1
|
S Subauste C, Hubal A. Animal Models for Toxoplasma gondii Infection. Curr Protoc 2023; 3:e871. [PMID: 37695167 PMCID: PMC10621533 DOI: 10.1002/cpz1.871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite that commonly infects mammals and birds throughout the world. This protocol describes murine models of acute T. gondii infection, toxoplasmic encephalitis and toxoplasma retinochoroiditis. T. gondii infection in severe combined immunodeficient (SCID) mice, deficient in T and B cells, has allowed for the study of T cell-independent mechanisms of defense against intracellular organisms, as described here. The uracil auxotroph strain cps1-1 and temperature-sensitive mutant strains of T. gondii induce protection against challenge with virulent strains of the parasite. They have allowed studies of immunization and adoptive-transfer experiments. A protocol is provided for infection with these mutant strains. The EGS strain of T. gondii has the unique feature of spontaneously forming tissue cysts in cell culture. Dual fluorescent reporter stains of this strain have allowed the study of tachyzoite to bradyzoite transitions in vitro and in vivo. A protocol for in vitro and in vivo growth of this strain and tissue cyst isolation is provided. Genetic manipulation of T. gondii and mice has led to the development of parasites that express fluorescent proteins as well as mice with fluorescently labeled leukocytes. This together with the use of T. gondii that express model antigens and transgenic mice that express the appropriate T cell receptor have facilitated the in vivo study of parasite host-interaction. In addition, parasites that express bioluminescent markers have made it possible to study the dynamics of infection in real time using bioluminescence imaging. Support protocols present methodology for evaluation of progression of infection and immune response to the parasite that includes these newer methodologies. In addition, support protocols address the maintenance of T. gondii tissue cysts and tachyzoites, as well as preparation of T. gondii lysate antigens. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Induction of acute T. gondii infection in mice Basic Protocol 2: Model of toxoplasmic encephalitis and toxoplasma retinochoroiditis in chronically infected mice Basic Protocol 3: Assessment of T. gondii invasion into neural tissue Basic Protocol 4: T. gondii infection in scid/scid (SCID) mice Basic Protocol 5: Infection with the uracil auxotroph strain CPS1-1 or the temperature-sensitive TS-4 strain of T. gondii Basic Protocol 6: In vivo and in vitro maintenance of the EGS strain of T. gondii Support Protocol 1: Assessment of progression of infection and immune response to T. gondii Support Protocol 2: Maintenance of a bank of T. gondii cysts of the ME49 strain Support Protocol 3: Maintenance of T. gondii tachyzoites using human foreskin fibroblasts Support Protocol 4: Maintenance of T. gondii tachyzoites in mice Support Protocol 5: Preparation of T. gondii lysate antigens Support Protocol 6: Isolation of T. gondii tissue cysts from brain.
Collapse
Affiliation(s)
- Carlos S Subauste
- Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| | - Alyssa Hubal
- Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Kongsomboonvech AK, García-López L, Njume F, Rodriguez F, Souza SP, Rosenberg A, Jensen KDC. Variation in CD8 T cell IFNγ differentiation to strains of Toxoplasma gondii is characterized by small effect QTLs with contribution from ROP16. Front Cell Infect Microbiol 2023; 13:1130965. [PMID: 37287466 PMCID: PMC10242045 DOI: 10.3389/fcimb.2023.1130965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/17/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Toxoplasma gondii induces a strong CD8 T cell response characterized by the secretion of IFNγ that promotes host survival during infection. The initiation of CD8 T cell IFNγ responses in vitro differs widely between clonal lineage strains of T. gondii, in which type I strains are low inducers, while types II and III strains are high inducers. We hypothesized this phenotype is due to a polymorphic "Regulator Of CD8 T cell Response" (ROCTR). Methods Therefore, we screened F1 progeny from genetic crosses between the clonal lineage strains to identify ROCTR. Naïve antigen-specific CD8 T cells (T57) isolated from transnuclear mice, which are specific for the endogenous and vacuolar TGD057 antigen, were measured for their ability to become activated, transcribe Ifng and produce IFNγ in response to T. gondii infected macrophages. Results Genetic mapping returned four non-interacting quantitative trait loci (QTL) with small effect on T. gondii chromosomes (chr) VIIb-VIII, X and XII. These loci encompass multiple gene candidates highlighted by ROP16 (chrVIIb-VIII), GRA35 (chrX), TgNSM (chrX), and a pair of uncharacterized NTPases (chrXII), whose locus we report to be significantly truncated in the type I RH background. Although none of the chromosome X and XII candidates bore evidence for regulating CD8 T cell IFNγ responses, type I variants of ROP16 lowered Ifng transcription early after T cell activation. During our search for ROCTR, we also noted the parasitophorous vacuole membrane (PVM) targeting factor for dense granules (GRAs), GRA43, repressed the response suggesting PVM-associated GRAs are important for CD8 T cell activation. Furthermore, RIPK3 expression in macrophages was an absolute requirement for CD8 T cell IFNγ differentiation implicating the necroptosis pathway in T cell immunity to T. gondii. Discussion Collectively, our data suggest that while CD8 T cell IFNγ production to T. gondii strains vary dramatically, it is not controlled by a single polymorphism with strong effect. However, early in the differentiation process, polymorphisms in ROP16 can regulate commitment of responding CD8 T cells to IFNγ production which may have bearing on immunity to T. gondii.
Collapse
Affiliation(s)
- Angel K. Kongsomboonvech
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
- Quantitative Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Laura García-López
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
- Quantitative Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Ferdinand Njume
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
| | - Felipe Rodriguez
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
| | - Scott P. Souza
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
- Quantitative Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Alex Rosenberg
- The Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
- Health Sciences Research Institute, University of California, Merced, Merced, CA, United States
| |
Collapse
|
3
|
Role of CD4 + T Cells in Allergic Airway Diseases: Learning from Murine Models. Int J Mol Sci 2020; 21:ijms21207480. [PMID: 33050549 PMCID: PMC7589900 DOI: 10.3390/ijms21207480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 01/18/2023] Open
Abstract
The essential contribution of CD4+ T cells in allergic airway diseases has been demonstrated, especially by using various murine models of antigen-induced airway inflammation. In addition to antigen-immunized mouse models employing mast cell-deficient mice and CD4+ T cell-depleting procedure, antigen-specific CD4+ T cell transfer models have revealed the possible development of allergic inflammation solely dependent on CD4+ T cells. Regardless of the classical Th1/Th2 theory, various helper T cell subsets have the potential to induce different types of allergic inflammation. T cell receptor (TCR)-transgenic (Tg) mice have been used for investigating T cell-mediated immune responses. Besides, we have recently generated cloned mice from antigen-specific CD4+ T cells through somatic cell nuclear transfer. In contrast to TCR-Tg mice that express artificially introduced TCR, the cloned mice express endogenously regulated antigen-specific TCR. Upon antigen exposure, the mite antigen-reactive T cell-cloned mice displayed strong airway inflammation accompanied by bronchial hyperresponsiveness in a short time period. Antigen-specific CD4+ T cell-cloned mice are expected to be useful for investigating the detailed role of CD4+ T cells in various allergic diseases and for evaluating novel anti-allergic drugs.
Collapse
|
4
|
Kongsomboonvech AK, Rodriguez F, Diep AL, Justice BM, Castallanos BE, Camejo A, Mukhopadhyay D, Taylor GA, Yamamoto M, Saeij JPJ, Reese ML, Jensen KDC. Naïve CD8 T cell IFNγ responses to a vacuolar antigen are regulated by an inflammasome-independent NLRP3 pathway and Toxoplasma gondii ROP5. PLoS Pathog 2020; 16:e1008327. [PMID: 32853276 PMCID: PMC7480859 DOI: 10.1371/journal.ppat.1008327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/09/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022] Open
Abstract
Host resistance to Toxoplasma gondii relies on CD8 T cell IFNγ responses, which if modulated by the host or parasite could influence chronic infection and parasite transmission between hosts. Since host-parasite interactions that govern this response are not fully elucidated, we investigated requirements for eliciting naïve CD8 T cell IFNγ responses to a vacuolar resident antigen of T. gondii, TGD057. Naïve TGD057 antigen-specific CD8 T cells (T57) were isolated from transnuclear mice and responded to parasite-infected bone marrow-derived macrophages (BMDMs) in an antigen-dependent manner, first by producing IL-2 and then IFNγ. T57 IFNγ responses to TGD057 were independent of the parasite’s protein export machinery ASP5 and MYR1. Instead, host immunity pathways downstream of the regulatory Immunity-Related GTPases (IRG), including partial dependence on Guanylate-Binding Proteins, are required. Multiple T. gondii ROP5 isoforms and allele types, including ‘avirulent’ ROP5A from clade A and D parasite strains, were able to suppress CD8 T cell IFNγ responses to parasite-infected BMDMs. Phenotypic variance between clades B, C, D, F, and A strains suggest T57 IFNγ differentiation occurs independently of parasite virulence or any known IRG-ROP5 interaction. Consistent with this, removal of ROP5 is not enough to elicit maximal CD8 T cell IFNγ production to parasite-infected cells. Instead, macrophage expression of the pathogen sensors, NLRP3 and to a large extent NLRP1, were absolute requirements. Other members of the conventional inflammasome cascade are only partially required, as revealed by decreased but not abrogated T57 IFNγ responses to parasite-infected ASC, caspase-1/11, and gasdermin D deficient cells. Moreover, IFNγ production was only partially reduced in the absence of IL-12, IL-18 or IL-1R signaling. In summary, T. gondii effectors and host machinery that modulate parasitophorous vacuolar membranes, as well as NLR-dependent but inflammasome-independent pathways, determine the full commitment of CD8 T cells IFNγ responses to a vacuolar antigen. Parasites are excellent “students” of our immune system as they can deflect, antagonize and confuse the immune response making it difficult to vaccinate against these pathogens. In this report, we analyzed how a widespread parasite of mammals, Toxoplasma gondii, manipulates an immune cell needed for immunity to many intracellular pathogens, the CD8 T cell. Host pathways that govern CD8 T cell production of the immune protective cytokine, IFNγ, were also explored. We hypothesized the secreted T. gondii virulence factor, ROP5, work to inhibit the MHC 1 antigen presentation pathway therefore making it difficult for CD8 T cells to see T. gondii antigens sequestered inside a parasitophorous vacuole. However, manipulation through T. gondii ROP5 does not fully explain how CD8 T cells commit to making IFNγ in response to infection. Importantly, CD8 T cell IFNγ responses to T. gondii require the pathogen sensor NLRP3 to be expressed in the infected cell. Other proteins associated with NLRP3 activation, including members of the conventional inflammasome activation cascade pathway, are only partially involved. Our results identify a novel pathway by which NLRP3 regulates T cell function and underscore the need for NLRP3-activating adjuvants in vaccines aimed at inducing CD8 T cell IFNγ responses to parasites.
Collapse
Affiliation(s)
- Angel K. Kongsomboonvech
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Felipe Rodriguez
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Anh L. Diep
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Brandon M. Justice
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Brayan E. Castallanos
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Ana Camejo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Debanjan Mukhopadhyay
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Gregory A. Taylor
- Departments of Medicine; Molecular Genetics and Microbiology; and Immunology; and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, United States of America
- Geriatric Research, Education, and Clinical Center, Durham VA Health Care System, Durham, North Carolina, United States of America
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Jeroen P. J. Saeij
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Michael L. Reese
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
- Health Sciences Research Institute, University of California, Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Phillips N, Ke E, Nham A, Seidl M, Freeman B, Abadejos JR, Xiao C, Nemazee D, Ku M, Kirak O. Prediabetes Induced by a Single Autoimmune B Cell Clone. Front Immunol 2020; 11:1073. [PMID: 32625203 PMCID: PMC7314986 DOI: 10.3389/fimmu.2020.01073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
While B cells play a significant role in the onset of type-1 diabetes (T1D), little is know about their role in those early stages. Thus, to gain new insights into the role of B cells in T1D, we converted a physiological early pancreas-infiltrating B cell into a novel BCR mouse model using Somatic Cell Nuclear Transfer (SCNT). Strikingly, SCNT-derived B1411 model displayed neither developmental block nor anergy. Instead, B1411 underwent spontaneous germinal center reactions. Without T cell help, B1411-Rag1−/− was capable of forming peri-/intra-pancreatic lymph nodes, and undergoing class-switching. RNA-Seq analysis identified 93 differentially expressed genes in B1411 compared to WT B cells, including Irf7, Usp18, and Mda5 that had been linked to a potential viral etiology of T1D. We also found various members of the oligoadenylate synthase (OAS) family to be enriched in B1411, such as Oas1, which had recently also been linked to T1D. Strikingly, when challenged with glucose B1411-Rag1−/− mice displayed impaired glucose tolerance.
Collapse
Affiliation(s)
- Nathaniel Phillips
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Eugene Ke
- Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Amy Nham
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Maximilian Seidl
- Institute of Pathology, Heinrich-Heine University and University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Brent Freeman
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Justin R Abadejos
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Changchun Xiao
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - David Nemazee
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Manching Ku
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Oktay Kirak
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States.,Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Bhullar D, Nemazee D. B Cells Carrying Antigen Receptors Against Microbes as Tools for Vaccine Discovery and Design. Curr Top Microbiol Immunol 2020; 428:165-180. [PMID: 30919086 PMCID: PMC6765437 DOI: 10.1007/82_2019_156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2024]
Abstract
Can basic science improve the art of vaccinology? Here, we review efforts to understand immune responses with the aim to improve vaccine design and, eventually, to predict the efficacy of human vaccine candidates using the tools of transformed B cells and targeted transgenic mice carrying B cells with antigen receptors specific for microbes of interest.
Collapse
Affiliation(s)
- Deepika Bhullar
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Rd, IM29, La Jolla, CA, 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Rd, IM29, La Jolla, CA, 92037, USA.
| |
Collapse
|
7
|
Tsitsiklis A, Bangs DJ, Robey EA. CD8+ T Cell Responses to Toxoplasma gondii: Lessons from a Successful Parasite. Trends Parasitol 2019; 35:887-898. [DOI: 10.1016/j.pt.2019.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 01/21/2023]
|
8
|
Genetically modified hematopoietic stem/progenitor cells that produce IL-10-secreting regulatory T cells. Proc Natl Acad Sci U S A 2019; 116:2634-2639. [PMID: 30683721 DOI: 10.1073/pnas.1811984116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Random amino acid copolymers used in the treatment of multiple sclerosis in man or experimental autoimmune encephalomyelitis (EAE) in mice [poly(Y,E,A,K)n, known as Copaxone, and poly(Y,F,A,K)n] function at least in part by generation of IL-10-secreting regulatory T cells that mediate bystander immunosuppression. The mechanism through which these copolymers induce Tregs is unknown. To investigate this question, four previously described Vα3.2 Vβ14 T cell receptor (TCR) cDNAs, the dominant clonotype generated in splenocytes after immunization of SJL mice, that differed only in their CDR3 sequences were utilized to generate retrogenic mice. The high-level production of IL-10 as well as IL-5 and small amounts of the related cytokines IL-4 and IL-13 by CD4+ T cells isolated from the splenocytes of these mice strongly suggests that the TCR itself encodes information for specific cytokine secretion. The proliferation and production of IL-10 by these Tregs was costimulated by activation of glucocorticoid-induced TNF receptor (GITR) (expressed at high levels by these cells) through its ligand GITRL. A mechanism for generation of cells with this specificity is proposed. Moreover, retrogenic mice expressing these Tregs were protected from induction of EAE by the appropriate autoantigen.
Collapse
|
9
|
Kaur M, Kumar D, Butty V, Singh S, Esteban A, Fink GR, Ploegh HL, Sehrawat S. Galectin-3 Regulates γ-Herpesvirus Specific CD8 T Cell Immunity. iScience 2018; 9:101-119. [PMID: 30388704 PMCID: PMC6214866 DOI: 10.1016/j.isci.2018.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/17/2018] [Accepted: 10/10/2018] [Indexed: 02/02/2023] Open
Abstract
To gain insights into the molecular mechanisms and pathways involved in the activation of γ-herpesvirus (MHV68)-specific T cell receptor transnuclear (TN) CD8+ T cells, we performed a comprehensive transcriptomic analysis. Upon viral infection, we observed differential expression of several thousand transcripts encompassing various networks and pathways in activated TN cells compared with their naive counterparts. Activated cells highly upregulated galectin-3. We therefore explored the role of galectin-3 in influencing anti-MHV68 immunity. Galectin-3 was recruited at the immunological synapse during activation of CD8+ T cells and helped constrain their activation. The localization of galectin-3 to immune synapse was evident during the activation of both naive and memory CD8+ T cells. Galectin-3 knockout mice mounted a stronger MHV68-specific CD8+ T cell response to the majority of viral epitopes and led to better viral control. Targeting intracellular galectin-3 in CD8+ T cells may therefore serve to enhance response to efficiently control infections.
Collapse
Affiliation(s)
- Manpreet Kaur
- Indian Institute of Science Education and Research Mohali, Sector 81 SAS Nagar, PO Manauli, Mohali, Knowledge City 140306, Punjab, India
| | - Dhaneshwar Kumar
- Indian Institute of Science Education and Research Mohali, Sector 81 SAS Nagar, PO Manauli, Mohali, Knowledge City 140306, Punjab, India
| | - Vincent Butty
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge 02142 MA, USA
| | - Sudhakar Singh
- Indian Institute of Science Education and Research Mohali, Sector 81 SAS Nagar, PO Manauli, Mohali, Knowledge City 140306, Punjab, India
| | - Alexandre Esteban
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge 02142 MA, USA
| | - Gerald R Fink
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge 02142 MA, USA
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge 02142 MA, USA.
| | - Sharvan Sehrawat
- Indian Institute of Science Education and Research Mohali, Sector 81 SAS Nagar, PO Manauli, Mohali, Knowledge City 140306, Punjab, India.
| |
Collapse
|
10
|
Sanecka A, Yoshida N, Kolawole EM, Patel H, Evavold BD, Frickel EM. T Cell Receptor-Major Histocompatibility Complex Interaction Strength Defines Trafficking and CD103 + Memory Status of CD8 T Cells in the Brain. Front Immunol 2018; 9:1290. [PMID: 29922298 PMCID: PMC5996069 DOI: 10.3389/fimmu.2018.01290] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/23/2018] [Indexed: 11/30/2022] Open
Abstract
T cell receptor-major histocompatibility complex (TCR-MHC) affinities span a wide range in a polyclonal T cell response, yet it is undefined how affinity shapes long-term properties of CD8 T cells during chronic infection with persistent antigen. Here, we investigate how the affinity of the TCR-MHC interaction shapes the phenotype of memory CD8 T cells in the chronically Toxoplasma gondii-infected brain. We employed CD8 T cells from three lines of transnuclear (TN) mice that harbor in their endogenous loci different T cell receptors specific for the same Toxoplasma antigenic epitope ROP7. The three TN CD8 T cell clones span a wide range of affinities to MHCI-ROP7. These three CD8 T cell clones have a distinct and fixed hierarchy in terms of effector function in response to the antigen measured as proliferation capacity, trafficking, T cell maintenance, and memory formation. In particular, the T cell clone of lowest affinity does not home to the brain. The two higher affinity T cell clones show differences in establishing resident-like memory populations (CD103+) in the brain with the higher affinity clone persisting longer in the host during chronic infection. Transcriptional profiling of naïve and activated ROP7-specific CD8 T cells revealed that Klf2 encoding a transcription factor that is known to be a negative marker for T cell trafficking is upregulated in the activated lowest affinity ROP7 clone. Our data thus suggest that TCR-MHC affinity dictates memory CD8 T cell fate at the site of infection.
Collapse
Affiliation(s)
- Anna Sanecka
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Nagisa Yoshida
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Elizabeth Motunrayo Kolawole
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Harshil Patel
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Brian D. Evavold
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Eva-Maria Frickel
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
11
|
Deconstructive somatic cell nuclear transfer reveals novel regulatory T-cell subsets. J Allergy Clin Immunol 2018; 142:997-1000.e4. [PMID: 29857010 DOI: 10.1016/j.jaci.2018.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/27/2018] [Accepted: 04/02/2018] [Indexed: 12/12/2022]
|
12
|
Swee LK, Tan ZW, Sanecka A, Yoshida N, Patel H, Grotenbreg G, Frickel EM, Ploegh HL. Peripheral self-reactivity regulates antigen-specific CD8 T-cell responses and cell division under physiological conditions. Open Biol 2017; 6:rsob.160293. [PMID: 27881740 PMCID: PMC5133449 DOI: 10.1098/rsob.160293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022] Open
Abstract
T-cell identity is established by the expression of a clonotypic T-cell receptor (TCR), generated by somatic rearrangement of TCRα and β genes. The properties of the TCR determine both the degree of self-reactivity and the repertoire of antigens that can be recognized. For CD8 T cells, the relationship between TCR identity-hence reactivity to self-and effector function(s) remains to be fully understood and has rarely been explored outside of the H-2b haplotype. We measured the affinity of three structurally distinct CD8 T-cell-derived TCRs that recognize the identical H-2 Ld-restricted epitope, derived from the Rop7 protein of Toxoplasma gondii We used CD8 T cells obtained from mice generated by somatic cell nuclear transfer as the closest approximation of primary T cells with physiological TCR rearrangements and TCR expression levels. First, we demonstrate the common occurrence of secondary rearrangements in endogenously rearranged loci. Furthermore, we characterized and compared the response of Rop7-specific CD8 T-cell clones upon Toxoplasma gondii infection as well as effector function and TCR signalling upon antigenic stimulation in vitro Antigen-independent TCR cross-linking in vitro uncovered profound intrinsic differences in the effector functions between T-cell clones. Finally, by assessing the degree of self-reactivity and comparing the transcriptomes of naive Rop7 CD8 T cells, we show that lower self-reactivity correlates with lower effector capacity, whereas higher self-reactivity is associated with enhanced effector function as well as cell cycle entry under physiological conditions. Altogether, our data show that potential effector functions and basal proliferation of CD8 T cells are set by self-reactivity thresholds.
Collapse
Affiliation(s)
- Lee Kim Swee
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Zhen Wei Tan
- Department of Microbiology, National University of Singapore, Singapore.,Department of Biological Sciences, Immunology Programme, National University of Singapore, Singapore
| | - Anna Sanecka
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nagisa Yoshida
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Harshil Patel
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gijsbert Grotenbreg
- Department of Microbiology, National University of Singapore, Singapore.,Department of Biological Sciences, Immunology Programme, National University of Singapore, Singapore
| | - Eva-Maria Frickel
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| |
Collapse
|
13
|
Clancy-Thompson E, Chen GZ, Tyler PM, Servos MM, Barisa M, Brennan PJ, Ploegh HL, Dougan SK. Monoclonal Invariant NKT (iNKT) Cell Mice Reveal a Role for Both Tissue of Origin and the TCR in Development of iNKT Functional Subsets. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:159-171. [PMID: 28576977 PMCID: PMC5518629 DOI: 10.4049/jimmunol.1700214] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/02/2017] [Indexed: 01/10/2023]
Abstract
Invariant NKT (iNKT) cell functional subsets are defined by key transcription factors and output of cytokines, such as IL-4, IFN-γ, IL-17, and IL-10. To examine how TCR specificity determines iNKT function, we used somatic cell nuclear transfer to generate three lines of mice cloned from iNKT nuclei. Each line uses the invariant Vα14Jα18 TCRα paired with unique Vβ7 or Vβ8.2 subunits. We examined tissue homing, expression of PLZF, T-bet, and RORγt, and cytokine profiles and found that, although monoclonal iNKT cells differentiated into all functional subsets, the NKT17 lineage was reduced or expanded depending on the TCR expressed. We examined iNKT thymic development in limited-dilution bone marrow chimeras and show that higher TCR avidity correlates with higher PLZF and reduced T-bet expression. iNKT functional subsets showed distinct tissue distribution patterns. Although each individual monoclonal TCR showed an inherent subset distribution preference that was evident across all tissues examined, the iNKT cytokine profile differed more by tissue of origin than by TCR specificity.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/physiology
- Cell Differentiation
- Cytokines/genetics
- Cytokines/immunology
- Cytotoxicity, Immunologic/immunology
- Interleukin-10/immunology
- Interleukin-10/metabolism
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Kruppel-Like Transcription Factors/genetics
- Mice
- Mice, Inbred C57BL
- Natural Killer T-Cells/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
- Nuclear Transfer Techniques
- Organ Specificity
- Promyelocytic Leukemia Zinc Finger Protein
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Eleanor Clancy-Thompson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Gui Zhen Chen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Paul M Tyler
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Mariah M Servos
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Marta Barisa
- Whitehead Institute for Biomedical Research, Cambridge, MA 02242; and
| | - Patrick J Brennan
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02215
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, MA 02242; and
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215;
- Whitehead Institute for Biomedical Research, Cambridge, MA 02242; and
| |
Collapse
|
14
|
Kaminuma O, Katayama K, Inoue K, Saeki M, Nishimura T, Kitamura N, Shimo Y, Tofukuji S, Ishida S, Ogonuki N, Kamimura S, Oikawa M, Katoh S, Mori A, Shichijo M, Hiroi T, Ogura A. Hyper-reactive cloned mice generated by direct nuclear transfer of antigen-specific CD4 + T cells. EMBO Rep 2017; 18:885-893. [PMID: 28468955 DOI: 10.15252/embr.201643321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 11/09/2022] Open
Abstract
T-cell receptor (TCR)-transgenic mice have been employed for evaluating antigen-response mechanisms, but their non-endogenous TCR might induce immune response differently than the physiologically expressed TCR Nuclear transfer cloning produces animals that retain the donor genotype in all tissues including germline and immune systems. Taking advantage of this feature, we generated cloned mice that carry endogenously rearranged TCR genes from antigen-specific CD4+ T cells. We show that T cells of the cloned mice display distinct developmental pattern and antigen reactivity because of their endogenously pre-rearranged TCRα (rTα) and TCRβ (rTβ) alleles. These alleles were transmitted to the offspring, allowing us to establish a set of mouse lines that show chronic-type allergic phenotypes, that is, bronchial and nasal inflammation, upon local administrations of the corresponding antigens. Intriguingly, the existence of either rTα or rTβ is sufficient to induce in vivo hypersensitivity. These cloned mice expressing intrinsic promoter-regulated antigen-specific TCR are a unique animal model with allergic predisposition for investigating CD4+ T-cell-mediated pathogenesis and cellular commitment in immune diseases.
Collapse
Affiliation(s)
- Osamu Kaminuma
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan .,Bioresource Center RIKEN, Tsukuba, Japan.,Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Sagamihara, Japan.,Center for Life Science Research, University of Yamanashi, Chuo, Japan
| | - Kazufumi Katayama
- Drug Discovery & Disease Research Laboratory, SHIONOGI & Co., Ltd., Osaka, Japan
| | | | - Mayumi Saeki
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tomoe Nishimura
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Noriko Kitamura
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yusuke Shimo
- Drug Discovery & Disease Research Laboratory, SHIONOGI & Co., Ltd., Osaka, Japan
| | - Soichi Tofukuji
- Drug Discovery & Disease Research Laboratory, SHIONOGI & Co., Ltd., Osaka, Japan
| | - Satoru Ishida
- Drug Discovery & Disease Research Laboratory, SHIONOGI & Co., Ltd., Osaka, Japan
| | | | | | | | - Shigeki Katoh
- Department of Respiratory Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - Akio Mori
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Sagamihara, Japan
| | - Michitaka Shichijo
- Drug Discovery & Disease Research Laboratory, SHIONOGI & Co., Ltd., Osaka, Japan
| | - Takachika Hiroi
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | |
Collapse
|
15
|
Marple A, Wu W, Shah S, Zhao Y, Du P, Gause WC, Yap GS. Cutting Edge: Helminth Coinfection Blocks Effector Differentiation of CD8 T Cells through Alternate Host Th2- and IL-10-Mediated Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:634-639. [PMID: 27956529 PMCID: PMC5225035 DOI: 10.4049/jimmunol.1601741] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/22/2016] [Indexed: 01/22/2023]
Abstract
Concurrent helminth infection potently inhibits T cell immunity; however, whether helminthes prevent T cell priming or skew clonal recruitment and effector differentiation is not known. Using coinfection with two natural mouse pathogens, Heligmosomoides polygyrus and Toxoplasma gondii, to investigate the negative impact of helminthes on the CD8 T cell response, we demonstrate helminth-induced suppression of IL-12-dependent differentiation of killer-like receptor G1+ effector CD8 T cells and IFN-γ production. Nevertheless, reversal of helminth suppression of the innate IL-12 response of CD8α+ dendritic cells, which occurred in STAT6-deficient mice, was not sufficient to normalize CD8 T cell differentiation. Instead, a combined deficiency in IL-4 and IL-10 was required to reverse the negative effects of helminth coinfection on the CD8 T cell response. Monoclonal T. gondii-specific CD8 T cells adoptively transferred into coinfected mice recapitulated the spectrum of helminth-induced effects on the polyclonal CD8 T response, indicating the lack of requirement for clonal skewing.
Collapse
Affiliation(s)
- Andrew Marple
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | - Wenhui Wu
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | - Suhagi Shah
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | - Yanlin Zhao
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | - Peicheng Du
- High Performance and Research Computing Group, Office of Information Technology, Rutgers New Jersey Medical School, Rutgers University, Newark, NJ 07101
| | - William C Gause
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| | - George S Yap
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101;
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07101; and
| |
Collapse
|
16
|
Chen GY, Li Z, Duarte JN, Esteban A, Cheloha RW, Theile CS, Fink GR, Ploegh HL. Rapid capture and labeling of cells on single domain antibodies-functionalized flow cell. Biosens Bioelectron 2016; 89:789-794. [PMID: 27816596 DOI: 10.1016/j.bios.2016.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 01/13/2023]
Abstract
Current techniques to characterize leukocyte subgroups in blood require long sample preparation times and sizable sample volumes. A simplified method for leukocyte characterization using smaller blood volumes would thus be useful in diagnostic settings. Here we describe a flow system comprised of two functionalized graphene oxide (GO) surfaces that allow the capture of distinct leukocyte populations from small volumes blood using camelid single-domain antibodyfragments (VHHs) as capture agents. We used site-specifically labeled leukocytes to detect and identify cells exposed to fungal challenge. Combining the chemical and optical properties of GO with the versatility of the VHH scaffold in the context of a flow system provides a quick and efficient method for the capture and characterization of functional leukocytes.
Collapse
Affiliation(s)
- Guan-Yu Chen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Institute of Biomedical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan; Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Zeyang Li
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Joao N Duarte
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Ross W Cheloha
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Gerald R Fink
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
17
|
Bilate AM, Bousbaine D, Mesin L, Agudelo M, Leube J, Kratzert A, Dougan SK, Victora GD, Ploegh HL. Tissue-specific emergence of regulatory and intraepithelial T cells from a clonal T cell precursor. Sci Immunol 2016; 1:eaaf7471. [PMID: 28783695 DOI: 10.1126/sciimmunol.aaf7471] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/22/2016] [Indexed: 12/19/2022]
Abstract
Peripheral Foxp3+ regulatory T cells (pTregs) maintain immune homeostasis by controlling potentially harmful effector T cell responses toward dietary and microbial antigens. Although the identity of the T cell receptor (TCR) can impose commitment and functional specialization of T cells, less is known about how TCR identity governs pTreg development from conventional CD4+ T cells. To investigate the extent to which TCR identity dictates pTreg fate, we used somatic cell nuclear transfer to generate a transnuclear (TN) mouse carrying a monoclonal TCR from a pTreg (pTreg TN mice). We found that the pTreg TCR did not inevitably predispose T cells to become pTreg but instead allowed for differentiation of noninflammatory CD4+CD8αα+ intraepithelial lymphocytes (CD4IELs) in the small intestine. Only when we limited the number of T cell precursors that carried the TN pTreg TCR did we observe substantial pTreg development in the mesenteric lymph nodes and small intestine lamina propria of mixed bone marrow chimeras. Small clonal sizes and therefore decreased intraclonal competition were required for pTreg development. Despite bearing the same TCR, small intestine CD4IEL developed independently of precursor frequency. Both pTreg and CD4IEL development strictly depended on the resident microbiota. A single clonal CD4+ T cell precursor can thus give rise to two functionally distinct and anatomically segregated T cell subsets in a microbiota-dependent manner. Therefore, plasticity of the CD4 T cell compartment depends not only on the microbiota but also on specialized environmental cues provided by different tissues.
Collapse
Affiliation(s)
- Angelina M Bilate
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Djenet Bousbaine
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Biology, Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Luka Mesin
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Marianna Agudelo
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Justin Leube
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Andreas Kratzert
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Stephanie K Dougan
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Gabriel D Victora
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
18
|
Sanecka A, Yoshida N, Dougan SK, Jackson J, Shastri N, Ploegh H, Blanchard N, Frickel EM. Transnuclear CD8 T cells specific for the immunodominant epitope Gra6 lower acute-phase Toxoplasma gondii burden. Immunology 2016; 149:270-279. [PMID: 27377596 PMCID: PMC5046057 DOI: 10.1111/imm.12643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 11/27/2022] Open
Abstract
We generated a CD8 T‐cell receptor (TCR) transnuclear (TN) mouse specific to the Ld‐restricted immunodominant epitope of GRA6 from Toxoplasma gondii as a source of cells to facilitate further investigation into the CD8 T‐cell‐mediated response against this pathogen. The TN T cells bound Ld‐Gra6 tetramer and proliferated upon unspecific and peptide‐specific stimulation. The TCR beta sequence of the Gra6‐specific TN CD8 T cells is identical in its V‐ and J‐region to the TCR‐β harboured by a hybridoma line generated in response to Gra6 peptide. Adoptively transferred Gra6 TN CD8 T cells proliferated upon Toxoplasma infection in vivo and exhibited an activated phenotype similar to host CD8 T cells specific to Gra6. The brain of Toxoplasma‐infected mice carried Gra6 TN cells already at day 8 post‐infection. Both Gra6 TN mice as well as adoptively transferred Gra6 TN cells were able to significantly reduce the parasite burden in the acute phase of Toxoplasma infection. Overall, the Gra6 TN mouse represents a functional tool to study the protective and immunodominant specific CD8 T‐cell response to Toxoplasma in both the acute and the chronic phases of infection.
Collapse
Affiliation(s)
- Anna Sanecka
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, UK
| | - Nagisa Yoshida
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, UK
| | - Stephanie K Dougan
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John Jackson
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nilabh Shastri
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Hidde Ploegh
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicolas Blanchard
- INSERM UMR1043, CNRS UMR5282, Université de Toulouse-UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Eva-Maria Frickel
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, UK.
| |
Collapse
|
19
|
Nuclear transfer nTreg model reveals fate-determining TCR-β and novel peripheral nTreg precursors. Proc Natl Acad Sci U S A 2016; 113:E2316-25. [PMID: 27044095 DOI: 10.1073/pnas.1523664113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To study the development and function of "natural-arising" T regulatory (nTreg) cells, we developed a novel nTreg model on pure nonobese diabetic background using epigenetic reprogramming via somatic cell nuclear transfer. On RAG1-deficient background, we found that monoclonal FoxP3(+)CD4(+)Treg cells developed in the thymus in the absence of other T cells. Adoptive transfer experiments revealed that the thymic niche is not a limiting factor in nTreg development. In addition, we showed that the T-cell receptor (TCR) β-chain of our nTreg model was not only sufficient to bias T-cell development toward the CD4 lineage, but we also demonstrated that this TCR β-chain was able to provide stronger TCR signals. This TCR-β-driven mechanism would thus unify former per se contradicting hypotheses of TCR-dependent and -independent nTreg development. Strikingly, peripheral FoxP3(-)CD4(+)T cells expressing the same TCR as this somatic cell nuclear transfer nTreg model had a reduced capability to differentiate into Th1 cells but were poised to differentiate better into induced nTreg cells, both in vitro and in vivo, representing a novel peripheral precursor subset of nTreg cells to which we refer to as pre-nTreg cells.
Collapse
|
20
|
Karagiannis P, Iriguchi S, Kaneko S. Reprogramming away from the exhausted T cell state. Semin Immunol 2016; 28:35-44. [DOI: 10.1016/j.smim.2015.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/23/2015] [Accepted: 10/29/2015] [Indexed: 02/07/2023]
|
21
|
Review on the identification and role of Toxoplasma gondii antigenic epitopes. Parasitol Res 2015; 115:459-68. [PMID: 26581372 DOI: 10.1007/s00436-015-4824-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite with a broad range of hosts, and it causes severe toxoplasmasis in both humans and animals. It is well known that the progression and severity of a disease depend on the immunological status of the host. Immunological studies on antigens indicate that antigens do not exert their functions through the entire protein molecule, but instead, specific epitopes are responsible for the immune response. Protein antigens not only contain epitope structures used by B, T, cytotoxic T lymphocyte (CTL), and NK cells to mediate immunological responses but can also contain structures that are unfavorable for protective immunity. Therefore, the study of antigenic epitopes from T. gondii has not only enhanced our understanding of the structure and function of antigens, the reactions between antigens and antibodies, and many other aspects of immunology but it also plays a significant role in the development of new diagnostic reagents and vaccines. In this review, we summarized the immune mechanisms induced by antigen epitopes and the latest advances in identifying T. gondii antigen epitopes. Particular attention was paid to the potential clinical usefulness of epitopes in this context. Through a critical analysis of the current state of knowledge, we elucidated the latest data concerning the biological effects of epitopes and the immune results aimed at the development of future epitope-based applications, such as vaccines and diagnostic reagents.
Collapse
|
22
|
Agudo J, Ruzo A, Park ES, Sweeney R, Kana V, Wu M, Zhao Y, Egli D, Merad M, Brown BD. GFP-specific CD8 T cells enable targeted cell depletion and visualization of T-cell interactions. Nat Biotechnol 2015; 33:1287-1292. [PMID: 26524661 PMCID: PMC4675673 DOI: 10.1038/nbt.3386] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/23/2015] [Indexed: 11/09/2022]
Abstract
There are numerous cell types with scarcely understood functions, and whose interactions with the immune system are not well characterized. To facilitate their study, we generated a mouse bearing enhanced green fluorescent protein (EGFP)-specific CD8+ T-cells. Transfer of the T-cells into EGFP reporter animals killed GFP-expressing cells, allowing selective depletion of desired cell types, or interrogation of T-cell interactions with specific populations. Using this system, we eliminate HCN4+ GFP-expressing cells in the heart and elicit their importance in cardiac function. We also show that naïve T-cells are recruited into the mouse brain by antigen-expressing microglia, providing evidence of an immune surveillance pathway in the central nervous system. The just EGFP death-inducing (JEDI) T-cells enable visualization of a T-cell antigen. They also make it possible to utilize hundreds of GFP-expressing mice, tumors, and pathogens, to study T-cell interactions with virtually any cell type, to model disease states, or to determine the functions of poorly characterized cell populations.
Collapse
Affiliation(s)
- Judith Agudo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Albert Ruzo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eun Sook Park
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert Sweeney
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Veronika Kana
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yong Zhao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dieter Egli
- The New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Mount Sinai Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brian D Brown
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Mount Sinai Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Diabetes Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
23
|
Shah S, Grotenbreg GM, Rivera A, Yap GS. An extrafollicular pathway for the generation of effector CD8(+) T cells driven by the proinflammatory cytokine, IL-12. eLife 2015; 4. [PMID: 26244629 PMCID: PMC4549662 DOI: 10.7554/elife.09017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/04/2015] [Indexed: 11/13/2022] Open
Abstract
The proinflammatory cytokine IL-12 drives the generation of terminally differentiated KLRG1+ effector CD8+ T cells. Using a Toxoplasma vaccination model, we delineate the sequence of events that naïve CD8+ T cells undergo to become terminal effectors and the differentiation steps controlled by IL-12. We demonstrate that direct IL-12 signaling on CD8+ T cells is essential for the induction of KLRG1 and IFN-γ, but the subsequent downregulation of CXCR3 is controlled by IL-12 indirectly through the actions of IFN-γ and IFN-γ-inducible chemokines. Differentiation of nascent effectors occurs in an extrafollicular splenic compartment and is driven by late IL-12 production by DCs distinct from the classical CD8α+ DC. Unexpectedly, we also found extensive proliferation of both KLRG1− and KLRG1+ CD8+ T cells in the marginal zone and red pulp, which ceases prior to the final KLRG1Hi CXCR3Lo stage. Our findings highlight the notion of an extrafollicular pathway for effector T cell generation. DOI:http://dx.doi.org/10.7554/eLife.09017.001 The immune system helps to protect us from cancer, infection by microbes and other diseases. There are several different types of immune cells that each have particular roles. For example, cytotoxic T cells can kill other cells in the body that are damaged or infected. These cells are found in various locations around the body—including a region of the spleen known as the white pulp—where they wait in an inactive state until they detect signals from a damaged or infected cell. These T cells divide and mature to produce populations of active T cells known as effector cytotoxic lymphoid cells (or CTLs for short), a process which is thought to occur within the white pulp. A small protein called cytokine IL-12 is involved in the production of CTLs. The cytokine is released from other immune cells and causes the activated T cells to divide and mature. It has long been believed that IL-12 produced in the white pulp early on in the process is sufficient to drive this process, but more recent work suggests that sustained production of IL-12 in other areas of the spleen that are accessible to the bloodstream may be needed. Here, Shah et al. studied the generation of cytotoxic T cells in mice that had been exposed to a vaccine against a disease called Toxoplasmosis. Their experiments show that IL-12 drives both the early and late stages of CTL production. In the early stages, the T cells respond to IL-12 that is secreted by a group of ‘lymphoid dendritic’ cells in the white pulp. However, in the later stages, the T cells move away from the white pulp to other parts of the spleen known as the marginal zone and red pulp, where a distinct group of ‘myeloid dendritic’ cells also produce IL-12 and direct the final maturation of the CTLs. Shah et al.'s findings also show that the process in which cytotoxic T cells divide and later mature to produce CTLs involves a series of tightly controlled events that mostly occur outside of the white pulp. These observations provide a new perspective on how to develop vaccines and other treatments that more efficiently generate the CTLs needed to protect against infections and cancer. DOI:http://dx.doi.org/10.7554/eLife.09017.002
Collapse
Affiliation(s)
- Suhagi Shah
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, United States
| | - Gijsbert M Grotenbreg
- Immunology Programme, Departments of Microbiology and Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, United States
| | - George S Yap
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, United States
| |
Collapse
|
24
|
Blanchard N, Dunay IR, Schlüter D. Persistence of Toxoplasma gondii in the central nervous system: a fine-tuned balance between the parasite, the brain and the immune system. Parasite Immunol 2015; 37:150-8. [PMID: 25573476 DOI: 10.1111/pim.12173] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/30/2014] [Indexed: 02/04/2023]
Abstract
Upon infection of humans and animals with Toxoplasma gondii, the parasites persist as intraneuronal cysts that are controlled, but not eliminated by the immune system. In particular, intracerebral T cells are crucial in the control of T. gondii infection and are supported by essential functions from other leukocyte populations. Additionally, brain-resident cells including astrocytes, microglia and neurons contribute to the intracerebral immune response by the production of cytokines, chemokines and expression of immunoregulatory cell surface molecules, such as major histocompatibility (MHC) antigens. However, the in vivo behaviour of these individual cell populations, specifically their interaction during cerebral toxoplasmosis, remains to be elucidated. We discuss here what is known about the function of T cells, recruited myeloid cells and brain-resident cells, with particular emphasis on the potential cross-regulation of these cell populations, in governing cerebral toxoplasmosis.
Collapse
Affiliation(s)
- N Blanchard
- Inserm U1043, Toulouse, France; CNRS U5282, Toulouse, France; Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, UPS, Toulouse, France
| | | | | |
Collapse
|
25
|
Toxoplasma gondii superinfection and virulence during secondary infection correlate with the exact ROP5/ROP18 allelic combination. mBio 2015; 6:e02280. [PMID: 25714710 PMCID: PMC4358003 DOI: 10.1128/mbio.02280-14] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular parasite Toxoplasma gondii infects a wide variety of vertebrate species globally. Infection in most hosts causes a lifelong chronic infection and generates immunological memory responses that protect the host against new infections. In regions where the organism is endemic, multiple exposures to T. gondii likely occur with great frequency, yet little is known about the interaction between a chronically infected host and the parasite strains from these areas. A widely used model to explore secondary infection entails challenge of chronically infected or vaccinated mice with the highly virulent type I RH strain. Here, we show that although vaccinated or chronically infected C57BL/6 mice are protected against the type I RH strain, they are not protected against challenge with most strains prevalent in South America or another type I strain, GT1. Genetic and genomic analyses implicated the parasite-secreted rhoptry effectors ROP5 and ROP18, which antagonize the host’s gamma interferon-induced immunity-regulated GTPases (IRGs), as primary requirements for virulence during secondary infection. ROP5 and ROP18 promoted parasite superinfection in the brains of challenged survivors. We hypothesize that superinfection may be an important mechanism to generate T. gondii strain diversity, simply because two parasite strains would be present in a single meal consumed by the feline definitive host. Superinfection may drive the genetic diversity of Toxoplasma strains in South America, where most isolates are IRG resistant, compared to North America, where most strains are IRG susceptible and are derived from a few clonal lineages. In summary, ROP5 and ROP18 promote Toxoplasma virulence during reinfection. Toxoplasma gondii is a widespread parasite of warm-blooded animals and currently infects one-third of the human population. A long-standing assumption in the field is that prior exposure to this parasite protects the host from subsequent reexposure, due to the generation of protective immunological memory. However, this assumption is based on clinical data and mouse models that analyze infections with strains common to Europe and North America. In contrast, we found that the majority of strains sampled from around the world, in particular those from South America, were able to kill or reinfect the brains of hosts previously exposed to T. gondii. The T. gondii virulence factors ROP5 and ROP18, which inhibit key host effectors that mediate parasite killing, were required for these phenotypes. We speculate that these results underpin clinical observations that pregnant women previously exposed to Toxoplasma can develop congenital infection upon reexposure to South American strains.
Collapse
|
26
|
Deuse T, Wang D, Stubbendorff M, Itagaki R, Grabosch A, Greaves LC, Alawi M, Grünewald A, Hu X, Hua X, Velden J, Reichenspurner H, Robbins RC, Jaenisch R, Weissman IL, Schrepfer S. SCNT-derived ESCs with mismatched mitochondria trigger an immune response in allogeneic hosts. Cell Stem Cell 2014; 16:33-8. [PMID: 25465116 DOI: 10.1016/j.stem.2014.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/27/2014] [Accepted: 11/07/2014] [Indexed: 12/26/2022]
Abstract
The generation of pluripotent stem cells by somatic cell nuclear transfer (SCNT) has recently been achieved in human cells and sparked new interest in this technology. The authors reporting this methodical breakthrough speculated that SCNT would allow the creation of patient-matched embryonic stem cells, even in patients with hereditary mitochondrial diseases. However, herein we show that mismatched mitochondria in nuclear-transfer-derived embryonic stem cells (NT-ESCs) possess alloantigenicity and are subject to immune rejection. In a murine transplantation setup, we demonstrate that allogeneic mitochondria in NT-ESCs, which are nucleus-identical to the recipient, may trigger an adaptive alloimmune response that impairs the survival of NT-ESC grafts. The immune response is adaptive, directed against mitochondrial content, and amenable for tolerance induction. Mitochondrial alloantigenicity should therefore be considered when developing therapeutic SCNT-based strategies.
Collapse
Affiliation(s)
- Tobias Deuse
- TSI Laboratory, University Heart Center Hamburg, Martinistrasse 52, 20246 Hamburg, Germany; Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, Martinistrasse 52, 20246 Hamburg, Germany; Cardiovascular Surgery, University Heart Center Hamburg, Martinistrasse 52, 20246 Hamburg, Germany
| | - Dong Wang
- TSI Laboratory, University Heart Center Hamburg, Martinistrasse 52, 20246 Hamburg, Germany; Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, Martinistrasse 52, 20246 Hamburg, Germany
| | - Mandy Stubbendorff
- TSI Laboratory, University Heart Center Hamburg, Martinistrasse 52, 20246 Hamburg, Germany; Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ryo Itagaki
- TSI Laboratory, University Heart Center Hamburg, Martinistrasse 52, 20246 Hamburg, Germany; Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, Martinistrasse 52, 20246 Hamburg, Germany
| | - Antje Grabosch
- TSI Laboratory, University Heart Center Hamburg, Martinistrasse 52, 20246 Hamburg, Germany; Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, Martinistrasse 52, 20246 Hamburg, Germany
| | - Laura C Greaves
- Newcastle University Centre for Brain Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Malik Alawi
- Bioinformatics Service Facility, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Virus Genomics, Martinistrasse 52, 20246 Hamburg, Germany
| | - Anne Grünewald
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Xiaomeng Hu
- TSI Laboratory, University Heart Center Hamburg, Martinistrasse 52, 20246 Hamburg, Germany; Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, Martinistrasse 52, 20246 Hamburg, Germany
| | - Xiaoqin Hua
- TSI Laboratory, University Heart Center Hamburg, Martinistrasse 52, 20246 Hamburg, Germany; Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, Martinistrasse 52, 20246 Hamburg, Germany
| | - Joachim Velden
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Maximiliansplatz 2, 91054 Erlangen, Germany
| | - Hermann Reichenspurner
- Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, Martinistrasse 52, 20246 Hamburg, Germany; Cardiovascular Surgery, University Heart Center Hamburg, Martinistrasse 52, 20246 Hamburg, Germany
| | - Robert C Robbins
- Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Irving L Weissman
- Department of Developmental Biology, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Sonja Schrepfer
- TSI Laboratory, University Heart Center Hamburg, Martinistrasse 52, 20246 Hamburg, Germany; Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, Martinistrasse 52, 20246 Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
27
|
Minagawa A, Kaneko S. Rise of iPSCs as a cell source for adoptive immunotherapy. Hum Cell 2014; 27:47-50. [PMID: 24510519 DOI: 10.1007/s13577-014-0089-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 12/14/2022]
Abstract
Adoptive T cell transfer is a potentially effective strategy for treating cancer and viral infections. However, previous studies of cancer immunotherapy have shown that T cells expanded in vitro fall into an exhausted state and, consequently, have limited therapeutic effect. One way to overcome this obstacle is to use induced pluripotent stem cells (iPSCs) as a cell source for making effector T cells. In recent years, there have been several reports on generating effector T cells suitable for adoptive immunotherapy. The reported findings suggest that using iPSC technology, it may be possible to stably derive large numbers of juvenile memory T cells targeted to cancers or viruses. In this review, we describe a strategy for applying iPSC technology to immunotherapy and the characteristics of T cells derived from iPSCs. We also discuss how these technologies can be applied clinically in the future.
Collapse
Affiliation(s)
- Atsutaka Minagawa
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center of iPS cell Research and Application (CiRA), Kyoto University, Kawaharacho 53, Shogoin, Sakyouku, Kyoto, 606-8507, Japan
| | | |
Collapse
|
28
|
|
29
|
Antigen-specific B-cell receptor sensitizes B cells to infection by influenza virus. Nature 2013; 503:406-9. [PMID: 24141948 PMCID: PMC3863936 DOI: 10.1038/nature12637] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/04/2013] [Indexed: 02/07/2023]
Abstract
Influenza A virus-specific B lymphocytes and the antibodies they produce protect against infection. However, the outcome of interactions between an influenza haemagglutinin-specific B cell via its receptor (BCR) and virus is unclear. Through somatic cell nuclear transfer we generated mice that harbour B cells with a BCR specific for the haemagglutinin of influenza A/WSN/33 virus (FluBI mice). Their B cells secrete an immunoglobulin gamma 2b that neutralizes infectious virus. Whereas B cells from FluBI and control mice bind equivalent amounts of virus through interaction of haemagglutinin with surface-disposed sialic acids, the A/WSN/33 virus infects only the haemagglutinin-specific B cells. Mere binding of virus is not sufficient for infection of B cells: this requires interactions of the BCR with haemagglutinin, causing both disruption of antibody secretion and FluBI B-cell death within 18 h. In mice infected with A/WSN/33, lung-resident FluBI B cells are infected by the virus, thus delaying the onset of protective antibody release into the lungs, whereas FluBI cells in the draining lymph node are not infected and proliferate. We propose that influenza targets and kills influenza-specific B cells in the lung, thus allowing the virus to gain purchase before the initiation of an effective adaptive response.
Collapse
|
30
|
Dougan SK, Dougan M, Kim J, Turner JA, Ogata S, Cho HI, Jaenisch R, Celis E, Ploegh HL. Transnuclear TRP1-specific CD8 T cells with high or low affinity TCRs show equivalent antitumor activity. Cancer Immunol Res 2013; 1:99-111. [PMID: 24459675 PMCID: PMC3895912 DOI: 10.1158/2326-6066.cir-13-0047] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have generated, via somatic cell nuclear transfer, two independent lines of transnuclear (TN) mice, using as nuclear donors CD8 T cells, sorted by tetramer staining, that recognize the endogenous melanoma antigen TRP1. These two lines of nominally identical specificity differ greatly in their affinity for antigen (TRP1(high) or TRP1(low)) as inferred from tetramer dissociation and peptide responsiveness. Ex vivo-activated CD8 T cells from either TRP1(high) or TRP1(low) mice show cytolytic activity in 3D tissue culture and in vivo, and slow the progression of subcutaneous B16 melanoma. Although naïve TRP1(low) CD8 T cells do not affect tumor growth, upon activation these cells function indistinguishably from TRP1(high) cells in vivo, limiting tumor cell growth and increasing mouse survival. The anti-tumor effect of both TRP1(high) and TRP1(low) CD8 T cells is enhanced in RAG-deficient hosts. However, tumor outgrowth eventually occurs, likely due to T cell exhaustion. The TRP1 TN mice are an excellent model for examining the functional attributes of T cells conferred by TCR affinity, and they may serve as a platform for screening immunomodulatory cancer therapies.
Collapse
Affiliation(s)
- Stephanie K. Dougan
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| | - Michael Dougan
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Jun Kim
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- Massachusetts Institute of Technology, Cambridge, MA
| | - Jacob A. Turner
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- University of Cincinnati, 2600 Clifton Ave, Cincinnati, OH 45221
| | - Souichi Ogata
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
- Janssen Research and Development, division of Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse B2340, Belgium
| | - Hyun-Il Cho
- Dept. of Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| | - Esteban Celis
- Dept. of Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142
| |
Collapse
|
31
|
Sortase-mediated modification of αDEC205 affords optimization of antigen presentation and immunization against a set of viral epitopes. Proc Natl Acad Sci U S A 2013; 110:1428-33. [PMID: 23297227 DOI: 10.1073/pnas.1214994110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A monoclonal antibody against the C-type lectin DEC205 (αDEC205) is an effective vehicle for delivery of antigens to dendritic cells through creation of covalent αDEC205-antigen adducts. These adducts can induce antigen-specific T-cell immune responses or tolerance. We exploit the transpeptidase activity of sortase to install modified peptides and protein-sized antigens onto the heavy chain of αDEC205, including linkers that contain nonnatural amino acids. We demonstrate stoichiometric site-specific labeling on a scale not easily achievable by genetic fusions (49 distinct fusions in this report). We conjugated a biotinylated version of a class I MHC-restricted epitope to unlabeled αDEC205 and monitored epitope generation upon binding of the adduct to dendritic cells. Our results show transfer of αDEC205 heavy chain to the cytoplasm, followed by proteasomal degradation. Introduction of a labile dipeptide linker at the N terminus of a T-cell epitope improves proteasome-dependent class I MHC-restricted peptide cross-presentation when delivered by αDEC205 in vitro and in vivo. We also conjugated αDEC205 with a linker-optimized peptide library of known CD8 T-cell epitopes from the mouse γ-herpes virus 68. Animals immunized with such conjugates displayed a 10-fold reduction in viral load.
Collapse
|
32
|
Abstract
The ubiquitous apicomplexan parasite Toxoplasma gondii stimulates its host’s immune response to achieve quiescent chronic infection. Central to this goal are host dendritic cells. The parasite exploits dendritic cells to disseminate through the body, produce pro-inflammatory cytokines, present its antigens to the immune system and yet at the same time subvert their signaling pathways in order to evade detection. This carefully struck balance by Toxoplasma makes it the most successful parasite on this planet. Recent progress has highlighted specific parasite and host molecules that mediate some of these processes particularly in dendritic cells and in other cells of the innate immune system. Critically, there are several important factors that need to be taken into consideration when concluding how the dendritic cells and the immune system deal with a Toxoplasma infection, including the route of administration, parasite strain and host genotype.
Collapse
Affiliation(s)
- Anna Sanecka
- Division of Parasitology, MRC National Institute of Medical Research, London, UK
| | | |
Collapse
|
33
|
Liu L, Liu Y, Gao F, Song G, Wen J, Guan J, Yin Y, Ma X, Tang B, Li Z. Embryonic development and gene expression of porcine SCNT embryos treated with sodium butyrate. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:224-34. [PMID: 22544719 DOI: 10.1002/jez.b.22440] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Incomplete epigenetic modification is one of important reasons of inefficient reprogramming of the donor cell nuclei in ooplasm after somatic cell nuclear transfer (SCNT). It may also underlie the observed reduced viability of cloned embryos. Sodium butyrate (NaBu) is a natural histone deacetylase inhibitor that is produced in the intestine. In the current study, we evaluated the effects of NaBu on preimplantation development, histone acetylation, and gene expression in porcine SCNT embryos. Our results showed that the blastocyst rate (24.88 ± 2.09) of cloned embryos treated with 1.0 mM NaBu for 12 hr after activation was significantly higher (P < 0.05) than that of untreated cloned embryos (13.15 ± 3.07). In addition, treated embryos displayed a global acetylated histone H3 at lysine 14 profile similar to that of in vitro fertilized (IVF) embryos during preimplantation development. Lower levels of Oct4 and Bcl-2, but higher levels of Hdac1, in SCNT embryos at the two-cell and blastocyst stages were observed, compared with those in the IVF counterparts. The four-cell embryos showed no differences in the levels of these genes among IVF embryos or SCNT embryos treated with or without NaBu; however, the levels of Dnmt3b were significantly different. NaBu-treated SCNT embryos showed similar levels of Oct4, Bcl-2, and Dnmt3b as in IVF blastocysts. These results indicated that NaBu treatment in SCNT embryos alters their histone acetylation pattern to provide beneficial effects on in vitro developmental competence and gene expression.
Collapse
Affiliation(s)
- Limei Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Centre for Animal Embryo Engineering of Jilin Province, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
IgG1+ ovalbumin-specific B-cell transnuclear mice show class switch recombination in rare allelically included B cells. Proc Natl Acad Sci U S A 2012; 109:13739-44. [PMID: 22869725 DOI: 10.1073/pnas.1210273109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We used somatic cell nuclear transfer (SCNT) to generate a mouse from the nucleus of an IgG1(+) ovalbumin-specific B cell. The resulting OBI mice show generally normal B-cell development, with elevated percentages of marginal zone B cells and a reduction in B-1 B cells. Whereas OBI RAG1(-/-) mice have exclusively IgG1 anti-ovalbumin in their serum, OBI mice show elevated levels of anti-ovalbumin of nearly all isotypes 3' of the γ1 constant region in the IgH locus, indicating that class switch recombination (CSR) occurs in the absence of immunization with ovalbumin. This CSR is associated with the presence of IgM(+)IgG1(+) double producer B cells that represent <1% of total B cells, accumulate in the peritoneal cavity, and account for near-normal levels of serum IgM and IgG3.
Collapse
|
35
|
Sehrawat S, Kirak O, Koenig PA, Isaacson MK, Marques S, Bozkurt G, Simas JP, Jaenisch R, Ploegh HL. CD8(+) T cells from mice transnuclear for a TCR that recognizes a single H-2K(b)-restricted MHV68 epitope derived from gB-ORF8 help control infection. Cell Rep 2012; 1:461-71. [PMID: 22832272 DOI: 10.1016/j.celrep.2012.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/07/2012] [Accepted: 03/15/2012] [Indexed: 12/22/2022] Open
Abstract
To study the CD8(+) T cell response against a mouse γ-herpes virus, we generated K(b)-MHV-68-ORF8(604-612)RAG(-/-) CD8(+) T cell receptor transnuclear (TN) mice as a source of virus-specific CD8(+) T cells. K(b)-ORF8-Tet(+) CD8(+) T cells, expanded in the course of a resolving MHV-68 infection, served as a source of nucleus donors. Various in vivo and ex vivo assay criteria demonstrated the fine specificity and functionality of TN cells. TN cells proliferated extensively in response to viral infection, helped control viral burden, and exhibited a phenotype similar to that of endogenous K(b)-ORF8-Tet(+) cells. When compared to OT-1 cells, TN cells displayed distinct properties in response to lymphopenia and cognate antigen stimulation, which may be attributable to the affinity of the TCR expressed by the TN cells. The availability of MHV-68-specific CD8(+) TCR TN mice provides a new tool for investigating aspects of host-pathogen interactions unique to γ-herpes viruses.
Collapse
Affiliation(s)
- Sharvan Sehrawat
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nanoinjection: pronuclear DNA delivery using a charged lance. Transgenic Res 2012; 21:1279-90. [PMID: 22415347 DOI: 10.1007/s11248-012-9610-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 03/02/2012] [Indexed: 02/06/2023]
Abstract
We present a non-fluidic pronuclear injection method using a silicon microchip "nanoinjector" composed of a microelectromechanical system with a solid, electrically conductive lance. Unlike microinjection which uses fluid delivery of DNA, nanoinjection electrically accumulates DNA on the lance, the DNA-coated lance is inserted into the pronucleus, and DNA is electrically released. We compared nanoinjection and microinjection side-by-side over the course of 4 days, injecting 1,013 eggs between the two groups. Nanoinjected zygotes had significantly higher rates of integration per injected embryo, with 6.2% integration for nanoinjected embryos compared to 1.6% integration for microinjected embryos. This advantage is explained by nanoinjected zygotes' significantly higher viability in two stages of development: zygote progress to two-cell stage, and progress from two-cell stage embryos to birth. We observed that 77.6% of nanoinjected zygotes proceeded to two-cell stage compared to 54.7% of microinjected zygotes. Of the healthy two-cell stage embryos, 52.4% from the nanoinjection group and 23.9% from the microinjected group developed into pups. Structural advantages of the nanoinjector are likely to contribute to the high viability observed. For instance, because charge is used to retain and release DNA, extracellular fluid is not injected into the pronucleus and the cross-sectional area of the nanoinjection lance (0.06 µm(2)) is smaller than that of a microinjection pipette tip (0.78 µm(2)). According to results from the comparative nanoinjection versus microinjection study, we conclude that nanoinjection is a viable method of pronuclear DNA transfer which presents viability advantages over microinjection.
Collapse
|
37
|
Bhadra R, Gigley JP, Khan IA. The CD8 T-cell road to immunotherapy of toxoplasmosis. Immunotherapy 2012; 3:789-801. [PMID: 21668315 DOI: 10.2217/imt.11.68] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Toxoplasma gondii infection induces a robust CD8 T-cell immunity that is critical for keeping chronic infection under control. In studies using animal models, it has been demonstrated that the absence of this response can compromise the host ability to keep chronic infection under check. Therapeutic agents that facilitate the induction and maintenance of CD8 T-cell response against the pathogen need to be developed. In the last decade, major strides in understanding the development of effector and memory response, particularly in viral and tumor models, have been made. However, factors involved in the generation of effector or memory response against T. gondii infection have not been extensively investigated. This information will be invaluable in designing immunotherapeutic regimens needed for combating this intracellular pathogen that poses a severe risk for pregnant women and immunocompromised individuals.
Collapse
Affiliation(s)
- Rajarshi Bhadra
- Department of Microbiology, Immunology & Tropical Medicine, George Washington University, Washington, DC 20037, USA
| | | | | |
Collapse
|
38
|
Subauste C. Animal models for Toxoplasma gondii infection. CURRENT PROTOCOLS IN IMMUNOLOGY 2012; Chapter 19:19.3.1-19.3.23. [PMID: 22314833 DOI: 10.1002/0471142735.im1903s96] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Toxoplasma gondii is a protozoan of worldwide distribution. This unit describes murine models of acute T. gondii infection, toxoplasmic encephalitis, and Toxoplasma retinochoroiditis. T. gondii infection in SCID mice allows the study of T cell-independent mechanisms of defense. The uracil auxotroph strain cps1-1 and temperature-sensitive mutant strains of T. gondii allow studies of immunization and adoptive transfer. In vivo study of parasite host-interaction is possible with the use of parasites that express fluorescent proteins and model antigens, plus the use of transgenic mice that express the appropriate T cell receptor and fluorescently labeled leukocytes. Parasites that express bioluminescent markers make it possible to study the dynamics of infection in real time using bioluminescence imaging. Support protocols present methodology for evaluation of progression of infection and immune response to the parasite, the maintenance of T. gondii tissue cysts and tachyzoites, as well as preparation of T. gondii lysate antigens.
Collapse
Affiliation(s)
- Carlos Subauste
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
39
|
Abstract
T-cell receptor transgenic mice are powerful tools to study T cell responses to malaria parasites. They allow for a population of antigen specific T cells to be monitored during developing responses to immunization or parasite infection; this makes them particularly useful to study fundamental aspects of T cell activation, differentiation, and migration in different tissue compartments. Moreover, the use of these cells allows for a thorough analysis of the mechanisms of antiparasite activity by T cells.
Collapse
Affiliation(s)
- Yun-Chi Chen
- Department of Molecular Microbiology and Immunology, John Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | |
Collapse
|
40
|
Interferon-gamma- and perforin-mediated immune responses for resistance against Toxoplasma gondii in the brain. Expert Rev Mol Med 2011; 13:e31. [PMID: 22005272 DOI: 10.1017/s1462399411002018] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite that causes various diseases, including lymphadenitis, congenital infection of fetuses and life-threatening toxoplasmic encephalitis in immunocompromised individuals. Interferon-gamma (IFN-γ)-mediated immune responses are essential for controlling tachyzoite proliferation during both acute acquired infection and reactivation of infection in the brain. Both CD4+ and CD8+ T cells produce this cytokine in response to infection, although the latter has more potent protective activity. IFN-γ can activate microglia, astrocytes and macrophages, and these activated cells control the proliferation of tachyzoites using different molecules, depending on cell type and host species. IFN-γ also has a crucial role in the recruitment of T cells into the brain after infection by inducing expression of the adhesion molecule VCAM-1 on cerebrovascular endothelial cells, and chemokines such as CXCL9, CXCL10 and CCL5. A recent study showed that CD8+ T cells are able to remove T. gondii cysts, which represent the stage of the parasite in chronic infection, from the brain through their perforin-mediated activity. Thus, the resistance to cerebral infection with T. gondii requires a coordinated network using both IFN-γ- and perforin-mediated immune responses. Elucidating how these two protective mechanisms function and collaborate in the brain against T. gondii will be crucial in developing a new method to prevent and eradicate this parasitic infection.
Collapse
|
41
|
Robert J, Cohen N. The genus Xenopus as a multispecies model for evolutionary and comparative immunobiology of the 21st century. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:916-23. [PMID: 21277325 PMCID: PMC3109137 DOI: 10.1016/j.dci.2011.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The Xenopus model for immunological research offers a collection of invaluable research tools including MHC-defined clones, inbred strains, cell lines, and monoclonal antibodies. Further, the annotated full genome sequence of Xenopus tropicalis and its remarkable conservation of gene organization with mammals, as well as ongoing genome mapping and mutagenesis studies in X. tropicalis, add a new dimension to the study of immunity. In this paper, we review uses of this amphibian model to study: the development of the immune system; vascular and lymphatic regeneration; immune tolerance; tumor immunity; immune responses to important emerging infectious diseases; and the evolution of classical and non-classical MHC class I genes. We also discuss the rich potential of the species with different degrees of polypoidy resulting from whole genome-wide duplication of the Xenopodinae subfamily as a model to study regulation at the genome level.
Collapse
Affiliation(s)
- Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States.
| | | |
Collapse
|
42
|
Gregg B, Dzierszinski F, Tait E, Jordan KA, Hunter CA, Roos DS. Subcellular antigen location influences T-cell activation during acute infection with Toxoplasma gondii. PLoS One 2011; 6:e22936. [PMID: 21829561 PMCID: PMC3145783 DOI: 10.1371/journal.pone.0022936] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 07/04/2011] [Indexed: 11/19/2022] Open
Abstract
Effective control of the intracellular protozoan parasite Toxoplasma gondii depends on the activation of antigen-specific CD8(+) T-cells that manage acute disease and prevent recrudescence during chronic infection. T-cell activation in turn, requires presentation of parasite antigens by MHC-I molecules on the surface of antigen presenting cells. CD8(+) T-cell epitopes have been defined for several T. gondii proteins, but it is unclear how these antigens enter into the presentation pathway. We have exploited the well-characterized model antigen ovalbumin (OVA) to investigate the ability of parasite proteins to enter the MHC-I presentation pathway, by engineering recombinant expression in various organelles. CD8(+) T-cell activation was assayed using 'B3Z' reporter cells in vitro, or adoptively-transferred OVA-specific 'OT-I' CD8(+) T-cells in vivo. As expected, OVA secreted into the parasitophorous vacuole strongly stimulated antigen-presenting cells. Lower levels of activation were observed using glycophosphatidyl inositol (GPI) anchored OVA associated with (or shed from) the parasite surface. Little CD8(+) T-cell activation was detected using parasites expressing intracellular OVA in the cytosol, mitochondrion, or inner membrane complex (IMC). These results indicate that effective presentation of parasite proteins to CD8(+) T-cells is a consequence of active protein secretion by T. gondii and escape from the parasitophorous vacuole, rather than degradation of phagocytosed parasites or parasite products.
Collapse
Affiliation(s)
- Beth Gregg
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Florence Dzierszinski
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elia Tait
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kimberly A. Jordan
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher A. Hunter
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David S. Roos
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
43
|
CD8 T Cells and Toxoplasma gondii: A New Paradigm. J Parasitol Res 2011; 2011:243796. [PMID: 21687650 PMCID: PMC3112509 DOI: 10.1155/2011/243796] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 03/10/2011] [Indexed: 01/09/2023] Open
Abstract
CD8 T cells are essential for control of Toxoplasma gondii infection. Once activated they undergo differentiation into short-lived effector and memory precursor effector cells. As effector cells, CD8 T cells exert immune pressure on the parasite via production of inflammatory cytokines and through their cytolytic activity. Once immune control has been established, the parasite encysts and develops into chronic infection regulated by the memory CD8 T-cell population. Several signals are needed for this process to be initiated and for development of fully differentiated memory CD8 T cells. With newly developed tools including CD8 T-cell tetramers and TCR transgenic mice, dissecting the biology behind T. gondii-specific CD8 T-cell responses can now be more effectively addressed. In this paper, we discuss what is known about the signals required for effective T. gondii-specific CD8 T-cell development, their differentiation, and effector function.
Collapse
|
44
|
Type II Toxoplasma gondii KU80 knockout strains enable functional analysis of genes required for cyst development and latent infection. EUKARYOTIC CELL 2011; 10:1193-206. [PMID: 21531875 DOI: 10.1128/ec.00297-10] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type II Toxoplasma gondii KU80 knockouts (Δku80) deficient in nonhomologous end joining were developed to delete the dominant pathway mediating random integration of targeting episomes. Gene targeting frequency in the type II Δku80 Δhxgprt strain measured at the orotate (OPRT) and the uracil (UPRT) phosphoribosyltransferase loci was highly efficient. To assess the potential of the type II Δku80 Δhxgprt strain to examine gene function affecting cyst biology and latent stages of infection, we targeted the deletion of four parasite antigen genes (GRA4, GRA6, ROP7, and tgd057) that encode characterized CD8(+) T cell epitopes that elicit corresponding antigen-specific CD8(+) T cell populations associated with control of infection. Cyst development in these type II mutant strains was not found to be strictly dependent on antigen-specific CD8(+) T cell host responses. In contrast, a significant biological role was revealed for the dense granule proteins GRA4 and GRA6 in cyst development since brain tissue cyst burdens were drastically reduced specifically in mutant strains with GRA4 and/or GRA6 deleted. Complementation of the Δgra4 and Δgra6 mutant strains using a functional allele of the deleted GRA coding region placed under the control of the endogenous UPRT locus was found to significantly restore brain cyst burdens. These results reveal that GRA proteins play a functional role in establishing cyst burdens and latent infection. Collectively, our results suggest that a type II Δku80 Δhxgprt genetic background enables a higher-throughput functional analysis of the parasite genome to reveal fundamental aspects of parasite biology controlling virulence, pathogenesis, and transmission.
Collapse
|
45
|
John B, Weninger W, Hunter CA. Advances in imaging the innate and adaptive immune response to Toxoplasma gondii. Future Microbiol 2010; 5:1321-8. [PMID: 20860479 PMCID: PMC3032660 DOI: 10.2217/fmb.10.97] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Toxoplasma gondii is an intracellular protozoan parasite that infects a wide variety of warm-blooded hosts and can have devastating effects in the developing fetus as well as the immunocompromised host. An appreciation of how this organism interacts with the host immune system is crucial to understanding the pathogenesis of this disease. The last decade has been marked by the application of various imaging techniques, such as bioluminescent imaging as well as confocal and multiphoton microscopy to study toxoplasmosis. The ability to manipulate parasites to express fluorescent/bioluminescent markers or model antigens/enzymes combined with the development of reporter mice that allow the detection of distinct immune populations have been crucial to the success of many of these studies. These approaches have permitted the visualization of parasites and immune cells in real-time and provided new insights into the nature of host-pathogen interactions. This article highlights some of the advances in imaging techniques, their strengths and weaknesses, and how these techniques have impacted our understanding of the interaction between parasites and various immune populations during toxoplasmosis.
Collapse
Affiliation(s)
- Beena John
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wolfgang Weninger
- The Centenary Institute for Cancer Medicine & Cell Biology, Locked Bag No. 6, Newtown NSW 2042, Australia
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
46
|
Van Binh PRN, Duc HT. Approach towards optimal physiological T-cell-mediated immune response. Immunotherapy 2010; 2:477-9. [PMID: 20636002 DOI: 10.2217/imt.10.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evaluation of: Kirak O, Frickel EV, Grotenbreg GM et al.: Transnuclear mice with predefined T cell receptor specificities against Toxoplasma gondii obtained via SCNT. Science 238, 243–248 (2010). Transgenic mice with defined T-cell receptor (TCR) specificity are useful for studying the involvement of T-cell-mediated immune responses to antigenic epitopes. However, these transgenic mice were not easily established. Their creation is time consuming due to several hindrances such as random integration of the α- and β-chains of the transgenic TCR and the presence of exogenous promoter, among others. These drawbacks explain why only a few TCR transgenic mice are available so far. Somatic cell nuclear transfer represents another means to generate mice with defined TCR specificity. Kirak et al. described an experimental model based on somatic cell nuclear transfer that allowed them to obtain mice harboring TCR specific to Toxoplasma gondii. The apparent ease in establishing this experimental model could lead to the generation of mice with defined T-cell immune responses against other antigens in the near future.
Collapse
Affiliation(s)
- Pascale Ringot Nguyen Van Binh
- Université Paris XI, INSERM U-1014, Regulation de la Survie Cellulaire et des Allogreffes, Groupe Hospitalier Paul-Brousse, 94800 Villejuif, France
| | | |
Collapse
|