1
|
Stopfer M, Zahn I, Jüngert K, Aumüller G, Moll FL, Schicht M, Makarenkova HP, de Paiva CS, Paulsen FP. Glands of Moll: history, current knowledge and their role in ocular surface homeostasis and disease. Prog Retin Eye Res 2025; 106:101362. [PMID: 40334739 DOI: 10.1016/j.preteyeres.2025.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/30/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
Over the last 20 years, research into the Meibomian glands of the eyelids has increased exponentially and is now widely recognized as a field of research. It is all the more astonishing that knowledge about another type of gland in the eyelids, the Moll glands or ciliary glands, has almost stagnated and there has been little to almost no progress, even though this type of gland as a whole takes up a relatively large volume in the upper and lower eyelids. There is not much information about the namesake Moll or the function of the glands although these are listed in nearly every textbook of anatomy, histology and ophthalmology. For this reason, we set out to compile the existing knowledge about the Moll glands of the eyelids in order to create a basis for follow-up studies and to stimulate research into this type of gland. In our literature research, we went back to the middle of the 19th century and made contact with a descendant of the Moll family and illustrate their relevance for the present. The structure of the secretory part of the Moll glands is very well described, a number of secretory products are known, but the current state of research allows only very rough speculations about their function. The overview provides numerous interesting insights, which, however, raise more questions than they provide answers.
Collapse
Affiliation(s)
- Michael Stopfer
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstr. 19, Erlangen, Germany.
| | - Ingrid Zahn
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstr. 19, Erlangen, Germany.
| | - Katharina Jüngert
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstr. 19, Erlangen, Germany.
| | - Gerhard Aumüller
- Philipps-University Marburg, Am Möhrengarten 1, 35117, Münchhausen, Germany.
| | - Frans L Moll
- Department of Vascular Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands.
| | - Martin Schicht
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstr. 19, Erlangen, Germany.
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA, 92037, United States.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, United States.
| | - Friedrich P Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstr. 19, Erlangen, Germany.
| |
Collapse
|
2
|
Ferdenzi C, Fournel A, Fantin L, Ortegón SR, Manesse C, Baldovini N, Thévenet M, Lamberton F, Ibarrola D, Faure F, Bensafi M. Neural representation of allegedly sex-specific human body odor compounds. Neuroimage 2025; 310:121114. [PMID: 40086707 DOI: 10.1016/j.neuroimage.2025.121114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/17/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Body odors play an important role in nonverbal communication, and particularly in one's attractiveness. However, their central processing remains underexplored, especially as a function of gender. This study aims at identifying the neural networks involved in the processing of two allegedly sex-specific human body odor compounds (3-hydroxy-3-methylhexanoic acid, HMHA, and 3-methyl-3-sulfanylhexan-1-ol, MSH). We hypothesized that i) these body odors would be processed by different brain regions than non-body odors, and that ii) their role in attractiveness, if any, would be indicated by the activation of specific regions and by differential verbal and neurophysiological responses in men and women. Thirty participants (15 men, 15 women) performed a functional Magnetic Resonance Imaging (fMRI) session during which they rated the attractiveness of HMHA, MSH, and 5 non-body odorants. At the end of the session, participants rated all odors on multiple perceptual scales. HMHA activated visual (striate area and occipital gyrus) rather than olfactory brain regions. Men rated HMHA as more masculine than women did, and presented greater neural activity in the superior and medial frontal gyri while women activated the inferior frontal gyrus significantly more than men in response to this odor. MSH was processed as the other non-body odors, and not subject to gender differences. The results suggest that HMHA (not MSH) bears specific social information, resulting in a neural processing outside the main olfactory network. It is also processed differently in men and women, although our findings do not provide clear evidence in favor of relevance for one's attractiveness.
Collapse
Affiliation(s)
- Camille Ferdenzi
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL UMR5292, U1028, Bron, France.
| | - Arnaud Fournel
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL UMR5292, U1028, Bron, France
| | - Luca Fantin
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL UMR5292, U1028, Bron, France
| | - Stéphane Richard Ortegón
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL UMR5292, U1028, Bron, France
| | - Cédric Manesse
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL UMR5292, U1028, Bron, France
| | - Nicolas Baldovini
- Institut de Chimie de Nice, CNRS UMR 7272, Université Côte d'Azur, Nice, France
| | - Marc Thévenet
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL UMR5292, U1028, Bron, France
| | - Franck Lamberton
- Université Claude Bernard Lyon 1, CNRS, INSERM, SFR Lyon-Est UAR3453, US7, Lyon, France; CERMEP Imagerie du vivant, Bron, France
| | - Danielle Ibarrola
- Université Claude Bernard Lyon 1, CNRS, INSERM, SFR Lyon-Est UAR3453, US7, Lyon, France; CERMEP Imagerie du vivant, Bron, France
| | - Frédéric Faure
- Hospices Civils de Lyon, Hôpital E. Herriot, Lyon, France; Infirmerie Protestante, Caluire, France
| | - Moustafa Bensafi
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL UMR5292, U1028, Bron, France
| |
Collapse
|
3
|
Gan J, Wu Y, Lei X, Han C. Is androstadienone a human male pheromone? More research is needed. Physiol Behav 2025; 288:114733. [PMID: 39510224 DOI: 10.1016/j.physbeh.2024.114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Androsta-4,16‑dien-3-one (androstadienone, AND), a steroid predominantly found in male secretions, has been associated with a variety of sex-specific effects on emotion, physiological states, cognition, and neural activity. An expanding body of literature has explored the influence of AND on human behavior and perception, leading to its frequent description as a "putative human sex pheromone." This article reviews the existing research on the physiological, cognitive, and neuroimaging effects of AND, critically assessing the evidence regarding its classification as a human sex pheromone. Additionally, it underscores the need for methodological standardization and rigor in future studies to establish clearer conclusions. Based on current evidence, the categorization of AND as a "human sex pheromone" remains inconclusive, highlighting the necessity for continued investigation. Future research directions are suggested to further elucidate AND's potential effects and applications.
Collapse
Affiliation(s)
- Junyi Gan
- Department of Psychology, Hangzhou Normal University, Hangzhou, PR China; Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, PR China
| | - Yin Wu
- Department of Applied Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Research Institute for Sports Science and Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong, PR China
| | - Xue Lei
- School of Business Administration, Zhejiang University of Finance and Economics, Hangzhou, PR China.
| | - Chengyang Han
- Department of Psychology, Hangzhou Normal University, Hangzhou, PR China; Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, PR China.
| |
Collapse
|
4
|
Candia-Rivera D, Engelen T, Babo-Rebelo M, Salamone PC. Interoception, network physiology and the emergence of bodily self-awareness. Neurosci Biobehav Rev 2024; 165:105864. [PMID: 39208877 DOI: 10.1016/j.neubiorev.2024.105864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The interplay between the brain and interoceptive signals is key in maintaining internal balance and orchestrating neural dynamics, encompassing influences on perceptual and self-awareness. Central to this interplay is the differentiation between the external world, others and the self, a cornerstone in the construction of bodily self-awareness. This review synthesizes physiological and behavioral evidence illustrating how interoceptive signals can mediate or influence bodily self-awareness, by encompassing interactions with various sensory modalities. To deepen our understanding of the basis of bodily self-awareness, we propose a network physiology perspective. This approach explores complex neural computations across multiple nodes, shifting the focus from localized areas to large-scale neural networks. It examines how these networks operate in parallel with and adapt to changes in visceral activities. Within this framework, we propose to investigate physiological factors that disrupt bodily self-awareness, emphasizing the impact of interoceptive pathway disruptions, offering insights across several clinical contexts. This integrative perspective not only can enhance the accuracy of mental health assessments but also paves the way for targeted interventions.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Sorbonne Université, Paris Brain Institute (ICM), CNRS UMR7225, INSERM U1127, Hôpital de la Pitié-Salpêtrière AP-HP, Inria Paris, 75013, Paris, France.
| | - Tahnée Engelen
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Mattilanniemi 6, Jyväskylä FI-40014, Finland
| | - Mariana Babo-Rebelo
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Paula C Salamone
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| |
Collapse
|
5
|
Freemantle AWJ, Stafford LD. The relationship between social odour awareness and emotional contagion susceptibility in females. Perception 2024; 53:704-715. [PMID: 39135380 PMCID: PMC11457436 DOI: 10.1177/03010066241270209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Previous research has shown a strong link between our sense of smell and emotion. More recently, the importance we attach to olfaction has been found to relate to our susceptibility to 'catch' the emotions of others. We explore this further by examining the relation between a newly developed measure of olfaction (social odour scale, SOS), which measures awareness of social odours, and emotional contagion susceptibility in female participants. The study therefore aimed to test the strength of this relationship and also help validate the English language version of the SOS. Female (n = 148) participants completed an online study that measured odour awareness [SOS; important of odour questionnaire, IOQ] and emotional contagion (EC). We found that the English version of the SOS yielded high reliability and supported the previous factor structure of the scale; additionally, we demonstrated a strong association between the SOS and IOQ which provides criterion validity for its usage. The study also revealed that whilst both the SOS and IOQ were positively associated with EC, the SOS was the more accurate predictor. These findings provide further validation for the use of the SOS and suggest that our subjective awareness of olfaction, especially concerning 'social odours' is an accurate predictor of emotional contagion.
Collapse
|
6
|
Challita EJ, Rohilla P, Bhamla MS. Fluid Ejections in Nature. Annu Rev Chem Biomol Eng 2024; 15:187-217. [PMID: 38669514 PMCID: PMC11269045 DOI: 10.1146/annurev-chembioeng-100722-113148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
From microscopic fungi to colossal whales, fluid ejections are universal and intricate phenomena in biology, serving vital functions such as animal excretion, venom spraying, prey hunting, spore dispersal, and plant guttation. This review delves into the complex fluid physics of ejections across various scales, exploring both muscle-powered active systems and passive mechanisms driven by gravity or osmosis. It introduces a framework using dimensionless numbers to delineate transitions from dripping to jetting and elucidate the governing forces. Highlighting the understudied area of complex fluid ejections, this review not only rationalizes the biophysics involved but also uncovers potential engineering applications in soft robotics, additive manufacturing, and drug delivery. By bridging biomechanics, the physics of living systems, and fluid dynamics, this review offers valuable insights into the diverse world of fluid ejections and paves the way for future bioinspired research across the spectrum of life.
Collapse
Affiliation(s)
- Elio J Challita
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA;
| | - Pankaj Rohilla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA;
| | - M Saad Bhamla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA;
| |
Collapse
|
7
|
Lien MC, Yeh IH, Tadepalli S, Liu KK. ZnO Nanocages Decorated with Au@AgAu Yolk-Shell Nanomaterials for SERS-Based Detection of Hyperuricemia. ACS OMEGA 2024; 9:16160-16167. [PMID: 38617613 PMCID: PMC11007725 DOI: 10.1021/acsomega.3c10057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is widely recognized as a highly sensitive technology for chemical detection and biological sensing. In SERS-based biomedical applications, developing highly efficient sensing platforms based on SERS plays a pivotal role in monitoring disease biomarker levels and facilitating the early detection of cancer biomarkers. Hyperuricemia, characterized by abnormally high concentrations of uric acid (UA) in the blood, was associated with a range of diseases, such as gouty arthritis, heart disease, and acute kidney injury. Recent reports have demonstrated the correlation between UA concentrations in blood and tears. In this work, we report the fabrication of SERS substrates utilizing ZnO nanocages and yolk-shell-structured plasmonic nanomaterials for the noninvasive detection of UA in tears. This innovative SERS substrate enables noninvasive and sensitive detection of UA to prevent hyperuricemia-related diseases.
Collapse
Affiliation(s)
- Mei-Chin Lien
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - I-Hsiu Yeh
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Sirimuvva Tadepalli
- Department
of Microbiology and Immunology, Stanford
University School of Medicine, Stanford, California 94305, United States
| | - Keng-Ku Liu
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
8
|
Taskasaplidis G, Fotiadis DA, Bamidis PD. Review of Stress Detection Methods Using Wearable Sensors. IEEE ACCESS 2024; 12:38219-38246. [DOI: 10.1109/access.2024.3373010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Georgios Taskasaplidis
- Informatics Department, School of Sciences, University of Western Macedonia, Kastoria, Greece
| | - Dimitris A. Fotiadis
- Informatics Department, School of Sciences, University of Western Macedonia, Kastoria, Greece
| | | |
Collapse
|
9
|
Agron S, de March CA, Weissgross R, Mishor E, Gorodisky L, Weiss T, Furman-Haran E, Matsunami H, Sobel N. A chemical signal in human female tears lowers aggression in males. PLoS Biol 2023; 21:e3002442. [PMID: 38127837 PMCID: PMC10734982 DOI: 10.1371/journal.pbio.3002442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Rodent tears contain social chemosignals with diverse effects, including blocking male aggression. Human tears also contain a chemosignal that lowers male testosterone, but its behavioral significance was unclear. Because reduced testosterone is associated with reduced aggression, we tested the hypothesis that human tears act like rodent tears to block male aggression. Using a standard behavioral paradigm, we found that sniffing emotional tears with no odor percept reduced human male aggression by 43.7%. To probe the peripheral brain substrates of this effect, we applied tears to 62 human olfactory receptors in vitro. We identified 4 receptors that responded in a dose-dependent manner to this stimulus. Finally, to probe the central brain substrates of this effect, we repeated the experiment concurrent with functional brain imaging. We found that sniffing tears increased functional connectivity between the neural substrates of olfaction and aggression, reducing overall levels of neural activity in the latter. Taken together, our results imply that like in rodents, a human tear-bound chemosignal lowers male aggression, a mechanism that likely relies on the structural and functional overlap in the brain substrates of olfaction and aggression. We suggest that tears are a mammalian-wide mechanism that provides a chemical blanket protecting against aggression.
Collapse
Affiliation(s)
- Shani Agron
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Claire A. de March
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Reut Weissgross
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eva Mishor
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lior Gorodisky
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Weiss
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Edna Furman-Haran
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Noam Sobel
- The Azrieli National Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- The Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Di Cicco F, Evans RL, James AG, Weddell I, Chopra A, Smeets MAM. Intrinsic and extrinsic factors affecting axillary odor variation. A comprehensive review. Physiol Behav 2023; 270:114307. [PMID: 37516230 DOI: 10.1016/j.physbeh.2023.114307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 07/31/2023]
Abstract
Humans produce odorous secretions from multiple body sites according to the microbiomic profile of each area and the types of secretory glands present. Because the axilla is an active, odor-producing region that mediates social communication via the sense of smell, this article focuses on the biological mechanisms underlying the creation of axillary odor, as well as the intrinsic and extrinsic factors likely to impact the odor and determine individual differences. The list of intrinsic factors discussed includes sex, age, ethnicity, emotions, and personality, and extrinsic factors include dietary choices, diseases, climate, and hygienic habits. In addition, we also draw attention to gaps in our understanding of each factor, including, for example, topical areas such as the effect of climate on body odor variation. Fundamental challenges and emerging research opportunities are further outlined in the discussion. Finally, we suggest guidelines and best practices based on the factors reviewed herein for preparatory protocols of sweat collection, data analysis, and interpretation.
Collapse
Affiliation(s)
- Francesca Di Cicco
- Faculty of Social and Behavioural Sciences, Utrecht University, Heidelberglaan 1, Utrecht, CS 3584, the Netherlands.
| | - Richard L Evans
- Unilever Research & Development, Port Sunlight Laboratory, Bebington, UK
| | - A Gordon James
- Unilever Research & Development, Colworth House, Sharnbrook, UK
| | - Iain Weddell
- Unilever Research & Development, Port Sunlight Laboratory, Bebington, UK
| | - Anita Chopra
- Unilever Research & Development, Port Sunlight Laboratory, Bebington, UK
| | - Monique A M Smeets
- Faculty of Social and Behavioural Sciences, Utrecht University, Heidelberglaan 1, Utrecht, CS 3584, the Netherlands; Unilever Research & Development, Rotterdam, the Netherlands
| |
Collapse
|
11
|
Møller P, Köster EP. Why human olfaction should not be modeled on theories and tasks of vision. Front Psychol 2023; 14:1244480. [PMID: 37829060 PMCID: PMC10565516 DOI: 10.3389/fpsyg.2023.1244480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
In this paper we analyze some key concepts and problems in olfaction and argue that many concepts borrowed from vision are not helpful in elucidating the functions of human olfaction. This is illustrated with several examples. Olfaction is rarely in the focus of human attention. Olfaction is, compared to vision, a 'hidden sense', but still guides many important behaviors by way of unattended unconscious olfactory perception and implicit memory. Not all olfactory processing, however, is of an unconscious nature. Flavors, and the pleasures gained from them, are most often consciously perceived. These are experiences mostly determined by olfaction, taste, touch and chemesthesis. Our analyses lead us to conclude that olfaction should not be modeled on vision, neither conceptually nor with respect to the problems solved by the two senses. A critical examination of the ecological and physical constraints of olfaction and the other senses should be given priority. Such analyses will further our understanding of which problems are solved by the different senses and how they collaborate to guide us through the world.
Collapse
Affiliation(s)
- Per Møller
- Per Møller Consulting, Bagsværd, Denmark
| | - Egon P. Köster
- Helmholtz Institute, University of Utrecht, Utrecht, Netherlands
| |
Collapse
|
12
|
Lien MC, Yeh IH, Lu YC, Liu KK. Plasmonic nanomaterials-based flexible strips for the SERS detection of gouty arthritis. Analyst 2023; 148:4109-4115. [PMID: 37493461 DOI: 10.1039/d3an01130e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Flexible biochips that enable sensitive detection and simultaneous quantification of biomarkers are of great importance in the field of point-of-care testing. Recently, surface-enhanced Raman scattering (SERS)-based flexible biochips have attracted a great deal of research attention for disease detection due to their rapid, sensitive, and noninvasive sensing abilities. Phenomenal progress in the synthesis of structure-controlled plasmonic nanomaterials has made SERS a powerful sensing platform for disease diagnosis and trace detection. Here, we demonstrate flexible plasmonic biochips for the SERS-based detection of uric acid (UA). Flexible strips exhibited excellent sensing performance with a detection limit of around 10 μM of UA, which is lower than the average level of UA in tears. This rapid and sensitive detection method enables the noninvasive diagnosis of gouty arthritis.
Collapse
Affiliation(s)
- Mei-Chin Lien
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan.
| | - I-Hsiu Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan.
| | - Yin-Cheng Lu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan.
| | - Keng-Ku Liu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan.
| |
Collapse
|
13
|
Liang H, Wu S, Yang D, Huang J, Yao X, Gong J, Qing Z, Tao L, Peng Q. Non-targeted Metabolomics Analysis Reveals Distinct Metabolic Profiles Between Positive and Negative Emotional Tears of Humans: A Preliminary Study. Cureus 2023; 15:e42985. [PMID: 37671209 PMCID: PMC10476548 DOI: 10.7759/cureus.42985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
Background Basal, reflex, and emotional tears differ in chemical components. It is not yet known whether chemical differences exist in tears of different emotions. We investigated the biochemical basis of emotional tears by performing non-targeted metabolomics analyses of positive and negative emotional tears of humans. Methods Samples of reflex, negative, and positive emotional tears were obtained from 12 healthy college participants (11 females and one male). Untargeted metabolomics was performed to identify metabolites in different types of tears. The differentially altered metabolites were screened and assessed using univariate and multivariate analyses. Results The orthogonal partial least squares discriminant analysis model showed that reflex, negative, and positive emotional tears were clearly separated. A total of 133 significantly differentially expressed metabolites of electrospray ionization source (ESI-) mode were identified between negative and positive emotional tears. The top 50 differentially expressed metabolites between negative and positive emotional tears were highly correlated. Pathway analysis revealed that secretion of negative emotional tears was associated with some synapses in the brain, regulation of a series of endocrine hormones, including the estrogen signaling pathway, and inflammation activities, while secretion of positive emotional tears was correlated with biotin and caffeine metabolism. Conclusions It is indicated that metabolic profiles of reflex, positive, and negative emotional tears of humans are distinct, and secretion of the tears involves distinct biological activities. Therefore, we present a chemical method for detecting human emotions, which may become a powerful tool for the diagnosis of mental diseases and the identification of fake tears.
Collapse
Affiliation(s)
- Hao Liang
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, CHN
| | - Songye Wu
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, CHN
| | - Duo Yang
- Ophthalmology Department, Jili Hospital, Liuyang, CHN
| | - Jianhua Huang
- Institute of Herbs, Hunan University of Chinese Medicine, Changsha, CHN
| | - Xiaolei Yao
- Ophthalmology Department, First Hospital of Hunan University of Chinese Medicine, Changsha, CHN
| | - Jingbo Gong
- Psychiatric Disease Clinical Research Center, Shanghai Changning Mental Health Center, Shanghai, CHN
| | - Zhixing Qing
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, CHN
| | - Lijuan Tao
- Ophthalmology Department, Hunan Children's Hospital, Changsha, CHN
| | - Qinghua Peng
- Institute of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, CHN
| |
Collapse
|
14
|
Richard Ortegón S, Carlos O, Robert-Hazotte A, Lelgouarch A, Desoche C, Kawabata Duncan K, Tagai K, Fournel A, Bensafi M, Race B, Ferdenzi C. Investigating the human chemical communication of positive emotions using a virtual reality-based mood induction. Physiol Behav 2023; 264:114147. [PMID: 36893999 DOI: 10.1016/j.physbeh.2023.114147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 01/02/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023]
Abstract
Humans can communicate their emotions to others via volatile emissions from their bodies. Although there is now solid evidence for human chemical communication of fear, stress and anxiety, investigations of positive emotions remain scarce. In a recent study, we found that women's heart rate and performance in creativity tasks were modulated by body odors of men sampled while they were in a positive vs. neutral mood. However, inducing positive emotions in laboratory settings remains challenging. Therefore, an important step to further investigate the human chemical communication of positive emotions is to develop new methods to induce positive moods. Here, we present a new mood induction procedure (MIP) based on virtual reality (VR), that we assumed to be more powerful than videos (used in our previous study) to induce positive emotions. We hypothesized that, consequently, given the more intense emotions created, this VR-based MIP would induce larger differences between the receivers' responses to the positive body odor versus a neutral control body odor, than the Video-based MIP. The results confirmed the higher efficacy of VR to induce positive emotions compared with videos. More specifically, VR had more repeatable effects between individuals. Although positive body odors had similar effects to those found in the previous video study, especially faster problem solving, these effects did not reach statistical significance. These outcomes are discussed as a function of the specificities of VR and of other methodological parameters, that may have prevented the observation of such subtle effects and that should be understood more in-depth for future studies on human chemical communication.
Collapse
Affiliation(s)
- Stéphane Richard Ortegón
- University Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Lyon Neuroscience Research Center, CH Le Vinatier, Bât. 462 Neurocampus, 95 boulevard Pinel, Bron Cedex 69675, France; Shiseido Group EMEA, 56A rue du Faubourg Saint-Honoré, Paris 75008, France
| | - Olivia Carlos
- Shiseido Group EMEA, 56A rue du Faubourg Saint-Honoré, Paris 75008, France
| | | | - Anne Lelgouarch
- University Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Lyon Neuroscience Research Center, CH Le Vinatier, Bât. 462 Neurocampus, 95 boulevard Pinel, Bron Cedex 69675, France
| | - Clément Desoche
- University Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Lyon Neuroscience Research Center, CH Le Vinatier, Bât. 462 Neurocampus, 95 boulevard Pinel, Bron Cedex 69675, France
| | - Keith Kawabata Duncan
- Shiseido Co., Ltd MIRAI Technology Institute, 1-2-11 Takashima, Nishi-Ku, Yokohama-shi, Kanagawa 220-0011, Japan
| | - Keiko Tagai
- Shiseido Co., Ltd MIRAI Technology Institute, 1-2-11 Takashima, Nishi-Ku, Yokohama-shi, Kanagawa 220-0011, Japan
| | - Arnaud Fournel
- University Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Lyon Neuroscience Research Center, CH Le Vinatier, Bât. 462 Neurocampus, 95 boulevard Pinel, Bron Cedex 69675, France
| | - Moustafa Bensafi
- University Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Lyon Neuroscience Research Center, CH Le Vinatier, Bât. 462 Neurocampus, 95 boulevard Pinel, Bron Cedex 69675, France
| | - Bénédicte Race
- Shiseido Group EMEA, 56A rue du Faubourg Saint-Honoré, Paris 75008, France
| | - Camille Ferdenzi
- University Claude Bernard Lyon 1, CNRS UMR5292, INSERM U1028, Lyon Neuroscience Research Center, CH Le Vinatier, Bât. 462 Neurocampus, 95 boulevard Pinel, Bron Cedex 69675, France.
| |
Collapse
|
15
|
Herszage J, Bönstrup M, Cohen LG, Censor N. Reactivation-induced motor skill modulation does not operate at a rapid micro-timescale level. Sci Rep 2023; 13:2930. [PMID: 36808164 PMCID: PMC9941091 DOI: 10.1038/s41598-023-29963-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Abundant evidence shows that consolidated memories are susceptible to modifications following their reactivation. Processes of memory consolidation and reactivation-induced skill modulation have been commonly documented after hours or days. Motivated by studies showing rapid consolidation in early stages of motor skill acquisition, here we asked whether motor skill memories are susceptible to modifications following brief reactivations, even at initial stages of learning. In a set of experiments, we collected crowdsourced online motor sequence data to test whether post-encoding interference and performance enhancement occur following brief reactivations in early stages of learning. Results indicate that memories forming during early learning are not susceptible to interference nor to enhancement within a rapid reactivation-induced time window, relative to control conditions. This set of evidence suggests that reactivation-induced motor skill memory modulation might be dependent on consolidation at the macro-timescale level, requiring hours or days to occur.
Collapse
Affiliation(s)
- Jasmine Herszage
- grid.12136.370000 0004 1937 0546School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Sharet Building, 69978 Tel Aviv, Israel
| | - Marlene Bönstrup
- grid.9647.c0000 0004 7669 9786Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Leonardo G. Cohen
- grid.416870.c0000 0001 2177 357XHuman Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD USA
| | - Nitzan Censor
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Sharet Building, 69978, Tel Aviv, Israel.
| |
Collapse
|
16
|
Wu Y, Wei R, Ou J, Shen B, Ye Y. Estratetraenol increases preference for large sexual reward but not impulsivity among heterosexual males. Horm Behav 2022; 146:105266. [PMID: 36152381 DOI: 10.1016/j.yhbeh.2022.105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 08/21/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022]
Abstract
There is increasing evidence suggesting that estratetraenol, a human chemosignal deemed a putative sex pheromone, affects social cognition and sexual behavior. The present study investigates the effects of estratetraenol on preference for sexual rewards in heterosexual males. Seventy-six male participants received either estratetraenol or a control carrier in a double-blind, placebo-controlled, within-participant design. Participants underwent a sexual delay discounting task, in which they were asked to make a choice between a variable larger-later option (i.e., waiting longer to view a sexual picture for a longer duration) and a smaller-sooner option (i.e., waiting for a fixed shorter period of time to view the same picture for a shorter duration). Results revealed that, compared to the control solution, estratetraenol selectively increases preference for larger-later sexual rewards. Computational modelling showed that estratetraenol has no observable influence on impulsivity, as indexed by the discounting rate. These findings suggest that estratetraenol could increase men's sexual motivation, possibly facilitating behavioral processes associated with the pursuit of a sexual partner.
Collapse
Affiliation(s)
- Yin Wu
- Department of Applied Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - Ran Wei
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Jianxin Ou
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Bo Shen
- Neuroscience Institute, New York University School of Medicine, New York, USA
| | - Yuting Ye
- Institute of Psychology, School of Public Policy, Xiamen University, Xiamen, China
| |
Collapse
|
17
|
Roberts SC, Třebická Fialová J, Sorokowska A, Langford B, Sorokowski P, Třebický V, Havlíček J. Emotional expression in human odour. EVOLUTIONARY HUMAN SCIENCES 2022; 4:e44. [PMID: 37588919 PMCID: PMC10426192 DOI: 10.1017/ehs.2022.44] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022] Open
Abstract
Recent work has demonstrated that human body odour alters with changing emotional state and that emotionally laden odours can affect the physiology and behaviour of people exposed to them. Here we review these discoveries, which we believe add to a growing recognition that the human sense of smell and its potential role in social interactions have been underappreciated. However, we also critically evaluate the current evidence, with a particular focus on methodology and the interpretation of emotional odour studies. We argue that while the evidence convincingly indicates that humans retain a capacity for olfactory communication of emotion, the extent to which this occurs in ordinary social interaction remains an open question. Future studies should place fewer restrictions on participant selection and lifestyle and adopt more realistic experimental designs. We also need to devote more consideration to underlying mechanisms and to recognise the constraints that these may place on effective communication. Finally, we outline some promising approaches to address these issues, and raise some broader theoretical questions that such approaches may help us to answer.
Collapse
Affiliation(s)
| | | | | | - Ben Langford
- UK Centre for Ecology and Hydrology, Penicuik, UK
| | | | - Vít Třebický
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Jan Havlíček
- Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
18
|
Murata K, Nagasawa M, Onaka T, Kanemaki N, Nakamura S, Tsubota K, Mogi K, Kikusui T. Increase of tear volume in dogs after reunion with owners is mediated by oxytocin. Curr Biol 2022; 32:R869-R870. [PMID: 35998592 DOI: 10.1016/j.cub.2022.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In humans, tear volume increases during emotional arousal. To our knowledge, no previous studies have investigated the relationship between emotional arousal and tear volume in animals. We performed the Schirmer tear test (STT) and measured tear volume in dogs before and after reunions with owners and familiar non-owners. Tear volume increased significantly during reunion with the owner, but not with a familiar non-owner. When an oxytocin solution was applied to dogs' eyes, the tear volume also increased, suggesting that oxytocin might mediate tear secretion during owner-dog reunions. Finally, human participants rated their impressions on photos of dogs with or without artificial tears and they assigned more positive scores to the photos with artificial tears. These results suggest that emotion-elicited tears can facilitate human-dog emotional connections. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Kaori Murata
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Miho Nagasawa
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan; Center for Human and Animal Symbiosis Science, Azabu University, Kanagawa 252-5201, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Nobuyuki Kanemaki
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan; DVMs Animal Medical Center Yokohama, 2-2 Sawatari, Kanagawa-ku, Yokohama, Kanagawa 221-0844, Japan
| | - Shigeru Nakamura
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazutaka Mogi
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan; Center for Human and Animal Symbiosis Science, Azabu University, Kanagawa 252-5201, Japan
| | - Takefumi Kikusui
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan; Center for Human and Animal Symbiosis Science, Azabu University, Kanagawa 252-5201, Japan.
| |
Collapse
|
19
|
Zhao W, Li J, Xue Z, Qiao X, Li A, Chen X, Feng Y, Yang Z, Wang T. A Separation-Sensing Platform Performing Accurate Diagnosis of Jaundice in Complex Biological Tear Fluids. Angew Chem Int Ed Engl 2022; 61:e202205628. [PMID: 35546068 DOI: 10.1002/anie.202205628] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Indexed: 01/31/2023]
Abstract
The detection of biomarkers in tears has aroused great interest owing to the advantages of non-invasive and rapid collection. The combination of ultrasensitivity and label-free detection of surface-enhanced Raman spectroscopy (SERS) sensors is expected to achieve real-time diagnosis in home medical care. However, the surface of SERS sensors is susceptible to biofouling and inactivation by biological impurities in tears, resulting in rapid degradation of sensitivity, limiting the commercialization of point-of-care devices. Herein, a binary nanosphere array with dual properties is constructed as a separation-sensing platform for the diagnosis of target molecules in tears. The upper part of the structure is composed of Au nanoparticles (AuNPs) and a sputtering Au layer, which can bind the target molecules that interact with Au and provide high-strength and high-density SERS hotspots. The lower half is an inactive SiO2 nanosphere array with periodic large pores that allows biological impurities to penetrate the lower part and be separated from the target analyte. Furthermore, this substrate was integrated into homemade tear kits, enabling simultaneous tear collection, pre-separation, and detection. Combined with the Raman spectra of tears and LDA analysis, we successfully identified patients with jaundice in clinics. This platform is expected to provide an opportunity for early disease screening based on biological fluids.
Collapse
Affiliation(s)
- Weidong Zhao
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Jinming Li
- Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhenjie Xue
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Xuezhi Qiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Ailin Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Xiangyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University, Third Hospital, Beijing, 100191, P. R. China
| | - Zhou Yang
- Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Tie Wang
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, P. R. China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| |
Collapse
|
20
|
Ravreby I, Snitz K, Sobel N. There is chemistry in social chemistry. SCIENCE ADVANCES 2022; 8:eabn0154. [PMID: 35749498 PMCID: PMC9232116 DOI: 10.1126/sciadv.abn0154] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/10/2022] [Indexed: 05/20/2023]
Abstract
Nonhuman terrestrial mammals sniff themselves and each other to decide who is friend or foe. Humans also sniff themselves and each other, but the function of this is unknown. Because humans seek friends who are similar to themselves, we hypothesized that humans may smell themselves and others to subconsciously estimate body odor similarity, which, in turn, may promote friendship. To test this, we recruited nonromantic same-sex friend dyads and harvested their body odor. We found that objective ratings obtained with an electronic nose, and subjective ratings obtained from independent human smellers converged to suggest that friends smell more similar to each other than random dyads. Last, we recruited complete strangers, smelled them with an electronic nose, and engaged them in nonverbal same-sex dyadic interactions. We observed that dyads who smelled more similar had more positive dyadic interactions. In other words, we could predict social bonding with an electronic nose. We conclude that there is indeed chemistry in social chemistry.
Collapse
|
21
|
Humans and the Olfactory Environment: A Case of Gene-Culture Coevolution? PSYCH 2022. [DOI: 10.3390/psych4020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
As hunter-gatherers, humans used their sense of smell to identify plants and animals, to find their way within a foraging area, or to distinguish each other by gender, age, kinship, or social dominance. Because women gathered while men hunted, the sexes evolved different sensitivities to plant and animal odors. They also ended up emitting different odors. Male odors served to intimidate rival males or assert dominance. With the rise of farming and sedentism, humans no longer needed their sense of smell to find elusive food sources or to orient themselves within a large area. Odors now came from a narrower range of plants and animals. Meanwhile, body odor was removed through bathing to facilitate interactions in enclosed spaces. This new phenotype became the template for the evolution of a new genotype: less sensitivity to odors of wild plants and animals, lower emissions of male odors, and a more negative response to them. Further change came with the development of fragrances to reodorize the body and the home. This new olfactory environment coevolved with the ability to represent odors in the mind, notably for storage in memory, for vicarious re-experiencing, or for sharing with other people through speech and writing.
Collapse
|
22
|
Human odor exploration behavior is influenced by olfactory function and interest in the sense of smell. Physiol Behav 2022; 249:113762. [PMID: 35219704 DOI: 10.1016/j.physbeh.2022.113762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/21/2022]
Abstract
Olfaction plays an important role in social interaction. This study examined the influence of chemosensory and cognitive abilities on conscious odor sniffing behaviors in humans. Participants (N = 349) were surveyed using a questionnaire for the frequency of behaviors in terms of odor exploration from intrinsic and external sources. Chemosensory functions (e.g., odor identification, trigeminal sensitivity, taste functions, and nasal patency), self-reported olfactory function, and the subjective importance of olfaction were assessed. Hierarchical regression analyses demonstrate a strong impact of olfactory importance on odor exploration behavior. Both female gender and chemosensory function (odor identification ability and trigeminal sensitivity) had a positive impact on odor exploration behavior from individuals' own body and from external sources. Moreover, participants with dysosmia compared to those with normosmia showed less frequent odor exploration behaviors, while their behaviors were partly predicted by nasal patency. In conclusion, conscious olfactory exploration behaviors reflect the interest in the sense of smell and is strongly modulated by chemosensory function. In turn, individuals with lower olfactory sensitivity invest less in olfactory explorations.
Collapse
|
23
|
Zhao W, Li J, Xue Z, Qiao X, Li A, Chen X, Feng Y, Wang T. A Separation‐Sensing Platform Performing Accurate Diagnosis of Jaundice in Complex Biological Tear Fluids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Weidong Zhao
- Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Analytical Chemistry for Living Biosystems CHINA
| | - Jinming Li
- Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Analytical Chemistry for Living Biosystems CHINA
| | - Zhenjie Xue
- Tianjin University of Technology Life and Health Intelligent Research Institute CHINA
| | - Xuezhi Qiao
- Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Analytical Chemistry for Living Biosystems CHINA
| | - Ailin Li
- Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Analytical Chemistry for Living Biosystems CHINA
| | - Xiangyu Chen
- Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Analytical Chemistry for Living Biosystems CHINA
| | - Yun Feng
- Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Analytical Chemistry for Living Biosystems CHINA
| | - Tie Wang
- Institute of Chemistry, Chinese Academy of Sciences Analytical Chemistry #2 North 1st Street, Zhongguancun 100190 Beijing CHINA
| |
Collapse
|
24
|
Patel ZM, Holbrook EH, Turner JH, Adappa ND, Albers MW, Altundag A, Appenzeller S, Costanzo RM, Croy I, Davis GE, Dehgani-Mobaraki P, Doty RL, Duffy VB, Goldstein BJ, Gudis DA, Haehner A, Higgins TS, Hopkins C, Huart C, Hummel T, Jitaroon K, Kern RC, Khanwalkar AR, Kobayashi M, Kondo K, Lane AP, Lechner M, Leopold DA, Levy JM, Marmura MJ, Mclelland L, Miwa T, Moberg PJ, Mueller CA, Nigwekar SU, O'Brien EK, Paunescu TG, Pellegrino R, Philpott C, Pinto JM, Reiter ER, Roalf DR, Rowan NR, Schlosser RJ, Schwob J, Seiden AM, Smith TL, Soler ZM, Sowerby L, Tan BK, Thamboo A, Wrobel B, Yan CH. International consensus statement on allergy and rhinology: Olfaction. Int Forum Allergy Rhinol 2022; 12:327-680. [PMID: 35373533 DOI: 10.1002/alr.22929] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/01/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The literature regarding clinical olfaction, olfactory loss, and olfactory dysfunction has expanded rapidly over the past two decades, with an exponential rise in the past year. There is substantial variability in the quality of this literature and a need to consolidate and critically review the evidence. It is with that aim that we have gathered experts from around the world to produce this International Consensus on Allergy and Rhinology: Olfaction (ICAR:O). METHODS Using previously described methodology, specific topics were developed relating to olfaction. Each topic was assigned a literature review, evidence-based review, or evidence-based review with recommendations format as dictated by available evidence and scope within the ICAR:O document. Following iterative reviews of each topic, the ICAR:O document was integrated and reviewed by all authors for final consensus. RESULTS The ICAR:O document reviews nearly 100 separate topics within the realm of olfaction, including diagnosis, epidemiology, disease burden, diagnosis, testing, etiology, treatment, and associated pathologies. CONCLUSION This critical review of the existing clinical olfaction literature provides much needed insight and clarity into the evaluation, diagnosis, and treatment of patients with olfactory dysfunction, while also clearly delineating gaps in our knowledge and evidence base that we should investigate further.
Collapse
Affiliation(s)
- Zara M Patel
- Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Eric H Holbrook
- Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Justin H Turner
- Otolaryngology, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Nithin D Adappa
- Otolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark W Albers
- Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Aytug Altundag
- Otolaryngology, Biruni University School of Medicine, İstanbul, Turkey
| | - Simone Appenzeller
- Rheumatology, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Richard M Costanzo
- Physiology and Biophysics and Otolaryngology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Ilona Croy
- Psychology and Psychosomatic Medicine, TU Dresden, Dresden, Germany
| | - Greg E Davis
- Otolaryngology, Proliance Surgeons, Seattle and Puyallup, Washington, USA
| | - Puya Dehgani-Mobaraki
- Associazione Naso Sano, Umbria Regional Registry of Volunteer Activities, Corciano, Italy
| | - Richard L Doty
- Smell and Taste Center, Otolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Valerie B Duffy
- Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | | - David A Gudis
- Otolaryngology, Columbia University Irving Medical Center, New York, USA
| | - Antje Haehner
- Smell and Taste, Otolaryngology, TU Dresden, Dresden, Germany
| | - Thomas S Higgins
- Otolaryngology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Claire Hopkins
- Otolaryngology, Guy's and St. Thomas' Hospitals, London Bridge Hospital, London, UK
| | - Caroline Huart
- Otorhinolaryngology, Cliniques universitaires Saint-Luc, Institute of Neuroscience, Université catholgique de Louvain, Brussels, Belgium
| | - Thomas Hummel
- Smell and Taste, Otolaryngology, TU Dresden, Dresden, Germany
| | | | - Robert C Kern
- Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ashoke R Khanwalkar
- Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Masayoshi Kobayashi
- Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Kenji Kondo
- Otolaryngology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Andrew P Lane
- Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matt Lechner
- Otolaryngology, Barts Health and University College London, London, UK
| | - Donald A Leopold
- Otolaryngology, University of Vermont Medical Center, Burlington, Vermont, USA
| | - Joshua M Levy
- Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael J Marmura
- Neurology Thomas Jefferson University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lisha Mclelland
- Otolaryngology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Takaki Miwa
- Otolaryngology, Kanazawa Medical University, Ishikawa, Japan
| | - Paul J Moberg
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Sagar U Nigwekar
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erin K O'Brien
- Otolaryngology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Teodor G Paunescu
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Carl Philpott
- Otolaryngology, University of East Anglia, Norwich, UK
| | - Jayant M Pinto
- Otolaryngology, University of Chicago, Chicago, Illinois, USA
| | - Evan R Reiter
- Otolaryngology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - David R Roalf
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicholas R Rowan
- Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rodney J Schlosser
- Otolaryngology, Medical University of South Carolina, Mt Pleasant, South Carolina, USA
| | - James Schwob
- Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Allen M Seiden
- Otolaryngology, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Timothy L Smith
- Otolaryngology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Zachary M Soler
- Otolaryngology, Medical University of South Carolina, Mt Pleasant, South Carolina, USA
| | - Leigh Sowerby
- Otolaryngology, University of Western Ontario, London, Ontario, Canada
| | - Bruce K Tan
- Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrew Thamboo
- Otolaryngology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bozena Wrobel
- Otolaryngology, Keck School of Medicine, USC, Los Angeles, California, USA
| | - Carol H Yan
- Otolaryngology, School of Medicine, UCSD, La Jolla, California, USA
| |
Collapse
|
25
|
Mishor E, Amir D, Weiss T, Honigstein D, Weissbrod A, Livne E, Gorodisky L, Karagach S, Ravia A, Snitz K, Karawani D, Zirler R, Weissgross R, Soroka T, Endevelt-Shapira Y, Agron S, Rozenkrantz L, Reshef N, Furman-Haran E, Breer H, Strotmann J, Uebi T, Ozaki M, Sobel N. Sniffing the human body volatile hexadecanal blocks aggression in men but triggers aggression in women. SCIENCE ADVANCES 2021; 7:eabg1530. [PMID: 34797713 PMCID: PMC8604408 DOI: 10.1126/sciadv.abg1530] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/30/2021] [Indexed: 05/29/2023]
Abstract
In terrestrial mammals, body volatiles can effectively trigger or block conspecific aggression. Here, we tested whether hexadecanal (HEX), a human body volatile implicated as a mammalian-wide social chemosignal, affects human aggression. Using validated behavioral paradigms, we observed a marked dissociation: Sniffing HEX blocked aggression in men but triggered aggression in women. Next, using functional brain imaging, we uncovered a pattern of brain activity mirroring behavior: In both men and women, HEX increased activity in the left angular gyrus, an area implicated in perception of social cues. HEX then modulated functional connectivity between the angular gyrus and a brain network implicated in social appraisal (temporal pole) and aggressive execution (amygdala and orbitofrontal cortex) in a sex-dependent manner consistent with behavior: increasing connectivity in men but decreasing connectivity in women. These findings implicate sex-specific social chemosignaling at the mechanistic heart of human aggressive behavior.
Collapse
Affiliation(s)
- Eva Mishor
- Azrieli National Center for Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Amir
- Azrieli National Center for Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Weiss
- Azrieli National Center for Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Danielle Honigstein
- Azrieli National Center for Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Weissbrod
- Azrieli National Center for Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Ethan Livne
- Azrieli National Center for Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Lior Gorodisky
- Azrieli National Center for Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Shiri Karagach
- Azrieli National Center for Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Ravia
- Azrieli National Center for Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Kobi Snitz
- Azrieli National Center for Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Diyala Karawani
- Azrieli National Center for Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Zirler
- Azrieli National Center for Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Reut Weissgross
- Azrieli National Center for Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Timna Soroka
- Azrieli National Center for Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Yaara Endevelt-Shapira
- Azrieli National Center for Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Shani Agron
- Azrieli National Center for Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Liron Rozenkrantz
- Azrieli National Center for Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Netta Reshef
- Azrieli National Center for Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Edna Furman-Haran
- Azrieli National Center for Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
| | - Heinz Breer
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Joerg Strotmann
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Tatsuya Uebi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Mamiko Ozaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Noam Sobel
- Azrieli National Center for Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
26
|
Scheller M, Matorres F, Little AC, Tompkins L, de Sousa AA. The Role of Vision in the Emergence of Mate Preferences. ARCHIVES OF SEXUAL BEHAVIOR 2021; 50:3785-3797. [PMID: 33851315 PMCID: PMC8604830 DOI: 10.1007/s10508-020-01901-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 05/22/2023]
Abstract
Cross-cultural research has repeatedly demonstrated sex differences in the importance of partner characteristics when choosing a mate. Men typically report higher preferences for younger, more physically attractive women, while women typically place more importance on a partner's status and wealth. As the assessment of such partner characteristics often relies on visual cues, this raises the question whether visual experience is necessary for sex-specific mate preferences to develop. To shed more light onto the emergence of sex differences in mate choice, the current study assessed how preferences for attractiveness, resources, and personality factors differ between sighted and blind individuals using an online questionnaire. We further investigate the role of social factors and sensory cue selection in these sex differences. Our sample consisted of 94 sighted and blind participants with different ages of blindness onset: 19 blind/28 sighted males and 19 blind/28 sighted females. Results replicated well-documented findings in the sighted, with men placing more importance on physical attractiveness and women placing more importance on status and resources. However, while physical attractiveness was less important to blind men, blind women considered physical attractiveness as important as sighted women. The importance of a high status and likeable personality was not influenced by sightedness. Blind individuals considered auditory cues more important than visual cues, while sighted males showed the opposite pattern. Further, relationship status and indirect, social influences were related to preferences. Overall, our findings shed light on the availability of visual information for the emergence of sex differences in mate preference.
Collapse
Affiliation(s)
- Meike Scheller
- Department of Psychology, University of Bath, Bath, UK.
- School of Psychology, University of Aberdeen, Aberdeen, AB24 3FX, UK.
| | | | | | - Lucy Tompkins
- Centre for Health and Cognition, Bath Spa University, Bath, UK
| | | |
Collapse
|
27
|
Sievers B, Parkinson C, Kohler PJ, Hughes JM, Fogelson SV, Wheatley T. Visual and auditory brain areas share a representational structure that supports emotion perception. Curr Biol 2021; 31:5192-5203.e4. [PMID: 34644547 DOI: 10.1016/j.cub.2021.09.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/07/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022]
Abstract
Emotionally expressive music and dance occur together across the world. This may be because features shared across the senses are represented the same way even in different sensory brain areas, putting music and movement in directly comparable terms. These shared representations may arise from a general need to identify environmentally relevant combinations of sensory features, particularly those that communicate emotion. To test the hypothesis that visual and auditory brain areas share a representational structure, we created music and animation stimuli with crossmodally matched features expressing a range of emotions. Participants confirmed that each emotion corresponded to a set of features shared across music and movement. A subset of participants viewed both music and animation during brain scanning, revealing that representations in auditory and visual brain areas were similar to one another. This shared representation captured not only simple stimulus features but also combinations of features associated with emotion judgments. The posterior superior temporal cortex represented both music and movement using this same structure, suggesting supramodal abstraction of sensory content. Further exploratory analysis revealed that early visual cortex used this shared representational structure even when stimuli were presented auditorily. We propose that crossmodally shared representations support mutually reinforcing dynamics across auditory and visual brain areas, facilitating crossmodal comparison. These shared representations may help explain why emotions are so readily perceived and why some dynamic emotional expressions can generalize across cultural contexts.
Collapse
Affiliation(s)
- Beau Sievers
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA; Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | - Carolyn Parkinson
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter J Kohler
- Department of Psychology, York University, Toronto, ON, Canada; Centre for Vision Research, York University, Toronto, ON, Canada
| | | | | | - Thalia Wheatley
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA; Santa Fe Institute, Santa Fe, NM 87501, USA.
| |
Collapse
|
28
|
Damon F, Mezrai N, Magnier L, Leleu A, Durand K, Schaal B. Olfaction in the Multisensory Processing of Faces: A Narrative Review of the Influence of Human Body Odors. Front Psychol 2021; 12:750944. [PMID: 34675855 PMCID: PMC8523678 DOI: 10.3389/fpsyg.2021.750944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/06/2021] [Indexed: 01/08/2023] Open
Abstract
A recent body of research has emerged regarding the interactions between olfaction and other sensory channels to process social information. The current review examines the influence of body odors on face perception, a core component of human social cognition. First, we review studies reporting how body odors interact with the perception of invariant facial information (i.e., identity, sex, attractiveness, trustworthiness, and dominance). Although we mainly focus on the influence of body odors based on axillary odor, we also review findings about specific steroids present in axillary sweat (i.e., androstenone, androstenol, androstadienone, and estratetraenol). We next survey the literature showing body odor influences on the perception of transient face properties, notably in discussing the role of body odors in facilitating or hindering the perception of emotional facial expression, in relation to competing frameworks of emotions. Finally, we discuss the developmental origins of these olfaction-to-vision influences, as an emerging literature indicates that odor cues strongly influence face perception in infants. Body odors with a high social relevance such as the odor emanating from the mother have a widespread influence on various aspects of face perception in infancy, including categorization of faces among other objects, face scanning behavior, or facial expression perception. We conclude by suggesting that the weight of olfaction might be especially strong in infancy, shaping social perception, especially in slow-maturing senses such as vision, and that this early tutoring function of olfaction spans all developmental stages to disambiguate a complex social environment by conveying key information for social interactions until adulthood.
Collapse
Affiliation(s)
- Fabrice Damon
- Developmental Ethology and Cognitive Psychology Laboratory, Centre des Sciences du Goût et de l’Alimentation, Inrae, AgroSup Dijon, CNRS (UMR 6265), Université Bourgogne Franche-Comté, Dijon, France
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Abstract
Introduction
Research has provided evidence for the transfer of single emotions including anger, anxiety and happiness through olfactory chemosignals, yet no work has examined the role of odour function in the aggregation of more complex emotional states or in the emotional contagion process. The aim of the present study was to ascertain whether an individual’s tendency to experience emotional aggregation was affected by objective measures of their olfactory function and subjective self-assessments of the importance of their own olfactory system.
Methods
In this study (N = 70), participant pairs were first assessed individually for olfactory threshold and odour identification, then completed the Importance of Olfaction Questionnaire. Each pair subsequently took part in two collaborative tasks. Individual emotion measures were taken before, during and after the completion of the two tasks.
Results
Multilevel structural equation modelling revealed that individuals’ within-dyad positive emotional agreement scores were associated with both their ‘importance of olfaction’ scores and their olfactory function. A significant association was also found between olfactory performance and the Importance of Olfaction scores.
Conclusions
These results provide evidence that the subjective importance an individual assigns to their sense of smell can predict their susceptibility to experience emotional aggregation during active, collaborative tasks.
Implications
The findings suggest that individuals’ tendency and capability to detect and respond to emotional chemosignals, a process required for olfactory-facilitated emotional contagion, may be affected by individual differences in olfactory function and subjective attitudes toward olfaction.
Collapse
|
30
|
Bicker F, Nardi L, Maier J, Vasic V, Schmeisser MJ. Criss-crossing autism spectrum disorder and adult neurogenesis. J Neurochem 2021; 159:452-478. [PMID: 34478569 DOI: 10.1111/jnc.15501] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 08/28/2021] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) comprises a group of multifactorial neurodevelopmental disorders primarily characterized by deficits in social interaction and repetitive behavior. Although the onset is typically in early childhood, ASD poses a lifelong challenge for both patients and caretakers. Adult neurogenesis (AN) is the process by which new functional neurons are created from neural stem cells existing in the post-natal brain. The entire event is based on a sequence of cellular processes, such as proliferation, specification of cell fate, maturation, and ultimately, synaptic integration into the existing neural circuits. Hence, AN is implicated in structural and functional brain plasticity throughout life. Accumulating evidence shows that impaired AN may underlie some of the abnormal behavioral phenotypes seen in ASD. In this review, we approach the interconnections between the molecular pathways related to AN and ASD. We also discuss existing therapeutic approaches targeting such pathways both in preclinical and clinical studies. A deeper understanding of how ASD and AN reciprocally affect one another could reveal important converging pathways leading to the emergence of psychiatric disorders.
Collapse
Affiliation(s)
- Frank Bicker
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Leonardo Nardi
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jannik Maier
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Verica Vasic
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael J Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.,Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
31
|
Icht M. Improving speech characteristics of young adults with congenital dysarthria: An exploratory study comparing articulation training and the Beatalk method. JOURNAL OF COMMUNICATION DISORDERS 2021; 93:106147. [PMID: 34461556 DOI: 10.1016/j.jcomdis.2021.106147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION This exploratory study compared the effects of two speech therapy approaches on speech characteristics of young adults with congenital dysarthria resulting from various etiologies: a) articulation training focusing on consonant articulation exercises at various levels (isolation, syllables, and words), and b) the Beatalk method, based on human beatboxing, i.e., producing various instrumental sounds in an a-cappella musical context. Both interventions were designed to increase participants' speech intelligibility. METHODS Twelve adults with congenital dysarthria and reduced speech intelligibility participated in treatment groups for eight weeks. Six participants were assigned to the articulation training group, and six to the Beatalk group. Intelligibility of single words and continuous speech, voice measures, and oral-diadochokinesis rates were measured before and after the treatment. RESULTS The results showed that the Beatalk intervention yielded a significant overall pre- to post-treatment effect. Specifically, it resulted in gains in articulatory accuracy and intelligibility for single words. Improvements were not noted following articulation training. CONCLUSIONS The results present initial evidence of the positive effect of the Beatalk method as an intervention tool for adults with congenital dysarthria. This relatively easy-to-learn technique shows promise, as it involves intense and repetitive production of speech sounds while controlling rhythm and breathing in an enjoyable context.
Collapse
Affiliation(s)
- Michal Icht
- Department of Communication Disorders, Ariel University 40700, Israel.
| |
Collapse
|
32
|
Koyama S, Kondo K, Ueha R, Kashiwadani H, Heinbockel T. Possible Use of Phytochemicals for Recovery from COVID-19-Induced Anosmia and Ageusia. Int J Mol Sci 2021; 22:8912. [PMID: 34445619 PMCID: PMC8396277 DOI: 10.3390/ijms22168912] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
The year 2020 became the year of the outbreak of coronavirus, SARS-CoV-2, which escalated into a worldwide pandemic and continued into 2021. One of the unique symptoms of the SARS-CoV-2 disease, COVID-19, is the loss of chemical senses, i.e., smell and taste. Smell training is one of the methods used in facilitating recovery of the olfactory sense, and it uses essential oils of lemon, rose, clove, and eucalyptus. These essential oils were not selected based on their chemical constituents. Although scientific studies have shown that they improve recovery, there may be better combinations for facilitating recovery. Many phytochemicals have bioactive properties with anti-inflammatory and anti-viral effects. In this review, we describe the chemical compounds with anti- inflammatory and anti-viral effects, and we list the plants that contain these chemical compounds. We expand the review from terpenes to the less volatile flavonoids in order to propose a combination of essential oils and diets that can be used to develop a new taste training method, as there has been no taste training so far. Finally, we discuss the possible use of these in clinical settings.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Kenji Kondo
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
| | - Rumi Ueha
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
- Swallowing Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Hideki Kashiwadani
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
33
|
Foreman RE, George AL, Reimann F, Gribble FM, Kay RG. Peptidomics: A Review of Clinical Applications and Methodologies. J Proteome Res 2021; 20:3782-3797. [PMID: 34270237 DOI: 10.1021/acs.jproteome.1c00295] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Improvements in both liquid chromatography (LC) and mass spectrometry (MS) instrumentation have greatly enhanced proteomic and small molecule metabolomic analysis in recent years. Less focus has been on the improved capability to detect and quantify small bioactive peptides, even though the exact sequences of the peptide species produced can have important biological consequences. Endogenous bioactive peptide hormones, for example, are generated by the targeted and regulated cleavage of peptides from their prohormone sequence. This process may include organ specific variants, as proglucagon is converted to glucagon in the pancreas but glucagon-like peptide-1 (GLP-1) in the small intestine, with glucagon raising, whereas GLP-1, as an incretin, lowering blood glucose. Therefore, peptidomics workflows must preserve the structure of the processed peptide products to prevent the misidentification of ambiguous peptide species. The poor in vivo and in vitro stability of peptides in biological matrices is a major factor that needs to be considered when developing methods to study them. The bioinformatic analysis of peptidomics data sets requires the inclusion of specific post-translational modifications, which are critical for the function of many bioactive peptides. This review aims to discuss and contrast the various extraction, analytical, and bioinformatics approaches used for human peptidomics studies in a multitude of matrices.
Collapse
Affiliation(s)
- Rachel E Foreman
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| | - Amy L George
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| | - Frank Reimann
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| | - Fiona M Gribble
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| | - Richard G Kay
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| |
Collapse
|
34
|
Gamain J, Herr T, Fleischmann R, Stenner A, Vollmer M, Willert C, Veit B, Lehnert B, Mueller JU, Steigerwald F, Tost F, Kronenbuerger M. Smell and taste in idiopathic blepharospasm. J Neural Transm (Vienna) 2021; 128:1215-1224. [PMID: 34184129 PMCID: PMC8237775 DOI: 10.1007/s00702-021-02366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
The pathophysiology of blepharospasm is incompletely understood. Current concepts suggest that blepharospasm is a network disorder, involving basal ganglia, thalamus, cortex, and, possibly, the cerebellum. Tracing, imaging, and clinical studies revealed that these structures are also concerned with olfaction and taste. Because of this anatomical overlap, dysfunction of the chemical senses in blepharospasm is expected. Injections of botulinum toxin into the eyelid muscles are the first-line treatment of blepharospasm. Yet, the effects of botulinum toxin on the chemical senses have not been systematically assessed. To contribute to a better understanding of blepharospasm, olfactory and gustatory abilities were assessed in 17 subjects with blepharospasm and 17 age-/sex-matched healthy controls. Sniffin Sticks were used to assess odor threshold, odor discrimination, and odor identification. Results of these three Sniffin Sticks subtests were added to the composite olfactory score. The Taste Strips were applied to assess taste. In an adjacent study, we assessed the sense of smell and taste in eight subjects with blepharospasm before and 4 weeks after botulinum toxin treatment. Subjects with blepharospasm had significantly lower (= worse) scores for odor threshold and for the composite olfactory score than healthy controls, while odor discrimination, odor identification, and the composite taste score were not different between groups. The adjacent study revealed that botulinum toxin did not impact the chemical senses. In this study, subjects with blepharospasm had a lower (= worse) odor threshold than healthy controls. As olfaction is important in daily life, findings justify further research of olfaction in blepharospasm.
Collapse
Affiliation(s)
- Julie Gamain
- Department of Neurology, University of Greifswald, Greifswald, Germany
| | - Thorsten Herr
- Department of Neurology, University of Greifswald, Greifswald, Germany
| | | | - Andrea Stenner
- Department of Neurology, Paracelsus Clinic Zwickau, Zwickau, Germany
| | - Marcus Vollmer
- Institute of Bioinformatics, University of Greifswald, Greifswald, Germany
| | | | - Birgitt Veit
- Neurology Group Practice, Neubrandenburg, Germany
| | - Bernhard Lehnert
- Department of Otorhinolaryngology, University of Greifswald, Greifswald, Germany
| | - Jan-Uwe Mueller
- Department of Neurosurgery, University of Greifswald, Greifswald, Germany
| | - Frank Steigerwald
- Department of Neurology, University of Greifswald, Greifswald, Germany
| | - Frank Tost
- Department of Ophthalmology, University of Greifswald, Greifswald, Germany
| | - Martin Kronenbuerger
- Department of Neurology, University of Greifswald, Greifswald, Germany. .,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA. .,Department of Neurology, Medical School OWL, University of Bielefeld, Bielefeld, Germany.
| |
Collapse
|
35
|
Abstract
Learning motor skills commonly requires repeated execution to achieve gains in performance. Motivated by memory reactivation frameworks predominantly originating from fear-conditioning studies in rodents, which have extended to humans, we asked the following: Could motor skill learning be achieved by brief memory reactivations? To address this question, we had participants encode a motor sequence task in an initial test session, followed by brief task reactivations of only 30 s each, conducted on separate days. Learning was evaluated in a final retest session. The results showed that these brief reactivations induced significant motor skill learning gains. Nevertheless, the efficacy of reactivations was not consistent but determined by the number of consecutive correct sequences tapped during memory reactivations. Highly continuous reactivations resulted in higher learning gains, similar to those induced by full extensive practice, while lower continuity reactivations resulted in minimal learning gains. These results were replicated in a new independent sample of subjects, suggesting that the quality of memory reactivation, reflected by its continuity, regulates the magnitude of learning gains. In addition, the change in noninvasive brain stimulation measurements of corticospinal excitability evoked by transcranial magnetic stimulation over primary motor cortex between pre- and postlearning correlated with retest and transfer performance. These results demonstrate a unique form of rapid motor skill learning and may have far-reaching implications, for example, in accelerating motor rehabilitation following neurological injuries.
Collapse
|
36
|
A photoelectrochemical sensor based on Z-Scheme TiO 2@Au@CdS and molecularly imprinted polymer for uric acid detection. Mikrochim Acta 2021; 188:188. [PMID: 33991252 DOI: 10.1007/s00604-021-04841-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
A novel photoelectrochemical (PEC) sensor based on "Z-scheme" TiO2@Au@CdS and molecularly imprinted polymer (MIP) was developed for the non-invasive detection of uric acid (UA). The "Z-scheme" material, consisting of an electron-transfer system (Au) and two isolated photochemical systems (CdS, TiO2), was synthesized by chemical deposition method and it worked as a substrate for electro-polymerization of MIP. Due to the high photoelectric conversion efficiency provided by TiO2@Au@CdS and specific imprinting effect afforded by MIP, the sensor displayed desirable sensing performance with the merits of sensitivity, selectivity, repeatability, and stability. The linear range for UA detection is from 1 nM to 9 μM with the detection limit of 0.3 nM (S/N = 3). Moreover, the assay was successfully utilized to measure UA in human tears and offered a reliable result. The incorporation of MIP and "Z-scheme" material into a PEC sensor system is expected to provide a promising strategy for detecting other small molecules.
Collapse
|
37
|
Vanacker C, Bouret SG, Giacobini P, Prévot V. [Precocious puberty and neuropilin-1 signaling in GnRH neurons]. Med Sci (Paris) 2021; 37:366-371. [PMID: 33908854 DOI: 10.1051/medsci/2021035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The survival of the species depends on two closely interlinked processes: the correct functioning of the reproductive system, and the balance between the energy needs of an individual and the supply of energy sources through feeding. These two processes are regulated in the hypothalamus, which produces neurohormones that control various physiological functions. Among these neurohormones, GnRH controls not only the maturation and function of the reproductive organs, including the ovaries and the testes, during puberty and in adulthood, but also sexual attraction. Recent evidence suggest that neuropilin-1-mediated signaling in GnRH-synthesizing neurons could be a linchpin that holds together various neuroanatomical, physiological and behavioral adaptations involved in triggering puberty and achieving reproductive function.
Collapse
Affiliation(s)
- Charlotte Vanacker
- Univ. Lille, Inserm, CHU Lille, Équipe développement et plasticité du cerveau neuroendocrine, FHU 1 000 jours pour la Santé, Lille Neuroscience et Cognition, UMR-S1172, 1 place de Verdun, 59045 Lille Cedex, France
| | - Sébastien G Bouret
- Univ. Lille, Inserm, CHU Lille, Équipe développement et plasticité du cerveau neuroendocrine, FHU 1 000 jours pour la Santé, Lille Neuroscience et Cognition, UMR-S1172, 1 place de Verdun, 59045 Lille Cedex, France
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Équipe développement et plasticité du cerveau neuroendocrine, FHU 1 000 jours pour la Santé, Lille Neuroscience et Cognition, UMR-S1172, 1 place de Verdun, 59045 Lille Cedex, France
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Équipe développement et plasticité du cerveau neuroendocrine, FHU 1 000 jours pour la Santé, Lille Neuroscience et Cognition, UMR-S1172, 1 place de Verdun, 59045 Lille Cedex, France
| |
Collapse
|
38
|
Abstract
Background Olfactory dysfunction significantly reduces quality of life, with a prevalence as high as 20% in the general adult population. Odor identification (OI) tests are culturally dependent and widely used in clinical and epidemiological evaluations of olfaction. We aimed to develop a Chinese odor identification test (COIT) based on the Sniffin’ Sticks identification test. Methods Patients (n=60) with olfactory disorders and healthy controls (n=404) were recruited in the Smell and Taste Center of a tertiary-care university hospital. Unfamiliar odors in the Sniffin’ Sticks identification test were replaced to create a 16-item COIT, which was validated with a simplified Chinese version of the Cross-culture Smell Identification Test (CC-SIT) and Sniffin’ Sticks. A test-retest reliability of COIT was also conducted. Results Six odors with a correct recognition rate <75% were replaced with familiar odors for Chinese. The COIT score significantly correlated with both Sniffin’ Sticks (r=0.755 P<0.0001) and CC-SIT score (r=0.7462 P<0.0001). Based on the testing results of an additional 120 subjects, we concluded that scores of 12–16, 7–11, and 0–6 corresponded to normosmia, hyposmia, and anosmia, respectively. The 3-month test-retest-reliability coefficient was as high as 0.83. Conclusions The COIT is an effective tool for assessing olfactory function in the Chinese population.
Collapse
Affiliation(s)
- Baihan Su
- Department of Otolaryngology, Smell and Taste Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Dawei Wu
- Department of Otolaryngology, Smell and Taste Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yongxiang Wei
- Department of Otolaryngology, Smell and Taste Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Department of Otorhinolaryngology Head and Neck Surgery, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
39
|
Sollai G, Melis M, Mastinu M, Paduano D, Chicco F, Magri S, Usai P, Hummel T, Barbarossa IT, Crnjar R. Olfactory Function in Patients with Inflammatory Bowel Disease (IBD) Is Associated with Their Body Mass Index and Polymorphism in the Odor Binding-Protein (OBPIIa) Gene. Nutrients 2021; 13:nu13020703. [PMID: 33671721 PMCID: PMC7926749 DOI: 10.3390/nu13020703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
Smell strongly contributes to food choice and intake, influencing energy balance and body weight; its reduction or loss has been related to malnutrition problems. Some patients with inflammatory bowel disease (IBD), mainly Crohn’s disease (CD) and ulcerative colitis (UC), are underweight, while others are overweight. Some studies suggest that changes in eating habits could be linked to specific disorders of the olfactory functions. We assessed the olfactory performance in 199 subjects (healthy control (HC) n = 99, IBD n = 100), based on the olfactory Threshold, Discrimination and Identification score (TDI score), measured with the “Sniffin’ Sticks” test. Subjects were genotyped for the rs2590498 polymorphism of the OBPIIa gene. IBD patients showed both a slightly, but significantly, lower olfactory function and a higher BMI compared to HC subjects. Threshold (in both population) and Discrimination (in IBD patients) olfactory score were affected by the OBPIIa genotype. BMI was influenced by both health status and OBPIIa genotype. A lower olfactory function may delay the satiety sensation and thus increase meal duration and body weight in IBD patients. However, the AA genotype of the OBPIIa seems to “protect” IBD patients from more severe olfactory dysfunction.
Collapse
Affiliation(s)
- Giorgia Sollai
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (M.M.); (M.M.); (I.T.B.); (R.C.)
- Correspondence: ; Tel.: +39-070-6754160
| | - Melania Melis
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (M.M.); (M.M.); (I.T.B.); (R.C.)
| | - Mariano Mastinu
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (M.M.); (M.M.); (I.T.B.); (R.C.)
| | - Danilo Paduano
- Department of Medical Sciences and Public Health, University of Cagliari, Presidio Policlinico of Monserrato, 09042 Cagliari, Italy; (D.P.); (F.C.); (S.M.); (P.U.)
| | - Fabio Chicco
- Department of Medical Sciences and Public Health, University of Cagliari, Presidio Policlinico of Monserrato, 09042 Cagliari, Italy; (D.P.); (F.C.); (S.M.); (P.U.)
| | - Salvatore Magri
- Department of Medical Sciences and Public Health, University of Cagliari, Presidio Policlinico of Monserrato, 09042 Cagliari, Italy; (D.P.); (F.C.); (S.M.); (P.U.)
| | - Paolo Usai
- Department of Medical Sciences and Public Health, University of Cagliari, Presidio Policlinico of Monserrato, 09042 Cagliari, Italy; (D.P.); (F.C.); (S.M.); (P.U.)
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, 01067 Dresden, Germany;
| | - Iole Tomassini Barbarossa
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (M.M.); (M.M.); (I.T.B.); (R.C.)
| | - Roberto Crnjar
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (M.M.); (M.M.); (I.T.B.); (R.C.)
| |
Collapse
|
40
|
Boesveldt S, Parma V. The importance of the olfactory system in human well-being, through nutrition and social behavior. Cell Tissue Res 2021; 383:559-567. [PMID: 33433688 PMCID: PMC7802608 DOI: 10.1007/s00441-020-03367-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
The human sense of smell is still much underappreciated, despite its importance for vital functions such as warning and protection from environmental hazards, eating behavior and nutrition, and social communication. We here approach olfaction as a sense of well-being and review the available literature on how the sense of smell contributes to building and maintaining well-being through supporting nutrition and social relationships. Humans seem to be able to extract nutritional information from olfactory food cues, which can trigger specific appetite and direct food choice, but may not always impact actual intake behavior. Beyond food enjoyment, as part of quality of life, smell has the ability to transfer and regulate emotional conditions, and thus impacts social relationships, at various stages across life (e.g., prenatal and postnatal, during puberty, for partner selection and in sickness). A better understanding of how olfactory information is processed and employed for these functions so vital for well-being may be used to reduce potential negative consequences.
Collapse
Affiliation(s)
- Sanne Boesveldt
- Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708, Wageningen, The Netherlands.
| | - Valentina Parma
- Department of Psychology, Temple University, 1701 North 13th Street, PA, 19122, Philadelphia, USA.
- Monell Chemical Senses Center, 3500 Market St., PA, Philadelphia, 19104, USA.
| |
Collapse
|
41
|
Olfaction as a Marker for Dystonia: Background, Current State and Directions. Brain Sci 2020; 10:brainsci10100727. [PMID: 33066144 PMCID: PMC7601998 DOI: 10.3390/brainsci10100727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/30/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023] Open
Abstract
Dystonia is a heterogeneous group of hyperkinetic movement disorders. The unifying descriptor of dystonia is the motor manifestation, characterized by continuous or intermittent contractions of muscles that cause abnormal movements and postures. Additionally, there are psychiatric, cognitive, and sensory alterations that are possible or putative non-motor manifestations of dystonia. The pathophysiology of dystonia is incompletely understood. A better understanding of dystonia pathophysiology is highly relevant in the amelioration of significant disability associated with motor and non-motor manifestations of dystonia. Recently, diminished olfaction was found to be a potential non-motor manifestation that may worsen the situation of subjects with dystonia. Yet, this finding may also shed light into dystonia pathophysiology and yield novel treatment options. This article aims to provide background information on dystonia and the current understanding of its pathophysiology, including the key structures involved, namely, the basal ganglia, cerebellum, and sensorimotor cortex. Additionally, involvement of these structures in the chemical senses are reviewed to provide an overview on how olfactory (and gustatory) deficits may occur in dystonia. Finally, we describe the present findings on altered chemical senses in dystonia and discuss directions of research on olfactory dysfunction as a marker in dystonia.
Collapse
|
42
|
Vanacker C, Trova S, Shruti S, Casoni F, Messina A, Croizier S, Malone S, Ternier G, Hanchate NK, Rasika S, Bouret SG, Ciofi P, Giacobini P, Prevot V. Neuropilin-1 expression in GnRH neurons regulates prepubertal weight gain and sexual attraction. EMBO J 2020; 39:e104633. [PMID: 32761635 PMCID: PMC7527814 DOI: 10.15252/embj.2020104633] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022] Open
Abstract
Hypothalamic neurons expressing gonadotropin-releasing hormone (GnRH), the "master molecule" regulating reproduction and fertility, migrate from their birthplace in the nose to their destination using a system of guidance cues, which include the semaphorins and their receptors, the neuropilins and plexins, among others. Here, we show that selectively deleting neuropilin-1 in new GnRH neurons enhances their survival and migration, resulting in excess neurons in the hypothalamus and in their unusual accumulation in the accessory olfactory bulb, as well as an acceleration of mature patterns of activity. In female mice, these alterations result in early prepubertal weight gain, premature attraction to male odors, and precocious puberty. Our findings suggest that rather than being influenced by peripheral energy state, GnRH neurons themselves, through neuropilin-semaphorin signaling, might engineer the timing of puberty by regulating peripheral adiposity and behavioral switches, thus acting as a bridge between the reproductive and metabolic axes.
Collapse
Affiliation(s)
- Charlotte Vanacker
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Sara Trova
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Sonal Shruti
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Filippo Casoni
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Andrea Messina
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Sophie Croizier
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Samuel Malone
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Gaetan Ternier
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Naresh Kumar Hanchate
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - S Rasika
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Sebastien G Bouret
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Philippe Ciofi
- Inserm U1215Neurocentre MagendieBordeauxFrance
- Université de BordeauxBordeauxFrance
| | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| | - Vincent Prevot
- Laboratory of Development and Plasticity of the Neuroendocrine BrainUniv. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR‐S 1172LilleFrance
- FHU, 1000 Days for HealthLilleFrance
| |
Collapse
|
43
|
Rozenkrantz L, Weissgross R, Weiss T, Ravreby I, Frumin I, Shushan S, Gorodisky L, Reshef N, Holzman Y, Pinchover L, Endevelt-Shapira Y, Mishor E, Soroka T, Finkel M, Tagania L, Ravia A, Perl O, Furman-Haran E, Carp H, Sobel N. Unexplained repeated pregnancy loss is associated with altered perceptual and brain responses to men's body-odor. eLife 2020; 9:e55305. [PMID: 32988456 PMCID: PMC7524551 DOI: 10.7554/elife.55305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 08/18/2020] [Indexed: 01/24/2023] Open
Abstract
Mammalian olfaction and reproduction are tightly linked, a link less explored in humans. Here, we asked whether human unexplained repeated pregnancy loss (uRPL) is associated with altered olfaction, and particularly altered olfactory responses to body-odor. We found that whereas most women with uRPL could identify the body-odor of their spouse, most control women could not. Moreover, women with uRPL rated the perceptual attributes of men's body-odor differently from controls. These pronounced differences were accompanied by an only modest albeit significant advantage in ordinary, non-body-odor-related olfaction in uRPL. Next, using structural and functional brain imaging, we found that in comparison to controls, most women with uRPL had smaller olfactory bulbs, yet increased hypothalamic response in association with men's body-odor. These findings combine to suggest altered olfactory perceptual and brain responses in women experiencing uRPL, particularly in relation to men's body-odor. Whether this link has any causal aspects to it remains to be explored.
Collapse
Affiliation(s)
- Liron Rozenkrantz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- The Azrieli National Institute for Human Brain Imaging and Research, Rehovot, Israel
| | - Reut Weissgross
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- The Azrieli National Institute for Human Brain Imaging and Research, Rehovot, Israel
| | - Tali Weiss
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- The Azrieli National Institute for Human Brain Imaging and Research, Rehovot, Israel
| | - Inbal Ravreby
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- The Azrieli National Institute for Human Brain Imaging and Research, Rehovot, Israel
| | - Idan Frumin
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- The Azrieli National Institute for Human Brain Imaging and Research, Rehovot, Israel
| | - Sagit Shushan
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- The Azrieli National Institute for Human Brain Imaging and Research, Rehovot, Israel
- Department of Otolaryngology & Head and Neck Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Lior Gorodisky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- The Azrieli National Institute for Human Brain Imaging and Research, Rehovot, Israel
| | - Netta Reshef
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- The Azrieli National Institute for Human Brain Imaging and Research, Rehovot, Israel
| | - Yael Holzman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- The Azrieli National Institute for Human Brain Imaging and Research, Rehovot, Israel
| | - Liron Pinchover
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- The Azrieli National Institute for Human Brain Imaging and Research, Rehovot, Israel
| | - Yaara Endevelt-Shapira
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- The Azrieli National Institute for Human Brain Imaging and Research, Rehovot, Israel
| | - Eva Mishor
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- The Azrieli National Institute for Human Brain Imaging and Research, Rehovot, Israel
| | - Timna Soroka
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- The Azrieli National Institute for Human Brain Imaging and Research, Rehovot, Israel
| | - Maya Finkel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- The Azrieli National Institute for Human Brain Imaging and Research, Rehovot, Israel
| | - Liav Tagania
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- The Azrieli National Institute for Human Brain Imaging and Research, Rehovot, Israel
| | - Aharon Ravia
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- The Azrieli National Institute for Human Brain Imaging and Research, Rehovot, Israel
| | - Ofer Perl
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- The Azrieli National Institute for Human Brain Imaging and Research, Rehovot, Israel
| | - Edna Furman-Haran
- The Azrieli National Institute for Human Brain Imaging and Research, Rehovot, Israel
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Howard Carp
- Department of Obstetrics & Gynecology, Sheba Medical Center, Tel Hashomer, Israel
| | - Noam Sobel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- The Azrieli National Institute for Human Brain Imaging and Research, Rehovot, Israel
| |
Collapse
|
44
|
Tarumi W, Shinohara K. Olfactory Exposure to β-Caryophyllene Increases Testosterone Levels in Women's Saliva. Sex Med 2020; 8:525-531. [PMID: 32561330 PMCID: PMC7471126 DOI: 10.1016/j.esxm.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION From previous studies, we hypothesized that olfactory exposure to β-caryophyllene stimulates women's libido. However, Japan's sex culture is so closed that it is difficult to test this possibility without accumulating scientific evidence. Therefore, it is necessary to measure the concentration of sex-related hormones in saliva, an experimental technique that is relatively easy to obtain research permission, and to obtain a scientific basis to convince ethics committee reviewers. AIM The aim of this study is to investigate whether β-caryophyllene increases salivary testosterone concentrations associated with libido and vaginal sensation during intercourse in women. METHODS 19 women in the follicular phase of the menstrual cycle participated in the study. The subjects then sat in front of the odor exposure device we had created. Each subject was exposed to dipropylene glycol for 20 minutes, followed by 3% β-caryophyllene for 20 minutes. Saliva was collected 4 times: before and after control exposure, and before and after β-caryophyllene exposure. MAIN OUTCOME MEASURE Salivary testosterone and estrogen concentrations were measured with a competition ELISA. RESULTS β-caryophyllene significantly increased the salivary concentration of testosterone (control vs β-caryophyllene; 0.97 ± 0.05 vs 1.13 ± 0.03, P = .00, 95% confidence interval of control: 0.84-1.09, 95% confidence interval of β-caryophyllene: 1.04-1.20) but not estrogen (control vs β-caryophyllene; 1.05 ± 0.03 vs 1.07 ± 0.04, P = .69, 95% confidence interval of control: 0.96-1.12, 95% confidence interval of β-caryophyllene: 0.98-1.15). STRENGTHS & LIMITATIONS The personal preferences of the subjects and the order of exposure may have affected the results. CONCLUSION β-caryophyllene may be a remedy with fewer side effects for women with decreased libido. We believe that β-caryophyllene may be a remedy for women with decreased libido. However, this hypothesis must be tested by further clinical studies. Wataru Tarumi, Kazuyuki Shinohara. Olfactory Exposure to β-Caryophyllene Increases Testosterone Levels in Women's Saliva. J Sex Med 2020;8:525-531.
Collapse
Affiliation(s)
- Wataru Tarumi
- Division of Neurobiology and Behavior Department of Translational Medical Sciences Course of Medical and Dental Sciences Nagasaki University, Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuyuki Shinohara
- Division of Neurobiology and Behavior Department of Translational Medical Sciences Course of Medical and Dental Sciences Nagasaki University, Graduate School of Biomedical Sciences, Nagasaki, Japan.
| |
Collapse
|
45
|
Wisman A, Shrira I. Sexual Chemosignals: Evidence that Men Process Olfactory Signals of Women's Sexual Arousal. ARCHIVES OF SEXUAL BEHAVIOR 2020; 49:1505-1516. [PMID: 32026223 PMCID: PMC7299914 DOI: 10.1007/s10508-019-01588-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 05/27/2023]
Abstract
Research suggests that humans can communicate emotional states (e.g., fear, sadness) via chemosignals. However, thus far little is known about whether sexual arousal can also be conveyed through chemosignals and how these signals might influence the receiver. In three experiments, and a subsequent mini meta-analysis, support was found for the hypothesis that men can process the scent of sexually aroused women and that exposure to these sexual chemosignals affect the subsequent perceptions and sexual motivation of men. Specifically, Experiment 1 revealed that men evaluate the axillary sweat of sexually aroused women as more attractive, compared to the scent of the same women when not sexually aroused. In addition, Experiment 2 showed that exposure to sexual chemosignals increased the men's sexual arousal. Experiment 3 found support for the thesis that exposure to sexual chemosignals would increase sexual motivation. As predicted, men devoted greater attention to and showed greater interest in mating with women who displayed sexual cues (e.g., scantily dressed, in seductive poses). By contrast, exposure to the sexual chemosignals did not alter males' attention and mating interest toward women who displayed no sexual cues. It is discussed how sexual chemosignals may function as an additional channel in the communication of sexual interest and how contextual factors can influence the dynamics of human sexual communication.
Collapse
Affiliation(s)
- Arnaud Wisman
- School of Psychology, Keynes College, University of Kent, Canterbury, Kent, CT2 7NP, UK.
| | - Ilan Shrira
- Department of Psychology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
46
|
Wyatt TD. Reproducible research into human chemical communication by cues and pheromones: learning from psychology's renaissance. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190262. [PMID: 32306877 PMCID: PMC7209928 DOI: 10.1098/rstb.2019.0262] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 12/27/2022] Open
Abstract
Despite the lack of evidence that the 'putative human pheromones' androstadienone and estratetraenol ever were pheromones, almost 60 studies have claimed 'significant' results. These are quite possibly false positives and can be best seen as potential examples of the 'reproducibility crisis', sadly common in the rest of the life and biomedical sciences, which has many instances of whole fields based on false positives. Experiments on the effects of olfactory cues on human behaviour are also at risk of false positives because they look for subtle effects but use small sample sizes. Research on human chemical communication, much of it falling within psychology, would benefit from vigorously adopting the proposals made by psychologists to enable better, more reliable science, with an emphasis on enhancing reproducibility. A key change is the adoption of study pre-registration and/or Registered Reports which will also reduce publication bias. As we are mammals, and chemical communication is important to other mammals, it is likely that chemical cues are important in our behaviour and that humans may have pheromones, but new approaches will be needed to reliably demonstrate them. This article is part of the Theo Murphy meeting issue 'Olfactory communication in humans'.
Collapse
Affiliation(s)
- Tristram D Wyatt
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
- Centre for Biodiversity and Environment Research, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
47
|
Huron D, Vuoskoski JK. On the Enjoyment of Sad Music: Pleasurable Compassion Theory and the Role of Trait Empathy. Front Psychol 2020; 11:1060. [PMID: 32547455 PMCID: PMC7270397 DOI: 10.3389/fpsyg.2020.01060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 04/27/2020] [Indexed: 12/27/2022] Open
Abstract
Drawing on recent empirical studies on the enjoyment of nominally sad music, a general theory of the pleasure of tragic or sad portrayals is presented. Not all listeners enjoy sad music. Multiple studies indicate that those individuals who enjoy sad music exhibit a particular pattern of empathic traits. These individuals score high on empathic concern (compassion) and high on imaginative absorption (fantasy), with only nominal personal distress (commiseration). Empirical studies are reviewed implicating compassion as a positively valenced affect. Accordingly, individuals who most enjoy sad musical portrayals experience a pleasurable prosocial affect (compassion), amplified by empathetic engagement (fantasy), while experiencing only nominal levels of unpleasant emotional contagion (commiseration). It is suggested that this pattern of trait empathy may apply more broadly, accounting for many other situations where spectators experience pleasure when exposed to tragic representations or portrayals.
Collapse
Affiliation(s)
- David Huron
- Center for Cognitive and Brain Sciences & School of Music, The Ohio State University, Columbus, OH, United States
| | - Jonna K. Vuoskoski
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Department of Musicology, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
48
|
I'll cry instead: Mu suppression responses to tearful facial expressions. Neuropsychologia 2020; 143:107490. [PMID: 32387069 DOI: 10.1016/j.neuropsychologia.2020.107490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/27/2020] [Accepted: 05/04/2020] [Indexed: 01/18/2023]
Abstract
Tears are a facial expression of emotion that readily elicit empathic responses from observers. It is currently unknown whether these empathic responses to tears are influenced by specific neural substrates. The EEG mu rhythm is one method of investigating the human mirror neuron system, purported to underlie the sharing of affective states and a facilitator of social cognition. The purpose of this research was to explore the mu response to tearful expressions of emotion. Sixty-eight participants viewed happy and sad faces, both with and without tears, in addition to a neutral control condition. Participants first completed an emotion discrimination task, and then an imitation condition where they were required to mimic the displayed expression. Mu enhancement was found in response to the discrimination task, whilst suppression was demonstrated in response to the imitation condition. Examination of the suppression scores revealed that greater suppression was observed in response to happy-tear and sad tear-free expressions. Planned contrasts exploring suppression to neutral faces revealed no significant differences between emotional and neutral conditions. The mu response to neutral expressions resembled that of the happy-tear and the sad tear-free conditions, lending support to the idea that ambiguous emotional expressions require greater sensorimotor engagement. This study provides preliminary evidence for the role of the mirror neuron system in discerning tearful expressions of emotion in the absence of context.
Collapse
|
49
|
Répression des pleurs comme traumatismes relationnels précoces. EUROPEAN JOURNAL OF TRAUMA & DISSOCIATION 2020. [DOI: 10.1016/j.ejtd.2020.100139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Calvi E, Quassolo U, Massaia M, Scandurra A, D'Aniello B, D'Amelio P. The scent of emotions: A systematic review of human intra- and interspecific chemical communication of emotions. Brain Behav 2020; 10:e01585. [PMID: 32212329 PMCID: PMC7218249 DOI: 10.1002/brb3.1585] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/05/2020] [Accepted: 02/09/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE The sense of olfaction has been considered of minor importance in human communication. In recent years, evidence has emerged that humans might be influenced by unconscious messages sent through chemosignals in body odors. Data concerning the ability of humans to recognize fear, maybe related to the evolutionary role of these emotions in the fight-or-flight reactions, are well known. METHODS To further understand the role of emotional chemosignals in mediating communication in humans and its influence on animal behaviors, we conducted a systematic literature review. RESULTS Chemosignals derived from axillary odors collected under a variety of emotional stimuli and sad tears in humans affect receivers' social interactions, danger detection and risk-taking behavior, social aspects of eating, and performance under stressing conditions. In addition, beyond the fight-or-flight response, even the body odors of happiness can be perceived by others. Furthermore, human chemosignals can influence behaviors and stressful responses in animals, particularly dogs and horses, which may partially explain their special relationship with humans. CONCLUSION Our review highlights the importance of chemosignaling in human intra- and interspecific interactions and suggests the need for further investigations, both in physiological conditions and in patients with psychiatric or neurodegenerative disorders.
Collapse
Affiliation(s)
- Elisa Calvi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Umberto Quassolo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Anna Scandurra
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Biagio D'Aniello
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Patrizia D'Amelio
- Department of Medical Sciences, University of Turin, Turin, Italy.,Department of Medicine, Geriatric Medicine and Geriatric Rehabilitation, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|