1
|
Bolt T, Wang S, Nomi JS, Setton R, Gold BP, deB Frederick B, Yeo BTT, Chen JJ, Picchioni D, Duyn JH, Spreng RN, Keilholz SD, Uddin LQ, Chang C. Autonomic physiological coupling of the global fMRI signal. Nat Neurosci 2025:10.1038/s41593-025-01945-y. [PMID: 40335772 DOI: 10.1038/s41593-025-01945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/12/2025] [Indexed: 05/09/2025]
Abstract
The brain is closely attuned to visceral signals from the body's internal environment, as evidenced by the numerous associations between neural, hemodynamic and peripheral physiological signals. Here we show that a major mode of these brain-body cofluctuations can be captured by a single spatiotemporal pattern. Across several independent samples, as well as single-echo and multi-echo functional magnetic resonance imaging (fMRI) data acquisition sequences, we identify widespread cofluctuations in the low-frequency range (0.01-0.1 Hz) between resting-state global fMRI signals, electroencephalogram (EEG) activity, and a host of peripheral autonomic signals spanning cardiovascular, pulmonary, exocrine and smooth muscle systems. The same brain-body cofluctuations observed at rest are elicited by cued deep breathing and intermittent sensory stimuli, as well as spontaneous phasic EEG events during sleep. Furthermore, we show that the spatial structure of global fMRI signals is maintained under experimental suppression of end-tidal carbon dioxide variations, suggesting that respiratory-driven fluctuations in arterial CO2 accompanying arousal cannot fully explain the origin of these signals in the brain. These findings suggest that the global fMRI signal is a substantial component of the arousal response governed by the autonomic nervous system.
Collapse
Affiliation(s)
- Taylor Bolt
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA.
| | - Shiyu Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jason S Nomi
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Roni Setton
- Department of Psychology, Harvard University, Boston, MA, USA
| | - Benjamin P Gold
- Departments of Electrical and Computer Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | | | - B T Thomas Yeo
- Centre for Translational MR Research, Centre for Sleep & Cognition, Department of Electrical & Computer Engineering, N.1 Institute for Health and Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - J Jean Chen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Dante Picchioni
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Shella D Keilholz
- Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, GA, USA
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Catie Chang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Departments of Electrical and Computer Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
2
|
Sharon O, Zhelezniakov V, Gat Y, Falach R, Narbayev D, Shiner T, Walker MP, Tauman R, Bregman N, Nir Y. Slow wave synchrony during NREM sleep tracks cognitive impairment in prodromal Alzheimer's disease. Alzheimers Dement 2025; 21:e70247. [PMID: 40399753 DOI: 10.1002/alz.70247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 05/23/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD) disrupts human sleep architecture more severely than normal aging. However, it remains unclear how AD changes oscillatory neural activity during sleep, and whether such changes foreshadow cognitive decline in AD. METHODS We used high-density electroencephalography sleep recordings in 55 participants: (1) 21 healthy older adults, (2) 28 patients with amnestic mild cognitive impairment (aMCI)-a prodromal AD stage, and (3) 6 AD patients. RESULTS Cognitive performance robustly decreases with the slow wave (SW) trough amplitude and its synchronization across broad frontocentral cortical areas. Thus, across the AD spectrum, slow wave synchrony declines with cognition, as in normal aging, but at an accelerated pace. Moreover, delayed rapid eye movement (REM) sleep onset in aMCI and AD patients was associated with deficient SW activity, suggesting insufficiently restorative non-REM sleep. DISCUSSION These findings suggest that impaired slow waves are closely linked to cognitive impairment and mark disrupted neural activity in AD progression. HIGHLIGHTS Detailed analysis of high-density sleep electroencephalography was performed in amnestic mild cognitive impairment and Alzheimer's disease (AD) patients. Cognitive status robustly correlates with slow wave trough and its cortical spread. Delayed rapid eye movement sleep onset associated with AD correlates with diminished slow wave troughs. Impaired slow waves mark progressively disrupted neural activity in prodromal AD.
Collapse
Affiliation(s)
- Omer Sharon
- Center for Human Sleep Science, Department of Psychology, University of California, Berkeley, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Vladislav Zhelezniakov
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yael Gat
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Rotem Falach
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Darya Narbayev
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tamara Shiner
- Cognitive Neurology Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Matthew P Walker
- Center for Human Sleep Science, Department of Psychology, University of California, Berkeley, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
| | - Riva Tauman
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Noa Bregman
- Cognitive Neurology Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Nir
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
3
|
Park C, Byun JI, Choi SH, Shin WC. Machine learning classifier solving the problem of sleep stage imbalance between overnight sleep. Biomed Eng Lett 2025; 15:513-523. [PMID: 40271394 PMCID: PMC12011700 DOI: 10.1007/s13534-025-00466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 04/25/2025] Open
Abstract
Feature extraction follows the American Academy of Sleep Medicine (AASM) sleep score manually and applies it to machine learning with a focus on the generalization of sleep data to enable data-centric artificial intelligence. In real-world clinical testing, the manual scoring of sleep stages is time-consuming and requires significant expertise. Additionally, it is subject to interobserver subjective bias. Machine-learning techniques offer a way to overcome these limitations through automation. However, machine learning for sleep phase prediction can perform poorly for small classes. If the distribution of the training data was unbalanced, the model was trained with a bias toward the majority class. To address this, we experimented with loss function adjustment and resampling methods that assign more weight to the prediction errors of minority classes in sleep scoring to determine how to overcome the data imbalance problem. Machine learning can also be used to compare the accuracy of each channel in identifying electrodes, which should be monitored more closely in real-world clinical testing. Owing to the small amount of data available for machine learning in this study, we used various machine learning classifiers by increasing or decreasing the dataset using sampling techniques and weighting different classes of sleep stages. In our experiments, the best-performing model for classifying sleep stages had an accuracy of 91.9%, kappa of 0.899, and F1-score of 86.9%.
Collapse
Affiliation(s)
- Chanwoo Park
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, 02447 Republic of Korea
| | - Jung-Ick Byun
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Seoul, 05278 Republic of Korea
| | - Sang Ho Choi
- School of Computer and Information Engineering, Kwangwoon University, Seoul, 01897 Republic of Korea
| | - Won Chul Shin
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Seoul, 05278 Republic of Korea
| |
Collapse
|
4
|
Aquino G, Palagini L, Alfì G, Feige B, Spiegelhalder K, Piarulli A, Gemignani A. The Interplay Between the Sleep Slow Oscillation and Cerebrospinal Fluid: New Vistas for Insomnia Research. J Sleep Res 2025:e70069. [PMID: 40243037 DOI: 10.1111/jsr.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Insomnia disorder affects about 10% of the global population, representing a major health concern. Despite the availability of evidence-based treatments, the neurobiological mechanisms underpinning this disorder remain poorly understood. Recently, the investigation of the less than 1 Hz oscillations (commonly termed slow oscillations), a hallmark of slow wave sleep, has gained increased interest in research on insomnia. In this context, an intriguing perspective arises from the association between slow oscillations and metabolic waste clearance, an impaired process in individuals suffering from insomnia disorder. Indeed, the exploration of the relationships between cerebrospinal fluid dynamics and glymphatic system functions, which relate to brain metabolic clearance, and sleep slow oscillations may represent a promising avenue for future research in this field. This narrative review examines current knowledge about the intricate interplay among these mechanisms and their implications for insomnia disorder. Particular attention is given to the role of sleep slow oscillations in the clearance of metabolic waste during sleep, their coupling with cerebrospinal fluid oscillations, and the regulatory mechanisms underlying glymphatic function. The review emphasises the relevance of investigating sleep slow oscillations-related mechanisms in insomnia, intending to provide novel insights into the neurophysiological underpinnings of the disorder and contribute to more accurate diagnostic approaches. Furthermore, a deeper understanding of these mechanisms could pave the way for the development of innovative or adjunctive therapeutic strategies targeting sleep slow oscillations-related alterations in insomnia disorder.
Collapse
Affiliation(s)
- Giulia Aquino
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Laura Palagini
- Department of Neuroscience, University of Pisa Hospital, Pisa, Italy
| | - Gaspare Alfì
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Bernd Feige
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Kai Spiegelhalder
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Andrea Piarulli
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
| | - Angelo Gemignani
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
- Department of Neuroscience, University of Pisa Hospital, Pisa, Italy
| |
Collapse
|
5
|
Gorgoni M, Fasiello E, Leonori V, Galbiati A, Scarpelli S, Alfonsi V, Annarumma L, Casoni F, Castronovo V, Ferini-Strambi L, De Gennaro L. K-Complex morphological alterations in insomnia disorder and their relationship with sleep state misperception. Sleep 2025; 48:zsaf040. [PMID: 39951438 DOI: 10.1093/sleep/zsaf040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/07/2025] [Indexed: 02/16/2025] Open
Abstract
Insomnia disorder (ID) is characterized by electroencephalographic indexes of hyperarousal, often associated with the underestimation of sleep duration (i.e. sleep state misperception). Albeit non-rapid eye movement sleep K-complexes (KCs) are involved in sleep protection and arousal, only a few studies investigated their alterations in ID with heterogenous findings, and results about their possible relationship with sleep state misperception are missing. The study aims to assess KCs in ID and their relationship with sleep state misperception, also considering their correlation with sleep architecture (i.e. the large-scale organization of sleep). Nineteen ID patients (12 F; age: 42.4 ± 12.1 years) and 18 healthy controls (HC; 10 F; age: 41.6 ± 11.9 years) underwent a night of home polysomnography and completed sleep diaries upon awakening. KC density, amplitude, and area under the curve were assessed in midline frontal, central, and parietal derivations. Sleep state misperception was investigated by considering polysomnographic and subjective total sleep time (TST). We found reduced anterior KC morphology (i.e. amplitude and area under the curve) in ID patients compared to HCs, which was associated with TST underestimation. KC morphology was negatively associated with N3 latency, sleep fragmentation and arousal indexes, and positively related with N3 percentage and sleep efficiency. Our findings suggest an impaired sleep protection mechanism expressed by altered KCs morphology in ID involved in sleep state misperception. The observed correlations support the view of KC as the forerunner of slow-wave sleep and protector of sleep continuity. A better understanding of sleep-protecting mechanisms alteration as a predisposing and/or maintaining factor of ID is needed.
Collapse
Affiliation(s)
- Maurizio Gorgoni
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Fasiello
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
- Department of Clinical Neurosciences, Neurology-Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valerio Leonori
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Andrea Galbiati
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
- Department of Clinical Neurosciences, Neurology-Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Scarpelli
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Valentina Alfonsi
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | | | - Francesca Casoni
- Department of Clinical Neurosciences, Neurology-Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vincenza Castronovo
- Department of Clinical Neurosciences, Neurology-Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Ferini-Strambi
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
- Department of Clinical Neurosciences, Neurology-Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Sheybani L, Frauscher B, Bernard C, Walker MC. Mechanistic insights into the interaction between epilepsy and sleep. Nat Rev Neurol 2025; 21:177-192. [PMID: 40065066 DOI: 10.1038/s41582-025-01064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 04/04/2025]
Abstract
Epidemiological evidence has demonstrated associations between sleep and epilepsy, but we lack a mechanistic understanding of these associations. If sleep affects the pathophysiology of epilepsy and the risk of seizures, as suggested by correlative evidence, then understanding these effects could provide crucial insight into the basic mechanisms that underlie the development of epilepsy and the generation of seizures. In this Review, we provide in-depth discussion of the associations between epilepsy and sleep at the cellular, network and system levels and consider the mechanistic underpinnings of these associations. We also discuss the clinical relevance of these associations, highlighting how they could contribute to improvements in the management of epilepsy. A better understanding of the mechanisms that govern the interactions between epilepsy and sleep could guide further research and the development of novel approaches to the management of epilepsy.
Collapse
Affiliation(s)
- Laurent Sheybani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK.
- NIHR University College London Hospitals Biomedical Research Centre, London, UK.
| | - Birgit Frauscher
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Christophe Bernard
- Aix Marseille Université, INSERM, INS, Institute Neurosciences des Systèmes, Marseille, France
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| |
Collapse
|
7
|
Zimmermann J, Boudriot C, Eipert C, Hoffmann G, Nuttall R, Neumaier V, Bonhoeffer M, Schneider S, Schmitzer L, Kufer J, Kaczmarz S, Hedderich DM, Ranft A, Golkowski D, Priller J, Zimmer C, Ilg R, Schneider G, Preibisch C, Sorg C, Zott B. Total cerebral blood volume changes drive macroscopic cerebrospinal fluid flux in humans. PLoS Biol 2025; 23:e3003138. [PMID: 40273212 PMCID: PMC12061420 DOI: 10.1371/journal.pbio.3003138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 05/08/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
In the mammalian brain, the directed motion of cerebrospinal fluid (CSF-flux) is instrumental in the distribution and removal of solutes. Changes in total cerebral blood volume (CBV) have been hypothesized to drive CSF-flux. We tested this hypothesis in two multimodal brain imaging experiments in healthy humans, in which we drove large changes in total CBV by neuronal burst-suppression under anesthesia or by transient global vasodilation in a hypercapnic challenge. We indirectly monitored CBV changes with a high temporal resolution based on associated changes in total brain volume by functional MRI (fMRI) and measured cerebral blood flow by arterial spin-labeling. Relating CBV-sensitive signals to fMRI-derived measures of macroscopic CSF flow across the basal cisternae, we demonstrate that increasing total CBV extrudes CSF from the skull and decreasing CBV allows its influx. Moreover, CSF largely stagnates when CBV is stable. Together, our results establish the direct coupling between total CBV changes and CSF-flux.
Collapse
Affiliation(s)
- Juliana Zimmermann
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Clara Boudriot
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christiane Eipert
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Gabriel Hoffmann
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Rachel Nuttall
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Viktor Neumaier
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Moritz Bonhoeffer
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Sebastian Schneider
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Lena Schmitzer
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Jan Kufer
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Stephan Kaczmarz
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Dennis M Hedderich
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Andreas Ranft
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Daniel Golkowski
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Charité - Universitätsmedizin Berlin and DZNE, Neuropsychiatry, Berlin, Germany
- University of Edinburgh and UKI DRI, Edinburgh, United Kingdom
| | - Claus Zimmer
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Rüdiger Ilg
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Neurology, Asklepios Stadtklinik Bad Tölz, Bad Tölz, Germany
| | - Gerhard Schneider
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christine Preibisch
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Benedikt Zott
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute for Neuroscience, Technical University of Munich, Germany
- TUM Institute for Advanced Study, Garching, Germany
| |
Collapse
|
8
|
Pereira M, Chen X, Paltarzhytskaya A, Pacheсo Y, Muller N, Bovy L, Lei X, Chen W, Ren H, Song C, Lewis LD, Dang-Vu TT, Czisch M, Picchioni D, Duyn J, Peigneux P, Tagliazucchi E, Dresler M. Sleep neuroimaging: Review and future directions. J Sleep Res 2025:e14462. [PMID: 39940102 DOI: 10.1111/jsr.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/29/2024] [Accepted: 12/29/2024] [Indexed: 02/14/2025]
Abstract
Sleep research has evolved considerably since the first sleep electroencephalography recordings in the 1930s and the discovery of well-distinguishable sleep stages in the 1950s. While electrophysiological recordings have been used to describe the sleeping brain in much detail, since the 1990s neuroimaging techniques have been applied to uncover the brain organization and functional connectivity of human sleep with greater spatial resolution. The combination of electroencephalography with different neuroimaging modalities such as positron emission tomography, structural magnetic resonance imaging and functional magnetic resonance imaging imposes several challenges for sleep studies, for instance, the need to combine polysomnographic recordings to assess sleep stages accurately, difficulties maintaining and consolidating sleep in an unfamiliar and restricted environment, scanner-induced distortions with physiological artefacts that may contaminate polysomnography recordings, and the necessity to account for all physiological changes throughout the sleep cycles to ensure better data interpretability. Here, we review the field of sleep neuroimaging in healthy non-sleep-deprived populations, from early findings to more recent developments. Additionally, we discuss the challenges of applying concurrent electroencephalography and imaging techniques to sleep, which consequently have impacted the sample size and generalizability of studies, and possible future directions for the field.
Collapse
Affiliation(s)
- Mariana Pereira
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Xinyuan Chen
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | | | - Yibran Pacheсo
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nils Muller
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leonore Bovy
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - Wei Chen
- School of Information Science and Technology & Human Phenome Institute, Fudan University, Shanghai, China
| | - Haoran Ren
- School of Health and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chen Song
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Thien Thanh Dang-Vu
- Department of Health, Kinesiology and Applied Physiology, Concordia University & Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Quebec, Canada
| | | | - Dante Picchioni
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Jeff Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Philippe Peigneux
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Centre de Recherches Cognition et Neurosciences, and UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Enzo Tagliazucchi
- Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Buenos Aires, Argentina
- Latin American Brain Health Institute, Universidad Adolfo Ibanez, Santiago, Chile
| | - Martin Dresler
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
9
|
Embang JEG, Tan YHV, Ng YX, Loyola GJP, Wong LW, Guo Y, Dong Y. Role of sleep and neurochemical biomarkers in synaptic plasticity related to neurological and psychiatric disorders: A scoping review. J Neurochem 2025; 169:e16270. [PMID: 39676063 DOI: 10.1111/jnc.16270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 12/17/2024]
Abstract
Sleep is vital for maintaining physical and mental well-being, impacting cognitive functions like memory and learning through neuroplasticity. Sleep disturbances prevalent in neurological and psychiatric disorders exacerbate cognitive decline, imposing societal burdens. Exploring the relationship between sleep and neuroplasticity elucidates the mechanisms influencing cognition, particularly amidst the prevalent sleep disturbances in these clinical populations. While existing reviews provide valuable insights, gaps remain in understanding the neurophysiological mechanisms underlying sleep and cognitive function. This scoping review aims to investigate the characteristic patterns of sleep parameters and neurochemical biomarkers in reflecting neuroplasticity changes related to neurological and psychiatric disorders and to explore how these markers interact and influence cognition at the molecular level. Studies involving adults and older adults were included, excluding animal models and the paediatric population. Selected studies explored the relationship between sleep parameter or neurochemical biomarker changes and cognitive impairment, reflecting underlying neuroplasticity changes. Peer-reviewed articles, clinical trials, theses, and dissertations in English were included while excluding secondary research and non-peer-reviewed sources. A three-step search strategy was executed following the updated Joanna Briggs Institute methodology for scoping reviews. Published studies were retrieved from nine databases, grey literature, expert recommendations, and hand-searching of the included studies' bibliography. A basic qualitative content synthesis of 34 studies was conducted per JBI's scoping review guidance. Slow-wave and Rapid-Eye Movement sleep, sleep spindles, sleep cycle disruption, K-Complex(KC) density, Hippocampal sEEG, BDNF, IL-6, iNOS mRNA expression, plasma serotonin, CSF Aβ-42, t-tau and p-tau proteins, and serum cortisol revealed associations with cognitive dysfunction. Examining the relationship between sleep parameters, neurochemical biomarkers, and cognitive function reveals neuronal mechanisms that guide potential therapeutic interventions and enhance quality patient care.
Collapse
Affiliation(s)
- Johann Emilio Gonzales Embang
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
- Division of Nursing, National University Hospital, Singapore City, Singapore
- National University Health System, Singapore City, Singapore
| | - Ying Hui Valerie Tan
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
- Division of Nursing, National University Hospital, Singapore City, Singapore
- National University Health System, Singapore City, Singapore
| | - Yu Xuan Ng
- National University Health System, Singapore City, Singapore
- Division of Nursing, Alexandra Hospital, Singapore City, Singapore
| | - Gerard Jude Ponce Loyola
- College of Medicine, University of the Philippines, Manila, Philippines
- Philippine General Hospital, Manila, Philippines
| | - Lik-Wei Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Yuqing Guo
- Sue & Bill Gross School of Nursing, University of California, Irvine, California, USA
| | - Yanhong Dong
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| |
Collapse
|
10
|
Mittermaier FX, Kalbhenn T, Xu R, Onken J, Faust K, Sauvigny T, Thomale UW, Kaindl AM, Holtkamp M, Grosser S, Fidzinski P, Simon M, Alle H, Geiger JRP. Membrane potential states gate synaptic consolidation in human neocortical tissue. Nat Commun 2024; 15:10340. [PMID: 39668146 PMCID: PMC11638263 DOI: 10.1038/s41467-024-53901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024] Open
Abstract
Synaptic mechanisms that contribute to human memory consolidation remain largely unexplored. Consolidation critically relies on sleep. During slow wave sleep, neurons exhibit characteristic membrane potential oscillations known as UP and DOWN states. Coupling of memory reactivation to these slow oscillations promotes consolidation, though the underlying mechanisms remain elusive. Here, we performed axonal and multineuron patch-clamp recordings in acute human brain slices, obtained from neurosurgeries, to show that sleep-like UP and DOWN states modulate axonal action potentials and temporarily enhance synaptic transmission between neocortical pyramidal neurons. Synaptic enhancement by UP and DOWN state sequences facilitates recruitment of postsynaptic action potentials, which in turn results in long-term stabilization of synaptic strength. In contrast, synapses undergo lasting depression if presynaptic neurons fail to recruit postsynaptic action potentials. Our study offers a mechanistic explanation for how coupling of neural activity to slow waves can cause synaptic consolidation, with potential implications for brain stimulation strategies targeting memory performance.
Collapse
Affiliation(s)
- Franz X Mittermaier
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
| | - Thilo Kalbhenn
- Department of Neurosurgery (Evangelisches Klinikum Bethel), University of Bielefeld Medical Center OWL, Bielefeld, Germany
| | - Ran Xu
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich W Thomale
- Pediatric Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Holtkamp
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sabine Grosser
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pawel Fidzinski
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Matthias Simon
- Department of Neurosurgery (Evangelisches Klinikum Bethel), University of Bielefeld Medical Center OWL, Bielefeld, Germany
| | - Henrik Alle
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
| | - Jörg R P Geiger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany.
| |
Collapse
|
11
|
Dickey CW, Verzhbinsky IA, Kajfez S, Rosen BQ, Gonzalez CE, Chauvel PY, Cash SS, Pati S, Halgren E. Thalamic spindles and Up states coordinate cortical and hippocampal co-ripples in humans. PLoS Biol 2024; 22:e3002855. [PMID: 39561183 PMCID: PMC11575773 DOI: 10.1371/journal.pbio.3002855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/20/2024] [Indexed: 11/21/2024] Open
Abstract
In the neocortex, ~90 Hz ripples couple to ~12 Hz sleep spindles on the ~1 Hz Down-to-Up state transition during non-rapid eye movement sleep. This conjunction of sleep waves is critical for the consolidation of memories into long-term storage. The widespread co-occurrences of ripples ("co-ripples") may integrate information across the neocortex and hippocampus to facilitate consolidation. While the thalamus synchronizes spindles and Up states in the cortex for memory, it is not known whether it may also organize co-ripples. Using human intracranial recordings during NREM sleep, we investigated whether cortico-cortical co-ripples and hippocampo-cortical co-ripples are either: (1) driven by directly projected thalamic ripples; or (2) coordinated by propagating thalamic spindles or Up states. We found ripples in the anterior and posterior thalamus, with similar characteristics as hippocampal and cortical ripples, including having a center frequency of ~90 Hz and coupling to local spindles on the Down-to-Up state transition. However, thalamic ripples rarely co-occur or phase-lock with cortical or hippocampal ripples. By contrast, spindles and Up states that propagate from the thalamus strongly coordinate co-ripples in the cortex and hippocampus. Thus, thalamo-cortical spindles and Up states, rather than thalamic ripples, may provide input facilitating spatially distributed co-rippling that integrates information for memory consolidation during sleep in humans.
Collapse
Affiliation(s)
- Charles W. Dickey
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Medical Scientist Training Program, University of California San Diego, La Jolla, California, United States of America
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, United States of America
| | - Ilya A. Verzhbinsky
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Medical Scientist Training Program, University of California San Diego, La Jolla, California, United States of America
| | - Sophie Kajfez
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
| | - Burke Q. Rosen
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Christopher E. Gonzalez
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Patrick Y. Chauvel
- Aix-Marseille Université, Marseille, France
- INSERM, Institut de Neurosciences des Systèmes UMR 1106, Marseille, France
- APHM (Assistance Publique–Hôpitaux de Marseille), Timone Hospital, Marseille, France
| | - Sydney S. Cash
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sandipan Pati
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Eric Halgren
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, United States of America
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
12
|
Kegyes-Brassai AC, Pierson-Bartel R, Bolla G, Kamondi A, Horvath AA. Disruption of sleep macro- and microstructure in Alzheimer's disease: overlaps between neuropsychology, neurophysiology, and neuroimaging. GeroScience 2024:10.1007/s11357-024-01357-z. [PMID: 39333449 DOI: 10.1007/s11357-024-01357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, often associated with impaired sleep quality and disorganized sleep structure. This study aimed to characterize changes in sleep macrostructure and K-complex density in AD, in relation to neuropsychological performance and brain structural changes. We enrolled 30 AD and 30 healthy control participants, conducting neuropsychological exams, brain MRI, and one-night polysomnography. AD patients had significantly reduced total sleep time (TST), sleep efficiency, and relative durations of non-rapid eye movement (NREM) stages 2 (S2), 3 (S3), and rapid eye movement (REM) sleep (p < 0.01). K-complex (KC) density during the entire sleep period and S2 (p < 0.001) was significantly decreased in AD. We found strong correlations between global cognitive performance and relative S3 (p < 0.001; r = 0.86) and REM durations (p < 0.001; r = 0.87). TST and NREM stage 1 (S1) durations showed a moderate negative correlation with amygdaloid and hippocampal volumes (p < 0.02; r = 0.51-0.55), while S3 and REM sleep had a moderate positive correlation with cingulate cortex volume (p < 0.02; r = 0.45-0.61). KC density strongly correlated with global cognitive function (p < 0.001; r = 0.66) and the thickness of the anterior cingulate cortex (p < 0.05; r = 0.45-0.47). Our results indicate significant sleep organization changes in AD, paralleling cognitive decline. Decreased slow wave sleep and KCs are strongly associated with cingulate cortex atrophy. Since sleep changes are prominent in early AD, they may serve as prognostic markers or therapeutic targets.
Collapse
Affiliation(s)
| | | | - Gergo Bolla
- School of PhD Studies, Semmelweis University, Budapest, Hungary
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry, and Addictology, Budapest, Hungary
| | - Anita Kamondi
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry, and Addictology, Budapest, Hungary
- Department of Neurosurgery and Neurointervention, Semmelweis University, Budapest, Hungary
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Andras Attila Horvath
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry, and Addictology, Budapest, Hungary
- Department of Anatomy Histology and Embryology, Semmelweis University, Budapest, Hungary
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
13
|
Massimini M, Corbetta M, Sanchez-Vives MV, Andrillon T, Deco G, Rosanova M, Sarasso S. Sleep-like cortical dynamics during wakefulness and their network effects following brain injury. Nat Commun 2024; 15:7207. [PMID: 39174560 PMCID: PMC11341729 DOI: 10.1038/s41467-024-51586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
By connecting old and recent notions, different spatial scales, and research domains, we introduce a novel framework on the consequences of brain injury focusing on a key role of slow waves. We argue that the long-standing finding of EEG slow waves after brain injury reflects the intrusion of sleep-like cortical dynamics during wakefulness; we illustrate how these dynamics are generated and how they can lead to functional network disruption and behavioral impairment. Finally, we outline a scenario whereby post-injury slow waves can be modulated to reawaken parts of the brain that have fallen asleep to optimize rehabilitation strategies and promote recovery.
Collapse
Grants
- The authors thank Dr Ezequiel Mikulan, Dr Silvia Casarotto, Dr Andrea Pigorini, Dr Simone Russo, and Dr Pilleriin Sikka for their help and comments on the manuscript draft and illustrations. This work was financially supported by the following entities: ERC-2022-SYG Grant number 101071900 Neurological Mechanisms of Injury and Sleep-like Cellular Dynamics (NEMESIS); Italian National Recovery and Resilience Plan (NRRP), M4C2, funded by the European Union - NextGenerationEU (Project IR0000011, CUP B51E22000150006, “EBRAINS-Italy”); European Union’s Horizon 2020 Framework Program for Research and Innovation under the Specific Grant Agreement No.945539 (Human Brain Project SGA3); Tiny Blue Dot Foundation; Canadian Institute for Advanced Research (CIFAR), Canada; Italian Ministry for Universities and Research (PRIN 2022); Fondazione Regionale per la Ricerca Biomedica (Regione Lombardia), Project ERAPERMED2019–101, GA 779282; CORTICOMOD PID2020-112947RB-I00 financed by MCIN/ AEI /10.13039/501100011033; Fondazione Cassa di Risparmio di Padova e Rovigo (CARIPARO) Grant Agreement number 55403; Ministry of Health, Italy (RF-2008 -12366899) Brain connectivity measured with high-density electroencephalography: a novel neurodiagnostic tool for stroke- NEUROCONN; BIAL foundation grant (Grant Agreement number 361/18); H2020 European School of Network Neuroscience (euSNN); H2020 Visionary Nature Based Actions For Heath, Wellbeing & Resilience in Cities (VARCITIES); Ministry of Health Italy (RF-2019-12369300): Eye-movement dynamics during free viewing as biomarker for assessment of visuospatial functions and for closed-loop rehabilitation in stroke (EYEMOVINSTROKE).
Collapse
Affiliation(s)
- Marcello Massimini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Thomas Andrillon
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Mov'it team, Inserm, CNRS, Paris, France
- Monash Centre for Consciousness and Contemplative Studies, Faculty of Arts, Monash University, Melbourne, VIC, Australia
| | - Gustavo Deco
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Center for Brain and Cognition, Computational Neuroscience Group, Barcelona, Spain
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
14
|
Miyashita Y. Cortical Layer-Dependent Signaling in Cognition: Three Computational Modes of the Canonical Circuit. Annu Rev Neurosci 2024; 47:211-234. [PMID: 39115926 DOI: 10.1146/annurev-neuro-081623-091311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The cerebral cortex performs computations via numerous six-layer modules. The operational dynamics of these modules were studied primarily in early sensory cortices using bottom-up computation for response selectivity as a model, which has been recently revolutionized by genetic approaches in mice. However, cognitive processes such as recall and imagery require top-down generative computation. The question of whether the layered module operates similarly in top-down generative processing as in bottom-up sensory processing has become testable by advances in the layer identification of recorded neurons in behaving monkeys. This review examines recent advances in laminar signaling in these two computations, using predictive coding computation as a common reference, and shows that each of these computations recruits distinct laminar circuits, particularly in layer 5, depending on the cognitive demands. These findings highlight many open questions, including how different interareal feedback pathways, originating from and terminating at different layers, convey distinct functional signals.
Collapse
Affiliation(s)
- Yasushi Miyashita
- Department of Physiology, The University of Tokyo School of Medicine, Tokyo, Japan;
- Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Wodeyar A, Chinappen D, Mylonas D, Baxter B, Manoach DS, Eden UT, Kramer MA, Chu CJ. Thalamic epileptic spikes disrupt sleep spindles in patients with epileptic encephalopathy. Brain 2024; 147:2803-2816. [PMID: 38650060 PMCID: PMC11492493 DOI: 10.1093/brain/awae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/01/2024] [Accepted: 03/24/2024] [Indexed: 04/25/2024] Open
Abstract
In severe epileptic encephalopathies, epileptic activity contributes to progressive cognitive dysfunction. Epileptic encephalopathies share the trait of spike-wave activation during non-REM sleep (EE-SWAS), a sleep stage dominated by sleep spindles, which are brain oscillations known to coordinate offline memory consolidation. Epileptic activity has been proposed to hijack the circuits driving these thalamocortical oscillations, thereby contributing to cognitive impairment. Using a unique dataset of simultaneous human thalamic and cortical recordings in subjects with and without EE-SWAS, we provide evidence for epileptic spike interference of thalamic sleep spindle production in patients with EE-SWAS. First, we show that epileptic spikes and sleep spindles are both predicted by slow oscillations during stage two sleep (N2), but at different phases of the slow oscillation. Next, we demonstrate that sleep-activated cortical epileptic spikes propagate to the thalamus (thalamic spike rate increases after a cortical spike, P ≈ 0). We then show that epileptic spikes in the thalamus increase the thalamic spindle refractory period (P ≈ 0). Finally, we show that in three patients with EE-SWAS, there is a downregulation of sleep spindles for 30 s after each thalamic spike (P < 0.01). These direct human thalamocortical observations support a proposed mechanism for epileptiform activity to impact cognitive function, wherein epileptic spikes inhibit thalamic sleep spindles in epileptic encephalopathy with spike and wave activation during sleep.
Collapse
Affiliation(s)
- Anirudh Wodeyar
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Dhinakaran Chinappen
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Graduate Program in Neuroscience, Boston University, Boston, MA 02215, USA
| | - Dimitris Mylonas
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02215, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Bryan Baxter
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02215, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02215, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Uri T Eden
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA
| | - Mark A Kramer
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
Pigorini A, Avanzini P, Barborica A, Bénar CG, David O, Farisco M, Keller CJ, Manfridi A, Mikulan E, Paulk AC, Roehri N, Subramanian A, Vulliémoz S, Zelmann R. Simultaneous invasive and non-invasive recordings in humans: A novel Rosetta stone for deciphering brain activity. J Neurosci Methods 2024; 408:110160. [PMID: 38734149 DOI: 10.1016/j.jneumeth.2024.110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/10/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
Simultaneous noninvasive and invasive electrophysiological recordings provide a unique opportunity to achieve a comprehensive understanding of human brain activity, much like a Rosetta stone for human neuroscience. In this review we focus on the increasingly-used powerful combination of intracranial electroencephalography (iEEG) with scalp electroencephalography (EEG) or magnetoencephalography (MEG). We first provide practical insight on how to achieve these technically challenging recordings. We then provide examples from clinical research on how simultaneous recordings are advancing our understanding of epilepsy. This is followed by the illustration of how human neuroscience and methodological advances could benefit from these simultaneous recordings. We conclude with a call for open data sharing and collaboration, while ensuring neuroethical approaches and argue that only with a true collaborative approach the promises of simultaneous recordings will be fulfilled.
Collapse
Affiliation(s)
- Andrea Pigorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy; UOC Maxillo-facial Surgery and dentistry, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| | - Pietro Avanzini
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy
| | | | - Christian-G Bénar
- Aix Marseille Univ, Inserm, U1106, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Olivier David
- Aix Marseille Univ, Inserm, U1106, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Michele Farisco
- Centre for Research Ethics and Bioethics, Department of Public Health and Caring Sciences, Uppsala University, P.O. Box 256, Uppsala, SE 751 05, Sweden; Science and Society Unit Biogem, Biology and Molecular Genetics Institute, Via Camporeale snc, Ariano Irpino, AV 83031, Italy
| | - Corey J Keller
- Department of Psychiatry & Behavioral Sciences, Stanford University Medical Center, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University Medical Center, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA 94394, USA
| | - Alfredo Manfridi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Ezequiel Mikulan
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Angelique C Paulk
- Department of Neurology and Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicolas Roehri
- EEG and Epilepsy Unit, Dpt of Clinical Neurosciences, Geneva University Hospitals and University of Geneva, Switzerland
| | - Ajay Subramanian
- Department of Psychiatry & Behavioral Sciences, Stanford University Medical Center, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University Medical Center, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA 94394, USA
| | - Serge Vulliémoz
- EEG and Epilepsy Unit, Dpt of Clinical Neurosciences, Geneva University Hospitals and University of Geneva, Switzerland
| | - Rina Zelmann
- Department of Neurology and Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Xia M, Zhao X, Deng R, Lu Z, Cao J. EEGNet classification of sleep EEG for individual specialization based on data augmentation. Cogn Neurodyn 2024; 18:1539-1547. [PMID: 39104682 PMCID: PMC11297866 DOI: 10.1007/s11571-023-10062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/19/2023] [Accepted: 12/18/2023] [Indexed: 08/07/2024] Open
Abstract
Sleep is an essential part of human life, and the quality of one's sleep is also an important indicator of one's health. Analyzing the Electroencephalogram (EEG) signals of a person during sleep makes it possible to understand the sleep status and give relevant rest or medical advice. In this paper, a decent amount of artificial data generated with a data augmentation method based on Discrete Cosine Transform from a small amount of real experimental data of a specific individual is introduced. A classification model with an accuracy of 92.85% has been obtained. By mixing the data augmentation with the public database and training with the EEGNet, we obtained a classification model with significantly higher accuracy for the specific individual. The experiments have demonstrated that we can circumvent the subject-independent problem in sleep EEG in this way and use only a small amount of labeled data to customize a dedicated classification model with high accuracy.
Collapse
Affiliation(s)
- Mo Xia
- Graduate School of Engineering, Saitama Institute of Technology, 1690 Fusaiji, Fukaya, Saitama 369-0203 Japan
| | - Xuyang Zhao
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 3-8-1 Harumicho, Fuchu, Tokyo 183-8538 Japan
- RIKEN Center for Advanced Intelligence Project (AIP), 1-4-1 Nihonbashi, Chuo, Tokyo 103-0027 Japan
| | - Rui Deng
- Graduate School of Engineering, Saitama Institute of Technology, 1690 Fusaiji, Fukaya, Saitama 369-0203 Japan
| | - Zheng Lu
- Department of Psychiatry, Tongji Hospital, Tongji University, 40 Chifeng Rd, Yangpu District, Shanghai, 200086 China
| | - Jianting Cao
- Graduate School of Engineering, Saitama Institute of Technology, 1690 Fusaiji, Fukaya, Saitama 369-0203 Japan
- RIKEN Center for Advanced Intelligence Project (AIP), 1-4-1 Nihonbashi, Chuo, Tokyo 103-0027 Japan
| |
Collapse
|
18
|
Bolt T, Wang S, Nomi JS, Setton R, Gold BP, Frederick BD, Yeo BTT, Chen JJ, Picchioni D, Spreng RN, Keilholz SD, Uddin LQ, Chang C. Widespread Autonomic Physiological Coupling Across the Brain-Body Axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.19.524818. [PMID: 39131291 PMCID: PMC11312447 DOI: 10.1101/2023.01.19.524818] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The brain is closely attuned to visceral signals from the body's internal environment, as evidenced by the numerous associations between neural, hemodynamic, and peripheral physiological signals. We show that these brain-body co-fluctuations can be captured by a single spatiotemporal pattern. Across several independent samples, as well as single-echo and multi-echo fMRI data acquisition sequences, we identify widespread co-fluctuations in the low-frequency range (0.01 - 0.1 Hz) between resting-state global fMRI signals, neural activity, and a host of autonomic signals spanning cardiovascular, pulmonary, exocrine and smooth muscle systems. The same brain-body co-fluctuations observed at rest are elicited by arousal induced by cued deep breathing and intermittent sensory stimuli, as well as spontaneous phasic EEG events during sleep. Further, we show that the spatial structure of global fMRI signals is maintained under experimental suppression of end-tidal carbon dioxide (PETCO2) variations, suggesting that respiratory-driven fluctuations in arterial CO2 accompanying arousal cannot explain the origin of these signals in the brain. These findings establish the global fMRI signal as a significant component of the arousal response governed by the autonomic nervous system.
Collapse
Affiliation(s)
- Taylor Bolt
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Shiyu Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jason S Nomi
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Roni Setton
- Department of Psychology, Harvard University, Boston, MA, USA
| | - Benjamin P Gold
- Departments of Electrical and Computer Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Blaise deB Frederick
- Brain Imaging Center McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - B T Thomas Yeo
- Department of Electrical & Computer Engineering, Centre for Translational MR Research, Centre for Sleep & Cognition, N.1 Institute for Health and Institute for Digital Medicine, National University of Singapore, Singapore
| | - J Jean Chen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Dante Picchioni
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, United States
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Catie Chang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Departments of Electrical and Computer Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
19
|
Bourdillon P, Ren L, Halgren M, Paulk AC, Salami P, Ulbert I, Fabó D, King JR, Sjoberg KM, Eskandar EN, Madsen JR, Halgren E, Cash SS. Differential cortical layer engagement during seizure initiation and spread in humans. Nat Commun 2024; 15:5153. [PMID: 38886376 PMCID: PMC11183216 DOI: 10.1038/s41467-024-48746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/10/2024] [Indexed: 06/20/2024] Open
Abstract
Despite decades of research, we still do not understand how spontaneous human seizures start and spread - especially at the level of neuronal microcircuits. In this study, we used laminar arrays of micro-electrodes to simultaneously record the local field potentials and multi-unit neural activities across the six layers of the neocortex during focal seizures in humans. We found that, within the ictal onset zone, the discharges generated during a seizure consisted of current sinks and sources only within the infra-granular and granular layers. Outside of the seizure onset zone, ictal discharges reflected current flow in the supra-granular layers. Interestingly, these patterns of current flow evolved during the course of the seizure - especially outside the seizure onset zone where superficial sinks and sources extended into the deeper layers. Based on these observations, a framework describing cortical-cortical dynamics of seizures is proposed with implications for seizure localization, surgical targeting, and neuromodulation techniques to block the generation and propagation of seizures.
Collapse
Affiliation(s)
- Pierre Bourdillon
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurosurgery, Hospital Foundation Adolphe de Rothschild, Paris, France.
- Integrative Neuroscience and Cognition Center, Paris Cité University, Paris, France.
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Mila Halgren
- Brain and Cognitive Sciences Department and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Angelique C Paulk
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pariya Salami
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - István Ulbert
- HUN-REN, Research Center for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Budapest, Hungary
- Faculty of Information Technology and Bionics, Péter Pázmány Catholic University, Budapest, Hungary
- Department of Neurosurgery and Neurointervention, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Dániel Fabó
- Department of Neurosurgery and Neurointervention, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Jean-Rémi King
- Laboratoire des Systèmes Perceptifs, Département d'études cognitives, École normale supérieure, PSL University, CNRS, Paris, France
| | - Kane M Sjoberg
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Harvard College, Cambridge, MA, 02138, USA
| | - Emad N Eskandar
- Department of Neurological Surgery, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA
| | - Joseph R Madsen
- Department of Neurosurgery, Boston Children Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric Halgren
- Departments of Radiology and, Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Sydney S Cash
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Hajnal B, Szabó JP, Tóth E, Keller CJ, Wittner L, Mehta AD, Erőss L, Ulbert I, Fabó D, Entz L. Intracortical mechanisms of single pulse electrical stimulation (SPES) evoked excitations and inhibitions in humans. Sci Rep 2024; 14:13784. [PMID: 38877093 PMCID: PMC11178858 DOI: 10.1038/s41598-024-62433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/16/2024] [Indexed: 06/16/2024] Open
Abstract
Cortico-cortical evoked potentials (CCEPs) elicited by single-pulse electric stimulation (SPES) are widely used to assess effective connectivity between cortical areas and are also implemented in the presurgical evaluation of epileptic patients. Nevertheless, the cortical generators underlying the various components of CCEPs in humans have not yet been elucidated. Our aim was to describe the laminar pattern arising under SPES evoked CCEP components (P1, N1, P2, N2, P3) and to evaluate the similarities between N2 and the downstate of sleep slow waves. We used intra-cortical laminar microelectrodes (LMEs) to record CCEPs evoked by 10 mA bipolar 0.5 Hz electric pulses in seven patients with medically intractable epilepsy implanted with subdural grids. Based on the laminar profile of CCEPs, the latency of components is not layer-dependent, however their rate of appearance varies across cortical depth and stimulation distance, while the seizure onset zone does not seem to affect the emergence of components. Early neural excitation primarily engages middle and deep layers, propagating to the superficial layers, followed by mainly superficial inhibition, concluding in a sleep slow wave-like inhibition and excitation sequence.
Collapse
Affiliation(s)
- Boglárka Hajnal
- Epilepsy Center, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
- János Szentágothai Neurosciences Program, Semmelweis University School of PhD Studies, Budapest, 1083, Hungary
| | - Johanna Petra Szabó
- Epilepsy Center, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
- János Szentágothai Neurosciences Program, Semmelweis University School of PhD Studies, Budapest, 1083, Hungary
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Emília Tóth
- Epilepsy and Cognitive Neurophysiology Laboratory, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Corey J Keller
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine and Feinstein Institute of Medical Research, 300 Community Drive, Manhasset, NY, 11030, USA
- Department of Neuroscience, Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, 94304, USA
| | - Lucia Wittner
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, HUN-REN, Budapest, 1117, Hungary
- Department of Information Technology and Bionics, Péter Pázmány Catholic University, Budapest, 1083, Hungary
| | - Ashesh D Mehta
- Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine and Feinstein Institute of Medical Research, 300 Community Drive, Manhasset, NY, 11030, USA
| | - Loránd Erőss
- Department of Functional Neurosurgery, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
| | - István Ulbert
- Epilepsy Center, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, HUN-REN, Budapest, 1117, Hungary
- Department of Information Technology and Bionics, Péter Pázmány Catholic University, Budapest, 1083, Hungary
| | - Dániel Fabó
- Epilepsy Center, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary.
| | - László Entz
- Department of Functional Neurosurgery, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
| |
Collapse
|
21
|
Belov D, Fesenko Z, Lakstygal A, Efimov A, Tikhonravov D. Dependence of rhythmic activity and oddball effects in the rat cortex on the depth of sedation during dissociative anesthesia. Cereb Cortex 2024; 34:bhae249. [PMID: 38879757 DOI: 10.1093/cercor/bhae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 01/28/2025] Open
Abstract
The reactions to novelty manifesting in mismatch negativity in the rat brain were studied. During dissociative anesthesia, mismatch negativity-like waves were recorded from the somatosensory cortex using an epidural 32-electrode array. Experimental animals: 7 wild-type Wistar rats and 3 transgenic rats. During high-dose anesthesia, deviant 1,500 Hz tones were presented randomly among many standard 1,000 Hz tones in the oddball paradigm. "Deviant minus standard_before_deviant" difference waves were calculated using both the classical method of Naatanen and method of cross-correlation of sub-averages. Both methods gave consistent results: an early phasic component of the N40 and later N100 to 200 (mismatch negativity itself) tonic component. The gamma and delta rhythms power and the frequency of down-states (suppressed activity periods) were assessed. In all rats, the amplitude of tonic component grew with increasing sedation depth. At the same time, a decrease in gamma power with a simultaneous increase in delta power and the frequency of down-states. The earlier phasic frontocentral component is associated with deviance detection, while the later tonic one over the auditory cortex reflects the orienting reaction. Under anesthesia, this slow mismatch negativity-like wave most likely reflects the tendency of the system to respond to any influences with delta waves, K-complexes and down-states, or produce them spontaneously.
Collapse
Affiliation(s)
- Dmitry Belov
- Almazov National Medical Research Centre, 2 Akkuratova St., Saint Petersburg 197341, Russia
| | - Zoia Fesenko
- Department of Physiology, Saint Petersburg State University, 7-9 Universitetskaya nab, Saint Petersburg 199034, Russia
- Saint Petersburg State University, Institute of Translational Biomedicine, 7-9 Universitetskaya nab, Saint Petersburg 199034, Russia
| | - Anton Lakstygal
- Department of Physiology, Saint Petersburg State University, 7-9 Universitetskaya nab, Saint Petersburg 199034, Russia
| | - Andrey Efimov
- Saint Petersburg State University, Institute of Translational Biomedicine, 7-9 Universitetskaya nab, Saint Petersburg 199034, Russia
| | - Dmitry Tikhonravov
- Almazov National Medical Research Centre, 2 Akkuratova St., Saint Petersburg 197341, Russia
| |
Collapse
|
22
|
Salvesen L, Capriglia E, Dresler M, Bernardi G. Influencing dreams through sensory stimulation: A systematic review. Sleep Med Rev 2024; 74:101908. [PMID: 38417380 PMCID: PMC11009489 DOI: 10.1016/j.smrv.2024.101908] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Abstract
Sleep is typically considered a state of disconnection from the environment, yet instances of external sensory stimuli influencing dreams have been reported for centuries. Explaining this phenomenon could provide valuable insight into dreams' generative and functional mechanisms, the factors that promote sleep continuity, and the processes that underlie conscious awareness. Moreover, harnessing sensory stimuli for dream engineering could benefit individuals suffering from dream-related alterations. This PRISMA-compliant systematic review assessed the current evidence concerning the influence of sensory stimulation on sleep mentation. We included 51 publications, of which 21 focused on auditory stimulation, ten on somatosensory stimulation, eight on olfactory stimulation, four on visual stimulation, two on vestibular stimulation, and one on multimodal stimulation. Furthermore, nine references explored conditioned associative stimulation: six focused on targeted memory reactivation protocols and three on targeted lucid reactivation protocols. The reported frequency of stimulus-dependent dream changes across studies ranged from 0 to ∼80%, likely reflecting a considerable heterogeneity of definitions and methodological approaches. Our findings highlight a lack of comprehensive understanding of the mechanisms, functions, and neurophysiological correlates of stimulus-dependent dream changes. We suggest that a paradigm shift is required for meaningful progress in this field.
Collapse
Affiliation(s)
- Leila Salvesen
- Sleep, Plasticity, and Conscious Experience Group, MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Elena Capriglia
- Sleep, Plasticity, and Conscious Experience Group, MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Giulio Bernardi
- Sleep, Plasticity, and Conscious Experience Group, MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy.
| |
Collapse
|
23
|
Slutsky I. Linking activity dyshomeostasis and sleep disturbances in Alzheimer disease. Nat Rev Neurosci 2024; 25:272-284. [PMID: 38374463 DOI: 10.1038/s41583-024-00797-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
The presymptomatic phase of Alzheimer disease (AD) starts with the deposition of amyloid-β in the cortex and begins a decade or more before the emergence of cognitive decline. The trajectory towards dementia and neurodegeneration is shaped by the pathological load and the resilience of neural circuits to the effects of this pathology. In this Perspective, I focus on recent advances that have uncovered the vulnerability of neural circuits at early stages of AD to hyperexcitability, particularly when the brain is in a low-arousal states (such as sleep and anaesthesia). Notably, this hyperexcitability manifests before overt symptoms such as sleep and memory deficits. Using the principles of control theory, I analyse the bidirectional relationship between homeostasis of neuronal activity and sleep and propose that impaired activity homeostasis during sleep leads to hyperexcitability and subsequent sleep disturbances, whereas sleep disturbances mitigate hyperexcitability via negative feedback. Understanding the interplay among activity homeostasis, neuronal excitability and sleep is crucial for elucidating the mechanisms of vulnerability to and resilience against AD pathology and for identifying new therapeutic avenues.
Collapse
Affiliation(s)
- Inna Slutsky
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
24
|
Gorgoni M, Cenani J, Scarpelli S, D'Atri A, Alfonsi V, Annarumma L, Pietrogiacomi F, Ferrara M, Marra C, Rossini PM, De Gennaro L. The role of the sleep K-complex on the conversion from mild cognitive impairment to Alzheimer's disease. J Sleep Res 2024; 33:e14046. [PMID: 37718942 DOI: 10.1111/jsr.14046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/24/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
The present literature points to an alteration of the human K-complex during non-rapid eye movement sleep in Alzheimer's disease. Nevertheless, the few findings on the K-complex changes in mild cognitive impairment and their possible predictive role on the Alzheimer's disease conversion show mixed findings, lack of replication, and a main interest for the frontal region. The aim of the present study was to assess K-complex measures in amnesic mild cognitive impairment subsequently converted in Alzheimer's disease over different cortical regions, comparing them with healthy controls and stable amnesic mild cognitive impairment. We assessed baseline K-complex density, amplitude, area under the curve and overnight changes in frontal, central and parietal midline derivations of 12 amnesic mild cognitive impairment subsequently converted in Alzheimer's disease, 12 stable amnesic mild cognitive impairment and 12 healthy controls. We also assessed delta electroencephalogram power, to determine if K-complex alterations in amnesic mild cognitive impairment occur with modification of the electroencephalogram power in the frequency range of the slow-wave activity. We found a reduced parietal K-complex density in amnesic mild cognitive impairment subsequently converted in Alzheimer's disease compared with stable amnesic mild cognitive impairment and healthy controls, without changes in K-complex morphology and overnight modulation. Both amnesic mild cognitive impairment groups showed decreased slow-wave sleep percentage compared with healthy controls. No differences between groups were observed in slow-wave activity power. Our findings suggest that K-complex alterations in mild cognitive impairment may be observed earlier in parietal regions, likely mirroring the topographical progression of Alzheimer's disease-related brain pathology, and express a frontal predominance only in a full-blown phase of Alzheimer's disease. Consistently with previous results, such K-complex modification occurs in the absence of significant electroencephalogram power changes in the slow oscillations range.
Collapse
Affiliation(s)
- Maurizio Gorgoni
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Jessica Cenani
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Serena Scarpelli
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Aurora D'Atri
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | | | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Camillo Marra
- Institute of Neurology, Catholic University, Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
25
|
Paulk AC, Salami P, Zelmann R, Cash SS. Electrode Development for Epilepsy Diagnosis and Treatment. Neurosurg Clin N Am 2024; 35:135-149. [PMID: 38000837 DOI: 10.1016/j.nec.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Recording neural activity has been a critical aspect in the diagnosis and treatment of patients with epilepsy. For those with intractable epilepsy, intracranial neural monitoring has been of substantial importance. Clinically, however, methods for recording neural information have remained essentially unchanged for decades. Over the last decade or so, rapid advances in electrode technology have begun to change this landscape. New systems allow for the observation of neural activity with high spatial resolution and, in some cases, at the level of the activity of individual neurons. These new tools have contributed greatly to our understanding of brain function and dysfunction. Here, the authors review the primary technologies currently in use in humans. The authors discuss other possible systems, some of the challenges which come along with these devices, and how they will become incorporated into the clinical workflow. Ultimately, the expectation is that these new, high-density, high-spatial-resolution recording systems will become a valuable part of the clinical arsenal used in the diagnosis and surgical management of epilepsy.
Collapse
Affiliation(s)
- Angelique C Paulk
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
| | - Pariya Salami
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Rina Zelmann
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Sydney S Cash
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
26
|
Esfahani MJ, Farboud S, Ngo HVV, Schneider J, Weber FD, Talamini LM, Dresler M. Closed-loop auditory stimulation of sleep slow oscillations: Basic principles and best practices. Neurosci Biobehav Rev 2023; 153:105379. [PMID: 37660843 DOI: 10.1016/j.neubiorev.2023.105379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Sleep is essential for our physical and mental well-being. During sleep, despite the paucity of overt behavior, our brain remains active and exhibits a wide range of coupled brain oscillations. In particular slow oscillations are characteristic for sleep, however whether they are directly involved in the functions of sleep, or are mere epiphenomena, is not yet fully understood. To disentangle the causality of these relationships, experiments utilizing techniques to detect and manipulate sleep oscillations in real-time are essential. In this review, we first overview the theoretical principles of closed-loop auditory stimulation (CLAS) as a method to study the role of slow oscillations in the functions of sleep. We then describe technical guidelines and best practices to perform CLAS and analyze results from such experiments. We further provide an overview of how CLAS has been used to investigate the causal role of slow oscillations in various sleep functions. We close by discussing important caveats, open questions, and potential topics for future research.
Collapse
Affiliation(s)
| | - Soha Farboud
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, the Netherlands
| | - Hong-Viet V Ngo
- Department of Psychology, University of Essex, United Kingdom; Department of Psychology, University of Lübeck, Germany; Center for Brain, Behaviour and Metabolism, University of Lübeck, Germany
| | - Jules Schneider
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Frederik D Weber
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, the Netherlands; Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Lucia M Talamini
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, the Netherlands.
| |
Collapse
|
27
|
González J, Cavelli M, Tort ABL, Torterolo P, Rubido N. Sleep disrupts complex spiking dynamics in the neocortex and hippocampus. PLoS One 2023; 18:e0290146. [PMID: 37590234 PMCID: PMC10434889 DOI: 10.1371/journal.pone.0290146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
Neuronal interactions give rise to complex dynamics in cortical networks, often described in terms of the diversity of activity patterns observed in a neural signal. Interestingly, the complexity of spontaneous electroencephalographic signals decreases during slow-wave sleep (SWS); however, the underlying neural mechanisms remain elusive. Here, we analyse in-vivo recordings from neocortical and hippocampal neuronal populations in rats and show that the complexity decrease is due to the emergence of synchronous neuronal DOWN states. Namely, we find that DOWN states during SWS force the population activity to be more recurrent, deterministic, and less random than during REM sleep or wakefulness, which, in turn, leads to less complex field recordings. Importantly, when we exclude DOWN states from the analysis, the recordings during wakefulness and sleep become indistinguishable: the spiking activity in all the states collapses to a common scaling. We complement these results by implementing a critical branching model of the cortex, which shows that inducing DOWN states to only a percentage of neurons is enough to generate a decrease in complexity that replicates SWS.
Collapse
Affiliation(s)
- Joaquín González
- Departamento de Fisiología de Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Matias Cavelli
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Adriano B. L. Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Pablo Torterolo
- Departamento de Fisiología de Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Rubido
- University of Aberdeen, King’s College, Institute for Complex Systems and Mathematical Biology, Aberdeen, United Kingdom
- Instituto de Física, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
28
|
Staresina BP, Niediek J, Borger V, Surges R, Mormann F. How coupled slow oscillations, spindles and ripples coordinate neuronal processing and communication during human sleep. Nat Neurosci 2023; 26:1429-1437. [PMID: 37429914 PMCID: PMC10400429 DOI: 10.1038/s41593-023-01381-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/13/2023] [Indexed: 07/12/2023]
Abstract
Learning and plasticity rely on fine-tuned regulation of neuronal circuits during offline periods. An unresolved puzzle is how the sleeping brain, in the absence of external stimulation or conscious effort, coordinates neuronal firing rates (FRs) and communication within and across circuits to support synaptic and systems consolidation. Using intracranial electroencephalography combined with multiunit activity recordings from the human hippocampus and surrounding medial temporal lobe (MTL) areas, we show that, governed by slow oscillation (SO) up-states, sleep spindles set a timeframe for ripples to occur. This sequential coupling leads to a stepwise increase in (1) neuronal FRs, (2) short-latency cross-correlations among local neuronal assemblies and (3) cross-regional MTL interactions. Triggered by SOs and spindles, ripples thus establish optimal conditions for spike-timing-dependent plasticity and systems consolidation. These results unveil how the sequential coupling of specific sleep rhythms orchestrates neuronal processing and communication during human sleep.
Collapse
Affiliation(s)
- Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| | - Johannes Niediek
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Valeri Borger
- Department of Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Florian Mormann
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
29
|
Jones KG, Lybbert C, Euler MJ, Huang J, Lunt S, Richards SV, Jessop JE, Larson A, Odell DH, Kuck K, Tadler SC, Mickey BJ. Diversity of electroencephalographic patterns during propofol-induced burst suppression. Front Syst Neurosci 2023; 17:1172856. [PMID: 37397237 PMCID: PMC10309040 DOI: 10.3389/fnsys.2023.1172856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Burst suppression is a brain state consisting of high-amplitude electrical activity alternating with periods of quieter suppression that can be brought about by disease or by certain anesthetics. Although burst suppression has been studied for decades, few studies have investigated the diverse manifestations of this state within and between human subjects. As part of a clinical trial examining the antidepressant effects of propofol, we gathered burst suppression electroencephalographic (EEG) data from 114 propofol infusions across 21 human subjects with treatment-resistant depression. This data was examined with the objective of describing and quantifying electrical signal diversity. We observed three types of EEG burst activity: canonical broadband bursts (as frequently described in the literature), spindles (narrow-band oscillations reminiscent of sleep spindles), and a new feature that we call low-frequency bursts (LFBs), which are brief deflections of mainly sub-3-Hz power. These three features were distinct in both the time and frequency domains and their occurrence differed significantly across subjects, with some subjects showing many LFBs or spindles and others showing very few. Spectral-power makeup of each feature was also significantly different across subjects. In a subset of nine participants with high-density EEG recordings, we noted that each feature had a unique spatial pattern of amplitude and polarity when measured across the scalp. Finally, we observed that the Bispectral Index Monitor, a commonly used clinical EEG monitor, does not account for the diversity of EEG features when processing the burst suppression state. Overall, this study describes and quantifies variation in the burst suppression EEG state across subjects and repeated infusions of propofol. These findings have implications for the understanding of brain activity under anesthesia and for individualized dosing of anesthetic drugs.
Collapse
Affiliation(s)
- Keith G. Jones
- Interdepartmental Program in Neuroscience, The University of Utah, Salt Lake City, UT, United States
- Department of Psychiatry, Huntsman Mental Health Institute, The University of Utah, Salt Lake City, UT, United States
| | - Carter Lybbert
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, United States
- Department of Anesthesiology, The University of Utah, Salt Lake City, UT, United States
| | - Matthew J. Euler
- Department of Psychology, The University of Utah, Salt Lake City, UT, United States
| | - Jason Huang
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, United States
| | - Seth Lunt
- Department of Psychiatry, Huntsman Mental Health Institute, The University of Utah, Salt Lake City, UT, United States
| | - Sindhu V. Richards
- Department of Neurology, The University of Utah, Salt Lake City, UT, United States
| | - Jacob E. Jessop
- Department of Anesthesiology, The University of Utah, Salt Lake City, UT, United States
| | - Adam Larson
- Department of Anesthesiology, The University of Utah, Salt Lake City, UT, United States
| | - David H. Odell
- Department of Psychiatry, Huntsman Mental Health Institute, The University of Utah, Salt Lake City, UT, United States
- Department of Anesthesiology, The University of Utah, Salt Lake City, UT, United States
| | - Kai Kuck
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, United States
- Department of Anesthesiology, The University of Utah, Salt Lake City, UT, United States
| | - Scott C. Tadler
- Department of Psychiatry, Huntsman Mental Health Institute, The University of Utah, Salt Lake City, UT, United States
- Department of Anesthesiology, The University of Utah, Salt Lake City, UT, United States
| | - Brian J. Mickey
- Interdepartmental Program in Neuroscience, The University of Utah, Salt Lake City, UT, United States
- Department of Psychiatry, Huntsman Mental Health Institute, The University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, United States
- Department of Anesthesiology, The University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
30
|
Fabo D, Bokodi V, Szabó JP, Tóth E, Salami P, Keller CJ, Hajnal B, Thesen T, Devinsky O, Doyle W, Mehta A, Madsen J, Eskandar E, Erőss L, Ulbert I, Halgren E, Cash SS. The role of superficial and deep layers in the generation of high frequency oscillations and interictal epileptiform discharges in the human cortex. Sci Rep 2023; 13:9620. [PMID: 37316509 DOI: 10.1038/s41598-022-22497-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023] Open
Abstract
Describing intracortical laminar organization of interictal epileptiform discharges (IED) and high frequency oscillations (HFOs), also known as ripples. Defining the frequency limits of slow and fast ripples. We recorded potential gradients with laminar multielectrode arrays (LME) for current source density (CSD) and multi-unit activity (MUA) analysis of interictal epileptiform discharges IEDs and HFOs in the neocortex and mesial temporal lobe of focal epilepsy patients. IEDs were observed in 20/29, while ripples only in 9/29 patients. Ripples were all detected within the seizure onset zone (SOZ). Compared to hippocampal HFOs, neocortical ripples proved to be longer, lower in frequency and amplitude, and presented non-uniform cycles. A subset of ripples (≈ 50%) co-occurred with IEDs, while IEDs were shown to contain variable high-frequency activity, even below HFO detection threshold. The limit between slow and fast ripples was defined at 150 Hz, while IEDs' high frequency components form clusters separated at 185 Hz. CSD analysis of IEDs and ripples revealed an alternating sink-source pair in the supragranular cortical layers, although fast ripple CSD appeared lower and engaged a wider cortical domain than slow ripples MUA analysis suggested a possible role of infragranularly located neural populations in ripple and IED generation. Laminar distribution of peak frequencies derived from HFOs and IEDs, respectively, showed that supragranular layers were dominated by slower (< 150 Hz) components. Our findings suggest that cortical slow ripples are generated primarily in upper layers while fast ripples and associated MUA in deeper layers. The dissociation of macro- and microdomains suggests that microelectrode recordings may be more selective for SOZ-linked ripples. We found a complex interplay between neural activity in the neocortical laminae during ripple and IED formation. We observed a potential leading role of cortical neurons in deeper layers, suggesting a refined utilization of LMEs in SOZ localization.
Collapse
Affiliation(s)
- Daniel Fabo
- Epilepsy Unit, Department of Neurology, National Institute of Mental Health, Neurology and Neurosurgery, Amerikai Út 57. 1145, Budapest, Hungary.
| | - Virag Bokodi
- Epilepsy Unit, Department of Neurology, National Institute of Mental Health, Neurology and Neurosurgery, Amerikai Út 57. 1145, Budapest, Hungary
- Roska Tamás Doctoral School of Sciences and Technologies, Budapest, Hungary
| | - Johanna-Petra Szabó
- Epilepsy Unit, Department of Neurology, National Institute of Mental Health, Neurology and Neurosurgery, Amerikai Út 57. 1145, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Budapest, Hungary
| | - Emilia Tóth
- Epilepsy Unit, Department of Neurology, National Institute of Mental Health, Neurology and Neurosurgery, Amerikai Út 57. 1145, Budapest, Hungary
- Department of Neurology, University of Texas, McGovern Medical School, Houston, TX, USA
| | - Pariya Salami
- Epilepsy Division, Department of Neurology, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Boglárka Hajnal
- Epilepsy Unit, Department of Neurology, National Institute of Mental Health, Neurology and Neurosurgery, Amerikai Út 57. 1145, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Budapest, Hungary
| | - Thomas Thesen
- Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, USA
- Department of Biomedical Sciences, College of Medicine, University of Houston, Houston, TX, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, USA
| | - Werner Doyle
- Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, USA
| | - Ashesh Mehta
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell and Feinstein Institute for Medical Research, Manhasset, NY, USA
| | | | - Emad Eskandar
- Massachusetts General Hospital Neurosurgery Research, Boston, MA, USA
| | - Lorand Erőss
- Department of Functional Neurosurgery, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - István Ulbert
- Epilepsy Unit, Department of Neurology, National Institute of Mental Health, Neurology and Neurosurgery, Amerikai Út 57. 1145, Budapest, Hungary
- Institute of Psychology, Eötvös Loránd Research Network, Budapest, Hungary
| | - Eric Halgren
- Department of Radiology, Neurosciences and Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - Sydney S Cash
- Epilepsy Division, Department of Neurology, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Vatsyayan R, Lee J, Bourhis AM, Tchoe Y, Cleary DR, Tonsfeldt KJ, Lee K, Montgomery-Walsh R, Paulk AC, U HS, Cash SS, Dayeh SA. Electrochemical and electrophysiological considerations for clinical high channel count neural interfaces. MRS BULLETIN 2023; 48:531-546. [PMID: 37476355 PMCID: PMC10357958 DOI: 10.1557/s43577-023-00537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/10/2023] [Indexed: 07/22/2023]
Abstract
Electrophysiological recording and stimulation are the gold standard for functional mapping during surgical and therapeutic interventions as well as capturing cellular activity in the intact human brain. A critical component probing human brain activity is the interface material at the electrode contact that electrochemically transduces brain signals to and from free charge carriers in the measurement system. Here, we summarize state-of-the-art electrode array systems in the context of translation for use in recording and stimulating human brain activity. We leverage parametric studies with multiple electrode materials to shed light on the varied levels of suitability to enable high signal-to-noise electrophysiological recordings as well as safe electrophysiological stimulation delivery. We discuss the effects of electrode scaling for recording and stimulation in pursuit of high spatial resolution, channel count electrode interfaces, delineating the electrode-tissue circuit components that dictate the electrode performance. Finally, we summarize recent efforts in the connectorization and packaging for high channel count electrode arrays and provide a brief account of efforts toward wireless neuronal monitoring systems.
Collapse
Affiliation(s)
- Ritwik Vatsyayan
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA
| | - Jihwan Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA
| | - Andrew M. Bourhis
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA
| | - Youngbin Tchoe
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA
| | - Daniel R. Cleary
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA; Department of Neurological Surgery, School of Medicine, Oregon Health & Science University, Portland, USA
| | - Karen J. Tonsfeldt
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, San Diego, USA
| | - Keundong Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA
| | - Rhea Montgomery-Walsh
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA; Department of Bioengineering, University of California, San Diego, San Diego, USA
| | - Angelique C. Paulk
- Department of Neurology, Harvard Medical School, Boston, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, USA
| | - Hoi Sang U
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA
| | - Sydney S. Cash
- Department of Neurology, Harvard Medical School, Boston, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, USA
| | - Shadi A. Dayeh
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA; Department of Bioengineering, University of California, San Diego, San Diego, USA
| |
Collapse
|
32
|
Morrone CD, Raghuraman R, Hussaini SA, Yu WH. Proteostasis failure exacerbates neuronal circuit dysfunction and sleep impairments in Alzheimer's disease. Mol Neurodegener 2023; 18:27. [PMID: 37085942 PMCID: PMC10119020 DOI: 10.1186/s13024-023-00617-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/29/2023] [Indexed: 04/23/2023] Open
Abstract
Failed proteostasis is a well-documented feature of Alzheimer's disease, particularly, reduced protein degradation and clearance. However, the contribution of failed proteostasis to neuronal circuit dysfunction is an emerging concept in neurodegenerative research and will prove critical in understanding cognitive decline. Our objective is to convey Alzheimer's disease progression with the growing evidence for a bidirectional relationship of sleep disruption and proteostasis failure. Proteostasis dysfunction and tauopathy in Alzheimer's disease disrupts neurons that regulate the sleep-wake cycle, which presents behavior as impaired slow wave and rapid eye movement sleep patterns. Subsequent sleep loss further impairs protein clearance. Sleep loss is a defined feature seen early in many neurodegenerative disorders and contributes to memory impairments in Alzheimer's disease. Canonical pathological hallmarks, β-amyloid, and tau, directly disrupt sleep, and neurodegeneration of locus coeruleus, hippocampal and hypothalamic neurons from tau proteinopathy causes disruption of the neuronal circuitry of sleep. Acting in a positive-feedback-loop, sleep loss and circadian rhythm disruption then increase spread of β-amyloid and tau, through impairments of proteasome, autophagy, unfolded protein response and glymphatic clearance. This phenomenon extends beyond β-amyloid and tau, with interactions of sleep impairment with the homeostasis of TDP-43, α-synuclein, FUS, and huntingtin proteins, implicating sleep loss as an important consideration in an array of neurodegenerative diseases and in cases of mixed neuropathology. Critically, the dynamics of this interaction in the neurodegenerative environment are not fully elucidated and are deserving of further discussion and research. Finally, we propose sleep-enhancing therapeutics as potential interventions for promoting healthy proteostasis, including β-amyloid and tau clearance, mechanistically linking these processes. With further clinical and preclinical research, we propose this dynamic interaction as a diagnostic and therapeutic framework, informing precise single- and combinatorial-treatments for Alzheimer's disease and other brain disorders.
Collapse
Affiliation(s)
- Christopher Daniel Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
| | - Radha Raghuraman
- Taub Institute, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
| | - S Abid Hussaini
- Taub Institute, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
| | - Wai Haung Yu
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Geriatric Mental Health Research Services, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
33
|
Halgren AS, Siegel Z, Golden R, Bazhenov M. Multielectrode Cortical Stimulation Selectively Induces Unidirectional Wave Propagation of Excitatory Neuronal Activity in Biophysical Neural Model. J Neurosci 2023; 43:2482-2496. [PMID: 36849415 PMCID: PMC10082457 DOI: 10.1523/jneurosci.1784-21.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 03/01/2023] Open
Abstract
Cortical stimulation is emerging as an experimental tool in basic research and a promising therapy for a range of neuropsychiatric conditions. As multielectrode arrays enter clinical practice, the possibility of using spatiotemporal patterns of electrical stimulation to induce desired physiological patterns has become theoretically possible, but in practice can only be implemented by trial-and-error because of a lack of predictive models. Experimental evidence increasingly establishes traveling waves as fundamental to cortical information-processing, but we lack an understanding of how to control wave properties despite rapidly improving technologies. This study uses a hybrid biophysical-anatomical and neural-computational model to predict and understand how a simple pattern of cortical surface stimulation could induce directional traveling waves via asymmetric activation of inhibitory interneurons. We found that pyramidal cells and basket cells are highly activated by the anodal electrode and minimally activated by the cathodal electrodes, while Martinotti cells are moderately activated by both electrodes but exhibit a slight preference for cathodal stimulation. Network model simulations found that this asymmetrical activation results in a traveling wave in superficial excitatory cells that propagates unidirectionally away from the electrode array. Our study reveals how asymmetric electrical stimulation can easily facilitate traveling waves by relying on two distinct types of inhibitory interneuron activity to shape and sustain the spatiotemporal dynamics of endogenous local circuit mechanisms.SIGNIFICANCE STATEMENT Electrical brain stimulation is becoming increasingly useful to probe the workings of brain and to treat a variety of neuropsychiatric disorders. However, stimulation is currently performed in a trial-and-error fashion as there are no methods to predict how different electrode arrangements and stimulation paradigms will affect brain functioning. In this study, we demonstrate a hybrid modeling approach, which makes experimentally testable predictions that bridge the gap between the microscale effects of multielectrode stimulation and the resultant circuit dynamics at the mesoscale. Our results show how custom stimulation paradigms can induce predictable, persistent changes in brain activity, which has the potential to restore normal brain function and become a powerful therapy for neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Alma S Halgren
- Department of Medicine, University of California - San Diego, La Jolla, California 92093-7374
- Department of Integrative Biology, University of California - Berkeley, Berkeley, California 94720
| | - Zarek Siegel
- Department of Medicine, University of California - San Diego, La Jolla, California 92093-7374
- Neurosciences Graduate Program, University of California - San Diego, La Jolla, California 92093-7374
| | - Ryan Golden
- Department of Medicine, University of California - San Diego, La Jolla, California 92093-7374
- Neurosciences Graduate Program, University of California - San Diego, La Jolla, California 92093-7374
| | - Maxim Bazhenov
- Department of Medicine, University of California - San Diego, La Jolla, California 92093-7374
- Neurosciences Graduate Program, University of California - San Diego, La Jolla, California 92093-7374
| |
Collapse
|
34
|
Simor P, Bogdány T, Sifuentes-Ortega R, Rovai A, Peigneux P. Lateralized tactile stimulation during NREM sleep globally increases both slow and fast frequency activities. Psychophysiology 2023; 60:e14191. [PMID: 36153813 PMCID: PMC10078489 DOI: 10.1111/psyp.14191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/06/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
Slow frequency activity during non-rapid eye movement (NREM) sleep emerges from synchronized activity of widely distributed thalamo-cortical and cortico-cortical networks, reflecting homeostatic and restorative properties of sleep. Slow frequency activity exhibits a reactive nature, and can be increased by acoustic stimulation. Although non-invasive brain stimulation is a promising technique in basic and clinical sleep research, sensory stimulation studies focusing on modalities other than the acoustic are scarce. We explored here the potential of lateralized vibro-tactile stimulation (VTS) of the finger to locally modify electroencephalographic activity during nocturnal NREM sleep. Eight seconds-long sequences of vibro-tactile pulses were delivered at a rate of 1 Hz either to the left or to the right index finger, in addition to a sham condition, in fourteen healthy participants. VTS markedly increased slow frequency activity that peaked between 1-4 Hz but extended to higher (~13 Hz) frequencies, with fronto-central dominance. Enhanced slow frequency activity was accompanied by increased (14-22 Hz) fast frequency power peaking over central and posterior locations. VTS increased the amplitude of slow waves, especially during the first 3-4 s of stimulation. Noticeably, we did not observe local-hemispheric effects, that is, VTS resulted in a global cortical response regardless of stimulation laterality. VTS moderately increased slow and fast frequency activities in resting wakefulness, to a much lower extent compared to NREM sleep. The concomitant increase in slow and fast frequency activities in response to VTS indicates an instant homeostatic response coupled with wake-like, high-frequency activity potentially reflecting transient periods of increased environmental processing.
Collapse
Affiliation(s)
- Péter Simor
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN-Center for Research in Cognition and Neurosciences, Brussels, Belgium.,UNI-ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Tamás Bogdány
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN-Center for Research in Cognition and Neurosciences, Brussels, Belgium.,Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Rebeca Sifuentes-Ortega
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN-Center for Research in Cognition and Neurosciences, Brussels, Belgium.,UNI-ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Antonin Rovai
- UNI-ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), CUB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium.,Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Philippe Peigneux
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN-Center for Research in Cognition and Neurosciences, Brussels, Belgium.,UNI-ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
35
|
Morad M, Oudah AY, Diykh M, Marhoon HA, Taher HB. Fast Fourier Transform Coupled with Machine Learning Algorithm for K-Complexes Detection. LECTURE NOTES IN NETWORKS AND SYSTEMS 2023:307-313. [DOI: 10.1007/978-981-19-3148-2_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
36
|
Park I, Kokudo C, Seol J, Ishihara A, Zhang S, Uchizawa A, Osumi H, Miyamoto R, Horie K, Suzuki C, Suzuki Y, Okura T, Diaz J, Vogt KE, Tokuyama K. Instability of non-REM sleep in older women evaluated by sleep-stage transition and envelope analyses. Front Aging Neurosci 2022; 14:1050648. [PMID: 36561133 PMCID: PMC9763892 DOI: 10.3389/fnagi.2022.1050648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Study objective Traditionally, age-related deterioration of sleep architecture in older individuals has been evaluated by visual scoring of polysomnographic (PSG) recordings with regard to total sleep time and latencies. In the present study, we additionally compared the non-REM sleep (NREM) stage and delta, theta, alpha, and sigma wave stability between young and older subjects to extract features that may explain age-related changes in sleep. Methods Polysomnographic recordings were performed in 11 healthy older (72.6 ± 2.4 years) and 9 healthy young (23.3 ± 1.1 years) females. In addition to total sleep time, the sleep stage, delta power amplitude, and delta, theta, alpha, and sigma wave stability were evaluated by sleep stage transition analysis and a novel computational method based on a coefficient of variation of the envelope (CVE) analysis, respectively. Results In older subjects, total sleep time and slow-wave sleep (SWS) time were shorter whereas wake after sleep onset was longer. The number of SWS episodes was similar between age groups, however, sleep stage transition analysis revealed that SWS was less stable in older individuals. NREM sleep stages in descending order of delta power were: SWS, N2, and N1, and delta power during NREM sleep in older subjects was lower than in young subjects. The CVE of the delta-band is an index of delta wave stability and showed significant differences between age groups. When separately analyzed for each NREM stage, different CVE clusters in NREM were clearly observed between young and older subjects. A lower delta CVE and amplitude were also observed in older subjects compared with young subjects in N2 and SWS. Additionally, lower CVE values in the theta, alpha and sigma bands were also characteristic of older participants. Conclusion The present study shows a decrease of SWS stability in older subjects together with a decrease in delta wave amplitude. Interestingly, the decrease in SWS stability coincided with an increase in short-term delta, theta, sigma, and alpha power stability revealed by lower CVE. Loss of electroencephalograms (EEG) variability might be a useful marker of brain age.
Collapse
Affiliation(s)
- Insung Park
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Chihiro Kokudo
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan,Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Jaehoon Seol
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan,Faculty of Health and Sports Sciences, University of Tsukuba, Tsukuba, Japan,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Asuka Ishihara
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Simeng Zhang
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Akiko Uchizawa
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Haruka Osumi
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Ryusuke Miyamoto
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kazumasa Horie
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Chihiro Suzuki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yoko Suzuki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Tomohiro Okura
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan,Faculty of Health and Sports Sciences, University of Tsukuba, Tsukuba, Japan,R&D Center for Tailor-Made QOL, University of Tsukuba, Tsukuba, Japan
| | - Javier Diaz
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Kaspar E. Vogt
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Kumpei Tokuyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan,*Correspondence: Kumpei Tokuyama,
| |
Collapse
|
37
|
Ujma PP, Dresler M, Simor P, Fabó D, Ulbert I, Erőss L, Bódizs R. The sleep EEG envelope is a novel, neuronal firing-based human biomarker. Sci Rep 2022; 12:18836. [PMID: 36336717 PMCID: PMC9637727 DOI: 10.1038/s41598-022-22255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/12/2022] [Indexed: 11/08/2022] Open
Abstract
Sleep EEG reflects voltage differences relative to a reference, while its spectrum reflects its composition of various frequencies. In contrast, the envelope of the sleep EEG reflects the instantaneous amplitude of oscillations, while its spectrum reflects the rhythmicity of the occurrence of these oscillations. The sleep EEG spectrum is known to relate to demographic, psychological and clinical characteristics, but the envelope spectrum has been rarely studied. In study 1, we demonstrate in human invasive data from cortex-penetrating microelectrodes and subdural grids that the sleep EEG envelope spectrum reflects neuronal firing. In study 2, we demonstrate that the scalp EEG envelope spectrum is stable within individuals. A multivariate learning algorithm could predict age (r = 0.6) and sex (r = 0.5) from the EEG envelope spectrum. With age, oscillations shifted from a 4-5 s rhythm to faster rhythms. Our results demonstrate that the sleep envelope spectrum is a promising biomarker of demographic and disease-related phenotypes.
Collapse
Affiliation(s)
- Péter P Ujma
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary.
- National Institute of Clinical Neuroscience, Budapest, Hungary.
| | - Martin Dresler
- Radboud University Medical Center, Donders Institute, Nijmegen, The Netherlands
| | - Péter Simor
- Institute of Psychology, ELTE, Eötvös Loránd University, Budapest, Hungary
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Dániel Fabó
- National Institute of Clinical Neuroscience, Budapest, Hungary
| | - István Ulbert
- Department of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Research Centre for Natural Sciences, Institute for Cognitive Neuroscience and Psychology, Budapest, Hungary
| | - Loránd Erőss
- National Institute of Clinical Neuroscience, Budapest, Hungary
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
- National Institute of Clinical Neuroscience, Budapest, Hungary
| |
Collapse
|
38
|
Gorgoni M, Galbiati A. Non-REM sleep electrophysiology in REM sleep behaviour disorder: A narrative mini-review. Neurosci Biobehav Rev 2022; 142:104909. [DOI: 10.1016/j.neubiorev.2022.104909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 10/31/2022]
|
39
|
Ilhan-Bayrakcı M, Cabral-Calderin Y, Bergmann TO, Tüscher O, Stroh A. Individual slow wave events give rise to macroscopic fMRI signatures and drive the strength of the BOLD signal in human resting-state EEG-fMRI recordings. Cereb Cortex 2022; 32:4782-4796. [PMID: 35094045 PMCID: PMC9627041 DOI: 10.1093/cercor/bhab516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 08/19/2024] Open
Abstract
The slow wave state is a general state of quiescence interrupted by sudden bursts of activity or so-called slow wave events (SWEs). Recently, the relationship between SWEs and blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signals was assessed in rodent models which revealed cortex-wide BOLD activation. However, it remains unclear which macroscopic signature corresponds to these specific neurophysiological events in the human brain. Therefore, we analyzed simultaneous electroencephalographic (EEG)-fMRI data during human non-REM sleep. SWEs individually detected in the EEG data were used as predictors in event-related fMRI analyses to examine the relationship between SWEs and fMRI signals. For all 10 subjects we identified significant changes in BOLD activity associated with SWEs covering substantial parts of the gray matter. As demonstrated in rodents, we observed a direct relation of a neurophysiological event to specific BOLD activation patterns. We found a correlation between the number of SWEs and the spatial extent of these BOLD activation patterns and discovered that the amplitude of the BOLD response strongly depends on the SWE amplitude. As altered SWE propagation has recently been found in neuropsychiatric diseases, it is critical to reveal the brain's physiological slow wave state networks to potentially establish early imaging biomarkers for various diseases long before disease onset.
Collapse
Affiliation(s)
- Merve Ilhan-Bayrakcı
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Yuranny Cabral-Calderin
- Neural and Environmental Rhythms, Max Planck Institute for Empirical Aesthetics, 60322 Frankfurt, Germany
| | - Til Ole Bergmann
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Oliver Tüscher
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Albrecht Stroh
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
40
|
Combertaldi SL, Wick AZ, Rasch B. The Intention to React to Sounds Induces Sleep Disturbances and Alters Brain Responses to Sounds during Sleep: A Pilot Study. Clocks Sleep 2022; 4:561-576. [PMID: 36278537 PMCID: PMC9589975 DOI: 10.3390/clockssleep4040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Pre-sleep intentions to react to stimuli during sleep affect sleep processes in spite of reductions in conscious awareness. Here, we compare influences of sounds presented during sleep (with and without intentions to react) with the effect of pre-sleep intentions on sleep (with and without sounds being present during sleep). METHODS Twenty-six young, healthy participants spent two experimental nights in the sleep laboratory. On one night, they were instructed to react to sounds during sleep ("on call"); on the other night, not ("neutral"). Unknown to the subjects, sounds were presented at a low volume in both nights in one group. No sound was presented in any of the two nights in the other group. RESULTS The instruction of being "on call" decreased objective sleep efficiency independently of sounds being present or not. In addition, event-related responses to sounds as well as slow-wave activity were reduced when being "on call". CONCLUSIONS Pre-sleep intentions to react impair sleep independently of sounds actually being present and influence brain responses to sounds during sleep. Our results highlight the importance of subjective relevance for reducing negative impact of external noise sources such as traffic or church bells.
Collapse
|
41
|
Szabó JP, Fabó D, Pető N, Sákovics A, Bódizs R. Role of anterior thalamic circuitry during sleep. Epilepsy Res 2022; 186:106999. [DOI: 10.1016/j.eplepsyres.2022.106999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/22/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022]
|
42
|
Cataldi J, Stephan AM, Marchi NA, Haba-Rubio J, Siclari F. Abnormal timing of slow wave synchronization processes in non-rapid eye movement sleep parasomnias. Sleep 2022; 45:6591470. [PMID: 35641120 DOI: 10.1093/sleep/zsac111] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/06/2022] [Indexed: 01/29/2023] Open
Abstract
STUDY OBJECTIVES Sleepwalking, confusional arousals, and sleep terrors are parasomnias occurring out of non-rapid eye movement (NREM) sleep. Several previous studies have described EEG changes associated with NREM parasomnia episodes, but it remains unclear whether these changes are specific to parasomnia episodes or whether they are part of the normal awakening process. Here we directly compared regional brain activity, measured with high-density (hd-) EEG, between parasomnia episodes and normal awakenings (without behavioral manifestations of parasomnia). METHODS Twenty adult patients with non-rapid eye movement parasomnias underwent a baseline hd-EEG recording (256 electrodes) followed by a recovery sleep recording after 25 h of total sleep deprivation, during which auditory stimuli were administered to provoke parasomnia episodes. RESULTS Both normal awakenings (n = 25) and parasomnia episodes (n = 96) were preceded by large, steep, and "K-complex-like" slow waves in frontal and central brain regions, and by a concomitant increase in high-frequency EEG (beta) activity. Compared to normal awakenings, parasomnia episodes occurred on a less activated EEG background and displayed higher slow wave activity (SWA) and lower beta activity in frontal and central brain regions after movement onset. CONCLUSIONS Our results suggest that non-rapid eye movement awakenings, irrespective of behavioral manifestations of parasomnia episodes, involve an arousal-related slow wave synchronization process that predominantly recruits frontal and central brain areas. In parasomnia episodes, this synchronization process comes into play abnormally during periods of high SWA and is associated with higher SWA after movement onset. Thus, an abnormal timing of arousal-related slow wave synchronization processes could underlie the occurrence of NREM parasomnias.
Collapse
Affiliation(s)
- Jacinthe Cataldi
- Center for Investigation and Research on Sleep, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland.,The Sense Innovation and Research Center, Lausanne and Sion, Switzerland
| | - Aurélie M Stephan
- Center for Investigation and Research on Sleep, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland.,The Sense Innovation and Research Center, Lausanne and Sion, Switzerland
| | - Nicola A Marchi
- Center for Investigation and Research on Sleep, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - José Haba-Rubio
- Center for Investigation and Research on Sleep, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Francesca Siclari
- Center for Investigation and Research on Sleep, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland.,The Sense Innovation and Research Center, Lausanne and Sion, Switzerland.,Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| |
Collapse
|
43
|
Gonzalez C, Jiang X, Gonzalez-Martinez J, Halgren E. Human Spindle Variability. J Neurosci 2022; 42:4517-4537. [PMID: 35477906 PMCID: PMC9172080 DOI: 10.1523/jneurosci.1786-21.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
In humans, sleep spindles are 10- to 16-Hz oscillations lasting approximately 0.5-2 s. Spindles, along with cortical slow oscillations, may facilitate memory consolidation by enabling synaptic plasticity. Early recordings of spindles at the scalp found anterior channels had overall slower frequency than central-posterior channels. This robust, topographical finding led to dichotomizing spindles as "slow" versus "fast," modeled as two distinct spindle generators in frontal versus posterior cortex. Using a large dataset of intracranial stereoelectroencephalographic (sEEG) recordings from 20 patients (13 female, 7 male) and 365 bipolar recordings, we show that the difference in spindle frequency between frontal and parietal channels is comparable to the variability in spindle frequency within the course of individual spindles, across different spindles recorded by a given site, and across sites within a given region. Thus, fast and slow spindles only capture average differences that obscure a much larger underlying overlap in frequency. Furthermore, differences in mean frequency are only one of several ways that spindles differ. For example, compared with parietal, frontal spindles are smaller, tend to occur after parietal when both are engaged, and show a larger decrease in frequency within-spindles. However, frontal and parietal spindles are similar in being longer, less variable, and more widespread than occipital, temporal, and Rolandic spindles. These characteristics are accentuated in spindles which are highly phase-locked to posterior hippocampal spindles. We propose that rather than a strict parietal-fast/frontal-slow dichotomy, spindles differ continuously and quasi-independently in multiple dimensions, with variability due about equally to within-spindle, within-region, and between-region factors.SIGNIFICANCE STATEMENT Sleep spindles are 10- to 16-Hz neural oscillations generated by cortico-thalamic circuits that promote memory consolidation. Spindles are often dichotomized into slow-anterior and fast-posterior categories for cognitive and clinical studies. Here, we show that the anterior-posterior difference in spindle frequency is comparable to that observed between different cycles of individual spindles, between spindles from a given site, or from different sites within a region. Further, we show that spindles vary on other dimensions such as duration, amplitude, spread, primacy and consistency, and that these multiple dimensions vary continuously and largely independently across cortical regions. These findings suggest that multiple continuous variables rather than a strict frequency dichotomy may be more useful biomarkers for memory consolidation or psychiatric disorders.
Collapse
Affiliation(s)
- Christopher Gonzalez
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92093
- Mental Illness Research, Education, and Clinical Center, Veterans Affairs San Diego Healthcare System/University of California San Diego, San Diego, California 92161
| | - Xi Jiang
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92093
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Jorge Gonzalez-Martinez
- Epilepsy Center, Cleveland Clinic, Cleveland, Ohio 44106
- Epilepsy and Movement Disorders Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Eric Halgren
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
- Department of Radiology, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
44
|
Hofer KT, Kandrács Á, Tóth K, Hajnal B, Bokodi V, Tóth EZ, Erőss L, Entz L, Bagó AG, Fabó D, Ulbert I, Wittner L. Bursting of excitatory cells is linked to interictal epileptic discharge generation in humans. Sci Rep 2022; 12:6280. [PMID: 35428851 PMCID: PMC9012754 DOI: 10.1038/s41598-022-10319-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/25/2022] [Indexed: 11/23/2022] Open
Abstract
Knowledge about the activity of single neurons is essential in understanding the mechanisms of synchrony generation, and particularly interesting if related to pathological conditions. The generation of interictal spikes—the hypersynchronous events between seizures—is linked to hyperexcitability and to bursting behaviour of neurons in animal models. To explore its cellular mechanisms in humans we investigated the activity of clustered single neurons in a human in vitro model generating both physiological and epileptiform synchronous events. We show that non-epileptic synchronous events resulted from the finely balanced firing of excitatory and inhibitory cells, which was shifted towards an enhanced excitability in epileptic tissue. In contrast, interictal-like spikes were characterised by an asymmetric overall neuronal discharge initiated by excitatory neurons with the presumptive leading role of bursting pyramidal cells, and possibly terminated by inhibitory interneurons. We found that the overall burstiness of human neocortical neurons is not necessarily related to epilepsy, but the bursting behaviour of excitatory cells comprising both intrinsic and synaptically driven bursting is clearly linked to the generation of epileptiform synchrony.
Collapse
Affiliation(s)
- Katharina T Hofer
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., 1117, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083, Budapest, Hungary.,Department of Neurobiology, School of Medicine and Institute for Medical Research Israel-Canada, The Hebrew University, 91120, Jerusalem, Israel
| | - Ágnes Kandrács
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., 1117, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083, Budapest, Hungary
| | - Kinga Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., 1117, Budapest, Hungary
| | - Boglárka Hajnal
- National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary.,Semmelweis University Doctoral School, 1026, Budapest, Hungary
| | - Virág Bokodi
- National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary
| | - Estilla Zsófia Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., 1117, Budapest, Hungary.,Semmelweis University Doctoral School, 1026, Budapest, Hungary
| | - Loránd Erőss
- National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary
| | - László Entz
- National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary
| | - Attila G Bagó
- National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary
| | - Dániel Fabó
- National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., 1117, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083, Budapest, Hungary.,National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary
| | - Lucia Wittner
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., 1117, Budapest, Hungary. .,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083, Budapest, Hungary. .,National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary.
| |
Collapse
|
45
|
Picchioni D, Özbay PS, Mandelkow H, de Zwart JA, Wang Y, van Gelderen P, Duyn JH. Autonomic arousals contribute to brain fluid pulsations during sleep. Neuroimage 2022; 249:118888. [PMID: 35017126 PMCID: PMC11395500 DOI: 10.1016/j.neuroimage.2022.118888] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/15/2021] [Accepted: 01/05/2022] [Indexed: 12/28/2022] Open
Abstract
During sleep, slow waves of neuro-electrical activity engulf the human brain and aid in the consolidation of memories. Recent research suggests that these slow waves may also promote brain health by facilitating the removal of metabolic waste, possibly by orchestrating the pulsatile flow of cerebrospinal fluid (CSF) through local neural control over vascular tone. To investigate the role of slow waves in the generation of CSF pulsations, we analyzed functional MRI data obtained across the full sleep-wake cycle and during a waking respiratory task. This revealed a novel generating mechanism that relies on the autonomic regulation of cerebral vascular tone without requiring slow electrocortical activity or even sleep. Therefore, the role of CSF pulsations in brain waste clearance may, in part, depend on proper autoregulatory control of cerebral blood flow.
Collapse
Affiliation(s)
- Dante Picchioni
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, United States
| | - Pinar S Özbay
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, United States
| | - Hendrik Mandelkow
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, United States
| | - Jacco A de Zwart
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, United States
| | - Yicun Wang
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, United States
| | - Peter van Gelderen
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, United States
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, United States.
| |
Collapse
|
46
|
Choi J, Jun SC. Spindle-targeted acoustic stimulation may stabilize an ongoing nap. J Sleep Res 2022; 31:e13583. [PMID: 35289006 DOI: 10.1111/jsr.13583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 11/28/2022]
Abstract
There have been numerous attempts over the decades to introduce closed-loop feedback to induce sleep oscillations. Recently, our group also introduced closed-loop acoustic feedback to the sleep spindle and reported improved procedural memory consolidation during a nap with spindle-targeted pink noise stimulation. In this study, we replicated our previous work with a control condition in an attempt to investigate the effect of closed-loop feedback on procedural memory. The results demonstrated a significant improvement in the subjects' procedural learning and reduced wake time during the nap with closed-loop acoustic stimulation compared with the control condition. Further, we found that randomized acoustic stimuli lead to more frequent spindle activity and a faster decrement in slow oscillation power compared with the sham condition. There were strong correlations between slow oscillation and measures related to sleep efficiency as well. Interestingly, we found a marginal enhancement in procedural learning during the nap with the closed-loop acoustic stimulation compared with the sham nap. We also found a marginal decrement in theta power during the nap with closed-loop feedback compared with the sham nap, and a negative correlation between slow oscillation and theta power. We speculate that the marginal improvement in procedural learning may be related to closed-loop acoustic feedback's stabilization of non-rapid eye movement sleep. Taken together, this study shows that the closed-loop feedback method has the potential to stabilize sleep and improve procedural memory.
Collapse
Affiliation(s)
- Jinyoung Choi
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Sung Chan Jun
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| |
Collapse
|
47
|
Ioannides AA, Orphanides GA, Liu L. Rhythmicity in heart rate and its surges usher a special period of sleep, a likely home for PGO waves. Curr Res Physiol 2022; 5:118-141. [PMID: 35243361 PMCID: PMC8867048 DOI: 10.1016/j.crphys.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 11/30/2022] Open
Abstract
High amplitude electroencephalogram (EEG) events, like unitary K-complex (KC), are used to partition sleep into stages and hence define the hypnogram, a key instrument of sleep medicine. Throughout sleep the heart rate (HR) changes, often as a steady HR increase leading to a peak, what is known as a heart rate surge (HRS). The hypnogram is often unavailable when most needed, when sleep is disturbed and the graphoelements lose their identity. The hypnogram is also difficult to define during normal sleep, particularly at the start of sleep and the periods that precede and follow rapid eye movement (REM) sleep. Here, we use objective quantitative criteria that group together periods that cannot be assigned to a conventional sleep stage into what we call REM0 periods, with the presence of a HRS one of their defining properties. Extended REM0 periods are characterized by highly regular sequences of HRS that generate an infra-low oscillation around 0.05 Hz. During these regular sequence of HRS, and just before each HRS event, we find avalanches of high amplitude events for each one of the mass electrophysiological signals, i.e. related to eye movement, the motor system and the general neural activity. The most prominent features of long REM0 periods are sequences of three to five KCs which we label multiple K-complexes (KCm). Regarding HRS, a clear dissociation is demonstrated between the presence or absence of high gamma band spectral power (55-95 Hz) of the two types of KCm events: KCm events with strong high frequencies (KCmWSHF) cluster just before the peak of HRS, while KCm between HRS show no increase in high gamma band (KCmNOHF). Tomographic estimates of activity from magnetoencephalography (MEG) in pre-KC periods (single and multiple) showed common increases in the cholinergic Nucleus Basalis of Meynert in the alpha band. The direct contrast of KCmWSHF with KCmNOHF showed increases in all subjects in the high sigma band in the base of the pons and in three subjects in both the delta and high gamma bands in the medial Pontine Reticular Formation (mPRF), the putative Long Lead Initial pulse (LLIP) for Ponto-Geniculo-Occipital (PGO) waves.
Collapse
Affiliation(s)
- Andreas A. Ioannides
- Lab. for Human Brain Dynamics, AAI Scientific Cultural Services Ltd., Nicosia, 1065, Cyprus
| | - Gregoris A. Orphanides
- Lab. for Human Brain Dynamics, AAI Scientific Cultural Services Ltd., Nicosia, 1065, Cyprus
- The English School, Nicosia, 1684, Cyprus
| | - Lichan Liu
- Lab. for Human Brain Dynamics, AAI Scientific Cultural Services Ltd., Nicosia, 1065, Cyprus
| |
Collapse
|
48
|
Abstract
The spontaneous dynamics of the brain modulate its function from moment to moment, shaping neural computation and cognition. Functional MRI (fMRI), while classically used as a tool for spatial localization, is increasingly being used to identify the temporal dynamics of brain activity. fMRI analyses focused on the temporal domain have revealed important new information about the dynamics underlying states such as arousal, attention, and sleep. Dense temporal sampling – either by using fast fMRI acquisition, or multiple repeated scan sessions within individuals – can further enrich the information present in these studies. This review focuses on recent developments in using fMRI to identify dynamics across brain states, particularly vigilance and sleep states, and the potential for highly temporally sampled fMRI to answer these questions.
Collapse
Affiliation(s)
- Zinong Yang
- Graduate Program in Neuroscience, Boston University, Boston MA, United States
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston University, Boston MA, United States.,Center for Systems Neuroscience, Boston University, Boston MA, United States
| |
Collapse
|
49
|
Alasfour A, Jiang X, Gonzalez-Martinez J, Gilja V, Halgren E. High γ Activity in Cortex and Hippocampus Is Correlated with Autonomic Tone during Sleep. eNeuro 2021; 8:ENEURO.0194-21.2021. [PMID: 34732536 PMCID: PMC8607912 DOI: 10.1523/eneuro.0194-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 12/30/2022] Open
Abstract
Studies in animals have demonstrated a strong relationship between cortical and hippocampal activity, and autonomic tone. However, the extent, distribution, and nature of this relationship have not been investigated with intracranial recordings in humans during sleep. Cortical and hippocampal population neuronal firing was estimated from high γ band activity (HG) from 70 to 110 Hz in local field potentials (LFPs) recorded from 15 subjects (nine females) during nonrapid eye movement (NREM) sleep. Autonomic tone was estimated from heart rate variability (HRV). HG and HRV were significantly correlated in the hippocampus and multiple cortical sites in NREM stages N1-N3. The average correlation between HG and HRV could be positive or negative across patients given anatomic location and sleep stage and was most profound in lateral temporal lobe in N3, suggestive of greater cortical activity associated with sympathetic tone. Patient-wide correlation was related to δ band activity (1-4 Hz), which is known to be correlated with high γ activity during sleep. The percentage of statistically correlated channels was weaker in N1 and N2 as compared with N3, and was strongest in regions that have previously been associated with autonomic processes, such as anterior hippocampus and insula. The anatomic distribution of HRV-HG correlations during sleep did not reproduce those usually observed with positron emission tomography (PET) or functional magnetic resonance imaging (fMRI) during waking. This study aims to characterize the relationship between autonomic tone and neuronal firing rate during sleep and further studies are needed to investigate finer temporal resolutions, denser coverages, and different frequency bands in both waking and sleep.
Collapse
Affiliation(s)
- Abdulwahab Alasfour
- Department of Electrical Engineering, College of Engineering and Petroleum, Kuwait University, Kuwait City, Kuwait 13060
- Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA 92093
| | - Xi Jiang
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093
| | - Jorge Gonzalez-Martinez
- Department of Neurological Surgery and Epilepsy Center, University of Pittsburgh, Pittsburgh, PA 15260
| | - Vikash Gilja
- Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA 92093
| | - Eric Halgren
- Department of Neurosciences, Department of Radiology, University of California at San Diego, La Jolla, CA 92093
| |
Collapse
|
50
|
Abstract
Sleep is essential for brain function in a surprisingly diverse set of ways. In the short term, lack of sleep leads to impaired memory and attention; in the longer term, it produces neurological dysfunction or even death. I discuss recent advances in understanding how sleep maintains the physiological health of the brain through interconnected systems of neuronal activity and fluid flow. The neural dynamics that appear during sleep are intrinsically coupled to its consequences for blood flow, cerebrospinal fluid dynamics, and waste clearance. Recognizing these linked causes and consequences of sleep has shed new light on why sleep is important for such disparate aspects of brain function.
Collapse
Affiliation(s)
- Laura D Lewis
- Department of Biomedical Engineering, Boston University, Boston, MA, USA, and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|