1
|
Raj A, Torok J, Ranasinghe K. Understanding the complex interplay between tau, amyloid and the network in the spatiotemporal progression of Alzheimer's disease. Prog Neurobiol 2025; 249:102750. [PMID: 40107380 DOI: 10.1016/j.pneurobio.2025.102750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/24/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION The interaction of amyloid and tau in neurodegenerative diseases is a central feature of AD pathophysiology. While experimental studies point to various interaction mechanisms, their causal direction and mode (local, remote or network-mediated) remain unknown in human subjects. The aim of this study was to compare mathematical reaction-diffusion models encoding distinct cross-species couplings to identify which interactions were key to model success. METHODS We tested competing mathematical models of network spread, aggregation, and amyloid-tau interactions on publicly available data from ADNI. RESULTS Although network spread models captured the spatiotemporal evolution of tau and amyloid in human subjects, the model including a one-way amyloid-to-tau aggregation interaction performed best. DISCUSSION This mathematical exposition of the "pas de deux" of co-evolving proteins provides quantitative, whole-brain support to the concept of amyloid-facilitated-tauopathy rather than the classic amyloid-cascade or pure-tau hypotheses, and helps explain certain known but poorly understood aspects of AD.
Collapse
Affiliation(s)
- Ashish Raj
- Department of Radiology, University of California at San Francisco, USA; Bakar Computational Health Sciences Institute, UCSF, USA.
| | - Justin Torok
- Department of Radiology, University of California at San Francisco, USA
| | - Kamalini Ranasinghe
- The Memory and Aging Center, Department of Neurology, University of California at San Francisco, USA
| |
Collapse
|
2
|
Tucker DM, Luu P, Friston KJ. Adaptive consolidation of active inference: excitatory and inhibitory mechanisms for organizing feedforward and feedback memory systems in sleep. Cereb Cortex 2025; 35:bhaf122. [PMID: 40422982 DOI: 10.1093/cercor/bhaf122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/28/2025] Open
Abstract
Cognitive self-organization rests on activity-dependent plasticity to extend the ontogenetic process of neural differentiation and integration of the cerebral cortex in each act of cognition. This account of neurocognitive growth can be formulated in terms of active inference and learning. The organism regulates synaptic connectivity as it seeks its goals actively, through excitatory, feedforward expectancies that manifest its species-specific affordances. These adaptive expectancies are modified reactively, through inhibitory feedback error-correction to fit and predict environmental encounters. Although adaptive behavior, and concomitant synaptic plasticity, occur during waking, the synaptic architecture requires ongoing consolidation and refinement during sleep. We propose that memory consolidation during sleep is a continuation of the neurodevelopmental process that proceeds through a kind of inversion of waking active inference: NREM sleep first refines the brain's representations of new, unpredicted experiences during waking, implementing inhibitory mechanisms of long-term depression that both differentiate and stabilize new representations for consolidation. REM sleep then updates the organism's generative world model in light of this new learning through excitatory long-term potentiation of synaptic plasticity. REM thereby reconsolidates and integrates the organism's adaptive, feedforward predictions, the Bayesian priors for effective coping.
Collapse
Affiliation(s)
- Don M Tucker
- Brain Electrophysiology Laboratory Company, 440 E. Broadway, Eugene, OR 97401, United States
- Department of Psychology, University of Oregon, Eugene, OR 97403, United States
| | - Phan Luu
- Brain Electrophysiology Laboratory Company, 440 E. Broadway, Eugene, OR 97401, United States
- Department of Psychology, University of Oregon, Eugene, OR 97403, United States
| | - Karl J Friston
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London WC1N 3AR, United Kingdom
- VERSES AI Research Lab, Los Angeles, CA 90016, United States
| |
Collapse
|
3
|
Fei L, Liang Y, Kintscher U, Sigrist SJ. Coupling of mitochondrial state with active zone plasticity in early brain aging. Redox Biol 2025; 79:103454. [PMID: 39642596 PMCID: PMC11666929 DOI: 10.1016/j.redox.2024.103454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
Neurodegenerative diseases typically emerge after an extended prodromal period, underscoring the critical importance of initiating interventions during the early stages of brain aging to enhance later resilience. Changes in presynaptic active zone proteins ("PreScale") are considered a dynamic, resilience-enhancing form of plasticity in the process of early, still reversible aging of the Drosophila brain. Aging, however, triggers significant changes not only of synapses but also mitochondria. While the two organelles are spaced in close proximity, likely reflecting a direct functional coupling in regard to ATP and Ca2+ homeostasis, the exact modes of coupling in the aging process remain to understood. We here show that genetic manipulations of mitochondrial functional status, which alters brain oxidative phosphorylation, ATP levels, or the production of reactive oxygen species (ROS), can bidirectionally regulate PreScale during early Drosophila brain aging. Conversely, genetic mimicry of PreScale resulted in decreased oxidative phosphorylation and ATP production, potentially due to reduced mitochondrial calcium (Ca2+) import. Our findings indicate the existence of a positive feedback loop where mitochondrial functional state and PreScale are reciprocally coupled to optimize protection during the early stages of brain aging.
Collapse
Affiliation(s)
- Lu Fei
- Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany
| | - Yongtian Liang
- Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätmedizin Berlin, 10117, Berlin, Germany
| | - Ulrich Kintscher
- Institute of Pharmacology, Center for Cardiovascular Research, Charité Universitätmedizin Berlin, 10115, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), partner site Berlin, 10117, Berlin, Germany
| | - Stephan J Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätmedizin Berlin, 10117, Berlin, Germany.
| |
Collapse
|
4
|
Inami S, Koh K. Sleep induced by mechanosensory stimulation provides cognitive and health benefits in Drosophila. Sleep 2024; 47:zsae226. [PMID: 39331490 DOI: 10.1093/sleep/zsae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/08/2024] [Indexed: 09/29/2024] Open
Abstract
STUDY OBJECTIVES Sleep is a complex phenomenon regulated by various factors, including sensory input. Anecdotal observations have suggested that gentle rocking helps babies fall asleep, and experimental studies have verified that rocking promotes sleep in both humans and mice. Recent studies have expanded this understanding, demonstrating that gentle vibration also induces sleep in Drosophila. Natural sleep serves multiple functions, including learning and memory, synaptic downscaling, and reduction of harmful substances associated with neurodegenerative diseases. Here, we investigated whether vibration-induced sleep (VIS) provides similar cognitive and health benefits in Drosophila. METHODS We administered gentle vibration to flies that slept very little due to a forced activation of wake-promoting neurons and investigated how the vibration influenced learning and memory in the courtship conditioning paradigm. Additionally, we examined the effects of VIS on synaptic downscaling by counting synaptic varicosities of select neurons. Finally, we determined whether vibration could induce sleep in Drosophila models of Alzheimer's disease (AD) and suppress the accumulation of Amyloid β (Aβ) and Tubulin Associated Unit (TAU). RESULTS VIS enhanced performance in a courtship conditioning paradigm and reduced the number of synaptic varicosities in select neurons. Moreover, vibration improved sleep in Drosophila models of AD, reducing Aβ and TAU levels. CONCLUSIONS Mechanosensory stimulation offers a promising noninvasive avenue for enhancing sleep, potentially providing associated cognitive and health benefits.
Collapse
Affiliation(s)
- Sho Inami
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, USA
| | - Kyunghee Koh
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
5
|
Yu Y, Chen CZ, Celardo I, Tan BWZ, Hurcomb JD, Leal NS, Popovic R, Loh SHY, Martins LM. Enhancing mitochondrial one-carbon metabolism is neuroprotective in Alzheimer's disease models. Cell Death Dis 2024; 15:856. [PMID: 39582067 PMCID: PMC11586400 DOI: 10.1038/s41419-024-07179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024]
Abstract
Alzheimer's disease (AD) is the most common form of age-related dementia. In AD, the death of neurons in the central nervous system is associated with the accumulation of toxic amyloid β peptide (Aβ) and mitochondrial dysfunction. Mitochondria are signal transducers of metabolic and biochemical information, and their impairment can compromise cellular function. Mitochondria compartmentalise several pathways, including folate-dependent one-carbon (1C) metabolism and electron transport by respiratory complexes. Mitochondrial 1C metabolism is linked to electron transport through complex I of the respiratory chain. Here, we analysed the proteomic changes in a fly model of AD by overexpressing a toxic form of Aβ (Aβ-Arc). We found that expressing Aβ-Arc caused alterations in components of both complex I and mitochondrial 1C metabolism. Genetically enhancing mitochondrial 1C metabolism through Nmdmc improved mitochondrial function and was neuroprotective in fly models of AD. We also found that exogenous supplementation with the 1C donor folinic acid improved mitochondrial health in both mammalian cells and fly models of AD. We found that genetic variations in MTHFD2L, the human orthologue of Nmdmc, were linked to AD risk. Additionally, Mendelian randomisation showed that increased folate intake decreased the risk of developing AD. Overall, our data suggest enhancement of folate-dependent 1C metabolism as a viable strategy to delay the progression and attenuate the severity of AD.
Collapse
Affiliation(s)
- Yizhou Yu
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK.
- Healthspan Biotics Ltd, Milner Therapeutics Institute, Cambridge Biomedical Campus, Cambridge, UK.
| | - Civia Z Chen
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Ivana Celardo
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Bryan Wei Zhi Tan
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - James D Hurcomb
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Nuno Santos Leal
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Rebeka Popovic
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Samantha H Y Loh
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - L Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK.
| |
Collapse
|
6
|
Raj A, Torok J, Ranasinghe K. Understanding the complex interplay between tau, amyloid and the network in the spatiotemporal progression of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583407. [PMID: 38559176 PMCID: PMC10979926 DOI: 10.1101/2024.03.05.583407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
INTRODUCTION The interaction of amyloid and tau in neurodegenerative diseases is a central feature of AD pathophysiology. While experimental studies point to various interaction mechanisms, their causal direction and mode (local, remote or network-mediated) remain unknown in human subjects. The aim of this study was to compare mathematical reaction-diffusion models encoding distinct cross-species couplings to identify which interactions were key to model success. METHODS We tested competing mathematical models of network spread, aggregation, and amyloid-tau interactions on publicly available data from ADNI. RESULTS Although network spread models captured the spatiotemporal evolution of tau and amyloid in human subjects, the model including a one-way amyloid-to-tau aggregation interaction performed best. DISCUSSION This mathematical exposition of the "pas de deux" of co-evolving proteins provides quantitative, whole-brain support to the concept of amyloid-facilitated-tauopathy rather than the classic amyloid-cascade or pure-tau hypotheses, and helps explain certain known but poorly understood aspects of AD.
Collapse
|
7
|
Inami S, Koh K. Sleep induced by mechanosensory stimulation provides cognitive and health benefits in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602891. [PMID: 39026689 PMCID: PMC11257551 DOI: 10.1101/2024.07.10.602891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Study Objectives Sleep is a complex phenomenon regulated by various factors, including sensory input. Anecdotal observations have suggested that gentle rocking helps babies fall asleep, and experimental studies have verified that rocking promotes sleep in both humans and mice. Recent studies have expanded this understanding, demonstrating that gentle vibration also induces sleep in Drosophila. Natural sleep serves multiple functions, including learning and memory, synaptic downscaling, and clearance of harmful substances associated with neurodegenerative diseases. Here, we investigated whether vibration-induced sleep provides similar cognitive and health benefits in Drosophila. Methods We administered gentle vibration to flies that slept very little due to a forced activation of wake-promoting neurons and investigated how the vibration influenced learning and memory in the courtship conditioning paradigm. Additionally, we examined the effects of VIS on synaptic downscaling by counting synapse numbers of select neurons. Finally, we determined whether vibration could induce sleep in Drosophila models of Alzheimer's disease (AD) and promote the clearance of Amyloid b (Ab) and Tubulin Associated Unit (TAU). Results Vibration-induced sleep enhanced performance in a courtship conditioning paradigm and reduced the number of synapses in select neurons. Moreover, vibration improved sleep in Drosophila models of AD, promoting the clearance of Ab and TAU. Conclusions Mechanosensory stimulation offers a promising non-invasive avenue for enhancing sleep, potentially providing associated cognitive and health benefits.
Collapse
Affiliation(s)
- Sho Inami
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University
| | - Kyunghee Koh
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University
| |
Collapse
|
8
|
Meyerhof GT, Easwaran S, Bontempo AE, Montell C, Montell DJ. Altered circadian rhythm, sleep, and rhodopsin 7-dependent shade preference during diapause in Drosophila melanogaster. Proc Natl Acad Sci U S A 2024; 121:e2400964121. [PMID: 38917005 PMCID: PMC11228485 DOI: 10.1073/pnas.2400964121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
To survive adverse environments, many animals enter a dormant state such as hibernation, dauer, or diapause. Various Drosophila species undergo adult reproductive diapause in response to cool temperatures and/or short day-length. While flies are less active during diapause, it is unclear how adverse environmental conditions affect circadian rhythms and sleep. Here we show that in diapause-inducing cool temperatures, Drosophila melanogaster exhibit altered circadian activity profiles, including severely reduced morning activity and an advanced evening activity peak. Consequently, the flies have a single activity peak at a time similar to when nondiapausing flies take a siesta. Temperatures ≤15 °C, rather than photoperiod, primarily drive this behavior. At cool temperatures, flies rapidly enter a deep-sleep state that lacks the sleep cycles of flies at higher temperatures and require high levels of stimulation for arousal. Furthermore, we show that at 25 °C, flies prefer to siesta in the shade, a preference that is virtually eliminated at 10 °C. Resting in the shade is driven by an aversion to blue light that is sensed by Rhodopsin 7 outside of the eyes. Flies at 10 °C show neuronal markers of elevated sleep pressure, including increased expression of Bruchpilot and elevated Ca2+ in the R5 ellipsoid body neurons. Therefore, sleep pressure might overcome blue light aversion. Thus, at the same temperatures that cause reproductive arrest, preserve germline stem cells, and extend lifespan, D. melanogaster are prone to deep sleep and exhibit dramatically altered, yet rhythmic, daily activity patterns.
Collapse
Affiliation(s)
- Geoff T. Meyerhof
- Department of Molecular, Cellular, and Developmental Biology, Santa Barbara, CA93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - Sreesankar Easwaran
- Department of Molecular, Cellular, and Developmental Biology, Santa Barbara, CA93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - Angela E. Bontempo
- Department of Molecular, Cellular, and Developmental Biology, Santa Barbara, CA93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, Santa Barbara, CA93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - Denise J. Montell
- Department of Molecular, Cellular, and Developmental Biology, Santa Barbara, CA93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| |
Collapse
|
9
|
Joyce M, Falconio FA, Blackhurst L, Prieto-Godino L, French AS, Gilestro GF. Divergent evolution of sleep in Drosophila species. Nat Commun 2024; 15:5091. [PMID: 38876988 PMCID: PMC11178934 DOI: 10.1038/s41467-024-49501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
Living organisms synchronize their biological activities with the earth's rotation through the circadian clock, a molecular mechanism that regulates biology and behavior daily. This synchronization factually maximizes positive activities (e.g., social interactions, feeding) during safe periods, and minimizes exposure to dangers (e.g., predation, darkness) typically at night. Beyond basic circadian regulation, some behaviors like sleep have an additional layer of homeostatic control, ensuring those essential activities are fulfilled. While sleep is predominantly governed by the circadian clock, a secondary homeostatic regulator, though not well-understood, ensures adherence to necessary sleep amounts and hints at a fundamental biological function of sleep beyond simple energy conservation and safety. Here we explore sleep regulation across seven Drosophila species with diverse ecological niches, revealing that while circadian-driven sleep aspects are consistent, homeostatic regulation varies significantly. The findings suggest that in Drosophilids, sleep evolved primarily for circadian purposes. The more complex, homeostatically regulated functions of sleep appear to have evolved independently in a species-specific manner, and are not universally conserved. This laboratory model may reproduce and recapitulate primordial sleep evolution.
Collapse
Affiliation(s)
- Michaela Joyce
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Research Institute, London, UK
| | | | | | | | - Alice S French
- Department of Life Sciences, Imperial College London, London, UK.
- The Francis Crick Research Institute, London, UK.
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.
| | | |
Collapse
|
10
|
Yano J, Nave C, Larratt K, Honey P, Roberts M, Jingco C, Fung ML, Trotter D, He X, Elezi G, Whitelegge JP, Wasserman S, Donlea JM. Elevated sleep quota in a stress-resilient Drosophila species. Curr Biol 2024; 34:2487-2501.e3. [PMID: 38772361 PMCID: PMC11163955 DOI: 10.1016/j.cub.2024.04.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/09/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
Sleep is broadly conserved across the animal kingdom but can vary widely between species. It is currently unclear which selective pressures and regulatory mechanisms influence differences in sleep between species. The fruit fly Drosophila melanogaster has become a successful model system for examining sleep regulation and function, but little is known about the sleep patterns in many related fly species. Here, we find that fly species with adaptations to extreme desert environments, including D. mojavensis, exhibit strong increases in baseline sleep compared with D. melanogaster. Long-sleeping D. mojavensis show intact homeostasis, indicating that desert flies carry an elevated drive for sleep. In addition, D. mojavensis exhibit altered abundance or distribution of several sleep/wake-related neuromodulators and neuropeptides that are consistent with their reduced locomotor activity and increased sleep. Finally, we find that in a nutrient-deprived environment, the sleep patterns of individual D. mojavensis are strongly correlated with their survival time and that disrupting sleep via constant light stimulation renders D. mojavensis more sensitive to starvation. Our results demonstrate that D. mojavensis is a novel model for studying organisms with high sleep drive and for exploring sleep strategies that provide resilience in extreme environments.
Collapse
Affiliation(s)
- Jessica Yano
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Molecular, Cellular & Integrative Physiology Interdepartmental PhD Program, UCLA, Los Angeles, CA 90095, USA
| | - Ceazar Nave
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Katherine Larratt
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Phia Honey
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Neuroscience, Wellesley College, Wellesley, MA 02481, USA
| | - Makayla Roberts
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Cassandra Jingco
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Melanie L Fung
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Damion Trotter
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Molecular, Cellular & Integrative Physiology Interdepartmental PhD Program, UCLA, Los Angeles, CA 90095, USA
| | - Xin He
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Gazmend Elezi
- Pasarow Mass Spectrometry Laboratory, Jane & Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Cotsen Institute of Archaeology, UCLA, Los Angeles, CA 90095, USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, Jane & Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Sara Wasserman
- Department of Neuroscience, Wellesley College, Wellesley, MA 02481, USA
| | - Jeffrey M Donlea
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
11
|
Suppermpool A, Lyons DG, Broom E, Rihel J. Sleep pressure modulates single-neuron synapse number in zebrafish. Nature 2024; 629:639-645. [PMID: 38693264 PMCID: PMC11096099 DOI: 10.1038/s41586-024-07367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/27/2024] [Indexed: 05/03/2024]
Abstract
Sleep is a nearly universal behaviour with unclear functions1. The synaptic homeostasis hypothesis proposes that sleep is required to renormalize the increases in synaptic number and strength that occur during wakefulness2. Some studies examining either large neuronal populations3 or small patches of dendrites4 have found evidence consistent with the synaptic homeostasis hypothesis, but whether sleep merely functions as a permissive state or actively promotes synaptic downregulation at the scale of whole neurons is unclear. Here, by repeatedly imaging all excitatory synapses on single neurons across sleep-wake states of zebrafish larvae, we show that synapses are gained during periods of wake (either spontaneous or forced) and lost during sleep in a neuron-subtype-dependent manner. However, synapse loss is greatest during sleep associated with high sleep pressure after prolonged wakefulness, and lowest in the latter half of an undisrupted night. Conversely, sleep induced pharmacologically during periods of low sleep pressure is insufficient to trigger synapse loss unless adenosine levels are boosted while noradrenergic tone is inhibited. We conclude that sleep-dependent synapse loss is regulated by sleep pressure at the level of the single neuron and that not all sleep periods are equally capable of fulfilling the functions of synaptic homeostasis.
Collapse
Affiliation(s)
- Anya Suppermpool
- Department of Cell and Developmental Biology, University College London, London, UK
- UCL Ear Institute, University College London, London, UK
| | - Declan G Lyons
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Elizabeth Broom
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London, UK.
| |
Collapse
|
12
|
Suárez-Grimalt R, Grunwald Kadow IC, Scheunemann L. An integrative sensor of body states: how the mushroom body modulates behavior depending on physiological context. Learn Mem 2024; 31:a053918. [PMID: 38876486 PMCID: PMC11199956 DOI: 10.1101/lm.053918.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/08/2024] [Indexed: 06/16/2024]
Abstract
The brain constantly compares past and present experiences to predict the future, thereby enabling instantaneous and future behavioral adjustments. Integration of external information with the animal's current internal needs and behavioral state represents a key challenge of the nervous system. Recent advancements in dissecting the function of the Drosophila mushroom body (MB) at the single-cell level have uncovered its three-layered logic and parallel systems conveying positive and negative values during associative learning. This review explores a lesser-known role of the MB in detecting and integrating body states such as hunger, thirst, and sleep, ultimately modulating motivation and sensory-driven decisions based on the physiological state of the fly. State-dependent signals predominantly affect the activity of modulatory MB input neurons (dopaminergic, serotoninergic, and octopaminergic), but also induce plastic changes directly at the level of the MB intrinsic and output neurons. Thus, the MB emerges as a tightly regulated relay station in the insect brain, orchestrating neuroadaptations due to current internal and behavioral states leading to short- but also long-lasting changes in behavior. While these adaptations are crucial to ensure fitness and survival, recent findings also underscore how circuit motifs in the MB may reflect fundamental design principles that contribute to maladaptive behaviors such as addiction or depression-like symptoms.
Collapse
Affiliation(s)
- Raquel Suárez-Grimalt
- Institute for Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | - Lisa Scheunemann
- Institute for Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
13
|
Charlebois CM, Anderson DN, Smith EH, Davis TS, Newman BJ, Peters AY, Arain AM, Dorval AD, Rolston JD, Butson CR. Circadian changes in aperiodic activity are correlated with seizure reduction in patients with mesial temporal lobe epilepsy treated with responsive neurostimulation. Epilepsia 2024; 65:1360-1373. [PMID: 38517356 PMCID: PMC11138949 DOI: 10.1111/epi.17938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVES Responsive neurostimulation (RNS) is an established therapy for drug-resistant epilepsy that delivers direct electrical brain stimulation in response to detected epileptiform activity. However, despite an overall reduction in seizure frequency, clinical outcomes are variable, and few patients become seizure-free. The aim of this retrospective study was to evaluate aperiodic electrophysiological activity, associated with excitation/inhibition balance, as a novel electrographic biomarker of seizure reduction to aid early prognostication of the clinical response to RNS. METHODS We identified patients with intractable mesial temporal lobe epilepsy who were implanted with the RNS System between 2015 and 2021 at the University of Utah. We parameterized the neural power spectra from intracranial RNS System recordings during the first 3 months following implantation into aperiodic and periodic components. We then correlated circadian changes in aperiodic and periodic parameters of baseline neural recordings with seizure reduction at the most recent follow-up. RESULTS Seizure reduction was correlated significantly with a patient's average change in the day/night aperiodic exponent (r = .50, p = .016, n = 23 patients) and oscillatory alpha power (r = .45, p = .042, n = 23 patients) across patients for baseline neural recordings. The aperiodic exponent reached its maximum during nighttime hours (12 a.m. to 6 a.m.) for most responders (i.e., patients with at least a 50% reduction in seizures). SIGNIFICANCE These findings suggest that circadian modulation of baseline broadband activity is a biomarker of response to RNS early during therapy. This marker has the potential to identify patients who are likely to respond to mesial temporal RNS. Furthermore, we propose that less day/night modulation of the aperiodic exponent may be related to dysfunction in excitation/inhibition balance and its interconnected role in epilepsy, sleep, and memory.
Collapse
Affiliation(s)
- Chantel M. Charlebois
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
- Scientific Computing & Imaging Institute, University of Utah, Salt Lake City, Utah, USA
| | - Daria Nesterovich Anderson
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, Utah, USA
- School of Biomedical Engineering, University of Sydney, Darlington, NSW, Australia
| | - Elliot H. Smith
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | - Tyler S. Davis
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | - Blake J. Newman
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Angela Y. Peters
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Amir M. Arain
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Alan D. Dorval
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
- Scientific Computing & Imaging Institute, University of Utah, Salt Lake City, Utah, USA
| | - John D. Rolston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
- Department of Neurosurgery, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher R. Butson
- Scientific Computing & Imaging Institute, University of Utah, Salt Lake City, Utah, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Weiss JT, Blundell MZ, Singh P, Donlea JM. Sleep deprivation drives brain-wide changes in cholinergic presynapse abundance in Drosophila melanogaster. Proc Natl Acad Sci U S A 2024; 121:e2312664121. [PMID: 38498719 PMCID: PMC10990117 DOI: 10.1073/pnas.2312664121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Sleep is an evolutionarily conserved state that supports brain functions, including synaptic plasticity, in species across the animal kingdom. Here, we examine the neuroanatomical and cell-type distribution of presynaptic scaling in the fly brain after sleep loss. We previously found that sleep loss drives accumulation of the active zone scaffolding protein Bruchpilot (BRP) within cholinergic Kenyon cells of the Drosophila melanogaster mushroom body (MB), but not in other classes of MB neurons. To test whether similar cell type-specific trends in plasticity occur broadly across the brain, we used a flp-based genetic reporter to label presynaptic BRP in cholinergic, dopaminergic, GABAergic, or glutamatergic neurons. We then collected whole-brain confocal image stacks of BRP intensity to systematically quantify BRP, a marker of presynapse abundance, across 37 neuropil regions of the central fly brain. Our results indicate that sleep loss, either by overnight (12-h) mechanical stimulation or chronic sleep disruption in insomniac mutants, broadly elevates cholinergic synapse abundance across the brain, while synapse abundance in neurons that produce other neurotransmitters undergoes weaker, if any, changes. Extending sleep deprivation to 24 h drives brain-wide upscaling in glutamatergic, but not other, synapses. Finally, overnight male-male social pairings induce increased BRP in excitatory synapses despite male-female pairings eliciting more waking activity, suggesting experience-specific plasticity. Within neurotransmitter class and waking context, BRP changes are similar across the 37 neuropil domains, indicating that similar synaptic scaling rules may apply across the brain during acute sleep loss and that sleep need may broadly alter excitatory-inhibitory balance in the central brain.
Collapse
Affiliation(s)
- Jacqueline T. Weiss
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, CA90095
- Neuroscience Interdepartmental Program, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Mei Z. Blundell
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, CA90095
| | - Prabhjit Singh
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, CA90095
| | - Jeffrey M. Donlea
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, CA90095
| |
Collapse
|
15
|
Jagannathan SR, Jeans T, Van De Poll MN, van Swinderen B. Multivariate classification of multichannel long-term electrophysiology data identifies different sleep stages in fruit flies. SCIENCE ADVANCES 2024; 10:eadj4399. [PMID: 38381836 PMCID: PMC10881036 DOI: 10.1126/sciadv.adj4399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Identifying different sleep stages in humans and other mammals has traditionally relied on electroencephalograms. Such an approach is not feasible in certain animals such as invertebrates, although these animals could also be sleeping in stages. Here, we perform long-term multichannel local field potential recordings in the brains of behaving flies undergoing spontaneous sleep bouts. We acquired consistent spatial recordings of local field potentials across multiple flies, allowing us to compare brain activity across awake and sleep periods. Using machine learning, we uncover distinct temporal stages of sleep and explore the associated spatial and spectral features across the fly brain. Further, we analyze the electrophysiological correlates of microbehaviors associated with certain sleep stages. We confirm the existence of a distinct sleep stage associated with rhythmic proboscis extensions and show that spectral features of this sleep-related behavior differ significantly from those associated with the same behavior during wakefulness, indicating a dissociation between behavior and the brain states wherein these behaviors reside.
Collapse
Affiliation(s)
- Sridhar R. Jagannathan
- Department of Psychology, University of Cambridge, Cambridge, UK
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Travis Jeans
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD Australia
| | | | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD Australia
| |
Collapse
|
16
|
Ito A, Matsuda N, Ukita Y, Okumura M, Chihara T. Akaluc/AkaLumine bioluminescence system enables highly sensitive, non-invasive and temporal monitoring of gene expression in Drosophila. Commun Biol 2023; 6:1270. [PMID: 38097812 PMCID: PMC10721803 DOI: 10.1038/s42003-023-05628-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Bioluminescence generated by luciferase and luciferin has been extensively used in biological research. However, detecting signals from deep tissues in vivo poses a challenge to traditional methods. To overcome this, the Akaluc and AkaLumine bioluminescent systems were developed, resulting in improved signal detection. We evaluate the potential of Akaluc/AkaLumine in Drosophila melanogaster to establish a highly sensitive, non-invasive, and temporal detection method for gene expression. Our results show that oral administration of AkaLumine to flies expressing Akaluc provided a higher luminescence signal than Luc/D-luciferin, with no observed harmful effects on flies. The Akaluc/AkaLumine system allows for monitoring of dynamic temporal changes in gene expression. Additionally, using the Akaluc fusion gene allows for mRNA splicing monitoring. Our findings indicate that the Akaluc/AkaLumine system is a powerful bioluminescence tool for analyzing gene expression in deep tissues and small numbers of cells in Drosophila.
Collapse
Affiliation(s)
- Akira Ito
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Nagisa Matsuda
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Yumiko Ukita
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan.
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan.
| |
Collapse
|
17
|
Vaquer-Alicea A, Yu J, Liu H, Lucey BP. Plasma and cerebrospinal fluid proteomic signatures of acutely sleep-deprived humans: an exploratory study. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad047. [PMID: 38046221 PMCID: PMC10691441 DOI: 10.1093/sleepadvances/zpad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/06/2023] [Indexed: 12/05/2023]
Abstract
STUDY OBJECTIVES Acute sleep deprivation affects both central and peripheral biological processes. Prior research has mainly focused on specific proteins or biological pathways that are dysregulated in the setting of sustained wakefulness. This exploratory study aimed to provide a comprehensive view of the biological processes and proteins impacted by acute sleep deprivation in both plasma and cerebrospinal fluid (CSF). METHODS We collected plasma and CSF from human participants during one night of sleep deprivation and controlled normal sleep conditions. One thousand and three hundred proteins were measured at hour 0 and hour 24 using a high-scale aptamer-based proteomics platform (SOMAscan) and a systematic biological database tool (Metascape) was used to reveal altered biological pathways. RESULTS Acute sleep deprivation decreased the number of upregulated and downregulated biological pathways and proteins in plasma but increased upregulated and downregulated biological pathways and proteins in CSF. Predominantly affected proteins and pathways were associated with immune response, inflammation, phosphorylation, membrane signaling, cell-cell adhesion, and extracellular matrix organization. CONCLUSIONS The identified modifications across biofluids add to evidence that acute sleep deprivation has important impacts on biological pathways and proteins that can negatively affect human health. As a hypothesis-driving study, these findings may help with the exploration of novel mechanisms that mediate sleep loss and associated conditions, drive the discovery of new sleep loss biomarkers, and ultimately aid in the identification of new targets for intervention to human diseases.
Collapse
Affiliation(s)
- Ana Vaquer-Alicea
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Jinsheng Yu
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Haiyan Liu
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Brendan P Lucey
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
18
|
Chen CC, Lin HW, Feng KL, Tseng DW, de Belle JS, Chiang AS. A subset of cholinergic mushroom body neurons blocks long-term memory formation in Drosophila. Cell Rep 2023; 42:112974. [PMID: 37590142 DOI: 10.1016/j.celrep.2023.112974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/22/2022] [Accepted: 07/29/2023] [Indexed: 08/19/2023] Open
Abstract
Long-term memory (LTM) requires learning-induced synthesis of new proteins allocated to specific neurons and synapses in a neural circuit. Not all learned information, however, becomes permanent memory. How the brain gates relevant information into LTM remains unclear. In Drosophila adults, weak learning after a single training session in an olfactory aversive task typically does not induce protein-synthesis-dependent LTM. Instead, strong learning after multiple spaced training sessions is required. Here, we report that pre-synaptic active-zone protein synthesis and cholinergic signaling from the early α/β subset of mushroom body (MB) neurons produce a downstream inhibitory effect on LTM formation. When we eliminated inhibitory signaling from these neurons, weak learning was then sufficient to form LTM. This bidirectional circuit mechanism modulates the transition between distinct memory phase functions in different subpopulations of MB neurons in the olfactory memory circuit.
Collapse
Affiliation(s)
- Chun-Chao Chen
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Hsuan-Wen Lin
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuan-Lin Feng
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Der-Wan Tseng
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - J Steven de Belle
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan; School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA; School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA; MnemOdyssey LLC, Escondido, CA 92027, USA
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan; Institute of Systems Neuroscience and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80780, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan; Kavli Institute for Brain and Mind, University of California at San Diego, La Jolla, CA 92093-0526, USA.
| |
Collapse
|
19
|
Sharma B, Roy A, Sengupta T, Vishwakarma LC, Singh A, Netam R, Nag TC, Akhtar N, Mallick HN. Acute sleep deprivation induces synaptic remodeling at the soleus muscle neuromuscular junction in rats. Sleep 2023; 46:zsac229. [PMID: 36130235 DOI: 10.1093/sleep/zsac229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/03/2022] [Indexed: 07/26/2023] Open
Abstract
Sleep is important for cognitive and physical performance. Sleep deprivation not only affects neural functions but also results in muscular fatigue. A good night's sleep reverses these functional derangements caused by sleep deprivation. The role of sleep in brain function has been extensively studied. However, its role in neuromuscular junction (NMJ) or skeletal muscle morphology is sparsely addressed although skeletal muscle atonia and suspended thermoregulation during rapid eye movement sleep possibly provide a conducive environment for the muscle to rest and repair; somewhat similar to slow-wave sleep for synaptic downscaling. In the present study, we have investigated the effect of 24 h sleep deprivation on the NMJ morphology and neurochemistry using electron microscopy and immunohistochemistry in the rat soleus muscle. Acute sleep deprivation altered synaptic ultra-structure viz. mitochondria, synaptic vesicle, synaptic proteins, basal lamina, and junctional folds needed for neuromuscular transmission. Further acute sleep deprivation showed the depletion of the neurotransmitter acetylcholine and the overactivity of its degrading enzyme acetylcholine esterase at the NMJ. The impact of sleep deprivation on synaptic homeostasis in the brain has been extensively reported recently. The present evidence from our studies shows new information on the role of sleep on the NMJ homeostasis and its functioning.
Collapse
Affiliation(s)
- Binney Sharma
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Avishek Roy
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Trina Sengupta
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | | - Anuraag Singh
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Ritesh Netam
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Tapas Chandra Nag
- Department of Physiology, Faculty of Medicine & Health Sciences, SGT University, Gurugram, Haryana, India
| | - Nasreen Akhtar
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Hruda Nanda Mallick
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
- Department of Physiology, Faculty of Medicine & Health Sciences, SGT University, Gurugram, Haryana, India
| |
Collapse
|
20
|
Jagannathan SR, Jeans R, Van De Poll MN, van Swinderen B. Multivariate classification of multichannel long-term electrophysiology data identifies different sleep stages in fruit flies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544704. [PMID: 37398087 PMCID: PMC10312633 DOI: 10.1101/2023.06.12.544704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Sleep is observed in most animals, which suggests it subserves a fundamental process associated with adaptive biological functions. However, the evidence to directly associate sleep with a specific function is lacking, in part because sleep is not a single process in many animals. In humans and other mammals, different sleep stages have traditionally been identified using electroencephalograms (EEGs), but such an approach is not feasible in different animals such as insects. Here, we perform long-term multichannel local field potential (LFP) recordings in the brains of behaving flies undergoing spontaneous sleep bouts. We developed protocols to allow for consistent spatial recordings of LFPs across multiple flies, allowing us to compare the LFP activity across awake and sleep periods and further compare the same to induced sleep. Using machine learning, we uncover the existence of distinct temporal stages of sleep and explore the associated spatial and spectral features across the fly brain. Further, we analyze the electrophysiological correlates of micro-behaviours associated with certain sleep stages. We confirm the existence of a distinct sleep stage associated with rhythmic proboscis extensions and show that spectral features of this sleep-related behavior differ significantly from those associated with the same behavior during wakefulness, indicating a dissociation between behavior and the brain states wherein these behaviors reside.
Collapse
Affiliation(s)
- Sridhar R. Jagannathan
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Rhiannon Jeans
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia
| | | | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia
| |
Collapse
|
21
|
Mocci I, Casu MA, Sogos V, Liscia A, Angius R, Cadeddu F, Fanti M, Muroni P, Talani G, Diana A, Collu M, Setzu MD. Effects of memantine on mania-like phenotypes exhibited by Drosophila Shaker mutants. CNS Neurosci Ther 2023. [PMID: 36942502 DOI: 10.1111/cns.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION Increased glutamate levels and electrolytic fluctuations have been observed in acutely manic patients. Despite some efficacy of the non-competitive NMDA receptor antagonist memantine (Mem), such as antidepressant-like and mood-stabilizer drugs in clinical studies, its specific mechanisms of action are still uncertain. The present study aims to better characterize the Drosophila melanogaster fly Shaker mutants (SH), as a translational model of manic episodes within bipolar disorder in humans, and to investigate the potential anti-manic properties of Mem. METHODS AND RESULTS Our findings showed typical behavioral abnormalities in SH, which mirrored with the overexpression of NMDAR-NR1 protein subunit, matched well to glutamate up-regulation. Such molecular features were associated to a significant reduction of SH brain volume in comparison to Wild Type strain flies (WT). Here we report on the ability of Mem treatment to ameliorate behavioral aberrations of SH (similar to that of Lithium), and its ability to reduce NMDAR-NR1 over-expression. CONCLUSIONS Our results show the involvement of the glutamatergic system in the SH, given the interaction between the Shaker channel and the NMDA receptor, suggesting this model as a promising tool for studying the neurobiology of bipolar disorders. Moreover, our results show Mem as a potential disease-modifying therapy, providing insight on new mechanisms of action.
Collapse
Affiliation(s)
- Ignazia Mocci
- Institute of Translational Pharmacology, National Research Council, Science and Technology Park of Sardinia, Cagliari, Italy
| | - Maria Antonietta Casu
- Institute of Translational Pharmacology, National Research Council, Science and Technology Park of Sardinia, Cagliari, Italy
| | - Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Anna Liscia
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Rossella Angius
- Unit of Biomedical Research Support, NMR Laboratory and Bioanalytical Technologies, Sardegna Ricerche, Science and Technology Park of Sardinia, Cagliari, Italy
| | - Francesca Cadeddu
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Maura Fanti
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Patrizia Muroni
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Giuseppe Talani
- Institute of Neuroscience, National Research Council, Monserrato, Italy
| | - Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Maria Collu
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Maria Dolores Setzu
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
22
|
Rubboli G, Gardella E, Cantalupo G, Alberto Tassinari C. Encephalopathy related to status epilepticus during slow sleep (ESES). Pathophysiological insights and nosological considerations. Epilepsy Behav 2023; 140:109105. [PMID: 36758358 DOI: 10.1016/j.yebeh.2023.109105] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
Encephalopathy related to Status Epilepticus during slow Sleep (ESES) is a childhood epilepsy syndrome characterized by the appearance of cognitive, behavioral, and motor disturbances in conjunction with a striking activation of EEG epileptic abnormalities during non-REM sleep. After more than 50 years since the first description, the pathophysiological mechanisms underlying the appearance of encephalopathy in association with a sleep-related enhancement of epileptic discharges are incompletely elucidated. Recent experimental data support the hypothesis that the development of the ESES encephalopathic picture depends on a spike-induced impairment of the synaptic homeostasis processes occurring during normal sleep and that is particularly pronounced during the developmental age. During sleep, synaptic homeostasis is promoted by synaptic weakening/elimination after the increment of synaptic strength that occurs during wakefulness. The EEG can display modifications in synaptic strength by changes in sleep slow wave activity (SWA). Recent studies during active ESES have failed to show changes in sleep SWA, while these changes occurred again after recovery from ESES, thus supporting a spike-related interference on the normal homeostatic processes of sleep. This impairment, during the developmental period, can lead to disruption of cortical wiring and brain plastic remodeling, which lead to the, often irreversible, neuropsychological compromise typical of ESES. From the nosographic point of view, these pathophysiological data lend support to the maintenance of the term ESES, i.e., "encephalopathy related to status epilepticus during sleep". Indeed, this term conveys the concept that the extreme activation of epileptic discharges during sleep is directly responsible for the encephalopathy, hence the importance of defining this condition as an encephalopathy related to the exaggerated activation of epileptic activity during sleep. In this respect, ESES represents a genuine example of a "pure" epileptic encephalopathy in which sleep-related epileptic activity "per se" has a crucial role in determining the encephalopathic picture. This paper was presented at the 8th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures held in September 2022.
Collapse
Affiliation(s)
- Guido Rubboli
- Danish Epilepsy Center, member of ERN EpiCARE, Kolonivej 1, 4293 Dianalund, Denmark; Institute of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| | - Elena Gardella
- Danish Epilepsy Center, member of ERN EpiCARE, Kolonivej 1, 4293 Dianalund, Denmark; University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| | - Gaetano Cantalupo
- Child Neuropsychiatry, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Via S. Francesco, 22, 37129 Verona, Italy; Centro Ricerca per le Epilessie in età Pediatrica (CREP), Azienda Ospedaliera Universitaria di Verona, Verona, Italy.
| | | |
Collapse
|
23
|
Issa NP, Nunn KC, Wu S, Haider HA, Tao JX. Putative roles for homeostatic plasticity in epileptogenesis. Epilepsia 2023; 64:539-552. [PMID: 36617338 PMCID: PMC10015501 DOI: 10.1111/epi.17500] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Homeostatic plasticity allows neural circuits to maintain an average activity level while preserving the ability to learn new associations and efficiently transmit information. This dynamic process usually protects the brain from excessive activity, like seizures. However, in certain contexts, homeostatic plasticity might produce seizures, either in response to an acute provocation or more chronically as a driver of epileptogenesis. Here, we review three seizure conditions in which homeostatic plasticity likely plays an important role: acute drug withdrawal seizures, posttraumatic or disconnection epilepsy, and cyclic seizures. Identifying the homeostatic mechanisms active at different stages of development and in different circuits could allow better targeting of therapies, including determining when neuromodulation might be most effective, proposing ways to prevent epileptogenesis, and determining how to disrupt the cycle of recurring seizure clusters.
Collapse
Affiliation(s)
- Naoum P. Issa
- Comprehensive Epilepsy Center, Department of Neurology, 5841 S. Maryland Ave., MC 2030, University of Chicago, Chicago, IL 60637
| | | | - Shasha Wu
- Comprehensive Epilepsy Center, Department of Neurology, 5841 S. Maryland Ave., MC 2030, University of Chicago, Chicago, IL 60637
| | - Hiba A. Haider
- Comprehensive Epilepsy Center, Department of Neurology, 5841 S. Maryland Ave., MC 2030, University of Chicago, Chicago, IL 60637
| | - James X. Tao
- Comprehensive Epilepsy Center, Department of Neurology, 5841 S. Maryland Ave., MC 2030, University of Chicago, Chicago, IL 60637
| |
Collapse
|
24
|
Segu A, Kannan NN. The duration of caffeine treatment plays an essential role in its effect on sleep and circadian rhythm. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad014. [PMID: 37193284 PMCID: PMC10108652 DOI: 10.1093/sleepadvances/zpad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/28/2023] [Indexed: 05/18/2023]
Abstract
Sleep is regulated by the homeostatic system and the circadian clock. Caffeine intake promotes wakefulness in Drosophila. In humans, caffeine is consumed on a daily basis and hence it is important to understand the effect of prolonged caffeine intake on both circadian and homeostatic regulation of sleep. Furthermore, sleep changes with age and the impact of caffeine on age-dependent sleep fragmentation are yet to be understood. Hence in the present study, we examined the effect of short exposure to caffeine on homeostatic sleep and age-dependent sleep fragmentation in Drosophila. We further assessed the effect of prolonged exposure to caffeine on homeostatic sleep and circadian clock. The results of our study showed that short exposure to caffeine reduces sleep and food intake in mature flies. It also enhances sleep fragmentation with increasing age. However, we have not assessed the effect of caffeine on food intake in older flies. On the other hand, prolonged caffeine exposure did not exert any significant effect on the duration of sleep and food intake in mature flies. Nevertheless, prolonged caffeine ingestion decreased the morning and evening anticipatory activity in these flies indicating that it affects the circadian rhythm. These flies also exhibited phase delay in the clock gene timeless transcript oscillation and exhibited either behavioral arrhythmicity or a longer free-running period under constant darkness. In summary, the results of our studies showed that short exposure to caffeine increases the sleep fragmentation with age whereas prolonged caffeine exposure disrupts the circadian clock.
Collapse
Affiliation(s)
- Aishwarya Segu
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, India
| | - Nisha N Kannan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, India
| |
Collapse
|
25
|
Hazuga MA, Grant SFA. Awakening new sleep biology with machine learning. Sleep 2023; 46:zsac284. [PMID: 36422063 PMCID: PMC9905772 DOI: 10.1093/sleep/zsac284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Mary Ann Hazuga
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Struan F A Grant
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Diabetes and Endocrinology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
26
|
Lee YY, Endale M, Wu G, Ruben MD, Francey LJ, Morris AR, Choo NY, Anafi RC, Smith DF, Liu AC, Hogenesch JB. Integration of genome-scale data identifies candidate sleep regulators. Sleep 2023; 46:zsac279. [PMID: 36462188 PMCID: PMC9905783 DOI: 10.1093/sleep/zsac279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
STUDY OBJECTIVES Genetics impacts sleep, yet, the molecular mechanisms underlying sleep regulation remain elusive. In this study, we built machine learning models to predict sleep genes based on their similarity to genes that are known to regulate sleep. METHODS We trained a prediction model on thousands of published datasets, representing circadian, immune, sleep deprivation, and many other processes, using a manually curated list of 109 sleep genes. RESULTS Our predictions fit with prior knowledge of sleep regulation and identified key genes and pathways to pursue in follow-up studies. As an example, we focused on the NF-κB pathway and showed that chronic activation of NF-κB in a genetic mouse model impacted the sleep-wake patterns. CONCLUSION Our study highlights the power of machine learning in integrating prior knowledge and genome-wide data to study genetic regulation of complex behaviors such as sleep.
Collapse
Affiliation(s)
- Yin Yeng Lee
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Mehari Endale
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Gang Wu
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Marc D Ruben
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Lauren J Francey
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Andrew R Morris
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Natalie Y Choo
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ron C Anafi
- Department of Medicine, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David F Smith
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Pulmonary Medicine and the Sleep Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Circadian Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Otolaryngology - Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Andrew C Liu
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - John B Hogenesch
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Circadian Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
27
|
Holter KM, Pierce BE, Gould RW. Metabotropic glutamate receptor function and regulation of sleep-wake cycles. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:93-175. [PMID: 36868636 PMCID: PMC10973983 DOI: 10.1016/bs.irn.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metabotropic glutamate (mGlu) receptors are the most abundant family of G-protein coupled receptors and are widely expressed throughout the central nervous system (CNS). Alterations in glutamate homeostasis, including dysregulations in mGlu receptor function, have been indicated as key contributors to multiple CNS disorders. Fluctuations in mGlu receptor expression and function also occur across diurnal sleep-wake cycles. Sleep disturbances including insomnia are frequently comorbid with neuropsychiatric, neurodevelopmental, and neurodegenerative conditions. These often precede behavioral symptoms and/or correlate with symptom severity and relapse. Chronic sleep disturbances may also be a consequence of primary symptom progression and can exacerbate neurodegeneration in disorders including Alzheimer's disease (AD). Thus, there is a bidirectional relationship between sleep disturbances and CNS disorders; disrupted sleep may serve as both a cause and a consequence of the disorder. Importantly, comorbid sleep disturbances are rarely a direct target of primary pharmacological treatments for neuropsychiatric disorders even though improving sleep can positively impact other symptom clusters. This chapter details known roles of mGlu receptor subtypes in both sleep-wake regulation and CNS disorders focusing on schizophrenia, major depressive disorder, post-traumatic stress disorder, AD, and substance use disorder (cocaine and opioid). In this chapter, preclinical electrophysiological, genetic, and pharmacological studies are described, and, when possible, human genetic, imaging, and post-mortem studies are also discussed. In addition to reviewing the important relationships between sleep, mGlu receptors, and CNS disorders, this chapter highlights the development of selective mGlu receptor ligands that hold promise for improving both primary symptoms and sleep disturbances.
Collapse
Affiliation(s)
- Kimberly M Holter
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Bethany E Pierce
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Robert W Gould
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
28
|
Huang S, Piao C, Beuschel CB, Zhao Z, Sigrist SJ. A brain-wide form of presynaptic active zone plasticity orchestrates resilience to brain aging in Drosophila. PLoS Biol 2022; 20:e3001730. [PMID: 36469518 PMCID: PMC9721493 DOI: 10.1371/journal.pbio.3001730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/07/2022] [Indexed: 12/10/2022] Open
Abstract
The brain as a central regulator of stress integration determines what is threatening, stores memories, and regulates physiological adaptations across the aging trajectory. While sleep homeostasis seems to be linked to brain resilience, how age-associated changes intersect to adapt brain resilience to life history remains enigmatic. We here provide evidence that a brain-wide form of presynaptic active zone plasticity ("PreScale"), characterized by increases of active zone scaffold proteins and synaptic vesicle release factors, integrates resilience by coupling sleep, longevity, and memory during early aging of Drosophila. PreScale increased over the brain until mid-age, to then decreased again, and promoted the age-typical adaption of sleep patterns as well as extended longevity, while at the same time it reduced the ability of forming new memories. Genetic induction of PreScale also mimicked early aging-associated adaption of sleep patterns and the neuronal activity/excitability of sleep control neurons. Spermidine supplementation, previously shown to suppress early aging-associated PreScale, also attenuated the age-typical sleep pattern changes. Pharmacological induction of sleep for 2 days in mid-age flies also reset PreScale, restored memory formation, and rejuvenated sleep patterns. Our data suggest that early along the aging trajectory, PreScale acts as an acute, brain-wide form of presynaptic plasticity to steer trade-offs between longevity, sleep, and memory formation in a still plastic phase of early brain aging.
Collapse
Affiliation(s)
- Sheng Huang
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Chengji Piao
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Christine B. Beuschel
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Zhiying Zhao
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Stephan J. Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
29
|
Farahani FV, Karwowski W, D’Esposito M, Betzel RF, Douglas PK, Sobczak AM, Bohaterewicz B, Marek T, Fafrowicz M. Diurnal variations of resting-state fMRI data: A graph-based analysis. Neuroimage 2022; 256:119246. [PMID: 35477020 PMCID: PMC9799965 DOI: 10.1016/j.neuroimage.2022.119246] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 02/18/2022] [Accepted: 04/22/2022] [Indexed: 12/31/2022] Open
Abstract
Circadian rhythms (lasting approximately 24 h) control and entrain various physiological processes, ranging from neural activity and hormone secretion to sleep cycles and eating habits. Several studies have shown that time of day (TOD) is associated with human cognition and brain functions. In this study, utilizing a chronotype-based paradigm, we applied a graph theory approach on resting-state functional MRI (rs-fMRI) data to compare whole-brain functional network topology between morning and evening sessions and between morning-type (MT) and evening-type (ET) participants. Sixty-two individuals (31 MT and 31 ET) underwent two fMRI sessions, approximately 1 hour (morning) and 10 h (evening) after their wake-up time, according to their declared habitual sleep-wake pattern on a regular working day. In the global analysis, the findings revealed the effect of TOD on functional connectivity (FC) patterns, including increased small-worldness, assortativity, and synchronization across the day. However, we identified no significant differences based on chronotype categories. The study of the modular structure of the brain at mesoscale showed that functional networks tended to be more integrated with one another in the evening session than in the morning session. Local/regional changes were affected by both factors (i.e., TOD and chronotype), mostly in areas associated with somatomotor, attention, frontoparietal, and default networks. Furthermore, connectivity and hub analyses revealed that the somatomotor, ventral attention, and visual networks covered the most highly connected areas in the morning and evening sessions: the latter two were more active in the morning sessions, and the first was identified as being more active in the evening. Finally, we performed a correlation analysis to determine whether global and nodal measures were associated with subjective assessments across participants. Collectively, these findings contribute to an increased understanding of diurnal fluctuations in resting brain activity and highlight the role of TOD in future studies on brain function and the design of fMRI experiments.
Collapse
Affiliation(s)
- Farzad V. Farahani
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA,Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, USA,Corresponding author: Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA. (F.V. Farahani)
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, USA
| | - Mark D’Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA,Department of Psychology, University of California, Berkeley, CA, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Pamela K. Douglas
- Institute for Simulation and Training, University of Central Florida, Orlando, FL, USA,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna Maria Sobczak
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Bartosz Bohaterewicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland,Department of Psychology of Individual Differences, Psychological Diagnosis, and Psychometrics, Institute of Psychology, University of Social Sciences and Humanities, Warsaw, Poland
| | - Tadeusz Marek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland,Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland,Corresponding author. Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland. (M. Fafrowicz)
| |
Collapse
|
30
|
Christensen J, Li C, Mychasiuk R. Choroid plexus function in neurological homeostasis and disorders: The awakening of the circadian clocks and orexins. J Cereb Blood Flow Metab 2022; 42:1163-1175. [PMID: 35296175 PMCID: PMC9207490 DOI: 10.1177/0271678x221082786] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
As research regarding the role of circadian rhythms, sleep, and the orexinergic system in neurodegenerative diseases is growing, it is surprising that the choroid plexus (CP) remains underappreciated in this realm. Despite its extensive role in the regulation of circadian rhythms and orexinergic signalling, as well as acting as the primary conduit between cerebrospinal fluid (CSF) and the circulatory system, providing a mechanism by which toxic waste molecules can be removed from the brain, the CP has been largely unexplored in neurodegeneration. In this review, we explore the role of the CP in maintaining brain homeostasis and circadian rhythms, regulating CSF dynamics, and how these functions change across the lifespan, from development to senescence. In addition, we examine the relationship between the CP, orexinergic signalling, and the glymphatic system, highlighting gaps in the literature and areas that require immediate exploration. Finally, we assess current knowledge, including possible therapeutic strategies, regarding the role of the CP in neurological disorders, such as traumatic brain injury, migraine, Alzheimer's disease, and multiple sclerosis.
Collapse
Affiliation(s)
- Jennaya Christensen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Crystal Li
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Niknazar H, Malerba P, Mednick SC. Slow oscillations promote long-range effective communication: The key for memory consolidation in a broken-down network. Proc Natl Acad Sci U S A 2022; 119:e2122515119. [PMID: 35733258 PMCID: PMC9245646 DOI: 10.1073/pnas.2122515119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/28/2022] [Indexed: 12/05/2022] Open
Abstract
A prominent and robust finding in cognitive neuroscience is the strengthening of memories during nonrapid eye movement (NREM) sleep, with slow oscillations (SOs;<1Hz) playing a critical role in systems-level consolidation. However, NREM generally shows a breakdown in connectivity and reduction of synaptic plasticity with increasing depth: a brain state seemingly unfavorable to memory consolidation. Here, we present an approach to address this apparent paradox that leverages an event-related causality measure to estimate directional information flow during NREM in epochs with and without SOs. Our results confirm that NREM is generally a state of dampened neural communication but reveals that SOs provide two windows of enhanced large-scale communication before and after the SO trough. These peaks in communication are significantly higher when SOs are coupled with sleep spindles compared with uncoupled SOs. To probe the functional relevance of these SO-selective peaks of information flow, we tested the temporal and topographic conditions that predict overnight episodic memory improvement. Our results show that global, long-range communication during SOs promotes sleep-dependent systems consolidation of episodic memories. A significant correlation between peaks of information flow and memory improvement lends predictive validity to our measurements of effective connectivity. In other words, we were able to predict memory improvement based on independent electrophysiological observations during sleep. This work introduces a noninvasive approach to understanding information processing during sleep and provides a mechanism for how systems-level brain communication can occur during an otherwise low connectivity sleep state. In short, SOs are a gating mechanism for large-scale neural communication, a necessary substrate for systems consolidation and long-term memory formation.
Collapse
Affiliation(s)
- Hamid Niknazar
- Department of Cognitive Sciences, University of California, Irvine, CA 92697
| | - Paola Malerba
- The Ohio State University School of Medicine, Columbus, OH 43215
- Center for Biobehavioral Health, Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Sara C. Mednick
- Department of Cognitive Sciences, University of California, Irvine, CA 92697
| |
Collapse
|
32
|
Andreani T, Rosensweig C, Sisobhan S, Ogunlana E, Kath W, Allada R. Circadian programming of the ellipsoid body sleep homeostat in Drosophila. eLife 2022; 11:e74327. [PMID: 35735904 PMCID: PMC9270026 DOI: 10.7554/elife.74327] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Homeostatic and circadian processes collaborate to appropriately time and consolidate sleep and wake. To understand how these processes are integrated, we scheduled brief sleep deprivation at different times of day in Drosophila and find elevated morning rebound compared to evening. These effects depend on discrete morning and evening clock neurons, independent of their roles in circadian locomotor activity. In the R5 ellipsoid body sleep homeostat, we identified elevated morning expression of activity dependent and presynaptic gene expression as well as the presynaptic protein BRUCHPILOT consistent with regulation by clock circuits. These neurons also display elevated calcium levels in response to sleep loss in the morning, but not the evening consistent with the observed time-dependent sleep rebound. These studies reveal the circuit and molecular mechanisms by which discrete circadian clock neurons program a homeostatic sleep center.
Collapse
Affiliation(s)
- Tomas Andreani
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | - Clark Rosensweig
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | - Shiju Sisobhan
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | - Emmanuel Ogunlana
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | - William Kath
- Department of Engineering Sciences and Applied Mathematics, Northwestern UniversityEvanstonUnited States
| | - Ravi Allada
- Department of Neurobiology, Northwestern UniversityChicagoUnited States
| |
Collapse
|
33
|
Nelson RJ, Bumgarner JR, Liu JA, Love JA, Meléndez-Fernández OH, Becker-Krail DD, Walker WH, Walton JC, DeVries AC, Prendergast BJ. Time of day as a critical variable in biology. BMC Biol 2022; 20:142. [PMID: 35705939 PMCID: PMC9202143 DOI: 10.1186/s12915-022-01333-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/17/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Circadian rhythms are important for all aspects of biology; virtually every aspect of biological function varies according to time of day. Although this is well known, variation across the day is also often ignored in the design and reporting of research. For this review, we analyzed the top 50 cited papers across 10 major domains of the biological sciences in the calendar year 2015. We repeated this analysis for the year 2019, hypothesizing that the awarding of a Nobel Prize in 2017 for achievements in the field of circadian biology would highlight the importance of circadian rhythms for scientists across many disciplines, and improve time-of-day reporting. RESULTS Our analyses of these 1000 empirical papers, however, revealed that most failed to include sufficient temporal details when describing experimental methods and that few systematic differences in time-of-day reporting existed between 2015 and 2019. Overall, only 6.1% of reports included time-of-day information about experimental measures and manipulations sufficient to permit replication. CONCLUSIONS Circadian rhythms are a defining feature of biological systems, and knowing when in the circadian day these systems are evaluated is fundamentally important information. Failing to account for time of day hampers reproducibility across laboratories, complicates interpretation of results, and reduces the value of data based predominantly on nocturnal animals when extrapolating to diurnal humans.
Collapse
Affiliation(s)
- Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26505, USA.
| | - Jacob R Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26505, USA
| | - Jennifer A Liu
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26505, USA
| | - Jharnae A Love
- Department of Psychology, University of Chicago and Institute for Mind and Biology, IL, 60637, Chicago, USA
| | - O Hecmarie Meléndez-Fernández
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26505, USA
| | - Darius D Becker-Krail
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26505, USA
| | - William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26505, USA
| | - James C Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26505, USA
| | - A Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26505, USA
- Department of Medicine, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26505, USA
| | - Brian J Prendergast
- Department of Psychology, University of Chicago and Institute for Mind and Biology, IL, 60637, Chicago, USA
| |
Collapse
|
34
|
Duhart JC, Mosca TJ. Genetic regulation of central synapse formation and organization in Drosophila melanogaster. Genetics 2022; 221:6597078. [PMID: 35652253 DOI: 10.1093/genetics/iyac078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/29/2022] [Indexed: 01/04/2023] Open
Abstract
A goal of modern neuroscience involves understanding how connections in the brain form and function. Such a knowledge is essential to inform how defects in the exquisite complexity of nervous system growth influence neurological disease. Studies of the nervous system in the fruit fly Drosophila melanogaster enabled the discovery of a wealth of molecular and genetic mechanisms underlying development of synapses-the specialized cell-to-cell connections that comprise the essential substrate for information flow and processing in the nervous system. For years, the major driver of knowledge was the neuromuscular junction due to its ease of examination. Analogous studies in the central nervous system lagged due to a lack of genetic accessibility of specific neuron classes, synaptic labels compatible with cell-type-specific access, and high resolution, quantitative imaging strategies. However, understanding how central synapses form remains a prerequisite to understanding brain development. In the last decade, a host of new tools and techniques extended genetic studies of synapse organization into central circuits to enhance our understanding of synapse formation, organization, and maturation. In this review, we consider the current state-of-the-field. We first discuss the tools, technologies, and strategies developed to visualize and quantify synapses in vivo in genetically identifiable neurons of the Drosophila central nervous system. Second, we explore how these tools enabled a clearer understanding of synaptic development and organization in the fly brain and the underlying molecular mechanisms of synapse formation. These studies establish the fly as a powerful in vivo genetic model that offers novel insights into neural development.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
35
|
Ukita Y, Okumura M, Chihara T. Ubiquitin proteasome system in circadian rhythm and sleep homeostasis: Lessons from Drosophila. Genes Cells 2022; 27:381-391. [PMID: 35438236 PMCID: PMC9322287 DOI: 10.1111/gtc.12935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022]
Abstract
Sleep is regulated by two main processes: the circadian clock and sleep homeostasis. Circadian rhythms have been well studied at the molecular level. In the Drosophila circadian clock neurons, the core clock proteins are precisely regulated by post-translational modifications and degraded via the ubiquitin-proteasome system (UPS). Sleep homeostasis, however, is less understood; nevertheless, recent reports suggest that proteasome-mediated degradation of core clock proteins or synaptic proteins contributes to the regulation of sleep amount. Here, we review the molecular mechanism of the UPS and summarize the role of protein degradation in the regulation of circadian clock and homeostatic sleep in Drosophila. Moreover, we discuss the potential interaction between circadian clock and homeostatic sleep regulation with a prime focus on E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Yumiko Ukita
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
36
|
Weiss JT, Donlea JM. Roles for Sleep in Neural and Behavioral Plasticity: Reviewing Variation in the Consequences of Sleep Loss. Front Behav Neurosci 2022; 15:777799. [PMID: 35126067 PMCID: PMC8810646 DOI: 10.3389/fnbeh.2021.777799] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep is a vital physiological state that has been broadly conserved across the evolution of animal species. While the precise functions of sleep remain poorly understood, a large body of research has examined the negative consequences of sleep loss on neural and behavioral plasticity. While sleep disruption generally results in degraded neural plasticity and cognitive function, the impact of sleep loss can vary widely with age, between individuals, and across physiological contexts. Additionally, several recent studies indicate that sleep loss differentially impacts distinct neuronal populations within memory-encoding circuitry. These findings indicate that the negative consequences of sleep loss are not universally shared, and that identifying conditions that influence the resilience of an organism (or neuron type) to sleep loss might open future opportunities to examine sleep's core functions in the brain. Here, we discuss the functional roles for sleep in adaptive plasticity and review factors that can contribute to individual variations in sleep behavior and responses to sleep loss.
Collapse
Affiliation(s)
- Jacqueline T. Weiss
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeffrey M. Donlea
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Jeffrey M. Donlea
| |
Collapse
|
37
|
Avvenuti G, Bernardi G. Local sleep: A new concept in brain plasticity. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:35-52. [PMID: 35034748 DOI: 10.1016/b978-0-12-819410-2.00003-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Traditionally, sleep and wakefulness have been considered as two global, mutually exclusive states. However, this view has been challenged by the discovery that sleep and wakefulness are actually locally regulated and that islands of these two states may often coexist in the same individual. Importantly, such a local regulation seems to be the key for many essential functions of sleep, including the maintenance of cognitive efficiency and the consolidation of new skills and memories. Indeed, local changes in sleep-related oscillations occur in brain areas that are used and involved in learning during wakefulness. In turn, these changes directly modulate experience-dependent brain adaptations and the consolidation of newly acquired memories. In line with these observations, alterations in the regional balance between wake- and sleep-like activity have been shown to accompany many pathologic conditions, including psychiatric and neurologic disorders. In the last decade, experimental research has started to shed light on the mechanisms involved in the local regulation of sleep and wakefulness. The results of this research have opened new avenues of investigation regarding the function of sleep and have revealed novel potential targets for the treatment of several pathologic conditions.
Collapse
Affiliation(s)
- Giulia Avvenuti
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Giulio Bernardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy.
| |
Collapse
|
38
|
Zhou JF, Jiang EH, Xu BL, Xu K, Zhou C, Yuan WJ. Synaptic changes modulate spontaneous transitions between tonic and bursting neural activities in coupled Hindmarsh-Rose neurons. Phys Rev E 2021; 104:054407. [PMID: 34942771 DOI: 10.1103/physreve.104.054407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/26/2021] [Indexed: 11/07/2022]
Abstract
Experimentally, certain cells in the brain exhibit a spike-burst activity with burst synchronization at transition to and during sleep (or drowsiness), while they demonstrate a desynchronized tonic activity in the waking state. We herein investigated the neural activities and their transitions by using a model of coupled Hindmarsh-Rose neurons in an Erdős-Rényi random network. By tuning synaptic strength, spontaneous transitions between tonic and bursting neural activities can be realized. With excitatory chemical synapses or electrical synapses, slow-wave activity (SWA) similar to that observed during sleep can appear, as a result of synchronized bursting activities. SWA cannot appear in a network that is dominated by inhibitory chemical synapses, because neurons exhibit desynchronized bursting activities. Moreover, we found that the critical synaptic strength related to the transitions of neural activities depends only on the network average degree (i.e., the average number of signals that all the neurons receive). We demonstrated, both numerically and analytically, that the critical synaptic strength and the network average degree obey a power-law relation with an exponent of -1. Our study provides a possible dynamical network mechanism of the transitions between tonic and bursting neural activities for the wakefulness-sleep cycle, and of the SWA during sleep. Further interesting and challenging investigations are briefly discussed as well.
Collapse
Affiliation(s)
- Jian-Fang Zhou
- College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
| | - En-Hua Jiang
- College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
| | - Bang-Lin Xu
- College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
| | - Kesheng Xu
- College of Science, Jiangsu University, Zhenjiang 212000, China
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies, Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| | - Wu-Jie Yuan
- College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
39
|
Sleep promotes the formation of dendritic filopodia and spines near learning-inactive existing spines. Proc Natl Acad Sci U S A 2021; 118:2114856118. [PMID: 34873044 DOI: 10.1073/pnas.2114856118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 01/20/2023] Open
Abstract
Changes in synaptic connections are believed to underlie long-term memory storage. Previous studies have suggested that sleep is important for synapse formation after learning, but how sleep is involved in the process of synapse formation remains unclear. To address this question, we used transcranial two-photon microscopy to investigate the effect of postlearning sleep on the location of newly formed dendritic filopodia and spines of layer 5 pyramidal neurons in the primary motor cortex of adolescent mice. We found that newly formed filopodia and spines were partially clustered with existing spines along individual dendritic segments 24 h after motor training. Notably, posttraining sleep was critical for promoting the formation of dendritic filopodia and spines clustered with existing spines within 8 h. A fraction of these filopodia was converted into new spines and contributed to clustered spine formation 24 h after motor training. This sleep-dependent spine formation via filopodia was different from retraining-induced new spine formation, which emerged from dendritic shafts without prior presence of filopodia. Furthermore, sleep-dependent new filopodia and spines tended to be formed away from existing spines that were active at the time of motor training. Taken together, these findings reveal a role of postlearning sleep in regulating the number and location of new synapses via promoting filopodial formation.
Collapse
|
40
|
Hong Y, Flinkman D, Suomi T, Pietilä S, James P, Coffey E, Elo LL. PhosPiR: an automated phosphoproteomic pipeline in R. Brief Bioinform 2021; 23:6456296. [PMID: 34882763 PMCID: PMC8787428 DOI: 10.1093/bib/bbab510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 01/01/2023] Open
Abstract
Large-scale phosphoproteome profiling using mass spectrometry (MS) provides functional insight that is crucial for disease biology and drug discovery. However, extracting biological understanding from these data is an arduous task requiring multiple analysis platforms that are not adapted for automated high-dimensional data analysis. Here, we introduce an integrated pipeline that combines several R packages to extract high-level biological understanding from large-scale phosphoproteomic data by seamless integration with existing databases and knowledge resources. In a single run, PhosPiR provides data clean-up, fast data overview, multiple statistical testing, differential expression analysis, phosphosite annotation and translation across species, multilevel enrichment analyses, proteome-wide kinase activity and substrate mapping and network hub analysis. Data output includes graphical formats such as heatmap, box-, volcano- and circos-plots. This resource is designed to assist proteome-wide data mining of pathophysiological mechanism without a need for programming knowledge.
Collapse
Affiliation(s)
- Ye Hong
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Dani Flinkman
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Lund University, Lund, Sweden
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sami Pietilä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Peter James
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Lund University, Lund, Sweden
| | - Eleanor Coffey
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
41
|
Weiss JT, Donlea JM. Sleep deprivation results in diverse patterns of synaptic scaling across the Drosophila mushroom bodies. Curr Biol 2021; 31:3248-3261.e3. [PMID: 34107302 PMCID: PMC8355077 DOI: 10.1016/j.cub.2021.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/22/2021] [Accepted: 05/11/2021] [Indexed: 11/19/2022]
Abstract
Sleep is essential for a variety of plastic processes, including learning and memory. However, the consequences of insufficient sleep on circuit connectivity remain poorly understood. To better appreciate the effects of sleep loss on synaptic connectivity across a memory-encoding circuit, we examined changes in the distribution of synaptic markers in the Drosophila mushroom body (MB). Protein-trap tags for active zone components indicate that recent sleep time is inversely correlated with Bruchpilot (BRP) abundance in the MB lobes; sleep loss elevates BRP while sleep induction reduces BRP across the MB. Overnight sleep deprivation also elevated levels of dSyd-1 and Cacophony, but not other pre-synaptic proteins. Cell-type-specific genetic reporters show that MB-intrinsic Kenyon cells (KCs) exhibit increased pre-synaptic BRP throughout the axonal lobes after sleep deprivation; similar increases were not detected in projections from large interneurons or dopaminergic neurons that innervate the MB. These results indicate that pre-synaptic plasticity in KCs is responsible for elevated levels of BRP in the MB lobes of sleep-deprived flies. Because KCs provide synaptic inputs to several classes of post-synaptic partners, we next used a fluorescent reporter for synaptic contacts to test whether each class of KC output connections is scaled uniformly by sleep loss. The KC output synapses that we observed here can be divided into three classes: KCs to MB interneurons; KCs to dopaminergic neurons; and KCs to MB output neurons. No single class showed uniform scaling across each constituent member, indicating that different rules may govern plasticity during sleep loss across cell types.
Collapse
Affiliation(s)
- Jacqueline T Weiss
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jeffrey M Donlea
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
42
|
Huang S, Sigrist SJ. Presynaptic and postsynaptic long-term plasticity in sleep homeostasis. Curr Opin Neurobiol 2021; 69:1-10. [DOI: 10.1016/j.conb.2020.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/03/2020] [Accepted: 11/15/2020] [Indexed: 12/25/2022]
|
43
|
Fernandez-Leon JA, Acosta G. A heuristic perspective on non-variational free energy modulation at the sleep-like edge. Biosystems 2021; 208:104466. [PMID: 34246689 DOI: 10.1016/j.biosystems.2021.104466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/03/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND The variational Free Energy Principle (FEP) establishes that a neural system minimizes a free energy function of their internal state through environmental sensing entailing beliefs about hidden states in their environment. PROBLEM Because sensations are drastically reduced during sleep, it is still unclear how a self-organizing neural network can modulate free energy during sleep transitions. GOAL To address this issue, we study how network's state-dependent changes in energy, entropy and free energy connect with changes at the synaptic level in the absence of sensing during a sleep-like transition. APPROACH We use simulations of a physically plausible, environmentally isolated neuronal network that self-organize after inducing a thalamic input to show that the reduction of non-variational free energy depends sensitively upon thalamic input at a slow, rhythmic Poisson (delta) frequency due to spike timing dependent plasticity. METHODS We define a non-variational free energy in terms of the relative difference between the energy and entropy of the network from the initial distribution (prior to activity dependent plasticity) to the nonequilibrium steady-state distribution (after plasticity). We repeated the analysis under different levels of thalamic drive - as defined by the number of cortical neurons in receipt of thalamic input. RESULTS Entraining slow activity with thalamic input induces a transition from a gamma (awake-like state) to a delta (sleep-like state) mode of activity, which can be characterized through a modulation of network's energy and entropy (non-variational free energy) of the ensuing dynamics. The self-organizing response to low and high thalamic drive also showed characteristic differences in the spectrum of frequency content due to spike timing dependent plasticity. CONCLUSIONS The modulation of this non-variational free energy in a network that self-organizes, seems to be an organizational network principle. This could open a window to new empirically testable hypotheses about state changes in a neural network.
Collapse
Affiliation(s)
- Jose A Fernandez-Leon
- Neurology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02115, USA; Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Gerardo Acosta
- INTELYMEC-CIFICEN (UNCPBA-CICPBA-CONICET), Olavarría, B7400JWI, Argentina
| |
Collapse
|
44
|
Jin X, Tian Y, Zhang ZC, Gu P, Liu C, Han J. A subset of DN1p neurons integrates thermosensory inputs to promote wakefulness via CNMa signaling. Curr Biol 2021; 31:2075-2087.e6. [PMID: 33740429 DOI: 10.1016/j.cub.2021.02.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/15/2020] [Accepted: 02/17/2021] [Indexed: 11/29/2022]
Abstract
Sleep is an essential and evolutionarily conserved behavior that is modulated by many environmental factors. Ambient temperature shifting usually occurs during climatic or seasonal change or travel from high-latitude area to low-latitude area that affects animal physiology. Increasing ambient temperature modulates sleep in both humans and Drosophila. Although several thermosensory molecules and neurons have been identified, the neural mechanisms that integrate temperature sensation into the sleep neural circuit remain poorly understood. Here, we reveal that prolonged increasing of ambient temperature induces a reversible sleep reduction and impaired sleep consolidation in Drosophila via activating the internal thermosensory anterior cells (ACs). ACs form synaptic contacts with a subset of posterior dorsal neuron 1 (DN1p) neurons and release acetylcholine to promote wakefulness. Furthermore, we identify that this subset of DN1ps promotes wakefulness by releasing CNMamide (CNMa) neuropeptides to inhibit the Dh44-positive pars intercerebralis (PI) neurons through CNMa receptors. Our study demonstrates that the AC-DN1p-PI neural circuit is responsible for integrating thermosensory inputs into the sleep neural circuit. Moreover, we identify the CNMa signaling pathway as a newly recognized wakefulness-promoting DN1 pathway.
Collapse
Affiliation(s)
- Xi Jin
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Yao Tian
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Zi Chao Zhang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Pengyu Gu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Chang Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226021, China.
| |
Collapse
|
45
|
Gisabella B, Babu J, Valeri J, Rexrode L, Pantazopoulos H. Sleep and Memory Consolidation Dysfunction in Psychiatric Disorders: Evidence for the Involvement of Extracellular Matrix Molecules. Front Neurosci 2021; 15:646678. [PMID: 34054408 PMCID: PMC8160443 DOI: 10.3389/fnins.2021.646678] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep disturbances and memory dysfunction are key characteristics across psychiatric disorders. Recent advances have revealed insight into the role of sleep in memory consolidation, pointing to key overlap between memory consolidation processes and structural and molecular abnormalities in psychiatric disorders. Ongoing research regarding the molecular mechanisms involved in memory consolidation has the potential to identify therapeutic targets for memory dysfunction in psychiatric disorders and aging. Recent evidence from our group and others points to extracellular matrix molecules, including chondroitin sulfate proteoglycans and their endogenous proteases, as molecules that may underlie synaptic dysfunction in psychiatric disorders and memory consolidation during sleep. These molecules may provide a therapeutic targets for decreasing strength of reward memories in addiction and traumatic memories in PTSD, as well as restoring deficits in memory consolidation in schizophrenia and aging. We review the evidence for sleep and memory consolidation dysfunction in psychiatric disorders and aging in the context of current evidence pointing to the involvement of extracellular matrix molecules in these processes.
Collapse
Affiliation(s)
| | | | | | | | - Harry Pantazopoulos
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
46
|
The why and how of sleep-dependent synaptic down-selection. Semin Cell Dev Biol 2021; 125:91-100. [PMID: 33712366 PMCID: PMC8426406 DOI: 10.1016/j.semcdb.2021.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/22/2022]
Abstract
Sleep requires that we disconnect from the environment, losing the ability to promptly respond to stimuli. There must be at least one essential function that justifies why we take this risk every day, and that function must depend on the brain being offline. We have proposed that this function is to renormalize synaptic weights after learning has led to a net increase in synaptic strength in many brain circuits. Without this renormalization, synaptic activity would become energetically too expensive and saturation would prevent new learning. There is converging evidence from molecular, electrophysiological, and ultrastructural experiments showing a net increase in synaptic strength after the major wake phase, and a net decline after sleep. The evidence also suggests that sleep-dependent renormalization is a smart process of synaptic down-selection, comprehensive and yet specific, which could explain the many beneficial effects of sleep on cognition. Recently, a key molecular mechanism that allows broad synaptic weakening during sleep was identified. Other mechanisms still being investigated should eventually explain how sleep can weaken most synapses but afford protection to some, including those directly activated by learning. That synaptic down-selection takes place during sleep is by now established; why it should take place during sleep has a plausible explanation; how it happens is still work in progress.
Collapse
|
47
|
Tainton-Heap LAL, Kirszenblat LC, Notaras ET, Grabowska MJ, Jeans R, Feng K, Shaw PJ, van Swinderen B. A Paradoxical Kind of Sleep in Drosophila melanogaster. Curr Biol 2020; 31:578-590.e6. [PMID: 33238155 DOI: 10.1016/j.cub.2020.10.081] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 09/14/2020] [Accepted: 10/27/2020] [Indexed: 01/01/2023]
Abstract
The dynamic nature of sleep in many animals suggests distinct stages that serve different functions. Genetic sleep induction methods in animal models provide a powerful way to disambiguate these stages and functions, although behavioral methods alone are insufficient to accurately identify what kind of sleep is being engaged. In Drosophila, activation of the dorsal fan-shaped body (dFB) promotes sleep, but it remains unclear what kind of sleep this is, how the rest of the fly brain is behaving, or if any specific sleep functions are being achieved. Here, we developed a method to record calcium activity from thousands of neurons across a volume of the fly brain during spontaneous sleep and compared this to dFB-induced sleep. We found that spontaneous sleep typically transitions from an active "wake-like" stage to a less active stage. In contrast, optogenetic activation of the dFB promotes sustained wake-like levels of neural activity even though flies become unresponsive to mechanical stimuli. When we probed flies with salient visual stimuli, we found that the activity of visually responsive neurons in the central brain was blocked by transient dFB activation, confirming an acute disconnect from the external environment. Prolonged optogenetic dFB activation nevertheless achieved a key sleep function by correcting visual attention defects brought on by sleep deprivation. These results suggest that dFB activation promotes a distinct form of sleep in Drosophila, where brain activity appears similar to wakefulness, but responsiveness to external sensory stimuli is profoundly suppressed.
Collapse
Affiliation(s)
- Lucy A L Tainton-Heap
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Leonie C Kirszenblat
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Eleni T Notaras
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Martyna J Grabowska
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rhiannon Jeans
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kai Feng
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul J Shaw
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
48
|
REM sleep promotes experience-dependent dendritic spine elimination in the mouse cortex. Nat Commun 2020; 11:4819. [PMID: 32968048 PMCID: PMC7511313 DOI: 10.1038/s41467-020-18592-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 08/26/2020] [Indexed: 01/10/2023] Open
Abstract
In many parts of the nervous system, experience-dependent refinement of neuronal circuits predominantly involves synapse elimination. The role of sleep in this process remains unknown. We investigated the role of sleep in experience-dependent dendritic spine elimination of layer 5 pyramidal neurons in the visual (V1) and frontal association cortex (FrA) of 1-month-old mice. We found that monocular deprivation (MD) or auditory-cued fear conditioning (FC) caused rapid spine elimination in V1 or FrA, respectively. MD- or FC-induced spine elimination was significantly reduced after total sleep or REM sleep deprivation. Total sleep or REM sleep deprivation also prevented MD- and FC-induced reduction of neuronal activity in response to visual or conditioned auditory stimuli. Furthermore, dendritic calcium spikes increased substantially during REM sleep, and the blockade of these calcium spikes prevented MD- and FC-induced spine elimination. These findings reveal an important role of REM sleep in experience-dependent synapse elimination and neuronal activity reduction. Sleep plays an important role in learning and memory. Here the authors show that experience dependent elimination of spines is attenuated by REM sleep deprivation.
Collapse
|
49
|
Leak RK, Weiner SL, Chandwani MN, Rhodes DC. Long weekend sleep is linked to stronger academic performance in male but not female pharmacy students. ADVANCES IN PHYSIOLOGY EDUCATION 2020; 44:350-357. [PMID: 32568007 DOI: 10.1152/advan.00005.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Poor sleep hygiene portends loss of physical and mental stamina. Therefore, maintaining a regular sleep/wake schedule on both weekdays and weekends is highly recommended. However, this advice runs contrary to the habits of university students who sleep late on weekends. Pharmacy students at Duquesne University sit for frequent examinations, typically commencing at 7:30 AM, and they complain about mental fatigue. Here, we tested the central hypothesis that longer sleep durations on both weekdays and weekends are linked to stronger academic performance in men and women. Students in their first professional year were administered three surveys to collect data on sleep habits and factors that might influence sleep, such as roommates, long commute times, and sleep interruptions. Grade point averages (GPAs) were collected from the Dean's office, with individual permissions from the students. Longer weekend-but not weekday-sleep durations were significantly correlated with higher cumulative GPAs in men and not in women. Women achieved slightly higher cumulative GPAs than men. Students who fell asleep within 15 min of going to bed had higher professional-phase GPAs than those who fell asleep after an hour or more. Our observations cannot establish causal links, but, given the body of prior evidence on the salutary properties of sleep, men may reap more benefit from recovery sleep on weekends. Rather than recommending that students force themselves awake early on weekends in an attempt to maintain a consistent sleep routine, the real-life habits of students should also be given consideration.
Collapse
Affiliation(s)
- Rehana Khan Leak
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania
| | - Susan L Weiner
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania
| | - Manisha N Chandwani
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania
| | - Diane C Rhodes
- School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania
| |
Collapse
|
50
|
Hartsock MJ, Spencer RL. Memory and the circadian system: Identifying candidate mechanisms by which local clocks in the brain may regulate synaptic plasticity. Neurosci Biobehav Rev 2020; 118:134-162. [PMID: 32712278 DOI: 10.1016/j.neubiorev.2020.07.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
Abstract
The circadian system is an endogenous biological network responsible for coordinating near-24-h cycles in behavior and physiology with daily timing cues from the external environment. In this review, we explore how the circadian system regulates memory formation, retention, and recall. Circadian rhythms in these memory processes may arise through several endogenous pathways, and recent work highlights the importance of genetic timekeepers found locally within tissues, called local clocks. We evaluate the circadian memory literature for evidence of local clock involvement in memory, identifying potential nodes for direct interactions between local clock components and mechanisms of synaptic plasticity. Our discussion illustrates how local clocks may pervasively modulate neuronal plastic capacity, a phenomenon that we designate here as circadian metaplasticity. We suggest that this function of local clocks supports the temporal optimization of memory processes, illuminating the potential for circadian therapeutic strategies in the prevention and treatment of memory impairment.
Collapse
Affiliation(s)
- Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States.
| | - Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States.
| |
Collapse
|