1
|
Kubo H, Imai J, Izumi T, Kohata M, Kawana Y, Endo A, Sugawara H, Seike J, Horiuchi T, Komamura H, Sato T, Hosaka S, Asai Y, Kodama S, Takahashi K, Kaneko K, Katagiri H. Colonic inflammation triggers β cell proliferation during obesity development via a liver-to-pancreas interorgan mechanism. JCI Insight 2025; 10:e183864. [PMID: 40337860 DOI: 10.1172/jci.insight.183864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 03/21/2025] [Indexed: 05/09/2025] Open
Abstract
Under insulin-resistant conditions, such as obesity, pancreatic β cells adaptively proliferate and secrete more insulin to prevent blood glucose elevation. We previously reported hepatic ERK activation during obesity development to stimulate a neuronal relay system, consisting of afferent splanchnic nerves from the liver and efferent vagal nerves to the pancreas, thereby triggering adaptive β cell proliferation. However, the mechanism linking obesity with the interorgan system originating in hepatic ERK activation remains unclear. Herein, we clarified that colonic inflammation promotes β cell proliferation through this interorgan system from the liver to the pancreas. First, dextran sodium sulfate (DSS) treatment induced colonic inflammation and hepatic ERK activation as well as β cell proliferation, all of which were suppressed by blockades of the neuronal relay system by several approaches. In addition, treatment with anti-lymphocyte Peyer's patch adhesion molecule-1 (anti-LPAM1) antibody suppressed β cell proliferation induced by DSS treatment. Importantly, high-fat diet (HFD) feeding also elicited colonic inflammation, and its inhibition by anti-LPAM1 antibody administration suppressed hepatic ERK activation and β cell proliferation induced by HFD. Thus, colonic inflammation triggers adaptive β cell proliferation via the interorgan mechanism originating in hepatic ERK activation. The present study revealed a potentially novel role of the gastrointestinal tract in the maintenance of β cell regulation.
Collapse
|
2
|
Mravec B, Szantova M. Liver Neurobiology: Regulation of Liver Functions by the Nervous System. Semin Liver Dis 2025. [PMID: 40239709 DOI: 10.1055/a-2562-2000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The nervous system plays an important role in the regulation of liver functions during physiological as well as pathological conditions. This regulatory effect is based on the processing of signals transmitted to the brain by sensory nerves innervating the liver tissue and other visceral organs and by humoral pathways transmitting signals from peripheral tissues and organs. Based on these signals, the brain modulates metabolism, detoxification, regeneration, repair, inflammation, and other processes occurring in the liver. The nervous system thus determines the functional and morphological characteristics of the liver. Liver innervation also mediates the influence of psychosocial factors on liver functions. The aim of this review is to describe complexity of bidirectional interactions between the brain and liver and to characterize the mechanisms and pathways through which the nervous system influences liver function during physiological conditions and maintains liver and systemic homeostasis.
Collapse
Affiliation(s)
- Boris Mravec
- Department of Physiology Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Maria Szantova
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
3
|
Arai T, Hayashi E, Maeda S, Matsubara T, Fujii H, Shinohara K, Sogabe A, Wainai S, Tanaka D, Ono Y, Ono Y, Yoshikai M, Sorimachi Y, Kok CYY, Shimoda M, Tanaka M, Kawada N, Goda N. Liver-derived Neuregulin1α stimulates compensatory pancreatic β cell hyperplasia in insulin resistance. Nat Commun 2025; 16:1950. [PMID: 40082404 PMCID: PMC11906622 DOI: 10.1038/s41467-025-57167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 02/13/2025] [Indexed: 03/16/2025] Open
Abstract
Compensatory pancreatic islet hyperplasia is an adaptive response to increased systemic insulin demand, although factors meditating this response remain poorly understood. Here, we show that a liver-derived secreted protein, Neuregulin1α, promotes compensatory proliferation of pancreatic β cells in type 2 diabetes. Liver Neuregulin1α expression and serum Neuregulin1α levels increase in male mice fed an obesity-inducing diet. Male mice lacking either Neuregulin1 in liver or its receptor, ErbB3, in β cells deteriorate systemic glucose disposal due to impaired β cell expansion with reduced insulin secretion when fed the obesity-inducing diet. Mechanistically, Neuregulin1α activates ERBB2/3-ERK signaling to stimulate β cell proliferation without altering glucose-stimulated insulin secretion potential. In patients with metabolic dysfunction-associated steatotic liver disease (MASLD) and obesity but without type 2 diabetes serum Neuregulin1α levels increase, while in patient with MASLD and type 2 diabetes show markedly reduced levels of Neuregulin1α. These results suggest that Neuregulin1α serves as a hepatokine that can expand functional β cell mass in type 2 diabetes.
Collapse
Affiliation(s)
- Takatomo Arai
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Eriko Hayashi
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Sumie Maeda
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Osaka Metropolitan University, Osaka, Japan
| | - Hideki Fujii
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Koya Shinohara
- Department of Pancreatic Islet Cell Transplantation, National Center for Global Health and Medicine, Tokyo, Japan
| | - Arisu Sogabe
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Sadatomo Wainai
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Daishi Tanaka
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yutaro Ono
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yumika Ono
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Minami Yoshikai
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yuriko Sorimachi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Cindy Yuet-Yin Kok
- Neuroscience Research Australia, Sydney, NSW, Australia
- Discipline of Medicine, Randwick Clinical Campus, University of New South Wales, Sydney, NSW, Australia
| | - Masayuki Shimoda
- Department of Pancreatic Islet Cell Transplantation, National Center for Global Health and Medicine, Tokyo, Japan
| | - Minoru Tanaka
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Nobuhito Goda
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| |
Collapse
|
4
|
Tahiri A, Youssef A, Inoue R, Moon S, Alsarkhi L, Berroug L, Nguyen XTA, Wang L, Kwon H, Pang ZP, Zhao JY, Shirakawa J, Ulloa L, El Ouaamari A. Vagal sensory neuron-derived FGF3 controls insulin secretion. Dev Cell 2025; 60:51-61.e4. [PMID: 39413782 PMCID: PMC11706709 DOI: 10.1016/j.devcel.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/28/2023] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
Vagal nerve stimulation has emerged as a promising modality for treating a wide range of chronic conditions, including metabolic disorders. However, the cellular and molecular pathways driving these clinical benefits remain largely obscure. Here, we demonstrate that fibroblast growth factor 3 (Fgf3) mRNA is upregulated in the mouse vagal ganglia under acute metabolic stress. Systemic and vagal sensory overexpression of Fgf3 enhanced glucose-stimulated insulin secretion (GSIS), improved glucose excursion, and increased energy expenditure and physical activity. Fgf3-elicited insulinotropic and glucose-lowering responses were recapitulated when overexpression of Fgf3 was restricted to the pancreas-projecting vagal sensory neurons. Genetic ablation of Fgf3 in pancreatic vagal afferents exacerbated high-fat diet-induced glucose intolerance and blunted GSIS. Finally, electrostimulation of the vagal afferents enhanced GSIS and glucose clearance independently of efferent outputs. Collectively, we demonstrate a direct role for the vagal afferent signaling in GSIS and identify Fgf3 as a vagal sensory-derived metabolic factor that controls pancreatic β-cell activity.
Collapse
Affiliation(s)
- Azeddine Tahiri
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Ayman Youssef
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC 27710, USA
| | - Ryota Inoue
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Sohyun Moon
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Lamyaa Alsarkhi
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Laila Berroug
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Xuan Thi Anh Nguyen
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Le Wang
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Hyokjoon Kwon
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jerry Yingtao Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC 27710, USA
| | - Abdelfattah El Ouaamari
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
5
|
Uno K, Uchino T, Suzuki T, Sayama Y, Edo N, Uno-Eder K, Morita K, Ishikawa T, Koizumi M, Honda H, Katagiri H, Tsukamoto K. Rspo3-mediated metabolic liver zonation regulates systemic glucose metabolism and body mass in mice. PLoS Biol 2025; 23:e3002955. [PMID: 39854351 PMCID: PMC11759367 DOI: 10.1371/journal.pbio.3002955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/27/2024] [Indexed: 01/26/2025] Open
Abstract
The unique architecture of the liver consists of hepatic lobules, dividing the hepatic features of metabolism into 2 distinct zones, namely the pericentral and periportal zones, the spatial characteristics of which are broadly defined as metabolic zonation. R-spondin3 (Rspo3), a bioactive protein promoting the Wnt signaling pathway, regulates metabolic features especially around hepatic central veins. However, the functional impact of hepatic metabolic zonation, regulated by the Rspo3/Wnt signaling pathway, on whole-body metabolism homeostasis remains poorly understood. In this study, we analyze the local functions of Rspo3 in the liver and the remote actions of hepatic Rspo3 on other organs of the body by using murine models. Rspo3 expression analysis shows that Rspo3 expression patterns are spatiotemporally controlled in the murine liver such that it locates in the pericentral zones and converges after feeding, and the dynamics of these processes are disturbed in obesity. We find that viral-mediated induction of Rspo3 in hepatic tissue of obesity improves insulin resistance and prevents body weight gain by restoring attenuated organ insulin sensitivities, reducing adipose tissue enlargement and reversing overstimulated adaptive thermogenesis. Denervation of the hepatic vagus suppresses these remote effects, derived from hepatic Rspo3 induction, toward adipose tissues and skeletal muscle, suggesting that signals are transduced via the neuronal communication consisting of afferent vagal and efferent sympathetic nerves. Furthermore, the non-neuronal inter-organ communication up-regulating muscle lipid utilization is partially responsible for the ameliorations of both fatty liver development and reduced skeletal muscle quality in obesity. In contrast, hepatic Rspo3 suppression through Cre-LoxP-mediated recombination system exacerbates diabetes due to glucose intolerance and insulin resistance, promotes fatty liver development and decreases skeletal muscle quality, resulting in obesity. Taken together, our study results reveal that modulation of hepatic Rspo3 contributes to maintaining systemic glucose metabolism and body composition via a newly identified inter-organ communication mechanism.
Collapse
Affiliation(s)
- Kenji Uno
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Takuya Uchino
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Takashi Suzuki
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yohei Sayama
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Naoki Edo
- Teikyo Academic Research Center, Tokyo, Japan
| | | | - Koji Morita
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Toshio Ishikawa
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Miho Koizumi
- Field of Human Disease Models, Tokyo Women’s Medical University, Tokyo, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Tokyo Women’s Medical University, Tokyo, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhisa Tsukamoto
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Jarrah M, Tasabehji D, Fraer A, Mokadem M. Spinal afferent neurons: emerging regulators of energy balance and metabolism. Front Mol Neurosci 2024; 17:1479876. [PMID: 39582948 PMCID: PMC11583444 DOI: 10.3389/fnmol.2024.1479876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
Recent advancements in neurophysiology have challenged the long-held paradigm that vagal afferents serve as the primary conduits for physiological signals governing food intake and energy expenditure. An expanding body of evidence now illuminates the critical role of spinal afferent neurons in these processes, necessitating a reevaluation of our understanding of energy homeostasis regulation. This comprehensive review synthesizes cutting-edge research elucidating the multifaceted functions of spinal afferent neurons in maintaining metabolic equilibrium. Once predominantly associated with nociception and pathological states, these neurons are now recognized as integral components in the intricate network regulating feeding behavior, nutrient sensing, and energy balance. We explore the role of spinal afferents in food intake and how these neurons contribute to satiation signaling and meal termination through complex gut-brain axis pathways. The review also delves into the developing evidence that spinal afferents play a crucial role in energy expenditure regulation. We explore the ability of these neuronal fibers to carry signals that can modulate feeding behavior as well as adaptive thermogenesis in adipose tissue influencing basal metabolic rate, and thereby contributing to overall energy balance. This comprehensive analysis not only challenges existing paradigms but also opens new avenues for therapeutic interventions suggesting potential targets for treating metabolic disorders. In conclusion, this review highlights the need for a shift in our understanding of energy homeostasis, positioning spinal afferent neurons as key players in the intricate web of metabolic regulation.
Collapse
Affiliation(s)
- Mohammad Jarrah
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Dana Tasabehji
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Aviva Fraer
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Mohamad Mokadem
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Fraternal Orders of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- Obesity Research and Education Initiative, University of Iowa, Iowa City, IA, United States
- Veterans Affairs Health Care System, Iowa City, IA, United States
| |
Collapse
|
7
|
Mravec B, Szantova M. The role of the nervous system in liver diseases. Hepatol Res 2024; 54:970-980. [PMID: 39392763 DOI: 10.1111/hepr.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/13/2024]
Abstract
The nervous system significantly participates in maintaining homeostasis, and modulating repair and regeneration processes in the liver. Moreover, the nervous system also plays an important role in the processes associated with the development and progression of liver disease, and can either potentiate or inhibit these processes. The aim of this review is to describe the mechanisms and pathways through which the nervous system influences the development and progression of liver diseases, such as alcohol-associated liver disease, nonalcoholic fatty liver disease, cholestatic liver disease, hepatitis, cirrhosis, and hepatocellular carcinoma. Possible therapeutic implications based on modulation of signals transduction between the nervous system and the liver are also discussed.
Collapse
Affiliation(s)
- Boris Mravec
- Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Maria Szantova
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
| |
Collapse
|
8
|
Thorens B. Neuronal glucose sensing mechanisms and circuits in the control of insulin and glucagon secretion. Physiol Rev 2024; 104:1461-1486. [PMID: 38661565 DOI: 10.1152/physrev.00038.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024] Open
Abstract
Glucose homeostasis is mainly under the control of the pancreatic islet hormones insulin and glucagon, which, respectively, stimulate glucose uptake and utilization by liver, fat, and muscle and glucose production by the liver. The balance between the secretions of these hormones is under the control of blood glucose concentrations. Indeed, pancreatic islet β-cells and α-cells can sense variations in glycemia and respond by an appropriate secretory response. However, the secretory activity of these cells is also under multiple additional metabolic, hormonal, and neuronal signals that combine to ensure the perfect control of glycemia over a lifetime. The central nervous system (CNS), which has an almost absolute requirement for glucose as a source of metabolic energy and thus a vital interest in ensuring that glycemic levels never fall below ∼5 mM, is equipped with populations of neurons responsive to changes in glucose concentrations. These neurons control pancreatic islet cell secretion activity in multiple ways: through both branches of the autonomic nervous system, through the hypothalamic-pituitary-adrenal axis, and by secreting vasopressin (AVP) in the blood at the level of the posterior pituitary. Here, we present the autonomic innervation of the pancreatic islets; the mechanisms of neuron activation by a rise or a fall in glucose concentration; how current viral tracing, chemogenetic, and optogenetic techniques allow integration of specific glucose sensing neurons in defined neuronal circuits that control endocrine pancreas function; and, finally, how genetic screens in mice can untangle the diversity of the hypothalamic mechanisms controlling the response to hypoglycemia.
Collapse
Affiliation(s)
- Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Mizukami H. Pathological evaluation of the pathogenesis of diabetes mellitus and diabetic peripheral neuropathy. Pathol Int 2024; 74:438-453. [PMID: 38888200 PMCID: PMC11551828 DOI: 10.1111/pin.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
Currently, there are more than 10 million patients with diabetes mellitus in Japan. Therefore, the need to explore the pathogenesis of diabetes and the complications leading to its cure is becoming increasingly urgent. Pathological examination of pancreatic tissues from patients with type 2 diabetes reveals a decrease in the volume of beta cells because of a combination of various stresses. In human type 2 diabetes, islet amyloid deposition is a unique pathological change characterized by proinflammatory macrophage (M1) infiltration into the islets. The pathological changes in the pancreas with islet amyloid were different according to clinical factors, which suggests that type 2 diabetes can be further subclassified based on islet pathology. On the other hand, diabetic peripheral neuropathy is the most frequent diabetic complication. In early diabetic peripheral neuropathy, M1 infiltration in the sciatic nerve evokes oxidative stress or attenuates retrograde axonal transport, as clearly demonstrated by in vitro live imaging. Furthermore, islet parasympathetic nerve density and beta cell volume were inversely correlated in type 2 diabetic Goto-Kakizaki rats, suggesting that diabetic peripheral neuropathy itself may contribute to the decrease in beta cell volume. These findings suggest that the pathogenesis of diabetes mellitus and diabetic peripheral neuropathy may be interrelated.
Collapse
Affiliation(s)
- Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Biomedical Research CenterHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| |
Collapse
|
10
|
Kawana Y, Imai J, Morizawa YM, Ikoma Y, Kohata M, Komamura H, Sato T, Izumi T, Yamamoto J, Endo A, Sugawara H, Kubo H, Hosaka S, Munakata Y, Asai Y, Kodama S, Takahashi K, Kaneko K, Sawada S, Yamada T, Ito A, Niizuma K, Tominaga T, Yamanaka A, Matsui K, Katagiri H. Optogenetic stimulation of vagal nerves for enhanced glucose-stimulated insulin secretion and β cell proliferation. Nat Biomed Eng 2024; 8:808-822. [PMID: 37945752 PMCID: PMC11310082 DOI: 10.1038/s41551-023-01113-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/26/2023] [Indexed: 11/12/2023]
Abstract
The enhancement of insulin secretion and of the proliferation of pancreatic β cells are promising therapeutic options for diabetes. Signals from the vagal nerve regulate both processes, yet the effectiveness of stimulating the nerve is unclear, owing to a lack of techniques for doing it so selectively and prolongedly. Here we report two optogenetic methods for vagal-nerve stimulation that led to enhanced glucose-stimulated insulin secretion and to β cell proliferation in mice expressing choline acetyltransferase-channelrhodopsin 2. One method involves subdiaphragmatic implantation of an optical fibre for the photostimulation of cholinergic neurons expressing a blue-light-sensitive opsin. The other method, which suppressed streptozotocin-induced hyperglycaemia in the mice, involves the selective activation of vagal fibres by placing blue-light-emitting lanthanide microparticles in the pancreatic ducts of opsin-expressing mice, followed by near-infrared illumination. The two methods show that signals from the vagal nerve, especially from nerve fibres innervating the pancreas, are sufficient to regulate insulin secretion and β cell proliferation.
Collapse
Affiliation(s)
- Yohei Kawana
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yosuke M Morizawa
- Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Yoko Ikoma
- Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Masato Kohata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Komamura
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshihiro Sato
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohito Izumi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junpei Yamamoto
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Endo
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroto Sugawara
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haremaru Kubo
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Yuichiro Munakata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichiro Asai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinjiro Kodama
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Takahashi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keizo Kaneko
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shojiro Sawada
- Division of Metabolism and Diabetes, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tetsuya Yamada
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Ito
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Ko Matsui
- Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
11
|
Berthoud HR, Münzberg H, Morrison CD, Neuhuber WL. Hepatic interoception in health and disease. Auton Neurosci 2024; 253:103174. [PMID: 38579493 PMCID: PMC11129274 DOI: 10.1016/j.autneu.2024.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
The liver is a large organ with crucial functions in metabolism and immune defense, as well as blood homeostasis and detoxification, and it is clearly in bidirectional communication with the brain and rest of the body via both neural and humoral pathways. A host of neural sensory mechanisms have been proposed, but in contrast to the gut-brain axis, details for both the exact site and molecular signaling steps of their peripheral transduction mechanisms are generally lacking. Similarly, knowledge about function-specific sensory and motor components of both vagal and spinal access pathways to the hepatic parenchyma is missing. Lack of progress largely owes to controversies regarding selectivity of vagal access pathways and extent of hepatocyte innervation. In contrast, there is considerable evidence for glucose sensors in the wall of the hepatic portal vein and their importance for glucose handling by the liver and the brain and the systemic response to hypoglycemia. As liver diseases are on the rise globally, and there are intriguing associations between liver diseases and mental illnesses, it will be important to further dissect and identify both neural and humoral pathways that mediate hepatocyte-specific signals to relevant brain areas. The question of whether and how sensations from the liver contribute to interoceptive self-awareness has not yet been explored.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| | - Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Christopher D Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Winfried L Neuhuber
- Institute for Anatomy and Cell Biology, Friedrich-Alexander University, Erlangen, Germany.
| |
Collapse
|
12
|
Takahashi K, Katagiri H. Pituitary gland agouti-related peptide cells: Novel player controlling glucose metabolism. J Diabetes Investig 2024; 15:67-69. [PMID: 37847092 PMCID: PMC10759721 DOI: 10.1111/jdi.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023] Open
Abstract
The liver synthesizes and releases bile acids into the gut. Bile acids, either directly or indirectly, inhibit agouti-related peptide (AGRP)-B cells in the pars tuberalis of the pituitary gland. AGRP-B cells are assumed to promote pancreatic insulin secretion and/or to improve insulin sensitivities in insulin sensitive organs, resulting in improved glucose tolerance.
Collapse
Affiliation(s)
- Kei Takahashi
- Department of Metabolism and DiabetesTohoku University Graduate School of MedicineSendaiJapan
| | - Hideki Katagiri
- Department of Metabolism and DiabetesTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
13
|
Katagiri H. Inter-organ communication involved in metabolic regulation at the whole-body level. Inflamm Regen 2023; 43:60. [PMID: 38087385 PMCID: PMC10714542 DOI: 10.1186/s41232-023-00306-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/29/2023] [Indexed: 10/16/2024] Open
Abstract
Metabolism in each organ of multi-organ organisms, including humans, is regulated in a coordinated manner to dynamically maintain whole-body homeostasis. Metabolic information exchange among organs/tissues, i.e., inter-organ communication, which is necessary for this purpose, has been a subject of ongoing research. In particular, it has become clear that metabolism of energy, glucose, lipids, and amino acids is dynamically regulated at the whole-body level mediated by the nervous system, including afferent, central, and efferent nerves. These findings imply that the central nervous system obtains metabolic information from peripheral organs at all times and sends signals selectively to peripheral organs/tissues to maintain metabolic homeostasis, and that the liver plays an important role in sensing and transmitting information on the metabolic status of the body. Furthermore, the utilization of these endogenous mechanisms is expected to lead to the development of novel preventive/curative therapies for metabolic diseases such as diabetes and obesity.(This is a summarized version of the subject matter presented at Symposium 7 presented at the 43rd Annual Meeting of the Japanese Society of Inflammation and Regeneration.).
Collapse
Affiliation(s)
- Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
14
|
Münzberg H, Berthoud HR, Neuhuber WL. Sensory spinal interoceptive pathways and energy balance regulation. Mol Metab 2023; 78:101817. [PMID: 37806487 PMCID: PMC10590858 DOI: 10.1016/j.molmet.2023.101817] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Interoception plays an important role in homeostatic regulation of energy intake and metabolism. Major interoceptive pathways include gut-to-brain and adipose tissue-to brain signaling via vagal sensory nerves and hormones, such as leptin. However, signaling via spinal sensory neurons is rapidly emerging as an additional important signaling pathway. Here we provide an in-depth review of the known anatomy and functions of spinal sensory pathways and discuss potential mechanisms relevant for energy balance homeostasis in health and disease. Because sensory innervation by dorsal root ganglia (DRG) neurons goes far beyond vagally innervated viscera and includes adipose tissue, skeletal muscle, and skin, it is in a position to provide much more complete metabolic information to the brain. Molecular and anatomical identification of function specific DRG neurons will be important steps in designing pharmacological and neuromodulation approaches to affect energy balance regulation in disease states such as obesity, diabetes, and cancer.
Collapse
Affiliation(s)
- Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Winfried L Neuhuber
- Institute for Anatomy and Cell Biology, Friedrich-Alexander University, Erlangen, Germany.
| |
Collapse
|
15
|
Zhang Y, Fang XM. The pan-liver network theory: From traditional chinese medicine to western medicine. CHINESE J PHYSIOL 2023; 66:401-436. [PMID: 38149555 DOI: 10.4103/cjop.cjop-d-22-00131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
In traditional Chinese medicine (TCM), the liver is the "general organ" that is responsible for governing/maintaining the free flow of qi over the entire body and storing blood. According to the classic five elements theory, zang-xiang theory, yin-yang theory, meridians and collaterals theory, and the five-viscera correlation theory, the liver has essential relationships with many extrahepatic organs or tissues, such as the mother-child relationships between the liver and the heart, and the yin-yang and exterior-interior relationships between the liver and the gallbladder. The influences of the liver to the extrahepatic organs or tissues have been well-established when treating the extrahepatic diseases from the perspective of modulating the liver by using the ancient classic prescriptions of TCM and the acupuncture and moxibustion. In modern medicine, as the largest solid organ in the human body, the liver has the typical functions of filtration and storage of blood; metabolism of carbohydrates, fats, proteins, hormones, and foreign chemicals; formation of bile; storage of vitamins and iron; and formation of coagulation factors. The liver also has essential endocrine function, and acts as an immunological organ due to containing the resident immune cells. In the perspective of modern human anatomy, physiology, and pathophysiology, the liver has the organ interactions with the extrahepatic organs or tissues, for example, the gut, pancreas, adipose, skeletal muscle, heart, lung, kidney, brain, spleen, eyes, skin, bone, and sexual organs, through the circulation (including hemodynamics, redox signals, hepatokines, metabolites, and the translocation of microbiota or its products, such as endotoxins), the neural signals, or other forms of pathogenic factors, under normal or diseases status. The organ interactions centered on the liver not only influence the homeostasis of these indicated organs or tissues, but also contribute to the pathogenesis of cardiometabolic diseases (including obesity, type 2 diabetes mellitus, metabolic [dysfunction]-associated fatty liver diseases, and cardio-cerebrovascular diseases), pulmonary diseases, hyperuricemia and gout, chronic kidney disease, and male and female sexual dysfunction. Therefore, based on TCM and modern medicine, the liver has the bidirectional interaction with the extrahepatic organ or tissue, and this established bidirectional interaction system may further interact with another one or more extrahepatic organs/tissues, thus depicting a complex "pan-hepatic network" model. The pan-hepatic network acts as one of the essential mechanisms of homeostasis and the pathogenesis of diseases.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Physiology; Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong; Issue 12th of Guangxi Apprenticeship Education of Traditional Chinese Medicine (Shi-Cheng Class of Guangxi University of Chinese Medicine), College of Continuing Education, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xian-Ming Fang
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine (Guangxi Hospital of Integrated Chinese Medicine and Western Medicine, Ruikang Clinical Faculty of Guangxi University of Chinese Medicine), Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
16
|
Endo A, Imai J, Izumi T, Kawana Y, Sugawara H, Kohata M, Seike J, Kubo H, Komamura H, Sato T, Asai Y, Hosaka S, Kodama S, Takahashi K, Kaneko K, Katagiri H. Phagocytosis by macrophages promotes pancreatic β cell mass reduction after parturition in mice. Dev Cell 2023; 58:1819-1829.e5. [PMID: 37716356 DOI: 10.1016/j.devcel.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/07/2023] [Accepted: 08/01/2023] [Indexed: 09/18/2023]
Abstract
Elucidating the mechanism(s) modulating appropriate tissue size is a critical biological issue. Pancreatic β cells increase during pregnancy via cellular proliferation, but how β cells promptly decrease to the original amount after parturition remains unclear. Herein, we demonstrate the role and mechanism of macrophage accumulation in this process. In the final stage of pregnancy, HTR1D signaling upregulates murine β cell CXCL10, thereby promoting macrophage accumulation in pancreatic islets via the CXCL10-CXCR3 axis. Blocking this mechanism by administering an HTR1D antagonist or the CXCR3 antibody and depleting islet macrophages inhibited postpartum β cell mass reduction. β cells engulfed by macrophages increased in postpartum islets, but Annexin V administration suppressed this engulfment and the postpartum β cell mass reduction, indicating the accumulated macrophages to phagocytose β cells. This mechanism contributes to both maintenance of appropriate β cell mass and glucose homeostasis promptly adapting to reduced systemic insulin demand after parturition.
Collapse
Affiliation(s)
- Akira Endo
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Tomohito Izumi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yohei Kawana
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hiroto Sugawara
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Masato Kohata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Junro Seike
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Haremaru Kubo
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hiroshi Komamura
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Toshihiro Sato
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yoichiro Asai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Shinichiro Hosaka
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Shinjiro Kodama
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Kei Takahashi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Keizo Kaneko
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
17
|
Xiong LI, Garfinkel A. Are physiological oscillations physiological? J Physiol 2023. [PMID: 37622389 DOI: 10.1113/jp285015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Despite widespread and striking examples of physiological oscillations, their functional role is often unclear. Even glycolysis, the paradigm example of oscillatory biochemistry, has seen questions about its oscillatory function. Here, we take a systems approach to argue that oscillations play critical physiological roles, such as enabling systems to avoid desensitization, to avoid chronically high and therefore toxic levels of chemicals, and to become more resistant to noise. Oscillation also enables complex physiological systems to reconcile incompatible conditions such as oxidation and reduction, by cycling between them, and to synchronize the oscillations of many small units into one large effect. In pancreatic β-cells, glycolytic oscillations synchronize with calcium and mitochondrial oscillations to drive pulsatile insulin release, critical for liver regulation of glucose. In addition, oscillation can keep biological time, essential for embryonic development in promoting cell diversity and pattern formation. The functional importance of oscillatory processes requires a re-thinking of the traditional doctrine of homeostasis, holding that physiological quantities are maintained at constant equilibrium values, a view that has largely failed in the clinic. A more dynamic approach will initiate a paradigm shift in our view of health and disease. A deeper look into the mechanisms that create, sustain and abolish oscillatory processes requires the language of nonlinear dynamics, well beyond the linearization techniques of equilibrium control theory. Nonlinear dynamics enables us to identify oscillatory ('pacemaking') mechanisms at the cellular, tissue and system levels.
Collapse
Affiliation(s)
- Lingyun Ivy Xiong
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Alan Garfinkel
- Departments of Medicine (Cardiology) and Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| |
Collapse
|
18
|
Sun M, Wan Y, Shi M, Meng ZX, Zeng W. Neural innervation in adipose tissue, gut, pancreas, and liver. LIFE METABOLISM 2023; 2:load022. [PMID: 39872245 PMCID: PMC11749697 DOI: 10.1093/lifemeta/load022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 01/30/2025]
Abstract
Efficient communication between the brain and peripheral organs is indispensable for regulating physiological function and maintaining energy homeostasis. The peripheral nervous system (PNS) in vertebrates, consisting of the autonomic and somatic nervous systems, bridges the peripheral organs and the central nervous system (CNS). Metabolic signals are processed by both vagal sensory nerves and somatosensory nerves. The CNS receives sensory inputs via ascending nerves, serves as the coordination and integration center, and subsequently controls internal organs and glands via descending nerves. The autonomic nervous system consists of sympathetic and parasympathetic branches that project peripheral nerves into various anatomical locations to regulate the energy balance. Sympathetic and parasympathetic nerves typically control the reflexive and involuntary functions in organs. In this review article, we outline the innervation of adipose tissue, gut, pancreas, and liver, to illustrate the neurobiological basis of central-peripheral interactions. We emphasize the importance of understanding the functional atlas of neural control of energy metabolism, and more importantly, provide potential avenues for further research in this area.
Collapse
Affiliation(s)
- Mengxue Sun
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yongwen Wan
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Mengjie Shi
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wenwen Zeng
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| |
Collapse
|
19
|
Sugawara H, Imai J, Yamamoto J, Izumi T, Kawana Y, Endo A, Kohata M, Seike J, Kubo H, Komamura H, Munakata Y, Asai Y, Hosaka S, Sawada S, Kodama S, Takahashi K, Kaneko K, Katagiri H. A highly sensitive strategy for monitoring real-time proliferation of targeted cell types in vivo. Nat Commun 2023; 14:3253. [PMID: 37316473 DOI: 10.1038/s41467-023-38897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 05/22/2023] [Indexed: 06/16/2023] Open
Abstract
Cell proliferation processes play pivotal roles in timely adaptation to many biological situations. Herein, we establish a highly sensitive and simple strategy by which time-series showing the proliferation of a targeted cell type can be quantitatively monitored in vivo in the same individuals. We generate mice expressing a secreted type of luciferase only in cells producing Cre under the control of the Ki67 promoter. Crossing these with tissue-specific Cre-expressing mice allows us to monitor the proliferation time course of pancreatic β-cells, which are few in number and weakly proliferative, by measuring plasma luciferase activity. Physiological time courses, during obesity development, pregnancy and juvenile growth, as well as diurnal variation, of β-cell proliferation, are clearly detected. Moreover, this strategy can be utilized for highly sensitive ex vivo screening for proliferative factors for targeted cells. Thus, these technologies may contribute to advancements in broad areas of biological and medical research.
Collapse
Affiliation(s)
- Hiroto Sugawara
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Junpei Yamamoto
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohito Izumi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yohei Kawana
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Endo
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Kohata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junro Seike
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haremaru Kubo
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Komamura
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuichiro Munakata
- Division of Metabolism and Diabetes, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoichiro Asai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinichiro Hosaka
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shojiro Sawada
- Division of Metabolism and Diabetes, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Shinjiro Kodama
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Takahashi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keizo Kaneko
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
20
|
Zhang Z, Li M, Sun T, Zhang Z, Liu C. FOXM1: Functional Roles of FOXM1 in Non-Malignant Diseases. Biomolecules 2023; 13:biom13050857. [PMID: 37238726 DOI: 10.3390/biom13050857] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Forkhead box (FOX) proteins are a wing-like helix family of transcription factors in the DNA-binding region. By mediating the activation and inhibition of transcription and interactions with all kinds of transcriptional co-regulators (MuvB complexes, STAT3, β-catenin, etc.), they play significant roles in carbohydrate and fat metabolism, biological aging and immune regulation, development, and diseases in mammals. Recent studies have focused on translating these essential findings into clinical applications in order to improve quality of life, investigating areas such as diabetes, inflammation, and pulmonary fibrosis, and increase human lifespan. Early studies have shown that forkhead box M1 (FOXM1) functions as a key gene in pathological processes in multiple diseases by regulating genes related to proliferation, the cell cycle, migration, and apoptosis and genes related to diagnosis, therapy, and injury repair. Although FOXM1 has long been studied in relation to human diseases, its role needs to be elaborated on. FOXM1 expression is involved in the development or repair of multiple diseases, including pulmonary fibrosis, pneumonia, diabetes, liver injury repair, adrenal lesions, vascular diseases, brain diseases, arthritis, myasthenia gravis, and psoriasis. The complex mechanisms involve multiple signaling pathways, such as WNT/β-catenin, STAT3/FOXM1/GLUT1, c-Myc/FOXM1, FOXM1/SIRT4/NF-κB, and FOXM1/SEMA3C/NRP2/Hedgehog. This paper reviews the key roles and functions of FOXM1 in kidney, vascular, lung, brain, bone, heart, skin, and blood vessel diseases to elucidate the role of FOXM1 in the development and progression of human non-malignant diseases and makes suggestions for further research.
Collapse
Affiliation(s)
- Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mengxi Li
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Tian Sun
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhengrong Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
21
|
Takahashi K, Yamada T, Hosaka S, Kaneko K, Asai Y, Munakata Y, Seike J, Horiuchi T, Kodama S, Izumi T, Sawada S, Hoshikawa K, Inoue J, Masamune A, Ueno Y, Imai J, Katagiri H. Inter-organ insulin-leptin signal crosstalk from the liver enhances survival during food shortages. Cell Rep 2023:112415. [PMID: 37116488 DOI: 10.1016/j.celrep.2023.112415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/27/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023] Open
Abstract
Crosstalk among organs/tissues is important for regulating systemic metabolism. Here, we demonstrate inter-organ crosstalk between hepatic insulin and hypothalamic leptin actions, which maintains survival during food shortages. In inducible liver insulin receptor knockout mice, body weight is increased with hyperphagia and decreased energy expenditure, accompanied by increased circulating leptin receptor (LepR) and decreased hypothalamic leptin actions. Additional hepatic LepR deficiency reverses these metabolic phenotypes. Thus, decreased hepatic insulin action suppresses hypothalamic leptin action with increased liver-derived soluble LepR. Human hepatic and circulating LepR levels also correlate negatively with hepatic insulin action indices. In mice, food restriction decreases hepatic insulin action and energy expenditure with increased circulating LepR. Hepatic LepR deficiency increases mortality with enhanced energy expenditure during food restriction. The liver translates metabolic cues regarding energy-deficient status, which is reflected by decreased hepatic insulin action, into soluble LepR, thereby suppressing energy dissipation and assuring survival during food shortages.
Collapse
Affiliation(s)
- Kei Takahashi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Tetsuya Yamada
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan.
| | - Shinichiro Hosaka
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Keizo Kaneko
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yoichiro Asai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yuichiro Munakata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Junro Seike
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Takahiro Horiuchi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Shinjiro Kodama
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Tomohito Izumi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Shojiro Sawada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Kyoko Hoshikawa
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Yamagata 990-9585, Japan
| | - Jun Inoue
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Yamagata 990-9585, Japan
| | - Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
22
|
Kozawa S, Yokoyama H, Urayama K, Tejima K, Doi H, Takagi S, Sato TN. Latent disease similarities and therapeutic repurposing possibilities uncovered by multi-modal generative topic modeling of human diseases. BIOINFORMATICS ADVANCES 2023; 3:vbad047. [PMID: 37123453 PMCID: PMC10133403 DOI: 10.1093/bioadv/vbad047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023]
Abstract
Motivation Human diseases are characterized by multiple features such as their pathophysiological, molecular and genetic changes. The rapid expansion of such multi-modal disease-omics space provides an opportunity to re-classify diverse human diseases and to uncover their latent molecular similarities, which could be exploited to repurpose a therapeutic-target for one disease to another. Results Herein, we probe this underexplored space by soft-clustering 6955 human diseases by multi-modal generative topic modeling. Focusing on chronic kidney disease and myocardial infarction, two most life-threatening diseases, unveiled are their previously underrecognized molecular similarities to neoplasia and mental/neurological-disorders, and 69 repurposable therapeutic-targets for these diseases. Using an edit-distance-based pathway-classifier, we also find molecular pathways by which these targets could elicit their clinical effects. Importantly, for the 17 targets, the evidence for their therapeutic usefulness is retrospectively found in the pre-clinical and clinical space, illustrating the effectiveness of the method, and suggesting its broader applications across diverse human diseases. Availability and implementation The code reported in this article is available at: https://github.com/skozawa170301ktx/MultiModalDiseaseModeling. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Satoshi Kozawa
- Karydo TherapeutiX, Inc., Kyoto 619-0288, Japan
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto 619-0288, Japan
- ERATO Sato-Live Bio-Forecasting Project, Japan Science and Technology Agency (JST), Kyoto 619-0288, Japan
| | - Hirona Yokoyama
- Karydo TherapeutiX, Inc., Kyoto 619-0288, Japan
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto 619-0288, Japan
- V-iCliniX Laboratory, Nara Medical University, Nara 634-8521, Japan
| | - Kyoji Urayama
- Karydo TherapeutiX, Inc., Kyoto 619-0288, Japan
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto 619-0288, Japan
- ERATO Sato-Live Bio-Forecasting Project, Japan Science and Technology Agency (JST), Kyoto 619-0288, Japan
| | - Kengo Tejima
- Karydo TherapeutiX, Inc., Kyoto 619-0288, Japan
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto 619-0288, Japan
- ERATO Sato-Live Bio-Forecasting Project, Japan Science and Technology Agency (JST), Kyoto 619-0288, Japan
| | - Hotaka Doi
- Karydo TherapeutiX, Inc., Kyoto 619-0288, Japan
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto 619-0288, Japan
- V-iCliniX Laboratory, Nara Medical University, Nara 634-8521, Japan
| | - Shunki Takagi
- Karydo TherapeutiX, Inc., Kyoto 619-0288, Japan
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto 619-0288, Japan
| | | |
Collapse
|
23
|
Dogra S, Das D, Maity SK, Paul A, Rawat P, Daniel PV, Das K, Mitra S, Chakrabarti P, Mondal P. Liver-Derived S100A6 Propels β-Cell Dysfunction in NAFLD. Diabetes 2022; 71:2284-2296. [PMID: 35899967 DOI: 10.2337/db22-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an independent predictor of systemic insulin resistance and type 2 diabetes mellitus (T2DM). However, converse correlates between excess liver fat content and β-cell function remain equivocal. Specifically, how the accumulation of liver fat consequent to the enhanced de novo lipogenesis (DNL) leads to pancreatic β-cell failure and eventually to T2DM is elusive. Here, we have identified that low-molecular-weight calcium-binding protein S100A6, or calcyclin, inhibits glucose-stimulated insulin secretion (GSIS) from β cells through activation of the receptor for the advanced glycation end products and diminution of mitochondrial respiration. Serum S100A6 level is elevated both in human patients with NAFLD and in a high-fat diet-induced mouse model of NAFLD. Although serum S100A6 levels are negatively associated with β-cell insulin secretory capacity in human patients, depletion of hepatic S100A6 improves GSIS and glycemia in mice, suggesting that S100A6 contributes to the pathophysiology of diabetes in NAFLD. Moreover, transcriptional induction of hepatic S100A6 is driven by the potent regulator of DNL, carbohydrate response element-binding protein (ChREBP), and ectopic expression of ChREBP in the liver suppresses GSIS in a S100A6-sensitive manner. Together, these data suggest elevated serum levels of S100A6 may serve as a biomarker in identifying patients with NAFLD with a heightened risk of developing β-cell dysfunction. Overall, our data implicate S100A6 as, to our knowledge, a hitherto unknown hepatokine to be activated by ChREBP and that participates in the hepato-pancreatic communication to impair insulin secretion and drive the development of T2DM in NAFLD.
Collapse
Affiliation(s)
- Surbhi Dogra
- School of Basic Sciences, Indian Institute of Technology-Mandi
| | - Debajyoti Das
- Division of Cell Biology and Physiology, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata
| | - Sujay K Maity
- Division of Cell Biology and Physiology, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata
| | - Avishek Paul
- Division of Cell Biology and Physiology, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata
| | - Priya Rawat
- School of Basic Sciences, Indian Institute of Technology-Mandi
| | | | - Kausik Das
- Department of Hepatology, Institute of Post-Graduate Medical Education and Research and Seth Sukhlal Karnani Memorial Hospital, Kolkata, India
| | - Souveek Mitra
- Department of Hepatology, Institute of Post-Graduate Medical Education and Research and Seth Sukhlal Karnani Memorial Hospital, Kolkata, India
| | - Partha Chakrabarti
- Division of Cell Biology and Physiology, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata
| | | |
Collapse
|
24
|
Teratani T, Mikami Y, Kanai T. Neuroimmune crosstalk in the gut and liver. Int Immunol 2022; 34:475-484. [PMID: 35793533 DOI: 10.1093/intimm/dxac033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
It has long been assumed that the nervous system exerts distinct effects on immune functions, given the large number of immune disorders that are affected by mental stress. In fact, many different immune cells have been shown to possess a wide variety of neurotransmitter receptors and receive signals of various neurotransmitters, including acetylcholine and noradrenaline. Compared with the findings on local neuroimmune interactions, limited experimental techniques have so far failed to capture a comprehensive overview of neuroimmune interactions between distant organs and the autonomic nervous system in vivo, and the molecular mechanisms underlying local immune regulation of the nervous system have long remained unclear. However, the recent rapid progress in genetic recombination, microscopy and single-cell analysis has deepened our understanding of the anatomical and physiological functions of peripheral nerves at each organ to which they belong. Furthermore, the development of optogenetic and chemogenetic methods has enabled the artificial modulation of specific neuronal activities, and there has been remarkable progress in elucidation of the interaction between nerves and immune cells in vivo, particularly in barrier organs such as the gastrointestinal tract, respiratory tract and skin. This review focuses on the immunoregulatory mechanisms governed by the autonomic nervous system and outlines the latest findings in the regulation of enteric and hepatic immunity by the nervous system.
Collapse
Affiliation(s)
- Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
25
|
Owaki T, Kamimura K, Ko M, Nagayama I, Nagoya T, Shibata O, Oda C, Morita S, Kimura A, Sato T, Setsu T, Sakamaki A, Kamimura H, Yokoo T, Terai S. Involvement of the liver-gut peripheral neural axis in nonalcoholic fatty liver disease pathologies via hepatic HTR2A. Dis Model Mech 2022; 15:dmm049612. [PMID: 35765850 PMCID: PMC9346519 DOI: 10.1242/dmm.049612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Serotonin (5-HT) is one of the key bioamines of nonalcoholic fatty liver disease (NAFLD). Its mechanism of action in autonomic neural signal pathways remains unexplained; hence, we evaluated the involvement of 5-HT and related signaling pathways via autonomic nerves in NAFLD. Diet-induced NAFLD animal models were developed using wild-type and melanocortin 4 receptor (MC4R) knockout (MC4RKO) mice, and the effects of the autonomic neural axis on NAFLD physiology, 5-HT and its receptors (HTRs), and lipid metabolism-related genes were assessed by applying hepatic nerve blockade. Hepatic neural blockade retarded the progression of NAFLD by reducing 5-HT in the small intestine, hepatic HTR2A and hepatic lipogenic gene expression, and treatment with an HTR2A antagonist reproduced these effects. The effects were milder in MC4RKO mice, and brain 5-HT and HTR2C expression did not correlate with peripheral neural blockade. Our study demonstrates that the autonomic liver-gut neural axis is involved in the etiology of diet-induced NAFLD and that 5-HT and HTR2A are key factors, implying that the modulation of the axis and use of HTR2A antagonists are potentially novel therapeutic strategies for NAFLD treatment. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Takashi Owaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Department of General Medicine, Niigata University School of Medicine, Niigata 951-8510, Japan
| | - Masayoshi Ko
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Itsuo Nagayama
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Takuro Nagoya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Osamu Shibata
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Chiyumi Oda
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Shinichi Morita
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Atsushi Kimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Takeki Sato
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Toru Setsu
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Akira Sakamaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
26
|
Kohata M, Imai J, Izumi T, Yamamoto J, Kawana Y, Endo A, Sugawara H, Seiko J, Kubo H, Kawamura H, Sato T, Osaka S, Munakata Y, Asai Y, Kodama S, Takahashi K, Kaneko K, Katagiri H. Roles of FoxM1-driven basal β-cell proliferation in maintenance of β-cell mass and glucose tolerance during adulthood. J Diabetes Investig 2022; 13:1666-1676. [PMID: 35633298 PMCID: PMC9533047 DOI: 10.1111/jdi.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/12/2022] [Accepted: 05/26/2022] [Indexed: 12/03/2022] Open
Abstract
Aims/Introduction Whether basal β‐cell proliferation during adulthood is involved in maintaining sufficient β‐cell mass, and if so, the molecular mechanism(s) underlying basal β‐cell proliferation remain unclear. FoxM1 is a critical transcription factor which is known to play roles in ‘adaptive’ β‐cell proliferation, which facilitates rapid increases in β‐cell mass in response to increased insulin demands. Therefore, herein we focused on the roles of β‐cell FoxM1 in ‘basal’ β‐cell proliferation under normal conditions and in the maintenance of sufficient β‐cell mass as well as glucose homeostasis during adulthood. Materials and Methods FoxM1 deficiency was induced specifically in β‐cells of 8‐week‐old mice, followed by analyzing its short‐ (2 weeks) and long‐ (10 months) term effects on β‐cell proliferation, β‐cell mass, and glucose tolerance. Results FoxM1 deficiency suppressed β‐cell proliferation at both ages, indicating critical roles of FoxM1 in basal β‐cell proliferation throughout adulthood. While short‐term FoxM1 deficiency affected neither β‐cell mass nor glucose tolerance, long‐term FoxM1 deficiency suppressed β‐cell mass increases with impaired insulin secretion, thereby worsening glucose tolerance. In contrast, the insulin secretory function was not impaired in islets isolated from mice subjected to long‐term β‐cell FoxM1 deficiency. Therefore, β‐cell mass reduction is the primary cause of impaired insulin secretion and deterioration of glucose tolerance due to long‐term β‐cell FoxM1 deficiency. Conclusions Basal low‐level proliferation of β‐cells during adulthood is important for maintaining sufficient β‐cell mass and good glucose tolerance and β‐cell FoxM1 underlies this mechanism. Preserving β‐cell FoxM1 activity may prevent the impairment of glucose tolerance with advancing age.
Collapse
Affiliation(s)
- Masato Kohata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 980-8575, Japan
| | - Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 980-8575, Japan
| | - Tomohito Izumi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 980-8575, Japan
| | - June Yamamoto
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 980-8575, Japan
| | - Yohei Kawana
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 980-8575, Japan
| | - Akira Endo
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 980-8575, Japan
| | - Hiroto Sugawara
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 980-8575, Japan
| | - Juno Seiko
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 980-8575, Japan
| | - Hiroharu Kubo
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 980-8575, Japan
| | - Hiroshi Kawamura
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 980-8575, Japan
| | - Toshihiro Sato
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 980-8575, Japan
| | - Shinichiro Osaka
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 980-8575, Japan
| | - Yuichiro Munakata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 980-8575, Japan
| | - Yoichiro Asai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 980-8575, Japan
| | - Shinjiro Kodama
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 980-8575, Japan
| | - Kei Takahashi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 980-8575, Japan
| | - Keizo Kaneko
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 980-8575, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 980-8575, Japan
| |
Collapse
|
27
|
Moullé VS. Autonomic control of pancreatic beta cells: What is known on the regulation of insulin secretion and beta-cell proliferation in rodents and humans. Peptides 2022; 148:170709. [PMID: 34896576 DOI: 10.1016/j.peptides.2021.170709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022]
Abstract
Insulin secretion and pancreatic beta-cell proliferation are tightly regulated by several signals such as hormones, nutrients, and neurotransmitters. However, the autonomic control of beta cells is not fully understood. In this review, we describe mechanisms involved in insulin secretion as well as metabolic and mitogenic actions on its target tissues. Since pancreatic islets are physically connected to the brain by nerves, parasympathetic and sympathetic neurotransmitters can directly potentiate or repress insulin secretion and beta-cell proliferation. Finally, we highlight the role of the autonomic nervous system in metabolic diseases such as diabetes and obesity.
Collapse
|
28
|
Ono N, Azuma YT. [Recent topics on interorgan communication networks and gut microbiota]. Nihon Yakurigaku Zasshi 2022; 157:321-324. [PMID: 36047144 DOI: 10.1254/fpj.22038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The living body is composed of diverse organ systems, each of which has its own characteristic control mechanisms and complex in vivo responses. Between the brain and organs such as the heart, kidney, liver, pancreas, gastrointestinal tract, and even muscles, there is a sophisticated and complex regulatory system. Coordinated interactions through communication between organs are essential for maintaining health. In this review, we introduce four research trends in inter-organ networks, with a focus on the digestive system: 1) Inter-organ networks on metabolic systems, 2) Inter-organ networks originating from the gastrointestinal tract, 3) Intestinal bacteria, that is one of the biggest topics in recent years, 4) Research results on the involvement of gut microbiota in the inter-organ network between the kidney and the gastrointestinal tract. An integrated understanding and investigation of the regulatory mechanisms of inter-organ communication networks are expected to extend healthy life span and improve quality of life.
Collapse
Affiliation(s)
- Naoshige Ono
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science
| | - Yasu-Taka Azuma
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science
| |
Collapse
|
29
|
Hou X, Yang D, Yang G, Li M, Zhang J, Zhang J, Zhang Y, Liu Y. Therapeutic potential of vasoactive intestinal peptide and its receptor VPAC2 in type 2 diabetes. Front Endocrinol (Lausanne) 2022; 13:984198. [PMID: 36204104 PMCID: PMC9531956 DOI: 10.3389/fendo.2022.984198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Owing to the increasing prevalence of type 2 diabetes, the development of novel hypoglycemic drugs has become a research hotspot, with the ultimate goal of developing therapeutic drugs that stimulate glucose-induced insulin secretion without inducing hypoglycemia. Vasoactive intestinal peptide (VIP), a 28-amino-acid peptide, can stimulate glucose-dependent insulin secretion, particularly by binding to VPAC2 receptors. VIP also promotes islet β-cell proliferation through the forkhead box M1 pathway, but the specific molecular mechanism remains to be studied. The clinical application of VIP is limited because of its short half-life and wide distribution in the human body. Based on the binding properties of VIP and VPAC2 receptors, VPAC2-selective agonists have been developed to serve as novel hypoglycemic drugs. This review summarizes the physiological significance of VIP in glucose homeostasis and the potential therapeutic value of VPAC2-selective agonists in type 2 diabetes.
Collapse
Affiliation(s)
- Xintong Hou
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Dan Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Guimei Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Mengnan Li
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Jian Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Jiaxin Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yi Zhang, ; Yunfeng Liu,
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Yi Zhang, ; Yunfeng Liu,
| |
Collapse
|
30
|
Minamisawa M, Sato Y, Ishiguro E, Taniai T, Sakamoto T, Kawai G, Saito T, Saido TC. Amelioration of Alzheimer's Disease by Gut-Pancreas-Liver-Brain Interaction in an App Knock-In Mouse Model. Life (Basel) 2021; 12:34. [PMID: 35054427 PMCID: PMC8778338 DOI: 10.3390/life12010034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
In this study, we observed disease progression, changes in the gut microbiota, and interactions among the brain, liver, pancreas, and intestine in a mouse model of Alzheimer's disease (AD), in addition to attempting to inhibit disease progression through the dietary supplementation of L-arginine and limonoids. Wild-type mice (WC) and AD mice were fed a normal diet (AC), a diet supplemented with L-arginine and limonoids (ALA), or a diet containing only limonoids (AL) for 12-64 weeks. The normal diet-fed WC and AC mice showed a decrease in the diversity of the gut microbiota, with an increase in the Firmicutes/Bacteroidetes ratio, and bacterial translocation. Considerable bacterial translocation to the pancreas and intense inflammation of the pancreas, liver, brain, and intestinal tissues were observed in the AC mice from alterations in the gut microbiota. The ALA diet or AL diet-fed mice showed increased diversity of the bacterial flora and suppressed oxidative stress and inflammatory responses in hepatocytes and pancreatic cells, bacterial translocation, and neurodegeneration of the brain. These findings suggest that L-arginine and limonoids help in maintaining the homeostasis of the gut microbiota, pancreas, liver, brain, and gut in AD mice.
Collapse
Affiliation(s)
- Mayumi Minamisawa
- Department of Life Science, Chiba Institute of Technology, Graduate School of Advanced Engineering, Chiba 275-0016, Japan; (Y.S.); (T.S.); (G.K.)
- Education Center, Faculty of Advanced Engineering, Chiba Institute of Technology, Chiba 275-0023, Japan;
| | - Yuma Sato
- Department of Life Science, Chiba Institute of Technology, Graduate School of Advanced Engineering, Chiba 275-0016, Japan; (Y.S.); (T.S.); (G.K.)
| | | | - Tetsuyuki Taniai
- Education Center, Faculty of Advanced Engineering, Chiba Institute of Technology, Chiba 275-0023, Japan;
| | - Taiichi Sakamoto
- Department of Life Science, Chiba Institute of Technology, Graduate School of Advanced Engineering, Chiba 275-0016, Japan; (Y.S.); (T.S.); (G.K.)
| | - Gota Kawai
- Department of Life Science, Chiba Institute of Technology, Graduate School of Advanced Engineering, Chiba 275-0016, Japan; (Y.S.); (T.S.); (G.K.)
| | - Takashi Saito
- RIKEN Center for Brain Science, Laboratory for Proteolytic Neuroscience, Saitama 351-0198, Japan; (T.S.); (T.C.S.)
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Takaomi C. Saido
- RIKEN Center for Brain Science, Laboratory for Proteolytic Neuroscience, Saitama 351-0198, Japan; (T.S.); (T.C.S.)
| |
Collapse
|
31
|
Takahashi K, Mizukami H, Osonoi S, Takeuchi Y, Kudoh K, Sasaki T, Daimon M, Yagihashi S. Islet microangiopathy and augmented β-cell loss in Japanese non-obese type 2 diabetes patients who died of acute myocardial infarction. J Diabetes Investig 2021; 12:2149-2161. [PMID: 34032392 PMCID: PMC8668063 DOI: 10.1111/jdi.13601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
AIMS/INTRODUCTION Islets have microvessels that might develop pathological alterations similar to microangiopathy in type 2 diabetes patients. It remains unclear, however, whether the changes correlate with endocrine cell deficits or whether the presence of macroangiopathy influences the islet microvasculature in Japanese type 2 diabetes patients. In this study, we characterized changes of the islet microvessels and endocrine cells in Japanese non-obese patients with type 2 diabetes who died of acute myocardial infarction (AMI). MATERIALS AND METHODS Clinical profiles and islet pathology were examined for 35 diabetes patients who died of AMI (DM + AMI) and 13 diabetes patients who were free from AMI (DM). A total of 13 age-matched, individuals without diabetes who died of AMI and 16 individuals without diabetes who were free from AMI were also studied. Pancreata were subjected to morphometric evaluation of islets, including microvascular alterations of immunostained sections. RESULTS Body mass index in DM + AMI was comparable to those in DM. Compared with DM, DM + AMI showed greater glycated hemoglobin levels, higher prevalence of renal failure, hypertension, smaller β-cell volume density and greater amyloid area. DM + AMI showed an increased microvascular area and density compared with other groups. There was a significant increase in vascular basement membrane thickness and loss of pericytes in DM and DM + AMI compared with individuals without diabetes in each group, and the extent of thickening was correlated with the amyloid area and occurrence of β-cell loss in DM + AMI. CONCLUSIONS Islet microangiopathy was associated with augmented β-cell loss and amyloid deposition in non-obese Japanese type 2 diabetes patients who died of AMI.
Collapse
Affiliation(s)
- Kazuhisa Takahashi
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
- Department of Endocrinology and MetabolismHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
| | - Hiroki Mizukami
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
| | - Sho Osonoi
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
- Department of Endocrinology and MetabolismHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
| | - Yuki Takeuchi
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
- Department of Endocrinology and MetabolismHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
| | - Kazuhiro Kudoh
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
| | - Takanori Sasaki
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
| | - Makoto Daimon
- Department of Endocrinology and MetabolismHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
| | - Soroku Yagihashi
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
| |
Collapse
|
32
|
Sánchez-Archidona AR, Cruciani-Guglielmacci C, Roujeau C, Wigger L, Lallement J, Denom J, Barovic M, Kassis N, Mehl F, Weitz J, Distler M, Klose C, Simons K, Ibberson M, Solimena M, Magnan C, Thorens B. Plasma triacylglycerols are biomarkers of β-cell function in mice and humans. Mol Metab 2021; 54:101355. [PMID: 34634522 PMCID: PMC8602044 DOI: 10.1016/j.molmet.2021.101355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives To find plasma biomarkers prognostic of type 2 diabetes, which could also inform on pancreatic β-cell deregulations or defects in the function of insulin target tissues. Methods We conducted a systems biology approach to characterize the plasma lipidomes of C57Bl/6J, DBA/2J, and BALB/cJ mice under different nutritional conditions, as well as their pancreatic islet and liver transcriptomes. We searched for correlations between plasma lipids and tissue gene expression modules. Results We identified strong correlation between plasma triacylglycerols (TAGs) and islet gene modules that comprise key regulators of glucose- and lipid-regulated insulin secretion and of the insulin signaling pathway, the two top hits were Gck and Abhd6 for negative and positive correlations, respectively. Correlations were also found between sphingomyelins and islet gene modules that overlapped in part with the gene modules correlated with TAGs. In the liver, the gene module most strongly correlated with plasma TAGs was enriched in mRNAs encoding fatty acid and carnitine transporters as well as multiple enzymes of the β-oxidation pathway. In humans, plasma TAGs also correlated with the expression of several of the same key regulators of insulin secretion and the insulin signaling pathway identified in mice. This cross-species comparative analysis further led to the identification of PITPNC1 as a candidate regulator of glucose-stimulated insulin secretion. Conclusion TAGs emerge as biomarkers of a liver-to-β-cell axis that links hepatic β-oxidation to β-cell functional mass and insulin secretion. Plasma triacylglycerols correlated with genes controlling β-cell mass and function. Plasma triacylglycerols correlated with genes controlling liver β-oxidation. In humans, triacylglycerols also correlated with key regulators of insulin secretion. Mouse and human data identified PITPNC1 as a candidate regulator of insulin secretion. Triacylglycerols are biomarkers of the liver-to-β-cell axis and β-cell function.
Collapse
Affiliation(s)
- Ana Rodríguez Sánchez-Archidona
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland.
| | | | - Clara Roujeau
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Leonore Wigger
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland.
| | | | - Jessica Denom
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France.
| | - Marko Barovic
- Department of Molecular Diabetology, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany.
| | - Nadim Kassis
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France.
| | - Florence Mehl
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland.
| | - Jurgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital, TU Dresden, Dresden, Germany.
| | - Marius Distler
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital, TU Dresden, Dresden, Germany.
| | | | | | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland.
| | - Michele Solimena
- Department of Molecular Diabetology, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany.
| | | | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
33
|
Watada H. Inceptor intercepts insulin signaling in pancreatic β-cells. J Diabetes Investig 2021; 12:1540-1541. [PMID: 34008908 PMCID: PMC8409865 DOI: 10.1111/jdi.13596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Hirotaka Watada
- Department of Metabolism and EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
| |
Collapse
|
34
|
Lkhagvasuren B, Mee-Inta O, Zhao ZW, Hiramoto T, Boldbaatar D, Kuo YM. Pancreas-Brain Crosstalk. Front Neuroanat 2021; 15:691777. [PMID: 34354571 PMCID: PMC8329585 DOI: 10.3389/fnana.2021.691777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
The neural regulation of glucose homeostasis in normal and challenged conditions involves the modulation of pancreatic islet-cell function. Compromising the pancreas innervation causes islet autoimmunity in type 1 diabetes and islet cell dysfunction in type 2 diabetes. However, despite the richly innervated nature of the pancreas, islet innervation remains ill-defined. Here, we review the neuroanatomical and humoral basis of the cross-talk between the endocrine pancreas and autonomic and sensory neurons. Identifying the neurocircuitry and neurochemistry of the neuro-insular network would provide clues to neuromodulation-based approaches for the prevention and treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Battuvshin Lkhagvasuren
- Brain Science Institute, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Onanong Mee-Inta
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Zi-Wei Zhao
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Tetsuya Hiramoto
- Department of Psychosomatic Medicine, Fukuoka Hospital, National Hospital Organization, Fukuoka, Japan
| | - Damdindorj Boldbaatar
- Brain Science Institute, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Department of Cell Biology and Anatomy, National Cheng Kung University College of Medicine, Tainan, Taiwan
| |
Collapse
|
35
|
McEwan S, Kwon H, Tahiri A, Shanmugarajah N, Cai W, Ke J, Huang T, Belton A, Singh B, Wang L, Pang ZP, Dirice E, Engel EA, El Ouaamari A. Deconstructing the origins of sexual dimorphism in sensory modulation of pancreatic β cells. Mol Metab 2021; 53:101260. [PMID: 34023484 PMCID: PMC8258979 DOI: 10.1016/j.molmet.2021.101260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023] Open
Abstract
The regulation of glucose-stimulated insulin secretion and glucose excursion has a sensory component that operates in a sex-dependent manner. OBJECTIVE Here, we aim to dissect the basis of the sexually dimorphic interaction between sensory neurons and pancreatic β cells and its overall impact on insulin release and glucose homeostasis. METHODS We used viral retrograde tracing techniques, surgical and chemodenervation models, and primary cell-based co-culture systems to uncover the biology underlying sex differences in sensory modulation of pancreatic β-cell activity. RESULTS Retrograde transsynaptic labeling revealed a sex difference in the density of sensory innervation in the pancreas. The number of sensory neurons emanating from the dorsal root and nodose ganglia that project in the pancreas is higher in male than in female mice. Immunostaining and confocal laser scanning microscopy confirmed the higher abundance of peri-islet sensory axonal tracts in the male pancreas. Capsaicin-induced sensory chemodenervation concomitantly enhanced glucose-stimulated insulin secretion and glucose clearance in male mice. These metabolic benefits were blunted when mice were orchidectomized prior to the ablation of sensory nerves. Interestingly, orchidectomy also lowered the density of peri-islet sensory neurons. In female mice, capsaicin treatment did not affect glucose-induced insulin secretion nor glucose excursion and ovariectomy did not modify these outcomes. Interestingly, same- and opposite-sex sensory-islet co-culture paradigms unmasked the existence of potential gonadal hormone-independent mechanisms mediating the male-female difference in sensory modulation of islet β-cell activity. CONCLUSION Taken together, these data suggest that the sex-biased nature of the sensory control of islet β-cell activity is a result of a combination of neurodevelopmental inputs, sex hormone-dependent mechanisms and the potential action of somatic molecules encoded by the sex chromosome complement.
Collapse
Affiliation(s)
- Sara McEwan
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Hyokjoon Kwon
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Azeddine Tahiri
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Nivetha Shanmugarajah
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11568, USA
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11568, USA
| | - Jin Ke
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tianwen Huang
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ariana Belton
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Bhagat Singh
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Le Wang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Zhiping P. Pang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Ercument Dirice
- Department of Medicine and Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Esteban A. Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Abdelfattah El Ouaamari
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA,Corresponding author. Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
36
|
Imai J, Katagiri H. Regulation of systemic metabolism by the autonomic nervous system consisting of afferent and efferent innervation. Int Immunol 2021; 34:67-79. [PMID: 33982088 DOI: 10.1093/intimm/dxab023] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Autonomic nerves, sympathetic and parasympathetic, innervate organs and modulate their functions. It has become evident that afferent and efferent signals of the autonomic nervous system play important roles in regulating systemic metabolism, thereby maintaining homeostasis at the whole-body level. Vagal afferent nerves receive signals, such as nutrients and hormones, from the peripheral organs/tissues including the gastrointestinal tract and adipose tissue then transmit these signals to the hypothalamus, thereby regulating feeding behavior. In addition to roles in controlling appetite, areas in the hypothalamus serves as regulatory centers of both sympathetic and parasympathetic efferent fibers. These efferent innervations regulate the functions of peripheral organs/tissues, such as pancreatic islets, adipose tissues and the liver, which play roles in metabolic regulation. Furthermore, recent evidence has unraveled the metabolic regulatory systems governed by autonomic nerve circuits. In these systems, afferent nerves transmit metabolic information from peripheral organs to the central nervous system (CNS) and the CNS thereby regulates the organ functions through the efferent fibers of autonomic nerves. Thus, the autonomic nervous system regulates the homeostasis of systemic metabolism, and both afferent and efferent fibers play critical roles in its regulation. In addition, several lines of evidence demonstrate the roles of the autonomic nervous system in regulating and dysregulating the immune system. This review introduces variety of neuron-mediated inter-organ cross-talk systems and organizes the current knowledge of autonomic control/coordination of systemic metabolism, focusing especially on a liver-brain-pancreatic β-cell autonomic nerve circuit, as well as highlighting the potential importance of connections with the neuronal and immune systems.
Collapse
Affiliation(s)
- Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
37
|
The extracellular volume fraction of the pancreas measured by dual-energy computed tomography: The association with impaired glucose tolerance. Eur J Radiol 2021; 141:109775. [PMID: 34020172 DOI: 10.1016/j.ejrad.2021.109775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 11/21/2022]
Abstract
PURPOSE To investigate the clinical value of measuring the ECV fraction of the pancreas by DECT in association with an impaired glucose tolerance (IGT) estimated by the hemoglobin A1C (HbA1C) value in patients with or without cirrhosis. MATERIALS AND METHODS This retrospective study included patients who underwent contrast-enhanced dynamic CT with dual-energy mode between March 2018 and February 2019. The ECV fraction of the pancreas was calculated from iodine map images created from equilibrium-phase contrast-enhanced DECT images. The cross-sectional areas of the pancreas were also measured. RESULTS In total, 51 patients were analyzed (median age, 69 years old; 22 women). The ECV fraction of the pancreas showed a significant negative correlation with the HbA1c value in the cirrhotic group (ρ=-0.346, p = 0.048), while there was no significant correlation in the non-cirrhotic group (ρ=-0.086, p = 0.734). In the elevated HbA1C group, the ECV fraction of the pancreas in the cirrhotic patients (median, 0.247; interquartile range [IQR], 0.098) was significantly lower than that in the non-cirrhotic patients (0.332, IQR 0.113) (p = 0.024). In the elevated HbA1C group, the cross-sectional area of the pancreas was significantly larger in the cirrhotic patients than that in the non-cirrhotic patients (median [IQR]; 2945 [904] vs. 1885 [909] mm2, p = 0.019). CONCLUSION A reduction in the ECV fraction of the pancreas measured by DECT as well as the enlargement of the pancreatic parenchyma was observed in cirrhotic patients with IGT. These findings suggest that the measurement of the pancreatic ECV fraction by DECT may help clarify the pathophysiology of IGT in patients with cirrhosis.
Collapse
|
38
|
Wei R, Zhuge X, Yue P, Liu M, Zhu L, Liu J, Xia C. Effect of hepatic sympathetic nerve removal on energy metabolism in an animal model of cognitive impairment and its relationship to Glut2 expression. Open Life Sci 2021; 15:311-317. [PMID: 33817219 PMCID: PMC7874542 DOI: 10.1515/biol-2020-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/25/2020] [Accepted: 03/19/2020] [Indexed: 01/14/2023] Open
Abstract
The aims of this study were to investigate the effect of hepatic sympathetic nerve removal on glucose and lipid metabolism in rats with cognitive impairment and to evaluate the relationship between these effects and liver Glut2 expression. Hippocampal injection of Aβ1–42 was used to induce cognitive impairment. Impaired rats were divided into experimental, sham, and control groups. The experimental group was injected with 6-hydroxydopamine to remove the sympathetic nerve. At 4 weeks post injection, body weight, food and water intake, blood sugar, and blood lipids were measured, and periodic acid-Schiff (PAS) staining was used to assess the liver glycogen content. Liver Glut2 mRNA and protein were also detected. The experimental group showed reduced body weight, food intake, and blood glucose levels and elevated insulin levels compared with the control group. PAS staining showed higher glycogen contents in the experimental group than in controls. The expression levels of Glut2 mRNA and protein in the experimental group were significantly lower than in the controls. Metabolism was significantly impacted in rats with cognitive impairment following removal of the hepatic sympathetic nerve. Disruption to Glut2 liver expression via sympathetic nerve disruption represents a possible underlying mechanism.
Collapse
Affiliation(s)
- Riming Wei
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi, 541004, China
| | - Xiuhong Zhuge
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541004, China
| | - Pengpeng Yue
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi, 541004, China
| | - Manjun Liu
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541004, China
| | - Lin Zhu
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541004, China
| | - Jianxiang Liu
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi, 541004, China
| | - Chunbo Xia
- Department of Human Anatomy of Basic Medical College, Guilin Medical University, Guilin, Guangxi, 541004, China
| |
Collapse
|
39
|
Ko M, Kamimura K, Owaki T, Nagoya T, Sakai N, Nagayama I, Niwa Y, Shibata O, Oda C, Morita S, Kimura A, Inoue R, Setsu T, Sakamaki A, Yokoo T, Terai S. Modulation of serotonin in the gut-liver neural axis ameliorates the fatty and fibrotic changes in non-alcoholic fatty liver. Dis Model Mech 2021; 14:dmm048922. [PMID: 33787507 PMCID: PMC8084356 DOI: 10.1242/dmm.048922] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
The etiology of non-alcoholic fatty liver disease (NAFLD) consists of various factors, including neural signal pathways. However, the molecular mechanisms of the autonomic neural signals influencing NAFLD progression have not been elucidated. Therefore, we examined the involvement of the gut-liver neural axis in NAFLD development and tested the therapeutic effect of modulation of this axis in this study. To test the contribution of the gut-liver neural axis, we examined NAFLD progression with respect to body weight, hepatic steatosis, fibrosis, intestinal tight junction, microbiota and short-chain fatty acids in NAFLD models of choline-deficient defined L-amino-acid and high-fat diet-fed mice with or without blockades of autonomic nerves from the liver. Blockade of the neural signal from the liver to the gut in these NAFLD mice models ameliorated the progression of liver weight, hepatic steatosis and fibrosis by modulating serotonin expression in the small intestine. It was related to the severity of the liver pathology, the tight junction protein expression, microbiota diversity and short-chain fatty acids. These effects were reproduced by administrating serotonin antagonist, which ameliorated the NAFLD progression in the NAFLD mice models. Our study demonstrated that the gut-liver neural axis is involved in the etiologies of NAFLD progression and that serotonin expression through this signaling network is the key factor of this axis. Therefore, modulation of the gut-liver neural axis and serotonin antagonist ameliorates fatty and fibrotic changes in non-alcoholic fatty liver, and can be a potential therapeutic target of NAFLD.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Masayoshi Ko
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
- Department of General Medicine, Niigata University School of Medicine, Niigata, 951-8510, Japan
| | - Takashi Owaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Takuro Nagoya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Norihiro Sakai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Itsuo Nagayama
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Yusuke Niwa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Osamu Shibata
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Chiyumi Oda
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Shinichi Morita
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Atsushi Kimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Ryosuke Inoue
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Toru Setsu
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Akira Sakamaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| |
Collapse
|
40
|
Zmazek J, Klemen MS, Markovič R, Dolenšek J, Marhl M, Stožer A, Gosak M. Assessing Different Temporal Scales of Calcium Dynamics in Networks of Beta Cell Populations. Front Physiol 2021; 12:612233. [PMID: 33833686 PMCID: PMC8021717 DOI: 10.3389/fphys.2021.612233] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/26/2021] [Indexed: 01/06/2023] Open
Abstract
Beta cells within the pancreatic islets of Langerhans respond to stimulation with coherent oscillations of membrane potential and intracellular calcium concentration that presumably drive the pulsatile exocytosis of insulin. Their rhythmic activity is multimodal, resulting from networked feedback interactions of various oscillatory subsystems, such as the glycolytic, mitochondrial, and electrical/calcium components. How these oscillatory modules interact and affect the collective cellular activity, which is a prerequisite for proper hormone release, is incompletely understood. In the present work, we combined advanced confocal Ca2+ imaging in fresh mouse pancreas tissue slices with time series analysis and network science approaches to unveil the glucose-dependent characteristics of different oscillatory components on both the intra- and inter-cellular level. Our results reveal an interrelationship between the metabolically driven low-frequency component and the electrically driven high-frequency component, with the latter exhibiting the highest bursting rates around the peaks of the slow component and the lowest around the nadirs. Moreover, the activity, as well as the average synchronicity of the fast component, considerably increased with increasing stimulatory glucose concentration, whereas the stimulation level did not affect any of these parameters in the slow component domain. Remarkably, in both dynamical components, the average correlation decreased similarly with intercellular distance, which implies that intercellular communication affects the synchronicity of both types of oscillations. To explore the intra-islet synchronization patterns in more detail, we constructed functional connectivity maps. The subsequent comparison of network characteristics of different oscillatory components showed more locally clustered and segregated networks of fast oscillatory activity, while the slow oscillations were more global, resulting in several long-range connections and a more cohesive structure. Besides the structural differences, we found a relatively weak relationship between the fast and slow network layer, which suggests that different synchronization mechanisms shape the collective cellular activity in islets, a finding which has to be kept in mind in future studies employing different oscillations for constructing networks.
Collapse
Affiliation(s)
- Jan Zmazek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | | | - Rene Markovič
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Education, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
41
|
Gao R, Fu Q, Jiang HM, Shen M, Zhao RL, Qian Y, He YQ, Xu KF, Xu XY, Chen H, Zhang Q, Yang T. Temporal metabolic and transcriptomic characteristics crossing islets and liver reveal dynamic pathophysiology in diet-induced diabetes. iScience 2021; 24:102265. [PMID: 33817571 PMCID: PMC8008187 DOI: 10.1016/j.isci.2021.102265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/30/2020] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
To investigate the molecular mechanisms underlying islet dysfunction and insulin resistance in diet-induced diabetes, we conducted temporal RNA sequencing of tissues responsible for insulin secretion (islets) and action (liver) every 4 weeks in mice on high-fat (HFD) or chow diet for 24 weeks, linking to longitudinal profile of metabolic characteristics. The diverse responses of α, β, and δ cells to glucose and palmitate indicated HFD-induced dynamic deterioration of islet function from dysregulation to failure. Insulin resistance developed with variable time course in different tissues. Weighted gene co-expression network analysis and Ingenuity Pathway Analysis implicated islets and liver jointly programmed β-cell compensatory adaption via cell proliferation at early phase and irreversible islet dysfunction by inappropriate immune response at later stage, and identified interconnected molecules including growth differentiation factor 15. Frequencies of T cell subpopulation showed an early decrement in Tregs followed by increases in Th1 and Th17 cells during progression to diabetes.
Collapse
Affiliation(s)
- Rui Gao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.,Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX37LE, UK
| | - Qi Fu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - He-Min Jiang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Min Shen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Rui-Ling Zhao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yu Qian
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yun-Qiang He
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Kuan-Feng Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin-Yu Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Heng Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX37LE, UK
| | - Tao Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
42
|
Metabolic Effect of the Hepatic Branch of the Vagal Nerve in One-Anastomosis Gastric Bypass (OAGB). World J Surg 2021; 44:1939-1944. [PMID: 32020329 DOI: 10.1007/s00268-020-05405-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Bariatric surgery is often performed not only to lose weight, but also to improve obesity-related comorbidities. A certain metabolic effect of the bariatric techniques has been demonstrated, as the improvement or even remission of comorbidities is patent, before having lost a relevant amount of weight. The autonomic innervation of diverse viscera by the vagus nerve has been hypothesized to participate in it. We aimed to evaluate the ponderal and metabolic impact of the preservation of the hepatic branch of the vagus in type 2 diabetic (T2D) patients undergoing one-anastomosis gastric bypass (OAGB). PATIENTS AND METHODS We conducted a prospective study on patients with a preoperative diagnosis of morbid obesity and T2D, who underwent an OAGB. Preservation of the hepatic branch of the vagus was carried out in the first 14 patients (Group 1), whereas in another 14 patients it was sectioned. Ponderal and metabolic outcomes were assessed 1 and 2 years after surgery. RESULTS The length of the biliary limb was 210 cm in both groups. Postoperative BMI or excess BMI loss was not significantly different between groups. The patients included in Group 1 showed a statistically greater improvement in glycemic and lipid variables. CONCLUSION The preservation of the hepatic branch of the vagus in an OAGB leads to more favorable postoperative glycemic and lipid profiles.
Collapse
|
43
|
Imai J. Regulation of Adaptive Cell Proliferation by Vagal Nerve Signals for Maintenance of Whole-Body Homeostasis: Potential Therapeutic Target for Insulin-Deficient Diabetes. TOHOKU J EXP MED 2021; 254:245-252. [PMID: 34373421 DOI: 10.1620/tjem.254.245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In insulin-resistant states such as obesity, pancreatic β-cells proliferate to prevent blood glucose elevations. Failure of this β-cells proliferative response leads to the development of diabetes. On the other hand, when organs are damaged, cells proliferate to repair the organs. Therefore, these proliferations are compensatory mechanisms aimed at maintaining whole-body homeostasis. We previously discovered vagal signal-mediated systems regulating adaptive proliferation of β-cells and hepatocytes. Neuron-mediated liver-β-cell inter-organ crosstalk is involved in promotion of β-cell proliferation during obesity, and in this system, vagal signals directly stimulate β-cell proliferation. Meanwhile, in the liver, the multi-step mechanisms whereby vagal nerve signals activate hepatic resident macrophages are involved in hepatocyte proliferation after severe injury. Diabetes mellitus develops on the pathological basis of insufficient insulin action. Insulin action insufficiency is attributable to insulin resistance, i.e., the failure of insulin to exert sufficient effects, and/or to impairment of insulin secretion. Impairment of insulin secretion is attributable not only to the β-cell dysfunction but also to functional β-cell mass reduction. In this regard, there are already therapeutic options to increase insulin secretion from residual β-cells, such as sulfonyl urea and incretin-related drugs. In contrast, there are as yet no applicable therapeutic strategies to increase functional β-cell mass in vivo. Therefore, we have conducted the basic investigations to tackle this issue based on the discovery of neuron-mediated liver-β-cell inter-organ crosstalk. This review introduces vagal signal-mediated regulatory systems of adaptive cell proliferation in vivo and efforts to develop cell-increasing therapies based on vagal nerve-mediated cell proliferation.
Collapse
Affiliation(s)
- Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine
| |
Collapse
|
44
|
Lin EE, Scott-Solomon E, Kuruvilla R. Peripheral Innervation in the Regulation of Glucose Homeostasis. Trends Neurosci 2020; 44:189-202. [PMID: 33229051 DOI: 10.1016/j.tins.2020.10.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Precise regulation of circulating glucose is crucial for human health and ensures a sufficient supply to the brain, which relies almost exclusively on glucose for metabolic energy. Glucose homeostasis is coordinated by hormone-secreting endocrine cells in the pancreas, as well as glucose utilization and production in peripheral metabolic tissues including the liver, muscle, and adipose tissue. Glucose-regulatory tissues receive dense innervation from sympathetic, parasympathetic, and sensory fibers. In this review, we summarize the functions of peripheral nerves in glucose regulation and metabolism. Dynamic changes in peripheral innervation have also been observed in animal models of obesity and diabetes. Together, these studies highlight the importance of peripheral nerves as a new therapeutic target for metabolic disorders.
Collapse
Affiliation(s)
- Eugene E Lin
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
45
|
Guo D, Mizukami H, Osonoi S, Takahashi K, Ogasawara S, Kudo K, Sasaki T, Yagihashi S. Beneficial effects of combination therapy of canagliflozin and teneligliptin on diabetic polyneuropathy and β-cell volume density in spontaneously type 2 diabetic Goto-Kakizaki rats. Metabolism 2020; 107:154232. [PMID: 32302619 DOI: 10.1016/j.metabol.2020.154232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/04/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022]
Abstract
AIMS Parasympathetic nerve (PN) signaling plays a crucial role in the maintenance of pancreatic β-cell volume density (Vβ). PN may be pathologically affected in diabetic polyneuropathy (DPN). However, the association between the reduction of PNs in islets and Vβ and the therapeutic effects of a DPP4 inhibitor (DPP4i) and an SGLT2 inhibitor (SGLT2i) in nonobese type 2 diabetes mellitus (T2DM) Goto-Kakizaki rats (GK) have not been investigated. MATERIALS AND METHODS We divided 5-week old male GK and Wistar rats (W) into a DPP4i-treated group (GKTe), SGLT2i-treated group (GKCa), and combination-treated group (GKCaTe). After 25 weeks, the pancreata was pathologically evaluated. RESULTS Vβ in GK was significantly decreased (p < 0.01 vs. W), whereas Vβ was the most well preserved in GKCaTe (p < 0.05 vs. GKTe), followed by GKTe (p < 0.05 vs. GK). The decreased amount of PNs in the islets and intraepidermal nerve fiber density (IENFD) in GK was significantly improved in the treated groups compared with GK (p < 0.05 vs. GKCa and GKTe and p < 0.01 vs. GKCaTe). PN density and IENFD were significantly correlated with Vβ (r = 0.55, p < 0.01 and r = 0.54, p < 0.01, respectively). IENFD was identified as a surrogate marker for the prediction of Vβ (cutoff value, 16.39). CONCLUSIONS The combination therapy of DPP4i and SGLT2i improved Vβ accompanied by PNs density and IENFD. IENFD was proportionally correlated with Vβ. Therefore, the prevention of DPN development may be concurrently beneficial for the preservation of Vβ in nonobese T2DM.
Collapse
Affiliation(s)
- Danyang Guo
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.
| | - Sho Osonoi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Kazuhisa Takahashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Saori Ogasawara
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Kazuhiro Kudo
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Takanori Sasaki
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Soroku Yagihashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
46
|
Kakutani-Hatayama M, Kadoya M, Morimoto A, Miyoshi A, Kosaka-Hamamoto K, Kusunoki Y, Shoji T, Koyama H. Associations of sleep quality, sleep apnea and autonomic function with insulin secretion and sensitivity: HSCAA study. Metabol Open 2020; 6:100033. [PMID: 32812920 PMCID: PMC7424809 DOI: 10.1016/j.metop.2020.100033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 01/23/2023] Open
Abstract
RATIONALE AND PURPOSE Although sleep disorders are shown to be involved in occurrence of diabetes, impacts of several quantitative parameters related to sleep on insulin secretion and sensitivity is yet to be elucidated. We cross-sectionally examined relationships among quantitative sleep quality, sleep apnea, and autonomic function with insulin secretion and sensitivity in 399 patients without previous diagnosed diabetes who underwent 75-g oral glucose tolerance test (75gOGTT). METHOD Poor sleep quality (PSQ) was defined as an activity index ≥50 by actigraphy. Sleep apnea was measured by apnomonitor, while standard deviation of all normal-to-normal R-R intervals (SDNN) was measured by active tracer. Parameters of insulin secretion and sensitivity were measured by 75gOGTT. RESULTS Patients with PSQ exhibited significantly lower insulinogenic index (r = 0.155, p < 0.01), a parameter of insulin secretion, with the association independent of other clinical factors including apnea and SDNN (β = -0.156, p < 0.01). In contrast, presence of sleep apnea (r = -0.143, p < 0.05) and the lower SDNN (r = -0.150, p < 0.01) were significantly and inversely associated with BIGTT-S, an insulin sensitivity parameter, with the association of SDNN with BIGTT-S remaining significant even after adjustments for PSQ and sleep apnea (β = -0.111, p < 0.05). CONCLUSION Poor sleep quality is an independent predictor of pancreatic β-cell function, which could be involved in occurrence of type 2 diabetes.
Collapse
Affiliation(s)
- Miki Kakutani-Hatayama
- Division of Diabetes, Endocrinology and Clinical Immunology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Manabu Kadoya
- Division of Diabetes, Endocrinology and Clinical Immunology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Akiko Morimoto
- Division of Diabetes, Endocrinology and Clinical Immunology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Akio Miyoshi
- Division of Diabetes, Endocrinology and Clinical Immunology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Kae Kosaka-Hamamoto
- Division of Diabetes, Endocrinology and Clinical Immunology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Yoshiki Kusunoki
- Division of Diabetes, Endocrinology and Clinical Immunology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Takuhito Shoji
- Division of Diabetes, Endocrinology and Clinical Immunology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Hidenori Koyama
- Division of Diabetes, Endocrinology and Clinical Immunology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| |
Collapse
|
47
|
Nagoya T, Kamimura K, Inoue R, Ko M, Owaki T, Niwa Y, Sakai N, Setsu T, Sakamaki A, Yokoo T, Kamimura H, Nakamura Y, Ueno M, Terai S. Ghrelin-insulin-like growth factor-1 axis is activated via autonomic neural circuits in the non-alcoholic fatty liver disease. Neurogastroenterol Motil 2020; 32:e13799. [PMID: 31984635 DOI: 10.1111/nmo.13799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The correlation of the growth hormone (GH) and insulin-like growth factor-1 (IGF-1) with non-alcoholic fatty liver disease (NAFLD) has been reported in epidemiological studies. However, the mechanisms of molecular and inter-organ systems that render these factors to influence on NAFLD have not been elucidated. In this study, we examined the induction of ghrelin which is the GH-releasing hormone and IGF-1, and involvement of autonomic neural circuits, in the pathogenesis of NAFLD. METHODS The expression of gastric and hypothalamic ghrelin, neural activation in the brain, and serum IGF-1 were examined in NAFLD models of choline-deficient defined l-amino-acid diet-fed, melanocortin 4 receptor knockout mice, and partial hepatectomy mice with or without the blockades of autonomic nerves to test the contribution of neural circuits connecting the brain, liver, and stomach. KEY RESULTS The fatty changes in the liver increased the expression of gastric ghrelin through the autonomic pathways which sends the neural signals to the arcuate nucleus in the hypothalamus through the afferent vagal nerve which reached the pituitary gland to release GH and then stimulate the IGF-1 release from the liver. In addition, high levels of ghrelin expression in the arcuate nucleus were correlated with NAFLD progression regardless of the circuits. CONCLUSIONS Our study demonstrated that the fatty liver stimulates the autonomic nervous signal circuits which suppress the progression of the disease by activating the gastric ghrelin expression, the neural signal transduction in the brain, and the release of IGF-1 from the liver.
Collapse
Affiliation(s)
- Takuro Nagoya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Ryosuke Inoue
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masayoshi Ko
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takashi Owaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yusuke Niwa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Norihiro Sakai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Toru Setsu
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Akira Sakamaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yuka Nakamura
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
48
|
Seo JA, Kang MC, Yang WM, Hwang WM, Kim SS, Hong SH, Heo JI, Vijyakumar A, Pereira de Moura L, Uner A, Huang H, Lee SH, Lima IS, Park KS, Kim MS, Dagon Y, Willnow TE, Aroda V, Ciaraldi TP, Henry RR, Kim YB. Apolipoprotein J is a hepatokine regulating muscle glucose metabolism and insulin sensitivity. Nat Commun 2020; 11:2024. [PMID: 32332780 PMCID: PMC7181874 DOI: 10.1038/s41467-020-15963-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/02/2020] [Indexed: 12/24/2022] Open
Abstract
Crosstalk between liver and skeletal muscle is vital for glucose homeostasis. Hepatokines, liver-derived proteins that play an important role in regulating muscle metabolism, are important to this communication. Here we identify apolipoprotein J (ApoJ) as a novel hepatokine targeting muscle glucose metabolism and insulin sensitivity through a low-density lipoprotein receptor-related protein-2 (LRP2)-dependent mechanism, coupled with the insulin receptor (IR) signaling cascade. In muscle, LRP2 is necessary for insulin-dependent IR internalization, an initial trigger for insulin signaling, that is crucial in regulating downstream signaling and glucose uptake. Of physiologic significance, deletion of hepatic ApoJ or muscle LRP2 causes insulin resistance and glucose intolerance. In patients with polycystic ovary syndrome and insulin resistance, pioglitazone-induced improvement of insulin action is associated with an increase in muscle ApoJ and LRP2 expression. Thus, the ApoJ-LRP2 axis is a novel endocrine circuit that is central to the maintenance of normal glucose homeostasis and insulin sensitivity. Hepatokines are proteins secreted by the liver that can regulate whole body metabolism. Here the authors identify apolipoprotein J as a hepatokine that regulates muscle glucose metabolism and insulin resistance through a low-density lipoprotein receptor-related protein−2 mediated mechanism in mice.
Collapse
Affiliation(s)
- Ji A Seo
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Division of Endocrinology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Min-Cheol Kang
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
| | - Won-Mo Yang
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Won Min Hwang
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Division of Nephrology, Department of Internal Medicine, College of Medicine, Konyang University, Daejeon, Korea
| | - Sang Soo Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Soo Hyun Hong
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Columbia University, New York, NY, USA
| | - Jee-In Heo
- Division of Endocrinology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Achana Vijyakumar
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Leandro Pereira de Moura
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,School of Applied Science, University of Campinas, Limeira, Brazil
| | - Aykut Uner
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Hu Huang
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,East Carolina University, East Carolina Diabetes and Obesity Institute, Greenville, NC, USA
| | - Seung Hwan Lee
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Inês S Lima
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.,Universidade Nova de Lisboa, Lisboa, Portugal
| | - Kyong Soo Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Min Seon Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Yossi Dagon
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Thomas E Willnow
- Molecular Cardiovascular Research, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Vanita Aroda
- Veterans Affairs San Diego Healthcare System (9111 G), San Diego, CA, 92161, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.,Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Theodore P Ciaraldi
- Veterans Affairs San Diego Healthcare System (9111 G), San Diego, CA, 92161, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Robert R Henry
- Veterans Affairs San Diego Healthcare System (9111 G), San Diego, CA, 92161, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Imai J. β-Cell senescence in the pathogenesis of type 2 diabetes. J Diabetes Investig 2020; 11:284-286. [PMID: 31618527 PMCID: PMC7078132 DOI: 10.1111/jdi.13162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022] Open
Abstract
The prevalence of type 2 diabetes increases with aging, and the type 2 diabetes developing in the elderly is often accompanied by a gradual impairment of β-cell function and reduced β-cell mass along with aging. However, the contribution of β-cell senescence to the pathogenesis of type 2 diabetes remains uncertain. In a recent Cell Metabolism article, Aguayo-Mazzucato et al. described their efforts to identify the signatures of senescent β-cells, and explored the role(s) of senescent β-cells in type 2 diabetes.
Collapse
Affiliation(s)
- Junta Imai
- Department of Metabolism and DiabetesTohoku University Graduate School of MedicineSendaiMiyagiJapan
| |
Collapse
|
50
|
Liver Soluble Epoxide Hydrolase Regulates Behavioral and Cellular Effects of Chronic Stress. Cell Rep 2019; 29:3223-3234.e6. [DOI: 10.1016/j.celrep.2019.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/02/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022] Open
|