1
|
Naidoo P, Naicker T. A Disintegrin and Metalloprotease with Thrombospondin Motif, Member 13, and Von Willebrand Factor in Relation to the Duality of Preeclampsia and HIV Infection. Int J Mol Sci 2025; 26:4103. [PMID: 40362344 PMCID: PMC12071684 DOI: 10.3390/ijms26094103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Normal pregnancy is associated with multiple changes in the coagulation and the fibrinolytic system. In contrast to a non-pregnant state, pregnancy is a hypercoagulable state where the level of VWF increases by 200-375%, affecting coagulation activity. Moreover, in this hypercoagulable state of pregnancy, preeclampsia is exacerbated. ADAMTS13 cleaves the bond between Tyr1605 and Met1606 in the A2 domain of VWF, thereby reducing its molecular weight. A deficiency of ADAMTS13 originates from mutations in gene or autoantibodies formed against the protease, leading to defective enzyme production. Von Willebrand protein is critical for hemostasis and thrombosis, promoting thrombus formation by mediating the adhesion of platelets and aggregation at high shear stress conditions within the vessel wall. Mutations in VWF disrupts multimer assembly, secretion and/or catabolism, thereby influencing bleeding. VWF is the primary regulator of plasma ADAMTS13 levels since even minute amounts of active ADAMTS13 protease have a significant inhibitory effect on inflammation and thrombosis. VWF is released as a result of endothelial activation brought on by HIV infection. The SARS-CoV-2 infection promotes circulating proinflammatory cytokines, increasing endothelial secretion of ultra large VWF that causes an imbalance in VWF/ADAMTS13. Raised VWF levels corresponds with greater platelet adhesiveness, promoting a thrombotic tendency in stenotic vessels, leading to increased shear stress conditions.
Collapse
Affiliation(s)
| | - Thajasvarie Naicker
- Optics & Imaging Centre, Doris Duke Medical Research Institute, University of KwaZulu-Natal, 719 Umbilo Road, Congella, Durban 4013, South Africa
| |
Collapse
|
2
|
Ouyang M, Gao Y, Zhou B, Guo J, Lei L, Wang Y, Deng L. FRET Visualization of High Mechanosensation of von Willebrand Factor to Hydrodynamic Force. BIOSENSORS 2025; 15:248. [PMID: 40277561 PMCID: PMC12026062 DOI: 10.3390/bios15040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
von Willebrand factor (vWF) is a large glycoprotein in the circulation system, which senses hydrodynamic force at vascular injuries and then recruits platelets in assembling clots. How vWF mechanosenses shear flow for molecular unfolding is an important topic. Here, a Förster resonance energy transfer (FRET) biosensor was developed to monitor vWF conformation change to hydrodynamic force. The vWF-based biosensor is anchored on the cell surface, in which the A2 domain is flanked with a FRET pair. With 293T cells seeded into microfluidic channels, 2.8 dyn/cm2 of shear force (i.e., 28 μN/cm2, or 264.1/s in shear rate) induced a remarkable FRET change (~60%) in 30 min. A gradient micro-shear below 2.8 dyn/cm2 demonstrated FRET responses positively related to flow magnitudes, with 0.14 dyn/cm2 (1.4 μN/cm2) inducing an obvious change (~16%). The FRET increases indicate closer positioning of A2's two terminals in vWF or the addition of a more parallel orientation of the FRET pair, supported with the high FRET of the A2-only-based biosensor, which probably resulted from flow-induced A2 dissociation from vWF intramolecular binding such as that in A1/A3 domains. Interestingly, gradient flow increases from 2.8 to 28 dyn/cm2 led to decreasing FRET changes, suggesting the second-level unfolding in the A2 domain. The LOCK-vWF biosensor with bridged A2 two terminals or an A2-only biosensor could not sense the shear, indicating a structure-flexible A2 and large vWF molecules that are important in the mechanosensation. In conclusion, the developed vWF-based biosensor demonstrated the high mechanosensation of vWF with two-level unfolding to shear force: the dissociation of the A2 domain from vWF intramolecular binding under a micro-shear, and then the unfolding of A2 in vWF under a higher shear; the FRET response to shear force at a very low scale may support the observed clot formation at microvascular wounds. This study provides new insights into the vWF's mechanosensitive feature for its physiological functions and implicated disorders.
Collapse
Affiliation(s)
- Mingxing Ouyang
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, 1 Gehu Rd, Wujin District, Changzhou 213164, China
| | - Yao Gao
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, 1 Gehu Rd, Wujin District, Changzhou 213164, China
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Binqian Zhou
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, 1 Gehu Rd, Wujin District, Changzhou 213164, China
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Jia Guo
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, 1 Gehu Rd, Wujin District, Changzhou 213164, China
| | - Lei Lei
- Shu Chien-Gene Lay Department of Bioengineering, and Institute of Engineering in Medicine, University of California at San Diego, La Jolla, CA 92093, USA (Y.W.)
| | - Yingxiao Wang
- Shu Chien-Gene Lay Department of Bioengineering, and Institute of Engineering in Medicine, University of California at San Diego, La Jolla, CA 92093, USA (Y.W.)
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, 1 Gehu Rd, Wujin District, Changzhou 213164, China
| |
Collapse
|
3
|
Cao W, Liu Y, Zhang XF, Zheng XL. A mutant complement factor H (W1183R) enhances proteolytic cleavage of von Willebrand factor by ADAMTS-13 under shear. J Thromb Haemost 2025; 23:1229-1240. [PMID: 39798927 DOI: 10.1016/j.jtha.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/31/2024] [Accepted: 11/22/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND A loss-of-functional mutation (W1183R) in human complement factor H (CFH) is associated with complement-associated hemolytic uremic syndrome; mice carrying a similar mutation (W1206R) in CFH also develop thrombotic microangiopathy but its plasma von Willebrand factor (VWF) multimer sizes were dramatically reduced. The mechanism underlying such a dramatic change in plasma VWF multimer distribution in these mice is not fully understood. OBJECTIVES To determine the VWF and CFH interaction and how CFH proteins affect VWF multimer distribution. METHODS We employed recombinant protein expression, purification, and various biochemical and biophysical tools. RESULTS Purified recombinant W1183R-CFH but not wild-type (WT) CFH protein enhanced the proteolytic cleavage of both peptidyl and multimeric VWF substrates by recombinant ADAMTS-13 in a concentration-dependent manner. Microscale thermophoresis assay demonstrated that both W1183R-CFH and WT-CFH proteins bound various VWF fragments (eg, AIM-A1, A1-A2-A3, D'D3, D'D3-A1, and D'D3-A1-A2) with high affinities. Optical tweezer experiments further showed a concentration-dependent alteration in the contour length (Lc) and the persistent length (Lp) following pulling VWF-A2 domain in the presence of W1183R-CFH or WT-CFH protein. AlphaFold experiments revealed conformational changes in the VWF-A2, particularly the central region where the cleavage bond resides following addition of W1183R-CFH or WT-CFH protein. CONCLUSION These results demonstrate for the first time that W1183R-CFH but not WT-CFH protein enhances the proteolytic cleavage of VWF by ADAMTS-13 under shear. This may be achieved by mechanic-induced conformational changes of the central A2 domain, leading to an enhanced cleavage of Tyr1605-Met1606 bond by ADAMTS-13 under pathophysiological conditions.
Collapse
Affiliation(s)
- Wenjing Cao
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Institute of Reproductive Medicine and Developmental Sciences, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yi Liu
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - X Frank Zhang
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - X Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Institute of Reproductive Medicine and Developmental Sciences, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
4
|
Zuo J, Li H. Intermolecular Misfolding Captured in Parallelly Organized Titin. J Am Chem Soc 2025; 147:4853-4861. [PMID: 39893683 DOI: 10.1021/jacs.4c13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The giant muscle protein titin is largely responsible for the passive elasticity of the muscles. The I-band part of titin is elastic, and its constitutive immunoglobulin (Ig) domains undergo force-induced unfolding and refolding when the muscle is stretched toward or beyond the end of the physiological range of sarcomere length. Correct folding of the titin Ig domains is essential to the structure and functions of titin. Although our knowledge of titin elasticity at the molecular level has been largely obtained from single molecule experiments, titin does not exist as an isolated molecule. Instead, six titins are parallelly organized in the muscle sarcomeres. It remains unknown what impact such a parallel organization brings on the folding of titin Ig domains and titin elasticity. Using the two-molecule force spectroscopy technique, here, we report the direct observation of the intermolecular misfolding of titin Ig domains that are arranged in parallel. Our results reveal that when parallelly arranged, two I94 domains can misfold into an intermolecular domain-swapped state that is thermally and mechanically stable. Such intermolecular misfolding may play important structural and functional roles in titin organization and elasticity.
Collapse
Affiliation(s)
- Jiacheng Zuo
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
5
|
Ismail E, Liu Y, Wang Y, Yazdanparast Tafti S, Zhang XF, Cheng X. Aptamer-based biotherapeutic conjugate for shear responsive release of Von Willebrand factor A1 domain. NANOSCALE 2025; 17:1246-1259. [PMID: 39412758 DOI: 10.1039/d4nr02715a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Smart polymers that mimic and even surpass the functionality of natural responsive materials have been actively researched. This study explores the design and characterization of a Single-MOlecule-based material REsponsive to Shear (SMORES) for the targeted release of A1, the platelet binding domain of the blood clotting protein von Willebrand factor (VWF). Each SMORES construct employs an aptamer molecule as the flow transducer and a microparticle to sense and amplify the hydrodynamic force. Within the construct, the aptamer, ARC1172, undergoes conformational changes beyond a shear stress threshold, mimicking the shear-responsive behavior of VWF. This conformational alteration modulates the bioavailability of its target, the VWF-A1 domain, ultimately releasing it at elevated shear. Through optical tweezer-based single-molecule force measurement, ARC1172s role as a force transducer was assessed by examining its unfolding under constant pulling force. We also investigated its refolding rate as a function of force under varied relaxation periods. These analyses revealed a narrow range of threshold forces (3-7 pN) governing the transition between folded and unfolded states. We subsequently constructed the SMORES material by conjugating ARC1172 and a microbead, and immobilizing the other end of the aptamer on a substrate. Single-molecule flow experiments on immobilized SMORES constructs revealed a peak A1 domain release within a flow rate range of (40-70 μL min-1). A COMSOL Multiphysics model translated these flow rates to total forces of 3.10 pN-5.63 pN experienced by the aptamers, aligning with single-molecule force microscopy predictions. Evaluation under variable flow conditions showed a peak binding of A1 to the platelet glycoprotein Ib (GPIB) within the same force range, confirming released payload functionality. Building on knowledge of aptamer biomechanics, this study presents a new strategy to create shear-stimulated biomaterials based on single biomolecules.
Collapse
Affiliation(s)
- Esraa Ismail
- Department of Bioengineering, P. C. Rossin College of Engineering and Applied Science, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Yi Liu
- Department of Bioengineering, P. C. Rossin College of Engineering and Applied Science, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Yi Wang
- Department of Materials Science and Engineering, P. C. Rossin College of Engineering and Applied Science, Lehigh University, Bethlehem, Pennsylvania, USA.
- Current Address: Analytical Research and Development, Merck & Co., Inc. Greater Philadelphia, Pennsylvania, USA
| | - Sajedehalsadat Yazdanparast Tafti
- Department of Bioengineering, P. C. Rossin College of Engineering and Applied Science, Lehigh University, Bethlehem, Pennsylvania, USA
| | - X Frank Zhang
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Xuanhong Cheng
- Department of Bioengineering, P. C. Rossin College of Engineering and Applied Science, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Materials Science and Engineering, P. C. Rossin College of Engineering and Applied Science, Lehigh University, Bethlehem, Pennsylvania, USA.
| |
Collapse
|
6
|
Smith AG, McNamee AP, Chan CHH, Headrick J, Simmonds MJ. An enhanced and rapid method for von Willebrand factor multimer analysis for mechanical circulatory device testing. Artif Organs 2024; 48:1438-1448. [PMID: 39101288 DOI: 10.1111/aor.14838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Von Willebrand factor (VWF) is a critical glycoprotein in hemostasis and is an important factor in diagnosing bleeding disorders. Albeit the analysis of VWF is often compromised by inconsistent methodologies and challenges quantifying multimeric size. Current VWF multimer analysis methods are costly, time-consuming, and often inconsistent; thus, demanding skilled professionals. This study aimed to streamline and optimize the VWF multimer analysis technique, making it more efficient and reproducible, particularly for identifying or predicting mechanical circulatory support (MCS) induced bleeding disorders. METHODS Blood samples from healthy volunteers were exposed to high shear forces via a Medtronic HeartWare ventricular assist device. VWF multimers were analyzed using vertical-gel agarose electrophoresis and Western blotting. Differences in VWF distribution were determined using densitometry, and two methods of densitometric analysis were compared: proprietary software against open-source software. RESULTS Using the developed method: (i) protocol duration was accelerated from three days (in classical methods) to ~ eight hours; (ii) the resolution of the high molecular weight (HMW) VWF multimers were substantially improved; and (iii) densitometric analysis tools were validated. Additionally, the densitometry analysis using two software types showed a strong correlation between results, with the proprietary software reporting slightly higher HMW VWF percentages. CONCLUSION This methodology is recommended for affordable, accurate, and reproducible VWF multimer evaluations during MCS use and testing. Further research comparing this method with semi-automated methods would provide additional insight and improve inter-laboratory comparisons.
Collapse
Affiliation(s)
- Amanda G Smith
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Antony P McNamee
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Chris H H Chan
- Innovative Device & Engineering Applications (IDEA) Lab, Texas Heart Institute, Houston, Texas, USA
| | - John Headrick
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Michael J Simmonds
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
7
|
Viader-Godoy X, Manosas M, Ritort F. Stacking correlation length in single-stranded DNA. Nucleic Acids Res 2024; 52:13243-13254. [PMID: 39460618 PMCID: PMC11602145 DOI: 10.1093/nar/gkae934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Base stacking is crucial in nucleic acid stabilization, from DNA duplex hybridization to single-stranded DNA (ssDNA) protein binding. While stacking energies are tiny in ssDNA, they are inextricably mixed with hydrogen bonding in DNA base pairing, making their measurement challenging. We conduct unzipping experiments with optical tweezers of short poly-purine (dA and alternating dG and dA) sequences of 20-40 bases. We introduce a helix-coil model of the stacking-unstacking transition that includes finite length effects and reproduces the force-extension curves. Fitting the model to the experimental data, we derive the stacking energy per base, finding the salt-independent value $\Delta G_0^{ST}=0.14(3)$ kcal/mol for poly-dA and $\Delta G_0^{ST}=0.07(3)$ kcal/mol for poly-dGdA. Stacking in these polymeric sequences is predominantly cooperative with a correlation length of ∼4 bases at zero force . The correlation length reaches a maximum of ∼10 and 5 bases at the stacking-unstacking transition force of ∼10 and 20 pN for poly-dA and poly-dGdA, respectively. The salt dependencies of the cooperativity parameter in ssDNA and the energy of DNA hybridization are in agreement, suggesting that double-helix stability is primarily due to stacking. Analysis of poly-rA and poly-rC RNA sequences shows a larger stacking stability but a lower stacking correlation length of ∼2 bases.
Collapse
Affiliation(s)
- Xavier Viader-Godoy
- Small Biosystems Lab, Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Carrer de Martí i Franquès, 1, 08028 Barcelona, Spain
- Dipartimento di Fisica e Astronomia Galileo Galilei, Università degli Studi di Padova, Via Francesco Marzolo, 8, 35131 Padova, Italy
| | - Maria Manosas
- Small Biosystems Lab, Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Carrer de Martí i Franquès, 1, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08029 Barcelona, Spain
| | - Felix Ritort
- Small Biosystems Lab, Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Carrer de Martí i Franquès, 1, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08029 Barcelona, Spain
| |
Collapse
|
8
|
Lenting PJ, Denis CV, Christophe OD. How unique structural adaptations support and coordinate the complex function of von Willebrand factor. Blood 2024; 144:2174-2184. [PMID: 38968155 DOI: 10.1182/blood.2023023277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/07/2024] Open
Abstract
ABSTRACT von Willebrand factor (VWF) is a multimeric protein consisting of covalently linked monomers, which share an identical domain architecture. Although involved in processes such as inflammation, angiogenesis, and cancer metastasis, VWF is mostly known for its role in hemostasis, by acting as a chaperone protein for coagulation factor VIII (FVIII) and by contributing to the recruitment of platelets during thrombus formation. To serve its role in hemostasis, VWF needs to bind a variety of ligands, including FVIII, platelet-receptor glycoprotein Ib-α, VWF-cleaving protease ADAMTS13, subendothelial collagen, and integrin α-IIb/β-3. Importantly, interactions are differently regulated for each of these ligands. How are these binding events accomplished and coordinated? The basic structures of the domains that constitute the VWF protein are found in hundreds of other proteins of prokaryotic and eukaryotic organisms. However, the determination of the 3-dimensional structures of these domains within the VWF context and especially in complex with its ligands reveals that exclusive, VWF-specific structural adaptations have been incorporated in its domains. They provide an explanation of how VWF binds its ligands in a synchronized and timely fashion. In this review, we have focused on the domains that interact with the main ligands of VWF and discuss how elucidating the 3-dimensional structures of these domains has contributed to our understanding of how VWF function is controlled. We further detail how mutations in these domains that are associated with von Willebrand disease modulate the interaction between VWF and its ligands.
Collapse
Affiliation(s)
- Peter J Lenting
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, Le Kremlin-Bicêtre, France
| | - Cécile V Denis
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, Le Kremlin-Bicêtre, France
| | - Olivier D Christophe
- Université Paris-Saclay, INSERM, Hémostase Inflammation Thrombose HITh U1176, Le Kremlin-Bicêtre, France
| |
Collapse
|
9
|
Interlandi G. Exploring ligands that target von Willebrand factor selectively under oxidizing conditions through docking and molecular dynamics simulations. Proteins 2024; 92:1261-1275. [PMID: 38829206 PMCID: PMC11471382 DOI: 10.1002/prot.26706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
The blood protein von Willebrand factor (VWF) is a large multimeric protein that, when activated, binds to blood platelets, tethering them to the site of vascular injury and initiating blood coagulation. This process is critical for the normal hemostatic response, but especially under inflammatory conditions, it is thought to be a major player in pathological thrombus formation. For this reason, VWF has been the target for the development of anti-thrombotic therapeutics. However, it is challenging to prevent pathological thrombus formation while still allowing normal physiological blood coagulation, as currently available anti-thrombotic therapeutics are known to cause unwanted bleeding, in particular intracranial hemorrhage. This work explores the possibility of inhibiting VWF selectively under the inflammatory conditions present during pathological thrombus formation. In particular, the A2 domain of VWF is known to inhibit the neighboring A1 domain from binding to the platelet surface receptor GpIbα, and this auto-inhibitory mechanism has been shown to be removed by oxidizing agents released during inflammation. Hence, finding drug molecules that bind at the interface between A1 and A2 only under oxidizing conditions could restore such an auto-inhibitory mechanism. Here, by using a combination of computational docking, molecular dynamics simulations, and free energy perturbation calculations, a ligand from the ZINC15 database was identified that binds at the A1A2 interface, with the interaction being stronger under oxidizing conditions. The results provide a framework for the discovery of drug molecules that bind to a protein selectively in the presence of inflammatory conditions.
Collapse
Affiliation(s)
- Gianluca Interlandi
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
10
|
Maksić M, Corović I, Stanisavljević I, Radojević D, Veljković T, Todorović Ž, Jovanović M, Zdravković N, Stojanović B, Marković BS, Jovanović I. Heyde Syndrome Unveiled: A Case Report with Current Literature Review and Molecular Insights. Int J Mol Sci 2024; 25:11041. [PMID: 39456826 PMCID: PMC11507012 DOI: 10.3390/ijms252011041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Heyde syndrome, marked by aortic stenosis, gastrointestinal bleeding from angiodysplasia, and acquired von Willebrand syndrome, is often underreported. Shear stress from a narrowed aortic valve degrades von Willebrand factor multimers, leading to angiodysplasia formation and von Willebrand factor deficiency. This case report aims to raise clinician awareness of Heyde syndrome, its complexity, and the need for a multidisciplinary approach. We present a 75-year-old man with aortic stenosis, gastrointestinal bleeding from angiodysplasia, and acquired von Willebrand syndrome type 2A. The patient was successfully treated with argon plasma coagulation and blood transfusions. He declined further treatment for aortic stenosis but was in good overall health with improved laboratory results during follow-up. Additionally, we provide a comprehensive review of the molecular mechanisms involved in the development of this syndrome, discuss current diagnostic and treatment approaches, and offer future perspectives for further research on this topic.
Collapse
Affiliation(s)
- Mladen Maksić
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.M.); (D.R.); (Ž.T.); (M.J.); (N.Z.)
| | - Irfan Corović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.C.); (I.S.); (I.J.)
| | - Isidora Stanisavljević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.C.); (I.S.); (I.J.)
| | - Dušan Radojević
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.M.); (D.R.); (Ž.T.); (M.J.); (N.Z.)
| | - Tijana Veljković
- Department of Pediatrics, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Željko Todorović
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.M.); (D.R.); (Ž.T.); (M.J.); (N.Z.)
| | - Marina Jovanović
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.M.); (D.R.); (Ž.T.); (M.J.); (N.Z.)
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.C.); (I.S.); (I.J.)
| | - Nataša Zdravković
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.M.); (D.R.); (Ž.T.); (M.J.); (N.Z.)
| | - Bojan Stojanović
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Bojana Simović Marković
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.C.); (I.S.); (I.J.)
| | - Ivan Jovanović
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.C.); (I.S.); (I.J.)
| |
Collapse
|
11
|
Xu W, Tan X, Li ML, Xu H, Villegas J, Fu H. Von Willebrand factor and hematogenous cancer metastasis under flow. Front Cell Dev Biol 2024; 12:1435718. [PMID: 39282473 PMCID: PMC11401050 DOI: 10.3389/fcell.2024.1435718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
Hematogenous metastasis involves cancer cell migration to different locations from the primary tumor through the blood circulation. Von Willebrand factor (VWF) has been shown to play an important role in tumor cell adhesion to and extravasation from the endothelial cell lining of blood vessel walls during cancer metastasis. VWF may contribute to this process by interacting with tumor cells, endothelial cells, and platelets through various cell membrane receptors, such as platelet glycoprotein (GP)Ibα, P-selectin, ανβ3 and αIIbβ3 integrins, and glycocalyx. Blood flow can mechanically extend and activate VWF to bind platelets and associate intermolecularly with other VWF molecules in plasma or on the surface of endothelial cells, cancer cells, or platelets. This suggests a mechanoregulatory role of VWF in mediating the interactions between VWF and these cells to promote cancer cell adhesion to blood vessels. In this review, we will summarize the current knowledge of VWF function and the role of hydrodynamic forces in hematogenous cancer metastasis.
Collapse
Affiliation(s)
- Wenxuan Xu
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Xi Tan
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Morgan L Li
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Hanzhi Xu
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Jasmine Villegas
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Hongxia Fu
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
- Bloodworks Research Institute, Seattle, WA, United States
| |
Collapse
|
12
|
Rissone P, Severino A, Pastor I, Ritort F. Universal cold RNA phase transitions. Proc Natl Acad Sci U S A 2024; 121:e2408313121. [PMID: 39150781 PMCID: PMC11348302 DOI: 10.1073/pnas.2408313121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/12/2024] [Indexed: 08/18/2024] Open
Abstract
RNA's diversity of structures and functions impacts all life forms since primordia. We use calorimetric force spectroscopy to investigate RNA folding landscapes in previously unexplored low-temperature conditions. We find that Watson-Crick RNA hairpins, the most basic secondary structure elements, undergo a glass-like transition below [Formula: see text]C where the heat capacity abruptly changes and the RNA folds into a diversity of misfolded structures. We hypothesize that an altered RNA biochemistry, determined by sequence-independent ribose-water interactions, outweighs sequence-dependent base pairing. The ubiquitous ribose-water interactions lead to universal RNA phase transitions below TG, such as maximum stability at [Formula: see text]C where water density is maximum, and cold denaturation at [Formula: see text]C. RNA cold biochemistry may have a profound impact on RNA function and evolution.
Collapse
Affiliation(s)
- Paolo Rissone
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Barcelona 08028, Spain
| | - Aurélien Severino
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Barcelona 08028, Spain
| | - Isabel Pastor
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Barcelona 08028, Spain
| | - Felix Ritort
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Barcelona 08028, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Barcelona 08028, Spain
| |
Collapse
|
13
|
Boyes ED, Gai PL. Visualizing Dynamic Single Atom Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314121. [PMID: 38757873 DOI: 10.1002/adma.202314121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/25/2024] [Indexed: 05/18/2024]
Abstract
Many industrial chemical processes, including for producing fuels, foods, pharmaceuticals, chemicals and environmental controls, employ heterogeneous solid state catalysts at elevated temperatures in gas or liquid environments. Dynamic reactions at the atomic level play a critical role in catalyst stability and functionality. In situ visualization and analysis of atomic-scale processes in real time under controlled reaction environments can provide important insights into practical frameworks to improve catalytic processes and materials. This review focuses on innovative real time in situ electron microscopy (EM) methods, including recent progress in analytical in situ environmental (scanning) transmission EM (E(STEM), incorporating environmental scanning TEM (ESTEM) and environmental transmission EM (ETEM), with single atom resolution for visualizing and analysing dynamic single atom catalysis under controlled flowing gas reaction environments. ESTEM studies of single atom dynamics of reactions, and of sintering deactivation, contribute to a better-informed understanding of the yield and stability of catalyst operations. Advances in in situ technologies, including gas and liquid sample holders, nanotomography, and higher voltages, as well as challenges and opportunities in tracking reacting atoms, are highlighted. The findings show that the understanding and application of fundamental processes in catalysis can be improved, with valuable economic, environmental, and societal benefits.
Collapse
Affiliation(s)
- Edward D Boyes
- The York Nanocentre, Department of Physics, University of York, York, YO10 5DD, UK
| | - Pratibha L Gai
- The York Nanocentre, Department of Chemistry, University of York, York, YO10 5DD, UK
| |
Collapse
|
14
|
Li P, Li H. A Handle-Free, All-Protein-Based Optical Tweezers Method to Probe Protein Folding-Unfolding Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13721-13727. [PMID: 38899455 DOI: 10.1021/acs.langmuir.4c01711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Optical tweezers (OT) have evolved into powerful single molecule force spectroscopy tools to investigate protein folding-unfolding dynamics. To stretch a protein of interest using OT, the protein must be flanked with two double stranded DNA (dsDNA) handles. However, coupling dsDNA handles to the protein is often of low yield, representing a bottleneck in OT experiments. Here, we report a handle-free, all-protein-based OT method for investigating protein folding/unfolding dynamics. In this new method, we employed disordered elastin-like polypeptides (ELPs) as a molecular linker and the mechanically stable cohesin-dockerin (Coh-Doc) pair as the prey-bait system to enable the efficient capture and stretching of individual protein molecules. This novel approach was validated by using model proteins NuG2 and RTX-v, yielding experimental results comparable to those obtained by using the dsDNA handle approach. This new method provides a streamlined and efficient OT approach to investigate the folding-unfolding dynamics of proteins at the single molecule level, thus expanding the toolbox of OT-based single molecule force spectroscopy.
Collapse
Affiliation(s)
- Peiyun Li
- Department of ChemistryUniversity of British ColumbiaVancouver, BC V6T 1Z1, Canada
| | - Hongbin Li
- Department of ChemistryUniversity of British ColumbiaVancouver, BC V6T 1Z1, Canada
| |
Collapse
|
15
|
Csányi MC, Sziklai D, Feller T, Hársfalvi J, Kellermayer M. Cryptic Extensibility in von Willebrand Factor Revealed by Molecular Nanodissection. Int J Mol Sci 2024; 25:7296. [PMID: 39000402 PMCID: PMC11242059 DOI: 10.3390/ijms25137296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Von Willebrand factor (VWF) is a multimer with a variable number of protomers, each of which is a head-to-head dimer of two multi-domain monomers. VWF responds to shear through the unfolding and extension of distinct domains, thereby mediating platelet adhesion and aggregation to the injured blood vessel wall. VWF's C1-6 segment uncoils and then the A2 domain unfolds and extends in a hierarchical and sequential manner. However, it is unclear whether there is any reservoir of further extensibility. Here, we explored the presence of cryptic extensibility in VWF by nanodissecting individual, pre-stretched multimers with atomic force microscopy (AFM). The AFM cantilever tip was pressed into the surface and moved in a direction perpendicular to the VWF axis. It was possible to pull out protein loops from VWF, which resulted in a mean contour length gain of 217 nm. In some cases, the loop became cleaved, and a gap was present along the contour. Frequently, small nodules appeared in the loops, indicating that parts of the nanodissected VWF segment remained folded. After analyzing the nodal structure, we conclude that the cryptic extensibility lies within the C1-6 and A1-3 regions. Cryptic extensibility may play a role in maintaining VWF's functionality in extreme shear conditions.
Collapse
Affiliation(s)
- Mária Csilla Csányi
- Institute of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H1094 Budapest, Hungary; (M.C.C.)
| | - Dominik Sziklai
- Institute of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H1094 Budapest, Hungary; (M.C.C.)
| | - Tímea Feller
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS29JT, UK
| | - Jolán Hársfalvi
- Institute of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H1094 Budapest, Hungary; (M.C.C.)
| | - Miklós Kellermayer
- Institute of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H1094 Budapest, Hungary; (M.C.C.)
- HUNREN-SE Biophysical Virology Group, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| |
Collapse
|
16
|
Zheng XL. Novel mechanisms of action of emerging therapies of hereditary thrombotic thrombocytopenic purpura. Expert Rev Hematol 2024; 17:341-351. [PMID: 38752747 PMCID: PMC11209763 DOI: 10.1080/17474086.2024.2356763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Hereditary thrombotic thrombocytopenic purpura (hTTP) is caused by deficiency of plasma ADAMTS13 activity, resulting from ADAMTS13 mutations. ADAMTS13 cleaves ultra large von Willebrand factor (VWF), thus reducing its multimer sizes. Hereditary deficiency of plasma ADAMTS13 activity leads to the formation of excessive platelet-VWF aggregates in small arterioles and capillaries, resulting in hTTP. AREAS COVERED PubMed search from 1956 to 2024 using thrombotic thrombocytopenic purpura and therapy identified 3,675 articles. Only the articles relevant to the topic were selected for discussion, which focuses on pathophysiology, clinical presentations, and mechanisms of action of emerging therapeutics for hTTP. Current therapies include infusion of plasma, or coagulation factor VIII, or recombinant ADAMTS13. Emerging therapies include anti-VWF A1 aptamers or nanobody and gene therapies with adeno-associated viral vector or self-inactivated lentiviral vector or a sleeping beauty transposon system for a long-term expression of a functional ADAMTS13 enzyme. EXPERT OPINION Frequent plasma infusion remains to be the standard of care in most parts of the world, while recombinant ADAMTS13 has become the treatment of choice for hTTP in some of the Western countries. The success of gene therapies in preclinical models may hold a promise for future development of these novel approaches for a cure of hTTP.
Collapse
Affiliation(s)
- X. Long Zheng
- Department of Pathology and Laboratory Medicine and Institute of Reproductive Medicine and Developmental Sciences, the University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
17
|
Ebrahimi R, Nasri F, Kalantari T. Coagulation and Inflammation in COVID-19: Reciprocal Relationship between Inflammatory and Coagulation Markers. Ann Hematol 2024; 103:1819-1831. [PMID: 38349409 DOI: 10.1007/s00277-024-05630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/16/2024] [Indexed: 05/14/2024]
Abstract
The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), formerly known as 2019-nCoV. Numerous cellular and biochemical issues arise after COVID-19 infection. The severe inflammation that is caused by a number of cytokines appears to be one of the key hallmarks of COVID-19. Additionally, people with severe COVID-19 have coagulopathy and fulminant thrombotic events. We briefly reviewed the COVID-19 disease at the beginning of this paper. The inflammation and coagulation markers and their alterations in COVID-19 illness are briefly discussed in the parts that follow. Next, we talked about NETosis, which is a crucial relationship between coagulation and inflammation. In the end, we mentioned the two-way relationship between inflammation and coagulation, as well as the factors involved in it. We suggest that inflammation and coagulation are integrated systems in COVID-19 that act on each other in such a way that not only inflammation can activate coagulation but also coagulation can activate inflammation.
Collapse
Affiliation(s)
- Rasoul Ebrahimi
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Nasri
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Kalantari
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
18
|
Alavi Z, Casanova-Morales N, Quiroga-Roger D, Wilson CAM. Towards the understanding of molecular motors and its relationship with local unfolding. Q Rev Biophys 2024; 57:e7. [PMID: 38715547 DOI: 10.1017/s0033583524000052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Molecular motors are machines essential for life since they convert chemical energy into mechanical work. However, the precise mechanism by which nucleotide binding, catalysis, or release of products is coupled to the work performed by the molecular motor is still not entirely clear. This is due, in part, to a lack of understanding of the role of force in the mechanical-structural processes involved in enzyme catalysis. From a mechanical perspective, one promising hypothesis is the Haldane-Pauling hypothesis which considers the idea that part of the enzymatic catalysis is strain-induced. It suggests that enzymes cannot be efficient catalysts if they are fully complementary to the substrates. Instead, they must exert strain on the substrate upon binding, using enzyme-substrate energy interaction (binding energy) to accelerate the reaction rate. A novel idea suggests that during catalysis, significant strain energy is built up, which is then released by a local unfolding/refolding event known as 'cracking'. Recent evidence has also shown that in catalytic reactions involving conformational changes, part of the heat released results in a center-of-mass acceleration of the enzyme, raising the possibility that the heat released by the reaction itself could affect the enzyme's integrity. Thus, it has been suggested that this released heat could promote or be linked to the cracking seen in proteins such as adenylate kinase (AK). We propose that the energy released as a consequence of ligand binding/catalysis is associated with the local unfolding/refolding events (cracking), and that this energy is capable of driving the mechanical work.
Collapse
Affiliation(s)
- Zahra Alavi
- Department of Physics, Loyola Marymount University, Los Angeles, CA, USA
| | | | - Diego Quiroga-Roger
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Christian A M Wilson
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
19
|
Ferreira G, Taylor A, Mensah SA. Deciphering the triad of endothelial glycocalyx, von Willebrand Factor, and P-selectin in inflammation-induced coagulation. Front Cell Dev Biol 2024; 12:1372355. [PMID: 38745860 PMCID: PMC11091309 DOI: 10.3389/fcell.2024.1372355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
This review examines the endothelial glycocalyx's role in inflammation and explores its involvement in coagulation. The glycocalyx, composed of proteins and glycosaminoglycans, interacts with von Willebrand Factor and could play a crucial role in anchoring it to the endothelium. In inflammatory conditions, glycocalyx degradation may leave P-selectin as the only attachment point for von Willebrand Factor, potentially leading to uncontrolled release of ultralong von Willebrand Factor in the bulk flow in a shear stress-dependent manner. Identifying specific glycocalyx glycosaminoglycan interactions with von Willebrand Factor and P-selectin can offer insights into unexplored coagulation mechanisms.
Collapse
Affiliation(s)
- Guinevere Ferreira
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
- Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Alexandra Taylor
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Solomon A. Mensah
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
- Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
20
|
Interlandi G. Exploring ligands that target von Willebrand factor selectively under oxidizing conditions through docking and molecular dynamics simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586354. [PMID: 38585752 PMCID: PMC10996496 DOI: 10.1101/2024.03.22.586354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The blood protein von Willebrand factor (VWF) is a large multimeric protein that, when activated, binds to blood platelets tethering them to the site of vascular injury initiating blood coagulation. This process is critical for the normal haemostatic response, but especially under inflammatory conditions it is thought to be a major player in pathological thrombus formation. For this reason, VWF has been the target for the development of anti-thrombotic therapeutics. However, it is challenging to prevent pathological thrombus formation while still allowing normal physiological blood coagulation as currently available anti-thrombotic therapeutics are known to cause unwanted bleeding in particular intracranial haemorrhage. This work explores the possibility of inhibiting VWF selectively under the inflammatory conditions present during pathological thrombus formation. In particular, the A2 domain of VWF is known to inhibit the neighboring A1 domain from binding to the platelet surface receptor GpIbα and this auto-inhibitory mechanism has been shown to be removed by oxidizing agents released during inflammation. Hence, finding drug molecules that bind at the interface between A1 and A2 only under oxidizing conditions could restore such auto-inhibitory mechanism. Here, by using a combination of computational docking, molecular dynamics simulations and free energy perturbation calculations, a ligand from the ZINC15 database was identified that binds at the A1A2 interface with the interaction being stronger under oxidizing conditions. The results provide a framework for the discovery of drug molecules that bind to a protein selectively in inflammatory conditions.
Collapse
|
21
|
Oh D, Chae YJ, Teoh JY, Yim B, Yoo D, Park Y, Kim J. Detection of α-Thrombin with Platelet Glycoprotein Ibα (GP1bα) for the Development of a Coagulation Marker. ACS OMEGA 2024; 9:13418-13426. [PMID: 38524497 PMCID: PMC10956406 DOI: 10.1021/acsomega.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024]
Abstract
The detection of prothrombotic markers is crucial for understanding thromboembolism and assessing the effectiveness of anticoagulant drugs. α-Thrombin is a marker that plays a critical role in the coagulation cascade process. However, the detection of this enzymatic molecule was hindered by the absence of an efficient modality in the clinical environment. Previously, we reported that one α-thrombin interacts with two α-chains of glycoprotein Ib (GPIbα), i.e., multivalent protein binding (MPB), using bioresponsive hydrogel nanoparticles (nanogels) and optical microscopy. In this study, we demonstrated that GPIbα-mediated platforms led to the highly sensitive and quantitative detection of α-thrombin in various diagnostic systems. Initially, a bioresponsive nanogel-based surface plasmon resonance (nSPR) assay was developed that responds to the MPB of α-thrombin to GPIbα. The use of GPIbα for the detection of α-thrombin was further validated using the enzyme-linked immunosorbent assay, which is a gold-standard protein detection technique. Additionally, GPIbα-functionalized latex beads were developed to perform latex agglutination (LA) assays, which are widely used with hospital diagnostic instruments. Notably, the nSPR and LA assays exhibited a nearly 1000-fold improvement in sensitivity for α-thrombin detection compared to our previous optical microscopy method. The superiority of our GPIbα-mediated platforms lies in their stability for α-thrombin detection through protein-protein interactions. By contrast, assays relying on α-thrombin enzymatic activity using substrates face the challenge of a rapid decrease in postsample collection. These results suggested that the MPB of α-thrombin to GPIbα is an ideal mode for clinical α-thrombin detection, particularly in outpatient settings.
Collapse
Affiliation(s)
- Doogie Oh
- R&D
Center, Scholar Foxtrot Co. Ltd., Seoul 02796, Republic of Korea
- Department
of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic
of Korea
| | - Yun Jin Chae
- R&D
Center, Scholar Foxtrot Co. Ltd., Seoul 02796, Republic of Korea
| | - Jie Ying Teoh
- Department
of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Bora Yim
- R&D
Center, Scholar Foxtrot Co. Ltd., Seoul 02796, Republic of Korea
| | - Dongwon Yoo
- Department
of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic
of Korea
| | - Yongdoo Park
- Department
of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic
of Korea
| | - Jongseong Kim
- R&D
Center, Scholar Foxtrot Co. Ltd., Seoul 02796, Republic of Korea
- Department
of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic
of Korea
| |
Collapse
|
22
|
Verona G, Raimondi S, Canetti D, Mangione PP, Marchese L, Corazza A, Lavatelli F, Gillmore JD, Taylor GW, Bellotti V, Giorgetti S. Degradation versus fibrillogenesis, two alternative pathways modulated by seeds and glycosaminoglycans. Protein Sci 2024; 33:e4931. [PMID: 38380705 PMCID: PMC10880434 DOI: 10.1002/pro.4931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
The mechanism that converts native human transthyretin into amyloid fibrils in vivo is still a debated and controversial issue. Commonly, non-physiological conditions of pH, temperature, or organic solvents are used in in vitro models of fibrillogenesis of globular proteins. Transthyretin amyloid formation can be achieved under physiological conditions through a mechano-enzymatic mechanism involving specific serine proteases such as trypsin or plasmin. Here, we investigate S52P and L111M transthyretin variants, both causing a severe form of systemic amyloidosis mostly targeting the heart at a relatively young age with heterogeneous phenotype among patients. Our studies on thermodynamics show that both proteins are significantly less stable than other amyloidogenic variants. However, despite a similar thermodynamic stability, L111M variant seems to have enhanced susceptibility to cleavage and a lower tendency to form fibrils than S52P in the presence of specific proteases and biomechanical forces. Heparin strongly enhances the fibrillogenic capacity of L111M transthyretin, but has no effect on the S52P variant. Fibrillar seeds similarly affect the fibrillogenesis of both proteins, with a stronger effect on the L111M variant. According to our model of mechano-enzymatic fibrillogenesis, both full-length and truncated monomers, released after the first cleavage, can enter into fibrillogenesis or degradation pathways. Our findings show that the kinetics of the two processes can be affected by several factors, such as intrinsic amyloidogenicity due to the specific mutations, environmental factors including heparin and fibrillar seeds that significantly accelerate the fibrillogenic pathway.
Collapse
Affiliation(s)
- Guglielmo Verona
- Centre for AmyloidosisUniversity College LondonLondonUK
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Sara Raimondi
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Diana Canetti
- Centre for AmyloidosisUniversity College LondonLondonUK
| | - P. Patrizia Mangione
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Research DepartmentFondazione IRCCS Policlinico San MatteoPaviaItaly
| | | | - Alessandra Corazza
- Department of Medicine (DAME)University of UdineUdineItaly
- Istituto Nazionale Biostrutture e BiosistemiRomeItaly
| | - Francesca Lavatelli
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Research DepartmentFondazione IRCCS Policlinico San MatteoPaviaItaly
| | | | | | - Vittorio Bellotti
- Research DepartmentFondazione IRCCS Policlinico San MatteoPaviaItaly
| | - Sofia Giorgetti
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Research DepartmentFondazione IRCCS Policlinico San MatteoPaviaItaly
| |
Collapse
|
23
|
Nakamura F. The Role of Mechanotransduction in Contact Inhibition of Locomotion and Proliferation. Int J Mol Sci 2024; 25:2135. [PMID: 38396812 PMCID: PMC10889191 DOI: 10.3390/ijms25042135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Contact inhibition (CI) represents a crucial tumor-suppressive mechanism responsible for controlling the unbridled growth of cells, thus preventing the formation of cancerous tissues. CI can be further categorized into two distinct yet interrelated components: CI of locomotion (CIL) and CI of proliferation (CIP). These two components of CI have historically been viewed as separate processes, but emerging research suggests that they may be regulated by both distinct and shared pathways. Specifically, recent studies have indicated that both CIP and CIL utilize mechanotransduction pathways, a process that involves cells sensing and responding to mechanical forces. This review article describes the role of mechanotransduction in CI, shedding light on how mechanical forces regulate CIL and CIP. Emphasis is placed on filamin A (FLNA)-mediated mechanotransduction, elucidating how FLNA senses mechanical forces and translates them into crucial biochemical signals that regulate cell locomotion and proliferation. In addition to FLNA, trans-acting factors (TAFs), which are proteins or regulatory RNAs capable of directly or indirectly binding to specific DNA sequences in distant genes to regulate gene expression, emerge as sensitive players in both the mechanotransduction and signaling pathways of CI. This article presents methods for identifying these TAF proteins and profiling the associated changes in chromatin structure, offering valuable insights into CI and other biological functions mediated by mechanotransduction. Finally, it addresses unanswered research questions in these fields and delineates their possible future directions.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
24
|
Madarati H, Singh K, Sparring T, Andrisani P, Liaw PC, Fox-Robichaud AE, Kretz CA. REVIEWING THE DYSREGULATION OF ADAMTS13 AND VWF IN SEPSIS. Shock 2024; 61:189-196. [PMID: 38150358 DOI: 10.1097/shk.0000000000002291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
ABSTRACT Sepsis is defined as a life-threatening organ dysfunction caused by excessive host response to infection, and represents the most common cause of in-hospital deaths. Sepsis accounts for 30% of all critically ill patients in the intensive care unit (ICU), and has a global mortality rate of 20%. Activation of blood coagulation during sepsis and septic shock can lead to disseminated intravascular coagulation, which is characterized by microvascular thrombosis. Von Willebrand factor (VWF) and ADAMTS13 are two important regulators of blood coagulation that may be important links between sepsis and mortality in the ICU. Herein we review our current understanding of VWF and ADAMTS13 in sepsis and other critical illnesses and discuss their contribution to disease pathophysiology, their use as markers of severe illness, and potential targets for new therapeutic development.
Collapse
Affiliation(s)
- Hasam Madarati
- Department of Medicine and the Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Mierke CT. Magnetic tweezers in cell mechanics. Methods Enzymol 2024; 694:321-354. [PMID: 38492957 DOI: 10.1016/bs.mie.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
The chapter provides an overview of the applications of magnetic tweezers in living cells. It discusses the advantages and disadvantages of magnetic tweezers technology with a focus on individual magnetic tweezers configurations, such as electromagnetic tweezers. Solutions to the disadvantages identified are also outlined. The specific role of magnetic tweezers in the field of mechanobiology, such as mechanosensitivity, mechano-allostery and mechanotransduction are also emphasized. The specific usage of magnetic tweezers in mechanically probing cells via specific cell surface receptors, such as mechanosensitive channels is discussed and why mechanical probing has revealed the opening and closing of the channels. Finally, the future direction of magnetic tweezers is presented.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Sciences, Peter Debye Institute for Soft Matter Physics, Biological Physics Division, Leipzig University, Leipzig, Germany.
| |
Collapse
|
26
|
Postmus T, Graça NAG, Ferreira de Santana J, Ercig B, Langerhorst P, Luken B, Joly BS, Vanhoorelbeke K, Veyradier A, Coppo P, Voorberg J. Impact of N-glycan mediated shielding of ADAMTS-13 on the binding of pathogenic antibodies in immune thrombotic thrombocytopenic purpura. J Thromb Haemost 2023; 21:3402-3413. [PMID: 37633643 DOI: 10.1016/j.jtha.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Thrombotic thrombocytopenic purpura (TTP) is a rare thrombotic disorder, with 1.5 to 6.0 cases per million per year. The majority of patients with TTP develop inhibitory autoantibodies that predominantly target the spacer domain of ADAMTS-13. ADAMTS-13 is responsible for cleaving von Willebrand factor (VWF) multimers, thereby regulating platelet adhesion at sites of high-vascular shear stress. Inhibition and/or clearance of ADAMTS-13 by pathogenic autoantibodies results in accumulation of VWF multimers that promotes the formation of platelet-rich microthrombi. Previously, we have shown that insertion of a single N-glycan (NGLY) in the spacer domain prevents the binding of antispacer domain antibodies. OBJECTIVES To explore whether NGLY mediated shielding of the ADAMTS-13 spacer domain effectively prevents binding of pathogenic antispacer autoantibodies in patients with immune-mediated TTP (iTTP). METHODS We screened 5 NGLY-ADAMTS-13 variants (NGLY3, NGLY7, NGLY8, NGLY3+7, and NGLY3+8) for binding of autoantibodies and for their activity in the presence and absence of 50 samples derived from patients with iTTP. RESULTS NGLY variants showed greatly reduced antibody binding, down to 27% of wild-type (wt) ADAMTS-13 binding. Moreover, NGLY variants of ADAMTS-13 remained more active in FRETS-VWF73 assay in the presence of the plasma samples from these 50 patients with acute phase iTTP when compared with wtADAMTS-13. On average, wtADAMTS-13 activity was reduced to 37% of regular levels in the presence of plasma, while NGLY3 and NGLY3+7 remained 69% and 81% active, respectively. CONCLUSION These results reinforce our previous findings that NGLYs shield ADAMTS-13 from antibody binding and hence restore ADAMTS-13 activity in the presence of autoantibodies.
Collapse
Affiliation(s)
- Tim Postmus
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Nuno A G Graça
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Juliana Ferreira de Santana
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Bogac Ercig
- Division of Biochemistry and Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Pieter Langerhorst
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
| | | | - Bérangère S Joly
- Centre National de Référence des Microangiopathies Thrombotiques, hôpital Saint-Antoine, AP-HP. Sorbonne Université, Paris, France; Service d'hématologie biologique, hôpital Lariboisière et EA3518 Institut de Recherche Saint-Louis, AP-HP. Nord, Université Paris Cité, Paris, France
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Agnès Veyradier
- Centre National de Référence des Microangiopathies Thrombotiques, hôpital Saint-Antoine, AP-HP. Sorbonne Université, Paris, France; Service d'hématologie biologique, hôpital Lariboisière et EA3518 Institut de Recherche Saint-Louis, AP-HP. Nord, Université Paris Cité, Paris, France
| | - Paul Coppo
- Centre National de Référence des Microangiopathies Thrombotiques, hôpital Saint-Antoine, AP-HP. Sorbonne Université, Paris, France; Service d'hématologie biologique, hôpital Lariboisière et EA3518 Institut de Recherche Saint-Louis, AP-HP. Nord, Université Paris Cité, Paris, France
| | - Jan Voorberg
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands; Department of Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Wang H, Miao X, Zhai C, Chen Y, Lin Z, Zhou X, Guo M, Chai Z, Wang R, Shen W, Li H, Hu C. Mechanistic Insights into the Folding Mechanism of Region V in Ice-Binding Protein Secreted by Marinomonas primoryensis Revealed by Single-Molecule Force Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16128-16137. [PMID: 37916685 DOI: 10.1021/acs.langmuir.3c02257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The Gram-negative bacteria Marinomonas primoryensis secrete an ice-binding protein (MpIBP), which is a vital bacterial adhesin facilitating the adaptation and survival of the bacteria in the harsh Antarctic environment. The C-terminal region of MpIBP, known as region V (RV), is the first domain to be exported into the Ca2+-rich extracellular environment and acts as a folding nucleus for the entire adhesin. However, the mechanisms underlying the secretion and folding of RV remain poorly understood. Here, we used optical tweezers (OT) to investigate the secretion and folding mechanisms of RV at the single-molecule level. In the absence of Ca2+, apo-RV remains unstructured, while Ca2+-bound RV folds into a mechanically stable structure. The folding of RV could occur via the formation of an intermediate state. Even though this folding intermediate is "hidden" during the folding process of wild type RV in vitro, it likely forms in vivo and plays an important role in facilitating protein secretion. Additionally, our results revealed that the N-terminal part of the RV can significantly stabilize its C-terminal structure. Our study paves the way for further investigations into the structure and functions of MpIBP that help bacteria survive in challenging environments.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Xiaopu Miao
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Cong Zhai
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Yulu Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Zuzeng Lin
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaowei Zhou
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Mengdi Guo
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Zhongyan Chai
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Ruifen Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Wanfu Shen
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Chunguang Hu
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
28
|
Nguyen AH, Kania S, Oztekin A, Webb EB. Predicting reaction behavior of tethered polymers in shear flow. J Chem Phys 2023; 159:174907. [PMID: 37929865 DOI: 10.1063/5.0168440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023] Open
Abstract
Kinetics of force-mediated chemical reactions of end-tethered polymers with varying chain length N in varying shear rate flow γ̇ are explored via coarse-grained Brownian dynamics simulations. At fixed γ̇, force F along a polymer increases linearly with N as previously predicted; however, contrary to existing theory, the F(N) slope increases for N above a transition length that exhibits minimal dependence on γ̇. Force profiles are used in a stochastic model of a force-mediated reaction to compute the time for x percent of a polymer population to experience a reaction, tx. Observations are insensitive to the selected value of x in that tx data for varying N and γ̇ can be consistently collapsed onto a single curve via appropriate scaling, with one master curve for systems below the transition N (small N) and another for those above (large N). Different force scaling for small and large N results in orders of magnitude difference in force-mediated reaction kinetics as represented by the population response time. Data presented illustrate the possibility of designing mechano-reactive polymer populations with highly controlled response to flow across a range in γ̇.
Collapse
Affiliation(s)
- Anh Hung Nguyen
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Sagar Kania
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Alparslan Oztekin
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Edmund B Webb
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
29
|
Rauch A, Dupont A, Rosa M, Desvages M, Le Tanno C, Abdoul J, Didelot M, Ung A, Ruez R, Jeanpierre E, Daniel M, Corseaux D, Spillemaeker H, Labreuche J, Pradines B, Rousse N, Lenting PJ, Moussa MD, Vincentelli A, Bordet JC, Staels B, Vincent F, Denis CV, Van Belle E, Casari C, Susen S. Shear Forces Induced Platelet Clearance Is a New Mechanism of Thrombocytopenia. Circ Res 2023; 133:826-841. [PMID: 37883587 DOI: 10.1161/circresaha.123.322752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Thrombocytopenia has been consistently described in patients with extracorporeal membrane oxygenation (ECMO) and associated with poor outcome. However, the prevalence and underlying mechanisms remain largely unknown, and a device-related role of ECMO in thrombocytopenia has been hypothesized. This study aims to investigate the mechanisms underlying thrombocytopenia in ECMO patients. METHODS In a prospective cohort of 107 ECMO patients, we investigated platelet count, functions, and glycoprotein shedding. In an ex vivo mock circulatory ECMO loop, we assessed platelet responses and VWF (von Willebrand factor)-GP Ibα (glycoprotein Ibα) interactions at low- and high-flow rates, in the presence or absence of red blood cells. The clearance of human platelets subjected or not to ex vivo perfusion was studied using an in vivo transfusion model in NOD/SCID (nonobese diabetic/severe combined Immunodeficient) mice. RESULTS In ECMO patients, we observed a time-dependent decrease in platelet count starting 1 hour after device onset, with a mean drop of 7%, 35%, and 41% at 1, 24, and 48 hours post-ECMO initiation (P=0.00013, P<0.0001, and P<0.0001, respectively), regardless of the type of ECMO. This drop in platelet count was associated with a decrease in platelet GP Ibα expression (before: 47.8±9.1 versus 24 hours post-ECMO: 42.3±8.9 mean fluorescence intensity; P=0.002) and an increase in soluble GP Ibα plasma levels (before: 5.6±3.3 versus 24 hours post-ECMO: 10.8±4.1 µg/mL; P<0.0001). GP Ibα shedding was also observed ex vivo and was unaffected by (1) red blood cells, (2) the coagulation potential, (3) an antibody blocking VWF-GP Ibα interaction, (4) an antibody limiting VWF degradation, and (5) supraphysiological VWF plasma concentrations. In contrast, GP Ibα shedding was dependent on rheological conditions, with a 2.8-fold increase at high- versus low-flow rates. Platelets perfused at high-flow rates before being transfused to immunodeficient mice were eliminated faster in vivo with an accelerated clearance of GP Ibα-negative versus GP Ibα-positive platelets. CONCLUSIONS ECMO-associated shear forces induce GP Ibα shedding and thrombocytopenia due to faster clearance of GP Ibα-negative platelets. Inhibiting GP Ibα shedding could represent an approach to reduce thrombocytopenia during ECMO.
Collapse
Affiliation(s)
- Antoine Rauch
- Inserm, Institut Pasteur de Lille, France (A.R., A.D., M.R., M. Desvages, C.L.T., J.A., M. Didelot, A.U., R.R., E.J., M. Daniel, D.C., H.S., B.P., N.R., M.D.M., A.V., B.S., F.V., E.V.B., S.S.), CHU Lille, University Lille, France
- Department of Hematology and Transfusion, UFR3S-Université de Lille (A.R., A.D., M.D., E..J., M.D., S.S.)
| | - Annabelle Dupont
- Inserm, Institut Pasteur de Lille, France (A.R., A.D., M.R., M. Desvages, C.L.T., J.A., M. Didelot, A.U., R.R., E.J., M. Daniel, D.C., H.S., B.P., N.R., M.D.M., A.V., B.S., F.V., E.V.B., S.S.), CHU Lille, University Lille, France
- Department of Hematology and Transfusion, UFR3S-Université de Lille (A.R., A.D., M.D., E..J., M.D., S.S.)
| | - Mickael Rosa
- Inserm, Institut Pasteur de Lille, France (A.R., A.D., M.R., M. Desvages, C.L.T., J.A., M. Didelot, A.U., R.R., E.J., M. Daniel, D.C., H.S., B.P., N.R., M.D.M., A.V., B.S., F.V., E.V.B., S.S.), CHU Lille, University Lille, France
- Department of Hematology and Transfusion, UFR3S-Université de Lille (A.R., A.D., M.D., E..J., M.D., S.S.)
| | - Maximilien Desvages
- Inserm, Institut Pasteur de Lille, France (A.R., A.D., M.R., M. Desvages, C.L.T., J.A., M. Didelot, A.U., R.R., E.J., M. Daniel, D.C., H.S., B.P., N.R., M.D.M., A.V., B.S., F.V., E.V.B., S.S.), CHU Lille, University Lille, France
| | - Christina Le Tanno
- Inserm, Institut Pasteur de Lille, France (A.R., A.D., M.R., M. Desvages, C.L.T., J.A., M. Didelot, A.U., R.R., E.J., M. Daniel, D.C., H.S., B.P., N.R., M.D.M., A.V., B.S., F.V., E.V.B., S.S.), CHU Lille, University Lille, France
| | - Johan Abdoul
- Inserm, Institut Pasteur de Lille, France (A.R., A.D., M.R., M. Desvages, C.L.T., J.A., M. Didelot, A.U., R.R., E.J., M. Daniel, D.C., H.S., B.P., N.R., M.D.M., A.V., B.S., F.V., E.V.B., S.S.), CHU Lille, University Lille, France
| | - Mélusine Didelot
- Inserm, Institut Pasteur de Lille, France (A.R., A.D., M.R., M. Desvages, C.L.T., J.A., M. Didelot, A.U., R.R., E.J., M. Daniel, D.C., H.S., B.P., N.R., M.D.M., A.V., B.S., F.V., E.V.B., S.S.), CHU Lille, University Lille, France
| | - Alexandre Ung
- Inserm, Institut Pasteur de Lille, France (A.R., A.D., M.R., M. Desvages, C.L.T., J.A., M. Didelot, A.U., R.R., E.J., M. Daniel, D.C., H.S., B.P., N.R., M.D.M., A.V., B.S., F.V., E.V.B., S.S.), CHU Lille, University Lille, France
| | - Richard Ruez
- Inserm, Institut Pasteur de Lille, France (A.R., A.D., M.R., M. Desvages, C.L.T., J.A., M. Didelot, A.U., R.R., E.J., M. Daniel, D.C., H.S., B.P., N.R., M.D.M., A.V., B.S., F.V., E.V.B., S.S.), CHU Lille, University Lille, France
| | - Emmanuelle Jeanpierre
- Inserm, Institut Pasteur de Lille, France (A.R., A.D., M.R., M. Desvages, C.L.T., J.A., M. Didelot, A.U., R.R., E.J., M. Daniel, D.C., H.S., B.P., N.R., M.D.M., A.V., B.S., F.V., E.V.B., S.S.), CHU Lille, University Lille, France
- Department of Hematology and Transfusion, UFR3S-Université de Lille (A.R., A.D., M.D., E..J., M.D., S.S.)
| | - Mélanie Daniel
- Inserm, Institut Pasteur de Lille, France (A.R., A.D., M.R., M. Desvages, C.L.T., J.A., M. Didelot, A.U., R.R., E.J., M. Daniel, D.C., H.S., B.P., N.R., M.D.M., A.V., B.S., F.V., E.V.B., S.S.), CHU Lille, University Lille, France
- Department of Hematology and Transfusion, UFR3S-Université de Lille (A.R., A.D., M.D., E..J., M.D., S.S.)
| | - Delphine Corseaux
- Inserm, Institut Pasteur de Lille, France (A.R., A.D., M.R., M. Desvages, C.L.T., J.A., M. Didelot, A.U., R.R., E.J., M. Daniel, D.C., H.S., B.P., N.R., M.D.M., A.V., B.S., F.V., E.V.B., S.S.), CHU Lille, University Lille, France
| | - Hugues Spillemaeker
- Inserm, Institut Pasteur de Lille, France (A.R., A.D., M.R., M. Desvages, C.L.T., J.A., M. Didelot, A.U., R.R., E.J., M. Daniel, D.C., H.S., B.P., N.R., M.D.M., A.V., B.S., F.V., E.V.B., S.S.), CHU Lille, University Lille, France
- Department of Cardiology, UFR3S-Université de Lille (H.S., F.V., E.V.B.)
| | - Julien Labreuche
- ULR 2694-METRICS: Évaluation des technologies de santé et des pratiques médicales (J.L.), CHU Lille, University Lille, France
| | - Bénédicte Pradines
- Inserm, Institut Pasteur de Lille, France (A.R., A.D., M.R., M. Desvages, C.L.T., J.A., M. Didelot, A.U., R.R., E.J., M. Daniel, D.C., H.S., B.P., N.R., M.D.M., A.V., B.S., F.V., E.V.B., S.S.), CHU Lille, University Lille, France
| | - Natacha Rousse
- Inserm, Institut Pasteur de Lille, France (A.R., A.D., M.R., M. Desvages, C.L.T., J.A., M. Didelot, A.U., R.R., E.J., M. Daniel, D.C., H.S., B.P., N.R., M.D.M., A.V., B.S., F.V., E.V.B., S.S.), CHU Lille, University Lille, France
- Department of Cardiac Surgery, UFR3S-Université de Lille (N.R., A.V.)
| | - Peter J Lenting
- INSERM, UMR-S 1176, Université Paris-Saclay, Le Kremlin Bicêtre, France (P.J.L., C.V.D., C.C.)
| | - Mouhamed D Moussa
- Inserm, Institut Pasteur de Lille, France (A.R., A.D., M.R., M. Desvages, C.L.T., J.A., M. Didelot, A.U., R.R., E.J., M. Daniel, D.C., H.S., B.P., N.R., M.D.M., A.V., B.S., F.V., E.V.B., S.S.), CHU Lille, University Lille, France
| | - André Vincentelli
- Inserm, Institut Pasteur de Lille, France (A.R., A.D., M.R., M. Desvages, C.L.T., J.A., M. Didelot, A.U., R.R., E.J., M. Daniel, D.C., H.S., B.P., N.R., M.D.M., A.V., B.S., F.V., E.V.B., S.S.), CHU Lille, University Lille, France
- Department of Cardiac Surgery, UFR3S-Université de Lille (N.R., A.V.)
| | | | - Bart Staels
- Inserm, Institut Pasteur de Lille, France (A.R., A.D., M.R., M. Desvages, C.L.T., J.A., M. Didelot, A.U., R.R., E.J., M. Daniel, D.C., H.S., B.P., N.R., M.D.M., A.V., B.S., F.V., E.V.B., S.S.), CHU Lille, University Lille, France
| | - Flavien Vincent
- Inserm, Institut Pasteur de Lille, France (A.R., A.D., M.R., M. Desvages, C.L.T., J.A., M. Didelot, A.U., R.R., E.J., M. Daniel, D.C., H.S., B.P., N.R., M.D.M., A.V., B.S., F.V., E.V.B., S.S.), CHU Lille, University Lille, France
- Department of Cardiology, UFR3S-Université de Lille (H.S., F.V., E.V.B.)
| | - Cécile V Denis
- INSERM, UMR-S 1176, Université Paris-Saclay, Le Kremlin Bicêtre, France (P.J.L., C.V.D., C.C.)
| | - Eric Van Belle
- Inserm, Institut Pasteur de Lille, France (A.R., A.D., M.R., M. Desvages, C.L.T., J.A., M. Didelot, A.U., R.R., E.J., M. Daniel, D.C., H.S., B.P., N.R., M.D.M., A.V., B.S., F.V., E.V.B., S.S.), CHU Lille, University Lille, France
- Department of Cardiology, UFR3S-Université de Lille (H.S., F.V., E.V.B.)
| | - Caterina Casari
- INSERM, UMR-S 1176, Université Paris-Saclay, Le Kremlin Bicêtre, France (P.J.L., C.V.D., C.C.)
| | - Sophie Susen
- Inserm, Institut Pasteur de Lille, France (A.R., A.D., M.R., M. Desvages, C.L.T., J.A., M. Didelot, A.U., R.R., E.J., M. Daniel, D.C., H.S., B.P., N.R., M.D.M., A.V., B.S., F.V., E.V.B., S.S.), CHU Lille, University Lille, France
- Department of Hematology and Transfusion, UFR3S-Université de Lille (A.R., A.D., M.D., E..J., M.D., S.S.)
| |
Collapse
|
30
|
Geist N, Nagel F, Delcea M. Molecular interplay of ADAMTS13-MDTCS and von willebrand Factor-A2: deepened insights from extensive atomistic simulations. J Biomol Struct Dyn 2023; 41:8201-8214. [PMID: 36271641 DOI: 10.1080/07391102.2022.2135138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/24/2022] [Indexed: 10/24/2022]
Abstract
Thrombotic thrombocytopenic purpura (TTP) is a rare and life-threatening disease. One hallmark is severe ADAMTS13 deficiency, causing ultra-large von Willebrand factor (VWF) multimers to accumulate, leading to microthrombi and lastly to microangiopathic hemolytic anemia and severe thrombocytopenia. Despite great success in recent decades, the molecular picture of the interaction between VWF and ADAMTS13 remains vague. Here, we utilized modern replica-exchange molecular dynamics simulations with the TIGER2h method to sample a vast configurational space of the isolated ADAMTS13-MDTCS domains and the exposure to its substrate and activating cofactor - the unraveled VWF-A2 domain. The sampling of binding sites and conformations was guided and filtered in agreement with available experimental evidence. We provide comprehensive information on exosites for each domain and direct pairs of interacting amino acids, for the first time. The major binding cluster for the active site of the MP domain contrasts the previous mapping of VWF-A2 residues and reciprocal binding pockets. Two major binding modes are revealed and provide access to conformational changes of an extended gatekeeper tetrad upon overcoming local latency during substrate binding and to a dedicated recruitment mechanism. Our work adds the first molecular interaction model that places previous experimental results in perspective to better understand disease-related mutations towards improved therapies. Numerous empirical targets are proposed to verify the given binding modes, to refine the overall picture of MP binding pockets, the role of Dis binding in MP activation and the passage of the Cys-rich domain through VWF-A2, thus deepening the understanding of a highly dynamic interplay.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Norman Geist
- University of Greifswald, Biophysical Chemistry, Institute of Biochemistry, Greifswald, Germany
| | - Felix Nagel
- University of Greifswald, Biophysical Chemistry, Institute of Biochemistry, Greifswald, Germany
| | - Mihaela Delcea
- University of Greifswald, Biophysical Chemistry, Institute of Biochemistry, Greifswald, Germany
| |
Collapse
|
31
|
Chen G, Wang H, Bumba L, Masin J, Sebo P, Li H. The adenylate cyclase toxin RTX domain follows a series templated folding mechanism with implications for toxin activity. J Biol Chem 2023; 299:105150. [PMID: 37567473 PMCID: PMC10511787 DOI: 10.1016/j.jbc.2023.105150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
Folding of the Repeats-in-toxin (RTX) domain of the bacterial adenylate cyclase toxin-hemolysin (CyaA) is critical to its toxin activities and the virulence of the whooping cough agent Bordetella pertussis. The RTX domain (RD) contains five RTX blocks (RTX-i to RTX-v) and their folding is driven by the binding of calcium. However, the detailed molecular mechanism via which the folding signal transmits within the five RTX blocks remains unknown. By combining single molecule optical tweezers, protein engineering, and toxin activity assays, here we demonstrate that the folding of the RD follows a strict hierarchy, with the folding starting from its C-terminal block RTX-v and proceeding towards the N-terminal RTX-i block sequentially. Our results reveal a strict series, templated folding mechanism, where the folding signal is transmitted along the RD in a series fashion from its C terminus continuously to the N terminus. Due to the series nature of this folding signal transmission pathway, the folding of RD can be disrupted at any given RTX block, rendering the RTX blocks located N-terminally to the disruption site and the acylation region of CyaA unfolded and abolishing CyaA's toxin activities. Our results reveal key mechanistic insights into the secretion and folding process of CyaA and may open up new potential avenues towards designing new therapeutics to abolish toxin activity of CyaA and combat B. pertussis.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Han Wang
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
32
|
Lin J, Ding X, Yang P, Liu S, Li Q, Cruz MA, Dong JF, Fang Y, Wu J. Force-induced biphasic regulation of VWF cleavage by ADAMTS13. Thromb Res 2023; 229:99-106. [PMID: 37421684 DOI: 10.1016/j.thromres.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/02/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
It is crucial for hemostasis that platelets are rapidly recruited to the site of vascular injury by the adhesive ligand von Willebrand factor (VWF) multimers. The metalloproteinase ADAMTS13 regulates this hemostatic activity by proteolytically reducing the size of VWF and its proteolytic kinetics has been investigated by biochemical and single-molecule biophysical methods. However, how ADAMTS13 cleaves VWF in flowing blood remains poorly defined. To investigate the force-induced VWF cleavage, VWF A1A2A3 tridomains were immobilized and subjected to hydrodynamic forces in the presence of ADAMTS13. We demonstrated that the cleavage of VWF A1A2A3 by ADAMTS13 exhibited biphasic kinetics governed by shear stress, but not shear rate. By fitting data to the single-molecule Michaelis-Menten equation, the proteolytic constant kcat of ADAMTS13 had two distinct states. The mean proteolytic constant of the fast state (kcat-fast) was 0.005 ± 0.001 s-1, which is >10-fold faster than the slow state (kcat-slow = 0.0005 ± 0.0001 s-1). Furthermore, proteolytic constants of both states were regulated by shear stress in a biphasic manner, independent of the solution viscosity, indicating that the proteolytic activity of ADAMTS13 was regulated by hydrodynamic force. The findings provide new insights into the mechanism underlying ADAMTS13 cleaving VWF under flowing blood.
Collapse
Affiliation(s)
- Jiangguo Lin
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xiaoru Ding
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Pu Yang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Silu Liu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Quhuan Li
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Miguel A Cruz
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine/Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
| | - Jing-Fei Dong
- Bloodworks Research Institute and Hematology Division, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Ying Fang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| | - Jianhua Wu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
33
|
Haginoya S, Thomovsky EJ, Johnson PA, Brooks AC. Clinical Assessment of Primary Hemostasis: A Review. Top Companion Anim Med 2023; 56-57:100818. [PMID: 37673175 DOI: 10.1016/j.tcam.2023.100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Primary hemostatic disorders such as thrombocytopenia and thrombocytopathia are commonly encountered in small animal practice. The key stages of primary hemostasis include platelet adhesion, activation, and aggregation. Understanding the interaction between tissues, platelets, and signaling molecules not only helps clinicians comprehend clot formation but also better recognize thrombocytopathias. Although congenital thrombocytopathia is rare, commercially available platelet function tests allow veterinarians to narrow differentials in many clinical settings. Thrombocytopenia can be easily diagnosed in any clinical setting. In this paper, we review the current understanding of primary hemostasis in veterinary medicine, including the clinical presentation and available diagnostics to identify platelet abnormalities.
Collapse
Affiliation(s)
- Satoshi Haginoya
- Purdue University College of Veterinary Medicine, West Lafayette, IN, USA.
| | | | - Paula A Johnson
- Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| | - Aimee C Brooks
- Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| |
Collapse
|
34
|
Sui J, Zheng L, Zheng XL. ADAMTS13 Biomarkers in Management of Immune Thrombotic Thrombocytopenic Purpura. Arch Pathol Lab Med 2023; 147:974-979. [PMID: 36223210 PMCID: PMC11033696 DOI: 10.5858/arpa.2022-0050-ra] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Immune thrombotic thrombocytopenic purpura (iTTP) is a rare but potentially fatal blood disorder resulting from acquired deficiency of plasma ADAMTS13, a metalloprotease that cleaves endothelium-derived ultralarge von Willebrand factor. Standard of care for iTTP including therapeutic plasma exchange, caplacizumab, and immunosuppressives, known as triple therapy, has led to a significant reduction in the disease-related mortality rate. The first International Society of Thrombosis and Haemostasis TTP guideline stresses the importance of having plasma ADAMTS13 activity testing in the algorithm for diagnosis and management of iTTP. However, the predictive role of assessing plasma ADAMTS13 activity and inhibitors or other ADAMTS13-related parameters in patients with acute iTTP and during remission has not been systematically evaluated. OBJECTIVE.— To review and assess the predictive values of testing plasma ADAMTS13 activity, antigen, and inhibitors or anti-ADAMTS13 immunoglobulin G at various stages of disease in outcomes of iTTP. DATA SOURCES.— Peer-reviewed publications and personal experience. CONCLUSIONS.— We conclude that assessing ADAMTS13 biomarkers is not only essential for establishing the initial diagnosis, but also crucial for risk stratification and the early detection of disease recurrence. This may guide therapeutic interventions during acute episodes and for long-term follow-up of iTTP patients.
Collapse
Affiliation(s)
- Jingrui Sui
- From the Department of Hematology, Yantai Yu Huang Ding Hospital Affiliated to Qingdao University, Shandong Province, China (Sui)
| | - Liang Zheng
- The Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City (L. Zheng, X. L. Zheng)
| | - X Long Zheng
- The Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City (L. Zheng, X. L. Zheng)
| |
Collapse
|
35
|
Hao Y, Závodszky G, Tersteeg C, Barzegari M, Hoekstra AG. Image-based flow simulation of platelet aggregates under different shear rates. PLoS Comput Biol 2023; 19:e1010965. [PMID: 37428797 PMCID: PMC10358939 DOI: 10.1371/journal.pcbi.1010965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/10/2023] [Indexed: 07/12/2023] Open
Abstract
Hemodynamics is crucial for the activation and aggregation of platelets in response to flow-induced shear. In this paper, a novel image-based computational model simulating blood flow through and around platelet aggregates is presented. The microstructure of aggregates was captured by two different modalities of microscopy images of in vitro whole blood perfusion experiments in microfluidic chambers coated with collagen. One set of images captured the geometry of the aggregate outline, while the other employed platelet labelling to infer the internal density. The platelet aggregates were modelled as a porous medium, the permeability of which was calculated with the Kozeny-Carman equation. The computational model was subsequently applied to study hemodynamics inside and around the platelet aggregates. The blood flow velocity, shear stress and kinetic force exerted on the aggregates were investigated and compared under 800 s-1, 1600 s-1 and 4000 s-1 wall shear rates. The advection-diffusion balance of agonist transport inside the platelet aggregates was also evaluated by local Péclet number. The findings show that the transport of agonists is not only affected by the shear rate but also significantly influenced by the microstructure of the aggregates. Moreover, large kinetic forces were found at the transition zone from shell to core of the aggregates, which could contribute to identifying the boundary between the shell and the core. The shear rate and the rate of elongation flow were investigated as well. The results imply that the emerging shapes of aggregates are highly correlated to the shear rate and the rate of elongation. The framework provides a way to incorporate the internal microstructure of the aggregates into the computational model and yields a better understanding of the hemodynamics and physiology of platelet aggregates, hence laying the foundation for predicting aggregation and deformation under different flow conditions.
Collapse
Affiliation(s)
- Yue Hao
- Computational Science Lab, Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Gábor Závodszky
- Computational Science Lab, Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hydrodynamic Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Claudia Tersteeg
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Mojtaba Barzegari
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Alfons G Hoekstra
- Computational Science Lab, Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Wang H, Li D, Chen Y, Liu Z, Liu Y, Meng X, Fan H, Hou S. Shear-induced acquired von Willebrand syndrome: an accomplice of bleeding events in adults on extracorporeal membrane oxygenation support. Front Cardiovasc Med 2023; 10:1159894. [PMID: 37485275 PMCID: PMC10357042 DOI: 10.3389/fcvm.2023.1159894] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is an increasingly acceptable life-saving mechanical assistance system that provides cardiac and/or respiratory support for several reversible or treatable diseases. Despite important advances in technology and clinical management, bleeding remains a significant and common complication associated with increased morbidity and mortality. Some studies suggest that acquired von Willebrand syndrome (AVWS) is one of the etiologies of bleeding. It is caused by shear-induced deficiency of von Willebrand factor (VWF). VWF is an important glycoprotein for hemostasis that acts as a linker at sites of vascular injury for platelet adhesion and aggregation under high shear stress. AVWS can usually be diagnosed within 24 h after initiation of ECMO and is always reversible after explantation. Nonetheless, the main mechanism for the defect in the VWF multimers under ECMO support and the association between AVWS and bleeding complications remains unknown. In this review, we specifically discuss the loss of VWF caused by shear induction in the context of ECMO support as well as the current diagnostic and management strategies for AVWS.
Collapse
Affiliation(s)
- Haiwang Wang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Duo Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yuansen Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Ziquan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yanqing Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| |
Collapse
|
37
|
Singh K, Madarati H, Sohrabipour S, Sparring T, Teney C, Kretz CA. Metalloprotease domain latency protects ADAMTS13 against broad-spectrum inhibitors of metalloproteases while maintaining activity toward VWF. J Thromb Haemost 2023; 21:1789-1801. [PMID: 36990157 DOI: 10.1016/j.jtha.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/26/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND ADAMTS13 is a circulating metalloprotease that cleaves von Willebrand factor (VWF) in a shear-dependent manner. ADAMTS13 is secreted as an active protease but has a long half-life, suggesting that it is resistant to circulating protease inhibitors. These zymogen-like properties indicate that ADAMTS13 exists as a latent protease that is activated by its substrate. OBJECTIVES To investigate the mechanism of ADAMTS13 latency and resistance to metalloprotease inhibitors. METHODS Probe the active site of ADAMTS13 and variants using alpha-2 macroglobulin (A2M), tissue inhibitors of metalloproteases (TIMPs), and Marimastat. RESULTS ADAMTS13 and C-terminal deletion mutants are not inhibited by A2M, TIMPs, or Marimastat, but cleave FRETS-VWF73, suggesting that the metalloprotease domain is latent in the absence of substrate. Within the metalloprotease domain, mutating the gatekeeper triad (R193, D217, D252) or substituting the calcium-binding (R180-R193) or the variable (G236-S263) loops with corresponding features from ADAMTS5 did not sensitize MDTCS to inhibition. However, substituting the calcium-binding loop and an extended variable loop (G236-S263) corresponding to the S1-S1' pockets with those from ADAMTS5, resulted in MDTCS-GVC5 inhibition by Marimastat, but not by A2M or TIMP3. Substituting the MD domains of ADAMTS5 into full-length ADAMTS13 resulted in a 50-fold reduction in activity compared with the substitution into MDTCS. However, both chimeras were susceptible to inhibition, suggesting that the closed conformation does not contribute to the latency of the metalloprotease domain. CONCLUSION The metalloprotease domain protects ADAMTS13 from inhibitors and exists in a latent state that is partially maintained by loops flanking the S1 and S1' specificity pockets.
Collapse
Affiliation(s)
- Kanwal Singh
- Department of Medicine, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Hasam Madarati
- Department of Medicine, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Sahar Sohrabipour
- Department of Medicine, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Taylor Sparring
- Department of Medicine, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Cherie Teney
- Department of Medicine, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Colin A Kretz
- Department of Medicine, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
38
|
Liesdek OCD, Urbanus RT, de Maat S, de Heer LM, Ramjankhan FZ, Sebastian SAE, Huisman A, de Jonge N, Vink A, Fischer K, Maas C, Suyker WJL, Schutgens REG. Insights in the Prothrombotic Changes After Implantation of a Left Ventricular Assist Device in Patients With End-Stage Heart Failure: A Longitudinal Observational Study. ASAIO J 2023; 69:438-444. [PMID: 36730294 DOI: 10.1097/mat.0000000000001855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Thrombus formation is a common complication during left ventricular assist device (LVAD) therapy, despite anticoagulation with vitamin K antagonists (VKA) and a platelet inhibitor. Plasma levels of markers for primary and secondary hemostasis and contact activation were determined before LVAD implantation and 6 and 12 months thereafter in 37 adults with end-stage heart failure. Twelve patients received a HeartMate 3, 7 patients received a HeartWare, and 18 patients received a HeartMate II. At baseline, patients had elevated plasma levels of the platelet protein upon activation, β-thromboglobulin, and active von Willebrand factor in thrombogenic state (VWFa), which remained high after LVAD implantation. Von Willebrand factor levels and VWF activity were elevated at baseline but normalized 12 months after LVAD implantation. High D -dimer plasma levels, at baseline, remained elevated after 12 months. This was associated with an increase in plasma thrombin-antithrombin-complex levels and plasma levels of contact activation marker-cleaved H-kininogen after LVAD implantation. Considering these results it could be concluded that LVAD patients show significant coagulation activation despite antithrombotic therapy, which could explain why patients are at high risk for LVAD-induced thrombosis. Continuous low-grade systemic platelet activation and contact activation may contribute to prothrombotic effects of LVAD.
Collapse
Affiliation(s)
- Omayra C D Liesdek
- From the Department of Cardiothoracic Surgery, University Medical Centre Utrecht, Utrecht University, the Netherlands
- Van Creveldkliniek, University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Rolf T Urbanus
- Van Creveldkliniek, University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Steven de Maat
- Central Diagnostic Laboratory, University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Linda M de Heer
- From the Department of Cardiothoracic Surgery, University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Faiz Z Ramjankhan
- From the Department of Cardiothoracic Surgery, University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Silvie A E Sebastian
- Central Diagnostic Laboratory, University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Albert Huisman
- Central Diagnostic Laboratory, University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Nicolaas de Jonge
- Department of Cardiology, University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Kathelijn Fischer
- Van Creveldkliniek, University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Coen Maas
- Central Diagnostic Laboratory, University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Willem J L Suyker
- From the Department of Cardiothoracic Surgery, University Medical Centre Utrecht, Utrecht University, the Netherlands
| | - Roger E G Schutgens
- Van Creveldkliniek, University Medical Centre Utrecht, Utrecht University, the Netherlands
| |
Collapse
|
39
|
Abstract
Many elastomeric proteins, which play important roles in a wide range of biological processes, exist as parallel/antiparallelly arranged dimers or multimers to perform their mechanobiological functions. For example, in striated muscle sarcomeres, the giant muscle protein titin exists as hexameric bundles to mediate the passive elasticity of muscles. However, it has not been possible to directly probe the mechanical properties of such parallelly arranged elastomeric proteins. And it remains unknown if the knowledge obtained from single-molecule force spectroscopy studies can be directly extrapolated to such parallelly/antiparallelly arranged systems. Here, we report the development of atomic force microscopy (AFM)-based two-molecule force spectroscopy to directly probe the mechanical properties of two elastomeric proteins that are arranged in parallel. We developed a twin-molecule approach to allow two parallelly arranged elastomeric proteins to be picked up and stretched simultaneously in an AFM experiment. Our results clearly revealed the mechanical features of such parallelly arranged elastomeric proteins during force-extension measurements and allowed for the determination of mechanical unfolding forces of proteins in such an experimental setting. Our study provides a general and robust experimental strategy to closely mimic the physiological condition of such parallel elastomeric protein multimers.
Collapse
Affiliation(s)
- Jiacheng Zuo
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
40
|
Legan ER, Liu Y, Arce NA, Parker ET, Lollar P, Zhang XF, Li R. Type 2B von Willebrand disease mutations differentially perturb autoinhibition of the A1 domain. Blood 2023; 141:1221-1232. [PMID: 36580664 PMCID: PMC10023833 DOI: 10.1182/blood.2022017239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Type 2B von Willebrand disease (VWD) is an inherited bleeding disorder in which a subset of point mutations in the von Willebrand factor (VWF) A1 domain and recently identified autoinhibitory module (AIM) cause spontaneous binding to glycoprotein Ibα (GPIbα) on the platelet surface. All reported type 2B VWD mutations share this enhanced binding; however, type 2B VWD manifests as variable bleeding complications and platelet levels in patients, depending on the underlying mutation. Understanding how these mutations localizing to a similar region can result in such disparate patient outcomes is essential for detailing our understanding of VWF regulatory and activation mechanisms. In this study, we produced recombinant glycosylated AIM-A1 fragments bearing type 2B VWD mutations and examined how each mutation affects the A1 domain's thermodynamic stability, conformational dynamics, and biomechanical regulation of the AIM. We found that the A1 domain with mutations associated with severe bleeding occupy a higher affinity state correlating with enhanced flexibility in the secondary GPIbα-binding sites. Conversely, mutation P1266L, associated with normal platelet levels, has similar proportions of high-affinity molecules to wild-type (WT) but shares regions of solvent accessibility with both WT and other type 2B VWD mutations. V1316M exhibited exceptional instability and solvent exposure compared with all variants. Lastly, examination of the mechanical stability of each variant revealed variable AIM unfolding. Together, these studies illustrate that the heterogeneity among type 2B VWD mutations is evident in AIM-A1 fragments.
Collapse
Affiliation(s)
- Emily R. Legan
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, GA
| | - Yi Liu
- Department of Bioengineering, Lehigh University, Bethlehem, PA
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA
| | - Nicholas A. Arce
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, GA
| | - Ernest T. Parker
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, GA
| | - Pete Lollar
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, GA
| | - X. Frank Zhang
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, GA
| |
Collapse
|
41
|
Frontiers in pathophysiology and management of thrombotic thrombocytopenic purpura. Int J Hematol 2023; 117:331-340. [PMID: 36757521 DOI: 10.1007/s12185-023-03552-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/10/2023]
Abstract
Thrombotic thrombocytopenic purpura (TTP) is a fatal disease in which platelet-rich microthrombi cause end-organ ischemia and damage. TTP is caused by markedly reduced ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) activity. Hereditary or congenital TTP (cTTP) is caused by ADAMTS13 gene mutations. In acquired or immune TTP (iTTP), ADAMTS13 activity is reduced by anti-ADAMTS13 autoantibodies. TTP is characterized by thrombocytopenia, hemolytic anemia, fever, renal dysfunction, and neuropsychiatric symptoms. Therapeutic plasma exchange (TPE) and immunosuppressive therapy are the mainstays of treatment. As untreated TTP has a high mortality rate, immediate initiation of TPE is recommended when TTP is suspected. Conventionally, corticosteroids have been used for immunosuppressive therapy. Current drug therapies include rituximab, an anti-CD20 antibody that is effective in newly diagnosed cases and refractory cases, as well as for relapse prevention, and caplacizumab, an anti- von Willebrand factor (VWF) nanobody that inhibits the binding of platelets to VWF and prevents microthrombi formation. Recombinant human ADAMTS13 is a promising treatment for cTTP. Although these therapeutic advances have improved the outcomes of TTP, early diagnosis and prompt initiation of appropriate therapy are necessary to achieve these outcomes.
Collapse
|
42
|
Csányi MC, Salamon P, Feller T, Bozó T, Hársfalvi J, Kellermayer MSZ. Structural hierarchy of mechanical extensibility in human von Willebrand factor multimers. Protein Sci 2023; 32:e4535. [PMID: 36478480 PMCID: PMC9798247 DOI: 10.1002/pro.4535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/04/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
The von Willebrand factor (VWF) is a multimeric glycoprotein composed of 80- to 120-nm-long protomeric units and plays a fundamental role in mediating platelet function at high shear. The exact nature of the shear-induced structural transitions have remained elusive; uncovering them requires the high-resolution quantitative analysis of gradually extended VWF. Here, we stretched human blood-plasma-derived VWF with molecular combing and analyzed the axial structure of the elongated multimers with atomic force microscopy. Protomers extended through structural intermediates that could be grouped into seven distinct topographical classes. Protomer extension thus progresses through the uncoiling of the C1-6 domain segment, rearrangements among the N-terminal VWF domains, and unfolding and elastic extension of the A2 domain. The least and most extended protomer conformations were localized at the ends and the middle of the multimer, respectively, revealing an apparent necking phenomenon characteristic of plastic-material behavior. The structural hierarchy uncovered here is likely to provide a spatial control mechanism to the complex functions of VWF.
Collapse
Affiliation(s)
- Mária Csilla Csányi
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - Pál Salamon
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary,Present address:
Department of BioengineeringSapientia Hungarian University of TransylvaniaMiercurea CiucRomania
| | - Tímea Feller
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary,Present address:
Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Tamás Bozó
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - Jolán Hársfalvi
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | | |
Collapse
|
43
|
Javitt G, Yeshaya N, Khmelnitsky L, Fass D. Assembly of von Willebrand factor tubules with in vivo helical parameters requires A1 domain insertion. Blood 2022; 140:2835-2843. [PMID: 36179246 PMCID: PMC10653096 DOI: 10.1182/blood.2022017153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/02/2022] [Accepted: 09/23/2022] [Indexed: 01/05/2023] Open
Abstract
The von Willebrand factor (VWF) glycoprotein is stored in tubular form in Weibel-Palade bodies (WPBs) before secretion from endothelial cells into the bloodstream. The organization of VWF in the tubules promotes formation of covalently linked VWF polymers and enables orderly secretion without polymer tangling. Recent studies have described the high-resolution structure of helical tubular cores formed in vitro by the D1D2 and D'D3 amino-terminal protein segments of VWF. Here we show that formation of tubules with the helical geometry observed for VWF in intracellular WPBs requires also the VWA1 (A1) domain. We reconstituted VWF tubules from segments containing the A1 domain and discovered it to be inserted between helical turns of the tubule, altering helical parameters and explaining the increased robustness of tubule formation when A1 is present. The conclusion from this observation is that the A1 domain has a direct role in VWF assembly, along with its known activity in hemostasis after secretion.
Collapse
Affiliation(s)
- Gabriel Javitt
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Yeshaya
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lev Khmelnitsky
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Deborah Fass
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
44
|
Conformation of von Willebrand factor in shear flow revealed with stroboscopic single-molecule imaging. Blood 2022; 140:2490-2499. [PMID: 36040485 PMCID: PMC9837445 DOI: 10.1182/blood.2022016969] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 01/21/2023] Open
Abstract
von Willebrand factor (VWF) is a multimeric blood protein that acts as a mechanical probe, responding to changes in flow to initiate platelet plug formation. Previously, our laboratory tests had shown that using single-molecule imaging that shear stress can extend surface-tethered VWF, but paradoxically, we found that the required shear stress was higher than reported for free-in-flow VWF, an observation inconsistent with basic physical principles. To resolve this inconsistency critical to VWF's molecular mechanism, we measured free-VWF extension in shear flow using pulsed laser stroboscopic imaging of single molecules. Here, laser pulses of different durations are used to capture multiple images of the same molecule within each frame, enabling accurate length measurements in the presence of motion blur. At high shear stresses, we observed a mean shift in VWF extension of <200 nm, much shorter than the multiple-micron extensions previously reported with no evidence for the predicted sharp globule-stretch conformational transition. Modeling VWF with a Brownian dynamics simulation, our results were consistent with VWF behaving as an uncollapsed polymer rather than the theorized compact ball. The muted response of free VWF to high shear rates implies that the tension experienced by free VWF in physiological shear flow is lower than indicated by previous reports and that tethering to platelets or the vessel wall is required to mechanically activate VWF adhesive function for primary hemostasis.
Collapse
|
45
|
Stretching to image VWF in shear flow. Blood 2022; 140:2419-2420. [PMID: 36480223 PMCID: PMC9837425 DOI: 10.1182/blood.2022018233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
46
|
DeYoung V, Singh K, Kretz CA. Mechanisms of ADAMTS13 regulation. J Thromb Haemost 2022; 20:2722-2732. [PMID: 36074019 PMCID: PMC9826392 DOI: 10.1111/jth.15873] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/29/2022] [Accepted: 09/06/2022] [Indexed: 01/13/2023]
Abstract
Recombinant ADAMTS13 is currently undergoing clinical trials as a treatment for hereditary thrombotic thrombocytopenic purpura, a lethal microvascular condition resulting from ADAMTS13 deficiency. Preclinical studies have also demonstrated its efficacy in treating arterial thrombosis and inflammation without causing bleeding, suggesting that recombinant ADAMTS13 may have broad applicability as an antithrombotic agent. Despite this progress, we currently do not understand the mechanisms that regulate ADAMTS13 activity in vivo. ADAMTS13 evades canonical means of protease regulation because it is secreted as an active enzyme and has a long half-life in circulation, suggesting that it is not inhibited by natural protease inhibitors. Although shear can spatially and temporally activate von Willebrand factor to capture circulating platelets, it is also required for cleavage by ADAMTS13. Therefore, spatial and temporal regulation of ADAMTS13 activity may be required to stabilize von Willebrand factor-platelet strings at sites of vascular injury. This review outlines potential mechanisms that regulate ADAMTS13 in vivo including shear-dependency, local inactivation, and biochemical and structural regulation of substrate binding. Recently published structural data of ADAMTS13 is discussed, which may help to generate novel hypotheses for future research.
Collapse
Affiliation(s)
- Veronica DeYoung
- Department of Medicine, McMaster UniversityThrombosis and Atherosclerosis Research InstituteHamiltonOntarioCanada
| | - Kanwal Singh
- Department of Medicine, McMaster UniversityThrombosis and Atherosclerosis Research InstituteHamiltonOntarioCanada
| | - Colin A. Kretz
- Department of Medicine, McMaster UniversityThrombosis and Atherosclerosis Research InstituteHamiltonOntarioCanada
| |
Collapse
|
47
|
Chen PC, Kutzki F, Mojzisch A, Simon B, Xu ER, Aponte-Santamaría C, Horny K, Jeffries C, Schneppenheim R, Wilmanns M, Brehm MA, Gräter F, Hennig J. Structure and dynamics of the von Willebrand Factor C6 domain. J Struct Biol 2022; 214:107923. [PMID: 36410652 DOI: 10.1016/j.jsb.2022.107923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Von Willebrand disease (VWD) is a bleeding disorder with different levels of severity. VWD-associated mutations are located in the von Willebrand factor (VWF) gene, coding for the large multidomain plasma protein VWF with essential roles in hemostasis and thrombosis. On the one hand, a variety of mutations in the C-domains of VWF are associated with increased bleeding upon vascular injury. On the other hand, VWF gain-of-function (GOF) mutations in the C4 domain have recently been identified, which induce an increased risk of myocardial infarction. Mechanistic insights into how these mutations affect the molecular behavior of VWF are scarce and holistic approaches are challenging due to the multidomain and multimeric character of this large protein. Here, we determine the structure and dynamics of the C6 domain and the single nucleotide polymorphism (SNP) variant G2705R in C6 by combining nuclear magnetic resonance spectroscopy, molecular dynamics simulations and aggregometry. Our findings indicate that this mutation mostly destabilizes VWF by leading to a more pronounced hinging between both subdomains of C6. Hemostatic parameters of variant G2705R are close to normal under static conditions, but the missense mutation results in a gain-of-function under flow conditions, due to decreased VWF stem stability. Together with the fact that two C4 variants also exhibit GOF characteristics, our data underline the importance of the VWF stem region in VWF's hemostatic activity and the risk of mutation-associated prothrombotic properties in VWF C-domain variants due to altered stem dynamics.
Collapse
Affiliation(s)
- Po-Chia Chen
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Fabian Kutzki
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Angelika Mojzisch
- Dermatology and Venereology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Emma-Ruoqi Xu
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Camilo Aponte-Santamaría
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Kai Horny
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Cy Jeffries
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Reinhard Schneppenheim
- Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany; University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Maria A Brehm
- Department of Digital Health Sciences and Biomedicine, School of Life Sciences, University of Siegen, Am Eichenhang 50, 57076 Siegen, Germany
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, INF 305, 69120 Heidelberg, Germany.
| | - Janosch Hennig
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
48
|
Jones E, Dillon B, Swan D, Thachil J. Practical management of the haemorrhagic complications of myeloproliferative neoplasms. Br J Haematol 2022; 199:313-321. [PMID: 35724983 PMCID: PMC9796684 DOI: 10.1111/bjh.18322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 01/07/2023]
Abstract
Myeloproliferative neoplasms can be associated with bleeding manifestations which can cause significant morbidities. Although haematologists are aware of the likelihood of this complication in the setting of myeloproliferative neoplasms, it may often be overlooked especially in patients with no extreme elevation of blood counts and those with myelofibrosis. Acquired von Willebrand syndrome and platelet dysfunction are the two common diagnoses to be considered in this regard. In this review article, we discuss the mechanisms for the development of these rare bleeding disorders, their diagnosis and practical management.
Collapse
Affiliation(s)
- Edward Jones
- Department of HaematologySt James' HospitalDublinIreland
| | - Bryan Dillon
- Department of HaematologySt James' HospitalDublinIreland
| | - Dawn Swan
- National University IrelandGalwayIreland
| | - Jecko Thachil
- Department of HaematologyManchester University Hospitals NHS Foundation TrustManchesterUK
| |
Collapse
|
49
|
Zhussupbekov M, Méndez Rojano R, Wu WT, Antaki JF. von Willebrand factor unfolding mediates platelet deposition in a model of high-shear thrombosis. Biophys J 2022; 121:4033-4047. [PMID: 36196057 PMCID: PMC9675031 DOI: 10.1016/j.bpj.2022.09.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/21/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Thrombosis under high-shear conditions is mediated by the mechanosensitive blood glycoprotein von Willebrand factor (vWF). vWF unfolds in response to strong flow gradients and facilitates rapid recruitment of platelets in flowing blood. While the thrombogenic effect of vWF is well recognized, its conformational response in complex flows has largely been omitted from numerical models of thrombosis. We recently presented a continuum model for the unfolding of vWF, where we represented vWF transport and its flow-induced conformational change using convection-diffusion-reaction equations. Here, we incorporate the vWF component into our multi-constituent model of thrombosis, where the local concentration of stretched vWF amplifies the deposition rate of free-flowing platelets and reduces the shear cleaning of deposited platelets. We validate the model using three benchmarks: in vitro model of atherothrombosis, a stagnation point flow, and the PFA-100, a clinical blood test commonly used for screening for von Willebrand disease (vWD). The simulations reproduced the key aspects of vWF-mediated thrombosis observed in these experiments, such as the thrombus location, thrombus growth dynamics, and the effect of blocking platelet-vWF interactions. The PFA-100 simulations closely matched the reported occlusion times for normal blood and several hemostatic deficiencies, namely, thrombocytopenia, vWD type 1, and vWD type 3. Overall, this multi-constituent model of thrombosis enables macro-scale 3D simulations of thrombus formation in complex geometries over a wide range of shear rates and accounts for qualitative and quantitative hemostatic deficiencies in patient blood.
Collapse
Affiliation(s)
- Mansur Zhussupbekov
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | | | - Wei-Tao Wu
- Department of Aerospace Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - James F Antaki
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York.
| |
Collapse
|
50
|
Arce NA, Liu Y, Chen W, Zhang XF, Li R. Autoinhibitory module underlies species difference in shear activation of von Willebrand factor. J Thromb Haemost 2022; 20:2686-2696. [PMID: 36031939 PMCID: PMC9588639 DOI: 10.1111/jth.15837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/05/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Von Willebrand factor (VWF) is a multimeric plasma protein that bridges the gap between vessel injury and platelet capture at high shear rates. Under high shear or tension, VWF can become activated upon the unfolding of its autoinhibitory module (AIM). AIM unfolding exposes the A1 domain, allowing for binding to platelet glycoprotein (GP)Ibα to initiate primary hemostasis. The characteristics of the AIM and its inhibitory properties within mouse VWF are unknown. OBJECTIVES To determine and characterize the autoinhibitory properties of mouse VWF. METHODS Recombinant mouse VWF A1 fragments containing or lacking the flanking regions around the A1 domain were generated. We tested the ability of these fragments to bind to human or mouse GPIbα and platelets. We compared the unfolding of mouse AIM-A1 to human AIM-A1 by single-molecule force spectroscopy. RESULTS Recombinant mouse AIM-A1 binds with higher affinity to GPIbα than its human counterpart. Recombinant mouse proteins lacking part of the AIM show increased binding to GPIbα. Activated A1 fragments lacking the AIM can effectively agglutinate platelets across the species barrier. Using single-molecule force spectroscopy, we determined that the mouse AIM unfolds under forces similar to the human AIM. Additionally, the human AIM paired with mouse A1 largely recapitulates the behavior of human AIM-A1. CONCLUSIONS Our results suggest that the regulation of VWF-GPIbα binding has been specifically tuned to work optimally in different rheological architectures. Differences in the AIM sequence may contribute to the difference in VWF shear response between human and mice.
Collapse
Affiliation(s)
- Nicholas A. Arce
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yi Liu
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Wenchun Chen
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - X. Frank Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|