1
|
Prakash A, Weninger J, Singh N, Raman S, Rao M, Kruse K, Ladher RK. Junctional force patterning drives both positional order and planar polarity in the auditory epithelia. Nat Commun 2025; 16:3927. [PMID: 40280944 PMCID: PMC12032022 DOI: 10.1038/s41467-025-58557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Tissue function depends on the precise organisation of the constituent cells. In the cochlea, the fidelity of hearing depends on mechanosensory hair cells being consistently surrounded by supporting cells. In addition to this positional order, auditory sensitivity depends crucially on planar cell polarity. This is characterised by the alignment of the orientation of eccentrically placed hair bundles on each hair cell. These two levels of order emerge simultaneously despite the cellular fluxes that occur during cochlear development. However, the link between tissue-scale cellular rearrangements and intrinsic cellular mechanisms remains unknown. By combining experimental and theoretical approaches, we find a precise force patterning underpinning positional order and planar cell polarity. This occurs through the modulation of the levels and phospho-type of the regulatory light chain of non-muscle myosin II at specific cell-cell junctions of the auditory epithelium. We propose that the control of junctional mechanics is vital for the organisation of multi-cell-type epithelia.
Collapse
Affiliation(s)
- Anubhav Prakash
- National Centre for Biological Sciences, Tata Institute for Fundamentals Research, GKVK PO, Bangalore, India
| | - Julian Weninger
- Departments of Biochemistry and Theoretical Physics, University of Geneva, Geneva, Switzerland
| | - Nishant Singh
- National Centre for Biological Sciences, Tata Institute for Fundamentals Research, GKVK PO, Bangalore, India
- The University of Trans-Disciplinary Health Sciences and Technology, Yelahanka, Bangalore, India
| | - Sukanya Raman
- National Centre for Biological Sciences, Tata Institute for Fundamentals Research, GKVK PO, Bangalore, India
| | - Madan Rao
- National Centre for Biological Sciences, Tata Institute for Fundamentals Research, GKVK PO, Bangalore, India
| | - Karsten Kruse
- Departments of Biochemistry and Theoretical Physics, University of Geneva, Geneva, Switzerland.
| | - Raj K Ladher
- National Centre for Biological Sciences, Tata Institute for Fundamentals Research, GKVK PO, Bangalore, India.
| |
Collapse
|
2
|
Carrillo JA, Murakawa H, Sato M, Wang M. A new paradigm considering multicellular adhesion, repulsion and attraction represent diverse cellular tile patterns. PLoS Comput Biol 2025; 21:e1011909. [PMID: 40258228 DOI: 10.1371/journal.pcbi.1011909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/25/2025] [Indexed: 04/23/2025] Open
Abstract
Cell sorting by differential adhesion is one of the basic mechanisms explaining spatial organization of neurons in early stage brain development of fruit flies. The columnar arrangements of neurons determine the large-scale patterns in the fly visual center. Experimental studies indicate that hexagonal configurations regularly appear in the fly compound eye, which is connected to the visual center by photoreceptor axons, while tetragonal configurations can be induced in mutants. We need a mathematical framework to study the mechanisms of such a transition between hexagonal and tetragonal arrangements. Here, we propose a new mathematical model based on macroscopic approximations of agent-based models that produces a similar behavior changing from hexagonal to tetragonal steady configurations when medium-range repulsion and longer-range attraction between individuals are incorporated in previous successful models for cell sorting based on adhesion and volume constraints. We analyze the angular configurations of these patterns based on angle summary statistics and compare between experimental data and parameter fitted ARA (Adhesion-Repulsion-Attraction) models showing that intermediate patterns between hexagonal and tetragonal configuration are common in experimental data as well as in our ARA mathematical model. Our studies indicate an overall qualitative agreement of ARA models in tile patterning and pave the way for their quantitative studies. Our study opens up a new avenue to explore tile pattern transitions, found not only in the column arrangement in the brain, but also in the other related biological processes.
Collapse
Affiliation(s)
- Jose A Carrillo
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Hideki Murakawa
- Faculty of Advanced Science and Technology, Ryukoku University, Otsu, Shiga, Japan
| | - Makoto Sato
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Miaoxing Wang
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
3
|
Clancy S, Xie N, Eluvathingal Muttikkal T, Wang J, Adylkhan A, Fateh E, Smith M, Wilson P, Smith M, Hogan A, Sutherland A, Lu X. Rac1 and Nectin3 are essential for planar cell polarity-directed axon guidance in the peripheral auditory system. Development 2025; 152:dev204423. [PMID: 40207531 PMCID: PMC12045628 DOI: 10.1242/dev.204423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/12/2025] [Indexed: 04/11/2025]
Abstract
Spiral ganglion neurons (SGNs) carry sound information from the cochlea to the hindbrain, and innervate either inner or outer hair cells. Type II SGNs (SGNIIs) extend peripheral afferents towards outer hair cells, which make a characteristic 90° turn towards the cochlear base and innervate multiple outer hair cells. It has been shown that the planar cell polarity (PCP) pathway acts non-autonomously in the cochlear epithelium to guide SGNII peripheral afferent turning. However, the underlying mechanisms are unknown. Here, we show that PCP signaling regulates junctional localization of the small GTPase Rac1 and the cell adhesion molecule Nectin3 in mouse cochlear supporting cells (SCs), which serve as intermediate targets of SGNII peripheral afferents. Loss of Rac1 or Nectin3 partially phenocopied SGNII peripheral afferent turning defects in Vangl2 mutants. We present evidence that Rac1 plays a non-autonomous role in part by regulating the localization of core PCP proteins Vangl2 and Dvl3 at the SC-SC junctions, while Nectin3 likely serves a cell adhesion function to control SGNII afferent turning. Together, these experiments identify Nectin3 and Rac1 as regulators of PCP-directed SGNII axon guidance in the cochlea.
Collapse
Affiliation(s)
- Shaylyn Clancy
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22903, USA
| | - Nicholas Xie
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22903, USA
| | | | - Jasmine Wang
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22903, USA
| | - Aray Adylkhan
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22903, USA
| | - Esha Fateh
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22903, USA
| | - Margaret Smith
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22903, USA
| | - Phillip Wilson
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22903, USA
| | - Matthew Smith
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22903, USA
| | - Arielle Hogan
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22903, USA
| | - Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22903, USA
| | - Xiaowei Lu
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22903, USA
| |
Collapse
|
4
|
Kuno S, Nakamura R, Otani T, Togashi H. Multivalent afadin interaction promotes IDR-mediated condensate formation and junctional separation of epithelial cells. Cell Rep 2025; 44:115335. [PMID: 40015268 DOI: 10.1016/j.celrep.2025.115335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/20/2024] [Accepted: 01/29/2025] [Indexed: 03/01/2025] Open
Abstract
In epithelial cells, cell-cell adhesion is mediated by the apical junctional complex (AJC), which consists of tight junctions (TJs) and adherens junctions (AJs) aligned from the apical to the basal axis. However, the mechanism of AJC formation on the apical side and the separation of these junctions within AJCs are poorly understood. We find that multivalent interactions of afadin with adhesion molecules and the cytoskeleton lead to condensate formation in an intrinsically disordered region (IDR)-dependent manner, which promotes efficient accumulation in the linear AJ during initial junction formation. Furthermore, we observe that afadin and ZO-1 induce different condensate formations in the cell and that these molecules are differentially distributed from each other. These properties of afadin explain how it strictly localizes to AJs in epithelial cells and is involved in regulating the segregation of AJs and TJs within the AJC.
Collapse
Affiliation(s)
- Shuhei Kuno
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Ryu Nakamura
- Designing Department, Technology Solution Sector, Healthcare Business Unit, Nikon Corporation, Yokohama 244-8533, Japan
| | - Tetsuhisa Otani
- Laboratory for Cell Biology and Biochemistry, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Hideru Togashi
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan; Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
5
|
Kasirer S, Sprinzak D. Interplay between Notch signaling and mechanical forces during developmental patterning processes. Curr Opin Cell Biol 2024; 91:102444. [PMID: 39608232 DOI: 10.1016/j.ceb.2024.102444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/03/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024]
Abstract
The coordination between biochemical signals and cell mechanics has emerged in recent years as a crucial mechanism driving developmental patterning processes across a variety of developing and homeostatic systems. An important class of such developmental processes relies on local communication between neighboring cells through Notch signaling. Here, we review how the coordination between Notch-mediated differentiation and cell mechanics can give rise to unique cellular patterns. We discuss how global and local mechanical cues can affect, and be affected by, cellular differentiation and reorganization controlled by Notch signaling. We compare recent studies of such developmental processes, including the mammalian inner ear, Drosophila ommatidia, intestinal organoids, and zebrafish myocardium, to draw shared general concepts and their broader implications in biology.
Collapse
Affiliation(s)
- Shahar Kasirer
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel; Raymond and Beverly Sackler School of Physics and Astronomy, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel.
| |
Collapse
|
6
|
Wiseglass G, Rubinstein R. Following the Evolutionary Paths of Dscam1 Proteins toward Highly Specific Homophilic Interactions. Mol Biol Evol 2024; 41:msae141. [PMID: 38989909 PMCID: PMC11272049 DOI: 10.1093/molbev/msae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
Many adhesion proteins, evolutionarily related through gene duplication, exhibit distinct and precise interaction preferences and affinities crucial for cell patterning. Yet, the evolutionary paths by which these proteins acquire new specificities and prevent cross-interactions within their family members remain unknown. To bridge this gap, this study focuses on Drosophila Down syndrome cell adhesion molecule-1 (Dscam1) proteins, which are cell adhesion proteins that have undergone extensive gene duplication. Dscam1 evolved under strong selective pressure to achieve strict homophilic recognition, essential for neuronal self-avoidance and patterning. Through a combination of phylogenetic analyses, ancestral sequence reconstruction, and cell aggregation assays, we studied the evolutionary trajectory of Dscam1 exon 4 across various insect lineages. We demonstrated that recent Dscam1 duplications in the mosquito lineage bind with strict homophilic specificities without any cross-interactions. We found that ancestral and intermediate Dscam1 isoforms maintained their homophilic binding capabilities, with some intermediate isoforms also engaging in promiscuous interactions with other paralogs. Our results highlight the robust selective pressure for homophilic specificity integral to the Dscam1 function within the process of neuronal self-avoidance. Importantly, our study suggests that the path to achieving such selective specificity does not introduce disruptive mutations that prevent self-binding but includes evolutionary intermediates that demonstrate promiscuous heterophilic interactions. Overall, these results offer insights into evolutionary strategies that underlie adhesion protein interaction specificities.
Collapse
Affiliation(s)
- Gil Wiseglass
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rotem Rubinstein
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Clancy S, Xie N, Muttikkal TE, Wang J, Fateh E, Smith M, Wilson P, Smith M, Hogan A, Sutherland A, Lu X. Rac1 and Nectin3 are essential for PCP-directed axon guidance in the peripheral auditory system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597585. [PMID: 38895287 PMCID: PMC11185701 DOI: 10.1101/2024.06.05.597585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Our sense of hearing is critically dependent on the spiral ganglion neurons (SGNs) that connect the sound receptors in the organ of Corti (OC) to the cochlear nuclei of the hindbrain. Type I SGNs innervate inner hair cells (IHCs) to transmit sound signals, while type II SGNs (SGNIIs) innervate outer hair cells (OHCs) to detect moderate-to-intense sound. During development, SGNII afferents make a characteristic 90-degree turn toward the base of the cochlea and innervate multiple OHCs. It has been shown that the Planar Cell Polarity (PCP) pathway acts non-autonomously to mediate environmental cues in the cochlear epithelium for SGNII afferent turning towards the base. However, the underlying mechanisms are unknown. Here, we present evidence that PCP signaling regulates multiple downstream effectors to influence cell adhesion and the cytoskeleton in cochlear supporting cells (SCs), which serve as intermediate targets of SGNII afferents. We show that the core PCP gene Vangl2 regulates the localization of the small GTPase Rac1 and the cell adhesion molecule Nectin3 at SC-SC junctions through which SGNII afferents travel. Through in vivo genetic analysis, we also show that loss of Rac1 or Nectin3 partially phenocopied SGNII peripheral afferent turning defects in Vangl2 mutants, and that Rac1 plays a non-autonomous role in this process in part by regulating PCP protein localization at the SC-SC junctions. Additionally, epistasis analysis indicates that Nectin3 and Rac1 likely act in the same genetic pathway to control SGNII afferent turning. Together, these experiments identify Nectin3 and Rac1 as novel regulators of PCP-directed SGNII axon guidance in the cochlea.
Collapse
Affiliation(s)
- Shaylyn Clancy
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22903, United States
| | - Nicholas Xie
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22903, United States
| | | | - Jasmine Wang
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22903, United States
| | - Esha Fateh
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22903, United States
| | - Margaret Smith
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22903, United States
| | - Phillip Wilson
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22903, United States
| | - Matthew Smith
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22903, United States
| | - Arielle Hogan
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22903, United States
| | - Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22903, United States
| | - Xiaowei Lu
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22903, United States
| |
Collapse
|
8
|
Campàs O, Noordstra I, Yap AS. Adherens junctions as molecular regulators of emergent tissue mechanics. Nat Rev Mol Cell Biol 2024; 25:252-269. [PMID: 38093099 DOI: 10.1038/s41580-023-00688-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 03/28/2024]
Abstract
Tissue and organ development during embryogenesis relies on the collective and coordinated action of many cells. Recent studies have revealed that tissue material properties, including transitions between fluid and solid tissue states, are controlled in space and time to shape embryonic structures and regulate cell behaviours. Although the collective cellular flows that sculpt tissues are guided by tissue-level physical changes, these ultimately emerge from cellular-level and subcellular-level molecular mechanisms. Adherens junctions are key subcellular structures, built from clusters of classical cadherin receptors. They mediate physical interactions between cells and connect biochemical signalling to the physical characteristics of cell contacts, hence playing a fundamental role in tissue morphogenesis. In this Review, we take advantage of the results of recent, quantitative measurements of tissue mechanics to relate the molecular and cellular characteristics of adherens junctions, including adhesion strength, tension and dynamics, to the emergent physical state of embryonic tissues. We focus on systems in which cell-cell interactions are the primary contributor to morphogenesis, without significant contribution from cell-matrix interactions. We suggest that emergent tissue mechanics is an important direction for future research, bridging cell biology, developmental biology and mechanobiology to provide a holistic understanding of morphogenesis in health and disease.
Collapse
Affiliation(s)
- Otger Campàs
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| | - Ivar Noordstra
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alpha S Yap
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
9
|
Jensen CC, Peifer M. Too old for hide-and-seek; cell maturation reveals hidden apical junctional organization. Proc Natl Acad Sci U S A 2024; 121:e2401735121. [PMID: 38466856 PMCID: PMC10962932 DOI: 10.1073/pnas.2401735121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Affiliation(s)
- Corbin C. Jensen
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
10
|
Una R, Glimm T. A Cellular Potts Model of the interplay of synchronization and aggregation. PeerJ 2024; 12:e16974. [PMID: 38435996 PMCID: PMC10909357 DOI: 10.7717/peerj.16974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
We investigate the behavior of systems of cells with intracellular molecular oscillators ("clocks") where cell-cell adhesion is mediated by differences in clock phase between neighbors. This is motivated by phenomena in developmental biology and in aggregative multicellularity of unicellular organisms. In such systems, aggregation co-occurs with clock synchronization. To account for the effects of spatially extended cells, we use the Cellular Potts Model (CPM), a lattice agent-based model. We find four distinct possible phases: global synchronization, local synchronization, incoherence, and anti-synchronization (checkerboard patterns). We characterize these phases via order parameters. In the case of global synchrony, the speed of synchronization depends on the adhesive effects of the clocks. Synchronization happens fastest when cells in opposite phases adhere the strongest ("opposites attract"). When cells of the same clock phase adhere the strongest ("like attracts like"), synchronization is slower. Surprisingly, the slowest synchronization happens in the diffusive mixing case, where cell-cell adhesion is independent of clock phase. We briefly discuss potential applications of the model, such as pattern formation in the auditory sensory epithelium.
Collapse
Affiliation(s)
- Rose Una
- Department of Mathematics, Western Washington University, Bellingham, WA, United States of America
| | - Tilmann Glimm
- Department of Mathematics, Western Washington University, Bellingham, WA, United States of America
| |
Collapse
|
11
|
Togashi H, Davis SR, Sato M. From soap bubbles to multicellular organisms: Unraveling the role of cell adhesion and physical constraints in tile pattern formation and tissue morphogenesis. Dev Biol 2024; 506:1-6. [PMID: 37995916 DOI: 10.1016/j.ydbio.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Tile patterns, in which numerous cells are arranged in a regular pattern, are found in a variety of multicellular organisms and play important functional roles. Such regular arrangements of cells are regulated by various cell adhesion molecules. On the other hand, cell shape is also known to be regulated by physical constraints similar to those of soap bubbles. In particular, circumference minimization plays an important role, and cell adhesion negatively affects this process, thereby regulating tissue morphogenesis based on physical properties. Here, we focus on the Drosophila compound eye and the mouse auditory epithelium, and summarize the mechanisms of tile pattern formation by cell adhesion molecules such as cadherins, Irre Cell Recognition Modules (IRMs), and nectins. Phenomena that cannot be explained by physical stability based on cortical tension alone have been reported in the tile pattern formation in the compound eye, suggesting that previously unexplored forces such as cellular concentric expansion force may play an important role. We would like to summarize perspectives for future research on the mechanisms of tissue morphogenesis.
Collapse
Affiliation(s)
- Hideru Togashi
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Steven Ray Davis
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Makoto Sato
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan.
| |
Collapse
|
12
|
Bhaskar D, Zhang WY, Volkening A, Sandstede B, Wong IY. Topological data analysis of spatial patterning in heterogeneous cell populations: clustering and sorting with varying cell-cell adhesion. NPJ Syst Biol Appl 2023; 9:43. [PMID: 37709793 PMCID: PMC10502054 DOI: 10.1038/s41540-023-00302-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Different cell types aggregate and sort into hierarchical architectures during the formation of animal tissues. The resulting spatial organization depends (in part) on the strength of adhesion of one cell type to itself relative to other cell types. However, automated and unsupervised classification of these multicellular spatial patterns remains challenging, particularly given their structural diversity and biological variability. Recent developments based on topological data analysis are intriguing to reveal similarities in tissue architecture, but these methods remain computationally expensive. In this article, we show that multicellular patterns organized from two interacting cell types can be efficiently represented through persistence images. Our optimized combination of dimensionality reduction via autoencoders, combined with hierarchical clustering, achieved high classification accuracy for simulations with constant cell numbers. We further demonstrate that persistence images can be normalized to improve classification for simulations with varying cell numbers due to proliferation. Finally, we systematically consider the importance of incorporating different topological features as well as information about each cell type to improve classification accuracy. We envision that topological machine learning based on persistence images will enable versatile and robust classification of complex tissue architectures that occur in development and disease.
Collapse
Affiliation(s)
- Dhananjay Bhaskar
- School of Engineering, Brown University, Providence, RI, USA
- Center for Biomedical Engineering, Brown University, Providence, RI, USA
- Data Science Institute, Brown University, Providence, RI, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - William Y Zhang
- Data Science Institute, Brown University, Providence, RI, USA
- Division of Applied Mathematics, Brown University, Providence, RI, USA
- Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Björn Sandstede
- Data Science Institute, Brown University, Providence, RI, USA
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | - Ian Y Wong
- School of Engineering, Brown University, Providence, RI, USA.
- Center for Biomedical Engineering, Brown University, Providence, RI, USA.
- Data Science Institute, Brown University, Providence, RI, USA.
- Legorreta Cancer Center, Brown University, Providence, RI, USA.
| |
Collapse
|
13
|
Dullweber T, Erzberger A. Mechanochemical feedback loops in contact-dependent fate patterning. CURRENT OPINION IN SYSTEMS BIOLOGY 2023; 32-33:None. [PMID: 37090955 PMCID: PMC10112234 DOI: 10.1016/j.coisb.2023.100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To reliably form and maintain structures with specific functions, many multicellular systems evolved to leverage the interplay between biochemical signaling, mechanics, and morphology. We review mechanochemical feedback loops in cases where cell-cell contact-based Notch signaling drives fate decisions, and the corresponding differentiation process leads to contact remodeling. We compare different mechanisms for initial symmetry breaking and subsequent pattern refinement, as well as discuss how patterning outcomes depend on the relationship between biochemical and mechanical timescales. We conclude with an overview of new approaches, including the study of synthetic circuits, and give an outlook on future experimental and theoretical developments toward dissecting and harnessing mechanochemical feedback.
Collapse
Affiliation(s)
- T. Dullweber
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg, 69117, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, 69120, Germany
| | - A. Erzberger
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg, 69117, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, 69120, Germany
| |
Collapse
|
14
|
Cohen R, Taiber S, Loza O, Kasirer S, Woland S, Sprinzak D. Precise alternating cellular pattern in the inner ear by coordinated hopping intercalations and delaminations. SCIENCE ADVANCES 2023; 9:eadd2157. [PMID: 36812313 DOI: 10.1126/sciadv.add2157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
The mammalian hearing organ, the organ of Corti, is one of the most organized tissues in mammals. It contains a precisely positioned array of alternating sensory hair cells (HCs) and nonsensory supporting cells. How such precise alternating patterns emerge during embryonic development is not well understood. Here, we combine live imaging of mouse inner ear explants with hybrid mechano-regulatory models to identify the processes that underlie the formation of a single row of inner hair cells (IHCs). First, we identify a previously unobserved morphological transition, termed "hopping intercalation," that allows cells differentiating toward IHC fate to "hop" under the apical plane into their final position. Second, we show that out-of-row cells with low levels of the HC marker Atoh1 delaminate. Last, we show that differential adhesion between cell types contributes to straightening of the IHC row. Our results support a mechanism for precise patterning based on coordination between signaling and mechanical forces that is likely relevant for many developmental processes.
Collapse
Affiliation(s)
- Roie Cohen
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Raymond and Beverly Sackler School of Physics and Astronomy, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shahar Taiber
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Olga Loza
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shahar Kasirer
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Raymond and Beverly Sackler School of Physics and Astronomy, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shiran Woland
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
15
|
Vikulina A, Wulf A, Guday G, Fakhrullin R, Volodkin D. A lipid membrane supported on an artificial extracellular matrix made of polyelectrolyte multilayers: towards nanoarchitectonics at the cellular interface. NANOSCALE 2023; 15:2197-2205. [PMID: 36633359 DOI: 10.1039/d2nr05186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To implement a specific function, cells recognize multiple physical and chemical cues and exhibit molecular responses at their interfaces - the boundary regions between the cell lipid-based membrane and the surrounding extracellular matrix (ECM). Mimicking the cellular external microenvironment presents a big challenge in nanoarchitectonics due to the complexity of the ECM and lipid membrane fragility. This study reports an approach for the assembly of a lipid bilayer, mimicking the cellular membrane, placed on top of a polyelectrolyte multilayer cushion made of hyaluronic acid and poly-L-lysine - a nanostructured biomaterial, which represents a 3D artificial ECM. Model proteins, lysozyme and α-lactalbumin, (which have similar molecular masses but carry opposite net charges) have been employed as soluble signalling molecules to probe their interaction with these hybrids. The formation of a lipid bilayer and the intermolecular interactions in the hybrid structure are monitored using a quartz crystal microbalance and confocal fluorescence microscopy. Electrostatic interactions between poly-L-lysine and the externally added proteins govern the transport of proteins into the hybrid. Designed ECM-cell mimicking hybrids open up new avenues for modelling a broad range of cell membranes and ECM and their associated phenomena, which can be used as a tool for synthetic biology and drug screening.
Collapse
Affiliation(s)
- Anna Vikulina
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (Fraunhofer IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Bavarian Polymer Institute, Dr.-Mack-Straße 77, 90762 Fürth, Germany
| | - Alena Wulf
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (Fraunhofer IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Guy Guday
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (Fraunhofer IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Rawil Fakhrullin
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kreml uramı 18, Kazan, Republic of Tatarstan, 420008, Russian Federation.
| | - Dmitry Volodkin
- Nottingham Trent University, School of Science and Technology, Clifton Lane, Nottingham NG11 8NS, UK.
| |
Collapse
|
16
|
Stepwise fate conversion of supporting cells to sensory hair cells in the chick auditory epithelium. iScience 2023; 26:106046. [PMID: 36818302 PMCID: PMC9932131 DOI: 10.1016/j.isci.2023.106046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/17/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
In contrast to mammals, the avian cochlea, specifically the basilar papilla, can regenerate sensory hair cells, which involves fate conversion of supporting cells to hair cells. To determine the mechanisms for converting supporting cells to hair cells, we used single-cell RNA sequencing during hair cell regeneration in explant cultures of chick basilar papillae. We identified dynamic changes in the gene expression of supporting cells, and the pseudotime trajectory analysis demonstrated the stepwise fate conversion from supporting cells to hair cells. Initially, supporting cell identity was erased and transition to the precursor state occurred. A subsequent gain in hair cell identity progressed together with downregulation of precursor-state genes. Transforming growth factor β receptor 1-mediated signaling was involved in induction of the initial step, and its inhibition resulted in suppression of hair cell regeneration. Our data provide new insights for understanding fate conversion from supporting cells to hair cells in avian basilar papillae.
Collapse
|
17
|
Katsunuma S, Togashi H, Kuno S, Fujita T, Nibu KI. Hearing loss in mice with disruption of auditory epithelial patterning in the cochlea. Front Cell Dev Biol 2022; 10:1073830. [PMID: 36568980 PMCID: PMC9773838 DOI: 10.3389/fcell.2022.1073830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
In the cochlear auditory epithelia, sensory hair and supporting cells are arranged in a checkerboard-like mosaic pattern, which is conserved across a wide range of species. The cell adhesion molecules nectin-1 and nectin-3 are required for this pattern formation. The checkerboard-like pattern is thought to be necessary for auditory function, but has never been examined. Here, we showed the significance of checkerboard-like cellular pattern in the survival and function of sensory hair cells in the cochlear auditory epithelia of nectin-3 knockout (KO) mice. Nectin-3 KO mice showed progressive hearing loss associated with degeneration of aberrantly attached hair cells via apoptosis. Apoptotic hair cell death was due to the disorganization of tight junctions between the hair cells. Our study revealed that the checkerboard-like cellular pattern in the auditory epithelium provides a structural basis for ensuring the survival of cochlear hair cells and hearing function.
Collapse
Affiliation(s)
- Sayaka Katsunuma
- Department of Otolaryngology, Hyogo Prefectural Kobe Children’s Hospital, Kobe, Japan,Department of Biochemistry and Molecular Biology, Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan,Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideru Togashi
- Department of Biochemistry and Molecular Biology, Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan,PRESTO, Japan Science and Technology Agency, Kobe, Japan,*Correspondence: Hideru Togashi,
| | - Shuhei Kuno
- Department of Biochemistry and Molecular Biology, Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Fujita
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ken-Ichi Nibu
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
18
|
Takeichi M. Cell sorting in vitro and in vivo: How are cadherins involved? Semin Cell Dev Biol 2022; 147:2-11. [PMID: 36376196 DOI: 10.1016/j.semcdb.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Animal tissues are composed of heterogenous cells, and their sorting into different compartments of the tissue is a pivotal process for organogenesis. Cells accomplish sorting by themselves-it is well known that singly dispersed cells can self-organize into tissue-like structures in vitro. Cell sorting is regulated by both biochemical and physical mechanisms. Adhesive proteins connect cells together, selecting particular partners through their specific binding properties, while physical forces, such as cell-cortical tension, control the cohesiveness between cells and in turn cell assembly patterns in mechanical ways. These processes cooperate in determining the overall cell sorting behavior. This article focuses on the 'cadherin' family of adhesion molecules as a biochemical component of cell-cell interactions, addressing how they regulate cell sorting by themselves or by cooperating with other factors. New ideas beyond the classical models of cell sorting are also discussed.
Collapse
|
19
|
Abstract
Since the proposal of the differential adhesion hypothesis, scientists have been fascinated by how cell adhesion mediates cellular self-organization to form spatial patterns during development. The search for molecular tool kits with homophilic binding specificity resulted in a diverse repertoire of adhesion molecules. Recent understanding of the dominant role of cortical tension over adhesion binding redirects the focus of differential adhesion studies to the signaling function of adhesion proteins to regulate actomyosin contractility. The broader framework of differential interfacial tension encompasses both adhesion and nonadhesion molecules, sharing the common function of modulating interfacial tension during cell sorting to generate diverse tissue patterns. Robust adhesion-based patterning requires close coordination between morphogen signaling, cell fate decisions, and changes in adhesion. Current advances in bridging theoretical and experimental approaches present exciting opportunities to understand molecular, cellular, and tissue dynamics during adhesion-based tissue patterning across multiple time and length scales.
Collapse
Affiliation(s)
- Tony Y-C Tsai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Rikki M Garner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA;
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
20
|
Bajpai S, Chelakkot R, Prabhakar R, Inamdar MM. Role of Delta-Notch signalling molecules on cell-cell adhesion in determining heterogeneous chemical and cell morphological patterning. SOFT MATTER 2022; 18:3505-3520. [PMID: 35438097 DOI: 10.1039/d2sm00064d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell mechanics and motility are responsible for collective motion of cells that result in overall deformation of epithelial tissues. On the other hand, contact-dependent cell-cell signalling is responsible for generating a large variety of intricate, self-organized, spatial patterns of the signalling molecules. Moreover, it is becoming increasingly clear that the combined mechanochemical patterns of cell shape/size and signalling molecules in the tissues, for example, in cancerous and sensory epithelium, are governed by mechanochemical coupling between chemical signalling and cell mechanics. However, a clear quantitative picture of how these two aspects of tissue dynamics, i.e., signalling and mechanics, lead to pattern and form is still emerging. Although, a number of recent experiments demonstrate that cell mechanics, cell motility, and cell-cell signalling are tightly coupled in many morphogenetic processes, relatively few modeling efforts have focused on an integrated approach. We extend the vertex model of an epithelial monolayer to account for contact-dependent signalling between adjacent cells and between non-adjacent neighbors through long protrusional contacts with a feedback mechanism wherein the adhesive strength between adjacent cells is controlled by the expression of the signalling molecules in those cells. Local changes in cell-cell adhesion lead to changes in cell shape and size, which in turn drives changes in the levels of signalling molecules. Our simulations show that even this elementary two-way coupling of chemical signalling and cell mechanics is capable of giving rise to a rich variety of mechanochemical patterns in epithelial tissues. In particular, under certain parametric conditions, bimodal distributions in cell size and shape are obtained, which resemble experimental observations in cancerous and sensory tissues.
Collapse
Affiliation(s)
- Supriya Bajpai
- IITB-Monash Research Academy, Mumbai 400076, India.
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Raghunath Chelakkot
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Ranganathan Prabhakar
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Mandar M Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
21
|
Koyama H, Suzuki M, Yasue N, Sasaki H, Ueno N, Fujimori T. Differential Cellular Stiffness Contributes to Tissue Elongation on an Expanding Surface. Front Cell Dev Biol 2022; 10:864135. [PMID: 35425767 PMCID: PMC9001851 DOI: 10.3389/fcell.2022.864135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 12/02/2022] Open
Abstract
Pattern formation and morphogenesis of cell populations is essential for successful embryogenesis. Steinberg proposed the differential adhesion hypothesis, and differences in cell–cell adhesion and interfacial tension have proven to be critical for cell sorting. Standard theoretical models such as the vertex model consider not only cell–cell adhesion/tension but also area elasticity of apical cell surfaces and viscous friction forces. However, the potential contributions of the latter two parameters to pattern formation and morphogenesis remain to be determined. In this theoretical study, we analyzed the effect of both area elasticity and the coefficient of friction on pattern formation and morphogenesis. We assumed the presence of two cell populations, one population of which is surrounded by the other. Both populations were placed on the surface of a uniformly expanding environment analogous to growing embryos, in which friction forces are exerted between cell populations and their expanding environment. When the area elasticity or friction coefficient in the cell cluster was increased relative to that of the surrounding cell population, the cell cluster was elongated. In comparison with experimental observations, elongation of the notochord in mice is consistent with the hypothesis based on the difference in area elasticity but not the difference in friction coefficient. Because area elasticity is an index of cellular stiffness, we propose that differential cellular stiffness may contribute to tissue elongation within an expanding environment.
Collapse
Affiliation(s)
- Hiroshi Koyama
- Division of Embryology, National Institute for Basic Biology (Div. Embryology, NIBB), Okazaki, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Makoto Suzuki
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan.,Division of Morphogenesis, National Institute for Basic Biology (Div. Morphogenesis, NIBB), Okazaki, Japan.,Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University (ARC, Hiroshima Univ.), Higashihiroshima, Japan
| | - Naoko Yasue
- Division of Morphogenesis, National Institute for Basic Biology (Div. Morphogenesis, NIBB), Okazaki, Japan
| | - Hiroshi Sasaki
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University (FBS, Osaka Univ.), Suita, Japan
| | - Naoto Ueno
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan.,Division of Morphogenesis, National Institute for Basic Biology (Div. Morphogenesis, NIBB), Okazaki, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology (Div. Embryology, NIBB), Okazaki, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| |
Collapse
|
22
|
Hashimoto H, Tanaka Y, Murata M, Ito T. Nectin-4: a Novel Therapeutic Target for Skin Cancers. Curr Treat Options Oncol 2022; 23:578-593. [PMID: 35312963 DOI: 10.1007/s11864-022-00940-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/19/2022]
Abstract
OPINION STATEMENT Nectin-4 is a tumor-associated antigen that is highly expressed on various cancer cells, and it has been further proposed to have roles in tumor development and propagation ranging from cellular proliferation to motility and invasion. Nectin-4 blockade reduces tumor proliferation and induces apoptosis in several malignancies. Nectin-4 has been used as a potential target in antibody-drug conjugate (ADC) development. Enfortumab vedotin, an ADC against Nectin-4, has demonstrated efficacy against solid tumor malignancies. Enfortumab vedotin has received US Food and Drug Administration approval for treating urothelial cancer. Furthermore, the efficacy of ADCs against Nectin-4 against solid tumors other than urothelial cancer has been demonstrated in preclinical studies, and clinical trials examining the effects of enfortumab vedotin are ongoing. Recently, Nectin-4 was reported to be highly expressed in several skin cancers, including malignant melanoma, cutaneous squamous cell carcinoma, and extramammary Paget's disease, and involved in tumor progression and survival in retrospective studies. Nectin-4-targeted therapies and ADCs against Nectin-4 could therefore be novel therapeutic options for skin cancers. This review highlights current knowledge on Nectin-4 in malignant tumors, the efficacy of enfortumab vedotin in clinical trials, and the prospects of Nectin-4-targeted agents against skin cancers.
Collapse
Affiliation(s)
- Hiroki Hashimoto
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Yuka Tanaka
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Maho Murata
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
23
|
Mohammad RZ, Murakawa H, Svadlenka K, Togashi H. A numerical algorithm for modeling cellular rearrangements in tissue morphogenesis. Commun Biol 2022; 5:239. [PMID: 35304570 PMCID: PMC8933555 DOI: 10.1038/s42003-022-03174-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/16/2022] [Indexed: 11/15/2022] Open
Abstract
Among morphological phenomena, cellular patterns in developing sensory epithelia have gained attention in recent years. Although physical models for cellular rearrangements are well-established thanks to a large bulk of experimental work, their computational implementation lacks solid mathematical background and involves experimentally unreachable parameters. Here we introduce a level set-based computational framework as a tool to rigorously investigate evolving cellular patterns, and study its mathematical and computational properties. We illustrate that a compelling feature of the method is its ability to correctly handle complex topology changes, including frequent cell intercalations. Combining this accurate numerical scheme with an established mathematical model, we show that the proposed framework features minimum possible number of parameters and is capable of reproducing a wide range of tissue morphological phenomena, such as cell sorting, engulfment or internalization. In particular, thanks to precise mathematical treatment of cellular intercalations, this method succeeds in simulating experimentally observed development of cellular mosaic patterns in sensory epithelia. A numerical algorithm handles complex cell topology changes and reproduces tissue morphological phenomena without relying on nonphysical parameters.
Collapse
Affiliation(s)
- Rhudaina Z Mohammad
- Department of Mathematics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Institute of Mathematics, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Hideki Murakawa
- Applied Mathematics and Informatics Course, Faculty of Advanced Science and Technology, Ryukoku University, Otsu, Japan
| | - Karel Svadlenka
- Department of Mathematics, Graduate School of Science, Kyoto University, Kyoto, Japan. .,Mathematical Institute, Czech Academy of Sciences, Prague, Czech Republic.
| | - Hideru Togashi
- JST PRESTO (Precursory Research for Embryonic Science and Technology), Kobe, Japan.,Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
24
|
Qian S, Liu H, Yuan X, Wei W, Chen S, Yan H. Row and Column Structure-Based Biclustering for Gene Expression Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1117-1129. [PMID: 32894722 DOI: 10.1109/tcbb.2020.3022085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Due to the development of high-throughput technologies for gene analysis, the biclustering method has attracted much attention. However, existing methods have problems with high time and space complexity. This paper proposes a biclustering method, called Row and Column Structure-based Biclustering (RCSBC), with low time and space complexity to find checkerboard patterns within microarray data. First, the paper describes the structure of bicluster by using the structure of rows and columns. Second, the paper chooses the representative rows and columns with two algorithms. Finally, the gene expression data are biclustered on the space spanned by representative rows and columns. To the best of our knowledge, this paper is the first to exploit the relationship between the row/column structure of a gene expression matrix and the structure of biclusters. Both the synthetic datasets and the real-life gene expression datasets are used to validate the effectiveness of our method. It can be seen from the experiment results that the RCSBC outperforms the state-of-the-art algorithms both on clustering accuracy and time/space complexity. This study offers new insights into biclustering the large-scale gene expression data without loading the whole data into memory.
Collapse
|
25
|
Abstract
Nectins are immunoglobulin-like cell adhesion molecules constituting a family with four members, nectin-1, nectin-2, nectin-3, and nectin-4. In the brain, nectin-2 as well as nectin-1 and nectin-3 are expressed whereas nectin-4 is hardly expressed. In the nervous system, physiological functions of nectin-1 and nectin-3, such as synapse formation, mossy fiber trajectory regulation, interneurite affinity, contextual fear memory formation, and stress-related mental disorders, have been revealed. Nectin-2 is ubiquitously expressed in non-neuronal tissues and various nectin-2 functions in non-nervous systems have been extensively investigated, but nectin-2 functions in the brain have not been revealed until recently. Recent findings have revealed that nectin-2 is expressed in the specific areas of the brain and plays important roles, such as homeostasis of astrocytes and neurons and the formation of synapses. Moreover, a single nucleotide polymorphism in the human NECTIN2 gene is associated with Alzheimer's disease. We here summarize recent progress in our understanding of nectin-2 functions in the brain.
Collapse
|
26
|
Cohen R, Sprinzak D. Mechanical forces shaping the development of the inner ear. Biophys J 2021; 120:4142-4148. [PMID: 34242589 DOI: 10.1016/j.bpj.2021.06.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/31/2021] [Accepted: 06/29/2021] [Indexed: 01/23/2023] Open
Abstract
The inner ear is one of the most complex structures in the mammalian body. Embedded within it are the hearing and balance sensory organs that contain arrays of hair cells that serve as sensors of sound and acceleration. Within the sensory organs, these hair cells are prototypically arranged in regular mosaic patterns. The development of such complex, yet precise, patterns require the coordination of differentiation, growth, and morphogenesis, both at the tissue and cellular scales. In recent years, there is accumulating evidence that mechanical forces at the tissue, the cellular, and the subcellular scales coordinate the development and organization of this remarkable organ. Here, we review recent works that reveal how such mechanical forces shape the inner ear, control its size, and establish regular cellular patterns. The insights learned from studying how mechanical forces drive the inner ear development are relevant for many other developmental systems in which precise cellular patterns are essential for their function.
Collapse
Affiliation(s)
- Roie Cohen
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Raymond and Beverly Sackler School of Physics and Astronomy, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel; The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
27
|
van Gestel J, Wagner A. Cryptic surface-associated multicellularity emerges through cell adhesion and its regulation. PLoS Biol 2021; 19:e3001250. [PMID: 33983920 PMCID: PMC8148357 DOI: 10.1371/journal.pbio.3001250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/25/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
The repeated evolution of multicellularity led to a wide diversity of organisms, many of which are sessile, including land plants, many fungi, and colonial animals. Sessile organisms adhere to a surface for most of their lives, where they grow and compete for space. Despite the prevalence of surface-associated multicellularity, little is known about its evolutionary origin. Here, we introduce a novel theoretical approach, based on spatial lineage tracking of cells, to study this origin. We show that multicellularity can rapidly evolve from two widespread cellular properties: cell adhesion and the regulatory control of adhesion. By evolving adhesion, cells attach to a surface, where they spontaneously give rise to primitive cell collectives that differ in size, life span, and mode of propagation. Selection in favor of large collectives increases the fraction of adhesive cells until a surface becomes fully occupied. Through kin recognition, collectives then evolve a central-peripheral polarity in cell adhesion that supports a division of labor between cells and profoundly impacts growth. Despite this spatial organization, nascent collectives remain cryptic, lack well-defined boundaries, and would require experimental lineage tracking technologies for their identification. Our results suggest that cryptic multicellularity could readily evolve and originate well before multicellular individuals become morphologically evident.
Collapse
Affiliation(s)
- Jordi van Gestel
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
28
|
Honig B, Shapiro L. Adhesion Protein Structure, Molecular Affinities, and Principles of Cell-Cell Recognition. Cell 2021; 181:520-535. [PMID: 32359436 DOI: 10.1016/j.cell.2020.04.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
Abstract
The ability of cells to organize into multicellular structures in precise patterns requires that they "recognize" one another with high specificity. We discuss recent progress in understanding the molecular basis of cell-cell recognition, including unique phenomena associated with neuronal interactions. We describe structures of select adhesion receptor complexes and their assembly into larger intercellular junction structures and discuss emerging principles that relate cell-cell organization to the binding specificities and energetics of adhesion receptors. Armed with these insights, advances in protein design and gene editing should pave the way for breakthroughs toward understanding the molecular basis of cell patterning in vivo.
Collapse
Affiliation(s)
- Barry Honig
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA.
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
29
|
Duraivelan K, Dash S, Samanta D. An evolutionarily conserved charged residue dictates the specificity of heterophilic interactions among nectins. Biochem Biophys Res Commun 2020; 534:504-510. [PMID: 33220924 DOI: 10.1016/j.bbrc.2020.11.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023]
Abstract
Nectins are a family of four cell surface glycoproteins belonging to the immunoglobulin superfamily that mediate cell-cell adhesion and associated signalling pathways, thereby regulating several physiological processes including morphogenesis, growth and development of multicellular organisms. Nectins interact among themselves through their extracellular domains from the adjacent cells in both homophilic and heterophilic fashions to support cell-cell adhesion. Although nectins form homodimers as demonstrated in experimental set-ups, only the specific heterophilic interactions among nectins are physiologically relevant as shown by in vivo studies. It has been hypothesised that a conserved charged residue present at the binding interface acts as the molecular switch for heterophilic nectin-nectin recognitions. In this work, we have analysed the energetics of homophilic and heterophilic interactions of nectins, followed by surface plasmon resonance-based binding studies and complementary in silico analyses. Our findings confirm that the conserved charged residues at the binding interfaces dictate the specificity of the nectin-nectin heterophilic interactions. Furthermore, these residues also play a role in conferring higher affinity to the heterophilic interactions, thereby making them physiologically more prevalent compared to homophilic interactions. Thus, this work reveals the molecular basis of heterophilic recognitions among nectins that contribute to their physiological functions.
Collapse
Affiliation(s)
- Kheerthana Duraivelan
- School of Bioscience, Sir J. C. Bose Laboratory Complex, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sagarika Dash
- School of Bioscience, Sir J. C. Bose Laboratory Complex, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Dibyendu Samanta
- School of Bioscience, Sir J. C. Bose Laboratory Complex, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
30
|
Cohen R, Amir-Zilberstein L, Hersch M, Woland S, Loza O, Taiber S, Matsuzaki F, Bergmann S, Avraham KB, Sprinzak D. Mechanical forces drive ordered patterning of hair cells in the mammalian inner ear. Nat Commun 2020; 11:5137. [PMID: 33046691 PMCID: PMC7550578 DOI: 10.1038/s41467-020-18894-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/15/2020] [Indexed: 01/03/2023] Open
Abstract
Periodic organization of cells is required for the function of many organs and tissues. The development of such periodic patterns is typically associated with mechanisms based on intercellular signaling such as lateral inhibition and Turing patterning. Here we show that the transition from disordered to ordered checkerboard-like pattern of hair cells and supporting cells in the mammalian hearing organ, the organ of Corti, is likely based on mechanical forces rather than signaling events. Using time-lapse imaging of mouse cochlear explants, we show that hair cells rearrange gradually into a checkerboard-like pattern through a tissue-wide shear motion that coordinates intercalation and delamination events. Using mechanical models of the tissue, we show that global shear and local repulsion forces on hair cells are sufficient to drive the transition from disordered to ordered cellular pattern. Our findings suggest that mechanical forces drive ordered hair cell patterning in a process strikingly analogous to the process of shear-induced crystallization in polymer and granular physics.
Collapse
Affiliation(s)
- Roie Cohen
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, 6997801, Tel Aviv, Israel.,The Center for Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel.,Faculty of Exact Sciences, Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Liat Amir-Zilberstein
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Micha Hersch
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Shiran Woland
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Olga Loza
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Shahar Taiber
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, 6997801, Tel Aviv, Israel.,Sackler Faculty of Medicine and Sagol School of Neuroscience, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Fumio Matsuzaki
- Laboratory of Cell Asymmetry, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.,Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Karen B Avraham
- Sackler Faculty of Medicine and Sagol School of Neuroscience, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - David Sprinzak
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, 6997801, Tel Aviv, Israel. .,The Center for Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
31
|
Finegan TM, Bergstralh DT. Neuronal immunoglobulin superfamily cell adhesion molecules in epithelial morphogenesis: insights from Drosophila. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190553. [PMID: 32829687 PMCID: PMC7482216 DOI: 10.1098/rstb.2019.0553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2020] [Indexed: 12/25/2022] Open
Abstract
In this review, we address the function of immunoglobulin superfamily cell adhesion molecules (IgCAMs) in epithelia. Work in the Drosophila model system in particular has revealed novel roles for calcium-independent adhesion molecules in the morphogenesis of epithelial tissues. We review the molecular composition of lateral junctions with a focus on their IgCAM components and reconsider the functional roles of epithelial lateral junctions. The epithelial IgCAMs discussed in this review have well-defined roles in the nervous system, particularly in the process of axon guidance, suggesting functional overlap and conservation in mechanism between that process and epithelial remodelling. We expand on the hypothesis that epithelial occluding junctions and synaptic junctions are compositionally equivalent and present a novel hypothesis that the mechanism of epithelial cell (re)integration and synaptic junction formation are shared. We highlight the importance of considering non-cadherin-based adhesion in our understanding of the mechanics of epithelial tissues and raise questions to direct future work. This article is part of the discussion meeting issue 'Contemporary morphogenesis'.
Collapse
|
32
|
Erzberger A, Jacobo A, Dasgupta A, Hudspeth AJ. Mechanochemical symmetry breaking during morphogenesis of lateral-line sensory organs. NATURE PHYSICS 2020; 16:949-957. [PMID: 33790985 PMCID: PMC8009062 DOI: 10.1038/s41567-020-0894-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Actively regulated symmetry breaking, which is ubiquitous in biological cells, underlies phenomena such as directed cellular movement and morphological polarization. Here we investigate how an organ-level polarity pattern emerges through symmetry breaking at the cellular level during the formation of a mechanosensory organ. Combining theory, genetic perturbations, and in vivo imaging, we study the development and regeneration of the fluid-motion sensors in the zebrafish's lateral line. We find that two interacting symmetry-breaking events - one mediated by biochemical signaling and the other by cellular mechanics - give rise to precise rotations of cell pairs, which produce a mirror-symmetric polarity pattern in the receptor organ.
Collapse
Affiliation(s)
- A. Erzberger
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY 10065 USA
- These authors contributed equally
- ;
| | - A. Jacobo
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY 10065 USA
- These authors contributed equally
| | - A. Dasgupta
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY 10065 USA
| | - A. J. Hudspeth
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY 10065 USA
- ;
| |
Collapse
|
33
|
Lough KJ, Spitzer DC, Bergman AJ, Wu JJ, Byrd KM, Williams SE. Disruption of the nectin-afadin complex recapitulates features of the human cleft lip/palate syndrome CLPED1. Development 2020; 147:dev.189241. [PMID: 32554531 DOI: 10.1242/dev.189241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/02/2020] [Indexed: 01/19/2023]
Abstract
Cleft palate (CP), one of the most common congenital conditions, arises from failures in secondary palatogenesis during embryonic development. Several human genetic syndromes featuring CP and ectodermal dysplasia have been linked to mutations in genes regulating cell-cell adhesion, yet mouse models have largely failed to recapitulate these findings. Here, we use in utero lentiviral-mediated genetic approaches in mice to provide the first direct evidence that the nectin-afadin axis is essential for proper palate shelf elevation and fusion. Using this technique, we demonstrate that palatal epithelial conditional loss of afadin (Afdn) - an obligate nectin- and actin-binding protein - induces a high penetrance of CP, not observed when Afdn is targeted later using Krt14-Cre We implicate Nectin1 and Nectin4 as being crucially involved, as loss of either induces a low penetrance of mild palate closure defects, while loss of both causes severe CP with a frequency similar to Afdn loss. Finally, expression of the human disease mutant NECTIN1W185X causes CP with greater penetrance than Nectin1 loss, suggesting this alteration may drive CP via a dominant interfering mechanism.
Collapse
Affiliation(s)
- Kendall J Lough
- Departments of Pathology & Laboratory Medicine and Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Danielle C Spitzer
- Departments of Pathology & Laboratory Medicine and Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Abby J Bergman
- Departments of Pathology & Laboratory Medicine and Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jessica J Wu
- Departments of Pathology & Laboratory Medicine and Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin M Byrd
- Departments of Pathology & Laboratory Medicine and Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Oral & Craniofacial Health Sciences, The University of North Carolina School of Dentistry, Chapel Hill, NC 27599, USA
| | - Scott E Williams
- Departments of Pathology & Laboratory Medicine and Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
34
|
Sergeeva AP, Katsamba PS, Cosmanescu F, Brewer JJ, Ahlsen G, Mannepalli S, Shapiro L, Honig B. DIP/Dpr interactions and the evolutionary design of specificity in protein families. Nat Commun 2020; 11:2125. [PMID: 32358559 PMCID: PMC7195491 DOI: 10.1038/s41467-020-15981-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/06/2020] [Indexed: 01/10/2023] Open
Abstract
Differential binding affinities among closely related protein family members underlie many biological phenomena, including cell-cell recognition. Drosophila DIP and Dpr proteins mediate neuronal targeting in the fly through highly specific protein-protein interactions. We show here that DIPs/Dprs segregate into seven specificity subgroups defined by binding preferences between their DIP and Dpr members. We then describe a sequence-, structure- and energy-based computational approach, combined with experimental binding affinity measurements, to reveal how specificity is coded on the canonical DIP/Dpr interface. We show that binding specificity of DIP/Dpr subgroups is controlled by "negative constraints", which interfere with binding. To achieve specificity, each subgroup utilizes a different combination of negative constraints, which are broadly distributed and cover the majority of the protein-protein interface. We discuss the structural origins of negative constraints, and potential general implications for the evolutionary origins of binding specificity in multi-protein families.
Collapse
Affiliation(s)
- Alina P Sergeeva
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Phinikoula S Katsamba
- Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA
| | - Filip Cosmanescu
- Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA
| | - Joshua J Brewer
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Goran Ahlsen
- Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA
| | - Seetha Mannepalli
- Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA
| | - Lawrence Shapiro
- Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| | - Barry Honig
- Department of Systems Biology, Columbia University, New York, NY, USA.
- Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
- Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
35
|
Family-wide Structural and Biophysical Analysis of Binding Interactions among Non-clustered δ-Protocadherins. Cell Rep 2020; 30:2655-2671.e7. [PMID: 32101743 PMCID: PMC7082078 DOI: 10.1016/j.celrep.2020.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/02/2019] [Accepted: 01/31/2020] [Indexed: 01/21/2023] Open
Abstract
Non-clustered δ1- and δ2-protocadherins, close relatives of clustered protocadherins, function in cell adhesion and motility and play essential roles in neural patterning. To understand the molecular interactions underlying these functions, we used solution biophysics to characterize binding of δ1- and δ2-protocadherins, determined crystal structures of ectodomain complexes from each family, and assessed ectodomain assembly in reconstituted intermembrane junctions by cryoelectron tomography (cryo-ET). Homophilic trans (cell-cell) interactions were preferred for all δ-protocadherins, with additional weaker heterophilic interactions observed exclusively within each subfamily. As expected, δ1- and δ2-protocadherin trans dimers formed through antiparallel EC1-EC4 interfaces, like clustered protocadherins. However, no ectodomain-mediated cis (same-cell) interactions were detectable in solution; consistent with this, cryo-ET of reconstituted junctions revealed dense assemblies lacking the characteristic order observed for clustered protocadherins. Our results define non-clustered protocadherin binding properties and their structural basis, providing a foundation for interpreting their functional roles in neural patterning.
Collapse
|
36
|
Montcouquiol M, Kelley MW. Development and Patterning of the Cochlea: From Convergent Extension to Planar Polarity. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a033266. [PMID: 30617059 DOI: 10.1101/cshperspect.a033266] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Within the mammalian cochlea, sensory hair cells and supporting cells are aligned in curvilinear rows that extend along the length of the tonotopic axis. In addition, all of the cells within the epithelium are uniformly polarized across the orthogonal neural-abneural axis. Finally, each hair cell is intrinsically polarized as revealed by the presence of an asymmetrically shaped and apically localized stereociliary bundle. It has been known for some time that many of the developmental processes that regulate these patterning events are mediated, to some extent, by the core planar cell polarity (PCP) pathway. This article will review more recent work demonstrating how components of the PCP pathway interact with cytoskeletal motor proteins to regulate cochlear outgrowth. Finally, a signaling pathway originally identified for its role in asymmetric cell divisions has recently been shown to mediate several aspects of intrinsic hair cell polarity, including kinocilia migration, bundle shape, and elongation.
Collapse
Affiliation(s)
- Mireille Montcouquiol
- INSERM, Neurocentre Magendie, U1215, F-33077 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33077 Bordeaux, France
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
37
|
Notch Signalling: The Multitask Manager of Inner Ear Development and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:129-157. [DOI: 10.1007/978-3-030-34436-8_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Ko JM, Lobo D. Continuous Dynamic Modeling of Regulated Cell Adhesion: Sorting, Intercalation, and Involution. Biophys J 2019; 117:2166-2179. [PMID: 31732144 PMCID: PMC6895740 DOI: 10.1016/j.bpj.2019.10.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/19/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Cell-cell adhesion is essential for tissue growth and multicellular pattern formation and crucial for the cellular dynamics during embryogenesis and cancer progression. Understanding the dynamical gene regulation of cell adhesion molecules (CAMs) responsible for the emerging spatial tissue behaviors is a current challenge because of the complexity of these nonlinear interactions and feedback loops at different levels of abstraction-from genetic regulation to whole-organism shape formation. To extend our understanding of cell and tissue behaviors due to the regulation of adhesion molecules, here we present a novel, to our knowledge, model for the spatial dynamics of cellular patterning, growth, and shape formation due to the differential expression of CAMs and their regulation. Capturing the dynamic interplay between genetic regulation, CAM expression, and differential cell adhesion, the proposed continuous model can explain the complex and emergent spatial behaviors of cell populations that change their adhesion properties dynamically because of inter- and intracellular genetic regulation. This approach can demonstrate the mechanisms responsible for classical cell-sorting behaviors, cell intercalation in proliferating populations, and the involution of germ layer cells induced by a diffusing morphogen during gastrulation. The model makes predictions on the physical parameters controlling the amplitude and wavelength of a cellular intercalation interface, as well as the crucial role of N-cadherin regulation for the involution and migration of cells beyond the gradient of the morphogen Nodal during zebrafish gastrulation. Integrating the emergent spatial tissue behaviors with the regulation of genes responsible for essential cellular properties such as adhesion will pave the way toward understanding the genetic regulation of large-scale complex patterns and shapes formation in developmental, regenerative, and cancer biology.
Collapse
Affiliation(s)
- Jason M Ko
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Daniel Lobo
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland; Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland.
| |
Collapse
|
39
|
Tarchini B, Lu X. New insights into regulation and function of planar polarity in the inner ear. Neurosci Lett 2019; 709:134373. [PMID: 31295539 PMCID: PMC6732021 DOI: 10.1016/j.neulet.2019.134373] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/02/2019] [Accepted: 07/06/2019] [Indexed: 12/18/2022]
Abstract
Acquisition of cell polarity generates signaling and cytoskeletal asymmetry and thus underpins polarized cell behaviors during tissue morphogenesis. In epithelial tissues, both apical-basal polarity and planar polarity, which refers to cell polarization along an axis orthogonal to the apical-basal axis, are essential for epithelial morphogenesis and function. A prime example of epithelial planar polarity can be found in the auditory sensory epithelium (or organ of Corti, OC). Sensory hair cells, the sound receptors, acquire a planar polarized apical cytoskeleton which is uniformely oriented along an axis orthogonal to the longitudinal axis of the cochlear duct. Both cell-intrinsic and tissue-level planar polarity are necessary for proper perception of sound. Here we review recent insights into the novel roles and mechanisms of planar polarity signaling gained from genetic analysis in mice, focusing mainly on the OC but also with some discussions on the vestibular sensory epithelia.
Collapse
Affiliation(s)
- Basile Tarchini
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Department of Medicine, Tufts University, Boston, 02111, MA, USA; Graduate School of Biomedical Science and Engineering (GSBSE), University of Maine, Orono, 04469, ME, USA.
| | - Xiaowei Lu
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|
40
|
Carrillo JA, Murakawa H, Sato M, Togashi H, Trush O. A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation. J Theor Biol 2019; 474:14-24. [PMID: 31059713 DOI: 10.1016/j.jtbi.2019.04.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/03/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022]
Abstract
We discuss several continuum cell-cell adhesion models based on the underlying microscopic assumptions. We propose an improvement on these models leading to sharp fronts and intermingling invasion fronts between different cell type populations. The model is based on basic principles of localized repulsion and nonlocal attraction due to adhesion forces at the microscopic level. The new model is able to capture both qualitatively and quantitatively experiments by Katsunuma et al. (2016). We also review some of the applications of these models in other areas of tissue growth in developmental biology. We finally explore the resulting qualitative behavior due to cell-cell repulsion.
Collapse
Affiliation(s)
- Jose A Carrillo
- Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Hideki Murakawa
- Department of Applied Mathematics and Informatics, Ryukoku University, Seta Otsu 520-2194, Japan.
| | - Makoto Sato
- Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan.
| | - Hideru Togashi
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Olena Trush
- Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan.
| |
Collapse
|
41
|
Negrete J, Oates AC. Embryonic lateral inhibition as optical modes: An analytical framework for mesoscopic pattern formation. Phys Rev E 2019; 99:042417. [PMID: 31108612 DOI: 10.1103/physreve.99.042417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Indexed: 06/09/2023]
Abstract
Cellular checkerboard patterns are observed at many stages of embryonic development. We study an analytically tractable model for lateral inhibition and show that the steady states are analogous to optical phonons at the Γ point, which have the wave number k=0. We study the cases of cells arranged in linear and hexagonal lattices. To determine how the final pattern is selected it is necessary to take into account the granularity of the pattern and, analogously to solid-state physics, to redefine the basis and lattice sites in terms of a periodic crystal. The sites and basis are determined by looking at the symmetries of inhibitory interactions between cells. The redefined basis for cells placed in a linear lattice is composed by two cells which are embedded in another linear lattice, while for cells placed in a hexagonal lattice the redefined basis consists of three cells embedded in another hexagonal lattice. The pattern in hexagonal lattices can be driven into three different states: two of those states are periodic checkerboards and a third in which both periodic states coexist. These observations provides new predictions for experiments.
Collapse
Affiliation(s)
- Jose Negrete
- Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Andrew C Oates
- Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
42
|
Par3 is essential for the establishment of planar cell polarity of inner ear hair cells. Proc Natl Acad Sci U S A 2019; 116:4999-5008. [PMID: 30814219 DOI: 10.1073/pnas.1816333116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the inner ear sensory epithelia, stereociliary hair bundles atop sensory hair cells are mechanosensory apparatus with planar polarized structure and orientation. This is established during development by the concerted action of tissue-level, intercellular planar cell polarity (PCP) signaling and a hair cell-intrinsic, microtubule-mediated machinery. However, how various polarity signals are integrated during hair bundle morphogenesis is poorly understood. Here, we show that the conserved cell polarity protein Par3 is essential for planar polarization of hair cells. Par3 deletion in the inner ear disrupted cochlear outgrowth, hair bundle orientation, kinocilium positioning, and basal body planar polarity, accompanied by defects in the organization and cortical attachment of hair cell microtubules. Genetic mosaic analysis revealed that Par3 functions both cell-autonomously and cell-nonautonomously to regulate kinocilium positioning and hair bundle orientation. At the tissue level, intercellular PCP signaling regulates the asymmetric localization of Par3, which in turn maintains the asymmetric localization of the core PCP protein Vangl2. Mechanistically, Par3 interacts with and regulates the localization of Tiam1 and Trio, which are guanine nucleotide exchange factors (GEFs) for Rac, thereby stimulating Rac-Pak signaling. Finally, constitutively active Rac1 rescued the PCP defects in Par3-deficient cochleae. Thus, a Par3-GEF-Rac axis mediates both tissue-level and hair cell-intrinsic PCP signaling.
Collapse
|
43
|
Koyama H, Shi D, Fujimori T. Biophysics in oviduct: Planar cell polarity, cilia, epithelial fold and tube morphogenesis, egg dynamics. Biophys Physicobiol 2019; 16:89-107. [PMID: 30923666 PMCID: PMC6435019 DOI: 10.2142/biophysico.16.0_89] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Organs and tissues in multi-cellular organisms exhibit various morphologies. Tubular organs have multi-scale morphological features which are closely related to their functions. Here we discuss morphogenesis and the mechanical functions of the vertebrate oviduct in the female reproductive tract, also known as the fallopian tube. The oviduct functions to convey eggs from the ovary to the uterus. In the luminal side of the oviduct, the epithelium forms multiple folds (or ridges) well-aligned along the longitudinal direction of the tube. In the epithelial cells, cilia are formed orienting toward the downstream of the oviduct. The cilia and the folds are supposed to be involved in egg transportation. Planar cell polarity (PCP) is developed in the epithelium, and the disruption of the Celsr1 gene, a PCP related-gene, causes randomization of both cilia and fold orientations, discontinuity of the tube, inefficient egg transportation, and infertility. In this review article, we briefly introduce various biophysical and biomechanical issues in the oviduct, including physical mechanisms of formation of PCP and organized cilia orientation, epithelial cell shape regulation, fold pattern formation generated by mechanical buckling, tubulogenesis, and egg transportation regulated by fluid flow. We also mention about possible roles of the oviducts in egg shape formation and embryogenesis, sinuous patterns of tubes, and fold and tube patterns observed in other tubular organs such as the gut, airways, etc.
Collapse
Affiliation(s)
- Hiroshi Koyama
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Dongbo Shi
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
44
|
The microRNA-183/96/182 Cluster is Essential for Stereociliary Bundle Formation and Function of Cochlear Sensory Hair Cells. Sci Rep 2018; 8:18022. [PMID: 30575790 PMCID: PMC6303392 DOI: 10.1038/s41598-018-36894-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
The microRNA (miR)-183/96/182 cluster plays important roles in the development and functions of sensory organs, including the inner ear. Point-mutations in the seed sequence of miR-96 result in non-syndromic hearing loss in both mice and humans. However, the lack of a functionally null mutant has hampered the evaluation of the cluster’s physiological functions. Here we have characterized a loss-of-function mutant mouse model (miR-183CGT/GT), in which the miR-183/96/182 cluster gene is inactivated by a gene-trap (GT) construct. The homozygous mutant mice show profound congenital hearing loss with severe defects in cochlear hair cell (HC) maturation, alignment, hair bundle formation and the checkboard-like pattern of the cochlear sensory epithelia. The stereociliary bundles retain an immature appearance throughout the cochlea at postnatal day (P) 3 and degenerate soon after. The organ of Corti of mutant newborn mice has no functional mechanoelectrical transduction. Several predicted target genes of the miR-183/96/182 cluster that are known to play important roles in HC development and function, including Clic5, Rdx, Ezr, Rac1, Myo1c, Pvrl3 and Sox2, are upregulated in the cochlea. These results suggest that the miR-183/96/182 cluster is essential for stereociliary bundle formation, morphogenesis and function of the cochlear HCs.
Collapse
|
45
|
Li Y, Liu H, Giffen KP, Chen L, Beisel KW, He DZZ. Transcriptomes of cochlear inner and outer hair cells from adult mice. Sci Data 2018; 5:180199. [PMID: 30277483 PMCID: PMC6167952 DOI: 10.1038/sdata.2018.199] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/02/2018] [Indexed: 01/09/2023] Open
Abstract
Inner hair cells (IHCs) and outer hair cells (OHCs) are the two anatomically and functionally distinct types of mechanosensitive receptor cells in the mammalian cochlea. The molecular mechanisms defining their morphological and functional specializations are largely unclear. As a first step to uncover the underlying mechanisms, we examined the transcriptomes of IHCs and OHCs isolated from adult CBA/J mouse cochleae. One thousand IHCs and OHCs were separately collected using the suction pipette technique. RNA sequencing of IHCs and OHCs was performed and their transcriptomes were analyzed. The results were validated by comparing some IHC and OHC preferentially expressed genes between present study and published microarray-based data as well as by real-time qPCR. Antibody-based immunocytochemistry was used to validate preferential expression of SLC7A14 and DNM3 in IHCs and OHCs. These data are expected to serve as a highly valuable resource for unraveling the molecular mechanisms underlying different biological properties of IHCs and OHCs as well as to provide a road map for future characterization of genes expressed in IHCs and OHCs.
Collapse
Affiliation(s)
- Yi Li
- Department of Otorhinolaryngology, Beijing Tongren Hospital, Beijing Capital Medical University, Beijing 100730, China
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68170, USA
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68170, USA
| | - Kimberlee P. Giffen
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68170, USA
| | - Lei Chen
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68170, USA
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Kirk W. Beisel
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68170, USA
| | - David Z. Z. He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68170, USA
| |
Collapse
|
46
|
Duraivelan K, Basak AJ, Ghosh A, Samanta D. Molecular and structural bases of interaction between extracellular domains of nectin-2 and N
-cadherin. Proteins 2018; 86:1157-1164. [PMID: 30183103 DOI: 10.1002/prot.25596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/23/2018] [Accepted: 08/31/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Kheerthana Duraivelan
- School of Bioscience, Indian Institute of Technology Kharagpur; Kharagpur West Bengal India
| | - Aditya J. Basak
- School of Bioscience, Indian Institute of Technology Kharagpur; Kharagpur West Bengal India
| | - Amit Ghosh
- School of Energy Science and Engineering; Indian Institute of Technology Kharagpur; Kharagpur West Bengal India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur; Kharagpur West Bengal India
| |
Collapse
|
47
|
Wesdorp M, Murillo-Cuesta S, Peters T, Celaya AM, Oonk A, Schraders M, Oostrik J, Gomez-Rosas E, Beynon AJ, Hartel BP, Okkersen K, Koenen HJPM, Weeda J, Lelieveld S, Voermans NC, Joosten I, Hoyng CB, Lichtner P, Kunst HPM, Feenstra I, de Bruijn SE, Admiraal RJC, Yntema HG, van Wijk E, Del Castillo I, Serra P, Varela-Nieto I, Pennings RJE, Kremer H. MPZL2, Encoding the Epithelial Junctional Protein Myelin Protein Zero-like 2, Is Essential for Hearing in Man and Mouse. Am J Hum Genet 2018; 103:74-88. [PMID: 29961571 DOI: 10.1016/j.ajhg.2018.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 05/25/2018] [Indexed: 02/01/2023] Open
Abstract
In a Dutch consanguineous family with recessively inherited nonsyndromic hearing impairment (HI), homozygosity mapping combined with whole-exome sequencing revealed a MPZL2 homozygous truncating variant, c.72del (p.Ile24Metfs∗22). By screening a cohort of phenotype-matched subjects and a cohort of HI subjects in whom WES had been performed previously, we identified two additional families with biallelic truncating variants of MPZL2. Affected individuals demonstrated symmetric, progressive, mild to moderate sensorineural HI. Onset of HI was in the first decade, and high-frequency hearing was more severely affected. There was no vestibular involvement. MPZL2 encodes myelin protein zero-like 2, an adhesion molecule that mediates epithelial cell-cell interactions in several (developing) tissues. Involvement of MPZL2 in hearing was confirmed by audiometric evaluation of Mpzl2-mutant mice. These displayed early-onset progressive sensorineural HI that was more pronounced in the high frequencies. Histological analysis of adult mutant mice demonstrated an altered organization of outer hair cells and supporting cells and degeneration of the organ of Corti. In addition, we observed mild degeneration of spiral ganglion neurons, and this degeneration was most pronounced at the cochlear base. Although MPZL2 is known to function in cell adhesion in several tissues, no phenotypes other than HI were found to be associated with MPZL2 defects. This indicates that MPZL2 has a unique function in the inner ear. The present study suggests that deleterious variants of Mplz2/MPZL2 affect adhesion of the inner-ear epithelium and result in loss of structural integrity of the organ of Corti and progressive degeneration of hair cells, supporting cells, and spiral ganglion neurons.
Collapse
Affiliation(s)
- Mieke Wesdorp
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; The Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Silvia Murillo-Cuesta
- Institute of Biomedical Research "Alberto Sols," Spanish National Research Council-Autonomous University of Madrid, 28029 Madrid, Spain; Center for Biomedical Network Research in Rare Diseases, Institute of Health Carlos III, 28029 Madrid, Spain; Hospital La Paz Institute for Health Research, 28029 Madrid, Spain
| | - Theo Peters
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Adelaida M Celaya
- Institute of Biomedical Research "Alberto Sols," Spanish National Research Council-Autonomous University of Madrid, 28029 Madrid, Spain; Center for Biomedical Network Research in Rare Diseases, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Anne Oonk
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Margit Schraders
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Jaap Oostrik
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Elena Gomez-Rosas
- Center for Biomedical Network Research in Rare Diseases, Institute of Health Carlos III, 28029 Madrid, Spain; Servicio de Genetica, Hospital Universitario Ramon y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Andy J Beynon
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Bas P Hartel
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Kees Okkersen
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Neurology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Jack Weeda
- Department of Ophthalmology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Stefan Lelieveld
- The Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Nicol C Voermans
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Neurology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Carel B Hoyng
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Ophthalmology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Henricus P M Kunst
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Radboud Institute of Health Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Ilse Feenstra
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Suzanne E de Bruijn
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Ronald J C Admiraal
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Helger G Yntema
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Erwin van Wijk
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Ignacio Del Castillo
- Center for Biomedical Network Research in Rare Diseases, Institute of Health Carlos III, 28029 Madrid, Spain; Servicio de Genetica, Hospital Universitario Ramon y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Pau Serra
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Isabel Varela-Nieto
- Institute of Biomedical Research "Alberto Sols," Spanish National Research Council-Autonomous University of Madrid, 28029 Madrid, Spain; Center for Biomedical Network Research in Rare Diseases, Institute of Health Carlos III, 28029 Madrid, Spain; Hospital La Paz Institute for Health Research, 28029 Madrid, Spain
| | - Ronald J E Pennings
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Hannie Kremer
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
48
|
Harley RJ, Murdy JP, Wang Z, Kelly MC, Ropp TJF, Park SH, Maness PF, Manis PB, Coate TM. Neuronal cell adhesion molecule (NrCAM) is expressed by sensory cells in the cochlea and is necessary for proper cochlear innervation and sensory domain patterning during development. Dev Dyn 2018; 247:934-950. [PMID: 29536590 PMCID: PMC6105381 DOI: 10.1002/dvdy.24629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/06/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In the cochlea, auditory development depends on precise patterns of innervation by afferent and efferent nerve fibers, as well as a stereotyped arrangement of hair and supporting cells. Neuronal cell adhesion molecule (NrCAM) is a homophilic cell adhesion molecule that controls diverse aspects of nervous system development, but the function of NrCAM in cochlear development is not well understood. RESULTS Throughout cochlear innervation, NrCAM is detectable on spiral ganglion neuron (SGN) afferent and olivocochlear efferent fibers, and on the membranes of developing hair and supporting cells. Neonatal Nrcam-null cochleae show errors in type II SGN fasciculation, reduced efferent innervation, and defects in the stereotyped packing of hair and supporting cells. Nrcam loss also leads to dramatic changes in the profiles of presynaptic afferent and efferent synaptic markers at the time of hearing onset. Despite these numerous developmental defects, Nrcam-null adults do not show defects in auditory acuity, and by postnatal day 21, the developmental deficits in ribbon synapse distribution and sensory domain structure appear to have been corrected. CONCLUSIONS NrCAM is expressed by several neural and sensory epithelial subtypes within the developing cochlea, and the loss of Nrcam confers numerous, but nonpermanent, developmental defects in innervation and sensory domain patterning. Developmental Dynamics 247:934-950, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Randall J. Harley
- Department of Biology, Georgetown University, 37 and O St. NW, Regents Hall 410, Washington, DC 20007, USA
| | - Joseph P. Murdy
- Department of Biology, Georgetown University, 37 and O St. NW, Regents Hall 410, Washington, DC 20007, USA
| | - Zhirong Wang
- Department of Biology, Georgetown University, 37 and O St. NW, Regents Hall 410, Washington, DC 20007, USA
| | - Michael C. Kelly
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 35 Convent Dr., Bethesda, MD 20892, USA
| | - Tessa-Jonne F. Ropp
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, B251 Marsico Hall, CB#7070, 125 Mason Farm Rd., Chapel Hill, NC 27599, USA
| | - SeHoon H. Park
- Department of Biology, Georgetown University, 37 and O St. NW, Regents Hall 410, Washington, DC 20007, USA
| | - Patricia F. Maness
- Department of Biochemistry and Biophysics, The University of North Carolina School of Medicine, 120 Mason Farm Rd., suite 3020, CB#7260, Chapel Hill, NC 27599, USA
| | - Paul B. Manis
- Department of Otolaryngology/Head and Neck Surgery and Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, B027 Marsico Hall, CB#7070. 125 Mason Farm Rd., Chapel Hill, NC 27599
| | - Thomas M. Coate
- Department of Biology, Georgetown University, 37 and O St. NW, Regents Hall 410, Washington, DC 20007, USA
| |
Collapse
|
49
|
Shiotani H, Miyata M, Itoh Y, Wang S, Kaito A, Mizoguchi A, Yamasaki M, Watanabe M, Mandai K, Mochizuki H, Takai Y. Localization of nectin-2α at the boundary between the adjacent somata of the clustered cholinergic neurons and its regulatory role in the subcellular localization of the voltage-gated A-type K+channel Kv4.2 in the medial habenula. J Comp Neurol 2018. [DOI: 10.1002/cne.24425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hajime Shiotani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
- Department of Neurology; Osaka University Graduate School of Medicine; Suita Osaka 565-0871 Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
| | - Yu Itoh
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
| | - Shujie Wang
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Aika Kaito
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Akira Mizoguchi
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine; Hokkaido University; Sapporo Hokkaido 060-8638 Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine; Hokkaido University; Sapporo Hokkaido 060-8638 Japan
| | - Kenji Mandai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
| | - Hideki Mochizuki
- Department of Neurology; Osaka University Graduate School of Medicine; Suita Osaka 565-0871 Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
| |
Collapse
|
50
|
Spatiotemporal coordination of cellular differentiation and tissue morphogenesis in organ of Corti development. Med Mol Morphol 2018. [PMID: 29536272 DOI: 10.1007/s00795-018-0185-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The organ of Corti, an acoustic sensory organ, is a specifically differentiated epithelium of the cochlear duct, which is a part of the membranous labyrinth in the inner ear. Cells in the organ of Corti are generally classified into two kinds; hair cells, which transduce the mechanical stimuli of sound to the cell membrane electrical potential differences, and supporting cells. These cells emerge from homogeneous prosensory epithelium through cell fate determination and differentiation. In the organ of Corti organogenesis, cell differentiation and the rearrangement of their position proceed in parallel, resulting in a characteristic alignment of mature hair cells and supporting cells. Recently, studies have focused on the signaling molecules and transcription factors that regulate cell fate determination and differentiation processes. In comparison, less is known about the mechanism of the formation of the tissue architecture; however, this is important in the morphogenesis of the organ of Corti. Thus, this review will introduce previous findings that focus on how cell fate determination, cell differentiation, and whole tissue morphogenesis proceed in a spatiotemporally and finely coordinated manner. This overview provides an insight into the regulatory mechanisms of the coordination in the developing organ of Corti.
Collapse
|