1
|
Du M, Zeng F, Wang Y, Li Y, Chen G, Jiang J, Wang Q. Assembly and Functionality of 2D Protein Arrays. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416485. [PMID: 40089855 PMCID: PMC12005781 DOI: 10.1002/advs.202416485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/16/2025] [Indexed: 03/17/2025]
Abstract
Among the unique classes of 2D nanomaterials, 2D protein arrays garner increasing attention due to their remarkable structural stability, exceptional physiochemical properties, and tunable electronic and mechanical attributes. The interest in mimicking and surpassing the precise architecture and advanced functionality of natural protein systems drives the field of 2D protein assembly toward the development of sophisticated functional materials. Recent advancements deepen the understanding of the fundamental principles governing 2D protein self-assembly, accelerating the creation of novel functional biomaterials. These developments encompass biological, chemical, and templated strategies, facilitating the self-organization of proteins into highly ordered and intricate 2D patterns. Consequently, these 2D protein arrays create new opportunities for integrating diverse components, from small molecules to nanoparticles, thereby enhancing the performance and versatility of materials in various applications. This review comprehensively assesses the current state of 2D protein nanotechnology, highlighting the latest methodologies for directing protein assembly into precise 2D architectures. The transformative potential of 2D protein assemblies in designing next-generation biomaterials, particularly in areas such as biomedicine, catalysis, photosystems, and membrane filtration is also emphasized.
Collapse
Affiliation(s)
- Mingming Du
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Fanmeng Zeng
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - YueFei Wang
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Ying Li
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Guangcun Chen
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Jiang Jiang
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
- College of Materials Sciences and Opto‐Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
2
|
Sun L, Li P, Chen C. Molecular recognition characteristics of co-assembled peptides on atomically flat graphite surfaces. J Colloid Interface Sci 2025; 679:435-445. [PMID: 39490262 DOI: 10.1016/j.jcis.2024.10.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/02/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Molecular recognition, involving the binding of two or more molecules, is widely found in multiple disciplines. It plays a crucial role in driving specific molecular functionalization or biological activities such as antigen-antibody interactions. Recently, the molecular recognition of single peptides self-assembly at interfaces has been widely investigated since their broad applications in biosensors and bioelectronics. However, the recognition characteristics of peptide-peptide co-assembly on solids have not been investigated yet, which provides a basis for potential multi-probes biosensing or structure-intermingled functionalized bioelectronic applications. Here, we explored the molecular recognition characteristics of co-assembled peptides on two-dimensional (2D) layered nanomaterials, specifically graphite. Our findings showed distinct surface characteristics of peptide co-assembly in comparison to the independent peptide self-assembly. Peptide co-assembly exhibited the nucleation and growth heterogeneities with reduced nucleation and growth rates, dominated by a diffusion-limited step as confirmed via carrying out the sequential assembly experiments. Moreover, molecular dynamics simulation reveals a slowdown binding process of co-assembled peptides to graphite. Furthermore, the misattachment of one peptide to arrays of another type of peptide with distinct structural ordering orientations severely postponed peptide elongation. Therefore, our work provides valuable insight into the fundamental surface characteristics of two co-assembled peptides as they specifically recognize graphite surface via undergoing continuous surface behaviors from binding to diffusion until final ordering process. The formation of co-assembled peptide patterns on 2D layered nanomaterials incorporates multiple functions, enabling to provide potential applications in intermingled peptide-based biosensing or bioelectronic nanodevices.
Collapse
Affiliation(s)
- Linhao Sun
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Peiying Li
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
3
|
Kim DE, Watson JL, Juergens D, Majumder S, Sonigra R, Gerben SR, Kang A, Bera AK, Li X, Baker D. Parametrically guided design of beta barrels and transmembrane nanopores using deep learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.22.604663. [PMID: 39091726 PMCID: PMC11291061 DOI: 10.1101/2024.07.22.604663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Francis Crick's global parameterization of coiled coil geometry has been widely useful for guiding design of new protein structures and functions. However, design guided by similar global parameterization of beta barrel structures has been less successful, likely due to the deviations from ideal barrel geometry required to maintain inter-strand hydrogen bonding without introducing backbone strain. Instead, beta barrels have been designed using 2D structural blueprints; while this approach has successfully generated new fluorescent proteins, transmembrane nanopores, and other structures, it requires expert knowledge and provides only indirect control over the global shape. Here we show that the simplicity and control over shape and structure provided by parametric representations can be generalized beyond coiled coils by taking advantage of the rich sequence-structure relationships implicit in RoseTTAFold based design methods. Starting from parametrically generated barrel backbones, both RFjoint inpainting and RFdiffusion readily incorporate backbone irregularities necessary for proper folding with minimal deviation from the idealized barrel geometries. We show that for beta barrels across a broad range of beta sheet parameterizations, these methods achieve high in silico and experimental success rates, with atomic accuracy confirmed by an X-ray crystal structure of a novel barrel topology, and de novo designed 12, 14, and 16 stranded transmembrane nanopores with conductances ranging from 200 to 500 pS. By combining the simplicity and control of parametric generation with the high success rates of deep learning based protein design methods, our approach makes the design of proteins where global shape confers function, such as beta barrel nanopores, more precisely specifiable and accessible.
Collapse
Affiliation(s)
- David E. Kim
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
- HHMI, University of Washington, Seattle, WA 98195
| | - Joseph L. Watson
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
- HHMI, University of Washington, Seattle, WA 98195
| | - David Juergens
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
- HHMI, University of Washington, Seattle, WA 98195
| | - Sagardip Majumder
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
- HHMI, University of Washington, Seattle, WA 98195
| | - Ria Sonigra
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Stacey R. Gerben
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Asim K. Bera
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Xinting Li
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
- HHMI, University of Washington, Seattle, WA 98195
| |
Collapse
|
4
|
Min J, Rong X, Zhang J, Su R, Wang Y, Qi W. Computational Design of Peptide Assemblies. J Chem Theory Comput 2024; 20:532-550. [PMID: 38206800 DOI: 10.1021/acs.jctc.3c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
With the ongoing development of peptide self-assembling materials, there is growing interest in exploring novel functional peptide sequences. From short peptides to long polypeptides, as the functionality increases, the sequence space is also expanding exponentially. Consequently, attempting to explore all functional sequences comprehensively through experience and experiments alone has become impractical. By utilizing computational methods, especially artificial intelligence enhanced molecular dynamics (MD) simulation and de novo peptide design, there has been a significant expansion in the exploration of sequence space. Through these methods, a variety of supramolecular functional materials, including fibers, two-dimensional arrays, nanocages, etc., have been designed by meticulously controlling the inter- and intramolecular interactions. In this review, we first provide a brief overview of the current main computational methods and then focus on the computational design methods for various self-assembled peptide materials. Additionally, we introduce some representative protein self-assemblies to offer guidance for the design of self-assembling peptides.
Collapse
Affiliation(s)
- Jiwei Min
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xi Rong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| |
Collapse
|
5
|
Duan Y, Che S. Chiral Mesostructured Inorganic Materials with Optical Chiral Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205088. [PMID: 36245314 DOI: 10.1002/adma.202205088] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Fabricating chiral inorganic materials and revealing their unique quantum confinement-determined optical chiral responses are crucial tasks in the multidisciplinary fields of chemistry, physics, and biology. The field of chiral mesostructured inorganic materials started from the synthesis of individual nanocrystals and evolved to include their assembly from metals, semiconductors, ceramics, and inorganic salts endowed with various chiral structures ranging from atomic to micron scales. This tutorial review highlights the recent research on chiral mesostructured inorganic materials, especially the novel expression of mesostructured chirality and endowed optical chiral response, and it may inspire us with new strategies for the design of chiral inorganic materials and new opportunities beyond the traditional applications of chirality. Fabrication methods for chiral mesostructured inorganic materials are classified according to chirality type, scale, and symmetry-breaking mechanism. Special attention is given to highlight systems with original discoveries, exceptional phenomena, or unique mechanisms of optical chiral response for left- and right-handedness.
Collapse
Affiliation(s)
- Yingying Duan
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Shunai Che
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Matrix Composite, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
6
|
Safi A, Smagghe W, Gonçalves A, Wang Q, Xu K, Fernandez AI, Cappe B, Riquet FB, Mylle E, Eeckhout D, De Winne N, Van De Slijke E, Persyn F, Persiau G, Van Damme D, Geelen D, De Jaeger G, Beeckman T, Van Leene J, Vanneste S. Phase separation-based visualization of protein-protein interactions and kinase activities in plants. THE PLANT CELL 2023; 35:3280-3302. [PMID: 37378595 PMCID: PMC10473206 DOI: 10.1093/plcell/koad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/23/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
Protein activities depend heavily on protein complex formation and dynamic posttranslational modifications, such as phosphorylation. The dynamic nature of protein complex formation and posttranslational modifications is notoriously difficult to monitor in planta at cellular resolution, often requiring extensive optimization. Here, we generated and exploited the SYnthetic Multivalency in PLants (SYMPL)-vector set to assay protein-protein interactions (PPIs) (separation of phases-based protein interaction reporter) and kinase activities (separation of phases-based activity reporter of kinase) in planta, based on phase separation. This technology enabled easy detection of inducible, binary and ternary PPIs among cytoplasmic and nuclear proteins in plant cells via a robust image-based readout. Moreover, we applied the SYMPL toolbox to develop an in vivo reporter for SNF1-related kinase 1 activity, allowing us to visualize tissue-specific, dynamic SnRK1 activity in stable transgenic Arabidopsis (Arabidopsis thaliana) plants. The SYMPL cloning toolbox provides a means to explore PPIs, phosphorylation, and other posttranslational modifications with unprecedented ease and sensitivity.
Collapse
Affiliation(s)
- Alaeddine Safi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Wouter Smagghe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Amanda Gonçalves
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- VIB, Bioimaging Core, B-9052 Ghent, Belgium
| | - Qing Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ke Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ana Ibis Fernandez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Benjamin Cappe
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
| | - Franck B Riquet
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, 59000 Lille, France
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Freya Persyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Danny Geelen
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Kim NH, Chae S, Yi SA, Sa DH, Oh S, Kang ES, Kim S, Choi KH, Lee J, Choi JY, Kim YH. Peptide-Assembled Single-Chain Atomic Crystal Enhances Pluripotent Stem Cell Differentiation to Neurons. NANO LETTERS 2023; 23:6859-6867. [PMID: 37470721 DOI: 10.1021/acs.nanolett.3c00966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Nanomaterials hybridized with biological components have widespread applications. among many candidates, peptides are attractive in that their peptide sequences can self-assemble with the surface of target materials with high specificity without perturbing the intrinsic properties of nanomaterials. Here, a 1D hybrid nanomaterial was developed through self-assembly of a designed peptide. A hexagonal coiled-coil motif geometrically matched to the diameter of the inorganic nanomaterial was fabricated, whose hydrophobic surface was wrapped along the axis of the hydrophobic core of the coiled coil. Our morphological and spectroscopic analyses revealed rod-shaped, homogeneous peptide-inorganic nanomaterial complexes. Culturing embryonic stem cells on surfaces coated with this peptide-assembled single-chain atomic crystal increased the growth and adhesion of the embryonic stem cells. The hybridized nanomaterial also served as an ECM for brain organoids, accelerating the maturation of neurons. New methods to fabricate hybrid materials through peptide assembly can be applied.
Collapse
Affiliation(s)
- Nam Hyeong Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sudong Chae
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Ah Yi
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Deok Hyang Sa
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seungbae Oh
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eun Sung Kang
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Suhyeon Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyung Hwan Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaecheol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Imnewrun Inc., Suwon 16419, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae-Young Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Imnewrun Inc., Suwon 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Chung CI, Yang J, Shu X. Chemogenetic Minitool for Dissecting the Roles of Protein Phase Separation. ACS CENTRAL SCIENCE 2023; 9:1466-1479. [PMID: 37521779 PMCID: PMC10375881 DOI: 10.1021/acscentsci.3c00251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 08/01/2023]
Abstract
Biomolecular condensate is an emerging structural entity that regulates various cellular processes. Recent studies have discovered the phase-separation (PS) capability of several transcription factors (TFs) including YAP/TAZ upon biological stimuli, which provide new mechanisms of gene regulation. However, it remains mostly unanswered as to whether PS from a diffuse state to a phase-separated state promotes gene transcription. To address this question, we have designed a chemogenetic tool, dubbed SPARK-ON, which manipulates the PS of YAP and TAZ without a biological stimulus, forming condensates that are transcriptionally active, containing the DNA-binding partner TEAD, genomic DNA, transcriptional machinery, and nascent RNA. Most importantly, PS of TAZ increases the transcription of its target genes. Therefore, our data indicate that PS promotes gene transcription of TAZ. SPARK-ON is advantageous to current mutagenesis-based approaches that are often problematic when mutagenesis affects the transcriptional activity of a TF. Furthermore, protein abundance levels also affect gene transcription, but PS depends on protein abundance because PS occurs only when the protein level is above a saturation concentration. SPARK-ON decouples PS from protein abundance levels without introducing mutations and thus will find important applications in understanding the biological roles of PS for many TFs and other biomolecular condensates.
Collapse
Affiliation(s)
- Chan-I Chung
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California 94158, United States
- Cardiovascular
Research Institute, University of California—San
Francisco, San Francisco, California 94158, United States
| | - Junjiao Yang
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California 94158, United States
- Cardiovascular
Research Institute, University of California—San
Francisco, San Francisco, California 94158, United States
| | - Xiaokun Shu
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California 94158, United States
- Cardiovascular
Research Institute, University of California—San
Francisco, San Francisco, California 94158, United States
- Helen Diller
Family Comprehensive Cancer Center, University
of California—San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
9
|
Chen J, Fan A, Li S, Xiao Y, Fu Y, Chen JS, Zi D, Zeng LH, Tan J. APP mediates tau uptake and its overexpression leads to the exacerbated tau pathology. Cell Mol Life Sci 2023; 80:123. [PMID: 37071198 PMCID: PMC11071805 DOI: 10.1007/s00018-023-04774-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 04/19/2023]
Abstract
Alzheimer's disease (AD), as the most common type of dementia, has two pathological hallmarks, extracellular senile plaques composed of β-amyloid peptides and intracellular neurofibrillary tangles containing phosphorylated-tau protein. Amyloid precursor protein (APP) and tau each play central roles in AD, although how APP and tau interact and synergize in the disease process is largely unknown. Here, we showed that soluble tau interacts with the N-terminal of APP in vitro in cell-free and cell culture systems, which can be further confirmed in vivo in the brain of 3XTg-AD mouse. In addition, APP is involved in the cellular uptake of tau through endocytosis. APP knockdown or N-terminal APP-specific antagonist 6KApoEp can prevent tau uptake in vitro, resulting in an extracellular tau accumulation in cultured neuronal cells. Interestingly, in APP/PS1 transgenic mouse brain, the overexpression of APP exacerbated tau propagation. Moreover, in the human tau transgenic mouse brain, overexpression of APP promotes tau phosphorylation, which is significantly remediated by 6KapoEp. All these results demonstrate the important role of APP in the tauopathy of AD. Targeting the pathological interaction of N-terminal APP with tau may provide an important therapeutic strategy for AD.
Collapse
Affiliation(s)
- Jiang Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Anran Fan
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Song Li
- First Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning, China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Yanlin Fu
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Jun-Sheng Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Dan Zi
- Department of Gynecology, Guizhou Provincial People's Hospital, Guiyang, 550025, Guizhou, China
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
10
|
Li Q, Wang Y, Zhang G, Su R, Qi W. Biomimetic mineralization based on self-assembling peptides. Chem Soc Rev 2023; 52:1549-1590. [PMID: 36602188 DOI: 10.1039/d2cs00725h] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biomimetic science has attracted great interest in the fields of chemistry, biology, materials science, and energy. Biomimetic mineralization is the process of synthesizing inorganic minerals under the control of organic molecules or biomolecules under mild conditions. Peptides are the motifs that constitute proteins, and can self-assemble into various hierarchical structures and show a high affinity for inorganic substances. Therefore, peptides can be used as building blocks for the synthesis of functional biomimetic materials. With the participation of peptides, the morphology, size, and composition of mineralized materials can be controlled precisely. Peptides not only provide well-defined templates for the nucleation and growth of inorganic nanomaterials but also have the potential to confer inorganic nanomaterials with high catalytic efficiency, selectivity, and biotherapeutic functions. In this review, we systematically summarize research progress in the formation mechanism, nanostructural manipulation, and applications of peptide-templated mineralized materials. These can further inspire researchers to design structurally complex and functionalized biomimetic materials with great promising applications.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Gong Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
11
|
Lee K, Willi JA, Cho N, Kim I, Jewett MC, Lee J. Cell-free Biosynthesis of Peptidomimetics. BIOTECHNOL BIOPROC E 2023; 28:1-17. [PMID: 36778039 PMCID: PMC9896473 DOI: 10.1007/s12257-022-0268-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/16/2022] [Accepted: 11/13/2022] [Indexed: 02/05/2023]
Abstract
A wide variety of peptidomimetics (peptide analogs) possessing innovative biological functions have been brought forth as therapeutic candidates through cell-free protein synthesis (CFPS) systems. A key feature of these peptidomimetic drugs is the use of non-canonical amino acid building blocks with diverse biochemical properties that expand functional diversity. Here, we summarize recent technologies leveraging CFPS platforms to expand the reach of peptidomimetics drugs. We also offer perspectives on engineering the translational machinery that may open new opportunities for expanding genetically encoded chemistry to transform drug discovery practice beyond traditional boundaries.
Collapse
Affiliation(s)
- Kanghun Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| | - Jessica A. Willi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
| | - Namjin Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| | - Inseon Kim
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208 USA
| | - Joongoo Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| |
Collapse
|
12
|
Zhou C, Lu P. De novo
design of membrane transport proteins. Proteins 2022; 90:1800-1806. [DOI: 10.1002/prot.26336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Chen Zhou
- Westlake Laboratory of Life Sciences and Biomedicine Hangzhou Zhejiang China
- Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences, Westlake University Hangzhou Zhejiang China
- Institute of Biology Westlake Institute for Advanced Study Hangzhou Zhejiang China
| | - Peilong Lu
- Westlake Laboratory of Life Sciences and Biomedicine Hangzhou Zhejiang China
- Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences, Westlake University Hangzhou Zhejiang China
- Institute of Biology Westlake Institute for Advanced Study Hangzhou Zhejiang China
| |
Collapse
|
13
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Maity B, Taher M, Mazumdar S, Ueno T. Artificial metalloenzymes based on protein assembly. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Li Z, Li Y, Lin X, Cui Y, Wang T, Dong J, Lu Y. Supramolecular protein assembly in cell-free protein synthesis system. BIORESOUR BIOPROCESS 2022; 9:28. [PMID: 38647573 PMCID: PMC10991650 DOI: 10.1186/s40643-022-00520-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Protein-based biomaterials have the characteristics of stability and biocompatibility. Based on these advantages, various bionic materials have been manufactured and used in different fields. However, current protein-based biomaterials generally need to form monomers in cells and be purified before being assembled in vitro. The preparation process takes a long time, and the complex cellular environment is challenging to be optimized for producing the target protein product. Here this study proposed technology for in situ synthesis and assembly of the target protein, namely the cell-free protein synthesis (CFPS), which allowed to shorten the synthesis time and increase the flexibility of adding or removing natural or synthetic components. In this study, successful expression and self-assembly of the dihedral symmetric proteins proved the applicability of the CFPS system for biomaterials production. Furthermore, the fusion of different functional proteins to these six scaffold proteins could form active polymers in the CFPS system. Given the flexibility, CFPS is expected to become a powerful tool as the prototyping and manufacturing technology for protein-based biomaterials in the future.
Collapse
Affiliation(s)
- Zhixia Li
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuting Li
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaomei Lin
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuntao Cui
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ting Wang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jian Dong
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
16
|
Gong X, Shuai L, Beingessner RL, Yamazaki T, Shen J, Kuehne M, Jones K, Fenniri H, Strano MS. Size Selective Corona Interactions from Self-Assembled Rosette and Single-Walled Carbon Nanotubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104951. [PMID: 35060337 DOI: 10.1002/smll.202104951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Nanoparticle corona phases, especially those surrounding anisotropic particles, are central to determining their catalytic, molecular recognition, and interfacial properties. It remains a longstanding challenge to chemically synthesize and control such phases at the nanoparticle surface. In this work, the supramolecular chemistry of rosette nanotubes (RNTs), well-defined hierarchically self-assembled nanostructures formed from heteroaromatic bicyclic bases, is used to create molecularly precise and continuous corona phases on single-walled carbon nanotubes (SWCNTs). These RNT-SWCNT (RS) complexes exhibit the lowest solvent-exposed surface area (147.8 ± 60 m-1 ) measured to date due to its regular structure. Through Raman spectroscopy, molecular-scale control of the free volume is also observed between the two annular structures and the effects of confined water. SWCNT photoluminescence (PL) within the RNT is also modulated considerably as a function of their diameter and chirality, especially for the (11, 1) species, where a PL increase compared to other species can be attributed to their chiral angle and the RNT's inward facing electron densities. In summary, RNT chemistry is extended to the problem of chemically defining both the exterior and interior corona interfaces of an encapsulated particle, thereby opening the door to precision control of core-shell nanoparticle interfaces.
Collapse
Affiliation(s)
- Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 66, Cambridge, MA, 02139, USA
| | - Liang Shuai
- National Institute for Nanotechnology and Department of Chemistry, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G2M9, Canada
| | - Rachel L Beingessner
- National Institute for Nanotechnology and Department of Chemistry, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G2M9, Canada
| | - Takeshi Yamazaki
- National Institute for Nanotechnology and Department of Chemistry, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G2M9, Canada
| | - Jianliang Shen
- Wenzhou Institute, University of Chinese Academy of Sciences, No.16 Xinsan Road, Hi-tech Industry Park, Wenzhou, Zhejiang, 325000, China
| | - Matthias Kuehne
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 66, Cambridge, MA, 02139, USA
| | - Kelvin Jones
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 66, Cambridge, MA, 02139, USA
| | - Hicham Fenniri
- Department of Chemical Engineering, Department of Bioengineering, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115-5000, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 66, Cambridge, MA, 02139, USA
| |
Collapse
|
17
|
Anand N, Eguchi R, Mathews II, Perez CP, Derry A, Altman RB, Huang PS. Protein sequence design with a learned potential. Nat Commun 2022; 13:746. [PMID: 35136054 PMCID: PMC8826426 DOI: 10.1038/s41467-022-28313-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/08/2022] [Indexed: 11/08/2022] Open
Abstract
The task of protein sequence design is central to nearly all rational protein engineering problems, and enormous effort has gone into the development of energy functions to guide design. Here, we investigate the capability of a deep neural network model to automate design of sequences onto protein backbones, having learned directly from crystal structure data and without any human-specified priors. The model generalizes to native topologies not seen during training, producing experimentally stable designs. We evaluate the generalizability of our method to a de novo TIM-barrel scaffold. The model produces novel sequences, and high-resolution crystal structures of two designs show excellent agreement with in silico models. Our findings demonstrate the tractability of an entirely learned method for protein sequence design.
Collapse
Affiliation(s)
- Namrata Anand
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Raphael Eguchi
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, Menlo Park, CA, 94025, USA
| | - Carla P Perez
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Alexander Derry
- Biomedical Informatics Training Program, Stanford University, Stanford, CA, USA
| | - Russ B Altman
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Departments of Genetics and Medicine, Stanford University, Stanford, CA, USA
| | - Po-Ssu Huang
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
18
|
Zhu A, Yang X, Zhang L, Wang K, Liu T, Zhao X, Zhang L, Wang L, Yang F. Selective separation of single-walled carbon nanotubes in aqueous solution by assembling redox nanoclusters. NANOSCALE 2022; 14:953-961. [PMID: 34989359 DOI: 10.1039/d1nr04019g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The selective separation of soluble and individual single-walled carbon nanotubes (SWCNTs) in aqueous solution is a key step for harnessing the extraordinary properties of these materials. Manipulating the strong van der Waals intertube interactions between the SWCNT bundles is very important in selective separation, which is a long-standing challenge. Here we reported the ability of redox polyoxometalate clusters to modulate the intertube π-π stacking interaction through electron transfer and achieved the diameter-selective separation of SWCNTs in a surfactant aqueous solution. The large-diameter SWCNTs concentrated at ∼1.3-1.4 nm were selectively separated when ∼1 nm clusters encapsulated within the tube cavity, and the dispersion of subnanometer ∼0.7-0.9 nm SWCNTs was boosted when clusters were adsorbed on the outer surface of small-diameter nanotubes. The mechanism of diameter-selective separation of SWCNTs associated with the size-dependent interaction between cluster-tubes and the steric hindrance effect of clusters was revealed by optical absorption and Raman spectroscopy. This simple method thus enables the selective separation of individual high-quality SWCNTs in aqueous solutions without harsh sonication with the potential for other separation applications.
Collapse
Affiliation(s)
- Anquan Zhu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xusheng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Lei Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Kun Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Tianhui Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xin Zhao
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Luyao Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Lei Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
19
|
Kim NH, Choi H, Shahzad ZM, Ki H, Lee J, Chae H, Kim YH. Supramolecular assembly of protein building blocks: from folding to function. NANO CONVERGENCE 2022; 9:4. [PMID: 35024976 PMCID: PMC8755899 DOI: 10.1186/s40580-021-00294-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Several phenomena occurring throughout the life of living things start and end with proteins. Various proteins form one complex structure to control detailed reactions. In contrast, one protein forms various structures and implements other biological phenomena depending on the situation. The basic principle that forms these hierarchical structures is protein self-assembly. A single building block is sufficient to create homogeneous structures with complex shapes, such as rings, filaments, or containers. These assemblies are widely used in biology as they enable multivalent binding, ultra-sensitive regulation, and compartmentalization. Moreover, with advances in the computational design of protein folding and protein-protein interfaces, considerable progress has recently been made in the de novo design of protein assemblies. Our review presents a description of the components of supramolecular protein assembly and their application in understanding biological phenomena to therapeutics.
Collapse
Affiliation(s)
- Nam Hyeong Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hojae Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Zafar Muhammad Shahzad
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Heesoo Ki
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaekyoung Lee
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Heeyeop Chae
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.
| |
Collapse
|
20
|
Zhu J, Avakyan N, Kakkis AA, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Protein Assembly by Design. Chem Rev 2021; 121:13701-13796. [PMID: 34405992 PMCID: PMC9148388 DOI: 10.1021/acs.chemrev.1c00308] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Collapse
Affiliation(s)
| | | | - Albert A. Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chung-Jui Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
21
|
Sun L, Li P, Seki T, Tsuchiya S, Yatsu K, Narimatsu T, Sarikaya M, Hayamizu Y. Chiral Recognition of Self-Assembled Peptides on MoS 2 via Lattice Matching. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8696-8704. [PMID: 34278791 DOI: 10.1021/acs.langmuir.1c00792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chiral recognition of peptides on solid surfaces has been studied for a better understanding of their assembly mechanism toward its applications in stereochemistry and enantioselective catalysis. However, moving from small peptides such as dipeptides, understanding the chiral recognition of larger biomolecules such as oligopeptides or peptides with a larger sequence is challenging. Furthermore, their intrinsic mechanism for chiral recognition in liquid conditions was poorly investigated experimentally. Here, we used in/ex situ atomic force microscopy (AFM) to investigate the chiral recognition of self-assembled structures of l/d-type peptides on molybdenum disulfide (MoS2). We chose single-layer MoS2 with a triangular shape as a substrate for the self-assembly of peptides. The facet edges of MoS2 were utilized as a landmark to identify the crystallographic orientation of their ordered structures. We found both peptide enantiomers formed nanowires on MoS2 with a mirror symmetry according to the facet edges of MoS2. From in situ AFM measurements, we found a dimension of a unit cell in the self-assembled structure and proposed a model of lattice matching between peptides and MoS2 lattice. The lattice matching for chiral recognition was further investigated by changing peptide sequences and surface lattice from MoS2 to graphite. This work further deepened the understanding of biomolecular chiral recognition and will lead us to rationally design specific morphologies and conformations of chiral self-assembled structures of peptides with expected functions in the future.
Collapse
Affiliation(s)
- Linhao Sun
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Peiying Li
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Takakazu Seki
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Shohei Tsuchiya
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Kazuki Yatsu
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Takuma Narimatsu
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Mehmet Sarikaya
- GEMSEC, Genetically Engineered Materials Science and Engineering Center, Materials Science and Engineering, University of Washington, Seattle WA98195, United States
| | - Yuhei Hayamizu
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
22
|
Jiang X, Ho DBT, Mahe K, Mia J, Sepulveda G, Antkowiak M, Jiang L, Yamada S, Jao LE. Condensation of pericentrin proteins in human cells illuminates phase separation in centrosome assembly. J Cell Sci 2021; 134:jcs258897. [PMID: 34308971 PMCID: PMC8349556 DOI: 10.1242/jcs.258897] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022] Open
Abstract
At the onset of mitosis, centrosomes expand the pericentriolar material (PCM) to maximize their microtubule-organizing activity. This step, termed centrosome maturation, ensures proper spindle organization and faithful chromosome segregation. However, as the centrosome expands, how PCM proteins are recruited and held together without membrane enclosure remains elusive. We found that endogenously expressed pericentrin (PCNT), a conserved PCM scaffold protein, condenses into dynamic granules during late G2/early mitosis before incorporating into mitotic centrosomes. Furthermore, the N-terminal portion of PCNT, enriched with conserved coiled-coils (CCs) and low-complexity regions (LCRs), phase separates into dynamic condensates that selectively recruit PCM proteins and nucleate microtubules in cells. We propose that CCs and LCRs, two prevalent sequence features in the centrosomal proteome, are preserved under evolutionary pressure in part to mediate liquid-liquid phase separation, a process that bestows upon the centrosome distinct properties critical for its assembly and functions.
Collapse
Affiliation(s)
- Xueer Jiang
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Dac Bang Tam Ho
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Karan Mahe
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Jennielee Mia
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Guadalupe Sepulveda
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Mark Antkowiak
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Linhao Jiang
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Soichiro Yamada
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Li-En Jao
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| |
Collapse
|
23
|
Zhang S, Chen J, Liu J, Pyles H, Baker D, Chen CL, De Yoreo JJ. Engineering Biomolecular Self-Assembly at Solid-Liquid Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e1905784. [PMID: 32627885 DOI: 10.1002/adma.201905784] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/02/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Biomolecular self-assembly is a key process used by life to build functional materials from the "bottom up." In the last few decades, bioengineering and bionanotechnology have borrowed this strategy to design and synthesize numerous biomolecular and hybrid materials with diverse architectures and properties. However, engineering biomolecular self-assembly at solid-liquid interfaces into predesigned architectures lags the progress made in bulk solution both in practice and theory. Here, recent achievements in programming self-assembly of peptides, proteins, and peptoids at solid-liquid interfaces are summarized and corresponding applications are described. Recent advances in the physical understandings of self-assembly pathways obtained using in situ atomic force microscopy are also discussed. These advances will lead to novel strategies for designing biomaterials organized at and interfaced with inorganic surfaces.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98105, USA
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jiajun Chen
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98105, USA
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jianli Liu
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523830, China
| | - Harley Pyles
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Chun-Long Chen
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - James J De Yoreo
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98105, USA
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|
24
|
Makhlynets OV, Caputo GA. Characteristics and therapeutic applications of antimicrobial peptides. BIOPHYSICS REVIEWS 2021; 2:011301. [PMID: 38505398 PMCID: PMC10903410 DOI: 10.1063/5.0035731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
The demand for novel antimicrobial compounds is rapidly growing due to the phenomenon of antibiotic resistance in bacteria. In response, numerous alternative approaches are being taken including use of polymers, metals, combinatorial approaches, and antimicrobial peptides (AMPs). AMPs are a naturally occurring part of the immune system of all higher organisms and display remarkable broad-spectrum activity and high selectivity for bacterial cells over host cells. However, despite good activity and safety profiles, AMPs have struggled to find success in the clinic. In this review, we outline the fundamental properties of AMPs that make them effective antimicrobials and extend this into three main approaches being used to help AMPs become viable clinical options. These three approaches are the incorporation of non-natural amino acids into the AMP sequence to impart better pharmacological properties, the incorporation of AMPs in hydrogels, and the chemical modification of surfaces with AMPs for device applications. These approaches are being developed to enhance the biocompatibility, stability, and/or bioavailability of AMPs as clinical options.
Collapse
Affiliation(s)
- Olga V. Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, USA
| | | |
Collapse
|
25
|
Prediction of Protein-Protein Binding Interactions in Dimeric Coiled Coils by Information Contained in Folding Energy Landscapes. Int J Mol Sci 2021; 22:ijms22031368. [PMID: 33573048 PMCID: PMC7866404 DOI: 10.3390/ijms22031368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 11/16/2022] Open
Abstract
Coiled coils represent the simplest form of a complex formed between two interacting protein partners. Their extensive study has led to the development of various methods aimed towards the investigation and design of complex forming interactions. Despite the progress that has been made to predict the binding affinities for protein complexes, and specifically those tailored towards coiled coils, many challenges still remain. In this work, we explore whether the information contained in dimeric coiled coil folding energy landscapes can be used to predict binding interactions. Using the published SYNZIP dataset, we start from the amino acid sequence, to simultaneously fold and dock approximately 1000 coiled coil dimers. Assessment of the folding energy landscapes showed that a model based on the calculated number of clusters for the lowest energy structures displayed a signal that correlates with the experimentally determined protein interactions. Although the revealed correlation is weak, we show that such correlation exists; however, more work remains to establish whether further improvements can be made to the presented model.
Collapse
|
26
|
Anaya‐Plaza E, Shaukat A, Lehtonen I, Kostiainen MA. Biomolecule-Directed Carbon Nanotube Self-Assembly. Adv Healthc Mater 2021; 10:e2001162. [PMID: 33124183 DOI: 10.1002/adhm.202001162] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/12/2020] [Indexed: 12/26/2022]
Abstract
The strategy of combining biomolecules and synthetic components to develop biohybrids is becoming increasingly popular for preparing highly customized and biocompatible functional materials. Carbon nanotubes (CNTs) benefit from bioconjugation, allowing their excellent properties to be applied to biomedical applications. This study reviews the state-of-the-art research in biomolecule-CNT conjugates and discusses strategies for their self-assembly into hierarchical structures. The review focuses on various highly ordered structures and the interesting properties resulting from the structural order. Hence, CNTs conjugated with the most relevant biomolecules, such as nucleic acids, peptides, proteins, saccharides, and lipids are discussed. The resulting well-defined composites allow the nanoscale properties of the CNTs to be exploited at the micro- and macroscale, with potential applications in tissue engineering, sensors, and wearable electronics. This review presents the underlying chemistry behind the CNT-based biohybrid materials and discusses the future directions of the field.
Collapse
Affiliation(s)
- Eduardo Anaya‐Plaza
- Department of Bioproducts and Biosystems Aalto University Kemistintie 1 Espoo 02150 Finland
| | - Ahmed Shaukat
- Department of Bioproducts and Biosystems Aalto University Kemistintie 1 Espoo 02150 Finland
| | - Inka Lehtonen
- Department of Bioproducts and Biosystems Aalto University Kemistintie 1 Espoo 02150 Finland
| | - Mauri A. Kostiainen
- Department of Bioproducts and Biosystems Aalto University Kemistintie 1 Espoo 02150 Finland
| |
Collapse
|
27
|
A complete rule set for designing symmetry combination materials from protein molecules. Proc Natl Acad Sci U S A 2020; 117:31817-31823. [PMID: 33239442 DOI: 10.1073/pnas.2015183117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Diverse efforts in protein engineering are beginning to produce novel kinds of symmetric self-assembling architectures, from protein cages to extended two-dimensional (2D) and three-dimensional (3D) crystalline arrays. Partial theoretical frameworks for creating symmetric protein materials have been introduced, but no complete system has been articulated. Only a minute fraction of the possible design space has been explored experimentally, in part because that space has not yet been described in theory. Here, in the form of a multiplication table, we lay out a complete rule set for materials that can be created by combining two chiral oligomeric components (e.g., proteins) in precise configurations. A unified system is described for parameterizing and searching the construction space for all such symmetry-combination materials (SCMs). In total, 124 distinct types of SCMs are identified, and then proven by computational construction. Mathematical properties, such as minimal ring or circuit size, are established for each case, enabling strategic predictions about potentially favorable design targets. The study lays out the theoretical landscape and detailed computational prescriptions for a rapidly growing area of protein-based nanotechnology, with numerous underlying connections to mathematical networks and chemical materials such as metal organic frameworks.
Collapse
|
28
|
Linghu C, Johnson SL, Valdes PA, Shemesh OA, Park WM, Park D, Piatkevich KD, Wassie AT, Liu Y, An B, Barnes SA, Celiker OT, Yao CC, Yu CCJ, Wang R, Adamala KP, Bear MF, Keating AE, Boyden ES. Spatial Multiplexing of Fluorescent Reporters for Imaging Signaling Network Dynamics. Cell 2020; 183:1682-1698.e24. [PMID: 33232692 DOI: 10.1016/j.cell.2020.10.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022]
Abstract
In order to analyze how a signal transduction network converts cellular inputs into cellular outputs, ideally one would measure the dynamics of many signals within the network simultaneously. We found that, by fusing a fluorescent reporter to a pair of self-assembling peptides, it could be stably clustered within cells at random points, distant enough to be resolved by a microscope but close enough to spatially sample the relevant biology. Because such clusters, which we call signaling reporter islands (SiRIs), can be modularly designed, they permit a set of fluorescent reporters to be efficiently adapted for simultaneous measurement of multiple nodes of a signal transduction network within single cells. We created SiRIs for indicators of second messengers and kinases and used them, in hippocampal neurons in culture and intact brain slices, to discover relationships between the speed of calcium signaling, and the amplitude of PKA signaling, upon receiving a cAMP-driving stimulus.
Collapse
Affiliation(s)
- Changyang Linghu
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA
| | - Shannon L Johnson
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA
| | - Pablo A Valdes
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Department of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Or A Shemesh
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Won Min Park
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Demian Park
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA
| | - Kiryl D Piatkevich
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Asmamaw T Wassie
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Yixi Liu
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA; Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA
| | - Bobae An
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Stephanie A Barnes
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
| | - Orhan T Celiker
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA
| | - Chun-Chen Yao
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Chih-Chieh Jay Yu
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Ru Wang
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark F Bear
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
| | - Amy E Keating
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Edward S Boyden
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA.
| |
Collapse
|
29
|
Shumeiko V, Paltiel Y, Bisker G, Hayouka Z, Shoseyov O. A nanoscale paper-based near-infrared optical nose (NIRON). Biosens Bioelectron 2020; 172:112763. [PMID: 33166802 DOI: 10.1016/j.bios.2020.112763] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
Electronic noses (e-nose) and optical noses (o-nose) are two emerging approaches for the development of artificial olfactory systems for flavor and smell evaluation. The current work leverages the unique optical properties of semiconducting single-wall carbon nanotubes (SWCNTs) to develop a prototype of a novel paper-based near-infrared optical nose (NIRON). We have drop-dried an array of SWCNTs encapsulated with a wide variety of peptides on a paper substrate and continuously imaged the emitted SWCNTs fluorescence using a CMOS camera. Odors and different volatile molecules were passed above the array in a flow chamber, resulting in unique modulation patterns of the SWCNT photoluminescence (PL). Quartz crystal microbalance (QCM) measurements performed in parallel confirmed the direct binding between the vapor molecules and the peptide-SWCNTs. PL levels measured before and during exposure demonstrate distinct responses to the four tested alcoholic vapors (ethanol, methanol, propanol, and isopropanol). In addition, machine learning tools directly applied to the fluorescence images allow us to distinguish between the aromas of red wine, beer, and vodka. Further, we show that the developed sensor can detect limonene, undecanal, and geraniol vapors, and differentiate between their smells utilizing the PL response pattern. This novel paper-based optical biosensor provides data in real-time, and is recoverable and suitable for working at room temperature and in a wide range of humidity levels. This platform opens new avenues for real-time sensing of volatile chemical compounds, odors, and flavors.
Collapse
Affiliation(s)
- Vlad Shumeiko
- Department of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yossi Paltiel
- Center for Nanoscience and Nanotechnology, Applied Physics Department, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Oded Shoseyov
- Department of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
30
|
Im SW, Ahn HY, Kim RM, Cho NH, Kim H, Lim YC, Lee HE, Nam KT. Chiral Surface and Geometry of Metal Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905758. [PMID: 31834668 DOI: 10.1039/d0ma00125b] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/11/2019] [Indexed: 05/24/2023]
Abstract
Chirality is a basic property of nature and has great importance in photonics, biochemistry, medicine, and catalysis. This importance has led to the emergence of the chiral inorganic nanostructure field in the last two decades, providing opportunities to control the chirality of light and biochemical reactions. While the facile production of 3D nanostructures has remained a major challenge, recent advances in nanocrystal synthesis have provided a new pathway for efficient control of chirality at the nanoscale by transferring molecular chirality to the geometry of nanocrystals. Interestingly, this discovery stems from a purely crystallographic outcome: chirality can be generated on high-Miller-index surfaces, even for highly symmetric metal crystals. This is the starting point herein, with an overview of the scientific history and a summary of the crystallographic definition. With the advance of nanomaterial synthesis technology, high-Miller-index planes can be selectively exposed on metallic nanoparticles. The enantioselective interaction of chiral molecules and high-Miller-index facets can break the mirror symmetry of the metal nanocrystals. Herein, the fundamental principle of chirality evolution is emphasized and it is shown how chiral surfaces can be directly correlated with chiral morphologies, thus serving as a guide for researchers in chiral catalysts, chiral plasmonics, chiral metamaterials, and photonic devices.
Collapse
Affiliation(s)
- Sang Won Im
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hyo-Yong Ahn
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Nam Heon Cho
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hyeohn Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Yae-Chan Lim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
31
|
Mann FA, Herrmann N, Opazo F, Kruss S. Quantum Defects as a Toolbox for the Covalent Functionalization of Carbon Nanotubes with Peptides and Proteins. Angew Chem Int Ed Engl 2020; 59:17732-17738. [PMID: 32511874 PMCID: PMC7540668 DOI: 10.1002/anie.202003825] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/24/2020] [Indexed: 12/16/2022]
Abstract
Single-walled carbon nanotubes (SWCNTs) are a 1D nanomaterial that shows fluorescence in the near-infrared (NIR, >800 nm). In the past, covalent chemistry was less explored to functionalize SWCNTs as it impairs NIR emission. However, certain sp3 defects (quantum defects) in the carbon lattice have emerged that preserve NIR fluorescence and even introduce a new, red-shifted emission peak. Here, we report on quantum defects, introduced using light-driven diazonium chemistry, that serve as anchor points for peptides and proteins. We show that maleimide anchors allow conjugation of cysteine-containing proteins such as a GFP-binding nanobody. In addition, an Fmoc-protected phenylalanine defect serves as a starting point for conjugation of visible fluorophores to create multicolor SWCNTs and in situ peptide synthesis directly on the nanotube. Therefore, these quantum defects are a versatile platform to tailor both the nanotube's photophysical properties as well as their surface chemistry.
Collapse
Affiliation(s)
- Florian A. Mann
- Institute of Physical ChemistryGeorg-August UniversitätTammannstraße 637077GöttingenGermany
| | - Niklas Herrmann
- Institute of Physical ChemistryGeorg-August UniversitätTammannstraße 637077GöttingenGermany
| | - Felipe Opazo
- Center for Biostructural Imaging of NeurodegenerationVon-Siebold-Straße 3a37075GöttingenGermany
| | - Sebastian Kruss
- Institute of Physical ChemistryGeorg-August UniversitätTammannstraße 637077GöttingenGermany
| |
Collapse
|
32
|
Shumeiko V, Paltiel Y, Bisker G, Hayouka Z, Shoseyov O. A Paper-Based Near-Infrared Optical Biosensor for Quantitative Detection of Protease Activity Using Peptide-Encapsulated SWCNTs. SENSORS 2020; 20:s20185247. [PMID: 32937986 PMCID: PMC7570893 DOI: 10.3390/s20185247] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
Abstract
A protease is an enzyme that catalyzes proteolysis of proteins into smaller polypeptides or single amino acids. As crucial elements in many biological processes, proteases have been shown to be informative biomarkers for several pathological conditions in humans, animals, and plants. Therefore, fast, reliable, and cost-effective protease biosensors suitable for point-of-care (POC) sensing may aid in diagnostics, treatment, and drug discovery for various diseases. This work presents an affordable and simple paper-based dipstick biosensor that utilizes peptide-encapsulated single-wall carbon nanotubes (SWCNTs) for protease detection. Upon enzymatic digestion of the peptide, a significant drop in the photoluminescence (PL) of the SWCNTs was detected. As the emitted PL is in the near-infrared region, the developed biosensor has a good signal to noise ratio in biological fluids. One of the diseases associated with abnormal protease activity is pancreatitis. In acute pancreatitis, trypsin concentration could reach up to 84 µg/mL in the urine. For proof of concept, we demonstrate the feasibility of the proposed biosensor for the detection of the abnormal levels of trypsin activity in urine samples.
Collapse
Affiliation(s)
- Vlad Shumeiko
- Department of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel;
| | - Yossi Paltiel
- Center for Nanoscience and Nanotechnology, Applied Physics Department, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel;
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
- Correspondence: (Z.H.); (O.S.)
| | - Oded Shoseyov
- Department of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel;
- Correspondence: (Z.H.); (O.S.)
| |
Collapse
|
33
|
Engelberg Y, Landau M. The Human LL-37(17-29) antimicrobial peptide reveals a functional supramolecular structure. Nat Commun 2020; 11:3894. [PMID: 32753597 PMCID: PMC7403366 DOI: 10.1038/s41467-020-17736-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/10/2020] [Indexed: 11/09/2022] Open
Abstract
Here, we demonstrate the self-assembly of the antimicrobial human LL-37 active core (residues 17–29) into a protein fibril of densely packed helices. The surface of the fibril encompasses alternating hydrophobic and positively charged zigzagged belts, which likely underlie interactions with and subsequent disruption of negatively charged lipid bilayers, such as bacterial membranes. LL-3717–29 correspondingly forms wide, ribbon-like, thermostable fibrils in solution, which co-localize with bacterial cells. Structure-guided mutagenesis analyses supports the role of self-assembly in antibacterial activity. LL-3717–29 resembles, in sequence and in the ability to form amphipathic helical fibrils, the bacterial cytotoxic PSMα3 peptide that assembles into cross-α amyloid fibrils. This argues helical, self-assembling, basic building blocks across kingdoms of life and points to potential structural mimicry mechanisms. The findings expose a protein fibril which performs a biological activity, and offer a scaffold for functional and durable biomaterials for a wide range of medical and technological applications. The human antibacterial and immunomodulatory peptide LL-37 is a hCAP-18 protein cleavage product that self-assembles. Here, the authors present the human and gorilla LL-37 (17–29) crystal structures, revealing a self-assembly of amphipathic helices into a densely packed and elongated hexameric structure with a central pore and mutagenesis experiments support the role of self-assembly for antibacterial activity.
Collapse
Affiliation(s)
- Yizhaq Engelberg
- Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel. .,Centre for Structural Systems Biology (CSSB), and European Molecular Biology Laboratory (EMBL), 22607, Hamburg, Germany.
| |
Collapse
|
34
|
Di Costanzo L, Geremia S. Atomic Details of Carbon-Based Nanomolecules Interacting with Proteins. Molecules 2020; 25:E3555. [PMID: 32759758 PMCID: PMC7435792 DOI: 10.3390/molecules25153555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022] Open
Abstract
Since the discovery of fullerene, carbon-based nanomolecules sparked a wealth of research across biological, medical and material sciences. Understanding the interactions of these materials with biological samples at the atomic level is crucial for improving the applications of nanomolecules and address safety aspects concerning their use in medicine. Protein crystallography provides the interface view between proteins and carbon-based nanomolecules. We review forefront structural studies of nanomolecules interacting with proteins and the mechanism underlying these interactions. We provide a systematic analysis of approaches used to select proteins interacting with carbon-based nanomolecules explored from the worldwide Protein Data Bank (wwPDB) and scientific literature. The analysis of van der Waals interactions from available data provides important aspects of interactions between proteins and nanomolecules with implications on functional consequences. Carbon-based nanomolecules modulate protein surface electrostatic and, by forming ordered clusters, could modify protein quaternary structures. Lessons learned from structural studies are exemplary and will guide new projects for bioimaging tools, tuning of intrinsically disordered proteins, and design assembly of precise hybrid materials.
Collapse
Affiliation(s)
- Luigi Di Costanzo
- Department of Agricultural Sciences, University of Naples Federico II, 100, 80055 Portici, Italy
| | - Silvano Geremia
- Centre of Excellence in Biocrystallography, Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
35
|
Mann FA, Herrmann N, Opazo F, Kruss S. Quantendefekte als Werkzeugkasten für die kovalente Funktionalisierung von Kohlenstoffnanoröhren mit Peptiden und Proteinen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Florian A. Mann
- Institut für Physikalische Chemie Georg-August Universität Tammannstraße 6 37077 Göttingen Deutschland
| | - Niklas Herrmann
- Institut für Physikalische Chemie Georg-August Universität Tammannstraße 6 37077 Göttingen Deutschland
| | - Felipe Opazo
- Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straße 3a 37075 Göttingen Deutschland
| | - Sebastian Kruss
- Institut für Physikalische Chemie Georg-August Universität Tammannstraße 6 37077 Göttingen Deutschland
| |
Collapse
|
36
|
Chen H, Yang G, Zhang E, Du Q, Liu R, Wu L, Feng Y, Chen G. Hierarchical self-assembly of native protein and its dynamic regulation directed by inducing ligand with oligosaccharide. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Pochkaeva EI, Podolsky NE, Zakusilo DN, Petrov AV, Charykov NA, Vlasov TD, Penkova AV, Vasina LV, Murin IV, Sharoyko VV, Semenov KN. Fullerene derivatives with amino acids, peptides and proteins: From synthesis to biomedical application. PROG SOLID STATE CH 2020. [DOI: 10.1016/j.progsolidstchem.2019.100255] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Sereda YV, Ortoleva PJ. Temporally Coarse-Grained All-Atom Molecular Dynamics Achieved via Stochastic Padé Approximants. J Phys Chem B 2020; 124:1392-1410. [PMID: 31958947 DOI: 10.1021/acs.jpcb.9b10735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Padé approximant scheme for realizing the discrete-time evolution of the state of a many-atom system is introduced. This temporal coarse-graining scheme accounts for the underlying Newtonian physics and avoids the need for construction of spatially coarse-grained variables. Newtonian physics is incorporated through short molecular dynamics simulations at the beginning of each of the large coarse-grained timesteps. The balance between stochastic and coherent dynamics expressed by many-atom systems is captured via incorporation of the Ito formula into a Padé approximant for the time dependence of individual atom positions over large timesteps. Since the time for a many-atom system to express a characteristic ensemble of atomic velocity fluctuations is typically short relative to the characteristic time of large-scale atomic displacements, a computationally efficient and accurate temporal coarse-graining of the atom-resolved Newtonian dynamics is formulated, denoted all-atom Padé-Ito molecular dynamics (APIMD). Evolution of the system over a time step much longer than that required for standard molecular dynamics (MD) is achieved via incorporation of information from the short MD simulations into a Padé approximant extrapolation in time. The extrapolated atomic configuration is subjected to energy minimization and, when needed, thermal equilibration so as to avoid occasional unphysical close encounters deriving from the Padé approximant extrapolation and to represent configurations appropriate for the temperature of interest. APIMD is implemented and tested via comparison with traditional MD simulations of five phenomena: (1) pertussis toxin subunit deformation, (2) structural transition in a T = 1 capsid-like structure of HPV16 L1 protein, (3) coalescence of argon nanodroplets, and structural transitions in dialanine in (4) vacuum, and (5) water. Accuracy of APIMD is demonstrated using semimicroscopic descriptors (rmsd, radius of gyration, residue-residue contact maps, and densities) and the free energy. Significant computational acceleration relative to traditional molecular dynamics is illustrated.
Collapse
Affiliation(s)
- Yuriy V Sereda
- Department of Chemistry Indiana University Bloomington , Indiana 47405 , United States
| | - Peter J Ortoleva
- Department of Chemistry Indiana University Bloomington , Indiana 47405 , United States
| |
Collapse
|
39
|
Abstract
Proteins are molecular machines whose function depends on their ability to achieve complex folds with precisely defined structural and dynamic properties. The rational design of proteins from first-principles, or de novo, was once considered to be impossible, but today proteins with a variety of folds and functions have been realized. We review the evolution of the field from its earliest days, placing particular emphasis on how this endeavor has illuminated our understanding of the principles underlying the folding and function of natural proteins, and is informing the design of macromolecules with unprecedented structures and properties. An initial set of milestones in de novo protein design focused on the construction of sequences that folded in water and membranes to adopt folded conformations. The first proteins were designed from first-principles using very simple physical models. As computers became more powerful, the use of the rotamer approximation allowed one to discover amino acid sequences that stabilize the desired fold. As the crystallographic database of protein structures expanded in subsequent years, it became possible to construct proteins by assembling short backbone fragments that frequently recur in Nature. The second set of milestones in de novo design involves the discovery of complex functions. Proteins have been designed to bind a variety of metals, porphyrins, and other cofactors. The design of proteins that catalyze hydrolysis and oxygen-dependent reactions has progressed significantly. However, de novo design of catalysts for energetically demanding reactions, or even proteins that bind with high affinity and specificity to highly functionalized complex polar molecules remains an importnant challenge that is now being achieved. Finally, the protein design contributed significantly to our understanding of membrane protein folding and transport of ions across membranes. The area of membrane protein design, or more generally of biomimetic polymers that function in mixed or non-aqueous environments, is now becoming increasingly possible.
Collapse
|
40
|
Yang F, Wang M, Zhang D, Yang J, Zheng M, Li Y. Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization. Chem Rev 2020; 120:2693-2758. [PMID: 32039585 DOI: 10.1021/acs.chemrev.9b00835] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have been attracting tremendous attention owing to their structure (chirality) dependent outstanding properties, which endow them with great potential in a wide range of applications. The preparation of chirality-pure SWCNTs is not only a great scientific challenge but also a crucial requirement for many high-end applications. As such, research activities in this area over the last two decades have been very extensive. In this review, we summarize recent achievements and accumulated knowledge thus far and discuss future developments and remaining challenges from three aspects: controlled growth, postsynthesis sorting, and characterization techniques. In the growth part, we focus on the mechanism of chirality-controlled growth and catalyst design. In the sorting part, we organize and analyze existing literature based on sorting targets rather than methods. Since chirality assignment and quantification is essential in the study of selective preparation, we also include in the last part a comprehensive description and discussion of characterization techniques for SWCNTs. It is our view that even though progress made in this area is impressive, more efforts are still needed to develop both methodologies for preparing ultrapure (e.g., >99.99%) SWCNTs in large quantity and nondestructive fast characterization techniques with high spatial resolution for various nanotube samples.
Collapse
Affiliation(s)
- Feng Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Daqi Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Juan Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
41
|
Thomas SK, Jamieson WD, Gwyther REA, Bowen BJ, Beachey A, Worthy HL, Macdonald JE, Elliott M, Castell OK, Jones DD. Site-Specific Protein Photochemical Covalent Attachment to Carbon Nanotube Side Walls and Its Electronic Impact on Single Molecule Function. Bioconjug Chem 2020; 31:584-594. [PMID: 31743647 DOI: 10.1021/acs.bioconjchem.9b00719] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functional integration of proteins with carbon-based nanomaterials such as nanotubes holds great promise in emerging electronic and optoelectronic applications. Control over protein attachment poses a major challenge for consistent and useful device fabrication, especially when utilizing single/few molecule properties. Here, we exploit genetically encoded phenyl azide photochemistry to define the direct covalent attachment of four different proteins, including the fluorescent protein GFP and a β-lactamase binding protein (BBP), to carbon nanotube side walls. AFM showed that on attachment BBP could still recognize and bind additional protein components. Single molecule fluorescence revealed that on attachment to SWCNTs function was retained and there was feedback to GFP in terms of fluorescence intensity and improved resistance to photobleaching; GFP is fluorescent for much longer on attachment. The site of attachment proved important in terms of electronic impact on GFP function, with the attachment site furthest from the chromophore having the larger effect on fluorescence. Our approach provides a versatile and general method for generating intimate protein-CNT hybrid bioconjugates. It can be potentially applied to any protein of choice; the attachment position and thus interface characteristics with the CNT can easily be changed by simply placing the phenyl azide chemistry at different residues by gene mutagenesis. Thus, our approach will allow consistent construction and modulate functional coupling through changing the protein attachment position.
Collapse
Affiliation(s)
- Suzanne K Thomas
- School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, United Kingdom
| | - W David Jamieson
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, United Kingdom
| | - Rebecca E A Gwyther
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom
| | - Benjamin J Bowen
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom
| | - Adam Beachey
- School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, United Kingdom
| | - Harley L Worthy
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom
| | - J Emyr Macdonald
- School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, United Kingdom
| | - Martin Elliott
- School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, United Kingdom
| | - Oliver K Castell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, United Kingdom
| | - D Dafydd Jones
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom
| |
Collapse
|
42
|
|
43
|
Pyles H, Zhang S, De Yoreo JJ, Baker D. Controlling protein assembly on inorganic crystals through designed protein interfaces. Nature 2019; 571:251-256. [PMID: 31292559 PMCID: PMC6948101 DOI: 10.1038/s41586-019-1361-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/10/2019] [Indexed: 11/09/2022]
Abstract
The ability of proteins and other macromolecules to interact with inorganic surfaces is critical to biological function. The proteins involved in these interactions are highly charged and often rich in carboxylic acid side chains1-5, but the structures of most protein-inorganic interfaces are unknown. We explored the possibility of systematically designing structured protein-mineral interfaces guided by the example of ice-binding proteins, which present arrays of threonine residues matched to the ice lattice that order clathrate waters into an ice-like structure6. We designed proteins displaying arrays of up to 54 carboxylate residues geometrically matched to the K+ sublattice on muscovite mica (001). At low [K+] individual molecules bind independently to mica in the designed orientations, while at high [K+], the designs form 2D liquid-crystal phases, which accentuate the inherent structural bias in the muscovite lattice to produce protein arrays ordered over tens of millimeters. Incorporation of designed protein-protein interactions preserving the match between the proteins and the K+ lattice led to extended self-assembled structures on mica: designed end-to-end interactions produced micron long single protein-diameter wires, and a designed trimeric interface yielded extensive honeycomb arrays. The nearest neighbor distances in these hexagonal arrays could be set digitally between 7.5 and 15.9 nm with 2.1 nm selectivity by changing the number of repeat units in the monomer. These results demonstrate that protein-inorganic lattice interactions can be systematically programmed and set the stage for designing protein-inorganic hybrid materials.
Collapse
Affiliation(s)
- Harley Pyles
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Shuai Zhang
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.,Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - James J De Yoreo
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA. .,Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA.
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA. .,Institute for Protein Design, University of Washington, Seattle, WA, USA. .,Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
44
|
Rhys GG, Wood CW, Beesley JL, Zaccai NR, Burton AJ, Brady RL, Thomson AR, Woolfson DN. Navigating the Structural Landscape of De Novo α-Helical Bundles. J Am Chem Soc 2019; 141:8787-8797. [PMID: 31066556 DOI: 10.1021/jacs.8b13354] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The association of amphipathic α helices in water leads to α-helical-bundle protein structures. However, the driving force for this-the hydrophobic effect-is not specific and does not define the number or the orientation of helices in the associated state. Rather, this is achieved through deeper sequence-to-structure relationships, which are increasingly being discerned. For example, for one structurally extreme but nevertheless ubiquitous class of bundle-the α-helical coiled coils-relationships have been established that discriminate between all-parallel dimers, trimers, and tetramers. Association states above this are known, as are antiparallel and mixed arrangements of the helices. However, these alternative states are less well understood. Here, we describe a synthetic-peptide system that switches between parallel hexamers and various up-down-up-down tetramers in response to single-amino-acid changes and solution conditions. The main accessible states of each peptide variant are characterized fully in solution and, in most cases, to high resolution with X-ray crystal structures. Analysis and inspection of these structures helps rationalize the different states formed. This navigation of the structural landscape of α-helical coiled coils above the dimers and trimers that dominate in nature has allowed us to design rationally a well-defined and hyperstable antiparallel coiled-coil tetramer (apCC-Tet). This robust de novo protein provides another scaffold for further structural and functional designs in protein engineering and synthetic biology.
Collapse
Affiliation(s)
- Guto G Rhys
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
| | - Christopher W Wood
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
| | - Joseph L Beesley
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
| | - Nathan R Zaccai
- School of Biochemistry , University of Bristol , Medical Sciences Building, University Walk , Bristol BS8 1TD , United Kingdom
| | - Antony J Burton
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
- Frick Chemistry Laboratory , Princeton University , Princeton , New Jersey 08544 , United States
| | - R Leo Brady
- School of Biochemistry , University of Bristol , Medical Sciences Building, University Walk , Bristol BS8 1TD , United Kingdom
| | - Andrew R Thomson
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
- School of Chemistry , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| | - Derek N Woolfson
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
- School of Biochemistry , University of Bristol , Medical Sciences Building, University Walk , Bristol BS8 1TD , United Kingdom
- BrisSynBio , University of Bristol , Life Sciences Building, Tyndall Avenue , Bristol BS8 1TQ , United Kingdom
| |
Collapse
|
45
|
Beesley JL, Woolfson DN. The de novo design of α-helical peptides for supramolecular self-assembly. Curr Opin Biotechnol 2019; 58:175-182. [PMID: 31039508 DOI: 10.1016/j.copbio.2019.03.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022]
Abstract
One approach to designing de novo proteinaceous assemblies and materials is to develop simple, standardised building blocks and then to combine these symmetrically to construct more-complex higher-order structures. This has been done extensively using β-structured peptides to produce peptide fibres and hydrogels. Here, we focus on building with de novo α-helical peptides. Because of their self-contained, well-defined structures and clear sequence-to-structure relationships, α helices are highly programmable making them robust building blocks for biomolecular construction. The progress made with this approach over the past two decades is astonishing and has led to a variety of de novo assemblies, including discrete nanoscale objects, and fibrous, nanotube, sheet and colloidal materials. This body of work provides an exceptionally strong foundation for advancing the field beyond in vitro design and into in vivo applications including what we call protein design in cells.
Collapse
Affiliation(s)
- Joseph L Beesley
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK; BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
46
|
Abstract
![]()
Ordered
protein assemblies are attracting interest as next-generation
biomaterials with a remarkable range of structural and functional
properties, leading to potential applications in biocatalysis, materials
templating, drug delivery and vaccine development. This Review covers
ordered protein assemblies including protein nanowires/nanofibrils,
nanorings, nanotubes, designed two- and three-dimensional ordered
protein lattices and protein-like cages including polyhedral virus-like
cage structures. The main focus is on designed ordered protein assemblies,
in which the spatial organization of the proteins is controlled by
tailored noncovalent interactions (including metal ion binding interactions,
electrostatic interactions and ligand–receptor interactions
among others) or by careful design of modified (mutant) proteins or de novo constructs. The modification of natural protein
assemblies including bacterial S-layers and cage-like and rod-like
viruses to impart novel function, e.g. enzymatic activity, is also
considered. A diversity of structures have been created using distinct
approaches, and this Review provides a summary of the state-of-the-art
in the development of these systems, which have exceptional potential
as advanced bionanomaterials for a diversity of applications.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry , University of Reading , Whiteknights , Reading RG6 6AD , United Kingdom
| |
Collapse
|
47
|
Computer Simulation of Protein Materials at Multiple Length Scales: From Single Proteins to Protein Assemblies. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42493-018-00009-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
48
|
Chung CI, Zhang Q, Shu X. Dynamic Imaging of Small Molecule Induced Protein-Protein Interactions in Living Cells with a Fluorophore Phase Transition Based Approach. Anal Chem 2018; 90:14287-14293. [PMID: 30431263 PMCID: PMC6298840 DOI: 10.1021/acs.analchem.8b03476] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein-protein interactions (PPIs) mediate signal transduction in cells. Small molecules that regulate PPIs are important tools for biology and biomedicine. Dynamic imaging of small molecule induced PPIs characterizes and verifies these molecules in living cells. It is thus important to develop cellular assays for dynamic visualization of small molecule induced protein-protein association and dissociation in living cells. Here we have applied a fluorophore phase transition based principle and designed a PPI assay named SPPIER (separation of phases-based protein interaction reporter). SPPIER utilizes the green fluorescent protein (GFP) and is thus genetically encoded. Upon small molecule induced PPI, SPPIER rapidly forms highly fluorescent GFP droplets in living cells. SPPIER detects immunomodulatory drug (IMiD) induced PPI between cereblon and the transcription factor Ikaros. It also detects IMiD analogue (e.g., CC-885) induced PPI between cereblon and GSPT1. Furthermore, SPPIER can visualize bifunctional molecules (e.g. PROTAC)-induced PPI between an E3 ubiquitin ligase and a target protein. Lastly, SPPIER can be modified to image small molecule induced protein-protein dissociation, such as nutlin-induced dissociation between HDM2 and p53. The intense brightness and rapid kinetics of SPPIER enable robust and dynamic visualization of PPIs in living cells.
Collapse
Affiliation(s)
- Chan-I Chung
- Department of Pharmaceutical Chemistry, University of California – San Francisco, San Francisco, California, USA
- Cardiovascular Research Institute, University of California – San Francisco, San Francisco, California, USA
| | - Qiang Zhang
- Department of Pharmaceutical Chemistry, University of California – San Francisco, San Francisco, California, USA
- Cardiovascular Research Institute, University of California – San Francisco, San Francisco, California, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California – San Francisco, San Francisco, California, USA
- Cardiovascular Research Institute, University of California – San Francisco, San Francisco, California, USA
| |
Collapse
|
49
|
Inaba H, Matsuura K. Peptide Nanomaterials Designed from Natural Supramolecular Systems. CHEM REC 2018; 19:843-858. [PMID: 30375148 DOI: 10.1002/tcr.201800149] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/07/2018] [Indexed: 12/22/2022]
Abstract
Natural supramolecular assemblies exhibit unique structural and functional properties that have been optimized over the course of evolution. Inspired by these natural systems, various bio-nanomaterials have been developed using peptides, proteins, and nucleic acids as components. Peptides are attractive building blocks because they enable the important domains of natural protein assemblies to be isolated and optimized while retaining the original structures and functions. Furthermore, the peptide subunits can be conjugated with exogenous molecules such as peptides, proteins, nucleic acids, and metal nanoparticles to generate advanced functions. In this personal account, we summarize recent progress in the construction of peptide-based nanomaterial designed from natural supramolecular systems, including (1) artificial viral capsids, (2) self-assembled nanofibers, and (3) protein-binding motifs. The peptides inspired by nature should provide new design principles for bio-nanomaterials.
Collapse
Affiliation(s)
- Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori, 680-8552, Japan.,Centre for Research on Green Sustainable Chemistry, Tottori University, Koyama-Minami 4-101, Tottori, 680-8552, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori, 680-8552, Japan.,Centre for Research on Green Sustainable Chemistry, Tottori University, Koyama-Minami 4-101, Tottori, 680-8552, Japan
| |
Collapse
|
50
|
Kang ES, Kimu YT, Ko YS, Kim NH, Cho G, Huh YH, Kim JH, Nam J, Thach TT, Youn D, Kim YD, Yun WS, DeGrado WF, Kim SY, Hammond PT, Lee J, Kwon YU, Ha DH, Kim YH. Peptide-Programmable Nanoparticle Superstructures with Tailored Electrocatalytic Activity. ACS NANO 2018; 12:6554-6562. [PMID: 29842775 PMCID: PMC6556112 DOI: 10.1021/acsnano.8b01146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Biomaterials derived via programmable supramolecular protein assembly provide a viable means of constructing precisely defined structures. Here, we present programmed superstructures of AuPt nanoparticles (NPs) on carbon nanotubes (CNTs) that exhibit distinct electrocatalytic activities with respect to the nanoparticle positions via rationally modulated peptide-mediated assembly. De novo designed peptides assemble into six-helix bundles along the CNT axis to form a suprahelical structure. Surface cysteine residues of the peptides create AuPt-specific nucleation site, which allow for precise positioning of NPs onto helical geometries, as confirmed by 3-D reconstruction using electron tomography. The electrocatalytic model system, i.e., AuPt for oxygen reduction, yields electrochemical response signals that reflect the controlled arrangement of NPs in the intended assemblies. Our design approach can be expanded to versatile fields to build sophisticated functional assemblies.
Collapse
Affiliation(s)
- Eun Sung Kang
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yong-Tae Kimu
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Seon Ko
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nam Hyeong Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Geonhee Cho
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yang Hoon Huh
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Ji-Hun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiyoung Nam
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Trung Thanh Thach
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - David Youn
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Young Dok Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wan Soo Yun
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - Sung Yeol Kim
- School of Mechanical Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Paula T. Hammond
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jaeyoung Lee
- School of Environmental Science and Engineering, Ertl Center for Electrochemistry and Catalysis, Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Young-Uk Kwon
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Don-Hyung Ha
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| |
Collapse
|