1
|
Thillaye du Boullay C, Jaber M, Coulont C, de Viguerie L. Rheological and structural characterization of emulsion-based paints. SOFT MATTER 2025; 21:4201-4210. [PMID: 40331310 DOI: 10.1039/d5sm00157a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Paints obtained by dispersing pigments in emulsions of egg yolk and vegetable oil have been used by 20th century artists, likely drawing on techniques dating back to the 15th century. Understanding their flow behavior is key to shedding light on artists' material choices, gestures, and the resulting visual effects. In this study, we investigate two modern recipes that yield either oil-in-water (o/w) or water-in-oil (w/o) emulsions, formulated with egg yolk and linseed oil-raw or cooked with lead oxide following a historical process designed to accelerate drying. Stable, homogeneous paints were successfully prepared by dispersing lead-tin yellow pigment into these emulsions. The volume fraction of the dispersed phase, which includes solid pigment particles and emulsion droplets, emerged as a critical parameter for stable shear flow. Higher volume fractions resulted in increased yield stress, consistency, and viscosity across a wide range of shear rates. Dynamic rheological measurements further revealed the significant influence of the nature of the continuous phase on the viscoelastic properties of the paints. Finally, confocal microscopy on model systems (using glass microspheres as pigment analogs) showed preferential localization of particles within one emulsion phase. These observations offer new insights into how preparation protocols influence the microstructure-and subsequently the working properties-of historical emulsion paints.
Collapse
Affiliation(s)
- Côme Thillaye du Boullay
- Laboratoire d'Archéologie Moléculaire et Structurale (LAMS), UMR 8220, Sorbonne-Université - CNRS, 4 place Jussieu, 75005 Paris, France.
| | - Maguy Jaber
- Laboratoire d'Archéologie Moléculaire et Structurale (LAMS), UMR 8220, Sorbonne-Université - CNRS, 4 place Jussieu, 75005 Paris, France.
| | - Céleste Coulont
- Laboratoire d'Archéologie Moléculaire et Structurale (LAMS), UMR 8220, Sorbonne-Université - CNRS, 4 place Jussieu, 75005 Paris, France.
| | - Laurence de Viguerie
- Laboratoire d'Archéologie Moléculaire et Structurale (LAMS), UMR 8220, Sorbonne-Université - CNRS, 4 place Jussieu, 75005 Paris, France.
| |
Collapse
|
2
|
Gassenmeier S, De Graaf C, Vananroye A, Cardinaels R, Koos E, Gunes DZ. Shaping suspensions: Stabilizing anisotropy in viscoelastic media using oscillations. J Colloid Interface Sci 2025; 696:137832. [PMID: 40398121 DOI: 10.1016/j.jcis.2025.137832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/23/2025]
Abstract
An easy process to generate highly anisotropic structures and properties is desired for many applications, such as the formation of meat analogues, conductive polymer composites or directed assembly of microparticles. However, the required processing parameters for viscoelasticity-induced alignment preclude such implementations, necessitating additional and cumbersome processing steps. Traditionally, string formation of particles in viscoelastic liquids occurs only at either high shear rates or in highly elastic fluids. We demonstrate how oscillatory flows can induce particle alignment at shear rates nearly two orders of magnitude lower than for steady shear, to easily reach long particle strings in comparison to the limitations of steady shear. Furthermore, we establish that alignment in oscillation is cumulative because string breakup is prevented by flow reversal, which explains the potentially unlimited anisotropic assembly, while showing that Weissenberg number-dependent string stability in steady shear leads to non-cumulative alignment. Finally, we show that this mechanism enables the extrusion of aligned structures using superposed oscillatory and steady shear, and demonstrate its broader applicability with non-ideal particles.
Collapse
Affiliation(s)
- Sebastian Gassenmeier
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, Leuven, 3001, Vlaams-Brabant, Belgium
| | - Christophe De Graaf
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, Leuven, 3001, Vlaams-Brabant, Belgium; Dept. of Biochemical and Chemical Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerpen, 2020, Antwerpen, Belgium(1)
| | - Anja Vananroye
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, Leuven, 3001, Vlaams-Brabant, Belgium
| | - Ruth Cardinaels
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, Leuven, 3001, Vlaams-Brabant, Belgium; Department of Mechanical Engineering, TU Eindhoven, Groene Loper 5, Eindhoven, 5600, Noord-Brabant, Netherlands
| | - Erin Koos
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, Leuven, 3001, Vlaams-Brabant, Belgium
| | - Deniz Z Gunes
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, Leuven, 3001, Vlaams-Brabant, Belgium; Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, Leuven, 3001, Vlaams-Brabant, Belgium.
| |
Collapse
|
3
|
Ruiz-Martínez L, Leermakers F, Stoyanov S, van der Gucht J. Tunable Capillary Suspensions from Aqueous Two-Phase Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:11604-11613. [PMID: 40295175 PMCID: PMC12080324 DOI: 10.1021/acs.langmuir.5c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
Adding small amounts of a (partially) immiscible fluid to a suspension can create liquid bridges between particles, leading to interconnected networks known as capillary suspensions. This can be used to structure suspensions and adjust their rheological properties. Typically, these suspensions involve water and oil, where the minority liquid phase wets the particles dispersed in the majority phase. Here, we have demonstrated that oil-free capillary suspensions can also be formed in aqueous two-phase systems (ATPS), where a phase separation occurs between two hydrophilic polymers, dextran and polyethylene glycol (PEG). In this system, silica particles form a self-standing gel when a small amount of the PEG-rich phase is added to the dextran-rich phase. Despite the ultralow interfacial tension in ATPS, a significant increase in storage modulus is achievable. Capillary bridges have been visualized using confocal microscopy. By adjusting the amount of the PEG-rich phase (secondary phase), the network strength and yield stress can be finely tuned, enabling a wide range of rheological responses. Due to the absence of oil and the use of hydrophilic, biocompatible polymers, these capillary suspensions have potential applications in biomedical (where living cells can act as particles), pharmaceutical, and food formulations, as well as in home and personal care products.
Collapse
Affiliation(s)
- Leonardo Ruiz-Martínez
- Physical
Chemistry and Soft Matter, Wageningen University
and Research, Wageningen 6708 WE, The Netherlands
| | - Frans Leermakers
- Physical
Chemistry and Soft Matter, Wageningen University
and Research, Wageningen 6708 WE, The Netherlands
| | - Simeon Stoyanov
- Physical
Chemistry and Soft Matter, Wageningen University
and Research, Wageningen 6708 WE, The Netherlands
- Food,
Chemical, and Biotechnology cluster, Singapore
Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Jasper van der Gucht
- Physical
Chemistry and Soft Matter, Wageningen University
and Research, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
4
|
Yu J, Liu S, Wang P, Li Z, Duan S, Sang M, Wang S, Gong X. Interface Engineering Assisted 3D Printing of Silicone Composites with Synergistically Optimized Impact Resistance and Electromagnetic Interference Shielding Effectiveness. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500323. [PMID: 40255146 DOI: 10.1002/smll.202500323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/26/2025] [Indexed: 04/22/2025]
Abstract
Silicone composites have been universally employed in smart devices, flexible electronics, and mechanical metamaterials. However, it remained challenging to develop 3D printable silicone composites with desirable mechanical and electrical properties. Here, an interface engineering strategy is reported, developing heterointerfacial silver-coated hollow glass microspheres (SHGMs), which are integrated with polydimethylsiloxane (PDMS) for 3D printing of impact-resistant, highly conductive, and mechanically robust SHGMs-PDMS (SHP) composites. SHP simultaneously achieves high compression modulus (12.65 MPa), substantial energy dissipation density (1.58 × 106 N m-2 at 50% strain), excellent conductivity (2.55 × 103 S m-1), and long-period robustness. SHP presents extraordinary impact resistance under dynamic impacts, reaching a considerable energy dissipation of 1.91 kJ m-1 at an incident velocity of 192.3 m s-1. More importantly, SHP with 2 mm in thickness achieves an ultraefficient electromagnetic interference (EMI) effectiveness of 92.5 dB, which is among that of state-of-the-art silicone and its derivatives, and can maintain favorable shielding efficiency (>70 dB) after undergoing mechanical excitations. Moreover, the formability enables it to fabricate delicate structures with a negative Poisson's ratio, ensuring adaptive fit and thus providing complete protection for individuals. This work paves an effective way to rapidly manufacture silicone composites with expected functions for new-generation protective devices.
Collapse
Affiliation(s)
- Jiajun Yu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Shuai Liu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Purun Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Zimu Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Shilong Duan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Min Sang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Sheng Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Xinglong Gong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
5
|
Burger NA, Loppinet B, Clarke A, Petekidis G. How Preparation Protocols Control the Rheology of Organoclay Gels. Ind Eng Chem Res 2025; 64:6980-6991. [PMID: 40191642 PMCID: PMC11970213 DOI: 10.1021/acs.iecr.4c04467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/09/2025]
Abstract
We elucidate the effect of preparation conditions on the rheological properties of organophilic clays consisting of platelet-like primary particles, VG69 (trademark of SLB) dispersed in oil, by varying the homogenization rate, homogenization temperature, and amount of added water. We establish that stable, nonsedimenting gel formation requires homogenization temperatures higher than 45 °C and the addition of a small amount of water during the homogenization stage. Dried organoclay dispersions, on the other hand, do not form stable gels, independent of the homogenization rate and temperature, suggesting the existence of only weak attractions in the absence of water molecules. Water-induced attraction is necessary to form gels, probably through hydrogen bonding between the silanol group of clay particles and water molecules. Moreover, the effect of homogenization temperature is related to the extent of exfoliation during the homogenization stage as confirmed by X-ray scattering. The gel plateau modulus, G p, is found to increase with clay concentration as G P ∼ c clay 3.9, typical of fractal gel networks. More interestingly, a linear increase in the elastic modulus with water concentration is observed over a wide range of water concentrations, while analyzing the effective yield strain deduced from the yield stress and elastic modulus reveals the existence of three regimes. We finally present dynamic state diagrams that clearly indicate the required conditions for the creation of stable gels and demonstrate the importance of controlling the preparation protocols in the formulation of clay dispersions and gels with desirable structural and mechanical properties.
Collapse
Affiliation(s)
- Nikolaos A. Burger
- IESL-FORTH, Vassilika Vouton, Heraklion 70013, Greece
- Department
of Materials Science & Engineering, University of Crete, Heraklion 70013, Greece
| | | | - Andrew Clarke
- SLB
Cambridge Research, High Cross, Madingley Road, Cambridge CB3 0EL, U.K.
| | - George Petekidis
- IESL-FORTH, Vassilika Vouton, Heraklion 70013, Greece
- Department
of Materials Science & Engineering, University of Crete, Heraklion 70013, Greece
| |
Collapse
|
6
|
Liu L, Abbot M, Brockmann P, Roisman IV, Hussong J, Koos E. Dewetting Fingering Instability in Capillary Suspensions: Role of Particles and Liquid Bridges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5399-5409. [PMID: 39980273 PMCID: PMC11887438 DOI: 10.1021/acs.langmuir.4c04939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/24/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
This study investigates the fingering instability that forms during the stretching of capillary suspensions with and without added nanoparticles. The dewetting process is observed using a transparent lifted Hele-Shaw cell. The liquid bridge is stretched under constant acceleration, and the resulting instability patterns are recorded using two high-speed cameras. Finger-like structures, characteristic of the Saffman-Taylor instability, are observed. The total length of the dendrites and the intersecting number of branches are quantified. We reveal the roles of microparticles, nanoparticles, and the secondary liquid during the fingering instability. The addition of microparticles to pure liquid enhanced finger length due to increased particle interactions and nucleation sites for bubbles. The addition of secondary fluid reduces fingering length by forming a strong interparticle network. Incorporation of nanoparticles induces an early onset of cavitation and enhances fingering instability. However, nanoparticles make the capillary suspensions' overall microstructure more homogeneous, reduce the sample variation in fingering patterns, and promote the even distribution of gel on both slides during splitting. These findings highlight the complex interactions governing dewetting in capillary (nano)suspensions. This knowledge has potential applications in microfluidics, 3D printing, and thin-film coatings, where controlling dewetting is crucial.
Collapse
Affiliation(s)
- Lingyue Liu
- Department
of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001 Leuven , Belgium
| | - Mete Abbot
- Institute
for Fluid Mechanics and Aerodynamics, Technical
University of Darmstadt, Peter-Grünberg-Str. 10, 64287 Darmstadt , Germany
| | - Philipp Brockmann
- Institute
for Fluid Mechanics and Aerodynamics, Technical
University of Darmstadt, Peter-Grünberg-Str. 10, 64287 Darmstadt , Germany
| | - Ilia V. Roisman
- Institute
for Fluid Mechanics and Aerodynamics, Technical
University of Darmstadt, Peter-Grünberg-Str. 10, 64287 Darmstadt , Germany
| | - Jeanette Hussong
- Institute
for Fluid Mechanics and Aerodynamics, Technical
University of Darmstadt, Peter-Grünberg-Str. 10, 64287 Darmstadt , Germany
| | - Erin Koos
- Department
of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001 Leuven , Belgium
| |
Collapse
|
7
|
Haessig C, Landman J, Scholten E, Jarray A. How bulk liquid viscosity shapes capillary suspensions. J Colloid Interface Sci 2025; 678:400-409. [PMID: 39255597 DOI: 10.1016/j.jcis.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
HYPOTHESIS Capillary suspensions offer a new approach to generate novel materials. They are ternary liquid-liquid-solid systems characterized by particles connected by liquid bridges of one fluid suspended in a second immiscible bulk fluid. The viscosity of the bulk liquid can be modulated to customize the structure and rheological properties of capillary suspensions. Experiments and simulations: Using experiments and numerical simulations, we investigated capillary suspensions in the pendular state, using silica particles and water as a bridging liquid. To modulate the viscosity of the bulk fluid, we use different ratios of either dodecane and diisononyl phthalate, or silicone oils with varying chain lengths as bulk liquids. The rheological behavior was characterized using the maximum storage and loss moduli and the yielding behavior. This was related to structural changes of the systems, which was visualized using confocal laser scanning microscopy. In addition, we used Molecular Dynamics (MD) simulations to gain more insights into the behavior of two particles connected by a liquid bridge for various bulk liquids. FINDINGS Experiments show that higher bulk liquid viscosity reduces strength, yield stress, and yield strain in capillary suspensions, which is partly attributed to a reduced inter-connectivity of the percolating network. This is caused by the breakup of liquid bridges occurring at shorter distances in the presence of highly viscous bulk liquids, as indicated by numerical simulations.
Collapse
Affiliation(s)
- Christoph Haessig
- Physics and Physical Chemistry of Foods, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands.
| | - Jasper Landman
- Physics and Physical Chemistry of Foods, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands.
| | - Elke Scholten
- Physics and Physical Chemistry of Foods, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands.
| | - Ahmed Jarray
- Physics and Physical Chemistry of Foods, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands; Multi Scale Mechanics (MSM), MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| |
Collapse
|
8
|
Wang S, Fan Z, Huang X, Gao Y, Sui H, Yang J, Li B. Preparation of Chitosan Oleogel from Capillary Suspension and Its Application in Pork Meatballs. Gels 2024; 10:826. [PMID: 39727584 DOI: 10.3390/gels10120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
In the oil dispersion of chitosan, the formation of a capillary bridge was triggered by adding a small amount of water to obtain an oleogel. With this method, the types of liquid oil and the ratio of oil/chitosan/water were explored to achieve an optimal oleogel. MCT performed best, followed by soybean oil, which was chosen for its edibility and cost. Increasing chitosan from 15% to 45% reduced oil loss from 46% to 13%, and raising the water/chitosan ratio from 0 to 0.8 lowered oil loss from 37% to 13%. After normalization, the optimal soybean oil, chitosan, and water ratio was 1:0.45:0.36, yielding a solid-like appearance, minimal oil loss of 13%, and maximum gel strength and viscosity. To assess the potential application of the optimized oleogel, it was incorporated into pork meatballs as a replacement for pork fat. Textural and cooking experiments revealed that as the oleogel content increased, the hardness of the pork meatballs increased, while the cooking loss decreased. It suggested that the chitosan oleogel could enhance the quality of pork meatballs while also contributing to a healthier product by reducing saturated fat content.
Collapse
Affiliation(s)
- Shishuai Wang
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Zhongqin Fan
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Xinya Huang
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Yue Gao
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Hongwei Sui
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Jun Yang
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Cen S, Meng Z. Advances of plant-based fat analogs in 3D printing: Manufacturing strategies, printabilities, and food applications. Food Res Int 2024; 197:115178. [PMID: 39593389 DOI: 10.1016/j.foodres.2024.115178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 11/28/2024]
Abstract
Plant-based fat analogs are important alternatives to animal fats proposed in response to the strategy of low fat, low saturation, and sustainable development. Apart from possessing solid or semi-solid fat-analog structural properties, plant-based fat analogs also exhibit ideal rheological properties, making them highly suitable for food 3D printing. By utilizing 3D printing technology, it is feasible to personalize both the external (color and shape) and internal (nutrition and flavor) aspects of food, as well as plant-based fat analogs. Therefore, this review focuses on the research progress of plant-based fat analogs prepared based on 3D printing technology in the custom design of low-fat healthy food. This paper comprehensively reviews the latest advancements in manufacturing plant-based fat analogs from three perspectives: food hydrocolloids, oleogels, and emulsion gels. Then, starting with the printability of plant-based fat analogs, the food 3D printing technology and the printing characteristics of plant-based fat analogs are introduced. Next, strategies to adjust the printing stability of plant-based fat analogs to improve their plasticity and fidelity are discussed. Finally, the application prospects and limitations of plant-based fat analogs prepared by extrusion 3D printing technology in meat products, bakery goods, chocolates, and aerated food are discussed, which provides a reference for expanding the application of 3D printing in the field of fat-reducing and healthy food.
Collapse
Affiliation(s)
- Shaoyi Cen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Cheng Y, Lin X, Xu B, Li X, Li Y. Oleogel formation based on natural insoluble soybean fiber using capillary force: A novel strategy and application. Int J Biol Macromol 2024; 282:137361. [PMID: 39515701 DOI: 10.1016/j.ijbiomac.2024.137361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Insoluble dietary fibers can be used as oleogelators to form oleogels via molecular self-assembly following chemical modification. However, the limitations of traditional chemical modifications and oleogel preparation methods significantly restrict their practical application. This study proposed a novel method to directly form edible oleogels using natural soybean insoluble fiber particles as oil-forming agents and water as a secondary fluid via the capillary suspension force between particles. The results showed that when the particle fraction was 15 % and the secondary fluid content was 0.2, a strong capillary suspension force could be formed to maintain the oil holding capacity of oleogels. The sedimentation coefficient analysis suggested that adding particles and secondary fluids significantly affected the oleogel stability. The polarity of the oils, as well as the ionic strength and pH of the secondary fluids, influenced the rheological properties of oleogels, which correlated with the interfacial tension between the secondary fluids and oils. Moreover, the stable oleogels showed their potential as excellent solid fat substitutes in the preparation of breads (specific volume = 2.029 ± 0.114 cm3/g, weight loss = 12.2 ± 2.6 %, and hardness = 3.321 ± 0.055 N). This study highlighted that insoluble dietary fiber can form oleogels via capillary suspension, which is a relatively rapid and simple strategy. Additionally, it provided a solid foundation for the comprehensive utilization of soybean processing byproducts and the transformation of traditional food-specific oils and fats.
Collapse
Affiliation(s)
- Yang Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiujun Lin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Bolin Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xue Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
11
|
Fukuhara R, Nasu A, Inasawa S. Evaporation-Induced Switching from Flocculated to Dispersed TiO 2 Nanoparticles in Binary Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22424-22432. [PMID: 39434654 DOI: 10.1021/acs.langmuir.4c03285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Evaporation in mixed solutions containing both volatile and involatile solvents changes the properties of the binary solvent. We found that evaporating one solvent drastically increased the affinity of the mixed solvent to dispersant molecules and induced a switch from flocculated to dispersed TiO2 nanoparticles (TiO2NPs). We prepared dispersions of TiO2NPs with mixtures of volatile cyclosiloxane (Dx), involatile polar oil, and a dispersant, namely polyhydroxystearic acid (PHSA). Dx is a nonsolvent but the polar oil is a good solvent for PHSA. The dispersions were applied on a quartz substrate, and Dx was evaporated. The original applied films were turbid, in which flocculated TiO2NPs formed network structures. However, as the evaporation of Dx progressed, the drying films became transparent and the network structures of TiO2NPs loosened and disappeared. After the evaporation of Dx, the applied films were transparent to visible light but blocked the transmission of UV light. The flow characteristics of the dispersions also changed. The original dispersions showed shear-thinning but became more Newtonian-like as the fraction of Dx decreased. Generally, particles are concentrated in drying dispersions and become packed or flocculated as evaporation progresses. Our findings show that initially flocculated nanoparticles can be redispersed after evaporating a specific solvent. The effects of different Dxs and compositions on the switch from flocculated to dispersed TiO2NPs and their applicability as sunscreens are discussed.
Collapse
Affiliation(s)
- Ryushi Fukuhara
- MIRAI Technology Institute, Shiseido Co., Ltd., 1-2-11, Takashima, Nishi-ku, Yokohama 220-0011, Japan
| | - Akio Nasu
- MIRAI Technology Institute, Shiseido Co., Ltd., 1-2-11, Takashima, Nishi-ku, Yokohama 220-0011, Japan
| | - Susumu Inasawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
- Department of Applied Physics and Chemical Engineering, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
12
|
Dyab AKF, Paunov VN. 3D structured capillary cell suspensions aided by aqueous two-phase systems. J Mater Chem B 2024; 12:10215-10220. [PMID: 39377243 DOI: 10.1039/d4tb01296h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
We report a facile technique for 3D structuring of living cells by forming capillary cell suspensions based on an aqueous two-phase system (ATPS) of polyethylene glycol (PEG) and dextran (DEX) solutions. We demonstrate the formation of water-in-water (DEX-in-PEG) capillary bridges using concentrated suspensions of yeast cells which show enhanced rheological properties and distinctive 3D patterns. Capillary structured cell suspensions can potentially find applications in novel ways of 3D cell culturing, instant tissue engineering and many biomedical investigations.
Collapse
Affiliation(s)
- Amro K F Dyab
- Department of Chemistry, Nazarbayev University, Kabanbay Batyr 53, Astana 010000, Kazakhstan.
- Colloids & Advanced Materials Group, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Vesselin N Paunov
- Department of Chemistry, Nazarbayev University, Kabanbay Batyr 53, Astana 010000, Kazakhstan.
| |
Collapse
|
13
|
Tyowua AT, Harbottle D, Binks BP. 3D printing of Pickering emulsions, Pickering foams and capillary suspensions - A review of stabilization, rheology and applications. Adv Colloid Interface Sci 2024; 332:103274. [PMID: 39159542 DOI: 10.1016/j.cis.2024.103274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Pickering emulsions and foams as well as capillary suspensions are becoming increasingly more popular as inks for 3D printing. However, a lack of understanding of the bulk rheological properties needed for their application in 3D printing is potentially stifling growth in the area, hence the timeliness of this review. Herein, we review the stability and bulk rheology of these materials as well as the applications of their 3D-printed products. By highlighting how the bulk rheology is tuned, and specifically the inks storage modulus, yield stress and critical balance between the two, we present a rheological performance map showing regions where good prints and slumps are observed thus providing clear guidance for future ink formulations. To further advance this field, we also suggest standard experimental protocols for characterizing the bulk rheology of the three types of ink: capillary suspension, Pickering emulsion and Pickering foam for 3D printing by direct ink writing.
Collapse
Affiliation(s)
- Andrew T Tyowua
- Applied Colloid Science and Cosmeceutical Group, Department of Chemistry, Benue State University, PMB, 102119, Makurdi, Nigeria; School of Chemical Engineering, University of Birmingham, Edgbaston. B15 2TT. UK.
| | - David Harbottle
- School of Chemical and Process Engineering, University of Leeds, Leeds. LS2 9JT. UK
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull. HU6 7RX. UK
| |
Collapse
|
14
|
Zhao J, Li X, Ji D, Bae J. Extrusion-based 3D printing of soft active materials. Chem Commun (Camb) 2024; 60:7414-7426. [PMID: 38894652 DOI: 10.1039/d4cc01889c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Active materials are capable of responding to external stimuli, as observed in both natural and synthetic systems, from sensitive plants to temperature-responsive hydrogels. Extrusion-based 3D printing of soft active materials facilitates the fabrication of intricate geometries with spatially programmed compositions and architectures at various scales, further enhancing the functionality of materials. This Feature Article summarizes recent advances in extrusion-based 3D printing of active materials in both non-living (i.e., synthetic) and living systems. It highlights emerging ink formulations and architectural designs that enable programmable properties, with a focus on complex shape morphing and controllable light-emitting patterns. The article also spotlights strategies for engineering living materials that can produce genetically encoded material responses and react to a variety of environmental stimuli. Lastly, it discusses the challenges and prospects for advancements in both synthetic and living composite materials from the perspectives of chemistry, modeling, and integration.
Collapse
Affiliation(s)
- Jiayu Zhao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Xiao Li
- Material Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Donghwan Ji
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Jinhye Bae
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA.
- Material Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
15
|
Voigtländer A, Houssais M, Bacik KA, Bourg IC, Burton JC, Daniels KE, Datta SS, Del Gado E, Deshpande NS, Devauchelle O, Ferdowsi B, Glade R, Goehring L, Hewitt IJ, Jerolmack D, Juanes R, Kudrolli A, Lai CY, Li W, Masteller C, Nissanka K, Rubin AM, Stone HA, Suckale J, Vriend NM, Wettlaufer JS, Yang JQ. Soft matter physics of the ground beneath our feet. SOFT MATTER 2024. [PMID: 39012310 DOI: 10.1039/d4sm00391h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The soft part of the Earth's surface - the ground beneath our feet - constitutes the basis for life and natural resources, yet a general physical understanding of the ground is still lacking. In this critical time of climate change, cross-pollination of scientific approaches is urgently needed to better understand the behavior of our planet's surface. The major topics in current research in this area cross different disciplines, spanning geosciences, and various aspects of engineering, material sciences, physics, chemistry, and biology. Among these, soft matter physics has emerged as a fundamental nexus connecting and underpinning many research questions. This perspective article is a multi-voice effort to bring together different views and approaches, questions and insights, from researchers that work in this emerging area, the soft matter physics of the ground beneath our feet. In particular, we identify four major challenges concerned with the dynamics in and of the ground: (I) modeling from the grain scale, (II) near-criticality, (III) bridging scales, and (IV) life. For each challenge, we present a selection of topics by individual authors, providing specific context, recent advances, and open questions. Through this, we seek to provide an overview of the opportunities for the broad Soft Matter community to contribute to the fundamental understanding of the physics of the ground, strive towards a common language, and encourage new collaborations across the broad spectrum of scientists interested in the matter of the Earth's surface.
Collapse
Affiliation(s)
- Anne Voigtländer
- German Research Centre for Geosciences (GFZ), Geomorphology, Telegrafenberg, 14473 Potsdam, Germany.
- Lawrence Berkeley National Laboratory (LBNL), Energy Geosciences Division, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Morgane Houssais
- Department of Physics, Clark University, 950 Main St, Worcester, MA 01610, USA
| | - Karol A Bacik
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ian C Bourg
- Civil and Environmental Engineering (CEE) and High Meadows Environmental Institute (HMEI), Princeton University, E208 EQuad, Princeton, NJ 08540, USA
| | - Justin C Burton
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA 30033, USA
| | - Karen E Daniels
- North Carolina State University, 2401 Stinson Dr, Raleigh, NC 27607, USA
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Emanuela Del Gado
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC, USA
| | - Nakul S Deshpande
- North Carolina State University, 2401 Stinson Dr, Raleigh, NC 27607, USA
| | - Olivier Devauchelle
- Institut de Physique du Globe de Paris, Université Paris Cité, 1 rue Jussieu, CNRS, F-75005 Paris, France
| | - Behrooz Ferdowsi
- Department of Civil and Environmental Engineering, jUniversity of Houston, Houston, TX 77204, USA
| | - Rachel Glade
- Earth & Environmental Sciences Department and Mechanical Engineering Department, University of Rochester, 227 Hutchison Hall, P.O. Box 270221, Rochester, NY 14627, USA
| | - Lucas Goehring
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Ian J Hewitt
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - Douglas Jerolmack
- Department of Earth & Environmental Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruben Juanes
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Arshad Kudrolli
- Department of Physics, Clark University, 950 Main St, Worcester, MA 01610, USA
| | - Ching-Yao Lai
- Department of Geophysics, Stanford University, Stanford, CA 94305, USA
| | - Wei Li
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Stony Brook University, Department of Civil Engineering, Stony Brook, NY 11794, USA
| | - Claire Masteller
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Kavinda Nissanka
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA 30033, USA
| | - Allan M Rubin
- Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jenny Suckale
- Computational and Mathematical Engineering, and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| | - Nathalie M Vriend
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - John S Wettlaufer
- Departments of Earth & Planetary Sciences, Mathematics and Physics, Yale University, New Haven, CT 06520, USA
- Nordic Institute for Theoretical Physics, 106 91, Stockholm, Sweden
| | - Judy Q Yang
- Saint Anthony Falls Laboratory and Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
16
|
Liu L, Allard J, Koos E. Enhanced contact flexibility from nanoparticles in capillary suspensions. J Colloid Interface Sci 2024; 665:643-654. [PMID: 38552581 DOI: 10.1016/j.jcis.2024.03.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
HYPOTHESIS Sample-spanning particle networks are used to induce structure and a yield stress, necessary for 3D printing of porous ceramics and paints. In capillary suspensions, a small quantity of immiscible secondary fluid is incorporated into a suspension. By further adding nanoparticles with a range of hydrophobicities, the structure of the bridges and microparticle-microparticle contacts is expected to be modified, resulting in a tunable yield stress and shear moduli. Moreover, the compressibility of these samples, important in many processing and application steps, is expected to be sensitive to these changes. EXPERIMENT The nanoparticle hydrophobicity was altered and their position relative to the microparticles and the bridges was examined using confocal microscopy where the correlation between bridge size and network structure was observed. A step-wise uniaxial compression test on the confocal was conducted to monitor the microparticle movement and structural changes between capillary suspension networks with and without nanoparticles. FINDINGS Our observation suggests that nanoparticles induce the formation of thin liquid films on the surface of the microparticles, mitigating contact line pinning and promoting internal liquid exchange. Additionally, nanoparticles at microparticle contact regions further diminish Hertzian contact, enhancing the capacity for rearrangement. These effects enhance microparticle movement, narrowing the bridge size distribution.
Collapse
Affiliation(s)
- Lingyue Liu
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200J, 3001 Leuven, Belgium.
| | - Jens Allard
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200J, 3001 Leuven, Belgium; Current address: Robert Bosch Produktie N.V., 3300 Tienen, Belgium
| | - Erin Koos
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200J, 3001 Leuven, Belgium.
| |
Collapse
|
17
|
Han C, Wang G, Yin S, Feng G, Wang J, Guo J, Yang X. Formation of small-granule starch oleogels based on capillary force: Impact of starch surface lipids on lubrication performance. Carbohydr Polym 2024; 334:122022. [PMID: 38553221 DOI: 10.1016/j.carbpol.2024.122022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 04/02/2024]
Abstract
Starch granule oleogels were prepared and their rheological properties were precisely tuned using the capillary bridging phenomenon. The addition of a small amount of water to an oily suspension of starch granules can lead to starch granule bridging and network formation, transitioning it from a fluid-like to a gel-like state. Small-granule starches with high specific surface area and interfacial area exhibited a greater number of liquid bridges and stronger starch granules interactions, making them more prone to forming structurally stable oleogel systems. By increasing the content of water and starch granule, the starch oleogels exhibited three distinct structural states: pendular state (water ≤ 3.28 %, starch ≤ 17.85 %), pendular bridging network (water: 4.92 %, starch: 24.59 %), and capillary aggregates (water ≥ 6.56 %, starch > 24.59 %). Furthermore, the influence of starch granule surface lipids on the lubrication performance of the oleogel system was investigated. Surface roughness increased after extraction of surface lipids, and the friction coefficient also showed a significant increase. Overall, capillary suspension system can potentially be used to design novel fat food products, and our findings have established the correlation between starch granule surface properties and sensory perception in food, providing valuable insights for adjusting the oral processing characteristics of food.
Collapse
Affiliation(s)
- Chuanwu Han
- National Engineering Research Center of Wheat and Corn Further Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Gaoshang Wang
- National Engineering Research Center of Wheat and Corn Further Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Shouwei Yin
- National Engineering Research Center of Wheat and Corn Further Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Guangxin Feng
- National Engineering Research Center of Wheat and Corn Further Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Jinmei Wang
- National Engineering Research Center of Wheat and Corn Further Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Jian Guo
- National Engineering Research Center of Wheat and Corn Further Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Xiaoquan Yang
- National Engineering Research Center of Wheat and Corn Further Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
18
|
Li Q, Sun D, Chen F, Xu H, Xu Z. New insights into interaction between oil and solid during hydrothermal treatment of oily sludge. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134358. [PMID: 38657510 DOI: 10.1016/j.jhazmat.2024.134358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Hydrothermal treatment (HT) can effectively dehydrate and reduce oily sludge (OS) volume, but the resulting hydrothermal oily sludge (HOS) presents greater challenges for washing than the initial oily sludge (IOS). This study examines the effects of HT on OS by analyzing changes in water, oil, and solid. Results indicate that HT considerably decreases the water content in OS while increasing resin and asphaltenes contents. In addition, condensation, side-chain scission, and oxidation reactions occur during the HT process, resulting in coking, agglomeration, and an increase in oxygen-containing groups. This increase, further confirmed by X-ray photoelectron spectroscopy (XPS), enhances the interaction between oil and solids. Calcite, the most prevalent solid-phase component, may form a calcium bridge with the oxygen-containing groups. Moreover, HT reduces the solid particle size, thereby increasing the oil-solid contact area. Interestingly, the process of deasphalting diminishes the interaction between oil and solids, facilitating sludge washing. After washing, the residual oil content in HOS is reduced to less than 0.34%. This study elucidates why HOS is challenging to separate from oil and solids and introduces a novel method that combines dodecylbenzene sulfonic acid (DBSA)-assisted heptane deasphalting with conventional washing techniques. This method shows promise for applications in OS affected by weathering processes.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, Shandong 250100, PR China; Tianjin Key Laboratory of Tertiary Oil Recovery and Oilfield Chemistry Enterprises, Oil Production Technology Institute, Dagang Oilfield Company, PetroChina, Tianjin 300280, PR China.
| | - Dejun Sun
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, Shandong 250100, PR China
| | - Feng Chen
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, Shandong 250100, PR China
| | - Haoran Xu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, Shandong 250100, PR China
| | - Zhenghe Xu
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
| |
Collapse
|
19
|
Simoes S, Rousseau D. A hybrid approach to oil structuring - combining wax oleogels and capillary suspensions. SOFT MATTER 2024; 20:4329-4336. [PMID: 38742675 DOI: 10.1039/d3sm01619f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
There is continuing interest in finding new approaches to gel liquid oil for processed food applications. Here, we combined oleogels and capillary suspensions to generate model oil-continuous networks consisting of a wax oleogel and a water-bridged, glass particle network. The composition map tested comprised 30 vol% polar or non-polar glass beads dispersed in a 70 vol% non-particle phase consisting of water (≤9 vol%) as well as 2 wt% hexatriacontane as oleogelator in canola oil. While the hexatriacontane wax alone gelled the oil, presence of the glass beads (but no water) prevented oleogelation. Self-supporting capillary networks formed with polar particles and 1 vol% water or non-polar glass beads and 3 vol% water in canola oil. The capillary suspensions demonstrated significant differences in rheological behaviour as the polar particles yielded much higher elastic moduli than their non-polar particle counterparts. Polar hybrids were weakened by inclusion of the wax whereas the non-polar particle hybrid network displayed elastic moduli greater than the respective contributions of both capillary and wax gel networks. This hybrid method of oleogelation can be applied to virtually any food particles and uses minimal water and wax.
Collapse
Affiliation(s)
- Selvyn Simoes
- Food and Soft Materials Research Group, Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, Canada.
| | - Dérick Rousseau
- Food and Soft Materials Research Group, Department of Chemistry and Biology, Toronto Metropolitan University, 350 Victoria St, Toronto, Canada.
| |
Collapse
|
20
|
Okesanjo O, Aubry G, Behrens S, Lu H, Meredith JC. Bubble-particle dynamics in multiphase flow of capillary foams in a porous micromodel. LAB ON A CHIP 2023; 23:4434-4444. [PMID: 37740290 DOI: 10.1039/d3lc00419h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Surfactant-free capillary foams (CFs) are known to be remarkably tolerant to oil, and possess unique stability and flow properties. These properties result from the presence of oil-and-particle-coated bubbles that are interconnected by a dense particle-oil capillary network. In this work, we present a study of the dynamics of capillary foams flowing through a porous micromodel. We determine that despite the presence of oil-particle networks, CFs can flow through a microporous environment and that above a threshold flowrate, >80% of foam pumped through the micromodel can be recovered. In addition, we highlight the absence of steady state in CF flow and identify the underlying phenomena including the increasing apparent viscosity, reconfigurable flow paths, and intermittent clogging of the micromodel from an oil-particle composite and bubbles trapped in pores. We also characterize bubble dynamics and show that CFs surprisingly exhibit the same bubble generation and destruction mechanisms as classical foams despite the absence of surfactants. Our observations suggest that the porous medium plays a key role in generating uniformly sized bubbles and that capillary foams in a microporous environment tend to reconfigure their flow paths in a manner that may provide opportunities for increased sweep efficiency in enhanced oil recovery.
Collapse
Affiliation(s)
- Omotola Okesanjo
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Guillaume Aubry
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Sven Behrens
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
- Polymer Science & Materials Chemistry, Exponent Inc., Atlanta, Georgia 30326, USA
| | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - J Carson Meredith
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| |
Collapse
|
21
|
Rahat SA, Chaudhuri K, Pham JT. Capillary detachment of a microparticle from a liquid-liquid interface. SOFT MATTER 2023; 19:6247-6254. [PMID: 37555264 DOI: 10.1039/d3sm00470h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The attachment and detachment of microparticles at a liquid-liquid interface are common in many material systems, from Pickering emulsions and colloidal assemblies to capillary suspensions. Properties of these systems rely on how the particles interact with the liquid-liquid interface, including the detachment process. In this study, we simultaneously measure the capillary detachment force of a microparticle from a liquid-liquid interface and visualize the shape of the meniscus by combining colloidal probe microscopy and confocal microscopy. The capillary behavior is studied on both untreated (hydrophilic) and fluorinated (hydrophobic) glass microparticles. The measured force data show good agreement with theoretical calculations based on the extracted geometric parameters from confocal images of the capillary bridge. It is also evident that contact line pinning is an important aspect of detachment for both untreated and fluorinated particles.
Collapse
Affiliation(s)
- Sazzadul A Rahat
- Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
| | - Krishnaroop Chaudhuri
- Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jonathan T Pham
- Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
- Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
22
|
Morozova SM, López-Flores L, Gevorkian A, Zhang H, Adibnia V, Shi W, Nykypanchuk D, Statsenko TG, Walker GC, Gang O, de la Cruz MO, Kumacheva E. Colloidal Clusters and Networks Formed by Oppositely Charged Nanoparticles with Varying Stiffnesses. ACS NANO 2023; 17:15012-15024. [PMID: 37459253 DOI: 10.1021/acsnano.3c04064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Colloidal clusters and gels are ubiquitous in science and technology. Particle softness has a strong effect on interparticle interactions; however, our understanding of the role of this factor in the formation of colloidal clusters and gels is only beginning to evolve. Here, we report the results of experimental and simulation studies of the impact of particle softness on the assembly of clusters and networks from mixtures of oppositely charged polymer nanoparticles (NPs). Experiments were performed below or above the polymer glass transition temperature, at which the interaction potential and adhesive forces between the NPs were significantly varied. Hard NPs assembled in fractal clusters that subsequently organized in a kinetically arrested colloidal gel, while soft NPs formed dense precipitating aggregates, due to the NP deformation and the decreased interparticle distance. Importantly, interactions of hard and soft NPs led to the formation of discrete precipitating NP aggregates at a relatively low volume fraction of soft NPs. A phenomenological model was developed for interactions of oppositely charged NPs with varying softnesses. The experimental results were in agreement with molecular dynamics simulations based on the model. This work provides insight on interparticle interactions before, during, and after the formation of hard-hard, hard-soft, and soft-soft contacts and has impact for numerous applications of reversible colloidal gels, including their use as inks for additive manufacturing.
Collapse
Affiliation(s)
- Sofia M Morozova
- Department of Chemistry, University of Toronto, 80 Saint George street, Toronto M5S 3H6, Ontario, Canada
| | - Leticia López-Flores
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Albert Gevorkian
- Department of Chemistry, University of Toronto, 80 Saint George street, Toronto M5S 3H6, Ontario, Canada
| | - Honghu Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Vahid Adibnia
- Department of Chemistry, University of Toronto, 80 Saint George street, Toronto M5S 3H6, Ontario, Canada
| | - Weiqing Shi
- Department of Chemistry, University of Toronto, 80 Saint George street, Toronto M5S 3H6, Ontario, Canada
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Tatiana G Statsenko
- Department of Chemistry, University of Toronto, 80 Saint George street, Toronto M5S 3H6, Ontario, Canada
| | - Gilbert C Walker
- Department of Chemistry, University of Toronto, 80 Saint George street, Toronto M5S 3H6, Ontario, Canada
| | - Oleg Gang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
- Departments of Chemical Engineering and Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 Saint George street, Toronto M5S 3H6, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto M5S 3H6, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3H6, Ontario, Canada
| |
Collapse
|
23
|
Okesanjo O, Meredith JC, Behrens SH. Effect of Shear on Pumped Capillary Foams. Ind Eng Chem Res 2023; 62:7031-7039. [PMID: 37191909 PMCID: PMC10178927 DOI: 10.1021/acs.iecr.3c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Foam flow in many applications, like firefighting and oil recovery, requires stable foams that can withstand the stress and aging that result from both shear and thermodynamic instability. Events of drainage and coarsening drive the collapse of foams and greatly affect foam efficacy in processes relying on foam transport. Recently, it was discovered that foams can be stabilized by the synergistic action of colloidal particles and a small amount of a water-immiscible liquid that mediates capillary forces. The so-called capillary foams contain gas bubbles that are coated by a thin oil-particle film and integrated in a network of oil-bridged particles; the present study explores how this unique architecture impacts the foams' flow dynamics. We pumped capillary foams through millimeter-sized tubing (ID: 790 μm) at different flow rates and analyzed the influence of stress and aging on capillary foam stability. We find that the foams remain stable when pumped at higher flow rates but undergo phase separation when pumped at low flow rates. Our observations further show that the particle network is responsible for the observed stability in capillary foams and that network strength and stability of an existing foam can be increased by shearing.
Collapse
Affiliation(s)
- Omotola Okesanjo
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - J. Carson Meredith
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sven Holger Behrens
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Polymer
Science & Materials Chemistry Practice, Exponent Inc., Atlanta, Georgia 30326, United States
| |
Collapse
|
24
|
Basu A, Okello LB, Castellanos N, Roh S, Velev OD. Assembly and manipulation of responsive and flexible colloidal structures by magnetic and capillary interactions. SOFT MATTER 2023; 19:2466-2485. [PMID: 36946137 DOI: 10.1039/d3sm00090g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The long-ranged interactions induced by magnetic fields and capillary forces in multiphasic fluid-particle systems facilitate the assembly of a rich variety of colloidal structures and materials. We review here the diverse structures assembled from isotropic and anisotropic particles by independently or jointly using magnetic and capillary interactions. The use of magnetic fields is one of the most efficient means of assembling and manipulating paramagnetic particles. By tuning the field strength and configuration or by changing the particle characteristics, the magnetic interactions, dynamics, and responsiveness of the assemblies can be precisely controlled. Concurrently, the capillary forces originating at the fluid-fluid interfaces can serve as means of reconfigurable binding in soft matter systems, such as Pickering emulsions, novel responsive capillary gels, and composites for 3D printing. We further discuss how magnetic forces can be used as an auxiliary parameter along with the capillary forces to assemble particles at fluid interfaces or in the bulk. Finally, we present examples how these interactions can be used jointly in magnetically responsive foams, gels, and pastes for 3D printing. The multiphasic particle gels for 3D printing open new opportunities for making of magnetically reconfigurable and "active" structures.
Collapse
Affiliation(s)
- Abhirup Basu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Lilian B Okello
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Natasha Castellanos
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Sangchul Roh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
25
|
Ranquet O, Duce C, Bramanti E, Dietemann P, Bonaduce I, Willenbacher N. A holistic view on the role of egg yolk in Old Masters' oil paints. Nat Commun 2023; 14:1534. [PMID: 36977659 PMCID: PMC10050151 DOI: 10.1038/s41467-023-36859-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/17/2023] [Indexed: 03/30/2023] Open
Abstract
Old Masters like Botticelli used paints containing mixtures of oils and proteins, but "how" and "why" this was done is still not understood. Here, egg yolk is used in combination with two pigments to evaluate how different repartition of proteinaceous binder can be used to control the flow behavior as well as drying kinetics and chemistry of oil paints. Stiff paints enabling pronounced impasto can be achieved, but paint stiffening due to undesired uptake of humidity from the environment can also be suppressed, depending on proteinaceous binder distribution and colloidal paint microstructure. Brushability at high pigment loading is improved via reduction of high shear viscosity and wrinkling can be suppressed adjusting a high yield stress. Egg acts as antioxidant, slowing down the onset of curing, and promoting the formation of cross-linked networks less prone to oxidative degradation compared to oil alone, which might improve the preservation of invaluable artworks.
Collapse
Affiliation(s)
- Ophélie Ranquet
- Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, Gotthard-Franz-Straße 3, 76131, Karlsruhe, Germany.
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121, Firenze, Italy.
| | - Celia Duce
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Emilia Bramanti
- Institute of Chemistry of Organo Metallic Compounds, CNR Via Moruzzi 1, 56124, Pisa, Italy
| | - Patrick Dietemann
- Doerner Institut, Bayerische Staatsgemäldesammlungen, Barer Straße 29, 80799, Munich, Germany.
| | - Ilaria Bonaduce
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124, Pisa, Italy.
| | - Norbert Willenbacher
- Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, Gotthard-Franz-Straße 3, 76131, Karlsruhe, Germany.
| |
Collapse
|
26
|
Li Y, Zhang C, Hu B, Gao Z, Wu Y, Deng Q, Nishinari K, Fang Y. Formation and application of edible oleogels prepared by dispersing soy fiber particles in oil phase. Food Res Int 2023; 164:112369. [PMID: 36737956 DOI: 10.1016/j.foodres.2022.112369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
Oleogels containing less saturated and trans-fats were considered as an ideal option to replace the solid fats in foods. In this research, oleogel was fabricated by dispersing soy fiber particles (SFP) in soy oil, and further it was used in bread preparation. Effect of the particle size, particle content and the second fluid content on the formation of oleogels were evaluated, based on the appearance and rheological properties. Results showed that the suspension of SFP in soy oil (24%, w/w) could be transformed into gel-like state, upon the addition of the second fluid. The SFP based networks were dominated by the capillary force which was originated from the second fluid. The rheological properties and yield stress of the oleogels could be modulated by particle size and particle content of SFP in oil phase, as well as the second fluid content in the system. When the oleogels were applicated in bread preparation, a layered structure could be formed in the bread, indicating the possibility of replacing the solid fats in bakery products by our oleogels. Our results offered a feasibility approach for oil structuring with natural raw materials, and developed a new approach to replace the solid fats in foods.
Collapse
Affiliation(s)
- Yanlei Li
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Chao Zhang
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Zhiming Gao
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Yuehan Wu
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Qianchun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
27
|
Wang GS, Chen HY, Feng GX, Yuan Y, Wan ZL, Guo J, Wang JM, Yang XQ. Polyphenol-Enriched Protein Oleogels as Potential Delivery Systems of Omega-3 Fatty Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:749-759. [PMID: 36534616 DOI: 10.1021/acs.jafc.2c06348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Omega-3 polyunsaturated fatty acids (n-3 FAs) are essential nutrients and are considered effective in improving human health. Recent studies highlight the importance of the combination of n-3 FAs and polyphenols for limiting the oxidation of n-3 FAs and exhibiting synergistic beneficial effects. Herein, we developed a novel formulation technology to prepare oleogels that could be used for the codelivery of n-3 FAs and polyphenols with high loading efficacy and oxidative stability. These oleogels are made from algal oil with polyphenol-enriched whey protein microgel (WPM) particles as gelling agents via simple and scalable ball milling technology. The oxidative status, fatty acid composition, and volatiles of protein oleogels during accelerated storage were systematically assessed by stoichiometry and gas chromatography-mass spectrometry. These results showed that protein oleogels could overcome several challenges associated with the formulation of n-3 oils, including long-term oxidative stability and improved sensory and textural properties. The protein oleogel system could provide an excellent convenience for formulating multiple nutrients and nutraceuticals with integrating health effects, which are expected to be used in the care of highly vulnerable populations, including children, the elderly, and patients.
Collapse
Affiliation(s)
- Gao-Shang Wang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Hong-Yu Chen
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Guang-Xin Feng
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Yang Yuan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Zhi-Li Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Jian Guo
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Jin-Mei Wang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Xiao-Quan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
28
|
Xi Y, Murphy RP, Zhang Q, Zemborain A, Narayanan S, Chae J, Choi SQ, Fluerasu A, Wiegart L, Liu Y. Rheology and dynamics of a solvent segregation driven gel (SeedGel). SOFT MATTER 2023; 19:233-244. [PMID: 36511219 DOI: 10.1039/d2sm01129h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bicontinuous structures promise applications in a broad range of research fields, such as energy storage, membrane science, and biomaterials. Kinetically arrested spinodal decomposition is found responsible for stabilizing such structures in different types of materials. A recently developed solvent segregation driven gel (SeedGel) is demonstrated to realize bicontinuous channels thermoreversibly with tunable domain sizes by trapping nanoparticles in a particle domain. As the mechanical properties of SeedGel are very important for its future applications, a model system is characterized by temperature-dependent rheology. The storage modulus shows excellent thermo-reproducibility and interesting temperature dependence with the maximum storage modulus observed at an intermediate temperature range (around 28 °C). SANS measurements are conducted at different temperatures to identify the macroscopic solvent phase separation during the gelation transition, and solvent exchange between solvent and particle domains that is responsible for this behavior. The long-time dynamics of the gel is further studied by X-ray Photon Correlation Spectroscopy (XPCS). The results indicate that particles in the particle domain are in a glassy state and their long-time dynamics are strongly correlated with the temperature dependence of the storage modulus.
Collapse
Affiliation(s)
- Yuyin Xi
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Ryan P Murphy
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| | - Qingteng Zhang
- X-Ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Aurora Zemborain
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Suresh Narayanan
- X-Ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Junsu Chae
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Siyoung Q Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Andrei Fluerasu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Lutz Wiegart
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Yun Liu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
29
|
Kim S, Yang J, Kim J, Ryu SY, Cho H, Kim YS, Lee J. Direct-Writable and Thermally One-Step Curable “Water-Stained” Epoxy Composite Inks. Polymers (Basel) 2022; 14:polym14194191. [PMID: 36236139 PMCID: PMC9573494 DOI: 10.3390/polym14194191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, a simple method for preparing direct-writable and thermally one-step curable epoxy composite inks was proposed. Specifically, colloidal inks containing a mixture of ordinary epoxy resin and anhydride-type hardener with the suspended alumina microplates, as exemplary fillers, are “stained” with small amounts of water. This increases the elasticity of the ink via the interparticle capillary attraction and promotes curing of the epoxy matrix in low-temperature ranges, causing the three-dimensional (3D) printed ink to avoid structural disruption during one-step thermal curing without the tedious pre-curing step. The proposed mechanisms for the shape retention of thermally cured water-stained inks were discussed with thorough analyses using shear rheometry, DSC, FTIR, and SEM. Results of the computer-vision numerical analysis of the SEM images reveal that the particles in water-stained inks are oriented more in the vertical direction than those in water-free samples, corroborating the proposed mechanisms. The suggested concept is extremely simple and does not require any additional cost to the one required for the preparation of the common epoxy–filler composites, which is thus expected to be well-exploited in various applications where 3D printing of epoxy-based formulations is necessary.
Collapse
Affiliation(s)
- Suyeon Kim
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin 17058, Gyeonggi-do, Korea
| | - Jeewon Yang
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin 17058, Gyeonggi-do, Korea
| | - Jieun Kim
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin 17058, Gyeonggi-do, Korea
| | - Seoung Young Ryu
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin 17058, Gyeonggi-do, Korea
| | - Hanbin Cho
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin 17058, Gyeonggi-do, Korea
| | - Yern Seung Kim
- Advanced Materials Company, LG Chem, 70 Magokjungang 10-ro, Gangseo-gu, Seoul 07795, Korea
- Correspondence: (Y.S.K.); (J.L.)
| | - Joohyung Lee
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin 17058, Gyeonggi-do, Korea
- Correspondence: (Y.S.K.); (J.L.)
| |
Collapse
|
30
|
Jafarpour M, Nüesch F, Heier J, Abdolhosseinzadeh S. Functional Ink Formulation for Printing and Coating of Graphene and Other 2D Materials: Challenges and Solutions. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Mohammad Jafarpour
- Laboratory for Functional Polymers Swiss Federal Laboratories for Materials Science and Technology (Empa) 8600 Dübendorf Switzerland
- Institute of Materials Science and Engineering Swiss Federal Institute of Technology Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Frank Nüesch
- Laboratory for Functional Polymers Swiss Federal Laboratories for Materials Science and Technology (Empa) 8600 Dübendorf Switzerland
- Institute of Materials Science and Engineering Swiss Federal Institute of Technology Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Jakob Heier
- Laboratory for Functional Polymers Swiss Federal Laboratories for Materials Science and Technology (Empa) 8600 Dübendorf Switzerland
| | - Sina Abdolhosseinzadeh
- Laboratory for Functional Polymers Swiss Federal Laboratories for Materials Science and Technology (Empa) 8600 Dübendorf Switzerland
| |
Collapse
|
31
|
Allard J, Burgers S, Rodríguez González MC, Zhu Y, De Feyter S, Koos E. Effects of particle roughness on the rheology and structure of capillary suspensions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Marnot A, Dobbs A, Brettmann B. Material extrusion additive manufacturing of dense pastes consisting of macroscopic particles. MRS COMMUNICATIONS 2022; 12:483-494. [PMID: 36312900 PMCID: PMC9596591 DOI: 10.1557/s43579-022-00209-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/13/2022] [Indexed: 06/16/2023]
Abstract
Additive manufacturing of dense pastes, those with greater than 50 vol% particles, via material extrusion direct ink write is a promising method to produce customized structures for high-performance materials, such as energetic materials and pharmaceuticals, as well as to enable the use of waste or other locally available particles. However, the high volume fraction and the large sizes of the particles for these applications lead to significant challenges in developing inks and processing methods to prepare quality parts. In this prospective, we analyze challenges in managing particle characteristics, stabilizing the suspensions, mixing the particles and binder, and 3D printing the pastes.
Collapse
Affiliation(s)
- Alexandra Marnot
- Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Alexandra Dobbs
- Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Blair Brettmann
- Chemical and Biomolecular Engineering, Materials Science and Engineering, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
33
|
Edible Oleogels Fabricated by Dispersing Cellulose Particles in Oil Phase: Effects from the Water Addition. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Jarray A, Feichtinger A, Scholten E. Linking intermolecular interactions and rheological behaviour in capillary suspensions. J Colloid Interface Sci 2022; 627:415-426. [PMID: 35863200 DOI: 10.1016/j.jcis.2022.07.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
HYPOTHESIS Capillary suspensions feature networks of particles connected by liquid bridges, which are obtained by adding a small amount of a second immiscible liquid to a suspension. It is possible to link the network formation as well as the rheological behaviour of capillary suspensions to the intermolecular interactions of their constituents. EXPERIMENTS AND SIMULATIONS Through a combination of experimental and numerical methods, we present a novel approach, based on Hansen solubility parameters computed from Molecular Dynamics (MD) simulations, to rationalize and predict the rheological behaviour of capillary suspensions. We investigated the formation of capillary suspensions for various combinations of bulk and secondary liquids mixed with hydrophilic silica particles. The predictions were confirmed experimentally by rheological analysis, interfacial tension measurements and microscopy (CLSM) imaging. FINDINGS Numerical and experimental results show that the Hansen solubility parameters theory allows to predict the formation of capillary suspensions, whose strength exponentially decays with decreasing intermolecular interactions between the secondary liquids and the dispersed particles. High immiscibility between the bulk and secondary liquid strengthens the gel up to a critical immiscibility point, above which the strength of the gel remains mostly affected by the affinity between the secondary liquids and the dispersed particles. Furthermore, we find that hydrogen-bonding and polar interactions control the formation of capillary suspensions. This simple approach can guide the selection of adequate solvents and immiscible secondary liquids, allowing an easy formulation of new particulate-based gels.
Collapse
Affiliation(s)
- Ahmed Jarray
- Physics and Physical Chemistry of Foods, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands; Multi Scale Mechanics (MSM), MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| | - Annika Feichtinger
- Physics and Physical Chemistry of Foods, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands.
| | - Elke Scholten
- Physics and Physical Chemistry of Foods, Wageningen University, PO Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
35
|
Beyond particle stabilization of emulsions and foams: Proteins in liquid-liquida and liquid-gas interfaces. Adv Colloid Interface Sci 2022; 308:102743. [DOI: 10.1016/j.cis.2022.102743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 01/02/2023]
|
36
|
Ishigami T, Karasudani T, Onitake S, Shirzadi M, Fukasawa T, Fukui K, Mino Y. Effect of liquid volume fraction and shear rate on rheological properties and microstructure formation in ternary particle/oil/water dispersion systems under shear flow: two-dimensional direct numerical simulation. SOFT MATTER 2022; 18:4338-4350. [PMID: 35622067 DOI: 10.1039/d2sm00373b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We numerically studied the rheological properties and microstructure formation under shear flow in a ternary particle/oil/water dispersion system. Our numerical simulation method was based on a phase-field model for capturing a free interface, the discrete element method for tracking particle motion, the immersed boundary method for calculating fluid-particle interactions, and a wetting model that assigns an order parameter to the solid surface according to the wettability. The effects of the water-phase volume fraction and shear rate on the microstructure and apparent viscosity were investigated. When the water-phase volume fraction was low, a pendular state was formed, and with an increase in the water-phase volume fraction, the state transitioned into a co-continuous state and a Pickering emulsion. This change in the microstructure state is qualitatively consistent with the results of previous experimental studies. In the pendular state, the viscosity increased with an increase in the water-phase volume fraction. This was due to the development of a network structure connected by liquid bridges, and the increase in the coordination number was quantitatively confirmed. In the case of the pendular state, significant shear thinning was observed, but in the case of the Pickering emulsion, no significant shear thinning was observed. It is concluded that this is due to the difference in the manner in which the microstructure changes with the shear rate. This is the first study to numerically demonstrate the microstructure formation of a ternary dispersion under shear flow and its correlation with the apparent viscosity.
Collapse
Affiliation(s)
- Toru Ishigami
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Taisei Karasudani
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Shu Onitake
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Mohammadreza Shirzadi
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Tomonori Fukasawa
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Kunihiro Fukui
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Yasushi Mino
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
37
|
Ching H, Mohraz A. Bijel rheology reveals a 2D colloidal glass wrapped in 3D. SOFT MATTER 2022; 18:4227-4238. [PMID: 35607949 DOI: 10.1039/d2sm00407k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We present rheological evidence demonstrating the glass-like nature of bicontinuous interfacially jammed emulsion gels (bijels). Under small amplitude oscillatory shear, bijels exhibited rheological signatures akin to α and β relaxation that are also invariable to interfacial tension changes, behaviors which are reminiscent of caged particle dynamics found in colloidal glasses, and well described by a previously reported adaptation of mode-coupling theory for colloidal glass rheology. Guided by their rheological signatures and supported by particle detachment and attraction energy approximations, we rationalize that bijels can be represented as 2-dimensional (2D) colloidal glasses that percolate in 3-dimensional (3D) space, and attractive interactions are not required for their stability. To provide further support for this conjecture, we qualitatively compare the rheology of bijels and a capillary suspension that is stabilized by strong, rigid capillary bridges between the particles, beyond their limit of linear viscoelasticity. Our results demonstrate that the strong adsorption of particles to the continuous interface and the lack of strong attractive interparticle forces enable recovery by interfacial tension into new jammed configurations after shear deformation. These behaviors are qualitatively different from those in the capillary suspension, where the breaking of attractive interparticle bonds results in dramatic changes to the microstructure and rheology over a narrow range of shear amplitudes. Our findings unveil bijels as 2D colloidal glasses weaving in 3D space and establish that interparticle attractions are not required for stability in bijels, and interfacial jamming alone is sufficient to impart viscoelasticity and gel-like rheology to these materials.
Collapse
Affiliation(s)
- Herman Ching
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697-2580, USA.
| | - Ali Mohraz
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697-2580, USA.
| |
Collapse
|
38
|
Selection of suitable surfactants for the incorporation of organic liquids into fresh geopolymer pastes. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Wang GS, Chen HY, Wang LJ, Zou Y, Wan ZL, Yang XQ. Formation of protein oleogels via capillary attraction of engineered protein particles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
40
|
Kusano T, Yokota M, Yonaga A, Akimoto Y, Tani M, Nakamura H, Matsunaga T. Shear properties and water connectivity of wet granules at high solid content concentration. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Si Y, Li T, Clegg PS. Mixed Aqueous-and-Oil Foams via the Spinning Together of Separate Particle-Stabilized Aqueous and Oil Foams. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4243-4249. [PMID: 35352955 PMCID: PMC9009175 DOI: 10.1021/acs.langmuir.1c03348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/16/2022] [Indexed: 05/31/2023]
Abstract
We describe an experimental technique for the production of foams comprised of bubbles in a continuous phase of balanced quantities of aqueous and oil phases. Initially, two highly stable foams are fabricated: one typically made from olive oil with bubbles stabilized using partially fluorinated particles and the other made from a mixture of water and propylene glycol with bubbles stabilized using partially hydrophobic particles. After a rough mixture is prepared, the final mixed foam is fabricated via spinning the components together; the spinning leads to the final foam being well-mixed and dry. Here the final mixed foams are presented in thin-film form. We show the locations and roles of the various components.
Collapse
Affiliation(s)
- Yuchen Si
- School
of Physics and Astronomy, University of
Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, U.K.
- Wenzhou
Institute, University of Chinese Academy
of Sciences, Wenzhou, Zhejiang 325001, P. R. China
| | - Tao Li
- Wenzhou
Institute, University of Chinese Academy
of Sciences, Wenzhou, Zhejiang 325001, P. R. China
| | - Paul S. Clegg
- School
of Physics and Astronomy, University of
Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, U.K.
| |
Collapse
|
42
|
Ahmadzadeh S, Chen W, Rizvi SS. Oleogelation using modified milk protein concentrate produced by supercritical fluid extrusion. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Wang Y, Willenbacher N. Phase-Change-Enabled, Rapid, High-Resolution Direct Ink Writing of Soft Silicone. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109240. [PMID: 35174913 DOI: 10.1002/adma.202109240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Soft silicone is an ideal flexible material for application, e.g., in soft robotics, flexible electronics, bionics, or implantable biomedical devices. However, gravity-driven sagging, filament stretching, and deformation can cause inevitable defects during rapid manufacturing, making it hard to obtain complex, high-resolution 3D silicone structures with direct ink writing (DIW) technology. Here, rapid DIW of soft silicone enabled by a phase-change-induced, reversible change of the ink's hierarchical microstructure is presented. During printing, the silicone-based ink, containing silica nanoparticles and wax microparticles, is extruded from a heated nozzle into a cold environment under controlled stress. The wax phase change (solid-liquid-solid) during printing rapidly destroys and rebuilds the particle networks, realizing fast control of the ink flow behavior and printability. This high-operating-temperature DIW method is fast (maximum speed ≈3100 mm min-1 ) and extends the DIW scale range of soft silicone. The extruded filaments have small diameters (50 ± 5 µm), and allow for large spans (≈13-fold filament diameter) and high aspect ratios (≈1), setting a new benchmark in the DIW of soft silicone. Printed silicone structures exhibit excellent performance as flexible sensors, superhydrophobic surfaces, and shape-memory bionic devices, illustrating the potential of the new 3D printing strategy.
Collapse
Affiliation(s)
- Yiliang Wang
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Norbert Willenbacher
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| |
Collapse
|
44
|
Kim J, Lee J. Liquid-Suspended and Liquid-Bridged Liquid Metal Microdroplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2108069. [PMID: 35150080 DOI: 10.1002/smll.202108069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Liquid metals (LMs) and alloys are attracting increasing attention owing to their combined advantages of high conductivity and fluidity, and have shown promising results in various emerging applications. Patterning technologies using LMs are being actively researched; among them, direct ink writing is considered a potentially viable approach for efficient LM additive manufacturing. However, true LM additive manufacturing with arbitrary printing geometries remains challenging because of the intrinsically low rheological strength of LMs. Herein, colloidal suspensions of LM droplets amenable to additive manufacturing (or "3D printing") are realized using formulations containing minute amounts of liquid capillary bridges. The resulting LM suspensions exhibit exceptionally high rheological strength with yield stress values well above 103 Pa, attributed to inter-droplet capillary attraction mediated by the liquid bridges adsorbed on the oxide skin of the LM droplets. Such liquid-bridged LM suspensions, as extrudable ink-type filaments, are based on uncurable continuous-phase liquid media, have a long pot-life and outstanding shear-thinning properties, and shape retention, demonstrating excellent rheological processability suitable for 3D printing. These findings will enable the emergence of a variety of new advanced applications that necessitate LM patterning into highly complicated multidimensional structures.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Korea
| | - Joohyung Lee
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Korea
| |
Collapse
|
45
|
Zhang X, Zhang J, Liu H, Jia P. Rayleigh-Plateau Instability of a Particle-Laden Liquid Column: A Lattice Boltzmann Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3453-3468. [PMID: 35274953 DOI: 10.1021/acs.langmuir.1c03262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colloidal particles known to be capable of stabilizing fluid-fluid interfaces have been widely applied in emulsion preparation, but their precise role and underlying influencing mechanism remain poorly understood. In this study, a perturbed liquid column with particles evenly distributed on its surface is investigated using a three-dimensional lattice Boltzmann method, which is built upon the color-gradient two-phase flow model but with a new capillary force model and a momentum exchange method for particle dynamics. The developed method is first validated by simulating the wetting behavior of a particle on a fluid interface and the classic Rayleigh-Plateau instability and is then used to explore the effects of particle concentration and contact angle on the capillary instability of the particle-laden liquid column. It is found that increasing the particle concentration can enhance the stability of the liquid column and thus delay the breakup, and the liquid column is most stable under slightly hydrophobic conditions, which corresponds to the lowest initial liquid-gas interfacial free energy. Due to different pressure gradients inside and outside the liquid column and the capillary force being directed away from the neck, hydrophobic particles tend to assemble in a less compact manner near the neck of the deformed liquid column, while hydrophilic particles prefer to gather far away from the neck. For hydrophobic particles, in addition to the influence of the initial liquid-gas interfacial free energy, the self-assembly of particles in a direction opposite to the liquid flow also contributes to opposing the rupture of the liquid column.
Collapse
Affiliation(s)
- Xitong Zhang
- School of Energy and Power Engineering, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, China
| | - Jiangang Zhang
- School of Energy and Power Engineering, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, China
| | - Haihu Liu
- School of Energy and Power Engineering, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, China
| | - Pan Jia
- School of Science, Harbin Institute of Technology, Shenzhen University Town, Xili, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
46
|
Abstract
In conventional classification, soft robots feature mechanical compliance as the main distinguishing factor from traditional robots made of rigid materials. Recent advances in functional soft materials have facilitated the emergence of a new class of soft robots capable of tether-free actuation in response to external stimuli such as heat, light, solvent, or electric or magnetic field. Among the various types of stimuli-responsive materials, magnetic soft materials have shown remarkable progress in their design and fabrication, leading to the development of magnetic soft robots with unique advantages and potential for many important applications. However, the field of magnetic soft robots is still in its infancy and requires further advancements in terms of design principles, fabrication methods, control mechanisms, and sensing modalities. Successful future development of magnetic soft robots would require a comprehensive understanding of the fundamental principle of magnetic actuation, as well as the physical properties and behavior of magnetic soft materials. In this review, we discuss recent progress in the design and fabrication, modeling and simulation, and actuation and control of magnetic soft materials and robots. We then give a set of design guidelines for optimal actuation performance of magnetic soft materials. Lastly, we summarize potential biomedical applications of magnetic soft robots and provide our perspectives on next-generation magnetic soft robots.
Collapse
Affiliation(s)
- Yoonho Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
47
|
Kazama R, Murakami Y, Shono A. Microstructure and rheological behavior of capillary suspension prepared with plate-shaped particles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Chen W, Yu B, Wei Z, Mao S, Li T. The creation of raspberry-like droplets and their coalescence dynamics: An ideal model for certain biological processes. J Colloid Interface Sci 2022; 615:752-758. [PMID: 35176541 DOI: 10.1016/j.jcis.2022.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 10/19/2022]
Abstract
HYPOTHESIS Although a raspberry-like configuration has been long observed in biological processes (e.g., the intimate association between Cajal bodies and B-snurposomes), studies on this morphology are very limited. Raspberry-like droplets created with multiple immiscible liquids are expected to provides an ideal model for such structures in biological systems, including their possible formation mechanism, phase behaviors, and coalescence dynamics. EXPERIMENTS & SIMULATIONS Using three liquid phases, one surfactant and some colloidal particles, raspberry-like droplets containing one large central droplet and multiple protrusions embedded on its surface were successfully created. Confocal microscopy studies were carried out to track their formation and coalescence dynamics. A 2D phase-field model was applied to test the influence of the protrusions in the system. FINDINGS The formation of this raspberry-like morphology involves a partial inversion process, which was predicted by Friberg et al. with numerical simulations but has never been demonstrated experimentally. A two-step coalescence was revealed, where the protrusions merge first and create a capillary bridge, which drives the droplets to coalesce. Increasing the viscosity of the continuous phase can help to prevent the destabilization. These fundamental features of raspberry-like droplets represent an important step toward producing multi-liquid materials with unique functionality, and can potentially illuminate some biological systems and processes.
Collapse
Affiliation(s)
- Wei Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| | - Binbin Yu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| | - Zhiyou Wei
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| | - Sheng Mao
- Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China.
| | - Tao Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
49
|
Yang L, Sega M, Leimbach S, Kolb S, Karl J, Harting J. Capillary Interactions, Aggregate Formation, and the Rheology of Particle-Laden Flows: A Lattice Boltzmann Study. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c03909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lei Yang
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Fürther Straße 248, 90429 Nürnberg, Germany
| | - Marcello Sega
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Fürther Straße 248, 90429 Nürnberg, Germany
| | - Steffen Leimbach
- Chair of Energy Process Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fürther Straße 244f, 90429 Nürnberg, Germany
| | - Sebastian Kolb
- Chair of Energy Process Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fürther Straße 244f, 90429 Nürnberg, Germany
| | - Jürgen Karl
- Chair of Energy Process Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fürther Straße 244f, 90429 Nürnberg, Germany
| | - Jens Harting
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Fürther Straße 248, 90429 Nürnberg, Germany
- Department of Chemical and Biological Engineering and Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fürther Straße 248, 90429 Nürnberg, Germany
| |
Collapse
|
50
|
Menne D, Lemos da Silva L, Rotan M, Glaum J, Hinterstein M, Willenbacher N. Giant Functional Properties in Porous Electroceramics through Additive Manufacturing of Capillary Suspensions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3027-3037. [PMID: 34985253 DOI: 10.1021/acsami.1c19297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dedicated hierarchical structuring of functional ceramics can be used to shift the limits of functionality. This work presents the manufacturing of highly open porous, hierarchically structured barium titanate ceramics with 3-3 connectivity via direct ink writing of capillary suspension-type inks. The pore size of the printed struts (∼1 μm) is combined with a printed mesostructure (∼100 μm). The self-organized particle network, driven by strong capillary forces in the ternary solid/fluid/fluid ink, results in a high strut porosity, and the distinct flow properties of the ink allow for printing high strut size to pore size ratios, resulting in total porosities >60%. These unique and highly porous additive manufactured log-pile structures with closed bottom and top layers enable tailored dielectric and electromechanical coupling, resulting in an energy harvesting figure of merit FOM33 more than four times higher than any documented data for barium titanate. This clearly demonstrates that combining additive manufacturing of capillary suspensions in combination with appropriate sintering allows for creation of complex architected 3D structures with unprecedented properties. This opens up opportunities in a broad variety of applications, including electromechanical energy harvesting, electrode materials for batteries or fuel cells, thermoelectrics, or bone tissue engineering with piezoelectrically stimulated cell growth.
Collapse
Affiliation(s)
- David Menne
- Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, Gotthard-Franz-Strasse 3, 76131 Karlsruhe, Germany
| | - Lucas Lemos da Silva
- Institute for Applied Materials Ceramic Materials and Technologies, Karlsruhe Institute of Technology, Haid-und-Neu Strasse 7, 76131 Karlsruhe, Germany
| | - Magnus Rotan
- Department of Materials Science and Engineering, FACET Group, Norwegian University of Science and Technology, Sem Sælands vei 12, 7034 Trondheim, Norway
| | - Julia Glaum
- Department of Materials Science and Engineering, FACET Group, Norwegian University of Science and Technology, Sem Sælands vei 12, 7034 Trondheim, Norway
| | - Manuel Hinterstein
- Institute for Applied Materials Ceramic Materials and Technologies, Karlsruhe Institute of Technology, Haid-und-Neu Strasse 7, 76131 Karlsruhe, Germany
| | - Norbert Willenbacher
- Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, Gotthard-Franz-Strasse 3, 76131 Karlsruhe, Germany
| |
Collapse
|