1
|
Zhang N, Liu H. Switch on and off: Phospho-events in light signaling pathways. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 40243236 DOI: 10.1111/jipb.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/21/2025] [Indexed: 04/18/2025]
Abstract
Light is a fundamental environmental cue that dynamically orchestrates plant growth and development through spatiotemporally regulated molecular networks. Among these, phosphorylation, a key post-translational modification, plays a crucial role in controlling the function, stability, subcellular localization, and protein-protein interactions of light signaling components. This review systematically examines phosphorylation-dependent regulatory events within the Arabidopsis light signaling cascade, focusing on its regulatory mechanisms, downstream functional consequences, and crosstalk with other signaling pathways. We underscore the pivotal role of phosphorylation in light signaling transduction, elucidating how the phosphorylation-decoding framework transduces light information into growth and developmental plasticity to modulate plant-environment interactions.
Collapse
Affiliation(s)
- Nan Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518061, China
| | - Hongtao Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518061, China
| |
Collapse
|
2
|
Liu Y, Wang J, Liu X, Liao T, Ren H, Liu L, Huang X. The UV-B photoreceptor UVR8 interacts with the LOX1 enzyme to promote stomatal closure through the LOX-derived oxylipin pathway. THE PLANT CELL 2025; 37:koaf060. [PMID: 40123505 PMCID: PMC11979336 DOI: 10.1093/plcell/koaf060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 02/18/2025] [Indexed: 03/25/2025]
Abstract
Ultraviolet-B (UV-B) light-induced stomatal closure requires the photoreceptor UV RESISTANCE LOCUS 8 (UVR8) and nitric oxide (NO). However, the signaling pathways by which UV-B light regulates stomatal closure remain elusive. Here, we reveal that UVR8 signaling in the epidermis mediates stomatal closure in a tissue-specific manner in Arabidopsis (Arabidopsis thaliana). UV-B light promotes PHOSPHOLIPASE 1 (PLIP1)/PLIP3-mediated linoleic acid and α-linolenic acid accumulation and induces LIPOXYGENASE 1 (LOX1) expression. LOX1, which catabolizes linoleic acid and α-linolenic acid to produce oxylipin derivatives, acts downstream of UVR8 and upstream of the salicylic acid (SA) pathway associated with stomatal defense. Photoactivated UVR8 interacts with LOX1 and enhances its activity. Protein crystallography demonstrates that A. thaliana LOX1 and its ortholog in soybean (Glycine max) share overall structural similarity and conserved residues in the oxygen cavity, substrate cavity, and metal-binding site that are required for 9-LOX activity. The disruption of UVR8-LOX1 contact sites near the LOX1 oxygen and substrate cavities prevents UVR8-enhanced LOX1 activity and compromises stomatal closure upon UV-B exposure. Overall, our study uncovers a noncanonical UV-B signaling module, consisting of the UVR8 photoreceptor and the cytoplasmic lipoxygenase, that mediates stomatal responses to UV-B light.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Jue Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Xiaotian Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Ting Liao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Hui Ren
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Liang Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Chen Z, Wu X, Liu Z, He Z, Yue HH, Li FF, Xu K, Shao HC, Li WZ, Chen XW. Proteomic insight into growth and defense strategies under low ultraviolet-B acclimation in the cyanobacterium Nostoc sphaeroides. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 264:113101. [PMID: 39854926 DOI: 10.1016/j.jphotobiol.2025.113101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/03/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Prioritizing defense over growth often occurs under ultraviolet (UV)-B radiation while several studies showed its growth-promoting effects on photosynthetic organisms, how they overcome the growth-defense trade-off is unclear. This study deciphered the acclimation responses of the cyanobacterium Nostoc sphaeroides to low UV-B radiation (0.08 W m-2) using quantitative proteomic, physiological and biochemical analyses. We identified 628 significantly altered proteins, among which energy production and conversion related proteins dominated. The UV-B-acclimated cells exhibited a significant increase in the abundance of the phycoerythrin and chlorophyll synthesis related enzymes, along with enhanced linear and cyclic electron transport rates, which further led to a rise in light-induced NADPH generation (27 %) and ATP content (67 %). The enhanced photosynthetic energy supply could fuel both growth and defense in Nostoc sphaeroides. The UV-B-acclimated cells showed enhanced photosynthetic carbon fixation, as evidenced by an increase in extracellular carbonic anhydrase activity (142 %), ribulose-1,5-bisphosphate carboxylase/oxygenase activity (87 %) and the pH compensation point, compared to non-UV-B-acclimated cells. Low UV-B also induced ribosome heterogeneity, as indicated by significant changes in the abundance of core ribosomal proteins, RNA modification related enzymes, and ribosome biogenesis and translation related accessory factors. Additionally, low UV-B activated multiple defense strategies, such as significant upregulation of mycosporine-like amino acid synthesis, RecA-dependent DNA repair pathways and the glutathione redox system. Our findings suggested that growth and defense were balanced by enhancing the photosynthetic energy supply under low UV-B acclimation in the cyanobacterium Nostoc sphaeroides, which provides novel insight into mechanisms for overcoming growth-defense trade-offs.
Collapse
Affiliation(s)
- Zhen Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of life sciences, Hubei Normal University, Huangshi 435002, Hubei, China.
| | - Xun Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of life sciences, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Zhe Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of life sciences, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Zhen He
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of life sciences, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Hua-Hua Yue
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of life sciences, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Fei-Fei Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of life sciences, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Kui Xu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of life sciences, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Hai-Chen Shao
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of life sciences, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Wei-Zhi Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of life sciences, Hubei Normal University, Huangshi 435002, Hubei, China
| | - Xiong-Wen Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of life sciences, Hubei Normal University, Huangshi 435002, Hubei, China.
| |
Collapse
|
4
|
Hong Y, Zhou S, Zhang J, Lv Y, Yao N, Liu X. CtWD40-6 enhances the UV-B tolerance of safflower by regulating flavonoid accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109476. [PMID: 39765125 DOI: 10.1016/j.plaphy.2025.109476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/07/2024] [Accepted: 01/02/2025] [Indexed: 02/20/2025]
Abstract
Moderate UV-B promotes plant growth, but excessive UV-B inhibits plant development. The induction mechanism of how CtWD40-6 responds to UV-B is still unclear in safflower. Our results showed that CtWD40-6 is expressed at the top of safflower leaves and is strongly induced by UV-B. To further understand the function of the CtWD40-6 gene, we overexpressed the CtWD40-6 gene in safflower or Arabidopsis. First, different transgenic materials were treated with UV-B, and we found that the survival rate of plants overexpressing CtWD40-6 was significantly higher than that of the WT type. In contrast, the survival rate of wd40-6 mutant plants was significantly decreased compared with WT type. Then DAB, NBT and Trypan Blue staining were performed on different transgenic plants before and after UV-B treatment and the results showed that the staining of mutant and WT was significantly higher than that of overexpressing CtWD40-6. By comparing the data before and after UV-B stress, we found that the flavonoid content, antioxidant enzyme activity, chlorophyll content and photosynthetic rate of transgenic plants overexpressing CtWD40-6 were higher than those of WT and mutants, thereby obtaining better UV-B tolerance. Finally, we used yeast two-hybrid and luciferase complementation experiments to prove that CtWD40-6 increases the content of safflower flavonoids by interacting with CtANS1/CtCHS1/Ct4CL1/CtFLS1, thereby enhancing the plant's UV-B tolerance. The above results provide a theoretical basis for preliminary analysis of how safflower responds to UV-B stress through the transcriptional regulation of CtWD40-6.
Collapse
Affiliation(s)
- Yingqi Hong
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Institute for Safflower Industry Research / Pharmacy School of Shihezi University, Shihezi, 832003, China.
| | - Shiwen Zhou
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jianyi Zhang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China.
| | - Yanxi Lv
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China.
| | - Na Yao
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China.
| | - Xiuming Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China; Institute for Safflower Industry Research / Pharmacy School of Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
5
|
Qian J, Ren C, Wang F, Cao Y, Guo Y, Zhao X, Liu Y, Zhu C, Li X, Xu H, Chen J, Chen K, Li X. Genome-wide identification of UDP-glycosyltransferases involved in flavonol glycosylation induced by UV-B irradiation in Eriobotrya japonica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109481. [PMID: 39805168 DOI: 10.1016/j.plaphy.2025.109481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/18/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Flavonol glycosides are secondary metabolites important for plant development and stress defense such as UV-B irradiation. UDP-glycosyltransferase (UGT) catalyzes the last step in the biosynthesis of flavonol glycosides. Eriobotrya japonica is abundant in flavonol glycosides, but UGTs responsible for accumulation of flavonol glycosides remain unknown. Here, 13 flavonol glycosides including monoglycosides and diglycosides were characterized in different tissues of loquat by LC-MS/MS. UV-B irradiation significantly increased the accumulation of four quercetin glycosides and two kaempferol glycosides in loquat fruit. Based on UGT gene family analysis, transcriptome analysis, enzyme assays of recombinant proteins as well as transient overexpression assays in Nicotiana benthamiana, three UGTs were identified, i.e. EjUGT78T4 as flavonol 3-O-galactosyltransferase, EjUGT78S3 as flavonol 3-O-glucosyltransferase, and EjUGT91AK7 as flavonol 1 → 6 rhamnosyltransferase. This work elucidates the formation of flavonol glycosides in loquat through UGT-mediated glycosylation.
Collapse
Affiliation(s)
- Jiafei Qian
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Chuanhong Ren
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China; Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Fan Wang
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Yunlin Cao
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Yan Guo
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaoyong Zhao
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Yilong Liu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Changqing Zhu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaoying Li
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Hongxia Xu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Junwei Chen
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| | - Xian Li
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Dannay M, Bertin C, Cavallari E, Albanese P, Tolleter D, Giustini C, Menneteau M, Brugière S, Couté Y, Finazzi G, Demarsy E, Ulm R, Allorent G. Photoreceptor-induced LHL4 protects the photosystem II monomer in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2025; 122:e2418687122. [PMID: 39946539 PMCID: PMC11848305 DOI: 10.1073/pnas.2418687122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/09/2025] [Indexed: 02/26/2025] Open
Abstract
Photosynthesis, the fundamental process using light energy to convert carbon dioxide to organic matter, is vital for life on Earth. It relies on capturing light through light-harvesting complexes (LHC) in photosystem I (PSI) and PSII and on the conversion of light energy into chemical energy. Composition and organization of PSI and PSII core complexes are well conserved across evolution. PSII is particularly sensitive to photodamage but benefits from a large diversity of photoprotective mechanisms, finely tuned to handle the dynamic and ever-changing light conditions. Light Harvesting Complex protein family members (LHC and LHC-like families) have acquired a dual function during evolution. Members of the LHC antenna complexes of PS capture light energy, whereas others dissipate excess energy that cannot be harnessed for photosynthesis. This process mainly occurs through nonphotochemical quenching (NPQ). In this work, we focus on the Light Harvesting complex-Like 4 (LHL4) protein, a LHC-like protein induced by ultraviolet-B (UV-B) and blue light through UV Resistance locus 8 (UVR8) and phototropin photoreceptor-activated signaling pathways in the model green microalgae Chlamydomonas reinhardtii. We demonstrate that alongside established NPQ effectors, LHL4 plays a key role in photoprotection, preventing singlet oxygen accumulation in PSII and promoting cell survival upon light stress. LHL4 protective function is distinct from that of NPQ-related proteins, as LHL4 specifically and uniquely binds to the transient monomeric form of the core PSII complex, safeguarding its integrity. LHL4 characterization expands our understanding of the interplay between light harvesting and photoprotection mechanisms upon light stress in photosynthetic microalgae.
Collapse
Affiliation(s)
- Marie Dannay
- Université Grenoble Alpes, CNRS, CEA, INRAE, Interdisciplinary Research Institute of Grenoble, Cell and Plant Physiology Laboratory, Grenoble38000, France
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, Geneva1211, Switzerland
| | - Chloé Bertin
- Université Grenoble Alpes, CNRS, CEA, INRAE, Interdisciplinary Research Institute of Grenoble, Cell and Plant Physiology Laboratory, Grenoble38000, France
| | - Eva Cavallari
- Université Grenoble Alpes, CNRS, CEA, INRAE, Interdisciplinary Research Institute of Grenoble, Cell and Plant Physiology Laboratory, Grenoble38000, France
| | - Pascal Albanese
- Université Grenoble Alpes, CNRS, CEA, INRAE, Interdisciplinary Research Institute of Grenoble, Cell and Plant Physiology Laboratory, Grenoble38000, France
- Université Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, GrenobleFR2048, France
| | - Dimitri Tolleter
- Université Grenoble Alpes, CNRS, CEA, INRAE, Interdisciplinary Research Institute of Grenoble, Cell and Plant Physiology Laboratory, Grenoble38000, France
| | - Cécile Giustini
- Université Grenoble Alpes, CNRS, CEA, INRAE, Interdisciplinary Research Institute of Grenoble, Cell and Plant Physiology Laboratory, Grenoble38000, France
| | - Mathilde Menneteau
- Université Grenoble Alpes, CNRS, CEA, INRAE, Interdisciplinary Research Institute of Grenoble, Cell and Plant Physiology Laboratory, Grenoble38000, France
| | - Sabine Brugière
- Université Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, GrenobleFR2048, France
| | - Yohann Couté
- Université Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, GrenobleFR2048, France
| | - Giovanni Finazzi
- Université Grenoble Alpes, CNRS, CEA, INRAE, Interdisciplinary Research Institute of Grenoble, Cell and Plant Physiology Laboratory, Grenoble38000, France
| | - Emilie Demarsy
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, Geneva1211, Switzerland
| | - Roman Ulm
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, Geneva1211, Switzerland
- Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva1211, Switzerland
| | - Guillaume Allorent
- Université Grenoble Alpes, CNRS, CEA, INRAE, Interdisciplinary Research Institute of Grenoble, Cell and Plant Physiology Laboratory, Grenoble38000, France
| |
Collapse
|
7
|
Yu W, Sun Q, Xu H, Zhou X. Integrating Transcriptomics and Metabolomics to Comprehensively Analyze Phytohormone Regulatory Mechanisms in Rhododendron chrysanthum Pall. Under UV-B Radiation. Int J Mol Sci 2025; 26:1545. [PMID: 40004012 PMCID: PMC11855671 DOI: 10.3390/ijms26041545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
In order to fully elucidate the roles and systems of phytohormones in UV-B radiation (UV-B) leaves of the Rhododendron chrysanthum Pall. (R. chrysanthum), we conducted a comprehensive analysis of how R. chrysanthum protects itself against UV-B using transcriptomic and metabolomic data. Transcript and metabolite profiles were generated by a combination of deep sequencing and LC-MS/MS (liquid chromatography-tandem mass spectrometry), respectively. Combined with physiological and biochemical assays, we studied compound accumulation, biosynthesis and expression of signaling genes of seven hormones and the effects of hormones on plant photosynthesis. The findings indicate that during leaf defense against UV-B, photosynthesis declined, the photosynthetic system was impaired and the concentration of salicylic acid (SA) hormones increased, whereas the contents of cytokinin (CK), abscisic acid (ABA), ethylene, auxin, jasmonic acid (JA) and gibberellins (GAs) continued to decrease. Finally, correlation tests between hormone content and genes were analyzed, and genes closely related to leaf resistance to UV-B were identified in seven pathways. These results will expand our understanding of the hormonal regulatory mechanisms of plant resistance to UV-B and at the same time lay the foundation for plant resistance to adversity stress.
Collapse
Affiliation(s)
| | | | | | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| |
Collapse
|
8
|
Dutta S, Chattopadhyay S, Maurya JP. The concerted function of a novel class of transcription factors, ZBFs, in light, jasmonate, and abscisic acid signaling pathways. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:746-768. [PMID: 39115948 DOI: 10.1093/jxb/erae323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
Several classes of transcription factors have been investigated in light signaling pathways that bind to the light-responsive elements (LREs) present in the promoters of light regulatory genes for transcriptional regulation. Some of these transcription factors have been shown to bind to numerous promoters through genome-wide ChIP-on-chip (ChIP-chip) studies. Furthermore, through the integration of ChIP-seq and RNA-seq techniques, it has been demonstrated that a transcription factor modifies the expression of numerous genes with which it interacts. However, the mode of action of these transcription factors and their dependency on other regulators in the pathway has just started to be unraveled. In this review, we focus on a particular class of transcription factors, ZBFs (Z-box-binding factors), and their associated partners within the same or other classes of transcription factors and regulatory proteins during photomorphogenesis. Moreover, we have further made an attempt to summarize the crosstalk of these transcription factors with jasmonic acid-, abscisic acid-, and salicylic acid-mediated defense signaling pathways. This review offers an in-depth insight into the manner in which ZBFs and their interactors reshape cellular functions and plant behavior. The underlying principles not only contribute to a comprehensive understanding but also establish a framework for analyzing the interplay between early developmental events and hormone signaling, a regulation orchestrated by the ZBF family.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Biotechnology, School of Health Science and Translational Research, Sister Nivedita University, Kolkata 700156, West Bengal, India
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal 713209, India
| | - Jay Prakash Maurya
- Plant Development and Molecular Biology Lab, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
9
|
Liu W, Jenkins GI. Recent advances in UV-B signalling: interaction of proteins with the UVR8 photoreceptor. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:873-881. [PMID: 38525857 PMCID: PMC11805588 DOI: 10.1093/jxb/erae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
The UV RESISTANCE LOCUS 8 (UVR8) photoreceptor mediates many plant responses to UV-B and short wavelength UV-A light. UVR8 functions through interactions with other proteins which lead to extensive changes in gene expression. Interactions with particular proteins determine the nature of the response to UV-B. It is therefore important to understand the molecular basis of these interactions: how are different proteins able to bind to UVR8 and how is differential binding regulated? This concise review highlights recent developments in addressing these questions. Key advances are discussed with regard to: identification of proteins that interact with UVR8; the mechanism of UVR8 accumulation in the nucleus; the photoactivation of UVR8 monomer; the structural basis of interaction between UVR8 and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and REPRESSOR OF UV-B PHOTOMORPHOGENESIS (RUP) proteins; and the role of UVR8 phosphorylation in modulating interactions and responses to UV-B. Nevertheless, much remains to be understood, and the need to extend future research to the growing list of interactors is emphasized.
Collapse
Affiliation(s)
- Wei Liu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gareth I Jenkins
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
10
|
Sellaro R, Durand M, Aphalo PJ, Casal JJ. Making the most of canopy light: shade avoidance under a fluctuating spectrum and irradiance. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:712-729. [PMID: 39101508 PMCID: PMC11805590 DOI: 10.1093/jxb/erae334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/08/2024] [Indexed: 08/06/2024]
Abstract
In the field, plants face constantly changing light conditions caused by both atmospheric effects and neighbouring vegetation. This interplay creates a complex, fluctuating light environment within plant canopies. Shade-intolerant species rely on light cues from competitors to trigger shade avoidance responses, ensuring access to light for photosynthesis. While research often uses controlled growth chambers with steady light to study shade avoidance responses, the influence of light fluctuations in real-world settings remains unclear. This review examines the dynamic light environments found in woodlands, grasslands, and crops. We explore how plants respond to some fluctuations but not others, analyse the potential reasons for these differences, and discuss the possible molecular mechanisms regulating this sensitivity. We propose that studying shade avoidance responses under fluctuating light conditions offers a valuable tool to explore the intricate regulatory network behind them.
Collapse
Affiliation(s)
- Romina Sellaro
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
| | - Maxime Durand
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pedro J Aphalo
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jorge J Casal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| |
Collapse
|
11
|
Zhang Y, Zhang Y, Yang Z, Li Q, Chen W, Wen X, Chen H, Cao S. Genome-Wide Identification, Characterization, and Expression Analysis of BES1 Family Genes in ' Tieguanyin' Tea Under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:473. [PMID: 39943035 PMCID: PMC11820857 DOI: 10.3390/plants14030473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
The BRI1-EMS-SUPPRESSOR 1 (BES1) family comprises plant-specific transcription factors, which are distinguished by atypical bHLH domains. Over the past two decades, genetic and biochemical studies have established that members of the BRI1-EMS-SUPPRESSOR 1 (BES1) family are crucial for regulating the expression of genes involved in brassinosteroid (BR) response in rapeseed. Due to the significance of the BES1 gene family, extensive research has been conducted to investigate its functional properties. This study presents a comprehensive identification and computational analysis of BES1 genes in 'Tieguanyin' (TGY) tea (Camellia sinensis). A total of 10 BES1 genes were initially identified in the TGY genome. Through phylogenetic tree analysis, this study uniquely revealed that CsBES1.2 and CsBES1.5 cluster with SlBES1.8 from Solanum lycopersicum, indicating their critical roles in fruit growth and development. Synteny analysis identified 20 syntenic genes, suggesting the conservation of their evolutionary functions. Analysis of the promoter regions revealed two types of light-responsive cis-elements, with CsBES1.4 exhibiting the highest number of light-related cis-elements (13), followed by CsBES1.9 and CsBES1.10. Additional validation via qRT-PCR experiments showed that CsBES1.9 and CsBES1.10 were significantly upregulated under light exposure, with CsBES1.10 reaching approximately six times the expression level of the control after 4 h. These results suggest that CsBES1.9 and CsBES1.4 could play crucial roles in responding to abiotic stress. This study offers novel insights into the functional roles of the BES1 gene family in 'Tieguanyin' tea and establishes a significant foundation for future research, especially in exploring the roles of these genes in response to abiotic stresses, such as light exposure.
Collapse
Affiliation(s)
- Yanzi Zhang
- Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yanlin Zhang
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Q.L.)
| | - Zhicheng Yang
- College of Future Technologies, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Y.); (W.C.)
| | - Qingyan Li
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Q.L.)
| | - Weixiang Chen
- College of Future Technologies, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Y.); (W.C.)
| | - Xinyan Wen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hao Chen
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
12
|
Han D, Lin C, Xia S, Zheng X, Zhu C, Shen Y, Chen Y, Peng C, Wang C, He J, Lai J, Yang C. The Role of Carnosic Acid in the UV-B Stress Resistance Signalling Pathway in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2025; 48:1232-1241. [PMID: 39440524 DOI: 10.1111/pce.15226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Carnosic acid (CA) is recognized as an antioxidant that confers protection to plants against various forms of oxidative stress, including UV-B stress. However, limited research has been conducted to elucidate the molecular mechanisms underlying its defence against UV-B stress. In this study, we demonstrated that CA exhibits more efficacy compared to other antioxidants in UV-B resistance. Moreover, CA was found to enhance the accumulation of secondary metabolites in Arabidopsis leaves. Through the analysis of differentially expressed genes in response to UV-B stress with or without CA treatment, we uncovered that the exogenous application of CA effectively activates the flavonoid biosynthesis pathway in Arabidopsis to improve resistance of Arabidopsis to UV-B stress.
Collapse
Affiliation(s)
- Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Chufang Lin
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Simin Xia
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Xiaoting Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Chengluo Zhu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Yue Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Yue Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Changlian Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Caijuan Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Jinming He
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| |
Collapse
|
13
|
Xin J, Xue S, Wang H, Li X, Zang Y, Liu L, Tang X, Chen J. Investigating the response mechanisms of the intertidal seagrass Zostera japonica to increased UVB radiation through physiological, transcriptomic, and metabolomic analyses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117856. [PMID: 39914076 DOI: 10.1016/j.ecoenv.2025.117856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/13/2025] [Accepted: 02/03/2025] [Indexed: 03/03/2025]
Abstract
Global climate change has led to increased ultraviolet-B (UVB) radiation, which is now a major global environmental issue that poses significant threats to ecosystems. Zostera japonica, a higher plant inhabiting the intertidal zone, is particularly impacted by this increase in UVB radiation. Furthermore, its unique evolutionary history has endowed Z. japonica with distinct characteristics that differentiate its response to environmental changes from those of other marine and terrestrial plants. However, the specific response mechanisms of Z. japonica to elevated levels of UVB radiation are not fully understood. Therefore, we investigated the response mechanism of Z. japonica to varying doses of increased UVB radiation by integrating the physiological responses with transcriptomic and metabolomic analyses. The results revealed that excessive reactive oxygen species (ROS) were key substances induced by increased UVB radiation and that photosynthesis was significantly inhibited. To mitigate these adverse effects, the expression levels of genes related to antioxidants and UV-absorbing compounds, including flavonoids (PAL, 4CL, CHS, CHI, F3H) and antioxidant enzymes (DHAR, MDHAR, APX), were upregulated. The increased synthesis of these compounds serves to scavenge accumulated ROS and absorb UV radiation. Notably, flavonoids are the preferred compounds synthesized by Z. japonica, in contrast to other plant species. In addition, the weighted gene coexpression network analysis (WGCNA) method was employed to identify genes that may play important roles in the response of Z. japonica to increased UVB radiation. The results of this study provide new insights into the potential mechanisms of the response of Z. japonica to increased UVB radiation and serve as important references for elucidating the environmental adaptation mechanisms of intertidal seagrasses.
Collapse
Affiliation(s)
- Jiayi Xin
- MoE Key Laboratory of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China.
| | - Song Xue
- MoE Key Laboratory of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China.
| | - Hongzhen Wang
- MoE Key Laboratory of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China.
| | - Xinqi Li
- MoE Key Laboratory of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China.
| | - Yu Zang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong, China.
| | - Lei Liu
- MoE Key Laboratory of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China.
| | - Xuexi Tang
- MoE Key Laboratory of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China.
| | - Jun Chen
- MoE Key Laboratory of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China.
| |
Collapse
|
14
|
Ren J, Li T, Guo M, Zhang Q, Ren S, Wang L, Wu Q, Niu S, Yi K, Ruan W. A PHR-dependent reciprocal antagonistic interplay between UV response and P-deficiency adaptation in plants. PLANT COMMUNICATIONS 2025; 6:101140. [PMID: 39367602 PMCID: PMC11783903 DOI: 10.1016/j.xplc.2024.101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/25/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Plants are often simultaneously stressed by both UV radiation and phosphorus (P) deficiency in agricultural ecosystems. Coordinated responses and adaptations to these stressors are critical for plant growth, development, and survival. However, the underlying molecular response and adaptation mechanisms in plants are not fully understood. Here, we show that plants use a reciprocal antagonistic strategy in response to UV radiation and P deficiency. UV radiation inhibits P-starvation response processes and disrupts phosphate (Pi) homeostasis by suppressing the function of PHOSPHATE STARVATION RESPONSE PROTEINS (PHRs), the Pi central regulators. Conversely, P availability modulates plant UV tolerance and the expression of UV radiation response genes in a PHR-dependent manner. Therefore, reducing the P supply or increasing PHR activities can improve tolerance to UV stress in rice. Moreover, this antagonistic interaction is conserved across various plant species. Our meta-analysis showed that the increase in global UV radiation over the last 40 years may have reduced crop P-utilization efficiency worldwide. Our findings provide insights for optimizing P fertilizer management and breeding smart crops that are resilient to fluctuations in UV radiation and soil P levels.
Collapse
Affiliation(s)
- Jianhao Ren
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianjie Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Meina Guo
- State Key Laboratory of Efficient Production of Forest Resources/National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qianqian Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Suna Ren
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingyu Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shihui Niu
- State Key Laboratory of Efficient Production of Forest Resources/National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenyuan Ruan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
15
|
Hwang G, Lee T, Park J, Paik I, Lee N, Kim YJ, Song YH, Kim WY, Oh E. UV-B increases active phytochrome B to suppress thermomorphogenesis and enhance UV-B stress tolerance at high temperatures. PLANT COMMUNICATIONS 2025; 6:101142. [PMID: 39390743 PMCID: PMC11783897 DOI: 10.1016/j.xplc.2024.101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Plants respond to slight increases in ambient temperature by altering their architecture, a phenomenon collectively termed thermomorphogenesis. Thermomorphogenesis helps mitigate the damage caused by potentially harmful high-temperature conditions and is modulated by multiple environmental factors. Among these factors, ultraviolet-B (UV-B) light has been shown to strongly suppress this response. However, the molecular mechanisms by which UV-B light regulates thermomorphogenesis and the physiological roles of the UV-B-mediated suppression remain poorly understood. Here, we show that UV-B light inhibits thermomorphogenesis through the UV RESISTANCE LOCUS8 (UVR8)-CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1)-phytochrome B (phyB)/LONG HYPOCOTYL IN FAR RED 1 (HFR1) signaling pathway. We found that cop1 mutants maintain high levels of active phyB at high temperatures. Extensive genetic analyses revealed that the increased levels of phyB, HFR1, and CRY1 in cop1 mutants redundantly reduce both the level and the activity of PHYTOCHROME INTERACTING FACTOR4 (PIF4), a key positive regulator in thermomorphogenesis, thereby repressing this growth response. In addition, we found that UV-B light inactivates COP1 to enhance phyB stability and increase its photobody number. The UV-B-stabilized active phyB, in concert with HFR1, inhibits thermomorphogenesis by interfering with PIF4 activity. We further demonstrate that increased levels of active phyB enhance UV-B tolerance by promoting flavonoid biosynthesis and inhibiting thermomorphogenic growth. Taken together, our results elucidate that UV-B increases the levels of active phyB and HFR1 by inhibiting COP1 to suppress PIF4-mediated growth responses, which is crucial for plant tolerance to UV-B stress at high temperatures.
Collapse
Affiliation(s)
- Geonhee Hwang
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Taedong Lee
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jeonghyang Park
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Inyup Paik
- US Army Engineer Research and Development Center, Austin, TX 39180, USA
| | - Nayoung Lee
- Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju 52828, Korea
| | - Yun Ju Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Young Hun Song
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21four), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul 02841, Korea.
| |
Collapse
|
16
|
Job N, Dwivedi S, Lingwan M, Datta S. BBX22 enhances the accumulation of antioxidants to inhibit DNA damage and promotes DNA repair under high UV-B. PHYSIOLOGIA PLANTARUM 2025; 177:e70038. [PMID: 39780752 DOI: 10.1111/ppl.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Under changing climatic conditions, plant exposure to high-intensity UV-B can be a potential threat to plant health and all plant-derived human requirements, including food. It's crucial to understand how plants respond to high UV-B radiation so that proper measures can be taken to enhance tolerance towards high UV-B stress. We found that BBX22, a B-box protein-coding gene, is strongly induced within one hour of exposure to high-intensity UV-B. Our metabolomics data indicated that BBX22 promotes the accumulation of antioxidants like ascorbic acid and proline. These antioxidants play a vital role in shielding plants exposed to high UV-B from the detrimental effects of Reactive Oxygen Species (ROS), including DNA damage. Additionally, BBX22 promotes DNA damage repair by inducing the expression of DNA repair genes like UVR1 and UVR3. BBX22 directly binds to the promoter of UVR1 to regulate its expression. Furthermore, BBX22 indirectly induces the expression of UVR1 and UVR3 by enhancing the binding of HY5 to their promoters. Together, these results suggest a multi-pronged role of BBX22 in protection against high-intensity UV-B. Enhancing BBX22 levels or its orthologs in different plant species can potentially offer DNA damage protection and tolerance against intense UV radiation.
Collapse
Affiliation(s)
- Nikhil Job
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India
- Current address: Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Shubhi Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India
| | - Maneesh Lingwan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India
- Current address: Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India
| |
Collapse
|
17
|
Gong F, Meng J, Xu H, Zhou X. The Molecular Mechanism Regulating Flavonoid Production in Rhododendron chrysanthum Pall. Against UV-B Damage Is Mediated by RcTRP5. Int J Mol Sci 2024; 25:13383. [PMID: 39769148 PMCID: PMC11677096 DOI: 10.3390/ijms252413383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Elevated levels of reactive oxygen species (ROS) are caused by ultraviolet B radiation (UV-B) stress. In response, plants strengthen their cell membranes, impeding photosynthesis. Additionally, UV-B stress initiates oxidative stress within the antioxidant defense system and alters secondary metabolism, particularly by increasing the quantity of UV-absorbing compounds such as flavonoids. The v-myb avian myeloblastosis viral oncogene homolog (MYB) transcription factor (TF) may participate in a plant's response to UV-B damage through its regulation of flavonoid biosynthesis. In this study, we discovered that the photosynthetic activity of Rhododendron chrysanthum Pall. (R. chrysanthum) decreased when assessing parameters of chlorophyll (PSII) fluorescence parameters under UV-B stress. Concurrently, antioxidant system enzyme expression increased under UV-B exposure. A multi-omics data analysis revealed that acetylation at the K68 site of the RcTRP5 (telomeric repeat binding protein of Rhododendron chrysanthum Pall.) transcription factor was upregulated. This acetylation modification of RcTRP5 activates the antioxidant enzyme system, leading to elevated expression levels of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT). Upregulation is also observed at the K95 site of the chalcone isomerase (CHI) enzyme and the K178 site of the anthocyanidin synthase (ANS) enzyme. We hypothesize that RcTRP5 influences acetylation modifications of CHI and ANS in flavonoid biosynthesis, thereby indirectly regulating flavonoid production. This study demonstrates that R. chrysanthum can be protected from UV-B stress by accumulating flavonoids. This could serve as a useful strategy for enhancing the plant's flavonoid content and provide a valuable reference for research on the metabolic regulation mechanisms of other secondary substances.
Collapse
Affiliation(s)
| | | | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China; (F.G.)
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China; (F.G.)
| |
Collapse
|
18
|
Gu H, Peng Z, Kuang X, Hou L, Peng X, Song M, Liu J. Enhanced Synthesis of Volatile Compounds by UV-B Irradiation in Artemisia argyi Leaves. Metabolites 2024; 14:700. [PMID: 39728481 DOI: 10.3390/metabo14120700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Background: Volatile compounds have a deep influence on the quality and application of the medicinal herb Artemisia argyi; however, little is known about the effect of UV-B radiation on volatile metabolites. Methods: We herein investigated the effects of UV-B exposure on the volatile compounds and transcriptome of A. argyi to assess the potential for improving its quality and medicinal characteristics. Results: Out of 733 volatiles obtained, a total of 133 differentially expressed metabolites (DEMs) were identified by metabolome analysis. These were classified into 16 categories, primarily consisting of terpenoids, esters, heterocyclic compounds, alcohols, and ketones. Sensory odor analysis indicated that green was the odor with the highest number of annotations. Among the 544 differentially expressed genes (DEGs) identified by transcriptome analysis, most DEGs were linked to "metabolic pathways" and "biosynthesis of secondary metabolites". Integrated analysis revealed that volatiles were mainly synthesized through the shikimate pathway and the MEP pathway. RNA-seq and qPCR results indicated that transcription factors HY5, bHLH25, bHLH18, bHLH148, MYB114, MYB12, and MYB111 were upregulated significantly after UV-B radiation, and were therefore considered key regulatory factors for volatiles synthesis under UV-B radiation. Conclusions: These findings not only provide new insights into UV-induced changes in volatile compounds, but also provide an exciting opportunity to enhance medicinal herbs' value, facilitating the development of products with higher levels of essential oils, flavor, and bioactivity.
Collapse
Affiliation(s)
- Haike Gu
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China
| | - Zhuangju Peng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiuwen Kuang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Hou
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China
| | - Xinyuan Peng
- School of International Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meifang Song
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China
- National Natural History Museum of China, Beijing 100050, China
| | - Junfeng Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
19
|
Jiang B. Light-induced cryptochrome 2 liquid-liquid phase separation and mRNA methylation. THE NEW PHYTOLOGIST 2024; 244:2163-2169. [PMID: 39434460 DOI: 10.1111/nph.20201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024]
Abstract
Light is essential not only for photosynthesis but also for the regulation of various physiological and developmental processes in plants. While the mechanisms by which light regulates transcription and protein stability are well established, the effects of light on RNA methylation and their subsequent impact on plant growth and development are less understood. Upon exposure to blue light, the photoreceptor cryptochromes form nuclear speckles or nuclear bodies, termed CRY photobodies. The CRY2 photobodies undergo light-induced homo-oligomerization and liquid-liquid phase separation (LLPS), which are crucial for their physiological activity. Recent studies have proposed that blue light-induced CRY2 LLPS increases the local concentration or directly enhances the biochemical activities of RNA N6-methyladenosine (m6A) methyltransferases, thus, to regulate circadian clock and maintain Chl homeostasis through processes of RNA decay or translation. This review aimed to elucidate the functions of CRY2 and LLPS in RNA methylation, focusing on the light-controlled reversible phase transitions regulon and the outstanding questions that remain in RNA methylation.
Collapse
Affiliation(s)
- Bochen Jiang
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Sycamore Research Institute of Life Sciences, Shanghai, 201203, China
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
20
|
Dutta S, Basu R, Pal A, Kunalika MH, Chattopadhyay S. The homeostasis of AtMYB4 is maintained by ARA4, HY5, and CAM7 during Arabidopsis seedling development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2515-2535. [PMID: 39526498 DOI: 10.1111/tpj.17126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/24/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Calmodulin7 (CAM7) is a key transcription factor of Arabidopsis seedling development. CAM7 works together with HY5 bZIP protein to promote photomorphogenesis at various wavelengths of light. In this study, we show that AtMYB4, identified from a yeast two-hybrid screen, physically interacts with CAM7 and works as a positive regulator of photomorphogenesis at various wavelengths of light. CAM7 and HY5 directly bind to the promoter of AtMYB4 to promote its expression for photomorphogenic growth. On the other hand, ARA4, identified from the same yeast two-hybrid screen, works as a negative regulator of photomorphogenic growth specifically in white light. The double mutant analysis reveals that the altered hypocotyl elongation of atmyb4 and ara4 is either partly or completely suppressed by additional loss of function of CAM7. Furthermore, ARA4 genetically interacts with AtMYB4 in an antagonistic manner to suppress the elongated hypocotyl phenotype of atmyb4. The transactivation studies reveal that while CAM7 activates the promoter of AtMYB4 in association with HY5, ARA4 negatively regulates AtMYB4 expression. Taken together, these results demonstrate that working as a negative regulator of photomorphogenesis, ARA4 plays a balancing act on CAM7 and HY5-mediated regulation of AtMYB4.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Riya Basu
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Abhideep Pal
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - M H Kunalika
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Durgapur, 713209, India
| |
Collapse
|
21
|
Huang ZD, Bugaj LJ. Optogenetic Control of Condensates: Principles and Applications. J Mol Biol 2024; 436:168835. [PMID: 39454749 DOI: 10.1016/j.jmb.2024.168835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Biomolecular condensates appear throughout cell physiology and pathology, but the specific role of condensation or its dynamics is often difficult to determine. Optogenetics offers an expanding toolset to address these challenges, providing tools to directly control condensation of arbitrary proteins with precision over their formation, dissolution, and patterning in space and time. In this review, we describe the current state of the field for optogenetic control of condensation. We survey the proteins and their derivatives that form the foundation of this toolset, and we discuss the factors that distinguish them to enable appropriate selection for a given application. We also describe recent examples of the ways in which optogenetic condensation has been used in both basic and applied studies. Finally, we discuss important design considerations when engineering new proteins for optogenetic condensation, and we preview future innovations that will further empower this toolset in the coming years.
Collapse
Affiliation(s)
- Zikang Dennis Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Tahir H, Sajjad M, Qian M, Zeeshan Ul Haq M, Tahir A, Farooq MA, Wei L, Shi S, Zhou K, Yao Q. Glutathione and Ascorbic Acid Accumulation in Mango Pulp Under Enhanced UV-B Based on Transcriptome. Antioxidants (Basel) 2024; 13:1429. [PMID: 39594570 PMCID: PMC11591329 DOI: 10.3390/antiox13111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Mango (Mangifera indica), a nutritionally rich tropical fruit, is significantly impacted by UV-B radiation, which induces oxidative stress and disrupts physiological processes. This study aimed to investigate mango pulp's molecular and biochemical responses to UV-B stress (96 kJ/mol) from the unripe to mature stages over three consecutive years, with samples collected at 10-day intervals. UV-B stress affected both non-enzymatic parameters, such as maturity index, reactive oxygen species (ROS) levels, membrane permeability, and key enzymatic components of the ascorbate-glutathione (AsA-GSH) cycle. These enzymes included glutathione reductase (GR), gamma-glutamyl transferase (GGT), glutathione S-transferases (GST), glutathione peroxidase (GPX), glucose-6-phosphate dehydrogenase (G6PDH), galactono-1,4-lactone dehydrogenase (GalLDH), ascorbate peroxidase (APX), ascorbate oxidase (AAO), and monodehydroascorbate reductase (MDHAR). Transcriptomic analysis revealed 18 differentially expressed genes (DEGs) related to the AsA-GSH cycle, including MiGR, MiGGT1, MiGGT2, MiGPX1, MiGPX2, MiGST1, MiGST2, MiGST3, MiG6PDH1, MiG6PDH2, MiGalLDH, MiAPX1, MiAPX2, MiAAO1, MiAAO2, MiAAO3, MiAAO4, and MiMDHAR, validated through qRT-PCR. The findings suggest that UV-B stress activates a complex regulatory network in mango pulp to optimize ROS detoxification and conserve antioxidants, offering insights for enhancing the resilience of tropical fruit trees to environmental stressors.
Collapse
Affiliation(s)
- Hassam Tahir
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Muhammad Sajjad
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Minjie Qian
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | | | - Ashar Tahir
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Muhammad Aamir Farooq
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Ling Wei
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shaopu Shi
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Kaibing Zhou
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Quansheng Yao
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, Zhanjiang 524091, China
| |
Collapse
|
23
|
Kunz CF, de Vries S, de Vries J. Plant terrestrialization: an environmental pull on the evolution of multi-sourced streptophyte phenolics. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230358. [PMID: 39343031 PMCID: PMC11528360 DOI: 10.1098/rstb.2023.0358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 05/20/2024] [Indexed: 10/01/2024] Open
Abstract
Phenolic compounds of land plants are varied: they are chemodiverse, are sourced from different biosynthetic routes and fulfil a broad spectrum of functions that range from signalling phytohormones, to protective shields against stressors, to structural compounds. Their action defines the biology of land plants as we know it. Often, their roles are tied to environmental responses that, however, impacted already the algal progenitors of land plants, streptophyte algae. Indeed, many streptophyte algae successfully dwell in terrestrial habitats and have homologues for enzymatic routes for the production of important phenolic compounds, such as the phenylpropanoid pathway. Here, we synthesize what is known about the production of specialized phenolic compounds across hundreds of millions of years of streptophyte evolution. We propose an evolutionary scenario in which selective pressures borne out of environmental cues shaped the chemodiversity of phenolics in streptophytes. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Cäcilia F. Kunz
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen37077, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen37077, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen37077, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goettingen37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, University of Goettingen, Goettingen37077, Germany
| |
Collapse
|
24
|
Péter C, Ádám É, Klose C, Grézal G, Hajdu A, Steinbach G, Kozma-Bognár L, Silhavy D, Nagy F, Viczián A. Phytochrome C and Low Temperature Promote the Protein Accumulation and Red-Light Signaling of Phytochrome D. PLANT & CELL PHYSIOLOGY 2024; 65:1717-1735. [PMID: 39119682 PMCID: PMC11558544 DOI: 10.1093/pcp/pcae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
Light affects almost every aspect of plant development. It is perceived by photoreceptors, among which phytochromes (PHY) are responsible for monitoring the red and far-red spectrum. Arabidopsis thaliana possesses five phytochrome genes (phyA-phyE). Whereas functions of phyA and phyB are extensively studied, our knowledge of other phytochromes is still rudimentary. To analyze phyD function, we expressed it at high levels in different phytochrome-deficient genetic backgrounds. Overexpressed phyD-YFP can govern effective light signaling but only at low temperatures and in cooperation with functional phyC. Under these conditions, phyD-YFP accumulates to high levels, and opposite to phyB, this pool is stable in light. By comparing the photoconvertible phyD-YFP and phyB levels and their signaling in continuous and pulsed irradiation, we showed that phyD-YFP is a less efficient photoreceptor than phyB. This conclusion is supported by the facts that only a part of the phyD-YFP pool is photoconvertible and that thermal reversion of phyD-YFP is faster than that of phyB. Our data suggest that the temperature-dependent function of phyD is based on the amount of phyD protein and not on its Pfr stability, as described for phyB. We also found that phyD-YFP and phyB-GFP are associated with strongly overlapping genomic locations and are able to mediate similar changes in gene expression; however, the efficiency of phyD-YFP is lower. Based on these data, we propose that under certain conditions, synergistic interaction of phyD and phyC can substitute phyB function in seedlings and in adult plants and thus increases the ability of plants to respond more flexibly to environmental changes.
Collapse
Affiliation(s)
- Csaba Péter
- Laboratory of Photo and Chronobiology, Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvari krt. 62, Szeged H-6726, Hungary
- Doctoral School of Biology, Faculty of Sciences and Informatics, University of Szeged, Középfasor 52, Szeged H-6726, Hungary
| | - Éva Ádám
- Laboratory of Photo and Chronobiology, Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvari krt. 62, Szeged H-6726, Hungary
| | - Cornelia Klose
- Institute of Biology II, University of Freiburg, Schänzlestr. 1, Freiburg 79104, Germany
| | - Gábor Grézal
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvari krt. 62, Szeged H-6726, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Temesvari krt. 62, Szeged HU-6726, Hungary
| | - Anita Hajdu
- Laboratory of Photo and Chronobiology, Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvari krt. 62, Szeged H-6726, Hungary
| | - Gábor Steinbach
- Cellular Imaging Laboratory, Biological Research Center, Hungarian Research Network (HUN-REN), Temesvari krt. 62, Szeged H-6726, Hungary
| | - László Kozma-Bognár
- Laboratory of Photo and Chronobiology, Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvari krt. 62, Szeged H-6726, Hungary
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, Középfasor 52, Szeged H-6726, Hungary
| | - Dániel Silhavy
- Laboratory of Photo and Chronobiology, Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvari krt. 62, Szeged H-6726, Hungary
| | - Ferenc Nagy
- Laboratory of Photo and Chronobiology, Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvari krt. 62, Szeged H-6726, Hungary
| | - András Viczián
- Laboratory of Photo and Chronobiology, Institute of Plant Biology, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvari krt. 62, Szeged H-6726, Hungary
| |
Collapse
|
25
|
Lauria G, Ceccanti C, Lo Piccolo E, El Horri H, Guidi L, Lawson T, Landi M. "Metabolight": how light spectra shape plant growth, development and metabolism. PHYSIOLOGIA PLANTARUM 2024; 176:e14587. [PMID: 39482564 DOI: 10.1111/ppl.14587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 11/03/2024]
Abstract
Innovations in light technologies (i.e. Light Emitting Diodes; LED) and cover films with specific optical features (e.g. photo-selective, light-extracting) have revolutionized crop production in both protected environments and open fields. The possibility to modulate the light spectra, thereby enriching/depleting cultivated plants with targeted wavebands has attracted increasing interest from both basic and applicative research. Indeed, the light environment not only influences plant biomass production but is also a pivotal factor in shaping plant size, development and metabolism. In the last decade, the strict interdependence between specific wavebands and the accumulation of targeted secondary metabolites has been exploited to improve the quality of horticultural products. Innovation in LED lighting has also marked the improvement of streetlamp illumination, thereby posing new questions about the possible influence of light pollution on urban tree metabolism. In this case, it is urgent and challenging to propose new, less-impacting solutions by modulating streetlamp spectra in order to preserve the ecosystem services provided by urban trees. The present review critically summarizes the main recent findings related to the morpho-anatomical, physiological, and biochemical changes induced by light spectra management via different techniques in crops as well as in non-cultivated species. This review explores the following topics: (1) plant growth in monochromatic environments, (2) the use of greenhouse light supplementation, (3) the application of covering films with different properties, and (4) the drawbacks of streetlamp illumination on urban trees. Additionally, it proposes new perspectives offered by in planta photomodulation.
Collapse
Affiliation(s)
- Giulia Lauria
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Costanza Ceccanti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Ermes Lo Piccolo
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - Hafsa El Horri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, Essex, United Kingdom
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
26
|
Shah K, Zhu X, Zhang T, Chen J, Chen J, Qin Y. The poetry of nitrogen and carbon metabolic shifts: The role of C/N in pitaya phase change. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112240. [PMID: 39208994 DOI: 10.1016/j.plantsci.2024.112240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Pitaya, a desert plant, has an underexplored flowering mechanism due to a lack of functional validation assays. This study reveals that the transition from vegetative to generative growth in pitaya is regulated by significant metabolic shift, underscoring the importance of understanding and address the challenging issue pitaya's phase change. Lateral buds from 6-years-old 'Guanhuahong' pitaya (Hylocereus monacanthus) plants were collected on April 8th, 18th, and 28th 2023, representing early, middle, and late stages of phase transition, respectively. Results showed diminished nitrogen levels concurrent with increased carbon levels and carbon-to-nitrogen (C/N) ratios during pitaya phase transition. Transcriptomic analysis identified batches of differentially expressed genes (DEGs) involved in downregulating nitrogen metabolism and upregulating carbon metabolism. These batches of genes play a central role in the metabolic shifts that predominantly regulate the transition to the generative phase in pitaya. This study unveils the intricate regulatory network involving 6 sugar synthesis and transport, 11 photoperiod (e.g., PHY, CRY, PIF) and 6 vernalization (e.g., VIN3) pathways, alongside 11 structural flowering genes (FCA, FLK, LFY, AGL) out of a vast array of potential candidates in pitaya phase change. These findings provide insights into the metabolic pathways involved in pitaya's phase transition, offering a theoretical framework for managing flowering, guiding breeding strategies to optimize flowering timing and improve crop yields under varied nitrogen conditions.
Collapse
Affiliation(s)
- Kamran Shah
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyue Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Tiantian Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Jiayi Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Jiaxuan Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Yonghua Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
27
|
Zhang F, Sun M, Li D, You M, Yan J, Bai S. Metabolomic Analysis of Elymus sibiricus Exposed to UV-B Radiation Stress. Molecules 2024; 29:5133. [PMID: 39519780 PMCID: PMC11548012 DOI: 10.3390/molecules29215133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Plants cultivated on the Qinghai-Tibet Plateau (QTP) are exposed to high ultraviolet radiation intensities, so they require effective mechanisms to adapt to these stress conditions. UV-B radiation is an abiotic stress factor that affects plant growth, development, and environmental adaptation. Elymus sibiricus is a common species in the alpine meadows of the QTP, with high-stress resistance, large biomass, and high nutritional value. This species plays an important role in establishing artificial grasslands and improving degraded grasslands. In this study, UV-B radiation-tolerant and UV-B radiation-sensitive E. sibiricus genotypes were subjected to simulated short-term (5 days, 10 days) and long-term (15 days, 20 days) UV-B radiation stress and the metabolite profiles evaluated to explore the mechanism underlying UV-B radiation resistance in E. sibiricus. A total of 699 metabolites were identified, including 11 primary metabolites such as lipids and lipid-like molecules, phenylpropanoids and polyketides, organic acids and their derivatives, and organic oxygen compounds. Principal component analysis distinctly clustered the samples according to the cultivar, indicating that the two genotypes exhibit distinct response mechanisms to UV-B radiation stress. The results showed that 14 metabolites, including linoleic acid, LPC 18:2, xanthosine, and 23 metabolites, including 2-one heptamethoxyflavone, glycyrrhizin, and caffeic acid were differentially expressed under short-term and long-term UV-B radiation stress, respectively. Therefore, these compounds are potential biomarkers for evaluating E. sibiricus response to UV-B radiation stress. Allantoin specific and consistent expression was up-regulated in the UV-B radiation-tolerant genotype, thereby it can be used to identify varieties resistant to UV-B radiation. Different metabolic profiles and UV-B radiation response mechanisms were observed between the UV-B radiation-tolerant and UV-B radiation-sensitive E. sibiricus genotypes. A model for the metabolic pathways and metabolic profiles was constructed for the two genotypes. This metabolomic study on the E. sibiricus response to UV-B radiation stress provides a reference for the breeding of new UV-B radiation-tolerant E. sibiricus cultivars.
Collapse
Affiliation(s)
- Fei Zhang
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ming Sun
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Daxu Li
- Sichuan Provincial Forestry and Glassland Key Laboratory of Innovation and Utilization of Grasses in the Tibetan Plateau, Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| | - Minghong You
- Sichuan Provincial Forestry and Glassland Key Laboratory of Innovation and Utilization of Grasses in the Tibetan Plateau, Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| | - Jiajun Yan
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shiqie Bai
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
28
|
Liu R, Ma T, Li Y, Lei X, Ji H, Du H, Zhang J, Cao SK. Genomic Identification and Expression Analysis of Regulator of Chromosome Condensation 1-Domain Protein Family in Maize. Int J Mol Sci 2024; 25:11437. [PMID: 39518988 PMCID: PMC11547138 DOI: 10.3390/ijms252111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Abiotic stress affects the growth and development of maize (Zea mays). The regulator of chromosome condensation 1 (RCC1)-containing proteins (RCPs) plays crucial roles in plant growth and development and response to abiotic stresses. However, a comprehensive analysis of the maize RCP family has not been reported in detail. This study presents a systematic bioinformatics analysis of the ZmRCP family, identifying a total of 30 members distributed across nine chromosomes. The physicochemical properties and cis-acting elements in the promoters of ZmRCP members are predicted. The results of subcellular localization showed that ZmRCP3 and ZmRCP10 are targeted to mitochondria and ZmRCP2 is localized in the nucleus. A heatmap of expression levels among family members under abiotic stress conditions revealed varying degrees of induced expression, and the expression levels of 10 ZmRCP members were quantified using RT-qPCR under abiotic stress and plant hormone treatments. The results showed that ZmRCP members exhibit induced or inhibited responses to these abiotic stresses and plant hormones. These results contribute to a better understanding of the evolutionary history and potential role of the ZmRCP family in mediating responses to abiotic stress in maize.
Collapse
Affiliation(s)
- Rui Liu
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (T.M.); (Y.L.); (X.L.); (H.J.); (H.D.)
| | - Tian Ma
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (T.M.); (Y.L.); (X.L.); (H.J.); (H.D.)
| | - Yu Li
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (T.M.); (Y.L.); (X.L.); (H.J.); (H.D.)
| | - Xiongbiao Lei
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (T.M.); (Y.L.); (X.L.); (H.J.); (H.D.)
| | - Hongjing Ji
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (T.M.); (Y.L.); (X.L.); (H.J.); (H.D.)
| | - Hewei Du
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (T.M.); (Y.L.); (X.L.); (H.J.); (H.D.)
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Shi-Kai Cao
- School of Life Science, Yangtze University, Jingzhou 434025, China; (R.L.); (T.M.); (Y.L.); (X.L.); (H.J.); (H.D.)
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
29
|
Wicaksono A, Buaboocha T. Genome-wide identification of CAMTA genes and their expression dependence on light and calcium signaling during seedling growth and development in mung bean. BMC Genomics 2024; 25:992. [PMID: 39443876 PMCID: PMC11515718 DOI: 10.1186/s12864-024-10893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Calmodulin-binding transcription activator (CAMTA) is comprised of a group of transcription factors and plays an important role in the Ca2+ signaling pathway, mediating various molecular responses via interactions with other transcription factors and binding to the promoter region of specific genes. Mung beans (Vigna radiata) are one of the most commonly consumed commodities in Asia. To date, CAMTA proteins have not been characterized in this important crop plant. RESULTS Eight paralogous VrCAMTA genes were identified and found to be distributed on five of the 11 chromosomes. The proteins possessed CG-1 DNA-binding domains with bipartite NLS signals, ankyrin domains, CaM-binding IQ motifs, and CaM-binding domain (CaMBD). The 2 kb upstream regions of VrCAMTA genes contained sequence motifs of abscisic acid-responsive elements (ABRE) and ethylene-responsive elements (ERE), and binding sites for transcription factors of the bZIP and bHLH domains. Analysis of RNA-seq data from a public repository revealed ubiquitous expression of the VrCAMTA genes, as VrCAMTA1 was expressed at the highest level in seedling leaves, whereas VrCAMTA8 was expressed at the lowest level, which agreed with the RT-qPCR analysis performed on the first true leaves. On day four after leaf emergence, all VrCAMTA genes were upregulated, with VrCAMTA1 exhibiting the highest degree of upregulation. In darkness on day 4, upregulation was not observed in most VrCAMTA genes, except VrCAMTA7, for which a low degree of upregulation was found, whereas no difference was found in VrCAMTA8 expression between light and dark conditions. Treatment with calcium ionophores enhanced VrCAMTA expression under light and/or dark conditions at different times after leaf emergence, suggesting that calcium signaling is involved in the light-induced upregulation of VrCAMTA gene expression. CONCLUSIONS The expression dependence of nearly all VrCAMTA genes on light and calcium signaling suggests their possible differential but likely complementary roles during the early stages of mung bean growth and development.
Collapse
Affiliation(s)
- Adhityo Wicaksono
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd., Wang Mai, Pathum Wan, Bangkok, 10330, Thailand
| | - Teerapong Buaboocha
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd., Wang Mai, Pathum Wan, Bangkok, 10330, Thailand.
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd., Wang Mai, Pathum Wan, Bangkok, 10330, Thailand.
| |
Collapse
|
30
|
Neugart S, Steininger V, Fernandes C, Martínez-Abaigar J, Núñez-Olivera E, Schreiner M, Strid Å, Viczián A, Albert A, Badenes-Pérez FR, Castagna A, Dáder B, Fereres A, Gaberscik A, Gulyás Á, Gwynn-Jones D, Nagy F, Jones A, Julkunen-Tiitto R, Konstantinova N, Lakkala K, Llorens L, Martínez-Lüscher J, Nybakken L, Olsen J, Pascual I, Ranieri A, Regier N, Robson M, Rosenqvist E, Santin M, Turunen M, Vandenbussche F, Verdaguer D, Winkler B, Witzel K, Grifoni D, Zipoli G, Hideg É, Jansen MAK, Hauser MT. A synchronized, large-scale field experiment using Arabidopsis thaliana reveals the significance of the UV-B photoreceptor UVR8 under natural conditions. PLANT, CELL & ENVIRONMENT 2024; 47:4031-4047. [PMID: 38881245 DOI: 10.1111/pce.15008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
This study determines the functional role of the plant ultraviolet-B radiation (UV-B) photoreceptor, UV RESISTANCE LOCUS 8 (UVR8) under natural conditions using a large-scale 'synchronized-genetic-perturbation-field-experiment'. Laboratory experiments have demonstrated a role for UVR8 in UV-B responses but do not reflect the complexity of outdoor conditions where 'genotype × environment' interactions can mask laboratory-observed responses. Arabidopsis thaliana knockout mutant, uvr8-7, and the corresponding Wassilewskija wild type, were sown outdoors on the same date at 21 locations across Europe, ranging from 39°N to 67°N latitude. Growth and climatic data were monitored until bolting. At the onset of bolting, rosette size, dry weight, and phenolics and glucosinolates were quantified. The uvr8-7 mutant developed a larger rosette and contained less kaempferol glycosides, quercetin glycosides and hydroxycinnamic acid derivatives than the wild type across all locations, demonstrating a role for UVR8 under field conditions. UV effects on rosette size and kaempferol glycoside content were UVR8 dependent, but independent of latitude. In contrast, differences between wild type and uvr8-7 in total quercetin glycosides, and the quercetin-to-kaempferol ratio decreased with increasing latitude, that is, a more variable UV response. Thus, the large-scale synchronized approach applied demonstrates a location-dependent functional role of UVR8 under natural conditions.
Collapse
Affiliation(s)
- Susanne Neugart
- Division Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Viktoria Steininger
- Department of Applied Genetics & Cell Biology, University of Natural Resources & Life Sciences, Vienna, Austria
| | - Catarina Fernandes
- Department of Applied Genetics & Cell Biology, University of Natural Resources & Life Sciences, Vienna, Austria
| | | | | | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Åke Strid
- Department of Natural Sciences, School of Science and Technology, Örebro University, Örebro, Sweden
| | - András Viczián
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Andreas Albert
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Beatriz Dáder
- Department of Agricultural Production, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - Alberto Fereres
- Institute of Agricultural Sciences, Spanish Council for Scientific Research, Madrid, Spain
| | - Alenka Gaberscik
- Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Ágnes Gulyás
- Department of Climatology and Landscape Ecology, University of Szeged, Szeged, Hungary
| | - Dylan Gwynn-Jones
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Ferenc Nagy
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Alan Jones
- Earthwatch Europe, Oxford, UK
- Scion, New Zealand Forest Research Institute, Rotorua, New Zealand
| | | | - Nataliia Konstantinova
- Department of Applied Genetics & Cell Biology, University of Natural Resources & Life Sciences, Vienna, Austria
| | - Kaisa Lakkala
- Finnish Meteorological Institute - Space and Earth Observation Centre, Sodankylä, Finland
| | - Laura Llorens
- Department of Environmental Sciences, University of Girona, Girona, Spain
| | - Johann Martínez-Lüscher
- Plant Stress Physiology group (Associated Unit to EEAD, CSIC), BIOMA Institute for Biodiversity and the Environment, University of Navarra, Pamplona, Spain
| | - Line Nybakken
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Jorunn Olsen
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Inmaculada Pascual
- Plant Stress Physiology group (Associated Unit to EEAD, CSIC), BIOMA Institute for Biodiversity and the Environment, University of Navarra, Pamplona, Spain
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Nicole Regier
- Earth and Environment Sciences, Forel Institute, Geneva University, Geneva, Switzerland
| | - Matthew Robson
- Organismal & Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological & Environmental Sciences, University of Helsinki, Helsinki, Finland
- National School of Forestry, University of Cumbria, Ambleside, UK
| | - Eva Rosenqvist
- Institute of Plant and Environmental Sciences, Crop Science, University of Copenhagen, Tåstrup, Denmark
| | - Marco Santin
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Minna Turunen
- Arctic Centre, University of Lapland, Rovaniemi, Finland
| | | | - Dolors Verdaguer
- Department of Environmental Sciences, University of Girona, Girona, Spain
| | - Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Katja Witzel
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Daniele Grifoni
- National Research Council, Institute of Bioeconomy, Sesto Fiorentino, Italy
- Laboratory of Monitoring and Environmental Modelling for the Sustainable Development (LaMMA Consortium), Sesto Fiorentino, Italy
| | - Gaetano Zipoli
- National Research Council Institute for Biometeorology, Sesto Fiorentino, Italy
| | - Éva Hideg
- Department of Plant Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Marcel A K Jansen
- Environmental Research Institute, School of Biological, Earth, and Environmental Sciences, University College Cork, Cork, Ireland
| | - Marie-Theres Hauser
- Department of Applied Genetics & Cell Biology, University of Natural Resources & Life Sciences, Vienna, Austria
| |
Collapse
|
31
|
Leonardelli M, Tissot N, Podolec R, Ares-Orpel F, Glauser G, Ulm R, Demarsy E. Photoreceptor-induced sinapate synthesis contributes to photoprotection in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:1518-1533. [PMID: 38918833 PMCID: PMC11444301 DOI: 10.1093/plphys/kiae352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024]
Abstract
Plants must balance light capture for photosynthesis with protection from potentially harmful ultraviolet (UV) radiation. Photoprotection is mediated by concerted action of photoreceptors, but the underlying molecular mechanisms are not fully understood. In this study, we provide evidence that UV RESISTANCE LOCUS 8 (UVR8) UV-B, phytochrome red, and cryptochrome blue-light photoreceptors converge on the induction of FERULIC ACID 5-HYDROXYLASE 1 (FAH1) that encodes a key enzyme in the phenylpropanoid biosynthesis pathway, leading to the accumulation of UV-absorbing sinapate esters in Arabidopsis (Arabidopsis thaliana). FAH1 induction depends on the basic leucine zipper transcription factors ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOG that function downstream of all 3 photoreceptors. Noticeably, mutants with hyperactive UVR8 signaling rescue fah1 UV sensitivity. Targeted metabolite profiling suggests that this phenotypic rescue is due to the accumulation of UV-absorbing metabolites derived from precursors of sinapate synthesis, namely, coumaroyl glucose and feruloyl glucose. Our genetic dissection of the phenylpropanoid pathway combined with metabolomic and physiological analyses show that both sinapate esters and flavonoids contribute to photoprotection with sinapates playing a major role for UV screening. Our findings indicate that photoreceptor-mediated regulation of FAH1 and subsequent accumulation of sinapate "sunscreen" compounds are key protective mechanisms to mitigate damage, preserve photosynthetic performance, and ensure plant survival under UV.
Collapse
Affiliation(s)
- Manuela Leonardelli
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| | - Nicolas Tissot
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| | - Roman Podolec
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland
| | - Florence Ares-Orpel
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Roman Ulm
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland
| | - Emilie Demarsy
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
32
|
Otani M, Kitamura H, Kudoh S, Imura S, Nakano M. Transcriptome analysis of the common moss Bryum pseudotriquetrum grown under Antarctic field condition. AOB PLANTS 2024; 16:plae043. [PMID: 39347487 PMCID: PMC11430918 DOI: 10.1093/aobpla/plae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/09/2024] [Indexed: 10/01/2024]
Abstract
Mosses are distributed all over the world including Antarctica. Although Antarctic mosses show active growth in a short summer season under harsh environments such as low temperature, drought and high levels of UV radiation, survival mechanisms for such multiple environmental stresses of Antarctic mosses have not yet been clarified. In the present study, transcriptome analyses were performed using one of the common mosses Bryum pseudotriquetrum grown under an Antarctic field and artificial cultivation conditions. Totally 88 205 contigs were generated by de novo assembly, among which 1377 and 435 genes were significantly up and downregulated, respectively, under Antarctic field conditions compared with artificial cultivation conditions at 15°C. Among the upregulated genes, a number of lipid metabolism-related and oil body formation-related genes were identified. Expression levels of these genes were increased by artificial environmental stress treatments such as low temperature, salt and osmic stress treatments. Consistent with these results, B. pseudotriquetrum grown under Antarctic field conditions contained large amounts of fatty acids, especially α-linolenic acid, linolenic acid and arachidonic acid. In addition, proportion of unsaturated fatty acids, which enhance membrane fluidity, to the total fatty acids was also higher in B. pseudotriquetrum grown under Antarctic field conditions. Since lipid accumulation and unsaturation of fatty acids are generally important factors for the acquisition of various environmental stress tolerance in plants, these intracellular physiological and metabolic changes may be responsible for the survival of B. pseudotriquetrum under Antarctic harsh environments.
Collapse
Affiliation(s)
- Masahiro Otani
- Faculty of Agriculture, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
| | - Haruki Kitamura
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
| | - Sakae Kudoh
- National Institute of Polar Research, Research Organization of Information and Systems, 10-3 Midori-cho, Tachikawa-shi, Tokyo 190-8518, Japan
- Polar Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Satoshi Imura
- National Institute of Polar Research, Research Organization of Information and Systems, 10-3 Midori-cho, Tachikawa-shi, Tokyo 190-8518, Japan
- Polar Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Masaru Nakano
- Faculty of Agriculture, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
33
|
Ma Y, Zhang Y, Xu J, Zhao D, Guo L, Liu X, Zhang H. Recent advances in response to environmental signals during Arabidopsis root development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109037. [PMID: 39173364 DOI: 10.1016/j.plaphy.2024.109037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Plants grow by anchoring their roots in the soil, acquiring essential water and nutrients for growth, and interacting with other signaling factors in the soil. Root systems are crucial for both the basic growth and development of plants and their response to external environmental stimuli. Under different environmental conditions, the configuration of root systems in plants can undergo significant changes, with their strength determining the plant's ability to adapt to the environment. Therefore, understanding the mechanisms by which environmental factors regulate root development is essential for crop root architecture improvement and breeding for stress resistance. This paper summarizes the research progress in genetic regulation of root development of the model plant Arabidopsis thaliana (L.) Heynh. amidst diverse environmental stimuli over the past five years. Specifically, it focuses on the regulatory networks of environmental signals, encompassing light, energy, temperature, water, nutrients, and reactive oxygen species, on root development. Furthermore, it provides prospects for the application of root architecture improvement in crop breeding for stress resistance and nutrient efficiency.
Collapse
Affiliation(s)
- Yuru Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ying Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050051, China
| | - Jiahui Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Dan Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China; College of Life Sciences, Hengshui University, Hengshui, 053010, China
| | - Lin Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Hao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
34
|
Chen L, Liu M, Li Y, Guan Y, Ruan J, Mao Z, Wang W, Yang HQ, Guo T. Arabidopsis cryptochromes interact with SOG1 to promote the repair of DNA double-strand breaks. Biochem Biophys Res Commun 2024; 724:150233. [PMID: 38865814 DOI: 10.1016/j.bbrc.2024.150233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Cryptochromes (CRYs) are blue light (BL) photoreceptors to regulate a variety of physiological processes including DNA double-strand break (DSB) repair. SUPPRESSOR OF GAMMA RADIATION 1 (SOG1) acts as the central transcription factor of DNA damage response (DDR) to induce the transcription of downstream genes, including DSB repair-related genes BRCA1 and RAD51. Whether CRYs regulate DSB repair by directly modulating SOG1 is unknown. Here, we demonstrate that CRYs physically interact with SOG1. Disruption of CRYs and SOG1 leads to increased sensitivity to DSBs and reduced DSB repair-related genes' expression under BL. Moreover, we found that CRY1 enhances SOG1's transcription activation of DSB repair-related gene BRCA1. These results suggest that the mechanism by which CRYs promote DSB repair involves positive regulation of SOG1's transcription of its target genes, which is likely mediated by CRYs-SOG1 interaction.
Collapse
Affiliation(s)
- Li Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Minqing Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yupeng Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yan Guan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiaqi Ruan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
35
|
Eckardt NA, Avin-Wittenberg T, Bassham DC, Chen P, Chen Q, Fang J, Genschik P, Ghifari AS, Guercio AM, Gibbs DJ, Heese M, Jarvis RP, Michaeli S, Murcha MW, Mursalimov S, Noir S, Palayam M, Peixoto B, Rodriguez PL, Schaller A, Schnittger A, Serino G, Shabek N, Stintzi A, Theodoulou FL, Üstün S, van Wijk KJ, Wei N, Xie Q, Yu F, Zhang H. The lowdown on breakdown: Open questions in plant proteolysis. THE PLANT CELL 2024; 36:2931-2975. [PMID: 38980154 PMCID: PMC11371169 DOI: 10.1093/plcell/koae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals (endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade-off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.
Collapse
Affiliation(s)
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Poyu Chen
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Qian Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Fang
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B1 2RU, UK
| | - Maren Heese
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon Michaeli
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sergey Mursalimov
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Bruno Peixoto
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, Valencia ES-46022, Spain
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Universita’ di Roma, p.le A. Moro 5, Rome 00185, Italy
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum 44780, Germany
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China
| | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
36
|
Singh Rawat S, Laxmi A. Light at the end of the tunnel: integrating signaling pathways in the coordination of lateral root development. Biochem Soc Trans 2024; 52:1895-1908. [PMID: 39171690 DOI: 10.1042/bst20240049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Root system architecture (RSA) encompasses a range of physical root attributes, including the lateral roots (LRs), root hairs and adventitious roots, in addition to the primary or main root. This overall structure is a crucial trait for efficient water and mineral capture alongside providing anchorage to the plant in the soil and is vital for plant productivity and fitness. RSA dynamics are dependent upon various environmental cues such as light, soil pH, water, mineral nutrition and the belowground microbiome. Among these factors, light signaling through HY5 significantly influences the flexibility of RSA by controlling different signaling pathways that converge at photoreceptors-mediated signaling, also present in the 'hidden half'. Furthermore, several phytohormones also drive the formation and emergence of LRs and are critical to harmonize intra and extracellular stimuli in this regard. This review endeavors to elucidate the impact of these interactions on RSA, with particular emphasis on LR development and to enhance our understanding of the fundamental mechanisms governing the light-regulation of LR growth and physiology.
Collapse
Affiliation(s)
- Sanjay Singh Rawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
37
|
Sun J, Liu H, Wang W, Fan C, Yuan G, Zhou R, Lu J, Liu J, Wang C. RcOST1L phosphorylates RcPIF4 for proteasomal degradation to promote flowering in rose. THE NEW PHYTOLOGIST 2024; 243:1387-1405. [PMID: 38849320 DOI: 10.1111/nph.19885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
Flowering is a vital agronomic trait that determines the economic value of most ornamental plants. The flowering time of rose (Rosa spp.) is photoperiod insensitive and is thought to be tightly controlled by light intensity, although the detailed molecular mechanism remains unclear. Here, we showed that rose plants flower later under low-light (LL) intensity than under high-light (HL) intensity, which is mainly related to the stability of PHYTOCHROME-INTERACTING FACTORs (RcPIFs) mediated by OPEN STOMATA 1-Like (RcOST1L) under different light intensity regimes. We determined that HL conditions trigger the rapid phosphorylation of RcPIFs before their degradation. A yeast two-hybrid screen identified the kinase RcOST1L as interacting with RcPIF4. Moreover, RcOST1L positively regulated rose flowering and directly phosphorylated RcPIF4 on serine 198 to promote its degradation under HL conditions. Additionally, phytochrome B (RcphyB) enhanced RcOST1L-mediated phosphorylation of RcPIF4 via interacting with the active phyB-binding motif. RcphyB was activated upon HL and recruited RcOST1L to facilitate its nuclear accumulation, in turn leading to decreased stability of RcPIF4 and flowering acceleration. Our findings illustrate how RcPIF abundance safeguards proper rose flowering under different light intensities, thus uncovering the essential role of RcOST1L in the RcphyB-RcPIF4 module in flowering.
Collapse
Affiliation(s)
- Jingjing Sun
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongchi Liu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weinan Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunguo Fan
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guozhen Yuan
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rui Zhou
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Lu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyi Liu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changquan Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
38
|
Hu S, Chen Y, Qian C, Ren H, Liang X, Tao W, Chen Y, Wang J, Dong Y, Han J, Ouyang X, Huang X. Nuclear accumulation of rice UV-B photoreceptors is UV-B- and OsCOP1-independent for UV-B responses. Nat Commun 2024; 15:6396. [PMID: 39080288 PMCID: PMC11289442 DOI: 10.1038/s41467-024-50755-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
In plants, the conserved plant-specific photoreceptor UV RESISTANCE LOCUS 8 (UVR8) perceives ultraviolet-B (UV-B) light and mediates UV-B-induced photomorphogenesis and stress acclimation. In this study, we reveal that UV-B light treatment shortens seedlings, increases stem thickness, and enhances UV-B stress tolerance in rice (Oryza sativa) via its two UV-B photoreceptors OsUVR8a and OsUVR8b. Although the rice and Arabidopsis (Arabidopsis thaliana) UVR8 (AtUVR8) photoreceptors all form monomers in response to UV-B light, OsUVR8a, and OsUVR8b function is only partially conserved with respect to AtUVR8 in UV-B-induced photomorphogenesis and stress acclimation. UV-B light and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) promote the nuclear accumulation of AtUVR8; by contrast, OsUVR8a and OsUVR8b constitutively localize to the nucleus via their own nuclear localization signals, independently of UV-B light and the RING-finger mutation of OsCOP1. We show that OsCOP1 negatively regulates UV-B responses, and shows weak interaction with OsUVR8s, which is ascribed to the N terminus of OsCOP1, which is conserved in several monocots. Furthermore, transcriptome analysis demonstrates that UV-B-responsive gene expression differs globally between Arabidopsis and rice, illuminating the evolutionary divergence of UV-B light signaling pathways between monocot and dicot plants.
Collapse
Affiliation(s)
- Shan Hu
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yihan Chen
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chongzhen Qian
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hui Ren
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xinwen Liang
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wenjing Tao
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yanling Chen
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jue Wang
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuan Dong
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiupan Han
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xinhao Ouyang
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, Xiamen Key Laboratory of Plant Genetics, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
39
|
Kim SO, Yun SR, Lee H, Jo J, Ahn DS, Kim D, Kosheleva I, Henning R, Kim J, Kim C, You S, Kim H, Lee SJ, Ihee H. Serial X-ray liquidography: multi-dimensional assay framework for exploring biomolecular structural dynamics with microgram quantities. Nat Commun 2024; 15:6287. [PMID: 39060271 PMCID: PMC11282289 DOI: 10.1038/s41467-024-50696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Understanding protein structure and kinetics under physiological conditions is crucial for elucidating complex biological processes. While time-resolved (TR) techniques have advanced to track molecular actions, their practical application in biological reactions is often confined to reversible photoreactions within limited experimental parameters due to inefficient sample utilization and inflexibility of experimental setups. Here, we introduce serial X-ray liquidography (SXL), a technique that combines time-resolved X-ray liquidography with a fixed target of serially arranged microchambers. SXL breaks through the previously mentioned barriers, enabling microgram-scale TR studies of both irreversible and reversible reactions of even a non-photoactive protein. We demonstrate its versatility in studying a wide range of biological reactions, highlighting its potential as a flexible and multi-dimensional assay framework for kinetic and structural characterization. Leveraging X-ray free-electron lasers and micro-focused X-ray pulses promises further enhancements in both temporal resolution and minimizing sample quantity. SXL offers unprecedented insights into the structural and kinetic landscapes of molecular actions, paving the way for a deeper understanding of complex biological processes.
Collapse
Affiliation(s)
- Seong Ok Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - So Ri Yun
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyosub Lee
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Junbeom Jo
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Doo-Sik Ahn
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Doyeong Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Jungmin Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Changin Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seyoung You
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hanui Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sang Jin Lee
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyotcherl Ihee
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
40
|
Boycheva I, Bonchev G, Manova V, Stoilov L, Vassileva V. How Histone Acetyltransferases Shape Plant Photomorphogenesis and UV Response. Int J Mol Sci 2024; 25:7851. [PMID: 39063093 PMCID: PMC11276938 DOI: 10.3390/ijms25147851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Higher plants have developed complex mechanisms to adapt to fluctuating environmental conditions with light playing a vital role in photosynthesis and influencing various developmental processes, including photomorphogenesis. Exposure to ultraviolet (UV) radiation can cause cellular damage, necessitating effective DNA repair mechanisms. Histone acetyltransferases (HATs) play a crucial role in regulating chromatin structure and gene expression, thereby contributing to the repair mechanisms. HATs facilitate chromatin relaxation, enabling transcriptional activation necessary for plant development and stress responses. The intricate relationship between HATs, light signaling pathways and chromatin dynamics has been increasingly understood, providing valuable insights into plant adaptability. This review explores the role of HATs in plant photomorphogenesis, chromatin remodeling and gene regulation, highlighting the importance of chromatin modifications in plant responses to light and various stressors. It emphasizes the need for further research on individual HAT family members and their interactions with other epigenetic factors. Advanced genomic approaches and genome-editing technologies offer promising avenues for enhancing crop resilience and productivity through targeted manipulation of HAT activities. Understanding these mechanisms is essential for developing strategies to improve plant growth and stress tolerance, contributing to sustainable agriculture in the face of a changing climate.
Collapse
Affiliation(s)
| | | | | | | | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.B.); (G.B.); (V.M.); (L.S.)
| |
Collapse
|
41
|
Chen L, Ruan J, Li Y, Liu M, Liu Y, Guan Y, Mao Z, Wang W, Yang HQ, Guo T. ADA2b acts to positively regulate blue light-mediated photomorphogenesis in Arabidopsis. Biochem Biophys Res Commun 2024; 717:150050. [PMID: 38718571 DOI: 10.1016/j.bbrc.2024.150050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
Cryptochromes (CRYs) act as blue light photoreceptors to regulate various plant physiological processes including photomorphogenesis and repair of DNA double strand breaks (DSBs). ADA2b is a conserved transcription co-activator that is involved in multiple plant developmental processes. It is known that ADA2b interacts with CRYs to mediate blue light-promoted DSBs repair. Whether ADA2b may participate in CRYs-mediated photomorphogenesis is unknown. Here we show that ADA2b acts to inhibit hypocotyl elongation and hypocotyl cell elongation in blue light. We found that the SWIRM domain-containing C-terminus mediates the blue light-dependent interaction of ADA2b with CRYs in blue light. Moreover, ADA2b and CRYs act to co-regulate the expression of hypocotyl elongation-related genes in blue light. Based on previous studies and these results, we propose that ADA2b plays dual functions in blue light-mediated DNA damage repair and photomorphogenesis.
Collapse
Affiliation(s)
- Li Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiaqi Ruan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yupeng Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Minqing Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yao Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yan Guan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
42
|
Zhang N, Wei CQ, Xu DJ, Deng ZP, Zhao YC, Ai LF, Sun Y, Wang ZY, Zhang SW. Photoregulatory protein kinases fine-tune plant photomorphogenesis by directing a bifunctional phospho-code on HY5 in Arabidopsis. Dev Cell 2024; 59:1737-1749.e7. [PMID: 38677285 DOI: 10.1016/j.devcel.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/28/2023] [Accepted: 04/04/2024] [Indexed: 04/29/2024]
Abstract
Photomorphogenesis is a light-dependent plant growth and development program. As the core regulator of photomorphogenesis, ELONGATED HYPOCOTYL 5 (HY5) is affected by dynamic changes in its transcriptional activity and protein stability; however, little is known about the mediators of these processes. Here, we identified PHOTOREGULATORY PROTEIN KINASE 1 (PPK1), which interacts with and phosphorylates HY5 in Arabidopsis, as one such mediator. The phosphorylation of HY5 by PPK1 is essential to establish high-affinity binding with B-BOX PROTEIN 24 (BBX24) and CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), which inhibit the transcriptional activity and promote the degradation of HY5, respectively. As such, PPKs regulate not only the binding of HY5 to its target genes under light conditions but also HY5 degradation when plants are transferred from light to dark. Our data identify a PPK-mediated phospho-code on HY5 that integrates the molecular mechanisms underlying the regulation of HY5 to precisely control plant photomorphogenesis.
Collapse
Affiliation(s)
- Nan Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Chuang-Qi Wei
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Da-Jin Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhi-Ping Deng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ya-Chao Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Lian-Feng Ai
- Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Ying Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | - Sheng-Wei Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
43
|
Cunningham N, Crestani G, Csepregi K, Coughlan NE, Jansen MAK. Exploring the complexities of plant UV responses; distinct effects of UV-A and UV-B wavelengths on Arabidopsis rosette morphology. Photochem Photobiol Sci 2024; 23:1251-1264. [PMID: 38736023 PMCID: PMC11224116 DOI: 10.1007/s43630-024-00591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
UV-B radiation can substantially impact plant growth. To study UV-B effects, broadband UV-B tubes are commonly used. Apart from UV-B, such tubes also emit UV-A wavelengths. This study aimed to distinguish effects of different UV-B intensities on Arabidopsis thaliana wildtype and UVR8 mutant rosette morphology, from those by accompanying UV-A. UV-A promotes leaf-blade expansion along the proximal-distal, but not the medio-lateral, axis. Consequent increases in blade length: width ratio are associated with increased light capture. However, petiole length is not affected by UV-A exposure. This scenario is distinct from the shade avoidance driven by low red to far-red ratios, whereby leaf blade elongation is impeded but petiole elongation is promoted. Thus, the UV-A mediated elongation response is phenotypically distinct from classical shade avoidance. UV-B exerts inhibitory effects on petiole length, blade length and leaf area, and these effects are mediated by UVR8. Thus, UV-B antagonises aspects of both UV-A mediated elongation and classical shade avoidance. Indeed, this study shows that accompanying UV-A wavelengths can mask effects of UV-B. This may lead to potential underestimates of the magnitude of the UV-B induced morphological response using broadband UV-B tubes.
Collapse
Affiliation(s)
- Natalie Cunningham
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, North Mall, Cork, Ireland
| | - Gaia Crestani
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, North Mall, Cork, Ireland
| | - Kristóf Csepregi
- Department of Plant Biology, Institute of Biology, University of Pécs, Ifjúság u. 6, 7624, Pecs, Hungary
| | - Neil E Coughlan
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, North Mall, Cork, Ireland
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, North Mall, Cork, Ireland.
| |
Collapse
|
44
|
Chen YL, Zhong YB, Leung DWM, Yan XY, Ouyang MN, Ye YZ, Li SM, Peng XX, Liu EE. OsUVR8b, rather than OsUVR8a, plays a predominant role in rice UVR8-mediated UV-B response. PHYSIOLOGIA PLANTARUM 2024; 176:e14471. [PMID: 39129657 DOI: 10.1111/ppl.14471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/30/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
UV RESISTANCE LOCUS 8 (UVR8) has been identified in Arabidopsis thaliana as the receptor mediating responses to UV-B radiation. However, UVR8-mediated UV-B signaling pathways in rice, which possesses two proteins (UVR8a and UVR8b) with high identities to AtUVR8, remain largely unknown. Here, UVR8a/b were found to be predominantly expressed in rice leaves and leaf sheaths, while the levels of UVR8b transcript and UVR8b protein were both higher than those of UVR8a. Compared to wild-type (WT) plants, uvr8b and uvr8a uvr8b rice mutants exposed to UV-B showed reduced UV-B-induced growth inhibition and upregulation of CHS and HY5 transcripts alongside UV-B acclimation. However, uvr8a mutant was similar to WT plants and exhibited changes comparable with WT. Overexpressing OsUVR8a/b enhanced UV-B-induced growth inhibition and acclimation to UV-B. UV-B was able to enhance the interaction between E3 ubiquitin ligase OsCOP1 and OsUVR8a/b, whereas the interaction of the homologous protein of Arabidopsis REPRESSOR OF UV-B PHOTOMORPHOGENESIS2 (AtRUP2) in rice with OsUVR8a/b was independent of UV-B. Additionally, OsUVR8a/b proteins were also found in the nucleus and cytoplasm even in the absence of UV-B. The abundance of OsUVR8 monomer showed an invisible change in the leaves of rice seedlings transferred from white light to that supplemented with UV-B, even though UV-B was able to weaken the interactions between OsUVR8a and OsUVR8b homo and heterodimers. Therefore, both OsUVR8a and OsUVR8b, which have different localization and response patterns compared with AtUVR8, function in the response of rice to UV-B radiation, whereas OsUVR8b plays a predominant role in this process.
Collapse
Affiliation(s)
- Yu-Long Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| | - You-Bin Zhong
- College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| | - David W M Leung
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Xiao-Yu Yan
- College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| | - Meng-Ni Ouyang
- College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| | - Yu-Zhen Ye
- College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| | - Shi-Mei Li
- College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| | - Xin-Xiang Peng
- College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| | - E-E Liu
- College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| |
Collapse
|
45
|
Huai J, Gao N, Yao Y, Du Y, Guo Q, Lin R. JASMONATE ZIM-domain protein 3 regulates photomorphogenesis and thermomorphogenesis through inhibiting PIF4 in Arabidopsis. PLANT PHYSIOLOGY 2024; 195:2274-2288. [PMID: 38487893 DOI: 10.1093/plphys/kiae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/29/2024] [Indexed: 06/30/2024]
Abstract
Light and temperature are 2 major environmental factors that affect the growth and development of plants during their life cycle. Plants have evolved complex mechanisms to adapt to varying external environments. Here, we show that JASMONATE ZIM-domain protein 3 (JAZ3), a jasmonic acid signaling component, acts as a factor to integrate light and temperature in regulating seedling morphogenesis. JAZ3 overexpression transgenic lines display short hypocotyls under red, far-red, and blue light and warm temperature (28 °C) conditions compared to the wild type in Arabidopsis (Arabidopsis thaliana). We show that JAZ3 interacts with the transcription factor PHYTOCHROME-INTERACTING FACTOR4 (PIF4). Interestingly, JAZ3 spontaneously undergoes liquid-liquid phase separation (LLPS) in vitro and in vivo and promotes LLPS formation of PIF4. Moreover, transcriptomic analyses indicate that JAZ3 regulates the expression of genes involved in many biological processes, such as response to auxin, auxin-activated signaling pathway, regulation of growth, and response to red light. Finally, JAZ3 inhibits the transcriptional activation activity and binding ability of PIF4. Collectively, our study reveals a function and molecular mechanism of JAZ3 in regulating plant growth in response to environmental factors such as light and temperature.
Collapse
Affiliation(s)
- Junling Huai
- Key Laboratory of Photobiology, Chinese Academy of Sciences, Institute of Botany, Beijing 100093, China
| | - Nan Gao
- Key Laboratory of Photobiology, Chinese Academy of Sciences, Institute of Botany, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Yao
- Key Laboratory of Photobiology, Chinese Academy of Sciences, Institute of Botany, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxin Du
- Key Laboratory of Photobiology, Chinese Academy of Sciences, Institute of Botany, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Guo
- Key Laboratory of Photobiology, Chinese Academy of Sciences, Institute of Botany, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Chinese Academy of Sciences, Institute of Botany, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Gao S, Chen X, Lin M, Yin Y, Li X, Zhan Y, Xin Y, Zeng F. A birch ELONGATED HYPOCOTYL 5 gene enhances UV-B and drought tolerance. FORESTRY RESEARCH 2024; 4:e022. [PMID: 39524428 PMCID: PMC11524257 DOI: 10.48130/forres-0024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/14/2024] [Accepted: 05/21/2024] [Indexed: 11/16/2024]
Abstract
UV-B radiation and drought majorly restrict plant growth, particularly in summer. ELONGATED HYPOCOTYL 5 (HY5), a bZIP transcription factor (TF), has a beneficial impact on photomorphogenesis. However, the sequence of HY5 from Betula platyphylla (BpHY5) has not been identified and the gene functions remain unclarified. We cloned the sequence of BpHY5, which was targeted to the nucleus. The hypocotyl phenotypes of heterologous expression in Arabidopsis thaliana and reverse mutation showed that BpHY5 is homologous to AtHY5. The expression of BpHY5 was increased in response to UV-B radiation, drought conditions, and the presence of abscisic acid (ABA). The overexpression of BpHY5 resulted in increased tolerance to UV-B radiation and drought and decreased ABA sensitivity with higher germination and greening rate, more developmental root system, stronger reactive oxygen species scavenging ability, and lower damage degree. The lignin content under UV-B condition of BpHY5/Col was higher than that of Col. Furthermore, overexpressing BpHY5 up-regulated the expression of genes related to tolerance (NCED3/9, ABI5, DREB2A, RD20, ERF4, NDB2, and APX2). In brief, the study suggests that BpHY5 from birch serves as a beneficial modulator of plant responses to UV-B radiation and drought stress.
Collapse
Affiliation(s)
- Shangzhu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiaohui Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Meihan Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yibo Yin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiaoyi Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yaguang Zhan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ying Xin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Fansuo Zeng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
47
|
Busch A, Gerbracht JV, Davies K, Hoecker U, Hess S. Comparative transcriptomics elucidates the cellular responses of an aeroterrestrial zygnematophyte to UV radiation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3624-3642. [PMID: 38520340 PMCID: PMC11156808 DOI: 10.1093/jxb/erae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/22/2024] [Indexed: 03/25/2024]
Abstract
The zygnematophytes are the closest relatives of land plants and comprise several lineages that adapted to a life on land. Species of the genus Serritaenia form colorful, mucilaginous capsules, which surround the cells and block harmful solar radiation, one of the major terrestrial stressors. In eukaryotic algae, this 'sunscreen mucilage' represents a unique photoprotective strategy, whose induction and chemical background are unknown. We generated a de novo transcriptome of Serritaenia testaceovaginata and studied its gene regulation under moderate UV radiation (UVR) that triggers sunscreen mucilage under experimental conditions. UVR induced the repair of DNA and the photosynthetic apparatus as well as the synthesis of aromatic specialized metabolites. Specifically, we observed pronounced expressional changes in the production of aromatic amino acids, phenylpropanoid biosynthesis genes, potential cross-membrane transporters of phenolics, and extracellular, oxidative enzymes. Interestingly, the most up-regulated enzyme was a secreted class III peroxidase, whose embryophyte homologs are involved in apoplastic lignin formation. Overall, our findings reveal a conserved, plant-like UVR perception system (UVR8 and downstream factors) in zygnematophyte algae and point to a polyphenolic origin of the sunscreen pigment of Serritaenia, whose synthesis might be extracellular and oxidative, resembling that of plant lignins.
Collapse
Affiliation(s)
- Anna Busch
- Department of Biology, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Jennifer V Gerbracht
- Department of Biology, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Kevin Davies
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Strasse 47b, D-50674, Cologne, Germany
| | - Sebastian Hess
- Department of Biology, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| |
Collapse
|
48
|
Banerjee S, Agarwal P, Choudhury SR, Roy S. MYB4, a member of R2R3-subfamily of MYB transcription factor functions as a repressor of key genes involved in flavonoid biosynthesis and repair of UV-B induced DNA double strand breaks in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108698. [PMID: 38714132 DOI: 10.1016/j.plaphy.2024.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/31/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Plants accumulate flavonoids as part of UV-B acclimation, while a high level of UV-B irradiation induces DNA damage and leads to genome instability. Here, we show that MYB4, a member of the R2R3-subfamily of MYB transcription factor plays important role in regulating plant response to UV-B exposure through the direct repression of the key genes involved in flavonoids biosynthesis and repair of DNA double-strand breaks (DSBs). Our results demonstrate that MYB4 inhibits seed germination and seedling establishment in Arabidopsis following UV-B exposure. Phenotype analyses of atmyb4-1 single mutant line along with uvr8-6/atmyb4-1, cop1-6/atmyb4-1, and hy5-215/atmyb4-1 double mutants indicate that MYB4 functions downstream of UVR8 mediated signaling pathway and negatively affects UV-B acclimation and cotyledon expansion. Our results indicate that MYB4 acts as transcriptional repressor of two key flavonoid biosynthesis genes, including 4CL and FLS, via directly binding to their promoter, thus reducing flavonoid accumulation. On the other hand, AtMYB4 overexpression leads to higher accumulation level of DSBs along with repressed expression of several key DSB repair genes, including AtATM, AtKU70, AtLIG4, AtXRCC4, AtBRCA1, AtSOG1, AtRAD51, and AtRAD54, respectively. Our results further suggest that MYB4 protein represses the expression of two crucial DSB repair genes, AtKU70 and AtXRCC4 through direct binding with their promoters. Together, our results indicate that MYB4 functions as an important coordinator to regulate plant response to UV-B through transcriptional regulation of key genes involved in flavonoids biosynthesis and repair of UV-B induced DNA damage.
Collapse
Affiliation(s)
- Samrat Banerjee
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal, 713104, India
| | - Puja Agarwal
- Constituent College in Purnea University, Purnia, 854301, Bihar, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
49
|
Xie Y, Miao T, Lyu S, Huang Y, Shu M, Li S, Xiong T. Arabidopsis ERD15 regulated by BBX24 plays a positive role in UV-B signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112077. [PMID: 38552846 DOI: 10.1016/j.plantsci.2024.112077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
Ultraviolet-B (UV-B, 280-315 nm) is a minor component of solar radiation, but it has a major regulatory impact on plant growth and development. Solar UV-B regulates numerous aspects of plant metabolism, morphology and physiology through altering the expression of hundreds of genes. EARLY RESPONSIVE TO DEHYDRATION 15 (ERD15) is a drought-induced rapid response gene, formerly known as a negative regulator of the abscisic acid (ABA) signaling pathway. It is unclear whether ERD15 is involved in UV-B-induced photomorphogenesis. Previously, we reported that the BBX24 transcriptional factor negatively regulated UV-B signaling. In the present study, we identified that ERD15 is involved in UV-B photomorphogenesis as a positive regulator at phenotypic, physiological and molecular levels. Our results indicated that ERD15 expression is suppressed by UV-B, inhibited the elongation of Arabidopsis hypocotyls in a UV-B-dependent manner, promoted the expression of related UV-B signaling genes and increased the total antioxidant capacity of Arabidopsis under UV-B. Genetic hybridization results show that ERD15 acts downstream of BBX24, and BBX24 protein mediated the expression of ERD15 by binding to its promoter. Thus, ERD15 is a novel positive regulator of the UV-B signaling pathway, which is downstream of BBX24 and regulated by BBX24 protein to participate in UV-B photomorphogenesis.
Collapse
Affiliation(s)
- Yuxin Xie
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Tingting Miao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Suihua Lyu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuewei Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Man Shu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Shaoshan Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Tiantian Xiong
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
50
|
Chen X, Fan Y, Guo Y, Li S, Zhang B, Li H, Liu LJ. Blue light photoreceptor cryptochrome 1 promotes wood formation and anthocyanin biosynthesis in Populus. PLANT, CELL & ENVIRONMENT 2024; 47:2044-2057. [PMID: 38392920 DOI: 10.1111/pce.14866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Blue light photoreceptor cryptochrome 1 (CRY1) in herbaceous plants plays crucial roles in various developmental processes, including cotyledon expansion, hypocotyl elongation and anthocyanin biosynthesis. However, the function of CRY1 in perennial trees is unclear. In this study, we identified two ortholog genes of CRY1 (PagCRY1a and PagCRY1b) from Populus, which displayed high sequence similarity to Arabidopsis CRY1. Overexpression of PagCRY1 substantially inhibited plant growth and promoted secondary xylem development in Populus, while CRISPR/Cas9-mediated knockout of PagCRY1 enhanced plant growth and delayed secondary xylem development. Moreover, overexpression of PagCRY1 dramatically increased anthocyanin accumulation. The further analysis supported that PagCRY1 functions specifically in response to blue light. Taken together, our results demonstrated that modulating the expression of blue light photoreceptor CRY1 ortholog gene in Populus could significantly influence plant biomass production and the process of wood formation, laying a foundation for further investigating the light-regulated tree growth.
Collapse
Affiliation(s)
- Xiaoman Chen
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Yiting Fan
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Ying Guo
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Shuyi Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Bo Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Hao Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Li-Jun Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|