1
|
Wang H, Li W, Feng H, Wu M, Zainab F, Wang J, Wang C, Zhang D, Sun Z, Zheng SJ, Yang B. Fowl adenovirus serotype-4 induces autophagy via the AMPK-mTOR signaling pathway during viral invasion of host cells. Poult Sci 2025; 104:104967. [PMID: 40106851 PMCID: PMC11964539 DOI: 10.1016/j.psj.2025.104967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is the primary pathogen responsible for avian hepatitis-hydropericardium syndrome (HHS), which poses a significant threat to the poultry industry. Currently, the routes of FAdV-4 invasion into host cells and the related miRNA expression profiles have been elucidated, but the alterations in intracellular host factors and related signaling pathways during the FAdV-4 invasion phase remains poorly understood. Here, we identified changes in host factors through transcriptome sequencing, revealing 1,135 differentially expressed genes (DEGs) during FAdV-4 invasion, of which 647 were up-regulated and 488 were down-regulated. Analysis of the transcriptome data indicated that signaling pathways such as Wnt signaling pathway, AMPK signaling pathway, and autophagy were closely related to FAdV-4 invasion. Furthermore, we demonstrated that FAdV-4 induced autophagy via the AMPK-mTOR signaling pathway during the viral invasion phase and identified the Penton protein as a key component in inducing this process. Additionally, the activation of autophagy significantly facilitated FAdV-4 invasion, whereas autophagy inhibition markedly impaired viral invasion. Collectively, these findings will advance our knowledge of the pathogenesis of FAdV-4 infection.
Collapse
Affiliation(s)
- Hongnuan Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China; College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wei Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Huixia Feng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Minrui Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Farwa Zainab
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Jinen Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Chenyang Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Ding Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Shijun J Zheng
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bo Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.
| |
Collapse
|
2
|
Trivedi PD, Byrne BJ, Corti M. Evolving Horizons: Adenovirus Vectors' Timeless Influence on Cancer, Gene Therapy and Vaccines. Viruses 2023; 15:2378. [PMID: 38140619 PMCID: PMC10747483 DOI: 10.3390/v15122378] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Efficient and targeted delivery of a DNA payload is vital for developing safe gene therapy. Owing to the recent success of commercial oncolytic vector and multiple COVID-19 vaccines, adenovirus vectors are back in the spotlight. Adenovirus vectors can be used in gene therapy by altering the wild-type virus and making it replication-defective; specific viral genes can be removed and replaced with a segment that holds a therapeutic gene, and this vector can be used as delivery vehicle for tissue specific gene delivery. Modified conditionally replicative-oncolytic adenoviruses target tumors exclusively and have been studied in clinical trials extensively. This comprehensive review seeks to offer a summary of adenovirus vectors, exploring their characteristics, genetic enhancements, and diverse applications in clinical and preclinical settings. A significant emphasis is placed on their crucial role in advancing cancer therapy and the latest breakthroughs in vaccine clinical trials for various diseases. Additionally, we tackle current challenges and future avenues for optimizing adenovirus vectors, promising to open new frontiers in the fields of cell and gene therapies.
Collapse
Affiliation(s)
| | | | - Manuela Corti
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA; (P.D.T.); (B.J.B.)
| |
Collapse
|
3
|
Pinto DEP, Šulc P, Sciortino F, Russo J. Design strategies for the self-assembly of polyhedral shells. Proc Natl Acad Sci U S A 2023; 120:e2219458120. [PMID: 37040398 PMCID: PMC10120017 DOI: 10.1073/pnas.2219458120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/16/2023] [Indexed: 04/12/2023] Open
Abstract
The control over the self-assembly of complex structures is a long-standing challenge of material science, especially at the colloidal scale, as the desired assembly pathway is often kinetically derailed by the formation of amorphous aggregates. Here, we investigate in detail the problem of the self-assembly of the three Archimedean shells with five contact points per vertex, i.e., the icosahedron, the snub cube, and the snub dodecahedron. We use patchy particles with five interaction sites (or patches) as model for the building blocks and recast the assembly problem as a Boolean satisfiability problem (SAT) for the patch-patch interactions. This allows us to find effective designs for all targets and to selectively suppress unwanted structures. By tuning the geometrical arrangement and the specific interactions of the patches, we demonstrate that lowering the symmetry of the building blocks reduces the number of competing structures, which in turn can considerably increase the yield of the target structure. These results cement SAT-assembly as an invaluable tool to solve inverse design problems.
Collapse
Affiliation(s)
- Diogo E. P. Pinto
- Dipartimento di Fisica, Sapienza Università di Roma, Rome00185, Italy
| | - Petr Šulc
- Life and Medical Sciences (LIMES), University of Bonn, Bonn53121, Germany
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ85281
| | | | - John Russo
- Dipartimento di Fisica, Sapienza Università di Roma, Rome00185, Italy
| |
Collapse
|
4
|
Pellequer Y, Zanetta G, Rebibou JM, Severin I, Chagnon MC, Zissel G, Neiers F, Seigneuric R. Development of a new methodology to determine size differences of nanoparticles with nanoparticle tracking analysis. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Johnson JE, Olson AJ. Icosahedral virus structures and the protein data bank. J Biol Chem 2021; 296:100554. [PMID: 33744290 PMCID: PMC8081926 DOI: 10.1016/j.jbc.2021.100554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
The structural study of icosahedral viruses has a long and impactful history in both crystallographic methodology and molecular biology. The evolution of the Protein Data Bank has paralleled and supported these studies providing readily accessible formats dealing with novel features associated with viral particle symmetries and subunit interactions. This overview describes the growth in size and complexity of icosahedral viruses from the first early studies of small RNA plant viruses and human picornaviruses up to the larger and more complex bacterial phage, insect, and human disease viruses such as Zika, hepatitis B, Adeno and Polyoma virus. The analysis of icosahedral viral capsid protein domain folds has shown striking similarities, with the beta jelly roll motif observed across multiple evolutionarily divergent species. The icosahedral symmetry of viruses drove the development of noncrystallographic symmetry averaging as a powerful phasing method, and the constraints of maintaining this symmetry resulted in the concept of quasi-equivalence in viral structures. Symmetry also played an important early role in demonstrating the power of cryo-electron microscopy as an alternative to crystallography in generating atomic resolution structures of these viruses. The Protein Data Bank has been a critical resource for assembling and disseminating these structures to a wide community, and the virus particle explorer (VIPER) was developed to enable users to easily generate and view complete viral capsid structures from their asymmetric building blocks. Finally, we share a personal perspective on the early use of computer graphics to communicate the intricacies, interactions, and beauty of these virus structures.
Collapse
Affiliation(s)
- John E Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.
| | - Arthur J Olson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
6
|
Expanding the Spectrum of Adenoviral Vectors for Cancer Therapy. Cancers (Basel) 2020; 12:cancers12051139. [PMID: 32370135 PMCID: PMC7281331 DOI: 10.3390/cancers12051139] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Adenoviral vectors (AdVs) have attracted much attention in the fields of vaccine development and treatment for diseases such as genetic disorders and cancer. In this review, we discuss the utility of AdVs in cancer therapies. In recent years, AdVs were modified as oncolytic AdVs (OAs) that possess the characteristics of cancer cell-specific replication and killing. Different carriers such as diverse cells and extracellular vesicles are being explored for delivering OAs into cancer sites after systemic administration. In addition, there are also various strategies to improve cancer-specific replication of OAs, mainly through modifying the early region 1 (E1) of the virus genome. It has been documented that oncolytic viruses (OVs) function through stimulating the immune system, resulting in the inhibition of cancer progression and, in combination with classical immune modulators, the anti-cancer effect of OAs can be even further enforced. To enhance the cancer treatment efficacy, OAs are also combined with other standard treatments, including surgery, chemotherapy and radiotherapy. Adenovirus type 5 (Ad5) has mainly been explored to develop vectors for cancer treatment with different modulations. Only a limited number of the more than 100 identified AdV types were converted into OAs and, therefore, the construction of an adenovirus library for the screening of potential novel OA candidates is essential. Here, we provide a state-of-the-art overview of currently performed and completed clinic trials with OAs and an adenovirus library, providing novel possibilities for developing innovative adenoviral vectors for cancer treatment.
Collapse
|
7
|
Lanciego JL, Wouterlood FG. Neuroanatomical tract-tracing techniques that did go viral. Brain Struct Funct 2020; 225:1193-1224. [PMID: 32062721 PMCID: PMC7271020 DOI: 10.1007/s00429-020-02041-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/31/2020] [Indexed: 12/29/2022]
Abstract
Neuroanatomical tracing methods remain fundamental for elucidating the complexity of brain circuits. During the past decades, the technical arsenal at our disposal has been greatly enriched, with a steady supply of fresh arrivals. This paper provides a landscape view of classical and modern tools for tract-tracing purposes. Focus is placed on methods that have gone viral, i.e., became most widespread used and fully reliable. To keep an historical perspective, we start by reviewing one-dimensional, standalone transport-tracing tools; these including today's two most favorite anterograde neuroanatomical tracers such as Phaseolus vulgaris-leucoagglutinin and biotinylated dextran amine. Next, emphasis is placed on several classical tools widely used for retrograde neuroanatomical tracing purposes, where Fluoro-Gold in our opinion represents the best example. Furthermore, it is worth noting that multi-dimensional paradigms can be designed by combining different tracers or by applying a given tracer together with detecting one or more neurochemical substances, as illustrated here with several examples. Finally, it is without any doubt that we are currently witnessing the unstoppable and spectacular rise of modern molecular-genetic techniques based on the use of modified viruses as delivery vehicles for genetic material, therefore, pushing the tract-tracing field forward into a new era. In summary, here, we aim to provide neuroscientists with the advice and background required when facing a choice on which neuroanatomical tracer-or combination thereof-might be best suited for addressing a given experimental design.
Collapse
Affiliation(s)
- Jose L Lanciego
- Neurosciences Department, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Floris G Wouterlood
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Location VUmc, Neuroscience Campus Amsterdam, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Zhao M, Duan X, Wang Y, Gao L, Cao H, Li X, Zheng SJ. A Novel Role for PX, a Structural Protein of Fowl Adenovirus Serotype 4 (FAdV4), as an Apoptosis-Inducer in Leghorn Male Hepatocellular Cell. Viruses 2020; 12:E228. [PMID: 32085479 PMCID: PMC7077197 DOI: 10.3390/v12020228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hydropericardium-Hepatitis Syndrome (HHS) caused by Fowl Adenovirus Serotype 4 (FAdV4) infection is a severe threat to the poultry industry worldwide, especially in China since 2015. Recent studies show that FAdV4 induces liver injury through apoptosis. However, the underlying molecular mechanism is still unclear. We report here that FAdV4 infection caused apoptosis in Leghorn male hepatocellular (LMH) cells and that PX, a structural protein of FAdV4, acted as a major viral factor inducing apoptosis. Furthermore, the nuclear localization of PX is determined by the R/K regions of PX and required for PX-induced apoptosis. Moreover, alanines 11 and 129 of PX are crucial to PX-induced apoptosis. Inhibition of FAdV4-induced apoptosis by caspase inhibitors retarded viral replication, suggesting that PX serves as a virulence factor for FAdV4 infection, which may further our understandings of the pathogenesis of FAdV4 infection.
Collapse
Affiliation(s)
- Mingliang Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (X.D.); (Y.W.); (L.G.); (H.C.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xueyan Duan
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (X.D.); (Y.W.); (L.G.); (H.C.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (X.D.); (Y.W.); (L.G.); (H.C.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Gao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (X.D.); (Y.W.); (L.G.); (H.C.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (X.D.); (Y.W.); (L.G.); (H.C.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.); (X.D.); (Y.W.); (L.G.); (H.C.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition. Nat Chem 2019; 12:26-35. [PMID: 31767992 PMCID: PMC6925649 DOI: 10.1038/s41557-019-0369-8] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/08/2019] [Indexed: 01/07/2023]
Abstract
DNA, when folded into nanostructures with a specific shape, is capable of spacing and arranging binding sites into a complex geometric pattern with nanometre precision. Here we demonstrate a designer DNA nanostructure that can act as a template to display multiple binding motifs with precise spatial pattern-recognition properties, and that this approach can confer exceptional sensing and potent viral inhibitory capabilities. A star-shaped DNA architecture, carrying five molecular beacon-like motifs, was constructed to display ten dengue envelope protein domain III (ED3)-targeting aptamers into a two-dimensional pattern precisely matching the spatial arrangement of ED3 clusters on the dengue (DENV) viral surface. The resulting multivalent interactions provide high DENV-binding avidity. We show that this structure is a potent viral inhibitor and that it can act as a sensor by including a fluorescent output to report binding. Our molecular-platform design strategy could be adapted to detect and combat other disease-causing pathogens by generating the requisite ligand patterns on customized DNA nanoarchitectures. DNA is capable of self-assembling into a wide range of user-defined structures and so can be used as a scaffold to arrange binding motifs with nanometre precision. Now, DNA has been used to accurately display aptamers that fit the repeated epitope pattern of a dengue viral antigen to produce a nanostructure that can be a potent viral inhibitor or a fluorescent sensor.![]()
Collapse
|
10
|
Recent Advancements in 3-D Structure Determination of Bacteriophages: from Negative Stain to CryoEM. J Indian Inst Sci 2018. [DOI: 10.1007/s41745-018-0082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Melinek BJ, Dessoy S, Wright B, Bracewell DG, Mukhopadhyay TK. Ultra scale-down approaches to study the centrifugal harvest for viral vaccine production. Biotechnol Bioeng 2018; 115:1226-1238. [PMID: 29315484 DOI: 10.1002/bit.26546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023]
Abstract
Large scale continuous cell-line cultures promise greater reproducibility and efficacy for the production of influenza vaccines, and adenovirus for gene therapy. This paper seeks to use an existing validated ultra scale-down tool, which is designed to mimic the commercial scale process environment using only milliliters of material, to provide some initial insight into the performance of the harvest step for these processes. The performance of industrial scale centrifugation and subsequent downstream process units is significantly affected by shear. The properties of these cells, in particular their shear sensitivity, may be changed considerably by production of a viral product, but literature on this is limited to date. In addition, the scale-down tool used here has not previously been applied to the clarification of virus production processes. The results indicate that virus infected cells do not actually show any increase in sensitivity to shear, and may indeed become less shear sensitive, in a similar manner to that previously observed in old or dead cell cultures. Clarification may be most significantly dependent on the virus release mechanism, with the budding influenza virus producing a much greater decrease in clarification than the lytic, non-enveloped adenovirus. A good match was also demonstrated to the industrial scale performance in terms of clarification, protein release, and impurity profile.
Collapse
Affiliation(s)
- Beatrice J Melinek
- Department of Biochemical Engineering, Bernard Katz building, University College London, London, UK
| | | | - Bernice Wright
- Department of Biochemical Engineering, Bernard Katz building, University College London, London, UK
| | - Dan G Bracewell
- Department of Biochemical Engineering, Bernard Katz building, University College London, London, UK
| | - Tarit K Mukhopadhyay
- Department of Biochemical Engineering, Bernard Katz building, University College London, London, UK
| |
Collapse
|
12
|
Atomic Structures of Minor Proteins VI and VII in Human Adenovirus. J Virol 2017; 91:JVI.00850-17. [PMID: 28978703 DOI: 10.1128/jvi.00850-17] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/15/2017] [Indexed: 12/31/2022] Open
Abstract
Human adenoviruses (Ad) are double-stranded DNA (dsDNA) viruses associated with infectious diseases, but they are better known as tools for gene delivery and oncolytic anticancer therapy. Atomic structures of Ad provide the basis for the development of antivirals and for engineering efforts toward more effective applications. Since 2010, atomic models of human Ad5 have been derived independently from photographic film cryo-electron microscopy (cryo-EM) and X-ray crystallography studies, but discrepancies exist concerning the assignment of cement proteins IIIa, VIII, and IX. To clarify these discrepancies, we employed the technology of direct electron counting to obtain a cryo-EM structure of human Ad5 at 3.2-Å resolution. Our improved structure unambiguously confirms our previous cryo-EM models of proteins IIIa, VIII, and IX and explains the likely cause of conflict in the crystallography models. The improved structure also allows the identification of three new components in the cavity of hexon-the cleaved N terminus of precursor protein VI (pVIn), the cleaved N terminus of precursor protein VII (pVIIn2), and mature protein VI. The binding of pVIIn2-and, by extension, that of genome-condensing pVII-to hexons is consistent with the previously proposed dsDNA genome-capsid coassembly for adenoviruses, which resembles that of single-stranded RNA (ssRNA) viruses but differs from the well-established mechanism of pumping dsDNA into a preformed protein capsid exemplified by tailed bacteriophages and herpesviruses.IMPORTANCE Adenovirus is a double-edged sword to humans: it is a widespread pathogen but can be used as a bioengineering tool for anticancer and gene therapies. The atomic structure of the virus provides the basis for antiviral and application developments, but conflicting atomic models for the important cement proteins IIIa, VIII, and IX from conventional/film cryo-EM and X-ray crystallography studies have caused confusion. Using cutting-edge cryo-EM technology with electron counting, we improved the structure of human adenovirus type 5 and confirmed our previous models of cement proteins IIIa, VIII, and IX, thus clarifying the inconsistent structures. The improved structure also reveals atomic details of membrane-lytic protein VI and genome-condensing protein VII and supports the previously proposed genome-capsid coassembly mechanism for adenoviruses.
Collapse
|
13
|
Shirani F, Teimoori A, Rashno M, Latifi SM, Karandish M. Using rats as a research model to investigate the effect of human adenovirus 36 on weight gain. ARYA ATHEROSCLEROSIS 2017; 13:167-171. [PMID: 29147126 PMCID: PMC5677319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Recent evidence has shown a positive correlation between obesity and viral infections with a particular emphasis on the human adenovirus-36 (Ad-36). Ad-36 is the first human virus that may increase adiposity in animals, and it is considered as a possible risk factor for obesity in humans; however, the results were not consistent across all the studies. The present study was conducted to examine the influence of Ad-36 infection on obesity in a rat model. METHODS Eight-week-old male Wistar rats weighing 170-240 gram (g), were randomly divided into two groups, infection group (48 rats) and a control group (12 rats). The rats in the infection group were infected with human Ad-36. All rats were given free access to a normal chow diet and water. They were weighed weekly. RESULTS The mean ± standard deviation (SD) body weights were 229.0 ± 25.9 g and 232.3 ± 16.6 g in the infection and control groups, respectively at the time of infection. The mean ± SD body weight of the infection group (304.0 ± 39.0 g) was higher than the control group (301.0 ± 36.5 g) at 12 weeks post-infection (P = 0.82). Although two groups had approximately same food intakes, the mean change in body weight was greater in the infection group than the control group (75.8 ± 27.9 g vs. 70.8 ± 24.5 g) but it was not significant (P = 0.57). CONCLUSION We did not find a statistically significant association between weight gain and Ad-36 infection in the rat model. It seems that longer follow-up duration is needed to develop a significant weight gain in the infected rats. Rats can be used as a good animal model for further investigations about Ad-36-induced obesity, provided not to rely merely on weight measurements. Evaluating body composition or histopathological assessments are suggested.
Collapse
Affiliation(s)
- Fatemeh Shirani
- PhD Candidate, Nutrition and Metabolic Diseases Research Center AND School of Paramedical, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Teimoori
- Assistant Professor, Health Research Institute, Infectious and Tropical Diseases Research Center AND School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Assistant Professor, Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mahmoud Latifi
- Lecturer, Diabetes Research Center AND Department of Statistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Karandish
- Professor, Nutrition and Metabolic Diseases Research Center AND School of Paramedical, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
14
|
Boland A, Chang L, Barford D. The potential of cryo-electron microscopy for structure-based drug design. Essays Biochem 2017; 61:543-560. [PMID: 29118099 DOI: 10.1042/ebc20170032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022]
Abstract
Structure-based drug design plays a central role in therapeutic development. Until recently, protein crystallography and NMR have dominated experimental approaches to obtain structural information of biological molecules. However, in recent years rapid technical developments in single particle cryo-electron microscopy (cryo-EM) have enabled the determination to near-atomic resolution of macromolecules ranging from large multi-subunit molecular machines to proteins as small as 64 kDa. These advances have revolutionized structural biology by hugely expanding both the range of macromolecules whose structures can be determined, and by providing a description of macromolecular dynamics. Cryo-EM is now poised to similarly transform the discipline of structure-based drug discovery. This article reviews the potential of cryo-EM for drug discovery with reference to protein ligand complex structures determined using this technique.
Collapse
Affiliation(s)
- Andreas Boland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Leifu Chang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K.
| |
Collapse
|
15
|
Hwang JE, Joung JY, Shin SP, Choi MK, Kim JE, Kim YH, Park WS, Lee SJ, Lee KH. Ad5/35E1aPSESE4: A novel approach to marking circulating prostate tumor cells with a replication competent adenovirus controlled by PSA/PSMA transcription regulatory elements. Cancer Lett 2015; 372:57-64. [PMID: 26723876 DOI: 10.1016/j.canlet.2015.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
Abstract
Circulating tumor cells serve as useful biomarkers with which to identify disease status associated with survival, metastasis and drug sensitivity. Here, we established a novel application for detecting PSA/PSMA-positive prostate cancer cells circulating in peripheral blood employing an adenovirus called Ad5/35E1aPSESE4. Ad5/35E1aPSESE4 utilized PSES, a chimeric enhancer derived from PSA/PSMA promoters that is highly active with and without androgen. A fluorescence signal mediated by GFP expression upon Ad5/35E1aPSESE4 infection was selectively amplified in PSA/PSMA-positive prostate cancer cells in vitro and ex vivo. Furthermore, for the in vivo model, blood drawn from TRAMP was tested for CTCs with Ad5/35E1aPSESE4 infection and was positive for CTCs at week 16. Validation was performed on patient blood at various clinical stages and found out 1-100 CTCs expressing GFP upon Ad5/35E1aPSESE4 infection. Interestingly, CTC from one patient was confirmed to be sensitive to docetaxel chemotherapeutic reagent and to abundantly express metastasis-related genes like MMP9, Cofilin1, and FCER1G through RNA-seq. Our study established that the usage of Ad5/35E1aPSESE4 is effective in marking PSA/PSMA-positive prostate cancer cells in patient blood to improve the efficacy of utilizing CTCs as a biomarker.
Collapse
Affiliation(s)
- Ji-Eun Hwang
- Genitourinary Cancer Branch, Research Institute of National Cancer Center, Goyang 410-769, South Korea
| | - Jae Young Joung
- Genitourinary Cancer Branch, Research Institute of National Cancer Center, Goyang 410-769, South Korea
| | - Seung-Phil Shin
- Genitourinary Cancer Branch, Research Institute of National Cancer Center, Goyang 410-769, South Korea
| | - Moon-Kyung Choi
- Hematologic Malignancy Branch, Research Institute of National Cancer Center, Goyang 410-769, South Korea
| | - Jeong Eun Kim
- Genitourinary Cancer Branch, Research Institute of National Cancer Center, Goyang 410-769, South Korea
| | - Yon Hui Kim
- New Experimental Therapeutics Branch, Research Institute of National Cancer Center, Goyang 410-769, South Korea
| | - Weon Seo Park
- Hematologic Malignancy Branch, Research Institute of National Cancer Center, Goyang 410-769, South Korea
| | - Sang-Jin Lee
- Genitourinary Cancer Branch, Research Institute of National Cancer Center, Goyang 410-769, South Korea.
| | - Kang Hyun Lee
- Genitourinary Cancer Branch, Research Institute of National Cancer Center, Goyang 410-769, South Korea.
| |
Collapse
|
16
|
|
17
|
The relationship between adenovirus-36 seropositivity, obesity and metabolic profile in Turkish children and adults. Epidemiol Infect 2015; 143:3550-6. [PMID: 25876626 DOI: 10.1017/s0950268815000679] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Obesity potentially arising from viral infection is known as 'infectobesity'. The latest reports suggest that adenovirus-36 (Adv36) is related to obesity in adults and children. Our aim was not only to determine the Adv36 seropositivity in both obese and non-obese children and adults, but also to investigate correlations between antibody positivity and serum lipid profiles. Both Adv36 positivity and tumour-necrosis-factor-alpha, leptin and interleukin-6 levels were detected in blood samples collected from 146 children and 130 adults by ELISA. Fasting plasma triglycerides, total cholesterol and low-density lipoprotein levels were also measured. Adv36 positivity was determined to be 27·1% and 6% in obese and non-obese children and 17·5% and 4% in obese and non-obese adults, respectively. There was no difference with regard to total cholesterol, low-density lipoprotein, triglyceride, tumour-necrosis-factor-alpha and interleukin-6 levels (P > 0·05). However, there was a significant difference between groups in terms of leptin levels (P < 0·05). We determined the prevalence of Adv36 positivity in obese children and adults. Our results showed that Adv36 may be an obesity agent for both adults and children, parallel with current literature data. However, the available data on a possible relationship between Adv36 infection and obesity both in children and adults do not completely solve the problem.
Collapse
|
18
|
Lengyel J, Hnath E, Storms M, Wohlfarth T. Towards an integrative structural biology approach: combining Cryo-TEM, X-ray crystallography, and NMR. ACTA ACUST UNITED AC 2014; 15:117-24. [PMID: 24748171 PMCID: PMC4125826 DOI: 10.1007/s10969-014-9179-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/01/2014] [Indexed: 11/03/2022]
Abstract
Cryo-transmission electron microscopy (Cryo-TEM) and particularly single particle analysis is rapidly becoming the premier method for determining the three-dimensional structure of protein complexes, and viruses. In the last several years there have been dramatic technological improvements in Cryo-TEM, such as advancements in automation and use of improved detectors, as well as improved image processing techniques. While Cryo-TEM was once thought of as a low resolution structural technique, the method is currently capable of generating nearly atomic resolution structures on a routine basis. Moreover, the combination of Cryo-TEM and other methods such as X-ray crystallography, nuclear magnetic resonance spectroscopy, and molecular dynamics modeling are allowing researchers to address scientific questions previously thought intractable. Future technological developments are widely believed to further enhance the method and it is not inconceivable that Cryo-TEM could become as routine as X-ray crystallography for protein structure determination.
Collapse
Affiliation(s)
- Jeffrey Lengyel
- FEI Company, 5350 N.E. Dawson Creek Drive, Hillsboro, OR, 97124, USA,
| | | | | | | |
Collapse
|
19
|
Abstract
This review is a partially personal account of the discovery of virus structure and its implication for virus function. Although I have endeavored to cover all aspects of structural virology and to acknowledge relevant individuals, I know that I have favored taking examples from my own experience in telling this story. I am anxious to apologize to all those who I might have unintentionally offended by omitting their work. The first knowledge of virus structure was a result of Stanley's studies of tobacco mosaic virus (TMV) and the subsequent X-ray fiber diffraction analysis by Bernal and Fankuchen in the 1930s. At about the same time it became apparent that crystals of small RNA plant and animal viruses could diffract X-rays, demonstrating that viruses must have distinct and unique structures. More advances were made in the 1950s with the realization by Watson and Crick that viruses might have icosahedral symmetry. With the improvement of experimental and computational techniques in the 1970s, it became possible to determine the three-dimensional, near-atomic resolution structures of some small icosahedral plant and animal RNA viruses. It was a great surprise that the protecting capsids of the first virus structures to be determined had the same architecture. The capsid proteins of these viruses all had a 'jelly-roll' fold and, furthermore, the organization of the capsid protein in the virus were similar, suggesting a common ancestral virus from which many of today's viruses have evolved. By this time a more detailed structure of TMV had also been established, but both the architecture and capsid protein fold were quite different to that of the icosahedral viruses. The small icosahedral RNA virus structures were also informative of how and where cellular receptors, anti-viral compounds, and neutralizing antibodies bound to these viruses. However, larger lipid membrane enveloped viruses did not form sufficiently ordered crystals to obtain good X-ray diffraction. Starting in the 1990s, these enveloped viruses were studied by combining cryo-electron microscopy of the whole virus with X-ray crystallography of their protein components. These structures gave information on virus assembly, virus neutralization by antibodies, and virus fusion with and entry into the host cell. The same techniques were also employed in the study of complex bacteriophages that were too large to crystallize. Nevertheless, there still remained many pleomorphic, highly pathogenic viruses that lacked the icosahedral symmetry and homogeneity that had made the earlier structural investigations possible. Currently some of these viruses are starting to be studied by combining X-ray crystallography with cryo-electron tomography.
Collapse
|
20
|
Abstract
With fast progresses in instrumentation, image processing algorithms, and computational resources, single particle electron cryo-microscopy (cryo-EM) 3-D reconstruction of icosahedral viruses has now reached near-atomic resolutions (3-4 Å). With comparable resolutions and more predictable outcomes, cryo-EM is now considered a preferred method over X-ray crystallography for determination of atomic structure of icosahedral viruses. At near-atomic resolutions, all-atom models or backbone models can be reliably built that allow residue level understanding of viral assembly and conformational changes among different stages of viral life cycle. With the developments of asymmetric reconstruction, it is now possible to visualize the complete structure of a complex virus with not only its icosahedral shell but also its multiple non-icosahedral structural features. In this chapter, we will describe single particle cryo-EM experimental and computational procedures for both near-atomic resolution reconstruction of icosahedral viruses and asymmetric reconstruction of viruses with both icosahedral and non-icosahedral structure components. Procedures for rigorous validation of the reconstructions and resolution evaluations using truly independent de novo initial models and refinements are also introduced.
Collapse
Affiliation(s)
- Fei Guo
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
21
|
Chen RF, Lee CY. Adenoviruses types, cell receptors and local innate cytokines in adenovirus infection. Int Rev Immunol 2013; 33:45-53. [PMID: 24127823 DOI: 10.3109/08830185.2013.823420] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Adenovirus is a common infectious pathogen in both children and adults. It is a significant cause of morbidity in immunocompetent people living in crowded living conditions and of mortality in immunocompromised hosts. It has more recently become a popular vehicle for gene therapy applications. The host response to wild-type infection and gene therapy vector exposure involves both virus entry receptor and the innate immune systems. Cell-mediated recognition of viruses via capsid components has received significant attention, principally thought to be regulated by the coxsackievirus-adenovirus receptor (CAR), CD46, integrins and heparin sulfate-containing proteoglycans. Antiviral innate immune responses are initiated by the infected cell, which activates the interferon response to block viral replication, while simultaneously releasing chemokines to attract neutrophils and NK cells. This review discusses the innate immune response primarily during wild-type adenovirus infection because this serves as the basis for understanding the response during both natural infection and exposure to adenovirus vectors.
Collapse
Affiliation(s)
- Rong-Fu Chen
- 1Department of Medical Research and Development, Show Chwan Health Care System, Changhua, Taiwan
| | | |
Collapse
|
22
|
Na HN, Nam JH. Adenovirus 36 as an obesity agent maintains the obesity state by increasing MCP-1 and inducing inflammation. J Infect Dis 2012; 205:914-22. [PMID: 22275403 DOI: 10.1093/infdis/jir864] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although it is well known that adenovirus 36 (Ad36) is associated with obesity in humans as well as in animals, the detailed cellular mechanism is unclear. METHODS Wild-type (WT) mice and monocyte chemoattractant protein-1 knockout (MCP-1(-/-)) mice were infected with Ad36, and their weights and inflammatory status were measured. Macrophage infiltration was examined in their reproductive fat pads and in a coculture system. The correlation between Ad36 antibody presence and MCP-1 levels was tested in human samples. RESULTS We have shown that Ad36 infection stimulated an inflammatory state by increasing the level of MCP-1 through the activation of nuclear factor κB, which in turn induced the infiltration of macrophages into adipocytes. This induced inflammation resulted in viral obesity, which caused chronic inflammation and affected lipid metabolism. In contrast to WT mice, MCP-1(-/-) mice were protected from Ad36-induced inflammation and obesity. The MCP-1 levels in Ad36-antibody-positive human group were higher than those in the antibody-negative group. CONCLUSIONS These findings support the proposition that virus-induced inflammation is the cellular mechanism underlying Ad36-induced obesity. These results also suggest that MCP-1 plays a critical role in Ad36-induced obesity and that MCP-1 may be a therapeutic target in preventing virus-induced obesity.
Collapse
Affiliation(s)
- Ha-Na Na
- Department of Biotechnology, The Catholic University of Korea, Wonmi-gu, Bucheon, Gyeonggi-do, Korea
| | | |
Collapse
|
23
|
Numata K, Mieszawska-Czajkowska AJ, Kvenvold LA, Kaplan DL. Silk-based nanocomplexes with tumor-homing peptides for tumor-specific gene delivery. Macromol Biosci 2012; 12:75-82. [PMID: 22052706 PMCID: PMC3724333 DOI: 10.1002/mabi.201100274] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/09/2011] [Indexed: 11/10/2022]
Abstract
Nanoscale complexes of recombinant silk molecules containing THPs with DNA are designed as less cytotoxic and highly target-specific gene carriers. Genetically engineered silk proteins containing poly(L-lysine) domains to interact with pDNA and the THP to bind to specific tumorigenic cells for target-specific pDNA delivery are prepared, followed by in vitro transfection into MDA-MB-435 melanoma cells, highly metastatic human breast tumor MDA-MB-231 cells, and non-tumorigenic MCF-10A breast epithelial cells. The silk/poly(L-lysine) block copolymer containing Lyp1 (ML-Lyp1) shows significant differences from silk/poly(L-lysine) block copolymer containing F3 (ML-F3) in cytotoxicity to MCF10A cells. ML-F3 is the most promising candidate for target delivery into tumorigenic cells.
Collapse
Affiliation(s)
- Keiji Numata
- Department of Biomedical Engineering Tufts University, 4 Colby Street, Medford, Massachusetts, 02155, USA
| | | | - Laura A Kvenvold
- Department of Biomedical Engineering Tufts University, 4 Colby Street, Medford, Massachusetts, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University, 4 Colby Street, Medford, Massachusetts, 02155, USA
| |
Collapse
|
24
|
Abstract
Cryo-electron microscopy (cryo-EM) in combination with single-particle analysis has begun to complement crystallography in the study of large macromolecules at near-atomic resolution. Furthermore, advances in cryo-electron tomography have made possible the study of macromolecules within their cellular environment. Single-particle and tomographic studies will become even more useful when technologies for improving the signal-to-noise ratio such as direct electron detectors and phase plates become widely available. Automated image acquisition has significantly reduced the time and effort required to determine the structures of macromolecular assemblies. As a result, the number of structures determined by cryo-EM is growing exponentially. However, there is an urgent need for improved criteria for validating both the reconstruction process and the atomic models derived from cryo-EM data. Another major challenge will be mitigating the effects of anisotropy caused by the missing wedge and the excessively low signal-to-noise ratio for tomographic data. Parallels between the development of macromolecular crystallography and cryo-EM have been used to tentatively predict the future of cryo-EM.
Collapse
Affiliation(s)
- Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | | | | |
Collapse
|
25
|
Glaeser RM, Hall RJ. Reaching the information limit in cryo-EM of biological macromolecules: experimental aspects. Biophys J 2011; 100:2331-7. [PMID: 21575566 DOI: 10.1016/j.bpj.2011.04.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/29/2011] [Accepted: 04/07/2011] [Indexed: 01/19/2023] Open
Abstract
Although cryo-electron microscopy (cryo-EM) of biological macromolecules has made important advances in the past few years, the level of current technical performance is still well below what the physics of electron scattering would allow. It should be possible, for example, to use cryo-EM to solve protein structures at atomic resolution for particle sizes well below 80 kDa, but currently this has been achieved only for particles at least 10 times larger than that. In this review, we first examine some of the reasons for this large gap in performance. We then give an overview of work that is currently in progress to 1), improve the signal/noise ratio for area detectors; 2), improve the signal transfer between the scattered electrons and the corresponding images; and 3), reduce the extent to which beam-induced movement causes a steep fall-off of signal at high resolution. In each case, there is substantial reason to think that cryo-EM can indeed be made to approach the estimated physical limits.
Collapse
Affiliation(s)
- Robert M Glaeser
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California, USA.
| | | |
Collapse
|
26
|
Grigorieff N, Harrison SC. Near-atomic resolution reconstructions of icosahedral viruses from electron cryo-microscopy. Curr Opin Struct Biol 2011; 21:265-73. [PMID: 21333526 PMCID: PMC3088881 DOI: 10.1016/j.sbi.2011.01.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 12/22/2010] [Accepted: 01/19/2011] [Indexed: 01/19/2023]
Abstract
Nine different near-atomic resolution structures of icosahedral viruses, determined by electron cryo-microscopy and published between early 2008 and late 2010, fulfil predictions made 15 years ago that single-particle cryo-EM techniques could visualize molecular detail at 3-4Å resolution. This review summarizes technical developments, both in instrumentation and in computation, that have led to the new structures, which advance our understanding of virus assembly and cell entry.
Collapse
Affiliation(s)
- Nikolaus Grigorieff
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02154, USA
| | | |
Collapse
|
27
|
Na HN, Nam JH. Infectobesity: a New Area for Microbiological and Virological Research. ACTA ACUST UNITED AC 2011. [DOI: 10.4167/jbv.2011.41.2.65] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Ha-Na Na
- Department of Biotechnology, The Catholic University, Gyeonggi-do, Korea
| | - Jae-Hwan Nam
- Department of Biotechnology, The Catholic University, Gyeonggi-do, Korea
| |
Collapse
|