1
|
Le MH, Morgan B, Lu MY, Moctezuma V, Burgos O, Huang JP. The genomes of Hercules beetles reveal putative adaptive loci and distinct demographic histories in pristine North American forests. Mol Ecol Resour 2024; 24:e13908. [PMID: 38063363 DOI: 10.1111/1755-0998.13908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/14/2023] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
Beetles, despite their remarkable biodiversity and a long history of research, remain lacking in reference genomes annotated with structural variations in loci of adaptive significance. We sequenced and assembled high-quality chromosome-level genomes of four Hercules beetles which exhibit divergence in male horn size and shape and body colouration. The four Hercules beetle genomes were assembled to 11 pseudo-chromosomes, where the three genomes assembled using Nanopore data (Dynastes grantii, D. hyllus and D. tityus) were mapped to the genome assembled using PacBio + Hi-C data (D. maya). We demonstrated a striking similarity in genome structure among the four species. This conservative genome structure may be attributed to our use of the D. maya assembly as the reference; however, it is worth noting that such a conservative genome structure is a recurring phenomenon among scarab beetles. We further identified homologues of nine and three candidate-gene families that may be associated with the evolution of horn structure and body colouration respectively. Structural variations in Scr and Ebony2 were detected and discussed for their putative impacts on generating morphological diversity in beetles. We also reconstructed the demographic histories of the four Hercules beetles using heterozygosity information from the diploid genomes. We found that the demographic histories of the beetles closely recapitulated historical changes in suitable forest habitats driven by climate shifts.
Collapse
Affiliation(s)
- My-Hanh Le
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Brett Morgan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - Mei-Yeh Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Victor Moctezuma
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala de Xicohténcatl, Tlaxcala, Mexico
| | - Oscar Burgos
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
2
|
Flynn JM, Ahmed-Braimah YH, Long M, Wing RA, Clark AG. High-Quality Genome Assemblies Reveal Evolutionary Dynamics of Repetitive DNA and Structural Rearrangements in the Drosophila virilis Subgroup. Genome Biol Evol 2024; 16:evad238. [PMID: 38159044 PMCID: PMC10783647 DOI: 10.1093/gbe/evad238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024] Open
Abstract
High-quality genome assemblies across a range of nontraditional model organisms can accelerate the discovery of novel aspects of genome evolution. The Drosophila virilis group has several attributes that distinguish it from more highly studied species in the Drosophila genus, such as an unusual abundance of repetitive elements and extensive karyotype evolution, in addition to being an attractive model for speciation genetics. Here, we used long-read sequencing to assemble five genomes of three virilis group species and characterized sequence and structural divergence and repetitive DNA evolution. We find that our contiguous genome assemblies allow characterization of chromosomal arrangements with ease and can facilitate analysis of inversion breakpoints. We also leverage a small panel of resequenced strains to explore the genomic pattern of divergence and polymorphism in this species and show that known demographic histories largely predicts the extent of genome-wide segregating polymorphism. We further find that a neo-X chromosome in Drosophila americana displays X-like levels of nucleotide diversity. We also found that unusual repetitive elements were responsible for much of the divergence in genome composition among species. Helitron-derived tandem repeats tripled in abundance on the Y chromosome in D. americana compared to Drosophila novamexicana, accounting for most of the difference in repeat content between these sister species. Repeats with characteristics of both transposable elements and satellite DNAs expanded by 3-fold, mostly in euchromatin, in both D. americana and D. novamexicana compared to D. virilis. Our results represent a major advance in our understanding of genome biology in this emerging model clade.
Collapse
Affiliation(s)
- Jullien M Flynn
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Manyuan Long
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Rod A Wing
- School of Plant Sciences, Arizona Genomics Institute, University of Arizona, Tucson, AZ, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
3
|
Auradkar A, Guichard A, Kaduwal S, Sneider M, Bier E. tgCRISPRi: efficient gene knock-down using truncated gRNAs and catalytically active Cas9. Nat Commun 2023; 14:5587. [PMID: 37696787 PMCID: PMC10495392 DOI: 10.1038/s41467-023-40836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023] Open
Abstract
CRISPR-interference (CRISPRi), a highly effective method for silencing genes in mammalian cells, employs an enzymatically dead form of Cas9 (dCas9) complexed with one or more guide RNAs (gRNAs) with 20 nucleotides (nt) of complementarity to transcription initiation sites of target genes. Such gRNA/dCas9 complexes bind to DNA, impeding transcription of the targeted locus. Here, we present an alternative gene-suppression strategy using active Cas9 complexed with truncated gRNAs (tgRNAs). Cas9/tgRNA complexes bind to specific target sites without triggering DNA cleavage. When targeted near transcriptional start sites, these short 14-15 nts tgRNAs efficiently repress expression of several target genes throughout somatic tissues in Drosophila melanogaster without generating any detectable target site mutations. tgRNAs also can activate target gene expression when complexed with a Cas9-VPR fusion protein or modulate enhancer activity, and can be incorporated into a gene-drive, wherein a traditional gRNA sustains drive while a tgRNA inhibits target gene expression.
Collapse
Affiliation(s)
- Ankush Auradkar
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Annabel Guichard
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Saluja Kaduwal
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Marketta Sneider
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA
| | - Ethan Bier
- Department of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA.
- Tata Institute for Genetics and Society - UCSD, La Jolla, USA.
| |
Collapse
|
4
|
Flynn JM, Ahmed-Braimah YH, Long M, Wing RA, Clark AG. High quality genome assemblies reveal evolutionary dynamics of repetitive DNA and structural rearrangements in the Drosophila virilis sub-group. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553086. [PMID: 37645834 PMCID: PMC10462019 DOI: 10.1101/2023.08.13.553086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
High-quality genome assemblies across a range of non-traditional model organisms can accelerate the discovery of novel aspects of genome evolution. The Drosophila virilis group has several attributes that distinguish it from more highly studied species in the Drosophila genus, such as an unusual abundance of repetitive elements and extensive karyotype evolution, in addition to being an attractive model for speciation genetics. Here we used long-read sequencing to assemble five genomes of three virilis group species and characterized sequence and structural divergence and repetitive DNA evolution. We find that our contiguous genome assemblies allow characterization of chromosomal arrangements with ease and can facilitate analysis of inversion breakpoints. We also leverage a small panel of resequenced strains to explore the genomic pattern of divergence and polymorphism in this species and show that known demographic histories largely predicts the extent of genome-wide segregating polymorphism. We further find that a neo-X chromosome in D. americana displays X-like levels of nucleotide diversity. We also found that unusual repetitive elements were responsible for much of the divergence in genome composition among species. Helitron-derived tandem repeats tripled in abundance on the Y chromosome in D. americana compared to D. novamexicana, accounting for most of the difference in repeat content between these sister species. Repeats with characteristics of both transposable elements and satellite DNAs expanded by three-fold, mostly in euchromatin, in both D. americana and D. novamexicana compared to D. virilis. Our results represent a major advance in our understanding of genome biology in this emerging model clade.
Collapse
Affiliation(s)
- Jullien M. Flynn
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Manyuan Long
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Rod A. Wing
- School of Plant Sciences, Arizona Genomics Institute, University of Arizona, Tucson, AZ
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
5
|
Freoa L, Chevin LM, Christol P, Méléard S, Rera M, Véber A, Gibert JM. Drosophilids with darker cuticle have higher body temperature under light. Sci Rep 2023; 13:3513. [PMID: 36864153 PMCID: PMC9981618 DOI: 10.1038/s41598-023-30652-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Cuticle pigmentation was shown to be associated with body temperature for several relatively large species of insects, but it was questioned for small insects. Here we used a thermal camera to assess the association between drosophilid cuticle pigmentation and body temperature increase when individuals are exposed to light. We compared mutants of large effects within species (Drosophila melanogaster ebony and yellow mutants). Then we analyzed the impact of naturally occurring pigmentation variation within species complexes (Drosophila americana/Drosophila novamexicana and Drosophila yakuba/Drosophila santomea). Finally we analyzed lines of D. melanogaster with moderate differences in pigmentation. We found significant differences in temperatures for each of the four pairs we analyzed. The temperature differences appeared to be proportional to the differently pigmented area: between Drosophila melanogaster ebony and yellow mutants or between Drosophila americana and Drosophila novamexicana, for which the whole body is differently pigmented, the temperature difference was around 0.6 °C ± 0.2 °C. By contrast, between D. yakuba and D. santomea or between Drosophila melanogaster Dark and Pale lines, for which only the posterior abdomen is differentially pigmented, we detected a temperature difference of about 0.14 °C ± 0.10 °C. This strongly suggests that cuticle pigmentation has ecological implications in drosophilids regarding adaptation to environmental temperature.
Collapse
Affiliation(s)
- Laurent Freoa
- Laboratoire de Biologie du Développement, UMR 7622, CNRS, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 9 Quai St-Bernard, 75005, Paris, France
- CNRS, MAP5, Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France
| | - Luis-Miguel Chevin
- CEFE, CNRS, EPHE, IRD, Univ Montpellier, Univ Paul Valéry Montpellier 3, 34000, Montpellier, France
| | - Philippe Christol
- UMR5214, CNRS, Institut d'électronique et des systèmes, Université de Montpellier, 34000, Montpellier, France
| | - Sylvie Méléard
- CMAP, CNRS, Ecole Polytechnique, France et Institut Universitaire de France, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Michael Rera
- Inserm UMR U1284, Centre de Recherche Interdisciplinaire (CRI Paris), 8 bis Rue Charles V, 75004, Paris, France
| | - Amandine Véber
- CNRS, MAP5, Université Paris Cité, 45 Rue des Saints-Pères, 75006, Paris, France
| | - Jean-Michel Gibert
- Laboratoire de Biologie du Développement, UMR 7622, CNRS, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 9 Quai St-Bernard, 75005, Paris, France.
| |
Collapse
|
6
|
The Genetic Mechanisms Underlying the Concerted Expression of the yellow and tan Genes in Complex Patterns on the Abdomen and Wings of Drosophila guttifera. Genes (Basel) 2023; 14:genes14020304. [PMID: 36833231 PMCID: PMC9957387 DOI: 10.3390/genes14020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
How complex morphological patterns form is an intriguing question in developmental biology. However, the mechanisms that generate complex patterns remain largely unknown. Here, we sought to identify the genetic mechanisms that regulate the tan (t) gene in a multi-spotted pigmentation pattern on the abdomen and wings of Drosophila guttifera. Previously, we showed that yellow (y) gene expression completely prefigures the abdominal and wing pigment patterns of this species. In the current study, we demonstrate that the t gene is co-expressed with the y gene in nearly identical patterns, both transcripts foreshadowing the adult abdominal and wing melanin spot patterns. We identified cis-regulatory modules (CRMs) of t, one of which drives reporter expression in six longitudinal rows of spots on the developing pupal abdomen, while the second CRM activates the reporter gene in a spotted wing pattern. Comparing the abdominal spot CRMs of y and t, we found a similar composition of putative transcription factor binding sites that are thought to regulate the complex expression patterns of both terminal pigmentation genes y and t. In contrast, the y and t wing spots appear to be regulated by distinct upstream factors. Our results suggest that the D. guttifera abdominal and wing melanin spot patterns have been established through the co-regulation of y and t, shedding light on how complex morphological traits may be regulated through the parallel coordination of downstream target genes.
Collapse
|
7
|
Flaven-Pouchon J, Moussian B. Fluorescent Microscopy-Based Detection of Chitin in Intact Drosophila melanogaster. Front Physiol 2022; 13:856369. [PMID: 35557963 PMCID: PMC9086190 DOI: 10.3389/fphys.2022.856369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Chitin is the major scaffolding component of the insect cuticle. Ultrastructural analyses revealed that chitin adopts a quasi-crystalline structure building sheets of parallel running microfibrils. These sheets called laminae are stacked either helicoidally or with a preferred orientation of the microfibrils. Precise control of chitin synthesis is mandatory to ensure the correct chitin assembly and in turn proper function of cuticular structures. Thus, evaluation of chitin-metabolism deficient phenotypes is a key to our understanding of the function of the proteins and enzymes involved in cuticle architecture and more generally in cuticle biology in insects. Usually, these phenotypes have been assessed using electron microscopy, which is time-consuming and labor intensive. This stresses the need for rapid and straightforward histological methods to visualize chitin at the whole tissue level. Here, we propose a simple method of chitin staining using the common polysaccharide marker Fluorescent brightener 28 (FB28) in whole-mount Drosophila melanogaster. To overcome the physical barrier of FB28 penetration into the cuticle, staining is performed at 65°C without affecting intactness. We quantify FB28 fluorescence in three functionally different cuticular structures namely wings, dorsal abdomens and forelegs by fluorescence microscopy. We find that, as expected, cuticle pigmentation may interfere with FB28 staining. Down-regulation of critical genes involved in chitin metabolism, including those coding for chitin synthase or chitinases, show that FB28 fluorescence reflects chitin content in these organs. We think that this simple method could be easily applied to a large variety of intact insects.
Collapse
Affiliation(s)
- J Flaven-Pouchon
- Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.,Instituto de Neurociencia, Universidad de Valparaíso, Valparaiso, Chile
| | - B Moussian
- Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.,INRAE, CNRS, Institut Sophia Agrobiotech, Université Côte d'Azur, Nice, France
| |
Collapse
|
8
|
Massey JH, Li J, Stern DL, Wittkopp PJ. Distinct genetic architectures underlie divergent thorax, leg, and wing pigmentation between Drosophila elegans and D. gunungcola. Heredity (Edinb) 2021; 127:467-474. [PMID: 34537820 PMCID: PMC8551284 DOI: 10.1038/s41437-021-00467-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pigmentation divergence between Drosophila species has emerged as a model trait for studying the genetic basis of phenotypic evolution, with genetic changes contributing to pigmentation differences often mapping to genes in the pigment synthesis pathway and their regulators. These studies of Drosophila pigmentation have tended to focus on pigmentation changes in one body part for a particular pair of species, but changes in pigmentation are often observed in multiple body parts between the same pair of species. The similarities and differences of genetic changes responsible for divergent pigmentation in different body parts of the same species thus remain largely unknown. Here we compare the genetic basis of pigmentation divergence between Drosophila elegans and D. gunungcola in the wing, legs, and thorax. Prior work has shown that regions of the genome containing the pigmentation genes yellow and ebony influence the size of divergent male-specific wing spots between these two species. We find that these same two regions of the genome underlie differences in leg and thorax pigmentation; however, divergent alleles in these regions show differences in allelic dominance and epistasis among the three body parts. These complex patterns of inheritance can be explained by a model of evolution involving tissue-specific changes in the expression of Yellow and Ebony between D. elegans and D. gunungcola.
Collapse
Affiliation(s)
- Jonathan H Massey
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jun Li
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - David L Stern
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
González-Sánchez JDJ, Santiago-Sandoval I, Lara-González JA, Colchado-López J, Cervantes CR, Vélez P, Reyes-Santiago J, Arias S, Rosas U. Growth Patterns in Seedling Roots of the Pincushion Cactus Mammillaria Reveal Trends of Intra- and Inter-Specific Variation. FRONTIERS IN PLANT SCIENCE 2021; 12:750623. [PMID: 34691127 PMCID: PMC8531529 DOI: 10.3389/fpls.2021.750623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 05/25/2023]
Abstract
Genetic mechanisms controlling root development are well-understood in plant model species, and emerging frontier research is currently dissecting how some of these mechanisms control root development in cacti. Here we show the patterns of root architecture development in a gradient of divergent lineages, from populations to species in Mammillaria. First, we show the patterns of variation in natural variants of the species Mammillaria haageana. Then we compare this variation to closely related species within the Series Supertexta in Mammillaria (diverging for the last 2.1 million years) in which M. haageana is inserted. Finally, we compared these patterns of variation to what is found in a set of Mammillaria species belonging to different Series (diverging for the last 8 million years). When plants were grown in controlled environments, we found that the variation in root architecture observed at the intra-specific level, partially recapitulates the variation observed at the inter-specific level. These phenotypic outcomes at different evolutionary time-scales can be interpreted as macroevolution being the cumulative outcome of microevolutionary phenotypic divergence, such as the one observed in Mammillaria accessions and species.
Collapse
Affiliation(s)
- José de Jesús González-Sánchez
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Itzel Santiago-Sandoval
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Joel Colchado-López
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cristian R. Cervantes
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Patricia Vélez
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jerónimo Reyes-Santiago
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Salvador Arias
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ulises Rosas
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
10
|
Cooley AM, Schmitz S, Cabrera EJ, Cutter M, Sheffield M, Gingerich I, Thomas G, Lincoln CNM, Moore VH, Moore AE, Davidson SA, Lonberg N, Fournier EB, Love SM, Posch G, Bihrle MB, Mayer SD, Om K, Wilson L, Doe CQ, Vincent CE, Wong ERT, Wall I, Wicks J, Roberts S. Melanic pigmentation and light preference within and between two Drosophila species. Ecol Evol 2021; 11:12542-12553. [PMID: 34594519 PMCID: PMC8462139 DOI: 10.1002/ece3.7998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/15/2021] [Indexed: 11/28/2022] Open
Abstract
Environmental adaptation and species divergence often involve suites of co-evolving traits. Pigmentation in insects presents a variable, adaptive, and well-characterized class of phenotypes for which correlations with multiple other traits have been demonstrated. In Drosophila, the pigmentation genes ebony and tan have pleiotropic effects on flies' response to light, creating the potential for correlated evolution of pigmentation and vision. Here, we investigate differences in light preference within and between two sister species, Drosophila americana and D. novamexicana, which differ in pigmentation in part because of evolution at ebony and tan and occupy environments that differ in many variables including solar radiation. We hypothesized that lighter pigmentation would be correlated with a greater preference for environmental light and tested this hypothesis using a habitat choice experiment. In a first set of experiments, using males of D. novamexicana line N14 and D. americana line A00, the light-bodied D. novamexicana was found slightly but significantly more often than D. americana in the light habitat. A second experiment, which included additional lines and females as well as males, failed to find any significant difference between D. novamexicana-N14 and D. americana-A00. Additionally, the other dark line of D. americana (A04) was found in the light habitat more often than the light-bodied D. novamexicana-N14, in contrast to our predictions. However, the lightest line of D. americana, A01, was found substantially and significantly more often in the light habitat than the two darker lines of D. americana, thus providing partial support for our hypothesis. Finally, across all four lines, females were found more often in the light habitat than their more darkly pigmented male counterparts. Additional replication is needed to corroborate these findings and evaluate conflicting results, with the consistent effect of sex within and between species providing an especially intriguing avenue for further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Galen Posch
- Biology DepartmentWhitman CollegeWalla WallaWAUSA
| | | | | | - Kuenzang Om
- Biology DepartmentWhitman CollegeWalla WallaWAUSA
| | | | - Casey Q. Doe
- Biology DepartmentWhitman CollegeWalla WallaWAUSA
| | | | | | - Ilona Wall
- Biology DepartmentWhitman CollegeWalla WallaWAUSA
| | - Jarred Wicks
- Biology DepartmentWhitman CollegeWalla WallaWAUSA
| | | |
Collapse
|
11
|
Feng X, Kambic L, Nishimoto JH, Reed FA, Denton JA, Sutton JT, Gantz VM. Evaluation of Gene Knockouts by CRISPR as Potential Targets for the Genetic Engineering of the Mosquito Culex quinquefasciatus. CRISPR J 2021; 4:595-608. [PMID: 34280034 PMCID: PMC8392076 DOI: 10.1089/crispr.2021.0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Culex quinquefasciatus mosquitoes are a globally widespread vector of several human and animal pathogens. Their biology and behavior allow them to thrive in proximity to urban areas, rendering them a constant public health threat. Their mixed bird/mammal feeding behavior further offers a vehicle for zoonotic pathogens transmission to people and, separately, poses a threat to the conservation of insular birds. The advent of CRISPR has led to the development of novel technologies for the genetic engineering of wild mosquito populations. Yet, research into Cx. quinquefasciatus has been lagging compared to other disease vectors. Here, we use this tool to disrupt a set of five pigmentation genes in Cx. quinquefasciatus that, when altered, lead to visible, homozygous-viable phenotypes. We further validate this approach in separate laboratories and in two distinct strains of Cx. quinquefasciatus that are relevant to potential future public health and bird conservation applications. We generate a double-mutant line, demonstrating the possibility of sequentially combining multiple such mutations in a single individual. Lastly, we target two loci, doublesex in the sex-determination pathway and proboscipedia, a hox gene, demonstrating the flexibility of these methods applied to novel targets. Our work provides a platform of seven validated loci that could be used for targeted mutagenesis in Cx. quinquefasciatus and the future development of genetic suppression strategies for this species. Furthermore, the mutant lines generated here could have widespread utility to the research community using this model organism, as they could be used as targets for transgene delivery, where a copy of the disrupted gene could be included as an easily scored transgenesis marker.
Collapse
Affiliation(s)
- Xuechun Feng
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Lukas Kambic
- Department of Biology, University of Hawaiʻi at Hilo, Hilo, Hawaiʻi, USA
| | | | - Floyd A. Reed
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawai‘i, USA
| | - Jai A. Denton
- Institute of Vector-borne Disease, University of Monash, Clayton, Australia
| | - Jolene T. Sutton
- Department of Biology, University of Hawaiʻi at Hilo, Hilo, Hawaiʻi, USA
| | - Valentino M. Gantz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
12
|
Liu XL, Han WK, Ze LJ, Peng YC, Yang YL, Zhang J, Yan Q, Dong SL. Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated Protein 9 Mediated Knockout Reveals Functions of the yellow-y Gene in Spodoptera litura. Front Physiol 2021; 11:615391. [PMID: 33519520 PMCID: PMC7839173 DOI: 10.3389/fphys.2020.615391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Yellow genes are thought to be involved in the melanin biosynthetic pathway and play a crucial role in pigmentation reactions in insects. However, little research has been done on yellow genes in lepidopteran pests. To clarify the function of one of the yellow genes (yellow-y) in Spodoptera litura, we cloned the full-length of yellow-y, and investigated its spatial and temporal expression profiles by quantitative real-time PCR (qPCR). It revealed that yellow-y was highly expressed in larva of fourth, fifth, and sixth instars, as well as in epidermis (Ep), fat bodies (FB), Malpighian tubes (MT), and midguts (MG) of the larvae; whereas it was expressed in very low levels in different tissues of adults, and was almost undetected in pupa. This expression profile suggests an important role of yellow-y in larvae, minor role in adults, and no role in pupae. To confirm this, we disrupted yellow-y using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system, and obtained G0 insects with mutation in yellow-y. The mutation in yellow-y clearly rendered the larvae body, a color yellower than that of wide type insects, and in addition, the mutation resulted in abnormal segmentation and molting for older larvae. The mutation of yellow-y also made various adult tissues (antennae, proboscis, legs, and wings) yellowish. However, the mutation had no effect on pigmentation of the pupal cuticle. Taken together, our study clearly demonstrated the role of yellow-y not only in the body pigmentation of larvae and adults, and but also in segmentation and molting of larvae, providing new insights into the physiology of larval development, as well as a useful marker gene for genome editing based studies.
Collapse
Affiliation(s)
- Xiao-Long Liu
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Wei-Kang Han
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Long-Ji Ze
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Ying-Chuan Peng
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Yi-Lin Yang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jin Zhang
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Pespeni MH, Moczek AP. Signals of selection beyond bottlenecks between exotic populations of the bull-headed dung beetle, Onthophagus taurus. Evol Dev 2021; 23:86-99. [PMID: 33522675 DOI: 10.1111/ede.12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 11/27/2022]
Abstract
Colonization of new environments can lead to population bottlenecks and rapid phenotypic evolution that could be due to neutral and selective processes. Exotic populations of the bull-headed dung beetle (Onthophagus taurus) have differentiated in opposite directions from native beetles in male horn-to-body size allometry and female fecundity. Here we test for genetic and transcriptional differences among two exotic and one native O. taurus populations after three generations in common garden conditions. We sequenced RNA from 24 individuals for each of the three populations including both sexes, and spanning four developmental stages for the two exotic, differentiated populations. Identifying 270,400 high-quality single nucleotide polymorphisms, we revealed a strong signal of genetic differentiation between the three populations, and evidence of recent bottlenecks within and an excess of outlier loci between exotic populations. Differences in gene expression between populations were greatest in prepupae and early adult life stages, stages during which differences in male horn development and female fecundity manifest. Finally, genes differentially expressed between exotic populations also had greater genetic differentiation and performed functions related to chitin biosynthesis and nutrient sensing, possibly underlying allometry and fecundity trait divergences. Our results suggest that beyond bottlenecks, recent introductions have led to genetic and transcriptional differences in genes correlated with observed phenotypic differences.
Collapse
Affiliation(s)
- Melissa H Pespeni
- Department of Biology, University of Vermont, Burlington, Vermont, USA.,Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
14
|
Soverna AF, Rodriguez NC, Korgaonkar A, Hasson E, Stern DL, Frankel N. Cis-regulatory variation in the shavenbaby gene underlies intraspecific phenotypic variation, mirroring interspecific divergence in the same trait. Evolution 2020; 75:427-436. [PMID: 33314059 DOI: 10.1111/evo.14142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Despite considerable progress in recent decades in dissecting the genetic causes of natural morphological variation, there is limited understanding of how variation within species ultimately contributes to species differences. We have studied patterning of the non-sensory hairs, commonly known as "trichomes," on the dorsal cuticle of first-instar larvae of Drosophila. Most Drosophila species produce a dense lawn of dorsal trichomes, but a subset of these trichomes were lost in D. sechellia and D. ezoana due entirely to regulatory evolution of the shavenbaby (svb) gene. Here, we describe intraspecific variation in dorsal trichome patterns of first-instar larvae of D. virilis that is similar to the trichome pattern variation identified previously between species. We found that a single large effect QTL, which includes svb, explains most of the trichome number difference between two D. virilis strains and that svb expression correlates with the trichome difference between strains. This QTL does not explain the entire difference between strains, implying that additional loci contribute to variation in trichome numbers. Thus, the genetic architecture of intraspecific variation exhibits similarities and differences with interspecific variation that may reflect differences in long-term and short-term evolutionary processes.
Collapse
Affiliation(s)
- Ana Faigon Soverna
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA, CONICET-UBA), Buenos Aires, 1417, Argentina
| | - Nahuel Cabrera Rodriguez
- Departamento de Ecología, Genética y Evolución (FCEyN, UBA) and Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA, CONICET-UBA), Buenos Aires, 1428, Argentina
| | - Aishwarya Korgaonkar
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA, 20147, USA
| | - Esteban Hasson
- Departamento de Ecología, Genética y Evolución (FCEyN, UBA) and Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA, CONICET-UBA), Buenos Aires, 1428, Argentina
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA, 20147, USA
| | - Nicolás Frankel
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, CONICET-UBA) and Departamento de Ecología, Genética y Evolución (FCEyN, UBA), Buenos Aires, 1428, Argentina
| |
Collapse
|
15
|
Shen CH, Xu QY, Fu KY, Guo WC, Jin L, Li GQ. Two Splice Isoforms of Leptinotarsa Ecdysis Triggering Hormone Receptor Have Distinct Roles in Larva-Pupa Transition. Front Physiol 2020; 11:593962. [PMID: 33335488 PMCID: PMC7736071 DOI: 10.3389/fphys.2020.593962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Insect ecdysis triggering hormone (ETH) receptors (ETHRs) are rhodopsin-like G protein-coupled receptors. Upon binding its ligand ETH, ETHR initiates a precisely programed ecdysis behavior series and physiological events. In Drosophila melanogaster, the ethr gene produces two functionally distinct splicing isoforms, ethra and ethrb. ETH/ETHRA activates eclosion hormone (EH), kinin, crustacean cardioactive peptide (CCAP), and bursicon (burs and pburs) neurons, among others, in a rigid order, to elicit the behavioral sequences and physiological actions for ecdysis at all developmental stages, whereas ETH/ETHRB is required at both pupal and adult ecdysis. However, the role of ETHRB in regulation of molting has not been clarified in any non-drosophila insects. In the present paper, we found that 20-hydroxyecdysone (20E) signaling triggers the expression of both ethra and ethrb in a Coleopteran insect pest, the Colorado potato beetle Leptinotarsa decemlineata. RNA interference (RNAi) was performed using double-stranded RNAs (dsRNAs) targeting the common (dsethr) or isoform-specific (dsethra, dsethrb) regions of ethr. RNAi of dsethr, dsethra, or dsethrb by the final-instar larvae arrested larva development. The arrest was not rescued by feeding 20E. All the ethra depleted larvae stopped development at prepupae stage; the body cavity was expanded by a large amount of liquid. Comparably, more than 80% of the ethrb RNAi larvae developmentally halted at the prepupae stage. The remaining Ldethrb hypomorphs became pupae, with blackened wings and highly-expressed burs, pburs and four melanin biosynthesis genes. Therefore, ETHRA and ETHRB play isoform-specific roles in regulation of ecdysis during larva-pupa transition in L. decemlineata.
Collapse
Affiliation(s)
- Chen-Hui Shen
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qing-Yu Xu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Kai-Yun Fu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wen-Chao Guo
- Institute of Microbiological Application, Xinjiang Academy of Agricultural Science, Urumqi, China
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Gao Y, Liu YC, Jia SZ, Liang YT, Tang Y, Xu YS, Kawasaki H, Wang HB. Imaginal disc growth factor maintains cuticle structure and controls melanization in the spot pattern formation of Bombyx mori. PLoS Genet 2020; 16:e1008980. [PMID: 32986708 PMCID: PMC7544146 DOI: 10.1371/journal.pgen.1008980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/08/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
The complex stripes and patterns of insects play key roles in behavior and ecology. However, the fine-scale regulation mechanisms underlying pigment formation and morphological divergence remain largely unelucidated. Here we demonstrated that imaginal disc growth factor (IDGF) maintains cuticle structure and controls melanization in spot pattern formation of Bombyx mori. Moreover, our knockout experiments showed that IDGF is suggested to impact the expression levels of the ecdysone inducible transcription factor E75A and pleiotropic factors apt-like and Toll8/spz3, to further control the melanin metabolism. Furthermore, the untargeted metabolomics analyses revealed that BmIDGF significantly affected critical metabolites involved in phenylalanine, beta-alanine, purine, and tyrosine metabolism pathways. Our findings highlighted not only the universal function of IDGF to the maintenance of normal cuticle structure but also an underexplored space in the gene function affecting melanin formation. Therefore, this study furthers our understanding of insect pigment metabolism and melanin pattern polymorphisms. The diverse stripe patterns of animals are usually used for warning or camouflage. However, the actual mechanisms underlying diverse stripe pattern formation remains largely unknown. This study provides direct evidence that imaginal disc growth factor (IDGF) maintains cuticle structure and controls melanization in the spot pattern formation. Our exhaustive knockout experiments reveal that BmIDGF is involved in the melanin pigmentation of Bombyx mori. We demonstrate that IDGF impacts the expression levels of the 20E-inducible transcription factor E75A and pleiotropic factors apt-like and Toll8/spz3, to further affect the melanin metabolism. Furthermore, the metabolome of BmIDGF gene deletion connects metabolism to gene function. Thus, this study shed light on not only the unique function of IDGF but also the molecular mechanism of spot pattern formation.
Collapse
Affiliation(s)
- Yun Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yun-Cai Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shun-Ze Jia
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yan-Ting Liang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yu-Song Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hideki Kawasaki
- Faculty of Agriculture, Takasaki University of Health and Welfare, Gunma, Japan
| | - Hua-Bing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
17
|
Sramkoski LL, McLaughlin WN, Cooley AM, Yuan DC, John A, Wittkopp PJ. Genetic architecture of a body colour cline in Drosophila americana. Mol Ecol 2020; 29:2840-2854. [PMID: 32603541 PMCID: PMC7482988 DOI: 10.1111/mec.15531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Phenotypic variation within a species is often structured geographically in clines. In Drosophila americana, a longitudinal cline for body colour exists within North America that appears to be due to local adaptation. The tan and ebony genes have been hypothesized to contribute to this cline, with alleles of both genes that lighten body colour found in D. americana. These alleles are similar in sequence and function to the allele fixed in D. americana's more lightly pigmented sister species, Drosophila novamexicana. Here, we examine the frequency and geographic distribution of these D. novamexicana-like alleles in D. americana. Among alleles from over 100 strains of D. americana isolated from 21 geographic locations, we failed to identify additional alleles of tan or ebony with as much sequence similarity to D. novamexicana as the D. novamexicana-like alleles previously described. However, using genetic analysis of 51 D. americana strains derived from 20 geographic locations, we identified one new allele of ebony and one new allele of tan segregating in D. americana that are functionally equivalent to the D. novamexicana allele. An additional 5 alleles of tan also showed marginal evidence of functional similarity. Given the rarity of these alleles, however, we conclude that they are unlikely to be driving the pigmentation cline. Indeed, phenotypic distributions of the 51 backcross populations analysed indicate a more complex genetic architecture, with diversity in the number and effects of loci altering pigmentation observed both within and among populations of D. americana. This genetic heterogeneity poses a challenge to association studies and genomic scans for clinal variation, but might be common in natural populations.
Collapse
Affiliation(s)
| | - Wesley N. McLaughlin
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Arielle M. Cooley
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - David C. Yuan
- Department of Molecular, Cellular, and Developmental Biology
| | - Alisha John
- Department of Molecular, Cellular, and Developmental Biology
| | - Patricia J. Wittkopp
- Department of Molecular, Cellular, and Developmental Biology
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048
| |
Collapse
|
18
|
Reis M, Wiegleb G, Claude J, Lata R, Horchler B, Ha NT, Reimer C, Vieira CP, Vieira J, Posnien N. Multiple loci linked to inversions are associated with eye size variation in species of the Drosophila virilis phylad. Sci Rep 2020; 10:12832. [PMID: 32732947 PMCID: PMC7393161 DOI: 10.1038/s41598-020-69719-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/14/2020] [Indexed: 11/26/2022] Open
Abstract
The size and shape of organs is tightly controlled to achieve optimal function. Natural morphological variations often represent functional adaptations to an ever-changing environment. For instance, variation in head morphology is pervasive in insects and the underlying molecular basis is starting to be revealed in the Drosophila genus for species of the melanogaster group. However, it remains unclear whether similar diversifications are governed by similar or different molecular mechanisms over longer timescales. To address this issue, we used species of the virilis phylad because they have been diverging from D. melanogaster for at least 40 million years. Our comprehensive morphological survey revealed remarkable differences in eye size and head shape among these species with D. novamexicana having the smallest eyes and southern D. americana populations having the largest eyes. We show that the genetic architecture underlying eye size variation is complex with multiple associated genetic variants located on most chromosomes. Our genome wide association study (GWAS) strongly suggests that some of the putative causative variants are associated with the presence of inversions. Indeed, northern populations of D. americana share derived inversions with D. novamexicana and they show smaller eyes compared to southern ones. Intriguingly, we observed a significant enrichment of genes involved in eye development on the 4th chromosome after intersecting chromosomal regions associated with phenotypic differences with those showing high differentiation among D. americana populations. We propose that variants associated with chromosomal inversions contribute to both intra- and interspecific variation in eye size among species of the virilis phylad.
Collapse
Affiliation(s)
- Micael Reis
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Gordon Wiegleb
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.,International Max Planck Research School for Genome Science, Am Fassberg 11, 37077, Göttingen, Germany
| | - Julien Claude
- Institut Des Sciences de l'Evolution de Montpellier, CNRS/UM2/IRD, 2 Place Eugène Bataillon, cc64, 34095, Montpellier Cedex 5, France
| | - Rodrigo Lata
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Britta Horchler
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Ngoc-Thuy Ha
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Christian Reimer
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany.,Center for Integrated Breeding Research, University of Goettingen, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Cristina P Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Jorge Vieira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Nico Posnien
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
19
|
Kuwalekar M, Deshmukh R, Padvi A, Kunte K. Molecular Evolution and Developmental Expression of Melanin Pathway Genes in Lepidoptera. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
20
|
Lamb AM, Wang Z, Simmer P, Chung H, Wittkopp PJ. ebony Affects Pigmentation Divergence and Cuticular Hydrocarbons in Drosophila americana and D. novamexicana. Front Ecol Evol 2020; 8. [PMID: 37035752 PMCID: PMC10077920 DOI: 10.3389/fevo.2020.00184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Drosophila pigmentation has been a fruitful model system for understanding the genetic and developmental mechanisms underlying phenotypic evolution. For example, prior work has shown that divergence of the tan gene contributes to pigmentation differences between two members of the virilis group: Drosophila novamexicana, which has a light yellow body color, and D. americana, which has a dark brown body color. Quantitative trait locus (QTL) mapping and expression analysis has suggested that divergence of the ebony gene might also contribute to pigmentation differences between these two species. Here, we directly test this hypothesis by using CRISPR/Cas9 genome editing to generate ebony null mutants in D. americana and D. novamexicana and then using reciprocal hemizygosity testing to compare the effects of each species' ebony allele on pigmentation. We find that divergence of ebony does indeed contribute to the pigmentation divergence between species, with effects on both the overall body color as well as a difference in pigmentation along the dorsal abdominal midline. Motivated by recent work in D. melanogaster, we also used the ebony null mutants to test for effects of ebony on cuticular hydrocarbon (CHC) profiles. We found that ebony affects CHC abundance in both species, but does not contribute to qualitative differences in the CHC profiles between these two species. Additional transgenic resources for working with D. americana and D. novamexicana, such as white mutants of both species and yellow mutants in D. novamexicana, were generated in the course of this work and are also described. Taken together, this study advances our understanding of loci contributing to phenotypic divergence and illustrates how the latest genome editing tools can be used for functional testing in non-model species.
Collapse
Affiliation(s)
- Abigail M. Lamb
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Zinan Wang
- Department of Entomology, Michigan State University, East Lansing, MI, United States
- Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, United States
| | - Patricia Simmer
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Henry Chung
- Department of Entomology, Michigan State University, East Lansing, MI, United States
- Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, United States
| | - Patricia J. Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- Department of Ecology and Evolutionary Biology, and Behavior Program, University of Michigan, Ann Arbor, MI, United States
- Correspondence: Patricia J Wittkopp,
| |
Collapse
|
21
|
Lee YCG, Ventura IM, Rice GR, Chen DY, Colmenares SU, Long M. Rapid Evolution of Gained Essential Developmental Functions of a Young Gene via Interactions with Other Essential Genes. Mol Biol Evol 2020; 36:2212-2226. [PMID: 31187122 DOI: 10.1093/molbev/msz137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
New genes are of recent origin and only present in a subset of species in a phylogeny. Accumulated evidence suggests that new genes, like old genes that are conserved across species, can also take on important functions and be essential for the survival and reproductive success of organisms. Although there are detailed analyses of the mechanisms underlying new genes' gaining fertility functions, how new genes rapidly become essential for viability remains unclear. We focused on a young retro-duplicated gene (CG7804, which we named Cocoon) in Drosophila that originated between 4 and 10 Ma. We found that, unlike its evolutionarily conserved parental gene, Cocoon has evolved under positive selection and accumulated many amino acid differences at functional sites from the parental gene. Despite its young age, Cocoon is essential for the survival of Drosophila melanogaster at multiple developmental stages, including the critical embryonic stage, and its expression is essential in different tissues from those of its parental gene. Functional genomic analyses found that Cocoon acquired unique DNA-binding sites and has a contrasting effect on gene expression to that of its parental gene. Importantly, Cocoon binding predominantly locates at genes that have other essential functions and/or have multiple gene-gene interactions, suggesting that Cocoon acquired novel essential function to survival through forming interactions that have large impacts on the gene interaction network. Our study is an important step toward deciphering the evolutionary trajectory by which new genes functionally diverge from parental genes and become essential.
Collapse
Affiliation(s)
- Yuh Chwen G Lee
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Iuri M Ventura
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL.,CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil
| | - Gavin R Rice
- Department of Evolution and Ecology, University of California, Davis, Davis, CA.,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Dong-Yuan Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Serafin U Colmenares
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL
| |
Collapse
|
22
|
Davis JS, Moyle LC. Desiccation resistance and pigmentation variation reflects bioclimatic differences in the Drosophila americana species complex. BMC Evol Biol 2019; 19:204. [PMID: 31694548 PMCID: PMC6836511 DOI: 10.1186/s12862-019-1536-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/22/2019] [Indexed: 01/26/2023] Open
Abstract
Background Disentangling the selective factors shaping adaptive trait variation is an important but challenging task. Many studies—especially in Drosophila—have documented trait variation along latitudinal or altitudinal clines, but frequently lack resolution about specific environmental gradients that could be causal selective agents, and often do not investigate covariation between traits simultaneously. Here we examined variation in multiple macroecological factors across geographic space and their associations with variation in three physiological traits (desiccation resistance, UV resistance, and pigmentation) at both population and species scales, to address the role of abiotic environment in shaping trait variation. Results Using environmental data from collection locations of three North American Drosophila species—D. americana americana, D. americana texana and D. novamexicana—we identified two primary axes of macroecological variation; these differentiated species habitats and were strongly loaded for precipitation and moisture variables. In nine focal populations (three per species) assayed for each trait, we detected significant species-level variation for both desiccation resistance and pigmentation, but not for UV resistance. Species-level trait variation was consistent with differential natural selection imposed by variation in habitat water availability, although patterns of variation differed between desiccation resistance and pigmentation, and we found little evidence for pleiotropy between traits. Conclusions Our multi-faceted approach enabled us to identify potential agents of natural selection and examine how they might influence the evolution of multiple traits at different evolutionary scales. Our findings highlight that environmental factors influence functional trait variation in ways that can be complex, and point to the importance of studies that examine these relationships at both population- and species-levels.
Collapse
Affiliation(s)
- Jeremy S Davis
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| | - Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
23
|
Larter M, Dunbar‐Wallis A, Berardi AE, Smith SD. Developmental control of convergent floral pigmentation across evolutionary timescales. Dev Dyn 2019; 248:1091-1100. [DOI: 10.1002/dvdy.82] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 11/07/2022] Open
Affiliation(s)
- Maximilian Larter
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐Boulder Boulder Colorado
| | - Amy Dunbar‐Wallis
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐Boulder Boulder Colorado
| | - Andrea E. Berardi
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐Boulder Boulder Colorado
- Institute of Plant SciencesUniversity of Bern Bern Switzerland
| | - Stacey D. Smith
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐Boulder Boulder Colorado
| |
Collapse
|
24
|
Zhang Y, Li H, Du J, Zhang J, Shen J, Cai W. Three Melanin Pathway Genes, TH, yellow, and aaNAT, Regulate Pigmentation in the Twin-Spotted Assassin Bug, Platymeris biguttatus (Linnaeus). Int J Mol Sci 2019; 20:ijms20112728. [PMID: 31163651 PMCID: PMC6600426 DOI: 10.3390/ijms20112728] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 12/04/2022] Open
Abstract
Pigmentation plays a vital role in insect survival and reproduction. Many melanin pathway genes have been studied in holometabolous insects; however, they have only been studied in two hemimetabolous insect genera, Oncopeltus and Periplaneta. Here we analyzed three melanin pathway genes (TH, yellow, and aaNAT) using RNA interference (RNAi) in another hemimetabolous insect, namely the twin-spotted assassin bug, Platymeris biguttatus. TH was highly expressed in freshly molted nymphs and adults. TH RNAi resulted in a complete loss of black pigment, with yellow coloration maintained. Therefore, black pigment in this assassin bug is solely generated from the melanin pathway, whereas yellow pigment is generated from other unknown pigmentation pathways. yellow and aaNAT were highly expressed in the white spot of the hemelytra. Downregulation of yellow caused a brown phenotype with high mortality, indicating an important role of yellow functions in cuticle formation and in the process of converting melanin from brown to black. Interestingly, aaNAT RNAi caused not only loss of white pigment, but also loss of yellow and red pigments. This phenotype of aaNAT has not been reported in other insects. Our results provide new information for understanding the melanin pathway in which aaNAT is essential for the formation of colorless patterns.
Collapse
Affiliation(s)
- Yinqiao Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Juan Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Junzheng Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Jie Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
25
|
Han CS, Jablonski PG. Alternative reproductive tactics shape within-species variation in behavioral syndromes. Behav Ecol 2019. [DOI: 10.1093/beheco/arz068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AbstractMultiple behaviors can correlate with each other at the individual level (behavioral syndrome), and behavioral syndromes can vary in their direction between populations within a species. Within-species variation in behavioral syndromes is predicted to be associated with alternative reproductive tactics (ARTs), which evolve under different selection regimes. Here, we tested this using a water strider species, Gerris gracilicornis, in which males employ 2 ARTs that are fixed for life: signaling males (producing courtship ripples) versus nonsignaling males (producing no courtship ripples). We measured multiple behaviors in males with both of these ARTs and compared behavioral syndromes between them. Our results showed that signaling males were more active and attempted to mate more frequently than nonsignaling males. This shaped an overall behavioral syndrome between activities in mating and nonmating contexts when we pooled both ARTs. In addition, the behavioral syndromes between cautiousness and mating activity differed significantly between ARTs. In signaling males, the syndrome was significantly negative: signaling males more eager to mate tended to leave their refuges more rapidly. However, mating activity and cautiousness were not correlated in nonsignaling males. This might be because active males, in the context of predation risk and mating, were favored during the evolution and maintenance of the unique intimidating courtship tactic of G. gracilicornis males. Thus, our findings suggest that ARTs facilitate behavioral divergence and also contribute to the evolution of tactic-specific behavioral syndromes. We also show that research on ARTs and behavioral syndromes can be harmonized to study behavioral variation.
Collapse
Affiliation(s)
- Chang S Han
- Department of Biology, Kyung Hee University, Dongdaemun-Gu, Seoul, Korea
| | - Piotr G Jablonski
- Laboratory of Behavioral Ecology and Evolution, School of Biological Sciences, Seoul National University, Gwanak-gu, Seoul, Korea
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza, Warsaw, Poland
| |
Collapse
|
26
|
Di Ruocco G, Di Mambro R, Dello Ioio R. Building the differences: a case for the ground tissue patterning in plants. Proc Biol Sci 2018; 285:20181746. [PMID: 30404875 PMCID: PMC6235038 DOI: 10.1098/rspb.2018.1746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/12/2018] [Indexed: 01/03/2023] Open
Abstract
A key question in biology is to understand how interspecies morphological diversities originate. Plant roots present a huge interspecific phenotypical variability, mostly because roots largely contribute to adaptation to different kinds of soils. One example is the interspecific cortex layer number variability, spanning from one to several. Here, we review the latest advances in the understanding of the mechanisms expanding and/or restricting cortical layer number in Arabidopsis thaliana and their involvement in cortex pattern variability among multi-cortical layered species such as Cardamine hirsuta or Oryza sativa.
Collapse
Affiliation(s)
- Giovanna Di Ruocco
- Laboratory of Functional Genomics and Proteomics of Model Systems, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| | - Riccardo Di Mambro
- Dipartimento di Biologia, Università di Pisa, via Luca Ghini, 13-56126 Pisa, Italy
| | - Raffaele Dello Ioio
- Laboratory of Functional Genomics and Proteomics of Model Systems, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| |
Collapse
|
27
|
Monniaux M, Pieper B, McKim SM, Routier-Kierzkowska AL, Kierzkowski D, Smith RS, Hay A. The role of APETALA1 in petal number robustness. eLife 2018; 7:39399. [PMID: 30334736 PMCID: PMC6205810 DOI: 10.7554/elife.39399] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/11/2018] [Indexed: 01/31/2023] Open
Abstract
Invariant floral forms are important for reproductive success and robust to natural perturbations. Petal number, for example, is invariant in Arabidopsis thaliana flowers. However, petal number varies in the closely related species Cardamine hirsuta, and the genetic basis for this difference between species is unknown. Here we show that divergence in the pleiotropic floral regulator APETALA1 (AP1) can account for the species-specific difference in petal number robustness. This large effect of AP1 is explained by epistatic interactions: A. thaliana AP1 confers robustness by masking the phenotypic expression of quantitative trait loci controlling petal number in C. hirsuta. We show that C. hirsuta AP1 fails to complement this function of A. thaliana AP1, conferring variable petal number, and that upstream regulatory regions of AP1 contribute to this divergence. Moreover, variable petal number is maintained in C. hirsuta despite sufficient standing genetic variation in natural accessions to produce plants with four-petalled flowers.
Collapse
Affiliation(s)
- Marie Monniaux
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Bjorn Pieper
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sarah M McKim
- Plant Sciences Department, University of Oxford, Oxford, United Kingdom
| | | | | | - Richard S Smith
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Angela Hay
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
28
|
Parker DJ, Wiberg RAW, Trivedi U, Tyukmaeva VI, Gharbi K, Butlin RK, Hoikkala A, Kankare M, Ritchie MG. Inter and Intraspecific Genomic Divergence in Drosophila montana Shows Evidence for Cold Adaptation. Genome Biol Evol 2018; 10:2086-2101. [PMID: 30010752 PMCID: PMC6107330 DOI: 10.1093/gbe/evy147] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2018] [Indexed: 12/25/2022] Open
Abstract
The genomes of species that are ecological specialists will likely contain signatures of genomic adaptation to their niche. However, distinguishing genes related to ecological specialism from other sources of selection and more random changes is a challenge. Here, we describe the genome of Drosophila montana, which is the most extremely cold-adapted Drosophila species known. We use branch tests to identify genes showing accelerated divergence in contrasts between cold- and warm-adapted species and identify about 250 genes that show differences, possibly driven by a lower synonymous substitution rate in cold-adapted species. We also look for evidence of accelerated divergence between D. montana and D. virilis, a previously sequenced relative, but do not find strong evidence for divergent selection on coding sequence variation. Divergent genes are involved in a variety of functions, including cuticular and olfactory processes. Finally, we also resequenced three populations of D. montana from across its ecological and geographic range. Outlier loci were more likely to be found on the X chromosome and there was a greater than expected overlap between population outliers and those genes implicated in cold adaptation between Drosophila species, implying some continuity of selective process at these different evolutionary scales.
Collapse
Affiliation(s)
- Darren J Parker
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
- Center for Biological Diversity, School of Biology, University of St. Andrews, Fife, United Kingdom
- Department of Ecology and Evolution, University of Lausanne, Biophore, Switzerland
| | - R Axel W Wiberg
- Center for Biological Diversity, School of Biology, University of St. Andrews, Fife, United Kingdom
| | - Urmi Trivedi
- Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Venera I Tyukmaeva
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Karim Gharbi
- Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, United Kingdom
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Roger K Butlin
- Department of Animal and Plant Sciences, The University of Sheffield, UK
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
| | - Anneli Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Michael G Ritchie
- Center for Biological Diversity, School of Biology, University of St. Andrews, Fife, United Kingdom
| |
Collapse
|
29
|
Vickrey AI, Bruders R, Kronenberg Z, Mackey E, Bohlender RJ, Maclary ET, Maynez R, Osborne EJ, Johnson KP, Huff CD, Yandell M, Shapiro MD. Introgression of regulatory alleles and a missense coding mutation drive plumage pattern diversity in the rock pigeon. eLife 2018; 7:e34803. [PMID: 30014848 PMCID: PMC6050045 DOI: 10.7554/elife.34803] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/05/2018] [Indexed: 12/17/2022] Open
Abstract
Birds and other vertebrates display stunning variation in pigmentation patterning, yet the genes controlling this diversity remain largely unknown. Rock pigeons (Columba livia) are fundamentally one of four color pattern phenotypes, in decreasing order of melanism: T-check, checker, bar (ancestral), or barless. Using whole-genome scans, we identified NDP as a candidate gene for this variation. Allele-specific expression differences in NDP indicate cis-regulatory divergence between ancestral and melanistic alleles. Sequence comparisons suggest that derived alleles originated in the speckled pigeon (Columba guinea), providing a striking example of introgression. In contrast, barless rock pigeons have an increased incidence of vision defects and, like human families with hereditary blindness, carry start-codon mutations in NDP. In summary, we find that both coding and regulatory variation in the same gene drives wing pattern diversity, and post-domestication introgression supplied potentially advantageous melanistic alleles to feral populations of this ubiquitous urban bird.
Collapse
Affiliation(s)
- Anna I Vickrey
- School of Biological SciencesUniversity of UtahSalt Lake CityUnited States
| | - Rebecca Bruders
- School of Biological SciencesUniversity of UtahSalt Lake CityUnited States
| | - Zev Kronenberg
- Department of Human GeneticsUniversity of UtahSalt Lake CityUnited States
| | - Emma Mackey
- School of Biological SciencesUniversity of UtahSalt Lake CityUnited States
| | - Ryan J Bohlender
- Department of Epidemiology, MD Anderson Cancer CenterUniversity of TexasHoustonUnited States
| | - Emily T Maclary
- School of Biological SciencesUniversity of UtahSalt Lake CityUnited States
| | - Raquel Maynez
- School of Biological SciencesUniversity of UtahSalt Lake CityUnited States
| | - Edward J Osborne
- Department of Human GeneticsUniversity of UtahSalt Lake CityUnited States
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research InstituteUniversity of Illinois Urbana-ChampaignChampaignUnited States
| | - Chad D Huff
- Department of Epidemiology, MD Anderson Cancer CenterUniversity of TexasHoustonUnited States
| | - Mark Yandell
- Department of Human GeneticsUniversity of UtahSalt Lake CityUnited States
| | - Michael D Shapiro
- School of Biological SciencesUniversity of UtahSalt Lake CityUnited States
| |
Collapse
|
30
|
Janssen K, Mundy NI. The genetic basis and enigmatic origin of melanic polymorphism in pomarine skuas ( Stercorarius pomarinus). Proc Biol Sci 2018; 284:rspb.2017.1735. [PMID: 29187628 DOI: 10.1098/rspb.2017.1735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/27/2017] [Indexed: 01/28/2023] Open
Abstract
A key outstanding issue in adaptive evolution is the relationship between the genetics of intraspecific polymorphism and interspecific evolution. Here, we show that the pale/dark ventral plumage polymorphism that occurs in both the pomarine skua (Stercorarius pomarinus) and Arctic skua (S. parasiticus) is the result of convergent evolution at the same locus (MC1R), involving some of the same amino acid sites. The dark melanic MC1R allele in the pomarine skua is strongly divergent from the pale MC1R alleles. Whereas the dark allele is closely related to MC1R alleles in three species of great skua (S. skua, S. maccormicki, S. lonnbergi), the pale pomarine skua MC1R alleles present a star-like pattern in an intermediate position on the haplotype network, closer to alleles of the long-tailed skua (S. longicaudus). Variation at other nuclear loci confirms a close relationship between the pomarine skua and the great skuas. The plumage polymorphism in pomarine skuas might have arisen in the common ancestor of pomarine and great skuas, only being retained in pomarine skuas. Alternatively, the pale and melanic MC1R alleles may have evolved independently in different lineages and been brought together in pomarine skuas by hybridization. In this case, introgression of a pale MC1R allele into the pomarine skua from another skua lineage is most likely. Our current data do not permit us to distinguish between these hypotheses, and assaying genome-wide variation holds much promise in this regard. Nevertheless, we have uncovered an intriguing example of a functionally important allele within one species that is shared across species.
Collapse
Affiliation(s)
- Kirstin Janssen
- Department of Natural Sciences, Tromsø University Museum, UiT The Arctic University of Tromsø, 9037 Tromsø, Norway.,Centre of Forensic Genetics, Institute of Medical Biology, Faculty of Health Sciences, UIT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Nicholas I Mundy
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
31
|
Busso JP, Blanckenhorn WU. Disruptive sexual selection on male body size in the polyphenic black scavenger fly Sepsis thoracica. Behav Ecol 2018. [DOI: 10.1093/beheco/ary038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractSexual selection has 2 main components, female preference and male–male competition, which can lead males to adopt alternative reproductive tactics to optimize their reproductive success. Two traits that significantly influence reproductive success are body size and coloration, as they can facilitate access to females through male contests or as female attractors. We investigated whether, and if so which mechanism of sexual selection contributes to the maintenance, and possibly even the establishment, of 2 almost discrete male morphs in the polyphenic black scavenger fly Sepsis thoracica (Diptera: Sepsidae): small and black, or large and amber. We performed 2 complementary laboratory experiments to evaluate the mating success of the different male morphs and the behaviors (of both males and females) presumably mediating their mating success. We found evidence for intraspecific disruptive sexual selection on male body size that is mediated by male–male interactions, and significant positive directional selection on body size that interacted with (directional) selection on coloration, likely contributing to the origin and/or maintenance of the threshold relationship between the 2 traits in this species. The simultaneous occurrence of disruptive selection and polyphenism in S. thoracica supports the role of sexual selection in the intraspecific diversification of coupled traits (here body size and coloration), which could be a speciation starting point.
Collapse
Affiliation(s)
- Juan Pablo Busso
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse, CH, Zürich, Switzerland
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse, CH, Zürich, Switzerland
| |
Collapse
|
32
|
Fukutomi Y, Matsumoto K, Funayama N, Koshikawa S. Methods for Staging Pupal Periods and Measurement of Wing Pigmentation of Drosophila guttifera. J Vis Exp 2018. [PMID: 29443109 DOI: 10.3791/56935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Diversified species of Drosophila (fruit fly) provide opportunities to study mechanisms of development and genetic changes responsible for evolutionary changes. In particular, the adult stage is a rich source of morphological traits for interspecific comparison, including wing pigmentation comparison. To study developmental differences among species, detailed observation and appropriate staging are required for precise comparison. Here we describe protocols for staging of pupal periods and quantification of wing pigmentation in a polka-dotted fruit fly, Drosophila guttifera. First, we describe the method for detailed morphological observation and definition of pupal stages based on morphologies. This method includes a technique for removing the puparium, which is the outer chitinous case of the pupa, to enable detailed observation of pupal morphologies. Second, we describe the method for measuring the duration of defined pupal stages. Finally, we describe the method for quantification of wing pigmentation based on image analysis using digital images and ImageJ software. With these methods, we can establish a solid basis for comparing developmental processes of adult traits during pupal stages.
Collapse
Affiliation(s)
| | - Keiji Matsumoto
- Graduate School of Science, Kyoto University; Graduate School of Science, Osaka City University
| | | | - Shigeyuki Koshikawa
- Graduate School of Science, Kyoto University; The Hakubi Center for Advanced Research, Kyoto University; Graduate School of Environmental Science, Hokkaido University;
| |
Collapse
|
33
|
Gibert JM. The flexible stem hypothesis: evidence from genetic data. Dev Genes Evol 2017; 227:297-307. [PMID: 28780641 DOI: 10.1007/s00427-017-0589-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/20/2017] [Indexed: 11/29/2022]
Abstract
Phenotypic plasticity, the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions, is widely observed in the wild. It is believed to facilitate evolution and, under the "flexible stem hypothesis", it is thought that an ancestral plastic species can be at the origin of sister lineages with divergent phenotypes fixed by genetic assimilation of alternative morphs. We review here the genetic mechanisms underlying such phenomenon. We show several examples in which the same gene shows transcriptional plasticity in response to environmental factors and divergence of expression within or between species. Thus, the same gene is involved both in the plasticity of a trait and in the evolution of that trait. In a few cases, it can be traced down to cis-regulatory variation in this gene and, in one case, in the very same regulatory sequence whose activity is modulated by the environment. These data are compatible with the "flexible stem hypothesis" and also suggest that the evolution of the plasticity of a trait and the evolution of the trait are not completely uncoupled as they often involve the same locus. Furthermore, the "flexible stem hypothesis" implies that it is possible to canalize initially plastic phenotypes. Several studies have shown that it was possible through modification of chromatin regulation or hormonal signalling/response. Further studies of phenotypic plasticity in an evolutionary framework are needed to see how much the findings described in this review can be generalized.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Biologie du Développement Paris Seine, Institut de Biologie Paris Seine (LBD-IBPS), 75005, Paris, France.
| |
Collapse
|
34
|
Heinze SD, Kohlbrenner T, Ippolito D, Meccariello A, Burger A, Mosimann C, Saccone G, Bopp D. CRISPR-Cas9 targeted disruption of the yellow ortholog in the housefly identifies the brown body locus. Sci Rep 2017; 7:4582. [PMID: 28676649 PMCID: PMC5496933 DOI: 10.1038/s41598-017-04686-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/22/2017] [Indexed: 11/19/2022] Open
Abstract
The classic brown body (bwb) mutation in the housefly Musca domestica impairs normal melanization of the adult cuticle. In Drosophila melanogaster, a reminiscent pigmentation defect results from mutations in the yellow gene encoding dopachrome conversion enzyme (DCE). Here, we demonstrate that the bwb locus structurally and functionally represents the yellow ortholog of Musca domestica, MdY. In bwb Musca strains, we identified two mutant MdY alleles that contain lesions predicted to result in premature truncation of the MdY open reading frame. We targeted wildtype MdY by CRISPR-Cas9 RNPs and generated new mutant alleles that fail to complement existing MdY alleles, genetically confirming that MdY is the bwb locus. We further found evidence for Cas9-mediated interchromosomal recombination between wildtype and mutant bwb alleles. Our work resolves the molecular identity of the classic bwb mutation in Musca domestica and establishes the feasibility of Cas9-mediated genome editing in the Musca model.
Collapse
Affiliation(s)
- Svenia D Heinze
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
| | - Tea Kohlbrenner
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
| | - Domenica Ippolito
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
| | - Angela Meccariello
- Department of Biology, University of Naples Federico II, 80126, Napoli, Italy
| | - Alexa Burger
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
| | - Giuseppe Saccone
- Department of Biology, University of Naples Federico II, 80126, Napoli, Italy
| | - Daniel Bopp
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland.
| |
Collapse
|
35
|
Saleh Ziabari O, Shingleton AW. Quantifying Abdominal Pigmentation in Drosophila melanogaster. J Vis Exp 2017. [PMID: 28605370 DOI: 10.3791/55732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Pigmentation is a morphologically simple but highly variable trait that often has adaptive significance. It has served extensively as a model for understanding the development and evolution of morphological phenotypes. Abdominal pigmentation in Drosophila melanogaster has been particularly useful, allowing researchers to identify the loci that underlie inter- and intraspecific variations in morphology. Hitherto, however, D. melanogaster abdominal pigmentation has been largely assayed qualitatively, through scoring, rather than quantitatively, which limits the forms of statistical analysis that can be applied to pigmentation data. This work describes a new methodology that allows for the quantification of various aspects of the abdominal pigmentation pattern of adult D. melanogaster. The protocol includes specimen mounting, image capture, data extraction, and analysis. All the software used for image capture and analysis feature macros written for open-source image analysis. The advantage of this approach is the ability to precisely measure pigmentation traits using a methodology that is highly reproducible across different imaging systems. While the technique has been used to measure variation in the tergal pigmentation patterns of adult D. melanogaster, the methodology is flexible and broadly applicable to pigmentation patterns in myriad different organisms.
Collapse
|
36
|
Pespeni MH, Ladner JT, Moczek AP. Signals of selection in conditionally expressed genes in the diversification of three horned beetle species. J Evol Biol 2017; 30:1644-1657. [PMID: 28379613 DOI: 10.1111/jeb.13079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/05/2017] [Indexed: 01/20/2023]
Abstract
Species radiations may be facilitated by phenotypic differences already present within populations, such as those arising through sex-specific development or developmental processes biased towards particular reproductive or trophic morphs. We sought to test this hypothesis by utilizing a comparative transcriptomic approach to contrast among- and within-species differentiation using three horned beetle species in the genus Onthophagus. These three species exhibit differences along three phenotypic axes reflective of much of the interspecific diversity present within the genus: horn location, polarity of sexual dimorphism and degree of nutritional sensitivity. Our approach combined de novo transcript assembly, assessment of amino acid substitutions (dN/dS) across orthologous gene pairs and integration of gene function and conditional gene expression data. We identified 17 genes across the three species pairs related to axis patterning, development and metabolism with dN/dS > 1 and detected elevated dN/dS in genes related to metabolism and biosynthesis in the most closely related species pair, which is characterized by a loss of nutritional polyphenism and a reversal of sexual dimorphism. Further, we found that genes that are conditionally expressed (i.e. as a function of sex, nutrition or body region) within one of our focal species also showed significantly stronger signals of positive or relaxed purifying selection between species divergent along the same morphological axis (i.e. polarity of sexual dimorphism, degree of nutritional sensitivity or location of horns). Our findings thus reveal a positive relationship between intraspecific differentiation due to condition-specific development and genetic divergences among species.
Collapse
Affiliation(s)
- M H Pespeni
- Department of Biology, Indiana University, Bloomington, IN, USA.,Department of Biology, University of Vermont, Burlington, VT, USA
| | - J T Ladner
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - A P Moczek
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
37
|
Modulation of yellow expression contributes to thermal plasticity of female abdominal pigmentation in Drosophila melanogaster. Sci Rep 2017; 7:43370. [PMID: 28230190 PMCID: PMC5322495 DOI: 10.1038/srep43370] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/23/2017] [Indexed: 12/18/2022] Open
Abstract
Phenotypic plasticity describes the ability of a given genotype to produce distinct phenotypes in different environments. We use the temperature sensitivity of abdominal pigmentation in Drosophila melanogaster females as a model to analyse the effect of the environment on development. We reported previously that thermal plasticity of abdominal pigmentation in females involves the pigmentation gene tan (t). However, the expression of the pigmentation gene yellow (y) was also modulated by temperature in the abdominal epidermis of pharate females. We investigate here the contribution of y to female abdominal pigmentation plasticity. First, we show that y is required for the production of black Dopamine-melanin. Then, using in situ hybridization, we show that the expression of y is strongly modulated by temperature in the abdominal epidermis of pharate females but not in bristles. Interestingly, these two expression patterns are known to be controlled by distinct enhancers. However, the activity of the y-wing-body epidermal enhancer only partially mediates the effect of temperature suggesting that additional regulatory sequences are involved. In addition, we show that y and t co-expression is needed to induce strong black pigmentation indicating that y contributes to female abdominal pigmentation plasticity.
Collapse
|
38
|
Lamb AM, Walker EA, Wittkopp PJ. Tools and strategies for scarless allele replacement in Drosophila using CRISPR/Cas9. Fly (Austin) 2017; 11:53-64. [PMID: 27494619 PMCID: PMC5354236 DOI: 10.1080/19336934.2016.1220463] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/30/2016] [Accepted: 07/21/2016] [Indexed: 12/21/2022] Open
Abstract
Genome editing via the CRISPR/Cas9 RNA-guided nuclease system has opened up exciting possibilities for genetic analysis. However, technical challenges associated with homology-directed repair have proven to be roadblocks for producing changes in the absence of unwanted, secondary mutations commonly known as "scars." To address these issues, we developed a 2-stage, marker-assisted strategy to facilitate precise, "scarless" edits in Drosophila with a minimal requirement for molecular screening. Using this method, we modified 2 base pairs in a gene of interest without altering the final sequence of the CRISPR cut sites. We executed this 2-stage allele swap using a novel transformation marker that drives expression in the pupal wings, which can be screened for in the presence of common eye-expressing reporters. The tools we developed can be used to make a single change or a series of allelic substitutions in a region of interest in any D. melanogaster genetic background as well as in other Drosophila species.
Collapse
Affiliation(s)
- Abigail M. Lamb
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Elizabeth A. Walker
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Patricia J. Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
39
|
Busso JP, Davis Rabosky AR. Disruptive selection on male reproductive polymorphism in a jumping spider, Maevia inclemens. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
40
|
Hackett JL, Wang X, Smith BR, Macdonald SJ. Mapping QTL Contributing to Variation in Posterior Lobe Morphology between Strains of Drosophila melanogaster. PLoS One 2016; 11:e0162573. [PMID: 27606594 PMCID: PMC5015897 DOI: 10.1371/journal.pone.0162573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/24/2016] [Indexed: 11/23/2022] Open
Abstract
Closely-related, and otherwise morphologically similar insect species frequently show striking divergence in the shape and/or size of male genital structures, a phenomenon thought to be driven by sexual selection. Comparative interspecific studies can help elucidate the evolutionary forces acting on genital structures to drive this rapid differentiation. However, genetic dissection of sexual trait divergence between species is frequently hampered by the difficulty generating interspecific recombinants. Intraspecific variation can be leveraged to investigate the genetics of rapidly-evolving sexual traits, and here we carry out a genetic analysis of variation in the posterior lobe within D. melanogaster. The lobe is a male-specific process emerging from the genital arch of D. melanogaster and three closely-related species, is essential for copulation, and shows radical divergence in form across species. There is also abundant variation within species in the shape and size of the lobe, and while this variation is considerably more subtle than that seen among species, it nonetheless provides the raw material for QTL mapping. We created an advanced intercross population from a pair of phenotypically-different inbred strains, and after phenotyping and genotyping-by-sequencing the recombinants, mapped several QTL contributing to various measures of lobe morphology. The additional generations of crossing over in our mapping population led to QTL intervals that are smaller than is typical for an F2 mapping design. The intervals we map overlap with a pair of lobe QTL we previously identified in an independent mapping cross, potentially suggesting a level of shared genetic control of trait variation. Our QTL additionally implicate a suite of genes that have been shown to contribute to the development of the posterior lobe. These loci are strong candidates to harbor naturally-segregating sites contributing to phenotypic variation within D. melanogaster, and may also be those contributing to divergence in lobe morphology between species.
Collapse
Affiliation(s)
- Jennifer L. Hackett
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas, 66045, United States of America
| | - Xiaofei Wang
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas, 66045, United States of America
| | - Brittny R. Smith
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas, 66045, United States of America
| | - Stuart J. Macdonald
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas, 66045, United States of America
- Center for Computational Biology, University of Kansas, 2030 Becker Drive, Lawrence, Kansas, 66047, United States of America
- * E-mail:
| |
Collapse
|
41
|
Sensitivity of Allelic Divergence to Genomic Position: Lessons from the Drosophila tan Gene. G3-GENES GENOMES GENETICS 2016; 6:2955-62. [PMID: 27449514 PMCID: PMC5015952 DOI: 10.1534/g3.116.032029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To identify genetic variants underlying changes in phenotypes within and between species, researchers often utilize transgenic animals to compare the function of alleles in different genetic backgrounds. In Drosophila, targeted integration mediated by the ΦC31 integrase allows activity of alternative alleles to be compared at the same genomic location. By using the same insertion site for each transgene, position effects are generally assumed to be controlled for because both alleles are surrounded by the same genomic context. Here, we test this assumption by comparing the activity of tan alleles from two Drosophila species, D. americana and D. novamexicana, at five different genomic locations in D. melanogaster. We found that the relative effects of these alleles varied among insertion sites, with no difference in activity observed between them at two sites. One of these sites simply silenced both transgenes, but the other allowed expression of both alleles that was sufficient to rescue a mutant phenotype yet failed to reveal the functional differences between the two alleles. These results suggest that more than one insertion site should be used when comparing the activity of transgenes because failing to do so could cause functional differences between alleles to go undetected.
Collapse
|
42
|
Genetic Convergence in the Evolution of Male-Specific Color Patterns in Drosophila. Curr Biol 2016; 26:2423-2433. [DOI: 10.1016/j.cub.2016.07.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/10/2016] [Accepted: 07/13/2016] [Indexed: 11/23/2022]
|
43
|
Cloud-Richardson KM, Smith BR, Macdonald SJ. Genetic dissection of intraspecific variation in a male-specific sexual trait in Drosophila melanogaster. Heredity (Edinb) 2016; 117:417-426. [PMID: 27530909 PMCID: PMC5117841 DOI: 10.1038/hdy.2016.63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 06/07/2016] [Accepted: 06/22/2016] [Indexed: 01/06/2023] Open
Abstract
An open question in evolutionary biology is the relationship between standing variation for a trait and the variation that leads to interspecific divergence. By identifying loci underlying phenotypic variation in intra- and interspecific crosses we can determine the extent to which polymorphism and divergence are controlled by the same genomic regions. Sexual traits provide abundant examples of morphological and behavioral diversity within and among species, and here we leverage variation in the Drosophila sex comb to address this question. The sex comb is an array of modified bristles or ‘teeth' present on the male forelegs of several Drosophilid species. Males use the comb to grasp females during copulation, and ablation experiments have shown that males lacking comb teeth typically fail to mate. We measured tooth number in >700 genotypes derived from a multiparental advanced-intercross population, mapping three moderate-effect loci contributing to trait heritability. Two quantitative trait loci (QTLs) coincide with previously identified intra- and interspecific sex comb QTL, but such overlap can be explained by chance alone, in part because of the broad swathes of the genome implicated by earlier, low-resolution QTL scans. Our mapped QTL regions encompass 70–124 genes, but do not include those genes known to be involved in developmental specification of the comb. Nonetheless, we identified plausible candidates within all QTL intervals, and used RNA interference to validate effects at four loci. Notably, TweedleS expression knockdown substantially reduces tooth number. The genes we highlight are strong candidates to harbor segregating, functional variants contributing to sex comb tooth number.
Collapse
Affiliation(s)
| | - B R Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - S J Macdonald
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA.,Center for Computational Biology, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
44
|
Gibert JM, Mouchel-Vielh E, De Castro S, Peronnet F. Phenotypic Plasticity through Transcriptional Regulation of the Evolutionary Hotspot Gene tan in Drosophila melanogaster. PLoS Genet 2016; 12:e1006218. [PMID: 27508387 PMCID: PMC4980059 DOI: 10.1371/journal.pgen.1006218] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/02/2016] [Indexed: 11/18/2022] Open
Abstract
Phenotypic plasticity is the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions. Phenotypic plasticity can be adaptive. Furthermore, it is thought to facilitate evolution. Although phenotypic plasticity is a widespread phenomenon, its molecular mechanisms are only beginning to be unravelled. Environmental conditions can affect gene expression through modification of chromatin structure, mainly via histone modifications, nucleosome remodelling or DNA methylation, suggesting that phenotypic plasticity might partly be due to chromatin plasticity. As a model of phenotypic plasticity, we study abdominal pigmentation of Drosophila melanogaster females, which is temperature sensitive. Abdominal pigmentation is indeed darker in females grown at 18°C than at 29°C. This phenomenon is thought to be adaptive as the dark pigmentation produced at lower temperature increases body temperature. We show here that temperature modulates the expression of tan (t), a pigmentation gene involved in melanin production. t is expressed 7 times more at 18°C than at 29°C in female abdominal epidermis. Genetic experiments show that modulation of t expression by temperature is essential for female abdominal pigmentation plasticity. Temperature modulates the activity of an enhancer of t without modifying compaction of its chromatin or level of the active histone mark H3K27ac. By contrast, the active mark H3K4me3 on the t promoter is strongly modulated by temperature. The H3K4 methyl-transferase involved in this process is likely Trithorax, as we show that it regulates t expression and the H3K4me3 level on the t promoter and also participates in female pigmentation and its plasticity. Interestingly, t was previously shown to be involved in inter-individual variation of female abdominal pigmentation in Drosophila melanogaster, and in abdominal pigmentation divergence between Drosophila species. Sensitivity of t expression to environmental conditions might therefore give more substrate for selection, explaining why this gene has frequently been involved in evolution of pigmentation. Environmental conditions can strongly modulate the phenotype produced by a particular genotype. This process, called phenotypic plasticity, has major implications in medicine and agricultural sciences, and is thought to facilitate evolution. Phenotypic plasticity is observed in many animals and plants but its mechanisms are only partially understood. As a model of phenotypic plasticity, we study the effect of temperature on female abdominal pigmentation in the fruit fly Drosophila melanogaster. Here we show that temperature affects female abdominal pigmentation by modulating the expression of tan (t), a gene involved in melanin production, in female abdominal epidermis. This effect is mediated at least partly by a particular regulatory sequence of t, the t_MSE enhancer. However we detected no modulation of chromatin structure of t_MSE by temperature. By contrast, the level of the active chromatin mark H3K4me3 on the t promoter is strongly increased at lower temperature. We show that the H3K4 methyl-transferase Trithorax is involved in female abdominal pigmentation and its plasticity and regulates t expression and H3K4me3 level on the t promoter. Several studies have linked t to pigmentation evolution within and between Drosophila species. Our results suggest that sensitivity of t expression to temperature might facilitate its role in pigmentation evolution.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, Equipe “Contrôle épigénétique de l’homéostasie et de la plasticité du développement”, Paris, France
- * E-mail: (JMG); (EMV)
| | - Emmanuèle Mouchel-Vielh
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, Equipe “Contrôle épigénétique de l’homéostasie et de la plasticité du développement”, Paris, France
- * E-mail: (JMG); (EMV)
| | - Sandra De Castro
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, Equipe “Contrôle épigénétique de l’homéostasie et de la plasticité du développement”, Paris, France
| | - Frédérique Peronnet
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, Equipe “Contrôle épigénétique de l’homéostasie et de la plasticité du développement”, Paris, France
| |
Collapse
|
45
|
Hay A, Tsiantis M. Cardamine hirsuta: a comparative view. Curr Opin Genet Dev 2016; 39:1-7. [PMID: 27270046 DOI: 10.1016/j.gde.2016.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/12/2016] [Accepted: 05/14/2016] [Indexed: 11/15/2022]
Abstract
Current advances in developmental genetics are increasingly underpinned by comparative approaches as more powerful experimental tools become available in non-model organisms. Cardamine hirsuta is related to the model plant Arabidopsis thaliana and comparisons between these two experimentally tractable species have advanced our understanding of development and diversity. The power of forward genetics to uncover new biology was evident in the isolation of REDUCED COMPLEXITY, a gene which is present in C. hirsuta but lost in A. thaliana, and shapes crucifer leaf diversity. Transferring two Knotted1-like homeobox genes between C. hirsuta and A. thaliana revealed a constraint imposed by pleiotropy on the evolutionary potential of cis regulatory change to modify leaf shape. FLOWERING LOCUS C was identified as a heterochronic gene that underlies natural leaf shape variation in C. hirsuta.
Collapse
Affiliation(s)
- Angela Hay
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany.
| | - Miltos Tsiantis
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany.
| |
Collapse
|
46
|
Massey JH, Wittkopp PJ. The Genetic Basis of Pigmentation Differences Within and Between Drosophila Species. Curr Top Dev Biol 2016; 119:27-61. [PMID: 27282023 DOI: 10.1016/bs.ctdb.2016.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In Drosophila, as well as in many other plants and animals, pigmentation is highly variable both within and between species. This variability, combined with powerful genetic and transgenic tools as well as knowledge of how pigment patterns are formed biochemically and developmentally, has made Drosophila pigmentation a premier system for investigating the genetic and molecular mechanisms responsible for phenotypic evolution. In this chapter, we review and synthesize findings from a rapidly growing body of case studies examining the genetic basis of pigmentation differences in the abdomen, thorax, wings, and pupal cases within and between Drosophila species. A core set of genes, including genes required for pigment synthesis (eg, yellow, ebony, tan, Dat) as well as developmental regulators of these genes (eg, bab1, bab2, omb, Dll, and wg), emerge as the primary sources of this variation, with most genes having been shown to contribute to pigmentation differences both within and between species. In cases where specific genetic changes contributing to pigmentation divergence were identified in these genes, the changes were always located in noncoding sequences and affected cis-regulatory activity. We conclude this chapter by discussing these and other lessons learned from evolutionary genetic studies of Drosophila pigmentation and identify topics we think should be the focus of future work with this model system.
Collapse
Affiliation(s)
- J H Massey
- University of Michigan, Ann Arbor, MI, United States
| | - P J Wittkopp
- University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
47
|
Yassin A, Bastide H, Chung H, Veuille M, David JR, Pool JE. Ancient balancing selection at tan underlies female colour dimorphism in Drosophila erecta. Nat Commun 2016; 7:10400. [PMID: 26778363 PMCID: PMC4735637 DOI: 10.1038/ncomms10400] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/08/2015] [Indexed: 12/30/2022] Open
Abstract
Dimorphic traits are ubiquitous in nature, but the evolutionary factors leading to dimorphism are largely unclear. We investigate a potential case of sexual mimicry in Drosophila erecta, in which females show contrasting resemblance to males. We map the genetic basis of this sex-limited colour dimorphism to a region containing the gene tan. We find a striking signal of ancient balancing selection at the ‘male-specific enhancer' of tan, with exceptionally high sequence divergence between light and dark alleles, suggesting that this dimorphism has been adaptively maintained for millions of years. Using transgenic reporter assays, we confirm that these enhancer alleles encode expression differences that are predicted to generate this pigmentation dimorphism. These results are compatible with the theoretical prediction that divergent phenotypes maintained by selection can evolve simple genetic architectures. Sexual dimorphism is common in nature. Here, the authors combine population genetics and functional experiments to show that a region containing the gene tan contributes to sex-limited colour dimorphism in Drosophila erecta and that this dimorphism has likely been adaptively maintained for millions of years.
Collapse
Affiliation(s)
- Amir Yassin
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Héloïse Bastide
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Henry Chung
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michel Veuille
- Institut Systématique Evolution Biodiversité ISYEB-UMR 7205-CNRS-MNHN-UPMC-EPHE, Ecole Pratique des Hautes Etudes, Paris-Sciences-Lettres, Paris 75005, France
| | - Jean R David
- Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE), CNRS, IRD, University of Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
48
|
Miyagi R, Akiyama N, Osada N, Takahashi A. Complex patterns of cis-regulatory polymorphisms in ebony underlie standing pigmentation variation in Drosophila melanogaster. Mol Ecol 2015; 24:5829-41. [PMID: 26503353 DOI: 10.1111/mec.13432] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 01/08/2023]
Abstract
Pigmentation traits in adult Drosophila melanogaster were used in this study to investigate how phenotypic variations in continuous ecological traits can be maintained in a natural population. First, pigmentation variation in the adult female was measured at seven different body positions in 20 strains from the Drosophila melanogaster Genetic Reference Panel (DGRP) originating from a natural population in North Carolina. Next, to assess the contributions of cis-regulatory polymorphisms of the genes involved in the melanin biosynthesis pathway, allele-specific expression levels of four genes were quantified by amplicon sequencing using a 454 GS Junior. Among those genes, ebony was significantly associated with pigmentation intensity of the thoracic segment. Detailed sequence analysis of the gene regulatory regions of this gene indicated that many different functional cis-regulatory alleles are segregating in the population and that variations outside the core enhancer element could potentially play important roles in the regulation of gene expression. In addition, a slight enrichment of distantly associated SNP pairs was observed in the ~10 kb cis-regulatory region of ebony, which suggested the presence of interacting elements scattered across the region. In contrast, sequence analysis in the core cis-regulatory region of tan indicated that SNPs within the region are significantly associated with allele-specific expression level of this gene. Collectively, the data suggest that the underlying genetic differences in the cis-regulatory regions that control intraspecific pigmentation variation can be more complex than those of interspecific pigmentation trait differences, where causal genetic changes are typically confined to modular enhancer elements.
Collapse
Affiliation(s)
- Ryutaro Miyagi
- Department of Biological Sciences, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji, 192-0397, Japan
| | - Noriyoshi Akiyama
- Department of Biological Sciences, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji, 192-0397, Japan
| | - Naoki Osada
- Department of Population Genetics, National Institute of Genetics, 1111 Yata, Mishima, 411-8540, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), 1111 Yata, Mishima, 411-8540, Japan
| | - Aya Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji, 192-0397, Japan.,Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji, 192-0397, Japan
| |
Collapse
|
49
|
Favé MJ, Johnson RA, Cover S, Handschuh S, Metscher BD, Müller GB, Gopalan S, Abouheif E. Past climate change on Sky Islands drives novelty in a core developmental gene network and its phenotype. BMC Evol Biol 2015; 15:183. [PMID: 26338531 PMCID: PMC4560157 DOI: 10.1186/s12862-015-0448-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/06/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND A fundamental and enduring problem in evolutionary biology is to understand how populations differentiate in the wild, yet little is known about what role organismal development plays in this process. Organismal development integrates environmental inputs with the action of gene regulatory networks to generate the phenotype. Core developmental gene networks have been highly conserved for millions of years across all animals, and therefore, organismal development may bias variation available for selection to work on. Biased variation may facilitate repeatable phenotypic responses when exposed to similar environmental inputs and ecological changes. To gain a more complete understanding of population differentiation in the wild, we integrated evolutionary developmental biology with population genetics, morphology, paleoecology and ecology. This integration was made possible by studying how populations of the ant species Monomorium emersoni respond to climatic and ecological changes across five 'Sky Islands' in Arizona, which are mountain ranges separated by vast 'seas' of desert. Sky Islands represent a replicated natural experiment allowing us to determine how repeatable is the response of M. emersoni populations to climate and ecological changes at the phenotypic, developmental, and gene network levels. RESULTS We show that a core developmental gene network and its phenotype has kept pace with ecological and climate change on each Sky Island over the last ~90,000 years before present (BP). This response has produced two types of evolutionary change within an ant species: one type is unpredictable and contingent on the pattern of isolation of Sky lsland populations by climate warming, resulting in slight changes in gene expression, organ growth, and morphology. The other type is predictable and deterministic, resulting in the repeated evolution of a novel wingless queen phenotype and its underlying gene network in response to habitat changes induced by climate warming. CONCLUSION Our findings reveal dynamics of developmental gene network evolution in wild populations. This holds important implications: (1) for understanding how phenotypic novelty is generated in the wild; (2) for providing a possible bridge between micro- and macroevolution; and (3) for understanding how development mediates the response of organisms to past, and potentially, future climate change.
Collapse
Affiliation(s)
- Marie-Julie Favé
- Department of Biology, McGill University, 1205 Dr. Penfield avenue, Montréal, Québec, Canada.
| | - Robert A Johnson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | - Stefan Cover
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| | - Stephan Handschuh
- Department of Theoretical Biology, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria.
| | - Brian D Metscher
- Department of Theoretical Biology, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria.
| | - Gerd B Müller
- Department of Theoretical Biology, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria.
| | - Shyamalika Gopalan
- Department of Biology, McGill University, 1205 Dr. Penfield avenue, Montréal, Québec, Canada.
| | - Ehab Abouheif
- Department of Biology, McGill University, 1205 Dr. Penfield avenue, Montréal, Québec, Canada.
| |
Collapse
|
50
|
Veltsos P, Gregson E, Morrissey B, Slate J, Hoikkala A, Butlin RK, Ritchie MG. The genetic architecture of sexually selected traits in two natural populations of Drosophila montana. Heredity (Edinb) 2015. [PMID: 26198076 DOI: 10.1038/hdy.2015.63] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We investigated the genetic architecture of courtship song and cuticular hydrocarbon traits in two phygenetically distinct populations of Drosophila montana. To study natural variation in these two important traits, we analysed within-population crosses among individuals sampled from the wild. Hence, the genetic variation analysed should represent that available for natural and sexual selection to act upon. In contrast to previous between-population crosses in this species, no major quantitative trait loci (QTLs) were detected, perhaps because the between-population QTLs were due to fixed differences between the populations. Partitioning the trait variation to chromosomes suggested a broadly polygenic genetic architecture of within-population variation, although some chromosomes explained more variation in one population compared with the other. Studies of natural variation provide an important contrast to crosses between species or divergent lines, but our analysis highlights recent concerns that segregating variation within populations for important quantitative ecological traits may largely consist of small effect alleles, difficult to detect with studies of moderate power.
Collapse
Affiliation(s)
- P Veltsos
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| | - E Gregson
- Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Sheffield, UK
| | - B Morrissey
- Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Sheffield, UK
| | - J Slate
- Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Sheffield, UK
| | - A Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - R K Butlin
- Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Sheffield, UK.,Sven Lovén Centre-Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - M G Ritchie
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| |
Collapse
|