1
|
Cong R, Lu C, Li X, Xu Z, Wang Y, Sun S. Tumor organoids in cancer medicine: from model systems to natural compound screening. PHARMACEUTICAL BIOLOGY 2025; 63:89-109. [PMID: 39893515 PMCID: PMC11789228 DOI: 10.1080/13880209.2025.2458149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
CONTEXT The advent of tissue engineering and biomedical techniques has significantly advanced the development of three-dimensional (3D) cell culture systems, particularly tumor organoids. These self-assembled 3D cell clusters closely replicate the histopathological, genetic, and phenotypic characteristics of primary tissues, making them invaluable tools in cancer research and drug screening. OBJECTIVE This review addresses the challenges in developing in vitro models that accurately reflect tumor heterogeneity and explores the application of tumor organoids in cancer research, with a specific focus on the screening of natural products for antitumor therapies. METHODS This review synthesizes information from major databases, including Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, ScienceDirect, Google Scholar, Scopus, PubMed and Springer Link. Publications were selected without date restrictions, using terms such as 'organoid', 'natural product', 'pharmacological', 'extract', 'nanomaterial' and 'traditional uses'. Articles related to agriculture, ecology, synthetic work or published in languages other than English were excluded. RESULTS AND CONCLUSIONS The review identifies key challenges related to the efficiency and variability of organoid generation and discusses ongoing efforts to enhance their predictive capabilities in drug screening and personalized medicine. Recent studies utilizing patient-derived organoid models for natural compound screening are highlighted, demonstrating the potential of these models in developing new classes of anticancer agents. The integration of natural products with patient-derived organoid models presents a promising approach for discovering novel anticancer compounds and elucidating their mechanisms of action.
Collapse
Affiliation(s)
- Rong Cong
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Can Lu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yaqin Wang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Shusen Sun
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, USA
| |
Collapse
|
2
|
Zhang J, Xie Z, Zhu X, Xu C, Lin J, Zhao M, Cheng Y. New insights into therapeutic strategies for targeting hepatic macrophages to alleviate liver fibrosis. Int Immunopharmacol 2025; 158:114864. [PMID: 40378438 DOI: 10.1016/j.intimp.2025.114864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/18/2025]
Abstract
Liver fibrosis is a wound-healing response induced by persistent liver damage, resulting from complex multicellular interactions and multifactorial networks. Without intervention, it can progress to cirrhosis and even liver cancer. Current understanding suggests that liver fibrosis is reversible, making it crucial to explore effective therapeutic strategies for its alleviation. Chronic inflammation serves as the primary driver of liver fibrosis, with hepatic macrophages playing a dual role depending on their polarization state. This review summarizes various prevention and therapeutic strategies targeting hepatic macrophages in the context of liver fibrosis. These strategies include inhibition of macrophage recruitment, modulation of macrophage activation and polarization, regulation of macrophage metabolism, and induction of phagocytosis and autophagy in hepatic macrophages. Additionally, we discuss the communication between hepatic macrophages, hepatocytes, and hepatic stellate cells (HSCs), as well as the current clinical application of anti-fibrotic drugs targeting macrophages. The goal is to identify effective therapeutic targets at each stage of macrophage participation in liver fibrosis development, with the aim of using hepatic macrophages as a target for liver fibrosis treatment.
Collapse
Affiliation(s)
- Jialu Zhang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Zhaojing Xie
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Xueyu Zhu
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Chenxi Xu
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Jiguo Lin
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Mingqi Zhao
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Yunyun Cheng
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
3
|
Wang J, Chen M, Wei G, Zou F, Gu J, Cao Y, Deng S, Cai K. From blockage to biology: Unveiling the role of extracellular matrix dynamics in obstructive colorectal cancer pathogenesis. Pathol Res Pract 2025; 270:155994. [PMID: 40306003 DOI: 10.1016/j.prp.2025.155994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
Colorectal cancer obstruction is a common problem with distinct symptomatic clues on CT/MR images even under incomplete conditions. The choice of management in the emergency setting has a significant effect on the prognosis of obstructive and nonobstructive colorectal cancer patients. Previous studies have demonstrated that obstruction in colorectal cancer is associated with significantly poorer outcomes, alongside distinct alterations in the composition of the extracellular matrix. Based on accumulating evidence, it is hypothesized that ECM remodeling plays a pivotal role in the development of colorectal cancer obstruction. This review explores the pathological features of obstructive colorectal cancer, emphasizing extracellular matrix remodeling as a central process. Key mechanisms include tumor-stromal cell interactions, tumor cell aggregation and migration mediated by the peripheral nervous system, vascular and lymphatic remodeling within the tumor microenvironment, and microbiota-mediated regulation of cancer progression. These findings demonstrate that further remodeling of the extracellular matrix may be a molecular biological feature of obstructive colorectal cancer with poor prognosis.
Collapse
Affiliation(s)
- Jun Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mian Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guanxin Wei
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Falong Zou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junnan Gu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yinghao Cao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Shenghe Deng
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Hu M, Yan H, Chen J, Gao R, Li W, Zhou H, Wang J, Liu Q, Wang X, Hu P, Fu C. Comparative transcriptome analysis identified genes involved in ovarian development in Takifugu rubripes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101407. [PMID: 39736263 DOI: 10.1016/j.cbd.2024.101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025]
Abstract
Ovarian development is a complex process involving multiple genes, but the molecular mechanisms underlying this process in Takifugu rubripes remain poorly understood. This study aimed to identify genes associated with ovarian development in T. rubripes and to investigate the regulatory mechanisms of oocyte maturation. Transcriptome data were compared across four different developmental stages (stage II to V) to identify differentially expressed genes (DEGs) and perform GO and KEGG enrichment analysis. The expression patterns of randomly selected genes were then validated by qPCR. The results yielded a total of 1,289,401,820 raw data from all libraries, with 16,929 DEGs identified across all comparison groups. The DEGs were predominantly enriched in ovarian steroidogenesis, estrogen-mediated signaling, and TGF-beta signaling pathways. The qPCR analysis showed that cyp17a1 was identified as being expressed at similar levels in stage II and III. Thereafter, cyp17a1 was observed to undergo a continuous increase in expression from stage III to V. cyp19a1, nanos1, foxl2 and ar were identified as being expressed at similar levels at stage II and III, then increase in expression from stage III to IV and subsequent downregulation from stage IV to V. hsd17b1 was identified as being expressed at similar levels at stage II and IV. This study represents a transcriptomic study of ovarian development in female T. rubripes. Several essential ovarian-related genes and sex-related biological pathways were identified. The results will improve our understanding of the molecular mechanisms underlying ovarian development in this species.
Collapse
Affiliation(s)
- Mingtao Hu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Hongwei Yan
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Jinfeng Chen
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Rui Gao
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Weiyuan Li
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China
| | - Huiting Zhou
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Jia Wang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Qi Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 116023, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China.
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Pengfei Hu
- Inner Mongolia Agriculture and Animal Husbandry Technology Promotion Center, Inner Mongolia 015199, China
| | - Chuang Fu
- Changhai County Marine and Fisheries Comprehensive Administrative LawEnforcement Team, Dalian, China
| |
Collapse
|
5
|
Clark SJ, Curcio C, Dick AD, Doyle S, Edwards M, Flores-Bellver M, Hass D, Lennon R, Toomey CB, Rohrer B. Breaking Bruch's: How changes in Bruch's membrane influence retinal homeostasis. Exp Eye Res 2025; 255:110343. [PMID: 40107443 DOI: 10.1016/j.exer.2025.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Affiliation(s)
- Simon J Clark
- Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Christine Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, USA
| | - Andrew D Dick
- University of Bristol and UCL-Institute of Ophthalmology and NIHR Biomedical Research Centre, Moorfields Eye Hospital and UCL-Institute of Ophthalmology, UK
| | - Sarah Doyle
- Department of Clinical Medicine, School of Medicine and Trinity Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Malia Edwards
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Miguel Flores-Bellver
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel Hass
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - Christopher B Toomey
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California at San Diego, La Jolla, CA, USA
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston SC, USA.
| |
Collapse
|
6
|
Eldeen S, Ramirez AFG, Keresteci B, Chang PD, Botvinick EL. Label-Free Prediction of Fluorescently Labeled Fibrin Networks. Biomater Res 2025; 29:0211. [PMID: 40438124 PMCID: PMC12117218 DOI: 10.34133/bmr.0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/07/2025] [Accepted: 04/26/2025] [Indexed: 06/01/2025] Open
Abstract
While fluorescent labeling has been the standard for visualizing fibers within fibrillar scaffold models of the extracellular matrix (ECM), the use of fluorescent dyes can compromise cell viability and photobleach prematurely. The intricate fibrillar composition of ECM is crucial for its viscoelastic properties, which regulate intracellular signaling and provide structural support for cells. Naturally derived biomaterials such as fibrin and collagen replicate these fibrillar structures, but longitudinal confocal imaging of fibers using fluorescent dyes may impact cell function and photobleach the sample long before termination of the experiment. An alternative technique is reflection confocal microscopy (RCM) that provides high-resolution images of fibers. However, RCM is sensitive to fiber orientation relative to the optical axis, and consequently, many fibers are not detected. We aim to recover these fibers. Here, we propose a deep learning tool for predicting fluorescently labeled optical sections from unlabeled image stacks. Specifically, our model is conditioned to reproduce fluorescent labeling using RCM images at 3 laser wavelengths and a single laser transmission image. The model is implemented using a fully convolutional image-to-image mapping architecture with a hybrid loss function that includes both low-dimensional statistical and high-dimensional structural components. Upon convergence, the proposed method accurately recovers 3-dimensional fibrous architecture without substantial differences in fiber length or fiber count. However, the predicted fibers were slightly wider than original fluorescent labels (0.213 ± 0.009 μm). The model can be implemented on any commercial laser scanning microscope, providing wide use in the study of ECM biology.
Collapse
Affiliation(s)
- Sarah Eldeen
- Department of Mathematical, Computational, and Systems Biology,
University of California, Irvine, Irvine, CA, USA
| | - Andres Felipe Guerrero Ramirez
- Department of Mathematical, Computational, and Systems Biology,
University of California, Irvine, Irvine, CA, USA
- Department of Radiological Sciences and Computer Sciences,
University of California, Irvine, Irvine, CA, USA
| | - Bora Keresteci
- Department of Biomedical Engineering,
University of California, Irvine, Irvine, CA, USA
| | - Peter D. Chang
- Department of Radiological Sciences and Computer Sciences,
University of California, Irvine, Irvine, CA, USA
| | - Elliot L. Botvinick
- Department of Biomedical Engineering,
University of California, Irvine, Irvine, CA, USA
- Beckman Laser Institute and Medical Clinic,
University of California, Irvine, Irvine, CA, USA
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center,
University of California, Irvine, Irvine, CA, USA
- Department of Surgery,
University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
7
|
Zheng H, Liu K, Cui Y, Li L, Liu Q, Men Y. Synthetic Reversible Fibrous Network Hydrogels Based on a Double-Helical Polyelectrolyte. Angew Chem Int Ed Engl 2025; 64:e202503030. [PMID: 40133218 DOI: 10.1002/anie.202503030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 03/27/2025]
Abstract
The unique mechanical properties of fibrous networks in biological tissues have inspired the development of synthetic fibrous network hydrogels, yet few polymers can reversibly form such structures. Here, we report the first reversible fibrous network hydrogel composed of synthetic polyelectrolytes with extremely rigid conformation (persistence length is ∼1 µm), made up of double-helical poly(2,2'-disulfonyl-4,4'-benzidine terephthalamide) (PBDT) and tetrabutylphosphonium bromide ([P4444]Br). The hydrogel exhibits a unique sol-gel transition, triggered by the hydrophobicity increase of [P4444]Br above lower critical solution temperature (LCST). This drives PBDT aggregation into fibrous bundles through electrostatic interactions. These bundles grow and branch into a continuous network, with the molecular rigidity of PBDT's double-helix conformation being key to gel formation. The hydrogel displays strain-stiffening mechanical responses akin to biological systems and shows a significant hysteresis (21 °C) between heating and cooling cycles. Uniquely, the effects of salts on the transition temperature deviate from the Hofmeister series, highlighting coordination with sulfonate groups as the dominant factor. Leveraging its modulus change during gelation, the hydrogel was successfully applied as a spray coating on superhydrophobic vertical Teflon surfaces. This study broadens the scope of thermoreversible hydrogels introducing gelation mechanisms for rigid polyelectrolytes and demonstrates their potential in advanced coatings.
Collapse
Affiliation(s)
- Haonan Zheng
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University 2999 Renmin North Road, Shanghai, 201620, China
| | - Kaizheng Liu
- Research Center for Human Tissue and Organ Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences1068 Xueyuan Road, Shenzhen, 518055, China
| | - Yongheng Cui
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University 2999 Renmin North Road, Shanghai, 201620, China
| | - Legeng Li
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University 2999 Renmin North Road, Shanghai, 201620, China
| | - Qinbo Liu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University 2999 Renmin North Road, Shanghai, 201620, China
| | - Yongjun Men
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University 2999 Renmin North Road, Shanghai, 201620, China
| |
Collapse
|
8
|
Stricker PEF, de Oliveira NB, Mogharbel BF, Irioda AC, da Rosa NN, Lührs L, Saçaki CS, Munhoz da Rocha I, Alves LR, Poubel SB, Cardoso da Silva J, Carvalho PC, Fischer JSDG, de Carvalho KAT. Proteomic Characterization of Extracellular Vesicles from Human Neural Precursor Cells: A Promising Advanced Therapy for Neurodegenerative Diseases. Int J Nanomedicine 2025; 20:6675-6699. [PMID: 40444011 PMCID: PMC12121667 DOI: 10.2147/ijn.s502031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 05/01/2025] [Indexed: 06/02/2025] Open
Abstract
Background The therapeutic effect of stem cells is attributed to their direct maturation into somatic cells and their paracrine effects, which influence the extracellular environment. One such component released is extracellular vesicles containing proteins and genetic materials with immunomodulatory functions and facilitating cell-to-cell communication. Purpose The study's main objective was to characterize extracellular vesicles (EVs) from Human Neural Precursor Cells (hNPCs). Methods Wharton's Jelly mesenchymal stem cells (WJ-MSCs) were isolated by explant technique and characterized by flow cytometry and trilineage differentiation. The hNPCs obtained from neurospheres were produced by seeding WJ-MSCs on a natural functional biopolymer matrix. EVs derived from WJ-MSCs and hNPCs were isolated by precipitation methodology and characterized by flow cytometry, nanoparticle tracking analysis (NTA), scanning electron microscopy (TEM), and proteomic. Results hNPCs expressed proteins and genes characteristic of neural precursor cells. The EVs were characterized by flow cytometry and showed varied expression for the markers CD63, CD9, and CD81, indicating different subpopulations based on their origin of formation. NTA and TEM of the EVs exhibited characteristic size, shape, and structural integrity consistent with the criteria established by the International Society for Extracellular Vesicles (ISEV). EV-hNPCs function enrichment analysis of the proteomic results showed that these vesicles presented abundant proteins directly involved in neuronal biological processes such as plasticity, transduction, postsynaptic density, and overall brain development. Discussion The results indicate that EVs derived from hNPCs maintain key neural precursor characteristics and exhibit marker variability, suggesting distinct subpopulations. Their structural integrity aligns with ISEV standards, supporting their potential as reliable biological entities. The proteomic analysis highlights their role in neuronal functions, reinforcing their applicability in neurodegenerative research and therapeutic strategies. Conclusion The EVs were successfully isolated from hNPCs with abundant proteins involved in neuronal processes, making them attractive for acellular therapies to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Priscila Elias Ferreira Stricker
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| | - Nathalia Barth de Oliveira
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| | - Bassam Felipe Mogharbel
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| | - Ana Carolina Irioda
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| | - Nádia Nascimento da Rosa
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| | - Larissa Lührs
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| | - Claudia Sayuri Saçaki
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| | - Isadora Munhoz da Rocha
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
| | - Lysangela Ronalte Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
| | - Saloe Bispo Poubel
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| | - Julia Cardoso da Silva
- Computational Mass Spectrometry Group, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
| | - Paulo Costa Carvalho
- Computational Mass Spectrometry Group, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
| | | | - Katherine Athayde Teixeira de Carvalho
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| |
Collapse
|
9
|
Du H, Qiu R, Lou X, Jansen SAH, Sai H, Wang Y, Markvoort AJ, Meijer EW, Stupp SI. Mapping in situ the assembly and dynamics in aqueous supramolecular polymers. Nat Commun 2025; 16:4837. [PMID: 40413168 PMCID: PMC12103577 DOI: 10.1038/s41467-025-60138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025] Open
Abstract
Supramolecular polymers, bonded through directional non-covalent interactions, closely mimic dynamic behaviors of biological nanofibers. However, the complexity of assembly pathways makes it highly challenging to unravel the nature of supramolecular dynamics in aqueous environments. Here we introduce a precise combinatorial titration methodology to probe in situ the assembly of peptide amphiphiles (PAs). This approach reveals a binary assembly mechanism governed by equilibrium between spheroidal micelles and β-sheet polymers. Weakening hydrogen bonding shifts the equilibrium towards micelles and decreases the internal structural order of filamentous polymers, promoting supramolecular dynamics. Extending this methodology to two-component copolymerization systems, we find a surprising tendency to form blocky nanostructures with reduced internal phase separation as the mismatch in peptide sequence decreases. Interestingly, while well-mixed copolymers acquire different dynamics, mismatched ones retain the characteristic supramolecular motion of their homopolymer counterparts. These critical insights into supramolecular dynamics offer strategies to tailor the dynamic functions of supramolecular nanomaterials.
Collapse
Affiliation(s)
- Huachuan Du
- Center for Regenerative Nanomedicine, Northwestern University, Chicago, IL, USA
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Chemistry and Chemical Engineering and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ruomeng Qiu
- Center for Regenerative Nanomedicine, Northwestern University, Chicago, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Xianwen Lou
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Stef A H Jansen
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Chemistry and Chemical Engineering and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Hiroaki Sai
- Center for Regenerative Nanomedicine, Northwestern University, Chicago, IL, USA
| | - Yuyang Wang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Albert J Markvoort
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Biomedical Engineering and Synthetic Biology Group, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Department of Chemistry and Chemical Engineering and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
- School of Chemistry and RNA Institute, University of New South Wales, Sydney, NSW, Australia.
| | - Samuel I Stupp
- Center for Regenerative Nanomedicine, Northwestern University, Chicago, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
10
|
Aarts JGM, Rovers MM, Rutten MGTA, Dankers PYW. Engineering Supramolecular Hydrogen Bonding Interactions into Dynamic Covalent Polymers To Obtain Double Dynamic Biomaterials. J Am Chem Soc 2025. [PMID: 40405654 DOI: 10.1021/jacs.4c15102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Inspired by dynamic systems in nature, we can introduce dynamics into synthetic biomaterials through dynamic covalent bonds or supramolecular interactions. Combining both types of dynamic interactions may allow for advanced and innovative networks with multiple levels of dynamicity. Here we present two types of solid materials consisting of either dynamic covalent imine bonds or a combination of these dynamic covalent bonds with supramolecular hydrogen bonding ureido-pyrimidinone (UPy) units to obtain double dynamic materials. We showed the facile synthesis and formulation of both materials at room temperature. The thermal and physical properties of each material are highly tunable by altering the ratio and type of cross-linker. Interestingly, we showed that minimal amounts of UPy units result in a drastic increase in material mechanics. Furthermore, we show that both types of materials are suitable as biomaterials through functionalization with cell-adhesive peptides, through either a dynamic covalent imine bond or a supramolecular UPy moiety.
Collapse
Affiliation(s)
- Jasper G M Aarts
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Maritza M Rovers
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Martin G T A Rutten
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Department of Chemical Engineering & Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
11
|
Paul M, Lee W, Song WJ, Im J. Electrospun polycaprolactone fibers encapsulating omega-3 and montelukast sodium to prevent capsular contracture in breast implant surgery. Int J Pharm 2025:125744. [PMID: 40412454 DOI: 10.1016/j.ijpharm.2025.125744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 05/16/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Capsular contracture (CC) is a common complication associated with breast implant surgery and is characterized by excessive fibrotic tissue formation around the implant. However, there is no established gold-standard treatment to prevent CC. This study aimed to prepare fish oil/montelukast sodium (MTKS)-loaded polycaprolactone (PCL) fibers and evaluate their effectiveness in preventing CC. PCL, a biocompatible and biodegradable material, was used to fabricate electrospun fibers incorporating fish oil, a source of omega-3 (ω3) polyunsaturated fatty acids (EPA and DHA), and MTKS, a leukotriene receptor antagonist. MTKS and ω3 were selected as therapeutic agents for their anti-inflammatory and anti-fibrotic properties. The fibers underwent characterization using FT-IR, HPLC, SEM, water contact angle, XRD, and TGA. These methods confirmed structural integrity, encapsulation and stability of fish oil, and optimal hydrophilic surface properties for reducing bacterial adhesion to implants. In vitro drug release studies demonstrated the controlled and prolonged release profile of ω3 and a faster release pattern with MTKS. In vivo experiments using a rat model with mini-implants coated with the fibers revealed a significant reduction in fibrotic capsule tissue formation and inflammatory responses compared to control groups after 90 days. Histological and gene expression analyses confirmed these findings. Second-harmonic generation imaging demonstrated that ω3 and MTKS facilitated favorable collagen organization, leading to late-stage fibrosis with a thinner, more compliant capsule, and enhanced biocompatibility. Our findings suggest that PCL-ω3-MTKS fibers regulate inflammatory and fibrotic pathways, improve collagen organization, and reduce the risk of CC. Additionally, ω3-MTKS demonstrated synergistic efficacy in impeding fibrosis. This innovative strategy offers a promising therapeutic approach to mitigate CC and improve outcomes in breast implant surgeries.
Collapse
Affiliation(s)
- Mohuya Paul
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Wonju Lee
- Korea Electrotechnology Research Institute, Ansan 15588, Republic of Korea
| | - Woo Jin Song
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University College of Medicine, Seoul 04401, Republic of Korea.
| | - Jungkyun Im
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan 31538, Republic of Korea; Department of Chemical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea.
| |
Collapse
|
12
|
Pentimalli TM, Schallenberg S, León-Periñán D, Legnini I, Theurillat I, Thomas G, Boltengagen A, Fritzsche S, Nimo J, Ruff L, Dernbach G, Jurmeister P, Murphy S, Gregory MT, Liang Y, Cordenonsi M, Piccolo S, Coscia F, Woehler A, Karaiskos N, Klauschen F, Rajewsky N. Combining spatial transcriptomics and ECM imaging in 3D for mapping cellular interactions in the tumor microenvironment. Cell Syst 2025; 16:101261. [PMID: 40220761 DOI: 10.1016/j.cels.2025.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/13/2024] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
Tumors are complex ecosystems composed of malignant and non-malignant cells embedded in a dynamic extracellular matrix (ECM). In the tumor microenvironment, molecular phenotypes are controlled by cell-cell and ECM interactions in 3D cellular neighborhoods (CNs). While their inhibition can impede tumor progression, routine molecular tumor profiling fails to capture cellular interactions. Single-cell spatial transcriptomics (ST) maps receptor-ligand interactions but usually remains limited to 2D tissue sections and lacks ECM readouts. Here, we integrate 3D ST with ECM imaging in serial sections from one clinical lung carcinoma to systematically quantify molecular states, cell-cell interactions, and ECM remodeling in CN. Our integrative analysis pinpointed known immune escape and tumor invasion mechanisms, revealing several druggable drivers of tumor progression in the patient under study. This proof-of-principle study highlights the potential of in-depth CN profiling in routine clinical samples to inform microenvironment-directed therapies. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Tancredi Massimo Pentimalli
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin
| | - Simon Schallenberg
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
| | - Daniel León-Periñán
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ivano Legnini
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Human Technopole, Milan, Italy
| | - Ilan Theurillat
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Gwendolin Thomas
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Anastasiya Boltengagen
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sonja Fritzsche
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Spatial Proteomics Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute of Biology, 10099 Berlin, Germany
| | - Jose Nimo
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Spatial Proteomics Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute of Biology, 10099 Berlin, Germany
| | | | - Gabriel Dernbach
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany; Aignostics GmbH, Berlin, Germany; BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
| | | | | | | | - Yan Liang
- NanoString® Technologies, Inc, Seattle, WA, USA
| | | | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua, Padua, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Fabian Coscia
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Spatial Proteomics Group, Berlin, Germany
| | - Andrew Woehler
- Systems Biology Imaging Platform, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Nikos Karaiskos
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Frederick Klauschen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin; BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany; Institute of Pathology, Ludwig Maximilians Universität, Munich, Germany
| | - Nikolaus Rajewsky
- Laboratory for Systems Biology of Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin; German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany; NeuroCure Cluster of Excellence, Berlin, Germany; German Cancer Consortium (DKTK), Berlin, Germany; National Center for Tumor Diseases (NCT), Site Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Vleugels MJ, de Korver E, Hendrikse SIS, Kardas S, Dhiman S, de Waal BFM, Schoenmakers SMC, Wijker S, De Geest BG, Surin M, Palmans ARA, Meijer EW. Antibody-Recruiting Surfaces Using Adaptive Multicomponent Supramolecular Copolymers. Biomacromolecules 2025; 26:2971-2985. [PMID: 40202813 PMCID: PMC12076489 DOI: 10.1021/acs.biomac.5c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Multicomponent structures that mediate the clustering of antibodies on cancer cell surfaces are an attractive strategy to unleash innate immune killing mechanisms. However, covalent multifunctional scaffolds that combine cell surface anchoring and antibody binding can be challenging to synthesize and lack adaptability. Here, we present a dynamic multicomponent supramolecular system displaying both antibody- and cell surface-binding motifs, without covalent linkage between them. Supramolecular monomers based on benzene-1,3,5-tricarboxamide (BTA-(OH)3) were functionalized with benzoxaborole (Ba) for surface anchoring (BTA-Ba) or dinitrophenyl (DNP) for antibody binding (BTA-DNP1/3). The multicomponent fibers comprising BTA-(OH)3, BTA-Ba, and BTA-DNP1/3 recruited anti-DNP antibodies to sialic acid-functionalized supported lipid bilayers, indicating that both Ba and DNP remained accessible for binding. Dynamic exchange was demonstrated in a cell-mimicking environment, highlighting the adaptivity of these supramolecular polymers. Despite the complexity of a ternary system, the adaptivity of supramolecular polymers gives the individual components the possibility to act in concert, mimicking natural systems.
Collapse
Affiliation(s)
- Marle
E. J. Vleugels
- Laboratory
of Macromolecular and Organic Chemistry, Institute for Complex Molecular
Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
| | - Esmee de Korver
- Laboratory
of Macromolecular and Organic Chemistry, Institute for Complex Molecular
Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
| | - Simone I. S. Hendrikse
- Laboratory
of Macromolecular and Organic Chemistry, Institute for Complex Molecular
Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
| | - Sinan Kardas
- Laboratory
for Chemistry of Novel Materials, Center of Innovation and Research
in Materials and Polymers, University of
Mons−UMONS, Mons 7000, Belgium
| | - Shikha Dhiman
- Laboratory
of Macromolecular and Organic Chemistry, Institute for Complex Molecular
Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
| | - Bas F. M de Waal
- Laboratory
of Macromolecular and Organic Chemistry, Institute for Complex Molecular
Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
| | - Sandra M. C. Schoenmakers
- Laboratory
of Macromolecular and Organic Chemistry, Institute for Complex Molecular
Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
| | - Stefan Wijker
- Laboratory
of Macromolecular and Organic Chemistry, Institute for Complex Molecular
Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
| | | | - Mathieu Surin
- Laboratory
for Chemistry of Novel Materials, Center of Innovation and Research
in Materials and Polymers, University of
Mons−UMONS, Mons 7000, Belgium
| | - Anja R. A. Palmans
- Laboratory
of Macromolecular and Organic Chemistry, Institute for Complex Molecular
Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
| | - E. W. Meijer
- Laboratory
of Macromolecular and Organic Chemistry, Institute for Complex Molecular
Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The
Netherlands
- School
of Chemistry and RNA Institute, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
14
|
Buckenmeyer MJ, Brooks EA, Taylor MS, Orenuga IK, Yang L, Holewinski RJ, Meyer TJ, Galloux M, Garmendia-Cedillos M, Pohida TJ, Andresson T, Croix B, Wolf MT. A 3D Self-Assembly Platform Integrating Decellularized Matrix Recapitulates In Vivo Tumor Phenotypes and Heterogeneity. Cancer Res 2025; 85:1577-1595. [PMID: 39888317 PMCID: PMC12048290 DOI: 10.1158/0008-5472.can-24-1954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/17/2024] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Three-dimensional (3D) in vitro cell culture models are invaluable tools for investigating the tumor microenvironment. However, analyzing the impact of critical stromal elements, such as extracellular matrix (ECM), remains a challenge. In this study, we developed a hydrogel-free self-assembly platform to establish ECM-rich 3D "MatriSpheres" to deconvolute cancer cell-ECM interactions. Mouse and human colorectal cancer MatriSpheres actively incorporated microgram quantities of decellularized small intestine submucosa ECM, which proteomically mimicked colorectal cancer tumor ECM compared with traditional formulations like Matrigel. Solubilized ECM, at subgelation concentrations, was organized by colorectal cancer cells into intercellular stroma-like regions within 5 days, displaying morphologic similarity to colorectal cancer clinical pathology. MatriSpheres featured ECM-dependent transcriptional and cytokine profiles associated with malignancy, lipid metabolism, and immunoregulation. Model benchmarking with single-cell RNA sequencing demonstrated that MatriSpheres enhanced correlation with in vivo tumor cells over traditional ECM-poor spheroids. This facile approach enables tumor-specific tissue morphogenesis, promoting cell-ECM communication to improve fidelity for disease modeling applications. Significance: MatriSpheres provide a hydrogel-free 3D platform for decoupling the influence of heterogeneous extracellular matrix components on tumor biology and can broadly facilitate high-throughput drug discovery and screening applications. See related commentary by Ernst and De Wever, p. 1568.
Collapse
Affiliation(s)
- Michael J. Buckenmeyer
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Elizabeth A. Brooks
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Madison S. Taylor
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Ireolu K. Orenuga
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Liping Yang
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Ronald J. Holewinski
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mélissa Galloux
- Independent Bioinformatician, Marseille, Provence-Alpes-Côte d’Azur, France
| | - Marcial Garmendia-Cedillos
- Instrumentation Development and Engineering Application Solutions, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas J. Pohida
- Instrumentation Development and Engineering Application Solutions, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Brad Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Matthew T. Wolf
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| |
Collapse
|
15
|
Liu Y, Li B, Zhang J, Zhao B, Chen L, Chen B. Temporal Proteome Profiling of Anterior Cruciate Ligament Tear Remnants: Secretory Proteins in the Acute Phase Potentially Promote Tissue Repair. J Proteome Res 2025; 24:2302-2313. [PMID: 40192091 DOI: 10.1021/acs.jproteome.4c00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Previous studies reported that preserving the anterior cruciate ligament (ACL) remnants following ACL rupture during reconstruction surgery could promote graft healing. However, the temporal proteomic expression of ACL remnants remains unclear. Based on previous reports, we have redefined the initial 6 weeks following ACL rupture as the acute phase and the subsequent 6 weeks to 6 months as the subacute phase. High-throughput proteomic sequencing on ACL remnants from the two groups was utilized. Our study unveiled a total of 381 differential expression proteins (DEPs), with 136 upregulated and 245 downregulated proteins in the acute phase. By intersecting these findings with secretory protein databases, we identified 26 upregulated secretory proteins and 19 downregulated in the acute phase. The upregulation of MMP9 and VTN and the downregulation of COL1A1 and POSTN in the acute phase were further confirmed by immunohistochemistry. These findings suggest that the elevated expression of secretory proteins in the acute phase may play crucial roles in promoting cell proliferation, angiogenesis, and tissue repair of the graft. This study not only enhances our understanding of repair mechanisms in ACL remnant preservation but also provides a theoretical foundation for guiding rational clinical surgical timing.
Collapse
Affiliation(s)
- Yiming Liu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Bin Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Jun Zhang
- Department of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Boming Zhao
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi 710000, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Biao Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430000, China
| |
Collapse
|
16
|
Dong X, Xiang H, Li J, Hao A, Wang H, Gou Y, Li A, Rahaman S, Qiu Y, Li J, Mei O, Zhong J, You W, Shen G, Wu X, Li J, Shu Y, Shi LL, Zhu Y, Reid RR, He TC, Fan J. Dermal fibroblast-derived extracellular matrix (ECM) synergizes with keratinocytes in promoting re-epithelization and scarless healing of skin wounds: Towards optimized skin tissue engineering. Bioact Mater 2025; 47:1-17. [PMID: 39872210 PMCID: PMC11762682 DOI: 10.1016/j.bioactmat.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
Skin serves as the first-order protective barrier against the environment and any significant disruptions in skin integrity must be promptly restored. Despite significant advances in therapeutic strategies, effective management of large chronic skin wounds remains a clinical challenge. Dermal fibroblasts are the primary cell type responsible for remodeling the extracellular matrix (ECM) in wound healing. Here, we investigated whether ECM derived from exogenous fibroblasts, in combination with keratinocytes, promoted scarless cutaneous wound healing. To overcome the limited lifespan of primary dermal fibroblasts, we established reversibly immortalized mouse dermal fibroblasts (imDFs), which were non-tumorigenic, expressed dermal fibroblast markers, and were responsive to TGF-β1 stimulation. The decellularized ECM prepared from both imDFs and primary dermal fibroblasts shared similar expression profiles of extracellular matrix proteins and promoted the proliferation of keratinocyte (iKera) cells. The imDFs-derived ECM solicited no local immune response. While the ECM and to a lesser extent imDFs enhanced skin wound healing with excessive fibrosis, a combination of imDFs-derived ECM and iKera cells effectively promoted the re-epithelization and scarless healing of full-thickness skin wounds. These findings strongly suggest that dermal fibroblast-derived ECM, not fibroblasts themselves, may synergize with keratinocytes in regulating scarless healing and re-epithelialization of skin wounds. Given its low immunogenic nature, imDFs-derived ECM should be a valuable resource of skin-specific biomaterial for wound healing and skin tissue engineering.
Collapse
Affiliation(s)
- Xiangyu Dong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Han Xiang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jiajia Li
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ailing Hao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hao Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Aohua Li
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Saidur Rahaman
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yiheng Qiu
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jiahao Li
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ou Mei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopedic Surgery, Jiangxi Hospital of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Wulin You
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopaedic Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China
| | - Guowei Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopaedic Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, China
| | - Xingye Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jingjing Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Oncology, The Affiliated Hospital of Shandong Second Medical University, Weifang, 261053, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Stem Cell Biology and Therapy Laboratory of the Pediatric Research Institute, the National Clinical Research Center for Child Health and Disorders, and Ministry of Education Key Laboratory of Child Development and Disorders, the Children's Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Western Institute of Digital-Intelligent Medicine, Chongqing, 401329, China
| |
Collapse
|
17
|
Nie Y, Lu X, Zhu Y, Shi Y, Ren K, Li Z, Chen P, Han D, Li X. Circular Adhesion Substrates Inhibiting Cell Polarization and Proliferation via Graded Texture of Geometric Micropatterns. SMALL METHODS 2025; 9:e2401471. [PMID: 39564718 DOI: 10.1002/smtd.202401471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Indexed: 11/21/2024]
Abstract
Most melanomas that occur on the skin surface originate from a newly formed nevus and grow outward in a circular pattern and metastasize from the nevus center. Herein, a circular microfabricated substrate is constructed to explore the growth behavior of melanoma cells. Modeling software is used to calculate appropriate parameters, including shape and size, and then the substrates are processed with microfabrication technologies. The results show that the melanoma cells on the circular adhesion substrate are oval and are significant changes in cell spread length, nuclei, area, aspect ratio, Young's modulus, and orientation angles, indicating inhibition of cell polarization. Moreover, three different layers from circular adhesion substrates are selected to construct new substrates, which indicates that the polarization degree of cells is closely related to the number of micropillar arrays on the circular geometric substrate. In addition, flow cytometry demonstrates that the circular substrate reduced the transition from resting/gap 1 phase (G0/G1) to synthesis phase (S phase), thereby decreasing DNA synthesis and proliferation, reminding a potential method for treatment strategy. More importantly, the circular adhesion substrate influences the integrin signaling pathway, which has a potential application and research prospect in the treatment of melanoma.
Collapse
Affiliation(s)
- Yifeng Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xi Lu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, P. R. China
| | - Yuting Zhu
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China
| | - Yahong Shi
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, P. R. China
| | - Keli Ren
- The Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhongxian Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peipei Chen
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Dong Han
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiang Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| |
Collapse
|
18
|
Martin EM, Chang J, González A, Genovese F. Circulating collagen type I fragments as specific biomarkers of cardiovascular outcome risk: Where are the opportunities? Matrix Biol 2025; 137:19-32. [PMID: 40037418 PMCID: PMC11986567 DOI: 10.1016/j.matbio.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/24/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
Collagen type I (COL1) is the most abundant protein in the human body and is a main component in the extracellular matrix. The COL1 structure vastly influences normal tissue homeostasis, and changes in the matrix drive progression in multiple diseases. Cardiovascular diseases (CVD) are the leading cause of mortality and morbidity in many Western countries; alterations in the extracellular matrix turnover processes, including COL1, are known to influence the pathophysiological processes leading to CVD outcome. Peptides reflecting COL1 formation and degradation have been established and explored for over two decades in CVD. This review aims to combine and assess the evidence for using COL1-derived circulating peptides as biomarkers in CVD. Secondly, the review identifies existing pitfalls, and evaluates future opportunities for improving the technical characteristics and performance of the biomarkers for implementation in the clinical setting.
Collapse
Affiliation(s)
- Emily M Martin
- Nordic Bioscience A/S, Herlev, Denmark; Institute of Biomedical Science, University of Copenhagen, Copenhagen, Denmark.
| | - Joan Chang
- Manchester Cell-Matrix Centre, Division of Molecular and Cellular Function, University of Manchester, Manchester, UK
| | - Arantxa González
- Centre for Applied Medical Research (CIMA) Universidad de Navarra, Department of Cardiology and Cardiac Surgery, Clínica Universidad de Navarra, Department of Pathology Anatomy and Physiology Universidad de Navarra and IdiSNA, Pamplona, Navarra (Spain); CIBERCV, Instituto de Salud Carlos III, Madrid Spain
| | | |
Collapse
|
19
|
Jafari-Khorchani M, Pantopoulos K, Zare-Mehrjardi MJ, Allameh A. Sequential Changes in NOX4 Expression, Oxidative Stress Indices, PIIINP, and Liver Histopathology During Hepatocellular Carcinogenesis Induced in Mice. J Gastroenterol Hepatol 2025; 40:1274-1282. [PMID: 40026198 DOI: 10.1111/jgh.16914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/30/2025] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND AND AIM Hepatocellular carcinoma (HCC) is a chronic disease caused by complex histological and biochemical changes related to oxidative stress leading to fibrosis, cirrhosis, and malignancy. Knowing the sequential changes in different stages of HCC development is essential for understanding the mechanisms of HCC pathogenesis. METHODS This study was designed to evaluate alterations in NADPH oxidase 4 (NOX4) expression and oxidative stress during HCC progression in mice, induced with administration of diethylnitrosamine (DEN, 50 mg/kg) and phenobarbitone (PB, 500 mg/L via drinking water). The correlation of N-terminal propeptide type III collagen (PIIINP) as a serum indicator of fibrosis with HCC progression was also assessed. Newborn C57/bl6 mice were divided into four groups (n = 12/group): control, PB, DEN, and HCC. Then they were euthanized at different time schedules 2, 4, and 7 months (n = 4/subgroup). Blood and liver tissues were collected for estimation of serum PIIINP and total antioxidant capacity (TAC) liver NOX4 mRNA and protein expression, total oxidative stress, and glutathione (GSH). RESULTS The results showed that NOX4 protein expression increased in the first months of HCC induction. Accordingly, liver NOX4-specific mRNA was substantially elevated (2.4 fold). Circulating fibrosis marker, the PIIINP levels together with total oxidative stress increased during HCC induction. TAC and GSH were increased over time during HCC induction. CONCLUSIONS Based on the sequential changes observed following HCC induction by DEN, we conclude that increased expression of NOX4 in the liver precedes other changes such as other oxidative stress factors and fibrosis markers during HCC progression.
Collapse
Affiliation(s)
- Majid Jafari-Khorchani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kostas Pantopoulos
- Department of Medicine, McGill University, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Montreal, QC, Canada
| | | | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
20
|
Li K, He Y, Jin X, Jin K, Qian J. Reproducible extracellular matrices for tumor organoid culture: challenges and opportunities. J Transl Med 2025; 23:497. [PMID: 40312683 PMCID: PMC12044958 DOI: 10.1186/s12967-025-06349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/03/2025] [Indexed: 05/03/2025] Open
Abstract
Tumor organoid models have emerged as valuable 3D in vitro systems to study cancer behavior in a physiologically relevant environment. The composition and architecture of the extracellular matrix (ECM) play critical roles in tumor organoid culture by influencing the tumor microenvironment and tumor behavior. Traditional matrices such as Matrigel and collagen, have been widely used, but their batch-to-batch variability and limited tunability hinder their reproducibility and broader applications. To address these challenges, researchers have turned to synthetic/engineered matrices and biopolymer-based matrices, which offer precise tunability, reproducibility, and chemically defined compositions. However, these matrices also present challenges of their own. In this review, we explore the significance of ECMs in tumor organoid culture, discuss the limitations of commonly used matrices, and highlight recent advancements in engineered/synthetic matrices for improved tumor organoid modeling.
Collapse
Affiliation(s)
- Kan Li
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yibo He
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, 310006, China
- Department of Breast Surgery, Affiliated Hangzhou First People'S Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, 310006, China
| | - Xue Jin
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People'S Hospital (Affiliated People'S Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Ketao Jin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310003, China.
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People'S Hospital, Affiliated Xinchang Hosptial, Wenzhou Medical University, Xinchang, Zhejiang, 312500, China.
| |
Collapse
|
21
|
Karlinski Zur M, Bhattacharya B, Solomonov I, Ben Dror S, Savidor A, Levin Y, Prior A, Sapir T, Harris T, Olender T, Schmidt R, Schwarz JM, Sagi I, Buxboim A, Reiner O. Altered extracellular matrix structure and elevated stiffness in a brain organoid model for disease. Nat Commun 2025; 16:4094. [PMID: 40312467 PMCID: PMC12045990 DOI: 10.1038/s41467-025-59252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/15/2025] [Indexed: 05/03/2025] Open
Abstract
The viscoelastic properties of tissues influence their morphology and cellular behavior, yet little is known about changes in these properties during brain malformations. Lissencephaly, a severe cortical malformation caused by LIS1 mutations, results in a smooth cortex. Here, we show that human-derived brain organoids with LIS1 mutation exhibit increased stiffness compared to controls at multiple developmental stages. This stiffening correlates with abnormal extracellular matrix (ECM) expression and organization, as well as elevated water content, measured by diffusion-weighted MRI. Short-term MMP9 treatment reduces both stiffness and water diffusion levels to control values. Additionally, a computational microstructure mechanical model predicts mechanical changes based on ECM organization. These findings suggest that LIS1 plays a critical role in ECM regulation during brain development and that its mutation leads to significant viscoelastic alterations.
Collapse
Grants
- AARG-NTF-21-849529 Alzheimer's Association
- We express our gratitude for the help of Dr. Arpan Parichha and Alfredo Isaac Ponce Arias. Orly Reiner is an incumbent of the Berstein-Mason professorial chair of Neurochemistry and the Head of the M. Judith Ruth Institute for Preclinical Brain Research. Our research has been supported by a research grant from Ethel Lena Levy, the Selsky Memory Research Project, the Gladys Monroy and Larry Marks Center for Brain Disorders, the Advantage Trust, the Nella and Leon Benoziyo Center for Neurological Diseases, the David and Fela Shapell Family Center for Genetic Disorders Research, the Abish-Frenkel RNA center, the Brenden- Mann Women's Innovation Impact Fund, The Irving B. Harris Fund for New Directions in Brain Research, the Irving Bieber, M.D. and Toby Bieber, M.D. Memorial Research Fund, The Leff Family, Barbara & Roberto Kaminitz, Sergio & Sônia Lozinsky, Debbie Koren, Jack and Lenore Lowenthal, and the Dears Foundation. A research grant from the Estates of Ethel H. Smith, Gerald Alexander, Mr. and Mrs. George Zbeda, David A. Fishstrom, Norman Fidelman, Hermine Miller, Olga Klein Astrachan, Hermine Miller, and The Maurice and Vivienne Wohl Biology Endowment, Supported by a research grant from Emily Merjan, the ISF grant (545/21), and the United States-Israel Binational Science Foundation (BSF; Grant No. 2023009).
Collapse
Affiliation(s)
- Maayan Karlinski Zur
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute, Rehovot, Israel
| | - Bidisha Bhattacharya
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute, Rehovot, Israel
| | - Inna Solomonov
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sivan Ben Dror
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Jerusalem, Israel
| | - Alon Savidor
- The De Botton Protein Profiling Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- The De Botton Protein Profiling Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Prior
- The De Botton Protein Profiling Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute, Rehovot, Israel
| | - Talia Harris
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rita Schmidt
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
| | - J M Schwarz
- Physics Department, Syracuse University, Syracuse, NY, USA
| | - Irit Sagi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Amnon Buxboim
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Jerusalem, Israel.
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Jerusalem, Israel.
- The Alexender Grass Center for Bioengineering, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Jerusalem, Israel.
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Neuroscience, Weizmann Institute, Rehovot, Israel.
| |
Collapse
|
22
|
Breitenstein P, Visser VL, Motta SE, Martin M, Generali M, Baaijens FPT, Loerakker S, Breuer CK, Hoerstrup SP, Emmert MY. Modulating biomechanical and integrating biochemical cues to foster adaptive remodeling of tissue engineered matrices for cardiovascular implants. Acta Biomater 2025; 197:48-67. [PMID: 40118167 DOI: 10.1016/j.actbio.2025.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Cardiovascular disease remains one of the leading causes of mortality in the Western world. Congenital heart disease affects nearly 1 % of newborns, with approximately one-fourth requiring reconstructive surgery during their lifetime. Current cardiovascular replacement options have significant limitations. Their inability to grow poses particular challenges for pediatric patients. Tissue Engineered Matrix (TEM)-based in situ constructs, with their self-repair and growth potential, offer a promising solution to overcome the limitations of current clinically used replacement options. Various functionalization strategies, involving the integration of biomechanical or biochemical components to enhance biocompatibility, have been developed for Tissue Engineered Vascular Grafts (TEVG) and Tissue Engineered Heart Valves (TEHV) to foster their capacity for in vivo remodeling. In this review, we present the current state of clinical translation for TEVG and TEHV, and provide a comprehensive overview of biomechanical and biochemical functionalization strategies for TEVG and TEHV. We discuss the rationale for functionalization, the implementation of functionalization cues in TEM-based TEVG and TEHV, and the interrelatedness of biomechanical and biochemical cues in the in vivo response. Finally, we address the challenges associated with functionalization and discuss how interdisciplinary research, especially when combined with in silico models, could enhance the translation of these strategies into clinical applications. STATEMENT OF SIGNIFICANCE: Cardiovascular disease remains one of the leading causes of mortality, with current replacements being unable to grow and regenerate. In this review, we present the current state of clinical translation for tissue engineered vascular grafts (TEVG) and heart valves (TEHV). Particularly, we discuss the rationale and implementation for functionalization cues in tissue engineered matrix-based TEVGs and TEHVs, and for the first time we introduce the interrelatedness of biomechanical and biochemical cues in the in-vivo response. These insights pave the way for next-generation cardiovascular implants that promise better durability, biocompatibility, and growth potential. Finally, we address the challenges associated with functionalization and discuss how interdisciplinary research, especially when combined with in silico models, could enhance the translation of these strategies into clinical applications .
Collapse
Affiliation(s)
- Pascal Breitenstein
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Valery L Visser
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Sarah E Motta
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Marcy Martin
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Melanie Generali
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Christopher K Breuer
- Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Surgery, Nationwide Children's Hospital, Columbus, OH, USA; Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland; Wyss Zurich Translational Center, University of Zurich and ETH Zurich, Zurich 8092, Switzerland
| | - Maximilian Y Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland; Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin 13353, Germany; Charité Universitätsmedizin Berlin, Berlin 10117, Germany.
| |
Collapse
|
23
|
Guizzetti M, Mangieri RA, Ezerskiy LA, Hashimoto JG, Bajo M, Farris SP, Homanics GE, Lasek AW, Mayfield RD, Messing RO, Roberto M. ASTROCYTES AND ALCOHOL THROUGHOUT THE LIFESPAN. Biol Psychiatry 2025:S0006-3223(25)01147-3. [PMID: 40311830 DOI: 10.1016/j.biopsych.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/31/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025]
Abstract
Evidence for involvement of astrocytes in several neurodegenerative disorders and in drug addiction has been emerging over the last two decades, but only in recent years have astrocytes been investigated for their roles in alcohol use disorder (AUD). As a result, there is a need to evaluate existing preclinical literature supporting involvement of astrocytes in the effects of alcohol exposure. Here we review emerging evidence about responses of astrocytes to alcohol, and the contributions of astrocytes to the development of AUD. We review studies of single-cell RNA sequencing with a focus on alcohol and astrocyte heterogeneity, astrocyte reactivity, and the role of astrocytes in remodeling the extracellular matrix. Effects of alcohol on astrocyte-modulated synaptic transmission are also discussed emphasizing studies never reviewed before. Since astrocytes play essential roles in brain development, we review recent research on the role of astrocytes in fetal alcohol spectrum disorders (FASD) which may also shed light on fetal development of psychiatric disorders that have a high prevalence in individuals affected by FASD. Finally, this review highlights gaps in knowledge about astrocyte biology and alcohol that need further research. Particularly, the dire need to identify astrocyte subpopulations and molecules that are susceptible to alcohol exposure and may be targets for therapeutic intervention.
Collapse
Affiliation(s)
- Marina Guizzetti
- Oregon Health & Science University and Portland VA Health Care System, Portland, OR.
| | | | | | - Joel G Hashimoto
- Oregon Health & Science University and Portland VA Health Care System, Portland, OR
| | - Michal Bajo
- The Scripps Research Institute, La Jolla, CA
| | | | | | - Amy W Lasek
- Virginia Commonwealth University, Richmond, VA
| | | | | | | |
Collapse
|
24
|
Xiao Q, Li Y, Cai B, Huang X, Fang L, Liang F, Chen L, Xu K, Zhang W, Wang X, Yin A, Wang X, Cai Z, Zhuang F, Shao Q, Zhou B, Hocher B, He B, Shen L. CCDC80 Protects against Aortic Dissection and Rupture by Maintaining the Contractile Smooth Muscle Cell Phenotype. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502108. [PMID: 40278823 DOI: 10.1002/advs.202502108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/20/2025] [Indexed: 04/26/2025]
Abstract
Aortic dissection (AD) is a life-threatening medical emergency characterized by adverse vascular remodeling. Coiled-coil domain-containing protein 80 (CCDC80) plays an essential role in regulating cardiovascular remodeling. This study aims to define the role of CCDC80 in the formation and development of AD. Significant downregulation of CCDC80 in vascular smooth muscle cell (VSMC) in human and mouse AD is identified. Then, CCDC80 knockout mice (CCDC80-/-) and VSMC-specific CCDC80 knockout mice (CCDC80fl/fl SM22α Cre+) treated with angiotensin II (Ang II) or Ang II combined with β-aminopropionitrile monofumarate (BAPN) frequently develop AD with higher frequency and severity, accompanied by severe elastin fragmentation and collagen deposition. Mechanistically, CCDC80 interacts with JAK2, and CCDC80 deficiency promotes VSMC phenotype switching, proliferation, and migration as well as matrix metalloproteinase production by activating the JAK2/STAT3 signaling pathway. Moreover, the JAK2/STAT3 pathway-specific inhibitor ameliorates adverse vascular remodeling and reduces AD formation in CCDC80-knockout mice by mitigating VSMC phenotype switching. In conclusion, CCDC80 deficiency exacerbates the progression of events leading to AD by activating the JAK2/STAT3 pathway involved in regulating the phenotype switching and function of VSMCs. These findings highlight that CCDC80 is a potential key target for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Qingqing Xiao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yi Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Bin Cai
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiying Huang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Liang Fang
- Department of Cardiac Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Feng Liang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Long Chen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ke Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Weifeng Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiaolei Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Anwen Yin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Fei Zhuang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Qin Shao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Bin Zhou
- Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, 69123, Heidelberg, Germany
- Reproductive and Genetic Hospital of CITIC-Xiangya, People's Republic of China, Changsha, 410028, China
- IMD Institut fur Medizinische Diagnostik Berlin-Potsdam GbR, 14473, Berlin, Germany
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| |
Collapse
|
25
|
van Deel ED, Snelders M, van Vliet N, Te Riet L, van den Bosch TPP, Fiedler LR, van Spreeuwel ACC, Bax NAM, Boontje N, Halabi CM, Sasaki T, Reinhardt DP, van der Velden J, Bouten CVC, von der Thüsen JH, Danser AHJ, Duncker DJ, Schneider MD, van der Pluijm I, Essers J. Induction of cardiac fibulin-4 protects against pressure overload-induced cardiac hypertrophy and heart failure. Commun Biol 2025; 8:661. [PMID: 40274989 PMCID: PMC12022050 DOI: 10.1038/s42003-025-08087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
The prevailing view of fibulin-4 deficient mice is that the cardiac phenotype is the result of aortic and/or valvular disease. In the present study, we have tested whether the cardiac phenotype is, at least in part, the consequence of primary cardiac effects of fibulin-4. We have found fibulin-4 expression to be activated throughout the myocardium in wildtype (fibulin-4+/+) C57Bl/6J;129 Sv mice subjected to transverse aortic constriction (TAC). In contrast, haploinsufficient fibulin-4+/R mice exposed to severe TAC do not show this increase in myocardial fibulin-4 expression, but display altered physical properties of myocardial tissue. Moreover, TAC-induced cardiac fibrosis, pulmonary congestion, and mortality are aggravated in fibulin-4+/R mice. In vitro investigations of myocardial tissue show that fibulin-4 deficiency results in cardiomyocyte hypertrophy, and a decreased beating frequency and contractile force. In conclusion, we demonstrate functions for fibulin-4 in cardiac homeostasis and show that reduced fibulin-4 expression drives myocardial disease in response to cardiac pressure overload, independent of aortic valvular pathology.
Collapse
Affiliation(s)
- E D van Deel
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M Snelders
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - N van Vliet
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - L Te Riet
- Division of Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Vascular Surgery, Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - T P P van den Bosch
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - L R Fiedler
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London, UK
| | - A C C van Spreeuwel
- Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - N A M Bax
- Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - N Boontje
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular Research (ICaR-VU), Amsterdam, the Netherlands
| | - C M Halabi
- Division of Nephrology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - T Sasaki
- Department of Pharmacology, Faculty of Medicine, Oita University, Oita, Japan
| | - D P Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Faculty of Dentistry and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - J van der Velden
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular Research (ICaR-VU), Amsterdam, the Netherlands
| | - C V C Bouten
- Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - J H von der Thüsen
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - A H J Danser
- Division of Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - D J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M D Schneider
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London, UK
| | - I van der Pluijm
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Vascular Surgery, Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - J Essers
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.
- Department of Vascular Surgery, Cardiovascular Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.
- Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
26
|
Xue B, Xu Z, Li L, Guo K, Mi J, Wu H, Li Y, Xie C, Jin J, Xu J, Jiang C, Gu X, Qin M, Jiang Q, Cao Y, Wang W. Hydrogels with programmed spatiotemporal mechanical cues for stem cell-assisted bone regeneration. Nat Commun 2025; 16:3633. [PMID: 40240370 PMCID: PMC12003706 DOI: 10.1038/s41467-025-59016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
Hydrogels are extensively utilized in stem cell-based tissue regeneration, providing a supportive environment that facilitates cell survival, differentiation, and integration with surrounding tissues. However, designing hydrogels for regenerating hard tissues like bone presents significant challenges. Here, we introduce macroporous hydrogels with spatiotemporally programmed mechanical properties for stem cell-driven bone regeneration. Using liquid-liquid phase separation and interfacial supramolecular self-assembly of protein fibres, the macroporous structure of hydrogels provide ample space to prevent contact inhibition during proliferation. The rigid protein fibre-coated pore shell provides sustained mechanical cues for guiding osteodifferentiation and protecting against mechanical loads. Temporally, the hydrogel exhibits tunable degradation rates that can synchronize with new tissue deposition to some extent. By integrating localized mechanical heterogeneity, macroporous structures, surface chemistry, and regenerative degradability, we demonstrate the efficacy of these stem cell-encapsulated hydrogels in rabbit and porcine models. This marks a substantial advancement in tailoring the mechanical properties of hydrogels for stem cell-assisted tissue regeneration.
Collapse
Affiliation(s)
- Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Zhengyu Xu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), MOE Key Laboratory of High Performance Polymer Materials and Technology, and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
| | - Kaiqiang Guo
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Jing Mi
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Haipeng Wu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Yiran Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Chunmei Xie
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jing Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Juan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Xiaosong Gu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China.
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), MOE Key Laboratory of High Performance Polymer Materials and Technology, and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
27
|
Yuan H, Wang X, Du S, Li M, Zhu E, Zhou J, Dong Y, Wang S, Shan L, Liu Q, Wang B. NELL2, a novel osteoinductive factor, regulates osteoblast differentiation and bone homeostasis through fibronectin 1/integrin-mediated FAK/AKT signaling. Bone Res 2025; 13:46. [PMID: 40210857 PMCID: PMC11986068 DOI: 10.1038/s41413-025-00420-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 04/12/2025] Open
Abstract
Neural EGFL-like 2 (NELL2) is a secreted protein known for its regulatory functions in the nervous and reproductive systems, yet its role in bone biology remains unexplored. In this study, we observed that NELL2 was diminished in the bone of aged and ovariectomized (OVX) mice, as well as in the serum of osteopenia and osteoporosis patients. In vitro loss-of-function and gain-of-function studies revealed that NELL2 facilitated osteoblast differentiation and impeded adipocyte differentiation from stromal progenitor cells. In vivo studies further demonstrated that the deletion of NELL2 in preosteoblasts resulted in decreased cancellous bone mass in mice. Mechanistically, NELL2 interacted with the FNI-type domain located at the C-terminus of Fibronectin 1 (Fn1). Moreover, we found that NELL2 activated the focal adhesion kinase (FAK)/AKT signaling pathway through Fn1/integrin β1 (ITGB1), leading to the promotion of osteogenesis and the inhibition of adipogenesis. Notably, administration of NELL2-AAV was found to ameliorate bone loss in OVX mice. These findings underscore the significant role of NELL2 in osteoblast differentiation and bone homeostasis, suggesting its potential as a therapeutic target for managing osteoporosis.
Collapse
Affiliation(s)
- Hairui Yuan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| | - Xinyu Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Shuanglin Du
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Mengyue Li
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Endong Zhu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yuan Dong
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Shuang Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Liying Shan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Qian Liu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
28
|
Amjad SN, Parvez N, Picu CR. Nonlinear behavior of stochastic athermal fiber networks with elastic-plastic fibers. SOFT MATTER 2025; 21:2882-2895. [PMID: 40134373 DOI: 10.1039/d4sm01427h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Stochastic fiber networks form the structural component of network materials, which are broadly encountered in engineering and biology. Apparent elastic-plastic behavior, characterized by a yield point and softening at larger strains, is observed in some of these materials. A range of mechanisms, some of which being unrelated to fiber plasticity, may cause this behavior. In this work we investigate network plasticity caused by the plastic deformation of fibers and develop a comprehensive perspective on its relationship with network structural parameters. We determine the scaling of the yield stress and yield strain with network parameters emphasizing differences between the affine and non-affine deformation regimes. The non-linear response of the network is more complex when fiber plasticity takes place than in the purely elastic case. We describe four non-linear regimes and their dependence on network parameters. Further, we evaluate the dissipation and residual strains resulting upon loading-unloading cycles for a variety of networks and discuss design strategies for maximizing energy dissipation. Finally, we provide guidelines for the interpretation of experimental results and discuss ways to distinguish between various mechanisms that may cause a yield point and apparent elastic-plastic behavior.
Collapse
Affiliation(s)
- Syed N Amjad
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Nishan Parvez
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Catalin R Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
29
|
Jirouskova M, Harant K, Cejnar P, Ojha S, Korelova K, Sarnova L, Sticova E, Mayr CH, Schiller HB, Gregor M. Dynamics of compartment-specific proteomic landscapes of hepatotoxic and cholestatic models of liver fibrosis. eLife 2025; 13:RP98023. [PMID: 40197391 PMCID: PMC11978302 DOI: 10.7554/elife.98023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Accumulation of extracellular matrix (ECM) in liver fibrosis is associated with changes in protein abundance and composition depending upon etiology of the underlying liver disease. Current efforts to unravel etiology-specific mechanisms and pharmacological targets rely on several models of experimental fibrosis. Here, we characterize and compare dynamics of hepatic proteome remodeling during fibrosis development and spontaneous healing in experimental mouse models of hepatotoxic (carbon tetrachloride [CCl4] intoxication) and cholestatic (3,5-diethoxycarbonyl-1,4-dihydrocollidine [DDC] feeding) injury. Using detergent-based tissue extraction and mass spectrometry, we identified compartment-specific changes in the liver proteome with detailed attention to ECM composition and changes in protein solubility. Our analysis revealed distinct time-resolved CCl4 and DDC signatures, with identified signaling pathways suggesting limited healing and a potential for carcinogenesis associated with cholestasis. Correlation of protein abundance profiles with fibrous deposits revealed extracellular chaperone clusterin with implicated role in fibrosis resolution. Dynamics of clusterin expression was validated in the context of human liver fibrosis. Atomic force microscopy of fibrotic livers complemented proteomics with profiles of disease-associated changes in local liver tissue mechanics. This study determined compartment-specific proteomic landscapes of liver fibrosis and delineated etiology-specific ECM components, providing thus a foundation for future antifibrotic therapies.
Collapse
Affiliation(s)
- Marketa Jirouskova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Karel Harant
- Laboratory of Mass Spectrometry, BIOCEV, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Pavel Cejnar
- Department of Mathematics, Informatics and Cybernetics, University of Chemistry and TechnologyPragueCzech Republic
| | - Srikant Ojha
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Department of Animal Physiology, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Katerina Korelova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Lenka Sarnova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Eva Sticova
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental MedicinePragueCzech Republic
- Department of Pathology, The Third Faculty of Medicine, Charles University and University Hospital Kralovske VinohradyPragueCzech Republic
| | - Christoph H Mayr
- Helmholtz Munich, Research Unit Precision Regenerative Medicine; Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL)MunichGermany
| | - Herbert B Schiller
- Helmholtz Munich, Research Unit Precision Regenerative Medicine; Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL)MunichGermany
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians UniversityMunichGermany
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
30
|
Gentile R, Feudi D, Sallicandro L, Biagini A. Can the Tumor Microenvironment Alter Ion Channels? Unraveling Their Role in Cancer. Cancers (Basel) 2025; 17:1244. [PMID: 40227837 PMCID: PMC11988140 DOI: 10.3390/cancers17071244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/29/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025] Open
Abstract
Neoplastic cells are characterized by metabolic reprogramming, known as the Warburg effect, in which glucose metabolism is predominantly directed toward aerobic glycolysis, with reduced mitochondrial oxidative phosphorylation and increased lactate production even in the presence of oxygen. This phenomenon provides cancer cells with a proliferative advantage, allowing them to rapidly produce energy (in the form of ATP) and generate metabolic intermediates necessary for the biosynthesis of macromolecules essential for cell growth. It is important to understand the role of ion channels in the tumor context since they participate in various physiological processes and in the regulation of the tumor microenvironment. These changes may contribute to the development and transformation of cancer cells, as well as affect the communication between cells and the surrounding microenvironment, including impaired or altered expression and functionality of ion channels. Therefore, the aim of this review is to elucidate the impact of the tumor microenvironment on the electrical properties of the cellular membranes in several cancers as a possible therapeutic target.
Collapse
Affiliation(s)
- Rosaria Gentile
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06123 Perugia, Italy;
| | - Davide Feudi
- Department of Biostatistics, Epidemiology and Public Health, University of Padua, Via L. Loredan 18, 35131 Padova, Italy;
| | - Luana Sallicandro
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06123 Perugia, Italy;
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Andrea Biagini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06123 Perugia, Italy;
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| |
Collapse
|
31
|
Li N, Tan F, Zhang L, Ding X, Sun Q, Wang M, Zhang Z, Lu Y, Zhou Y, Qian X, Ye F, Qi J, Chai R. AAV-Sparcl1 promotes hair cell regeneration by increasing supporting cell plasticity. Mol Ther 2025:S1525-0016(25)00262-X. [PMID: 40181541 DOI: 10.1016/j.ymthe.2025.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/27/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025] Open
Abstract
Sensorineural hearing deficiency caused by hair cell damage represents a prevalent sensory deficit disorder. In mammals, age-related reduction in plasticity of inner ear supporting cells (recognized as hair cell precursors) compromises their trans-differentiation capacity, resulting in impaired spontaneous hair cell regeneration post-injury. Therapeutic reprogramming of supporting cells to functionally replace damaged hair cells has emerged as a promising strategy for sensorineural hearing loss treatment. In this study, we demonstrate that the secretory protein Sparcl1 enhances supporting cell reprogramming and hair cell regeneration in both in vitro and in vivo models. Through the adeno-associated virus (AAV)-mediated overexpression system, we successfully achieved in vivo expansion of inner ear organoids accompanied by hair cell differentiation. RNA-seq analysis revealed that Sparcl1 overexpression stimulates supporting cell proliferation via follistatin (Fst) activation and extracellular matrix (ECM) remodeling. Notably, both AAV-ie-Sparcl1 delivery and recombinant Sparcl1 protein administration effectively induced supporting cell differentiation into hair cells in vivo. Collectively, our findings establish Sparcl1 as a potent positive regulator of hair cell regeneration and elucidate mechanisms by which secretory proteins regulate supporting cell plasticity.
Collapse
Affiliation(s)
- Nianci Li
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Fangzhi Tan
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Liyan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaoqiong Ding
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Qiuhan Sun
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Ziyu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yicheng Lu
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yinyi Zhou
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyun Qian
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing 210008, China
| | - Fanglei Ye
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Jieyu Qi
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; State Key Laboratory of Hearing and Balance Science, Beijing Institute of Technology, Beijing 100081, China; School of Medical Engineering, Affiliated Zhuhai People's Hospital, Beijing Institute of Technology, Zhuhai 519088, China; Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, China.
| | - Renjie Chai
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Otolaryngology-Head and Neck Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Southeast University Shenzhen Research Institute, Shenzhen 518063, China.
| |
Collapse
|
32
|
Abbasloo F, Vahidi B, Khani MM, Sigaroodi F, Sarbandi RR. Osteogenic differentiation of mesenchymal stem cell on poly sorbitol sebacate scaffold under shear stress in a bioreactor. Tissue Cell 2025; 93:102715. [PMID: 39787937 DOI: 10.1016/j.tice.2024.102715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/28/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
Mechanical loading plays a pivotal role in regulating bone anabolic processes. Understanding the optimal mechanical loading parameters for cellular responses is critical for advancing strategies in orthopedic bioreactor-based bone tissue engineering. This study developed a poly (sorbitol sebacate) (PSS) filmscaffold with a sorbitol-to-sebacic acid molar ratio of 1:4. The scaffold underwent extensive characterization, including physical and mechanical property evaluations, biocompatibility assessments, and cell adhesion analysis. The Young's modulus of the PSS polymer was determined to be 6.81 ± 0.44 MPa under dry conditions, 6.37 ± 1.09 MPa in a wet state, and 6.38 ± 0.71 MPa after ethanol washing (70 %). The average contact angle of the PSS film was measured at 88.806 ± 1.644°, indicating moderate hydrophilicity. To investigate the osteogenic potential, a fluid flow inducing a shear stress of 1 Pa at a frequency of 1 Hz was applied to mesenchymal stem cells (MSCs) cultured on the PSS scaffold. Cells were exposed to dynamic fluid flow for one hour daily on days 4, 5, 6, and 7 of culture, followed by a static culture period of 14 days. The expression of osteogenic differentiation markers, including osteopontin (OPN), osteocalcin (OCN), type I collagen, and calcium deposition, was significantly elevated under dynamic conditions compared to static culture. This study highlights the importance of mechanical stimulation in enhancing MSC osteogenesis and underscores the osteoconductive properties of the PSS scaffold. These findings provide valuable insights into scaffold design and mechanical loading strategies for laboratory-based bone tissue engineering applications.
Collapse
Affiliation(s)
- Fatemeh Abbasloo
- Department of Medical Technology and Tissue engineering, Faculty of Life Science Engineering, School of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Bahman Vahidi
- Department of Medical Technology and Tissue engineering, Faculty of Life Science Engineering, School of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran.
| | - Mohammad-Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Faraz Sigaroodi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Ramezani Sarbandi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
33
|
Baldavira CM, Prieto TG, de Souza MLF, Qualiotto AN, Velosa APP, Teodoro WR, Takagaki T, Ab'Saber A, Capelozzi VL. Matrisome analysis of NSCLC unveils clinically-important cancer-associated extracellular matrix changes. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167709. [PMID: 39938232 DOI: 10.1016/j.bbadis.2025.167709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 01/06/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
INTRODUCTION Non-small cell lung carcinoma (NSCLC), comprising adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC), is characterized by an active desmoplastic stroma with an accumulation of extracellular matrix (ECM) proteins. ECM remodeling is a key feature of cancer progression, but the identification of specific therapeutic targets within this compartment remains challenging. Recent studies suggest a link between increased desmoplastic stroma and malignancy in NSCLC, the role of ECM proteins in disease pathogenesis remains unclear. METHODS We analyzed an exploratory cohort of Pan-Cancer Atlas and a study cohort to identify differentially expressed ECM proteins. Our focus was on fibrillar components (elastin, fibrillin, collagens), glycosaminoglycans (chondroitin sulfate and heparan sulfate), and matricellular proteins (SPARC). Bioinformatics analysis highlighted matrix proteins that modulate ECM functionality and structure, potentially serving as biomarkers and/or therapeutic targets. RESULTS Adenocarcinomas exhibited an ECM enriched with abnormal elastin, chondroitin sulfate, and SPARC. Collagen IV expression in the basement membrane was reduced, while collagen III and V were prominent around tumors. LUSC showed more fibrotic ECM, leading to a stiffer microenvironment. While LUSC's basement membrane may be fragmented, it often retains more intact collagen IV compared to LUAD. High elastin expression in LUAD correlated with smaller tumors (P = 0.022), while fibrillin-2 expression was linked to T1 stage (P = 0.035) and pathological stage I (P = 0.014). In LUSC, elastin expression correlated with negative lymph nodes (P = 0.037). SPARC was an independent factor for overall survival for both subtypes (P < 0.05). CONCLUSION This study provides insights into matrix changes in NSCLC and identifies promising candidates for targeted therapies.
Collapse
Affiliation(s)
- Camila Machado Baldavira
- Laboratory of Lung Histomorphometry and Genomics, Department of Pathology, Faculty of Medicine, University of São Paulo, Brazil.
| | - Tabatha Gutierrez Prieto
- Laboratory of Lung Histomorphometry and Genomics, Department of Pathology, Faculty of Medicine, University of São Paulo, Brazil
| | - Maria Luiza Fernezlian de Souza
- Laboratory of Lung Histomorphometry and Genomics, Department of Pathology, Faculty of Medicine, University of São Paulo, Brazil
| | - Aline Nery Qualiotto
- Laboratory of Lung Histomorphometry and Genomics, Department of Pathology, Faculty of Medicine, University of São Paulo, Brazil
| | - Ana Paula Pereira Velosa
- Rheumatology Division of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, FMUSP, São Paulo, SP, Brazil
| | - Walcy Rosolia Teodoro
- Rheumatology Division of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, FMUSP, São Paulo, SP, Brazil
| | - Teresa Takagaki
- Division of Pneumology, Instituto do Coração (Incor), University of São Paulo Medical School (USP), São Paulo, Brazil
| | - Alexandre Ab'Saber
- Laboratory of Lung Histomorphometry and Genomics, Department of Pathology, Faculty of Medicine, University of São Paulo, Brazil
| | - Vera Luiza Capelozzi
- Laboratory of Lung Histomorphometry and Genomics, Department of Pathology, Faculty of Medicine, University of São Paulo, Brazil.
| |
Collapse
|
34
|
Chaulagain RP, Padder AM, Shrestha H, Gupta R, Bhandari R, Shrestha Y, Qasem Moqbel A, Gautam S, Lal N, Jin S. Deciphering the Matrisome: Extracellular Matrix Remodeling in Liver Cirrhosis and Hepatocellular Carcinoma. Cureus 2025; 17:e82171. [PMID: 40370880 PMCID: PMC12076258 DOI: 10.7759/cureus.82171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2025] [Indexed: 05/16/2025] Open
Abstract
Liver cirrhosis and hepatocellular carcinoma (HCC) are major public health concerns due to their high morbidity and mortality rates. The liver, a vital organ for metabolism, detoxification, and homeostasis, depends on the matrisome, a complex and dynamic network of extracellular matrix (ECM) components for maintaining structural and functional integrity. Chronic liver inflammation, induced by factors such as alcohol abuse, viral hepatitis, and non-alcoholic fatty liver disease, leads to fibrosis and cirrhosis, progressing to HCC. The matrisome, composed of ECM proteins including collagen, fibronectin, and laminin, plays a critical role in regulating tissue homeostasis, cell signaling, and tissue repair. Dysregulation of ECM components contributes to the pathogenesis of both liver cirrhosis and cancer. In cirrhosis, matrisome alterations are characterized by excessive ECM deposition and fibrosis, which disrupt the liver's architecture and impair its function. Activated hepatic stellate cells (HSCs) are the principal mediators of fibrosis, producing large quantities of ECM components. In liver cancer, matrisome remodeling facilitates tumorigenesis by promoting cancer cell proliferation, invasion, and metastasis. The tumor microenvironment, shaped by ECM alterations, further supports tumor growth and dissemination. Matrix metalloproteinases (MMPs) play a pivotal role in ECM degradation, fibrosis progression, and tumor invasion, while tissue inhibitors of metalloproteinases (TIMPs) modulate MMP activity. A comprehensive understanding of the molecular mechanisms that link matrisome alterations with the progression from cirrhosis to liver cancer is essential for identifying novel diagnostic and therapeutic targets. This review highlights the dynamic responses of the hepatic matrisome to both acute and chronic insults, emphasizing the complex interplay between ECM components, cellular behavior, and disease progression. Elucidating these interactions may inform strategies aimed at improving clinical outcomes for patients with liver cirrhosis and HCC.
Collapse
Affiliation(s)
- Ram Prasad Chaulagain
- Internal Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, CHN
| | - Aadil Mushtaq Padder
- Gastroenterology and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, CHN
| | | | - Radheshyam Gupta
- Urology Surgery, Cancer Hospital, Harbin Medical University, Harbin, CHN
| | - Rameshor Bhandari
- Surgical Gastroenterology, Grande International Hospital, Kathmandu, NPL
| | - Yelona Shrestha
- Dermatology, First Affiliated Hospital of Xinjiang Medical University, Xinxiang, CHN
| | | | - Smriti Gautam
- Dermatology, Kathmandu Medical College, Kathmandu, NPL
| | - Nand Lal
- Physiology, School of Biomedical Sciences, Harbin Medical University, Harbin, CHN
| | - Shizhu Jin
- Gastroenterology and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, CHN
| |
Collapse
|
35
|
Guan Y, Jia Z, Xiong X, He R, Ouyang Y, Liu H, Liang L, Meng X, Zhang R, Guan C, Wang S, Li D, Cui Y, Bai J, Zhao J, Meng H, Peng J, Wang Y. Tissue-specific extracellular matrix for the larger-scaled expansion of spinal cord organoids. Mater Today Bio 2025; 31:101561. [PMID: 40083838 PMCID: PMC11904521 DOI: 10.1016/j.mtbio.2025.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/02/2025] [Accepted: 02/07/2025] [Indexed: 03/16/2025] Open
Abstract
Spinal cord organoids (SCOs) are in vitro models that faithfully recapitulate the basic tissue architecture and cell types of the spinal cord and play a crucial role in developmental studies, disease modeling, and drug screening. Physiological cues are required for proliferation and differentiation during SCO culture. However, commonly used basement membrane matrix products, such as Matrigel®, lack tissue-specific biophysical signals. The current study utilizes decellularization process to fabricate tissue-derived hydrogel from porcine spinal cord tissue that retain intrinsic matrix components. This gel system supported an expanded neuroepithelial scale and enhanced ventral recognition patterns during SCO cultivation. Based on the characteristics of the enlarged aggregate size, a technical system for SCO cutting and subculture are proposed to improve the economic feasibility. Finally, the advantage of S-gel in maintaining neurite outgrowth are also found, which suggests its potential application in neural-related microphysiological systems.
Collapse
Affiliation(s)
- Yanjun Guan
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- Co-innovation Center of Neuroregeneration, Nantong University Nantong, Jiangsu Province 226007, PR China
- Graduate School of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, PR China
| | - Zhibo Jia
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Xing Xiong
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- Graduate School of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, PR China
| | - Ruichao He
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- School of Medicine, Nankai University, Tianjin 300071, PR China
| | - Yiben Ouyang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- School of Medicine, Nankai University, Tianjin 300071, PR China
| | - Haolin Liu
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- Graduate School of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, PR China
| | - Lijing Liang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- Graduate School of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, PR China
| | - Xiaoran Meng
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Ranran Zhang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Congcong Guan
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Sice Wang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- Graduate School of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, PR China
| | - Dongdong Li
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Yuhui Cui
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- Graduate School of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, PR China
| | - Jun Bai
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Jinjuan Zhao
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Haoye Meng
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
| | - Jiang Peng
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- Co-innovation Center of Neuroregeneration, Nantong University Nantong, Jiangsu Province 226007, PR China
| | - Yu Wang
- Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China
- Co-innovation Center of Neuroregeneration, Nantong University Nantong, Jiangsu Province 226007, PR China
| |
Collapse
|
36
|
Zhu T, Hu P, Mi Y, Zhang J, Xu A, Gao M, Zhang Y, Shen S, Yang G, Pan Y. Telomerase reverse transcriptase gene knock-in unleashes enhanced longevity and accelerated damage repair in mice. Aging Cell 2025; 24:e14445. [PMID: 39660787 PMCID: PMC11984681 DOI: 10.1111/acel.14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
While previous research has demonstrated the therapeutic efficacy of telomerase reverse transcriptase (TERT) overexpression using adeno-associated virus and cytomegalovirus vectors to combat aging, the broader implications of TERT germline gene editing on the mammalian genome, proteomic composition, phenotypes, lifespan extension, and damage repair remain largely unexplored. In this study, we elucidate the functional properties of transgenic mice carrying the Tert transgene, guided by precise gene targeting into the Rosa26 locus via embryonic stem (ES) cells under the control of the elongation factor 1α (EF1α) promoter. The Tert knock-in (TertKI) mice harboring the EF1α-Tert gene displayed elevated telomerase activity, elongated telomeres, and extended lifespan, with no spontaneous genotoxicity or carcinogenicity. The TertKI mice showed also enhanced wound healing, characterized by significantly increased expression of Fgf7, Vegf, and collagen. Additionally, TertKI mice exhibited robust resistance to the progression of colitis induced by dextran sodium sulfate (DSS), accompanied by reduced expression of disease-deteriorating genes. These findings foreshadow the potential of TertKI as an extraordinary rejuvenation force, promising not only longevity but also rejuvenation in skin and intestinal aging.
Collapse
Affiliation(s)
- Tian‐Yi Zhu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Po Hu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - Yu‐Hui Mi
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - Jun‐Li Zhang
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - An‐Na Xu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - Ming‐Tong Gao
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - Ying‐Ying Zhang
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - San‐Bing Shen
- Regenerative Medicine Institute, School of MedicineUniversity of GalwayGalwayIreland
| | - Guang‐Ming Yang
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - Yang Pan
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| |
Collapse
|
37
|
Wang Y, Zhou H, Ju S, Dong X, Zheng C. The solid tumor microenvironment and related targeting strategies: a concise review. Front Immunol 2025; 16:1563858. [PMID: 40207238 PMCID: PMC11979131 DOI: 10.3389/fimmu.2025.1563858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
The malignant tumor is a serious disease threatening human life. Increasing studies have confirmed that the tumor microenvironment (TME) is composed of a variety of complex components that precisely regulate the interaction of tumor cells with other components, allowing tumor cells to continue to proliferate, resist apoptosis, evade immune surveillance and clearance, and metastasis. However, the characteristics of each component and their interrelationships remain to be deeply understood. To target TME, it is necessary to deeply understand the role of various components of TME in tumor growth and search for potential therapeutic targets. Herein, we innovatively classify the TME into physical microenvironment (such as oxygen, pH, etc.), mechanical microenvironment (such as extracellular matrix, blood vessels, etc.), metabolic microenvironment (such as glucose, lipids, etc.), inflammatory microenvironment and immune microenvironment. We introduce a concise but comprehensive classification of the TME; depict the characteristics of each component in TME; summarize the existing methods for detecting each component in TME; highlight the current strategies and potential therapeutic targets for TME; discuss current challenges in presenting TME and its clinical applications; and provide our prospect on the future research direction and clinical benefits of TME.
Collapse
Affiliation(s)
- Yingliang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, China
| | - Huimin Zhou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuguang Ju
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, China
| | - Xiangjun Dong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, China
| |
Collapse
|
38
|
Malakpour-Permlid A, Rodriguez MM, Zór K, Boisen A, Oredsson S. Advancing humanized 3D tumor modeling using an open access xeno-free medium. FRONTIERS IN TOXICOLOGY 2025; 7:1529360. [PMID: 40206700 PMCID: PMC11979229 DOI: 10.3389/ftox.2025.1529360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
Despite limitations like poor mimicry of the human cell microenvironment, contamination risks, and batch-to-batch variation, cell culture media with animal-derived components such as fetal bovine serum (FBS) have been used in vitro for decades. Moreover, a few reports have used animal-product-free media in advanced high throughput three-dimensional (3D) models that closely mimic in vivo conditions. To address these challenges, we combined a high throughput 3D model with an open access, FBS-free chemically-defined medium, Oredsson Universal Replacement (OUR) medium, to create a more realistic 3D in vitro drug screening system. To reach this goal, we report the gradual adaptation procedure of three cell lines: human HeLa cervical cancer cells, human MCF-7 breast cancer cells, and cancer-associated fibroblasts (CAFs) from FBS-supplemented medium to OUR medium, while closely monitoring cell attachment, proliferation, and morphology. Our data based on cell morphology studies with phase contrast and real-time live imaging demonstrates a successful adaptation of cells to proliferate in OUR medium showing sustained growth kinetics and maintaining population doubling time. The morphological analysis demonstrates that HeLa and MCF-7 cells displayed altered cell morphology, with a more spread-out cytoplasm and significantly lower circularity index, while CAFs remained unaffected when grown in OUR medium. 3D fiber scaffolds facilitated efficient cell distribution and ingrowth when grown in OUR medium, where cells expand and infiltrate into the depths of 3D scaffolds. Drug toxicity evaluation of the widely used anti-cancer drug paclitaxel (PTX) revealed that cells grown in 3D cultures with OUR medium showed significantly lower sensitivity to PTX, which was consistent with the FBS-supplemented medium. We believe this study opens the way and encourages the scientific community to use animal product-free cell culture medium formulations for research and toxicity testing.
Collapse
Affiliation(s)
- Atena Malakpour-Permlid
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Manuel Marcos Rodriguez
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Kinga Zór
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- BioInnovation Institute Foundation, Copenhagen, Denmark
| | - Anja Boisen
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | |
Collapse
|
39
|
Quan T, Qin Z, He T, Fisher GJ. Integrin α11β1 as a Key Collagen Receptor in Human Skin Dermis: Insight into Fibroblast Function and Skin Dermal Aging. J Invest Dermatol 2025:S0022-202X(25)00364-1. [PMID: 40139564 DOI: 10.1016/j.jid.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025]
Abstract
Collagen-binding integrins play a crucial role in facilitating fibroblast-collagen interactions and regulating cellular functions. In this study, we identified that among 4 collagen-binding integrins, integrin α11 was the predominant type in human skin dermal fibroblasts and that loss of integrin α11 expression contributed to skin dermal aging. Integrin α11β1 was critical for regulating fibroblast-collagen interactions, including cell adhesion, spreading, morphology, mechanical tension, and the production of collagenous extracellular matrix. TGF-β was recognized as the primary regulator of integrin α11 expression. Notably, dermal fibroblasts in aged human skin demonstrated impaired TGF-β signaling, which coincided with a loss of integrin α11 expression, whereas the expression of other collagen-binding integrins remained unchanged. Similarly, in senescent dermal fibroblasts in vitro, impaired TGF-β signaling was associated with a significant reduction in integrin α11 expression, whereas other collagen-binding integrins were upregulated or unaffected. Furthermore, collapsed dermal fibroblasts, a key characteristic of dermal fibroblasts in aged human skin, specifically downregulated integrin α11, whereas other collagen-binding integrins were upregulated or remained unchanged. These findings suggest a negative feedback loop in which an impaired TGF-β-integrin α11β1 axis and fibroblast collapse promote dermal aging in human skin. This self-reinforcing cycle reflects the progressive and unidirectional nature of biological aging.
Collapse
Affiliation(s)
- Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | - Zhaoping Qin
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tianyuan He
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gary J Fisher
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
40
|
Zhao Z, Zhu Y, Wan D. Exercise and tissue fibrosis: recent advances in therapeutic potential and molecular mechanisms. Front Endocrinol (Lausanne) 2025; 16:1557797. [PMID: 40182630 PMCID: PMC11965137 DOI: 10.3389/fendo.2025.1557797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Tissue fibrosis represents an aberrant repair process, occurring because of prolonged injury, sustained inflammatory response, or metabolic disorders. It is characterized by an excessive accumulation of extracellular matrix (ECM), resulting in tissue hardening, structural remodeling, and loss of function. This pathological phenomenon is a common feature in the end stage of numerous chronic diseases. Despite the advent of novel therapeutic modalities, including antifibrotic agents, these have only modest efficacy in reversing established fibrosis and are associated with adverse effects. In recent years, a growing body of research has demonstrated that exercise has significant benefits and potential in the treatment of tissue fibrosis. The anti-fibrotic effects of exercise are mediated by multiple mechanisms, including direct inhibition of fibroblast activation, reduction in the expression of pro-fibrotic factors such as transforming growth factor-β (TGF-β) and slowing of collagen deposition. Furthermore, exercise has been demonstrated to assist in maintaining the dynamic equilibrium of tissue repair, thereby indirectly reducing tissue damage and fibrosis. It can also help maintain the dynamic balance of tissue repair by improving metabolic disorders, exerting anti-inflammatory and antioxidant effects, regulating cellular autophagy, restoring mitochondrial function, activating stem cell activity, and reducing cell apoptosis, thereby indirectly alleviating tissue. This paper presents a review of the therapeutic potential of exercise and its underlying mechanisms for the treatment of a range of tissue fibrosis, including cardiac, pulmonary, renal, hepatic, and skeletal muscle. It offers a valuable reference point for non-pharmacological intervention strategies for the comprehensive treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Physical Education, Anyang Normal University, Anyang, Henan, China
| | - Yongjia Zhu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Dongfeng Wan
- School of Health, Shanghai Normal University Tianhua College, Shanghai, China
| |
Collapse
|
41
|
Tiskratok W, Chuinsiri N, Limraksasin P, Kyawsoewin M, Jitprasertwong P. Extracellular Matrix Stiffness: Mechanotransduction and Mechanobiological Response-Driven Strategies for Biomedical Applications Targeting Fibroblast Inflammation. Polymers (Basel) 2025; 17:822. [PMID: 40292716 PMCID: PMC11946729 DOI: 10.3390/polym17060822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
The extracellular matrix (ECM) is a dynamic network providing mechanical and biochemical cues that regulate cellular behavior. ECM stiffness critically influences fibroblasts, the primary ECM producers, particularly in inflammation and fibrosis. This review explores the role of ECM stiffness in fibroblast-driven inflammation and tissue remodeling, focusing on the physicochemical and biological mechanisms involved. Engineered materials, hydrogels, and polydimethylsiloxane (PDMS) are highlighted for replicating tissue-specific stiffness, enabling precise control over cell-matrix interactions. The surface functionalization of substrate materials, including collagen, polydopamine, and fibronectin, enhances bioactivity and fibroblast adhesion. Key mechanotransduction pathways, such as integrin signaling and YAP/TAZ activation, are related to regulating fibroblast behaviors and inflammatory responses. The role of fibroblasts in driving chronic inflammatory diseases emphasizes their therapeutic potentials. Advances in ECM-modifying strategies, including tunable biomaterials and hydrogel-based therapies, are explored for applications in tissue engineering, drug delivery, anti-inflammatory treatments, and diagnostic tools for the accurate diagnosis and prognosis of ECM stiffness-related inflammatory diseases. This review integrates mechanobiology with biomedical innovations, providing a comprehensive prognosis of fibroblast responses to ECM stiffness and outlining future directions for targeted therapies.
Collapse
Affiliation(s)
- Watcharaphol Tiskratok
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (N.C.); (P.J.)
- Oral Health Centre, Suranaree University of Technology Hospital, Nakhon Ratchasima 30000, Thailand
| | - Nontawat Chuinsiri
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (N.C.); (P.J.)
- Oral Health Centre, Suranaree University of Technology Hospital, Nakhon Ratchasima 30000, Thailand
| | - Phoonsuk Limraksasin
- Center of Excellence for Dental Stem Cell Biology, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (P.L.); (M.K.)
| | - Maythwe Kyawsoewin
- Center of Excellence for Dental Stem Cell Biology, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (P.L.); (M.K.)
| | - Paiboon Jitprasertwong
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (N.C.); (P.J.)
- Oral Health Centre, Suranaree University of Technology Hospital, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
42
|
Lei L, Xiang YX, Luo ML, Zhang ZY, Wu HW, Tang C, Cui TJ, Zhang XM, Wang XH, Delic D, Klein T, Liu Y, Krämer BK, Zheng ZH, Lu YP, Hocher B, Zhu T. Intercellular Communication Network of CellChat Uncovers Mechanisms of Kidney Fibrosis Based on Single-Cell RNA Sequencing. Kidney Blood Press Res 2025; 50:276-299. [PMID: 40112793 DOI: 10.1159/000545209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a global health concern, with renal fibrosis being a major pathological feature. Empagliflozin (Empa), a sodium-glucose co-transporter-2 inhibitor, has shown promise in protecting the kidney. This study aimed to investigate the effects of Empa on renal fibrosis in a nondiabetic CKD model and to elucidate the underlying mechanisms. METHODS We established a CKD model using 5/6 nephrectomy (5/6 Nx) rats and divided them into three groups: placebo-treated sham surgery rats, placebo-treated 5/6 Nx rats, and Empa-treated 5/6 Nx rats. Kidney function was assessed by measuring blood urea nitrogen, serum creatinine, and urinary albumin-to-creatinine ratio. Renal fibrosis was evaluated histologically. Single-cell RNA sequencing (scRNA-seq) was performed to analyze intercellular communication networks and identify alterations in ligand-receptor pairs and signaling pathways involved in fibrosis. RESULTS Empa treatment significantly improved kidney function and reduced renal interstitial fibrosis in 5/6 Nx rats. scRNA-seq revealed that Empa modulated the TGF-β signaling pathway, inhibited intercellular communication, and reduced the expression of fibrotic genes such as COLLAGEN, FN1, THBS, and LAMININ. Furthermore, Empa downregulated GRN gene expression, weakened signal transmission in the MIF pathway, consequently reduced the interaction between M2 macrophages and other cell types, such as endothelial cells, fibroblasts, and mesangial cells. CONCLUSION This study elucidates the potential mechanisms by which Empa slows the progression of renal fibrosis in nondiabetic CKD. By reducing the number of M2 macrophages and inhibiting signal transduction in both pro-inflammatory and fibrotic pathways, Empa modulates the intercellular communication network in renal cells, offering a promising therapeutic strategy for CKD management.
Collapse
Affiliation(s)
- Lei Lei
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yun-Xiu Xiang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Mao-Lin Luo
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Endocrinology and Metabolism, People's Hospital of Liwan District, Guangzhou, China
| | - Ze-Yu Zhang
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Hong-Wei Wu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Tian-Jiao Cui
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xue-Mei Zhang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiao-Hua Wang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Denis Delic
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Thomas Klein
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Yvonne Liu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany,
- Medical Faculty, Charité Universitätsmedizin Berlin, Berlin, Germany,
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Zhi-Hua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yong-Ping Lu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Institute of Medical Diagnostics, IMD, Berlin, Germany
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- School of Medicine, Central South University, Changsha, China
| | - Ting Zhu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
43
|
Sun Y, Hamlin AJ, Schwarzbauer JE. Fibronectin matrix assembly at a glance. J Cell Sci 2025; 138:jcs263834. [PMID: 40130407 PMCID: PMC12050093 DOI: 10.1242/jcs.263834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
The organization and mechanics of extracellular matrix (ECM) protein polymers determine tissue structure and function. Secreted ECM components are assembled into polymers via a cell-mediated process. The specific mechanisms that cells use for assembly are crucial for generating tissue-appropriate matrices. Fibronectin (FN) is a ubiquitous and abundant ECM protein that is assembled into a fibrillar matrix by a receptor-mediated process, and the FN matrix provides a foundation for incorporation of many other proteins into the ECM. In this Cell Science at a Glance article and the accompanying poster, we describe the domain organization of FN and the events that initiate and propagate a stable insoluble network of FN fibrils. We also discuss intracellular pathways that regulate FN assembly and the impact of changes in assembly on disease progression.
Collapse
Affiliation(s)
- Yu Sun
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Aaron J. Hamlin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
44
|
Emerson MJ, Willacy O, Madsen CD, Reuten R, Brøchner CB, Lund TK, Dahl AB, Jensen THL, Erler JT, Mayorca-Guiliani AE. Machine learning identifies remodeling patterns in human lung extracellular matrix. Acta Biomater 2025; 195:94-103. [PMID: 39746529 DOI: 10.1016/j.actbio.2024.12.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Organ function depends on the three-dimensional integrity of the extracellular matrix (ECM). The structure resulting from the location and association of ECM components is a central regulator of cell behavior, but a dearth of matrix-specific analysis keeps it unresolved. Here, we deploy a high-resolution, 3D ECM mapping method and design a machine-learning powered pipeline to detect and characterize ECM architecture during health and disease. We deploy these tools in the human lung, an organ heavily dependent on ECM structure that can host diseases with different histopathologies. We analyzed segments from healthy, emphysema, usual interstitial pneumonia, sarcoidosis, and COVID-19 patients, and produced a remodeling signature per disease and a health/disease probability map from which we inferred the architecture of healthy and diseased ECM. Our methods demonstrate that exaggerated matrix deposition, or fibrosis, is not a single phenomenon, but a series of disease-specific alterations. STATEMENT OF SIGNIFICANCE: The extracellular matrix, or ECM, is the foremost biomaterial. It shapes and supports all tissues while regulating all cells. ECM structure is intricate, yet precise: each organ, at every stage, has a specific ECM structure. During disease, tissues suffer from structural changes that accelerate and perpetuate illness by dysregulating cells. Both healthy and diseased ECM structures are of great biomedical importance, but surprisingly, they have not been mapped in detail. Here, we present a method that combines tissue engineering with machine learning to reveal, map and analyze ECM structures, applied it to pulmonary diseases that kill millions every year. This method can bring objectivity and a higher degree of confidence into the diagnosis of pulmonary disease. In addition the amount of tissue needed for a firm diagnosis may be much smaller than required for manual microscopy evaluation.
Collapse
Affiliation(s)
- Monica J Emerson
- Section for Visual Computing, Department of Applied Mathematics and Computer Science, Technical University of Denmark. Kongens Lyngby, Denmark; Currently at Digital Science and Innovation, Novo Nordisk A/S, Måløv, Denmark
| | - Oliver Willacy
- Biotech Research and Innovation Center, Faculty of Health Sciences, University of Copenhagen. Copenhagen, Denmark; Department of Pathology, Rigshospitalet, University Hospital of Copenhagen. Copenhagen, Denmark
| | - Chris D Madsen
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University. Lund, Sweden; Currently at Symphogen A/S, Ballerup, Denmark
| | - Raphael Reuten
- Biotech Research and Innovation Center, Faculty of Health Sciences, University of Copenhagen. Copenhagen, Denmark; Currently at Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg. Freiburg, Germany
| | - Christian B Brøchner
- Department of Pathology, Rigshospitalet, University Hospital of Copenhagen. Copenhagen, Denmark
| | - Thomas K Lund
- Section for Lung Transplantation, Department of Cardiology, Rigshospitalet, University Hospital of Copenhagen. Copenhagen, Denmark
| | - Anders B Dahl
- Section for Visual Computing, Department of Applied Mathematics and Computer Science, Technical University of Denmark. Kongens Lyngby, Denmark
| | - Thomas H L Jensen
- Department of Pathology, Rigshospitalet, University Hospital of Copenhagen. Copenhagen, Denmark.
| | - Janine T Erler
- Biotech Research and Innovation Center, Faculty of Health Sciences, University of Copenhagen. Copenhagen, Denmark.
| | - Alejandro E Mayorca-Guiliani
- Biotech Research and Innovation Center, Faculty of Health Sciences, University of Copenhagen. Copenhagen, Denmark; Currently at Nordic Bioscience A/S. Herlev, Denmark.
| |
Collapse
|
45
|
Zhou D, Li X, Liu W, Zhang M, Cheng Y, Xu Z, Gao J, Wang Y. A novel approach for engineering DHCM/GelMA microgels: application in hepatocellular carcinoma cell encapsulation and chemoresistance research. Front Bioeng Biotechnol 2025; 13:1564543. [PMID: 40161518 PMCID: PMC11949893 DOI: 10.3389/fbioe.2025.1564543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Liver cancer, a highly aggressive malignancy, continues to present significant challenges in therapeutic management due to its pronounced chemoresistance. This resistance, which undermines the efficacy of conventional chemotherapy and targeted therapies, is driven by multifaceted mechanisms, with increasing emphasis placed on the protective role of the tumor microenvironment (TME). The hepatocellular carcinoma extracellular matrix (ECM), a primary non-cellular component of the TME, has emerged as a critical regulator in cancer progression and drug resistance, particularly in hepatocellular carcinoma cell (HCC). In this study, a hybrid biomimetic hydrogel was engineered by integrating decellularized hepatocellular carcinoma matrix (DHCM) with gelatin methacrylate (GelMA) precursors. This composite DHCM/GelMA hydrogel was designed to replicate the physicochemical and functional properties of the hepatocellular carcinoma ECM, thereby offering a biomimetic platform to explore the interactions between HCCs and their microenvironment. Leveraging a custom-designed microfluidic 3D printing platform, we achieved high-throughput fabrication of HCC-encapsulated DHCM/GelMA microgels, characterized by enhanced uniformity, biocompatibility, and scalability. These microgels facilitated the construction of hepatocellular carcinoma microtissues, which were subsequently employed for chemoresistance studies. Our findings revealed that DHCM/GelMA microgels closely mimic the hepatocellular carcinoma tumor microenvironment, effectively recapitulating key features of ECM-mediated drug resistance. Mechanistic studies further demonstrated that DHCM significantly upregulates the expression of Aquaporin 3 (AQP3) in the encapsulated HCCs. This upregulation potentially activates mTOR signaling-associated autophagy pathways, thereby enhancing chemoresistance in HCCs. These biomimetic models provide a robust and versatile platform for studying the underlying mechanisms of drug resistance and evaluating therapeutic interventions. This innovative approach highlights the potential of DHCM/GelMA microgels as a transformative tool in cancer-associated tissue engineering and anticancer drug screening. By enabling detailed investigations into the role of ECM in chemoresistance, this study contributes to advancing therapeutic research and offers promising strategies to overcome drug resistance, ultimately improving clinical outcomes in liver cancer treatment.
Collapse
Affiliation(s)
- Dandan Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Geriatric Medicine, Jiulongpo People’s Hospital of Chongqing, Chongqing, China
| | - Xiaoxiao Li
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wencun Liu
- Department of Radiology, Jiulongpo People’s Hospital of Chongqing, Chongqing, China
| | - Mingjun Zhang
- Department of Clinical Laboratory, Jiulongpo People’s Hospital of Chongqing, Chongqing, China
| | - Ying Cheng
- Department of Clinical Laboratory, Jiulongpo People’s Hospital of Chongqing, Chongqing, China
| | - Zhousong Xu
- Department of Clinical Laboratory, Jiulongpo People’s Hospital of Chongqing, Chongqing, China
| | - Jian Gao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiyang Wang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
46
|
Kim HJ, Kim H, Choi YH, Lee ES, Kim YH, Lee GH, Chae HG, Eom Y. Rapid Fabrication of Tendon-inspired Ultrastrong, Water-rich Hydrogel Fibers: Synergistic Engineering of Cyano- p-aramid Nanofibers and Poly(vinyl alcohol). ACS NANO 2025; 19:8316-8327. [PMID: 39988896 DOI: 10.1021/acsnano.4c18686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Load-bearing fibrous tissues, like tendons, have remarkable strength with high water content (∼60%) due to the anisotropic network of collagen fibers. However, the scalability of biomimetic anisotropic hydrogels is limited by time-intensive fabrication processes involving cross-linking and stretching, often spanning several hours to days. Here, we present a rapid, scalable approach for fabricating tendon-mimetic hydrogel fibers within 1 min using the synergistic engineering of cyano-p-aramid nanofibers (CY-ANFs) and poly(vinyl alcohol) (PVA). Through continuous air-gap spinning, the formation of the anisotropic CY-ANF network drives instant gelation, producing hundreds of meters of hydrogel fibers without additional gelation treatment. From the perspective of properties, the hydrophilic PVA matrix affords flexibility, while the hydrophobic CY-ANF network provides a nonswelling feature and load-bearing ability, resulting in ultrastrong, water-rich hydrogel fibers. These hydrogel fibers exhibit a water content exceeding 80 wt %, along with exceptional strength (∼17.9 MPa), surpassing the mechanical properties of natural tendons (strength and modulus of approximately 10 and 100 MPa, respectively). Lengthy hydrogel fibers are integrated into larger-sized fabrics by knitting or weaving while also possessing strain-sensing capabilities. With excellent biocompatibility, these hydrogel fibers are promising candidates for artificial fibrous tissues and various biotechnological applications.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Department of Organic and Nano Engineering, Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyeonjeong Kim
- Department of Organic and Nano Engineering, Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
| | - Yun Hyeong Choi
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Eun Seong Lee
- Department of Biomedical Chemical Engineering, The Catholic University of Korea (CUK), Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Yong Hyeon Kim
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Ga-Hyeun Lee
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Han Gi Chae
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Youngho Eom
- Department of Organic and Nano Engineering, Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
47
|
Gao H, Pol M, Makara CA, Song J, Zhang H, Zou X, Benson JM, Burris DL, Fox JM, Jia X. Bio-orthogonal tuning of matrix properties during 3D cell culture to induce morphological and phenotypic changes. Nat Protoc 2025; 20:727-778. [PMID: 39501109 PMCID: PMC11898115 DOI: 10.1038/s41596-024-01066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/21/2024] [Indexed: 03/12/2025]
Abstract
Described herein is a protocol for producing a synthetic extracellular matrix that can be modified in situ during three-dimensional cell culture. The hydrogel platform is established using modular building blocks employing bio-orthogonal tetrazine (Tz) ligation with slow (norbornene, Nb) and fast (trans-cyclooctene, TCO) dienophiles. A cell-laden gel construct is created via the slow, off-stoichiometric Tz/Nb reaction. After a few days of culture, matrix properties can be altered by supplementing the cell culture media with TCO-tagged molecules through the rapid reaction with the remaining Tz groups in the network at the gel-liquid interface. As the Tz/TCO reaction is faster than molecular diffusion, matrix properties can be modified in a spatiotemporal fashion simply by altering the identity of the diffusive species and the diffusion time/path. Our strategy does not interfere with native biochemical processes nor does it require external triggers or a second, independent chemistry. The biomimetic three-dimensional cultures can be analyzed by standard molecular and cellular techniques and visualized by confocal microscopy. We have previously used this method to demonstrate how in situ modulation of matrix properties induces epithelial-to-mesenchymal transition, elicits fibroblast transition from mesenchymal stem cells and regulates myofibroblast differentiation. Following the detailed procedures, individuals with a bachelor's in science and engineering fields can successfully complete the protocol in 4-5 weeks. This protocol can be applied to model tissue morphogenesis and disease progression and it can also be used to establish engineered constructs with tissue-like anisotropy and tissue-specific functions.
Collapse
Affiliation(s)
- Hanyuan Gao
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Mugdha Pol
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Colette A Makara
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Jiyeon Song
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - He Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Xiaoyu Zou
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Jamie M Benson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - David L Burris
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Joseph M Fox
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA.
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.
| |
Collapse
|
48
|
Kandasamy N, Palanivel T, Selvaraj V, Dhanasekaran A. Designing lysyl hydroxylase inhibitors for oral submucous fibrosis - Insights from molecular dynamics. Int J Biol Macromol 2025; 295:139304. [PMID: 39743109 DOI: 10.1016/j.ijbiomac.2024.139304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Alpha-ketoglutarate (αKG) dependent Lysyl hydroxylase (LH) is a critical enzyme in the post-translational conversion of lysine into hydroxylysine in collagen triple helix and telopeptide regions. Overexpression of LH increases collagen hydroxylation and covalent cross-linkage, causing fibrosis. Currently, no drugs are available to inhibit LH potentially. Virtual screening of the Zinc database was employed to identify new leads. They were docked using Glide. Lead1 complex exhibits a notably superior docking score compared to other leads. This complex hinders iron stabilization by engaging with the HXD..Xn..H motif and competitively inhibiting 2OG binding at the catalytic site via interactions with Cys691 and Arg729 by forming a salt bridge. Molecular dynamics simulations over a 500 ns time scale and molecular mechanics Poisson-Boltzmann surface area calculations illustrate the stable binding of Leads. DCCA analysis finds the coordinated residue motions and the influence of the second coordinating sphere in long-range interactions. In-silico results were validated by quantifying the amount of collagen in zebrafish through histology and hydroxyproline assay. These findings demonstrated a reduction in collagen deposition in the treated samples compared to the positive control. This computational study unveiled insights into how leads may impede collagen lysine hydroxylation and potentially impact collagen-related processes.
Collapse
Affiliation(s)
| | | | - Vimalraj Selvaraj
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| | | |
Collapse
|
49
|
Zhao J, Zhi Y, Ren H, Wang J, Zhao Y. Emerging biotechnologies for engineering liver organoids. Bioact Mater 2025; 45:1-18. [PMID: 39588483 PMCID: PMC11585797 DOI: 10.1016/j.bioactmat.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/02/2024] [Accepted: 11/02/2024] [Indexed: 11/27/2024] Open
Abstract
The engineering construction of the liver has attracted enormous attention. Organoids, as emerging miniature three-dimensional cultivation units, hold significant potential in the biomimetic simulation of liver structure and function. Despite notable successes, organoids still face limitations such as high variability and low maturity. To overcome these challenges, engineering strategies have been established to maintain organoid stability and enhance their efficacy, laying the groundwork for the development of advanced liver organoids. The present review comprehensively summarizes the construction of engineered liver organoids and their prospective applications in biomedicine. Initially, we briefly present the latest research progress on matrix materials that maintain the three-dimensional morphology of organoids. Next, we discuss the manipulative role of engineering technologies in organoid assembly. Additionally, we outline the impact of gene-level regulation on organoid growth and development. Further, we introduce the applications of liver organoids in disease modeling, drug screening and regenerative medicine. Lastly, we overview the current obstacles and forward-looking perspectives on the future of engineered liver organoids. We anticipate that ongoing innovations in engineered liver organoids will lead to significant advancements in medical applications.
Collapse
Affiliation(s)
- Junqi Zhao
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yue Zhi
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuanjin Zhao
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518038, China
| |
Collapse
|
50
|
Zhou X, Tian X, Chen J, Li Y, Lv N, Liu H, Liu T, Yang H, Chen X, Xu Y, He F. Youthful Stem Cell Microenvironments: Rejuvenating Aged Bone Repair Through Mitochondrial Homeostasis Remodeling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409644. [PMID: 39823536 PMCID: PMC11905074 DOI: 10.1002/advs.202409644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/15/2024] [Indexed: 01/19/2025]
Abstract
Extracellular matrix (ECM) derived from mesenchymal stem cells regulates antioxidant properties and bone metabolism by providing a favorable extracellular microenvironment. However, its functional role and molecular mechanism in mitochondrial function regulation and aged bone regeneration remain insufficiently elucidated. This proteomic analysis has revealed a greater abundance of proteins supporting mitochondrial function in the young ECM (Y-ECM) secreted by young bone marrow-derived mesenchymal stem cells (BMMSCs) compared to the aged ECM (A-ECM). Further studies demonstrate that Y-ECM significantly rejuvenates mitochondrial energy metabolism in adult BMMSCs (A-BMMSCs) through the promotion of mitochondrial respiratory functions and amelioration of oxidative stress. A-BMMSCs cultured on Y-ECM exhibited enhanced multi-lineage differentiation potentials in vitro and ectopic bone formation in vivo. Mechanistically, silencing of silent information regulator type 3 (SIRT3) gene abolished the protective impact of Y-ECM on A-BMMSCs. Notably, a novel composite biomaterial combining hyaluronic acid methacrylate hydrogel microspheres with Y-ECM is developed, which yielded substantial improvements in the healing of bone defects in an aged rat model. Collectively, these findings underscore the pivotal role of Y-ECM in maintaining mitochondrial redox homeostasis and present a promising therapeutic strategy for the repair of aged bone defects.
Collapse
Affiliation(s)
- Xinfeng Zhou
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteMOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Xin Tian
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteMOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Jianan Chen
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteMOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Yantong Li
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteMOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Nanning Lv
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteMOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Hao Liu
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteMOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Tao Liu
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteMOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Huilin Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteMOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| | - Xi Chen
- Department of PathologyThe Third Affiliated Hospital of Soochow UniversityChangzhouJiangsu213000China
| | - Yong Xu
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteMOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
- Department of OrthopaedicsThe Third Affiliated Hospital of Soochow UniversityChangzhouJiangsu213000China
| | - Fan He
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteMOE Key Laboratory of Geriatric Diseases and ImmunologySuzhou Medical CollegeSoochow UniversitySuzhouJiangsu215000China
| |
Collapse
|