anaerobic arsenite oxidation experiments inoculated with strain TC-1, a small amount of arsenate was detected in the beginning but became undetectable over longer time. Thioarsenates (AsO4-xSx2- with x = 1-4) formed with mono-, di- and tri-thioarsenates being dominant forms. Tetrathioarsenate was only detectable at the end of the experiment. These results suggest that thermophilic microbes might be involved in the formation of thioarsenates and provide a possible explanation for the widespread distribution of thioarsenates in terrestrial geothermal environments.
Collapse
Affiliation(s)
- Geng Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China
| | - Liuqin Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China
| | - Yue’e Peng
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China
| | - Wei Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China
| | - Ziyu Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China
| | - Weiyu She
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China
| | - Qinghai Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesBeijing, China
- Department of Geology and Environmental Earth Science, Miami University, OxfordOH, United States
| |
Collapse
|
49
|
Antonucci I, Gallo G, Limauro D, Contursi P, Ribeiro AL, Blesa A, Berenguer J, Bartolucci S, Fiorentino G. An ArsR/SmtB family member regulates arsenic resistance genes unusually arranged in Thermus thermophilus HB27. Microb Biotechnol 2017; 10:1690-1701. [PMID: 28696001 PMCID: PMC5658604 DOI: 10.1111/1751-7915.12761] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 01/01/2023] Open
Abstract
Arsenic resistance is commonly clustered in ars operons in bacteria; main ars operon components encode an arsenate reductase, a membrane extrusion protein, and an As‐sensitive transcription factor. In the As‐resistant thermophile Thermus thermophilus HB27, genes encoding homologues of these proteins are interspersed in the chromosome. In this article, we show that two adjacent genes, TtsmtB, encoding an ArsR/SmtB transcriptional repressor and, TTC0354, encoding a Zn2+/Cd2+‐dependent membrane ATPase are involved in As resistance; differently from characterized ars operons, the two genes are transcribed from dedicated promoters upstream of their respective genes, whose expression is differentially regulated at transcriptional level. Mutants defective in TtsmtB or TTC0354 are more sensitive to As than the wild type, proving their role in arsenic resistance. Recombinant dimeric TtSmtB binds in vitro to both promoters, but its binding capability decreases upon interaction with arsenate and, less efficiently, with arsenite. In vivo and in vitro experiments also demonstrate that the arsenate reductase (TtArsC) is subjected to regulation by TtSmtB. We propose a model for the regulation of As resistance in T. thermophilus in which TtSmtB is the arsenate sensor responsible for the induction of TtArsC which generates arsenite exported by TTC0354 efflux protein to detoxify cells.
Collapse
Affiliation(s)
- Immacolata Antonucci
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, 80126, Naples, Italy
| | - Giovanni Gallo
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, 80126, Naples, Italy
| | - Danila Limauro
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, 80126, Naples, Italy
| | - Patrizia Contursi
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, 80126, Naples, Italy
| | - Ana Luisa Ribeiro
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Alba Blesa
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José Berenguer
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Simonetta Bartolucci
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, 80126, Naples, Italy
| | - Gabriella Fiorentino
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, 80126, Naples, Italy
| |
Collapse
|
50
|
Zhu YG, Xue XM, Kappler A, Rosen BP, Meharg AA. Linking Genes to Microbial Biogeochemical Cycling: Lessons from Arsenic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7326-7339. [PMID: 28602082 PMCID: PMC5871744 DOI: 10.1021/acs.est.7b00689] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The biotransformation of arsenic is highly relevant to the arsenic biogeochemical cycle. Identification of the molecular details of microbial pathways of arsenic biotransformation coupled with analyses of microbial communities by meta-omics can provide insights into detailed aspects of the complexities of this biocycle. Arsenic transformations couple to other biogeochemical cycles, and to the fate of both nutrients and other toxic environmental contaminants. Microbial redox metabolism of iron, carbon, sulfur, and nitrogen affects the redox and bioavailability of arsenic species. In this critical review we illustrate the biogeochemical processes and genes involved in arsenic biotransformations. We discuss how current and future metagenomic-, metatranscriptomic-, metaproteomic-, and metabolomic-based methods will help to decipher individual microbial arsenic transformation processes, and their connections to other biogeochemical cycle. These insights will allow future use of microbial metabolic capabilities for new biotechnological solutions to environmental problems. To understand the complex nature of inorganic and organic arsenic species and the fate of environmental arsenic will require integrating systematic approaches with biogeochemical modeling. Finally, from the lessons learned from these studies of arsenic biogeochemistry, we will be able to predict how the environment changes arsenic, and, in response, how arsenic biotransformations change the environment.
Collapse
Affiliation(s)
- Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xi-Mei Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen 72076, Germany
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Andrew A Meharg
- Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5HN, United Kingdom
| |
Collapse
|