1
|
Wellner K, Gnauck J, Bernier D, Bernhart SH, Betat H, Mörl M. Two complementing in vivo selection systems based on CCA-trimming exonucleases as a tool to monitor, select and evaluate enzymatic features of tRNA nucleotidyltransferases. RNA Biol 2025; 22:1-14. [PMID: 39831457 PMCID: PMC11784652 DOI: 10.1080/15476286.2025.2453963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 10/07/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
tRNA nucleotidyltransferase represents a ubiquitous and essential activity that adds the indispensable CCA triplet to the 3'-end of tRNAs. To fulfill this function, the enzyme contains a set of highly conserved motifs whose coordinated interplay is crucial for the sequence-specific CCA polymerization. In the human enzyme, alterations within these regions have been shown to lead to the manifestation of disease. Recently, we developed an in vivo screening system that allows for the selection and analysis of tRNA nucleotidyltransferase variants by challenging terminal AMP incorporation into tRNA during induced RNase T-catalyzed CCA-decay. Here, we extend this method for screening of full CCA-end repair by utilizing the CCA-trimming activity of exonuclease LCCR4. To demonstrate the combined potential of these two in vivo selection systems, we applied a semi-rational library design to investigate the mode of operation of catalytically important motifs in the human CCA-adding enzyme. This approach revealed unexpected requirements for amino acid composition in two motifs and gives new insights into the mechanism of CCA addition. The data show the potential of these RNase-based screening systems, as they allow the detection of enzyme variations that would not have been identified by a conventional rational approach. Furthermore, the combination of both RNase T and LCCR4 systems can be used to investigate and dissect the effects of pathogenic mutations on C- and A-addition.
Collapse
Affiliation(s)
- Karolin Wellner
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Josefine Gnauck
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Dorian Bernier
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Stephan H. Bernhart
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| |
Collapse
|
2
|
Peschek J, Tuorto F. Interplay Between tRNA Modifications and Processing. J Mol Biol 2025:169198. [PMID: 40404521 DOI: 10.1016/j.jmb.2025.169198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 05/05/2025] [Accepted: 05/05/2025] [Indexed: 05/24/2025]
Abstract
Transfer RNAs play a key role during protein synthesis by decoding genetic information at the translating ribosome. During their biosynthesis, tRNA molecules undergo numerous processing steps. Moreover, tRNAs represent the RNA class that carries the largest variety and highest relative number of chemical modifications. While our functional and mechanistic understanding of these processes is primarily based on studies in yeast, the findings on dynamic tRNA maturation can be translated to higher eukaryotes including humans, particularly regarding the biochemical characterization of the multitude of enzymes involved. In this review, we summarize current knowledge on the sequential hierarchy and interplay of various processing and modification steps for mitochondrial and cytoplasmic tRNA, as well as tRNA-like structures in eukaryotic cells. We also highlight recent structural advances that shed light on the function of enzyme-tRNA complexes.
Collapse
Affiliation(s)
- Jirka Peschek
- Heidelberg University, Biochemistry Center (BZH), Heidelberg, Germany.
| | - Francesca Tuorto
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| |
Collapse
|
3
|
Thalalla Gamage S, Khoogar R, Howpay Manage S, DaRos JT, Crawford MC, Georgeson J, Polevoda BV, Sanders C, Lee KA, Nance KD, Iyer V, Kustanovich A, Perez M, Thu CT, Nance SR, Amin R, Miller CN, Holewinski RJ, Das S, Meyer TJ, Koparde V, Yang A, Jailwala P, Nguyen JT, Andresson T, Hunter K, Gu S, Mock BA, Edmondson EF, Difilippantonio S, Chari R, Schwartz S, O’Connell MR, Wu CCC, Meier JL. Transfer RNA acetylation regulates in vivo mammalian stress signaling. SCIENCE ADVANCES 2025; 11:eads2923. [PMID: 40106564 PMCID: PMC11922055 DOI: 10.1126/sciadv.ads2923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025]
Abstract
Transfer RNA (tRNA) modifications are crucial for protein synthesis, but their position-specific physiological roles remain poorly understood. Here, we investigate the impact of N4-acetylcytidine (ac4C), a highly conserved tRNA modification catalyzed by the essential acetyltransferase Nat10. By targeting Thumpd1, a nonessential adapter protein required for Nat10-catalyzed tRNA acetylation, we determine that loss of tRNA acetylation leads to reduced levels of tRNALeu, increased ribosome stalling, and activation of eIF2α phosphorylation. Thumpd1 knockout mice exhibit growth defects and sterility. Concurrent knockout of Thumpd1 and the stress-sensing kinase Gcn2 causes penetrant postnatal lethality in mice, indicating a critical genetic interaction. Our findings demonstrate that a modification restricted to a single position within type II cytosolic tRNAs can regulate ribosome-mediated stress signaling in mammalian organisms, with implications for our understanding of translational control and therapeutic interventions.
Collapse
Affiliation(s)
- Supuni Thalalla Gamage
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Roxane Khoogar
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Shereen Howpay Manage
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Judey T. DaRos
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - McKenna C. Crawford
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Joe Georgeson
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Bogdan V. Polevoda
- Department of Biochemistry and Biophysics, Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Chelsea Sanders
- Animal Research Technical Support, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kendall A. Lee
- Animal Research Technical Support, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kellie D. Nance
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Vinithra Iyer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anatoly Kustanovich
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Minervo Perez
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Chu T. Thu
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Sam R. Nance
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ruhul Amin
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christine N. Miller
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD, USA
| | - Ronald J. Holewinski
- Protein Mass Spectrometry Group, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Sudipto Das
- Protein Mass Spectrometry Group, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource (CCBR), Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Vishal Koparde
- CCR Collaborative Bioinformatics Resource (CCBR), Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Acong Yang
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Parthav Jailwala
- CCR Collaborative Bioinformatics Resource (CCBR), Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Joe T. Nguyen
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thorkell Andresson
- Protein Mass Spectrometry Group, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Kent Hunter
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shuo Gu
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Beverly A. Mock
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elijah F. Edmondson
- Molecular Histopathology Laboratory, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Simone Difilippantonio
- Animal Research Technical Support, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD, USA
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mitchell R. O’Connell
- Department of Biochemistry and Biophysics, Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Colin Chih-Chien Wu
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jordan L. Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
4
|
Jácome R. Structural and Evolutionary Analysis of Proteins Endowed with a Nucleotidyltransferase, or Non-canonical Palm, Catalytic Domain. J Mol Evol 2024; 92:799-814. [PMID: 39297932 DOI: 10.1007/s00239-024-10207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Many polymerases and other proteins are endowed with a catalytic domain belonging to the nucleotidyltransferase fold, which has also been deemed the non-canonical palm domain, in which three conserved acidic residues coordinate two divalent metal ions. Tertiary structure-based evolutionary analyses provide valuable information when the phylogenetic signal contained in the primary structure is blurry or has been lost, as is the case with these proteins. Pairwise structural comparisons of proteins with a nucleotidyltransferase fold were performed in the PDBefold web server: the RMSD, the number of superimposed residues, and the Qscore were obtained. The structural alignment score (RMSD × 100/number of superimposed residues) and the 1-Qscore were calculated, and distance matrices were constructed, from which a dendogram and a phylogenetic network were drawn for each score. The dendograms and the phylogenetic networks display well-defined clades, reflecting high levels of structural conservation within each clade, not mirrored by primary sequence. The conserved structural core between all these proteins consists of the catalytic nucleotidyltransferase fold, which is surrounded by different functional domains. Hence, many of the clades include proteins that bind different substrates or partake in non-related functions. Enzymes endowed with a nucleotidyltransferase fold are present in all domains of life, and participate in essential cellular and viral functions, which suggests that this domain is very ancient. Despite the loss of evolutionary traces in their primary structure, tertiary structure-based analyses allow us to delve into the evolution and functional diversification of the NT fold.
Collapse
Affiliation(s)
- Rodrigo Jácome
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, México.
| |
Collapse
|
5
|
Xu X, Barriot R, Voisin B, Arrowsmith TJ, Usher B, Gutierrez C, Han X, Pagès C, Redder P, Blower TR, Neyrolles O, Genevaux P. Nucleotidyltransferase toxin MenT extends aminoacyl acceptor ends of serine tRNAs to control Mycobacterium tuberculosis growth. Nat Commun 2024; 15:9596. [PMID: 39505885 PMCID: PMC11541572 DOI: 10.1038/s41467-024-53931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Toxins of toxin-antitoxin systems use diverse mechanisms to inhibit bacterial growth. In this study, we characterize the translation inhibitor toxin MenT3 of Mycobacterium tuberculosis, the bacterium responsible for tuberculosis in humans. We show that MenT3 is a robust cytidine specific tRNA nucleotidyltransferase in vitro, capable of modifying the aminoacyl acceptor ends of most tRNA but with a marked preference for tRNASer, to which long stretches of cytidines are added. Furthermore, transcriptomic-wide analysis of MenT3 targets in M. tuberculosis identifies tRNASer as the sole target of MenT3 and reveals significant detoxification attempts by the essential CCA-adding enzyme PcnA in response to MenT3. Finally, under physiological conditions, only in the presence the native menAT3 operon, an active pool of endogenous MenT3 targeting tRNASer in M. tuberculosis is detected, likely reflecting the importance of MenT3 during infection.
Collapse
Affiliation(s)
- Xibing Xu
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Roland Barriot
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Bertille Voisin
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Tom J Arrowsmith
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Ben Usher
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Claude Gutierrez
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Xue Han
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carine Pagès
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Peter Redder
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Tim R Blower
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
6
|
Skeparnias I, Zhang J. Structural basis of NEAT1 lncRNA maturation and menRNA instability. Nat Struct Mol Biol 2024; 31:1650-1654. [PMID: 39026030 DOI: 10.1038/s41594-024-01361-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 06/26/2024] [Indexed: 07/20/2024]
Abstract
NEAT1 long noncoding RNA orchestrates paraspeckle assembly and impacts tumorigenesis, fertility and immunity. Its maturation requires RNase P cleavage yielding an unstable transfer RNA-like multiple endocrine neoplasia-β tRNA-like transcript (menRNA) due to CCACCA addition. Here we report the crystal structure of human menRNA, which partially mimics tRNAs to drive RNase P and ELAC2 processing. Biophysical analyses uncover an RNA-centric, riboswitch-like mechanism whereby the nascent CCA reshapes the RNA folding landscape and propels a spontaneous conformational isomerization that directs repeat CCA addition, marking the menRNA and defective tRNAs for degradation.
Collapse
Affiliation(s)
- Ilias Skeparnias
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| |
Collapse
|
7
|
Tresky R, Miyamoto Y, Nagayoshi Y, Yabuki Y, Araki K, Takahashi Y, Komohara Y, Ge H, Nishiguchi K, Fukuda T, Kaneko H, Maeda N, Matsuura J, Iwasaki S, Sakakida K, Shioda N, Wei FY, Tomizawa K, Chujo T. TRMT10A dysfunction perturbs codon translation of initiator methionine and glutamine and impairs brain functions in mice. Nucleic Acids Res 2024; 52:9230-9246. [PMID: 38950903 PMCID: PMC11347157 DOI: 10.1093/nar/gkae520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
In higher eukaryotes, tRNA methyltransferase 10A (TRMT10A) is responsible for N1-methylguanosine modification at position nine of various cytoplasmic tRNAs. Pathogenic mutations in TRMT10A cause intellectual disability, microcephaly, diabetes, and short stature in humans, and generate cytotoxic tRNA fragments in cultured cells; however, it is not clear how TRMT10A supports codon translation or brain functions. Here, we generated Trmt10a null mice and showed that tRNAGln(CUG) and initiator methionine tRNA levels were universally decreased in various tissues; the same was true in a human cell line lacking TRMT10A. Ribosome profiling of mouse brain revealed that dysfunction of TRMT10A causes ribosome slowdown at the Gln(CAG) codon and increases translation of Atf4 due to higher frequency of leaky scanning of its upstream open reading frames. Broadly speaking, translation of a subset of mRNAs, especially those for neuronal structures, is perturbed in the mutant brain. Despite not showing discernable defects in the pancreas, liver, or kidney, Trmt10a null mice showed lower body weight and smaller hippocampal postsynaptic densities, which is associated with defective synaptic plasticity and memory. Taken together, our study provides mechanistic insight into the roles of TRMT10A in the brain, and exemplifies the importance of universal tRNA modification during translation of specific codons.
Collapse
Affiliation(s)
- Roland Tresky
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yuta Miyamoto
- Department of Anatomy and Neurobiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yu Nagayoshi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yasushi Yabuki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yukie Takahashi
- Department of Anatomy and Neurobiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Huicong Ge
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kayo Nishiguchi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hitomi Kaneko
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Nobuko Maeda
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Jin Matsuura
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Kourin Sakakida
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
8
|
Gamage ST, Khoogar R, Manage SH, Crawford MC, Georgeson J, Polevoda BV, Sanders C, Lee KA, Nance KD, Iyer V, Kustanovich A, Perez M, Thu CT, Nance SR, Amin R, Miller CN, Holewinski RJ, Meyer T, Koparde V, Yang A, Jailwala P, Nguyen JT, Andresson T, Hunter K, Gu S, Mock BA, Edmondson EF, Difilippantonio S, Chari R, Schwartz S, O'Connell MR, Chih-Chien Wu C, Meier JL. Transfer RNA acetylation regulates in vivo mammalian stress signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605208. [PMID: 39091849 PMCID: PMC11291155 DOI: 10.1101/2024.07.25.605208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Transfer RNA (tRNA) modifications are crucial for protein synthesis, but their position-specific physiological roles remain poorly understood. Here we investigate the impact of N4-acetylcytidine (ac4C), a highly conserved tRNA modification, using a Thumpd1 knockout mouse model. We find that loss of Thumpd1-dependent tRNA acetylation leads to reduced levels of tRNALeu, increased ribosome stalling, and activation of eIF2α phosphorylation. Thumpd1 knockout mice exhibit growth defects and sterility. Remarkably, concurrent knockout of Thumpd1 and the stress-sensing kinase Gcn2 causes penetrant postnatal lethality, indicating a critical genetic interaction. Our findings demonstrate that a modification restricted to a single position within type II cytosolic tRNAs can regulate ribosome-mediated stress signaling in mammalian organisms, with implications for our understanding of translation control as well as therapeutic interventions.
Collapse
Affiliation(s)
- Supuni Thalalla Gamage
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Roxane Khoogar
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Shereen Howpay Manage
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - McKenna C Crawford
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Joe Georgeson
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot 76100, Israel
| | - Bogdan V Polevoda
- Department of Biochemistry and Biophysics, Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Chelsea Sanders
- Animal Research Technical Support, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kendall A Lee
- Animal Research Technical Support, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kellie D Nance
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Vinithra Iyer
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot 76100, Israel
| | - Anatoly Kustanovich
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot 76100, Israel
| | - Minervo Perez
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Chu T Thu
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Sam R Nance
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ruhul Amin
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christine N Miller
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD, USA
| | - Ronald J Holewinski
- Protein Mass Spectrometry Group, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Thomas Meyer
- CCR Collaborative Bioinformatics Resource (CCBR), Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - Vishal Koparde
- CCR Collaborative Bioinformatics Resource (CCBR), Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - Acong Yang
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Parthav Jailwala
- CCR Collaborative Bioinformatics Resource (CCBR), Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - Joe T Nguyen
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Thorkell Andresson
- Protein Mass Spectrometry Group, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Kent Hunter
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shuo Gu
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Elijah F Edmondson
- Molecular Histopathology Laboratory, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Simone Difilippantonio
- Animal Research Technical Support, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD, USA
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot 76100, Israel
| | - Mitchell R O'Connell
- Department of Biochemistry and Biophysics, Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Colin Chih-Chien Wu
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
9
|
Zhang Y, Shao Y, You H, Shen Y, Miao F, Yuan C, Chen X, Zhai M, Shen Y, Zhang J. Characterization and therapeutic potential of MRABP9, a novel lytic bacteriophage infecting multidrug-resistant Acinetobacter baumannii clinical strains. Virology 2024; 595:110098. [PMID: 38705084 DOI: 10.1016/j.virol.2024.110098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Acinetobacter baumannii is one of the most important pathogens of healthcare-associated infections. The rising prevalence of multidrug-resistant A. baumannii (MRAB) strains and biofilm formation impact the outcome of conventional treatment. Phage-related therapy is a promising strategy to tame troublesome multidrug-resistant bacteria. Here, we isolated and evaluated a highly efficient lytic phage called MRABP9 from hospital sewage. The phage was a novel species within the genus Friunavirus and exhibited lytic activity against 2 other identified MRAB strains. Genomic analysis revealed it was a safe virulent phage and a pectate lyase domain was identified within its tail spike protein. MRABP9 showed potent bactericidal and anti-biofilm activity against MRAB, significantly delaying the time point of bacterial regrowth in vitro. Phage administration could rescue the mice from acute lethal MRAB infection. Considering its features, MRABP9 has the potential as an efficient candidate for prophylactic and therapeutic use against acute infections caused by MRAB strains.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China; Department of Critical Care Medicine, Zhongda Hospital, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing, 210009, China.
| | - Yong Shao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| | - Hongyang You
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| | - Yuqing Shen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China; Department of Critical Care Medicine, Zhongda Hospital, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing, 210009, China
| | - Fengqin Miao
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Chenyan Yuan
- Department of Clinical Laboratory, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Xin Chen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Mengyan Zhai
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Yi Shen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| | - Jianqiong Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China; Department of Critical Care Medicine, Zhongda Hospital, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing, 210009, China; Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| |
Collapse
|
10
|
Saha S, Mukherjee B, Banerjee P, Das D. The 'Not-So-Famous Five' in tumorigenesis: tRNAs, tRNA fragments, and tRNA epitranscriptome in concert with AARSs and AIMPs. Biochimie 2024; 222:45-62. [PMID: 38401639 DOI: 10.1016/j.biochi.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
RNA profiling studies have revealed that ∼75% of the human genome is transcribed to RNA but only a meagre fraction of it is translated to proteins. Majority of transcribed RNA constitute a specialized pool of non-coding RNAs. Human genome contains approximately 506 genes encoding a set of 51 different tRNAs, constituting a unique class of non-coding RNAs that not only have essential housekeeping functions as translator molecules during protein synthesis, but have numerous uncharted regulatory functions. Intriguing findings regarding a variety of non-canonical functions of tRNAs, tRNA derived fragments (tRFs), esoteric epitranscriptomic modifications of tRNAs, along with aminoacyl-tRNA synthetases (AARSs) and ARS-interacting multifunctional proteins (AIMPs), envision a 'peripheral dogma' controlling the flow of genetic information in the backdrop of qualitative information wrung out of the long-live central dogma of molecular biology, to drive cells towards either proliferation or differentiation programs. Our review will substantiate intriguing peculiarities of tRNA gene clusters, atypical tRNA-transcription from internal promoters catalysed by another distinct RNA polymerase enzyme, dynamically diverse tRNA epitranscriptome, intricate mechanism of tRNA-charging by AARSs governing translation fidelity, epigenetic regulation of gene expression by tRNA fragments, and the role of tRNAs and tRNA derived/associated molecules as quantitative determinants of the functional proteome, covertly orchestrating the process of tumorigenesis, through a deregulated tRNA-ome mediating selective codon-biased translation of cancer related gene transcripts.
Collapse
Affiliation(s)
- Sutapa Saha
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, WB, India.
| | - Biyas Mukherjee
- Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata, 700064, India
| | - Proma Banerjee
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, WB, India
| | - Debadrita Das
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, WB, India
| |
Collapse
|
11
|
Elder JJH, Papadopoulos R, Hayne CK, Stanley RE. The making and breaking of tRNAs by ribonucleases. Trends Genet 2024; 40:511-525. [PMID: 38641471 PMCID: PMC11152995 DOI: 10.1016/j.tig.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/21/2024]
Abstract
Ribonucleases (RNases) play important roles in supporting canonical and non-canonical roles of tRNAs by catalyzing the cleavage of the tRNA phosphodiester backbone. Here, we highlight how recent advances in cryo-electron microscopy (cryo-EM), protein structure prediction, reconstitution experiments, tRNA sequencing, and other studies have revealed new insight into the nucleases that process tRNA. This represents a very diverse group of nucleases that utilize distinct mechanisms to recognize and cleave tRNA during different stages of a tRNA's life cycle including biogenesis, fragmentation, surveillance, and decay. In this review, we provide a synthesis of the structure, mechanism, regulation, and modes of tRNA recognition by tRNA nucleases, along with open questions for future investigation.
Collapse
Affiliation(s)
- Jessica J H Elder
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Ry Papadopoulos
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA; Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Cassandra K Hayne
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
12
|
Zhang J. Recognition of the tRNA structure: Everything everywhere but not all at once. Cell Chem Biol 2024; 31:36-52. [PMID: 38159570 PMCID: PMC10843564 DOI: 10.1016/j.chembiol.2023.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
tRNAs are among the most abundant and essential biomolecules in cells. These spontaneously folding, extensively structured yet conformationally flexible anionic polymers literally bridge the worlds of RNAs and proteins, and serve as Rosetta stones that decipher and interpret the genetic code. Their ubiquitous presence, functional irreplaceability, and privileged access to cellular compartments and ribosomes render them prime targets for both endogenous regulation and exogenous manipulation. There is essentially no part of the tRNA that is not touched by another interaction partner, either as programmed or imposed by an external adversary. Recent progresses in genetic, biochemical, and structural analyses of the tRNA interactome produced a wealth of new knowledge into their interaction networks, regulatory functions, and molecular interfaces. In this review, I describe and illustrate the general principles of tRNA recognition by proteins and other RNAs, and discuss the underlying molecular mechanisms that deliver affinity, specificity, and functional competency.
Collapse
Affiliation(s)
- Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Giraudo P, Simonnot Q, Pflieger D, Peter J, Gagliardi D, Zuber H. Nano3'RACE: A Method to Analyze Poly(A) Tail Length and Nucleotide Additions at the 3' Extremity of Selected mRNAs Using Nanopore Sequencing. Methods Mol Biol 2024; 2723:233-252. [PMID: 37824074 DOI: 10.1007/978-1-0716-3481-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Deadenylation is a major process that regulates gene expression by shaping the length of mRNA poly(A) tails. Deadenylation is controlled by factors in trans that recruit or impede deadenylases, by the incorporation of non-adenosines during poly(A) tail synthesis, and by the posttranscriptional addition of 3' nucleotides to poly(A) tails. Deciphering the regulation of poly(A) tail shortening requires both transcriptome-wide approaches and more targeted methodologies, allowing deep analyses of specific mRNAs. In this chapter, we present Nano3'RACE, a nanopore-based cDNA sequencing method that allows in-depth analysis to precisely measure poly(A) tail length and detect 3' terminal nucleotide addition, such as uridylation, for mRNAs of interest.
Collapse
Affiliation(s)
- Pietro Giraudo
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Quentin Simonnot
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - David Pflieger
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jackson Peter
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Dominique Gagliardi
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Hélène Zuber
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
14
|
Kuhle B, Chen Q, Schimmel P. tRNA renovatio: Rebirth through fragmentation. Mol Cell 2023; 83:3953-3971. [PMID: 37802077 PMCID: PMC10841463 DOI: 10.1016/j.molcel.2023.09.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/15/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023]
Abstract
tRNA function is based on unique structures that enable mRNA decoding using anticodon trinucleotides. These structures interact with specific aminoacyl-tRNA synthetases and ribosomes using 3D shape and sequence signatures. Beyond translation, tRNAs serve as versatile signaling molecules interacting with other RNAs and proteins. Through evolutionary processes, tRNA fragmentation emerges as not merely random degradation but an act of recreation, generating specific shorter molecules called tRNA-derived small RNAs (tsRNAs). These tsRNAs exploit their linear sequences and newly arranged 3D structures for unexpected biological functions, epitomizing the tRNA "renovatio" (from Latin, meaning renewal, renovation, and rebirth). Emerging methods to uncover full tRNA/tsRNA sequences and modifications, combined with techniques to study RNA structures and to integrate AI-powered predictions, will enable comprehensive investigations of tRNA fragmentation products and new interaction potentials in relation to their biological functions. We anticipate that these directions will herald a new era for understanding biological complexity and advancing pharmaceutical engineering.
Collapse
Affiliation(s)
- Bernhard Kuhle
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA; Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Qi Chen
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
15
|
Pinzaru AM, Tavazoie SF. Transfer RNAs as dynamic and critical regulators of cancer progression. Nat Rev Cancer 2023; 23:746-761. [PMID: 37814109 DOI: 10.1038/s41568-023-00611-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 10/11/2023]
Abstract
Transfer RNAs (tRNAs) have been historically viewed as non-dynamic adaptors that decode the genetic code into proteins. Recent work has uncovered dynamic regulatory roles for these fascinating molecules. Advances in tRNA detection methods have revealed that specific tRNAs can become modulated upon DNA copy number and chromatin alterations and can also be perturbed by oncogenic signalling and transcriptional regulators in cancer cells or the tumour microenvironment. Such alterations in the levels of specific tRNAs have been shown to causally impact cancer progression, including metastasis. Moreover, sequencing methods have identified tRNA-derived small RNAs that influence various aspects of cancer progression, such as cell proliferation and invasion, and could serve as diagnostic and prognostic biomarkers or putative therapeutic targets in various cancers. Finally, there is accumulating evidence, including from genetic models, that specific tRNA synthetases - the enzymes responsible for charging tRNAs with amino acids - can either promote or suppress tumour formation. In this Review, we provide an overview of how deregulation of tRNAs influences cancer formation and progression.
Collapse
Affiliation(s)
- Alexandra M Pinzaru
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA.
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
16
|
Su Q, Long Y, Wang J, Gou D. CLT-seq as a universal homopolymer-sequencing concept reveals poly(A)-tail-tuned ncRNA regulation. Brief Bioinform 2023; 24:bbad374. [PMID: 37874949 DOI: 10.1093/bib/bbad374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/07/2023] [Accepted: 09/30/2023] [Indexed: 10/26/2023] Open
Abstract
Dynamic tuning of the poly(A) tail is a crucial mechanism for controlling translation and stability of eukaryotic mRNA. Achieving a comprehensive understanding of how this regulation occurs requires unbiased abundance quantification of poly(A)-tail transcripts and simple poly(A)-length measurement using high-throughput sequencing platforms. Current methods have limitations due to complicated setups and elaborate library preparation plans. To address this, we introduce central limit theorem (CLT)-managed RNA-seq (CLT-seq), a simple and straightforward homopolymer-sequencing method. In CLT-seq, an anchor-free oligo(dT) primer rapidly binds to and unbinds from anywhere along the poly(A) tail string, leading to position-directed reverse transcription with equal probability. The CLT mechanism enables the synthesized poly(T) lengths, which correspond to the templated segment of the poly(A) tail, to distribute normally. Based on a well-fitted pseudogaussian-derived poly(A)-poly(T) conversion model, the actual poly(A)-tail profile is reconstructed from the acquired poly(T)-length profile through matrix operations. CLT-seq follows a simple procedure without requiring RNA-related pre-treatment, enrichment or selection, and the CLT-shortened poly(T) stretches are more compatible with existing sequencing platforms. This proof-of-concept approach facilitates direct homopolymer base-calling and features unbiased RNA-seq. Therefore, CLT-seq provides unbiased, robust and cost-efficient transcriptome-wide poly(A)-tail profiling. We demonstrate that CLT-seq on the most common Illumina platform delivers reliable poly(A)-tail profiling at a transcriptome-wide scale in human cellular contexts. We find that the poly(A)-tail-tuned ncRNA regulation undergoes a dynamic, complex process similar to mRNA regulation. Overall, CLT-seq offers a simplified, effective and economical approach to investigate poly(A)-tail regulation, with potential implications for understanding gene expression and identifying therapeutic targets.
Collapse
Affiliation(s)
- Qiang Su
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Shenzhen University, 1066 Xueyuan Street, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Yi Long
- The School of Medicine, Life and Health Sciences (MED | LHS), Chinese University of Hong Kong, Shenzhen, No. 2001 Longxiang Blvd., Longgang District, Shenzhen 518172, Guangdong, China
| | - Jun Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Shenzhen University, 1066 Xueyuan Street, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Shenzhen University, 1066 Xueyuan Street, Nanshan District, Shenzhen 518055, Guangdong, China
| |
Collapse
|
17
|
Silveira d'Almeida G, Casius A, Henderson JC, Knuesel S, Aphasizhev R, Aphasizheva I, Manning AC, Lowe TM, Alfonzo JD. tRNA Tyr has an unusually short half-life in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2023; 29:1243-1254. [PMID: 37197826 PMCID: PMC10351884 DOI: 10.1261/rna.079674.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
Following transcription, tRNAs undergo a series of processing and modification events to become functional adaptors in protein synthesis. Eukaryotes have also evolved intracellular transport systems whereby nucleus-encoded tRNAs may travel out and into the nucleus. In trypanosomes, nearly all tRNAs are also imported from the cytoplasm into the mitochondrion, which lacks tRNA genes. Differential subcellular localization of the cytoplasmic splicing machinery and a nuclear enzyme responsible for queuosine modification at the anticodon "wobble" position appear to be important quality control mechanisms for tRNATyr, the only intron-containing tRNA in T. brucei Since tRNA-guanine transglycosylase (TGT), the enzyme responsible for Q formation, cannot act on an intron-containing tRNA, retrograde nuclear transport is an essential step in maturation. Unlike maturation/processing pathways, the general mechanisms of tRNA stabilization and degradation in T. brucei are poorly understood. Using a combination of cellular and molecular approaches, we show that tRNATyr has an unusually short half-life. tRNATyr, and in addition tRNAAsp, also show the presence of slow-migrating bands during electrophoresis; we term these conformers: alt-tRNATyr and alt-tRNAAsp, respectively. Although we do not know the chemical or structural nature of these conformers, alt-tRNATyr has a short half-life resembling that of tRNATyr; the same is not true for alt-tRNAAsp We also show that RRP44, which is usually an exosome subunit in other organisms, is involved in tRNA degradation of the only intron-containing tRNA in T. brucei and is partly responsible for its unusually short half-life.
Collapse
Affiliation(s)
- Gabriel Silveira d'Almeida
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ananth Casius
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jeremy C Henderson
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Sebastian Knuesel
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston 02118, USA
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston 02118, USA
| | - Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston 02118, USA
| | - Aidan C Manning
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Todd M Lowe
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Juan D Alfonzo
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
18
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
19
|
New biochemical insights of CCA enzyme role in tRNA maturation and an efficient method to synthesize the 3'-amino-tailed tRNA. Biochimie 2023; 209:95-102. [PMID: 36646204 DOI: 10.1016/j.biochi.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The maturation of tRNA and its quality control is crucial for aminoacylation and protein synthesis. The CCA enzyme, also known as tRNA nucleotidyltransferase, catalyzes the addition or repair of CCA at the 3'-terminus of tRNAs to facilitate aminoacylation. Structural studies of CCA enzyme in complex with ATP and CTP suggested that adding CCA at the 3'-terminus of tRNAs is a sequential process [1-4]. However, there are many inconsistent results of CCA addition from the biochemical studies, which raise the ambiguity about the CCA enzyme specificity in vitro [5-7]. On the other hand, there are no effective methods for preparing the 3'-amino-tailed tRNA to provide a stable amide linkage, which is vital to make homogeneous samples for structural studies of stalling peptides to understand ribosome mediated gene regulation [7-11]. In this study, we examined the functional specificity of the Class II CCA enzyme from E. coli, and optimized the benchmark experimental conditions to prepare the 3'-NH2-tRNA using the CCA enzyme. Our results suggest that the CCA enzyme has a specific ability to catalyze the CCA addition/repair activity within the stoichiometric range of the reactants, and excess amounts of nucleotides lead to non-specific polymerization of the tRNA. Further, we developed an efficient method for synthesizing 3'-amino tRNA, which can facilitate stable aminoacyl/peptidyl-tRNA preparation.
Collapse
|
20
|
Brouze A, Krawczyk PS, Dziembowski A, Mroczek S. Measuring the tail: Methods for poly(A) tail profiling. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1737. [PMID: 35617484 PMCID: PMC10078590 DOI: 10.1002/wrna.1737] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/31/2023]
Abstract
The 3'-end poly(A) tail is an important and potent feature of most mRNA molecules that affects mRNA fate and translation efficiency. Polyadenylation is a posttranscriptional process that occurs in the nucleus by canonical poly(A) polymerases (PAPs). In some specific instances, the poly(A) tail can also be extended in the cytoplasm by noncanonical poly(A) polymerases (ncPAPs). This epitranscriptomic regulation of mRNA recently became one of the most interesting aspects in the field. Advances in RNA sequencing technologies and software development have allowed the precise measurement of poly(A) tails, identification of new ncPAPs, expansion of the function of known enzymes, discovery and a better understanding of the physiological role of tail heterogeneity, and recognition of a correlation between tail length and RNA translatability. Here, we summarize the development of polyadenylation research methods, including classic low-throughput approaches, Illumina-based genome-wide analysis, and advanced state-of-art techniques that utilize long-read third-generation sequencing with Pacific Biosciences and Oxford Nanopore Technologies platforms. A boost in technical opportunities over recent decades has allowed a better understanding of the regulation of gene expression at the mRNA level. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico.
Collapse
Affiliation(s)
- Aleksandra Brouze
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Paweł Szczepan Krawczyk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Andrzej Dziembowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.,Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Seweryn Mroczek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
21
|
Gast M, Nageswaran V, Kuss AW, Tzvetkova A, Wang X, Mochmann LH, Rad PR, Weiss S, Simm S, Zeller T, Voelzke H, Hoffmann W, Völker U, Felix SB, Dörr M, Beling A, Skurk C, Leistner DM, Rauch BH, Hirose T, Heidecker B, Klingel K, Nakagawa S, Poller WC, Swirski FK, Haghikia A, Poller W. tRNA-like Transcripts from the NEAT1-MALAT1 Genomic Region Critically Influence Human Innate Immunity and Macrophage Functions. Cells 2022; 11:cells11243970. [PMID: 36552736 PMCID: PMC9777231 DOI: 10.3390/cells11243970] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022] Open
Abstract
The evolutionary conserved NEAT1-MALAT1 gene cluster generates large noncoding transcripts remaining nuclear, while tRNA-like transcripts (mascRNA, menRNA) enzymatically generated from these precursors translocate to the cytosol. Whereas functions have been assigned to the nuclear transcripts, data on biological functions of the small cytosolic transcripts are sparse. We previously found NEAT1-/- and MALAT1-/- mice to display massive atherosclerosis and vascular inflammation. Here, employing selective targeted disruption of menRNA or mascRNA, we investigate the tRNA-like molecules as critical components of innate immunity. CRISPR-generated human ΔmascRNA and ΔmenRNA monocytes/macrophages display defective innate immune sensing, loss of cytokine control, imbalance of growth/angiogenic factor expression impacting upon angiogenesis, and altered cell-cell interaction systems. Antiviral response, foam cell formation/oxLDL uptake, and M1/M2 polarization are defective in ΔmascRNA/ΔmenRNA macrophages, defining first biological functions of menRNA and describing new functions of mascRNA. menRNA and mascRNA represent novel components of innate immunity arising from the noncoding genome. They appear as prototypes of a new class of noncoding RNAs distinct from others (miRNAs, siRNAs) by biosynthetic pathway and intracellular kinetics. Their NEAT1-MALAT1 region of origin appears as archetype of a functionally highly integrated RNA processing system.
Collapse
Affiliation(s)
- Martina Gast
- Department of Cardiology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 12200 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, 12200 Berlin, Germany
| | - Vanasa Nageswaran
- Department of Cardiology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 12200 Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 12200 Berlin, Germany
| | - Andreas W Kuss
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Ana Tzvetkova
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
- Institute of Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Xiaomin Wang
- Department of Cardiology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 12200 Berlin, Germany
| | - Liliana H Mochmann
- Department of Cardiology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 12200 Berlin, Germany
| | - Pegah Ramezani Rad
- Department of Cardiology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 12200 Berlin, Germany
| | - Stefan Weiss
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), Site Greifswald, 17487 Greifswald, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Tanja Zeller
- University Center of Cardiovascular Science, University Heart and Vascular Center, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Site Hamburg/Lübeck/Kiel, 20246 Hamburg, Germany
| | - Henry Voelzke
- German Center for Cardiovascular Research (DZHK), Site Greifswald, 17487 Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Wolfgang Hoffmann
- German Center for Cardiovascular Research (DZHK), Site Greifswald, 17487 Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), Site Greifswald, 17487 Greifswald, Germany
| | - Stefan B Felix
- German Center for Cardiovascular Research (DZHK), Site Greifswald, 17487 Greifswald, Germany
- Department of Cardiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Marcus Dörr
- German Center for Cardiovascular Research (DZHK), Site Greifswald, 17487 Greifswald, Germany
- Department of Cardiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Antje Beling
- German Center for Cardiovascular Research (DZHK), Site Berlin, 12200 Berlin, Germany
- Institute for Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10178 Berlin, Germany
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Carsten Skurk
- Department of Cardiology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 12200 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, 12200 Berlin, Germany
| | - David-Manuel Leistner
- Department of Cardiology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 12200 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, 12200 Berlin, Germany
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Bernhard H Rauch
- German Center for Cardiovascular Research (DZHK), Site Greifswald, 17487 Greifswald, Germany
- Institute for Pharmacology, University Medicine Greifswald, 17487 Greifswald, Germany
- Department Human Medicine, Section Pharmacology and Toxicology, Carl von Ossietzky Universität, 26129 Oldenburg, Germany
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Bettina Heidecker
- Department of Cardiology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 12200 Berlin, Germany
| | - Karin Klingel
- Institute for Pathology and Neuropathology, Department of Pathology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama 351-0198, Japan
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Wolfram C Poller
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arash Haghikia
- Department of Cardiology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 12200 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, 12200 Berlin, Germany
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Wolfgang Poller
- Department of Cardiology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 12200 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, 12200 Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany
| |
Collapse
|
22
|
Hager M, Pöhler MT, Reinhardt F, Wellner K, Hübner J, Betat H, Prohaska S, Mörl M. Substrate Affinity Versus Catalytic Efficiency: Ancestral Sequence Reconstruction of tRNA Nucleotidyltransferases Solves an Enzyme Puzzle. Mol Biol Evol 2022; 39:6835633. [PMID: 36409584 PMCID: PMC9728577 DOI: 10.1093/molbev/msac250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In tRNA maturation, CCA-addition by tRNA nucleotidyltransferase is a unique and highly accurate reaction. While the mechanism of nucleotide selection and polymerization is well understood, it remains a mystery why bacterial and eukaryotic enzymes exhibit an unexpected and surprisingly low tRNA substrate affinity while they efficiently catalyze the CCA-addition. To get insights into the evolution of this high-fidelity RNA synthesis, the reconstruction and characterization of ancestral enzymes is a versatile tool. Here, we investigate a reconstructed candidate of a 2 billion years old CCA-adding enzyme from Gammaproteobacteria and compare it to the corresponding modern enzyme of Escherichia coli. We show that the ancestral candidate catalyzes an error-free CCA-addition, but has a much higher tRNA affinity compared with the extant enzyme. The consequence of this increased substrate binding is an enhanced reverse reaction, where the enzyme removes the CCA end from the mature tRNA. As a result, the ancestral candidate exhibits a lower catalytic efficiency in vitro as well as in vivo. Furthermore, the efficient tRNA interaction leads to a processive polymerization, while the extant enzyme catalyzes nucleotide addition in a distributive way. Thus, the modern enzymes increased their polymerization efficiency by lowering the binding affinity to tRNA, so that CCA synthesis is efficiently promoted due to a reduced reverse reaction. Hence, the puzzling and at a first glance contradicting and detrimental weak substrate interaction represents a distinct activity enhancement in the evolution of CCA-adding enzymes.
Collapse
Affiliation(s)
| | | | - Franziska Reinhardt
- Computational EvoDevo Group, Institute for Computer Science, Leipzig University, Härtelstr. 16-18, 04109 Leipzig, Germany,Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstr. 16-18, 04109 Leipzig, Germany
| | - Karolin Wellner
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Jessica Hübner
- Computational EvoDevo Group, Institute for Computer Science, Leipzig University, Härtelstr. 16-18, 04109 Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Sonja Prohaska
- Computational EvoDevo Group, Institute for Computer Science, Leipzig University, Härtelstr. 16-18, 04109 Leipzig, Germany,Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstr. 16-18, 04109 Leipzig, Germany,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA,Complexity Science Hub Vienna, Josefstädter Str. 39, 1080 Wien, Austria
| | | |
Collapse
|
23
|
Wang L, Lin S. Emerging functions of tRNA modifications in mRNA translation and diseases. J Genet Genomics 2022; 50:223-232. [PMID: 36309201 DOI: 10.1016/j.jgg.2022.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
tRNAs are essential modulators that recognize mRNA codons and bridge amino acids for mRNA translation. The tRNAs are heavily modified, which is essential for forming a complex secondary structure that facilitates codon recognition and mRNA translation. In recent years, studies have identified the regulatory roles of tRNA modifications in mRNA translation networks. Misregulation of tRNA modifications is closely related to the progression of developmental diseases and cancers. In this review, we summarize the tRNA biogenesis process and then discuss the effects and mechanisms of tRNA modifications on tRNA processing and mRNA translation. Finally, we provide a comprehensive overview of tRNA modifications' physiological and pathological functions, focusing on diseases including cancers.
Collapse
Affiliation(s)
- Lu Wang
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shuibin Lin
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
24
|
RNA Modification in Inflammatory Bowel Diseases. Biomedicines 2022; 10:biomedicines10071695. [PMID: 35885000 PMCID: PMC9313455 DOI: 10.3390/biomedicines10071695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder characterized by damage to the intestinal mucosa, which is caused by a combination of factors. These include genetic and epigenetic alterations, environmental influence, microorganism interactions, and immune conditions. Some populations with IBD show a cancer-prone phenotype. Recent studies have provided insight into the involvement of RNA modifications in the specific pathogenesis of IBD through regulation of RNA biology in epithelial and immune cells. Studies of several RNA modification-targeting reagents have shown preferable outcomes in patients with colitis. Here, we note a new awareness of RNA modification in the targeting of IBD and related diseases, which will contribute to early diagnosis, disease monitoring, and possible control by innovative therapeutic approaches.
Collapse
|
25
|
Sekulovski S, Trowitzsch S. Transfer RNA processing - from a structural and disease perspective. Biol Chem 2022; 403:749-763. [PMID: 35728022 DOI: 10.1515/hsz-2021-0406] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/24/2022] [Indexed: 01/05/2023]
Abstract
Transfer RNAs (tRNAs) are highly structured non-coding RNAs which play key roles in translation and cellular homeostasis. tRNAs are initially transcribed as precursor molecules and mature by tightly controlled, multistep processes that involve the removal of flanking and intervening sequences, over 100 base modifications, addition of non-templated nucleotides and aminoacylation. These molecular events are intertwined with the nucleocytoplasmic shuttling of tRNAs to make them available at translating ribosomes. Defects in tRNA processing are linked to the development of neurodegenerative disorders. Here, we summarize structural aspects of tRNA processing steps with a special emphasis on intron-containing tRNA splicing involving tRNA splicing endonuclease and ligase. Their role in neurological pathologies will be discussed. Identification of novel RNA substrates of the tRNA splicing machinery has uncovered functions unrelated to tRNA processing. Future structural and biochemical studies will unravel their mechanistic underpinnings and deepen our understanding of neurological diseases.
Collapse
Affiliation(s)
- Samoil Sekulovski
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| |
Collapse
|
26
|
Seki M, Komuro A, Ishikawa T, Takahashi M, Nashimoto M. Genes for tRNA recycling are upregulated in response to infection with Theiler's mouse encephalitis virus. Biochem Biophys Res Commun 2022; 587:63-68. [PMID: 34864548 DOI: 10.1016/j.bbrc.2021.11.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022]
Abstract
The concept of tRNA recycling has recently emerged from the studies of ribosome-associated quality control. Therein tRNase ZS removes the 2', 3'>p from the ANKZF1-cleaved tRNA and the subsequent TRNT1 action re-generates the intact tRNA. To know the roles of the tRNA recycling in vivo, we investigated how viral infection affects the tRNA recycling system by analyzing the mRNA levels of tRNase ZS and TRNT1. We found that both genes in HeLa cells are upregulated in response to infection of Theiler's mouse encephalitis virus but not to that of an influenza A virus. Upregulation was also observed in cells infected with encephalomyocarditis virus with reduced efficiency. The levels of the IFN-β mRNA appeared to positively correlate with those of the tRNase ZS and TRNT1 mRNAs. The tRNase ZS gene may be regulated post-transcriptionally in the cells infected with Theiler's mouse encephalitis virus.
Collapse
Affiliation(s)
- Mineaki Seki
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Niigata, 956-8603, Japan.
| | - Akihiko Komuro
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Niigata, 956-8603, Japan; Faculty of Pharmaceutical Sciences, Department of Biochemistry, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Niigata, 956-8603, Japan
| | - Tatsuya Ishikawa
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Niigata, 956-8603, Japan
| | - Masayuki Takahashi
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Niigata, 956-8603, Japan
| | - Masayuki Nashimoto
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Niigata, 956-8603, Japan
| |
Collapse
|
27
|
Kramer MC, Kim HJ, Palos KR, Garcia BA, Lyons E, Beilstein MA, Nelson ADL, Gregory BD. A Conserved Long Intergenic Non-coding RNA Containing snoRNA Sequences, lncCOBRA1, Affects Arabidopsis Germination and Development. FRONTIERS IN PLANT SCIENCE 2022; 13:906603. [PMID: 35693169 PMCID: PMC9175010 DOI: 10.3389/fpls.2022.906603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/04/2022] [Indexed: 05/04/2023]
Abstract
Long non-coding RNAs (lncRNAs) are an increasingly studied group of non-protein coding transcripts with a wide variety of molecular functions gaining attention for their roles in numerous biological processes. Nearly 6,000 lncRNAs have been identified in Arabidopsis thaliana but many have yet to be studied. Here, we examine a class of previously uncharacterized lncRNAs termed CONSERVED IN BRASSICA RAPA (lncCOBRA) transcripts that were previously identified for their high level of sequence conservation in the related crop species Brassica rapa, their nuclear-localization and protein-bound nature. In particular, we focus on lncCOBRA1 and demonstrate that its abundance is highly tissue and developmental specific, with particularly high levels early in germination. lncCOBRA1 contains two snoRNAs domains within it, making it the first sno-lincRNA example in a non-mammalian system. However, we find that it is processed differently than its mammalian counterparts. We further show that plants lacking lncCOBRA1 display patterns of delayed germination and are overall smaller than wild-type plants. Lastly, we identify the proteins that interact with lncCOBRA1 and propose a novel mechanism of lincRNA action in which it may act as a scaffold with the RACK1A protein to regulate germination and development, possibly through a role in ribosome biogenesis.
Collapse
Affiliation(s)
- Marianne C. Kramer
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, United States
| | - Kyle R. Palos
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Eric Lyons
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
- CyVerse Inc., Tucson, AZ, United States
| | - Mark A. Beilstein
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| | | | - Brian D. Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Brian D. Gregory,
| |
Collapse
|
28
|
Beenstock J, Sicheri F. The structural and functional workings of KEOPS. Nucleic Acids Res 2021; 49:10818-10834. [PMID: 34614169 PMCID: PMC8565320 DOI: 10.1093/nar/gkab865] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 11/14/2022] Open
Abstract
KEOPS (Kinase, Endopeptidase and Other Proteins of Small size) is a five-subunit protein complex that is highly conserved in eukaryotes and archaea and is essential for the fitness of cells and for animal development. In humans, mutations in KEOPS genes underlie Galloway-Mowat syndrome, which manifests in severe microcephaly and renal dysfunction that lead to childhood death. The Kae1 subunit of KEOPS catalyzes the universal and essential tRNA modification N6-threonylcarbamoyl adenosine (t6A), while the auxiliary subunits Cgi121, the kinase/ATPase Bud32, Pcc1 and Gon7 play a supporting role. Kae1 orthologs are also present in bacteria and mitochondria but function in distinct complexes with proteins that are not related in structure or function to the auxiliary subunits of KEOPS. Over the past 15 years since its discovery, extensive study in the KEOPS field has provided many answers towards understanding the roles that KEOPS plays in cells and in human disease and how KEOPS carries out these functions. In this review, we provide an overview into recent advances in the study of KEOPS and illuminate exciting future directions.
Collapse
Affiliation(s)
- Jonah Beenstock
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Frank Sicheri
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Ontario, M5S 1A8, Canada.,Department of Biochemistry, University of Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
29
|
Fagan SG, Helm M, Prehn JHM. tRNA-derived fragments: A new class of non-coding RNA with key roles in nervous system function and dysfunction. Prog Neurobiol 2021; 205:102118. [PMID: 34245849 DOI: 10.1016/j.pneurobio.2021.102118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 01/12/2023]
Abstract
tRNA-derived small RNAs (tsRNA) are a recently identified family of non-coding RNA that have been associated with a variety of cellular functions including the regulation of protein translation and gene expression. Recent sequencing and bioinformatic studies have identified the broad spectrum of tsRNA in the nervous system and demonstrated that this new class of non-coding RNA is produced from tRNA by specific cleavage events catalysed by ribonucleases such as angiogenin and dicer. Evidence is also accumulating that production of tsRNA is increased during disease processes where they regulate stress responses, proteostasis, and neuronal survival. Mutations to tRNA cleaving and modifying enzymes have been implicated in several neurodegenerative disorders, and tsRNA levels in the blood are advancing as biomarkers for neurological disease. In this review we summarize the physiological importance of tsRNA in the central nervous system and their relevance to neurological disease.
Collapse
Affiliation(s)
- Steven G Fagan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, St. Stephen'S Green, Dublin 2, Ireland; SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences - IPBS, Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, St. Stephen'S Green, Dublin 2, Ireland; SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
30
|
Martínez-Giménez JA, Tabares-Seisdedos R. Possible Ancestral Functions of the Genetic and RNA Operational Precodes and the Origin of the Genetic System. ORIGINS LIFE EVOL B 2021; 51:167-183. [PMID: 34097191 DOI: 10.1007/s11084-021-09610-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/17/2021] [Indexed: 11/24/2022]
Abstract
The origin of genetic systems is the central problem in the study of the origin of life for which various explanatory hypotheses have been presented. One model suggests that both ancestral transfer ribonucleic acid (tRNA) molecules and primitive ribosomes were originally involved in RNA replication (Campbell 1991). According to this model the early tRNA molecules catalyzed their own self-loading with a trinucleotide complementary to their anticodon triplet, while the primordial ribosome (protoribosome) catalyzed the transfer of these terminal trinucleotides from one tRNA to another tRNA harboring the growing RNA polymer at the 3´-end.Here we present the notion that the anticodon-codon-like pairs presumably located in the acceptor stem of primordial tRNAs (Rodin et al. 1996) (thus being and remaining, after the code and translation origins, the major contributor to the RNA operational code (Schimmel et al. 1993)) might have originally been used for RNA replication rather than translation; these anticodon and acceptor stem triplets would have been involved in accurately loading the 3'-end of tRNAs with a trinucleotide complementary to their anticodon triplet, thus allowing the accurate repair of tRNAs for their use by the protoribosome during RNA replication.We propose that tRNAs could have catalyzed their own trinucleotide self-loading by forming catalytic tRNA dimers which would have had polymerase activity. Therefore, the loading mechanism and its evolution may have been a basic step in the emergence of new genetic mechanisms such as genetic translation. The evolutionary implications of this proposed loading mechanism are also discussed.
Collapse
Affiliation(s)
| | - Rafael Tabares-Seisdedos
- Departamento de Medicina, Facultad de Medicina de Valencia, Universidad de Valencia, Av. Blasco Ibañez 17, 46010, Valencia, Spain.
| |
Collapse
|
31
|
Aksentijevich I, Schnappauf O. Molecular mechanisms of phenotypic variability in monogenic autoinflammatory diseases. Nat Rev Rheumatol 2021; 17:405-425. [PMID: 34035534 DOI: 10.1038/s41584-021-00614-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 02/08/2023]
Abstract
Monogenic autoinflammatory diseases are a group of rheumatologic disorders caused by dysregulation in the innate immune system. The molecular mechanisms of these disorders are linked to defects in inflammasome-mediated, NF-κB-mediated or interferon-mediated inflammatory signalling pathways, cytokine receptors, the actin cytoskeleton, proteasome complexes and various enzymes. As with other human disorders, disease-causing variants in a single gene can present with variable expressivity and incomplete penetrance. In some cases, pathogenic variants in the same gene can be inherited either in a recessive or dominant manner and can cause distinct and seemingly unrelated phenotypes, although they have a unifying biochemical mechanism. With an enhanced understanding of protein structure and functionality of protein domains, genotype-phenotype correlations are beginning to be unravelled. Many of the mutated proteins are primarily expressed in haematopoietic cells, and their malfunction leads to systemic inflammation. Disease presentation is also defined by a specific effect of the mutant protein in a particular cell type and, therefore, the resulting phenotype might be more deleterious in one tissue than in another. Many patients present with the expanded immunological disease continuum that includes autoinflammation, immunodeficiency, autoimmunity and atopy, which necessitate genetic testing.
Collapse
Affiliation(s)
- Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Oskar Schnappauf
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
32
|
Yip MCJ, Shao S. Detecting and Rescuing Stalled Ribosomes. Trends Biochem Sci 2021; 46:731-743. [PMID: 33966939 DOI: 10.1016/j.tibs.2021.03.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 11/24/2022]
Abstract
Ribosomes that stall inappropriately during protein synthesis harbor proteotoxic components linked to cellular stress and neurodegenerative diseases. Molecular mechanisms that rescue stalled ribosomes must selectively detect rare aberrant translational complexes and process the heterogeneous components. Ribosome-associated quality control pathways eliminate problematic messenger RNAs and nascent proteins on stalled translational complexes. In addition, recent studies have uncovered general principles of stall recognition upstream of quality control pathways and fail-safe mechanisms that ensure nascent proteome integrity. Here, we discuss developments in our mechanistic understanding of the detection and rescue of stalled ribosomal complexes in eukaryotes.
Collapse
Affiliation(s)
- Matthew C J Yip
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Yip MCJ, Savickas S, Gygi SP, Shao S. ELAC1 Repairs tRNAs Cleaved during Ribosome-Associated Quality Control. Cell Rep 2021; 30:2106-2114.e5. [PMID: 32075755 DOI: 10.1016/j.celrep.2020.01.082] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/30/2019] [Accepted: 01/22/2020] [Indexed: 12/31/2022] Open
Abstract
Ribosome-associated quality control (RQC) disassembles aberrantly stalled translation complexes to recycle or degrade the constituent parts. A key step of RQC is the cleavage of P-site tRNA by the endonuclease ANKZF1 (Vms1 in yeast) to release incompletely synthesized polypeptides from ribosomes for degradation. Re-use of the cleaved tRNA for translation requires re-addition of the universal 3'CCA nucleotides removed by ANKZF1. Here, we show that ELAC1 is both necessary and sufficient to remove the 2',3'-cyclic phosphate on ANKZF1-cleaved tRNAs to permit CCA re-addition by TRNT1. ELAC1 activity is optimized for tRNA recycling, whereas ELAC2, the essential RNase Z isoform in eukaryotes, is required to remove 3' trailers during tRNA biogenesis. Cells lacking ELAC1 specifically accumulate unrepaired tRNA intermediates upon the induction of ribosome stalling. Thus, optimal recycling of ANKZF1-cleaved tRNAs in vertebrates is achieved through the duplication and specialization of a conserved tRNA biosynthesis enzyme.
Collapse
Affiliation(s)
- Matthew C J Yip
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Simonas Savickas
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Steven P Gygi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sichen Shao
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Erber L, Betat H, Mörl M. CCA-Addition Gone Wild: Unusual Occurrence and Phylogeny of Four Different tRNA Nucleotidyltransferases in Acanthamoeba castellanii. Mol Biol Evol 2021; 38:1006-1017. [PMID: 33095240 PMCID: PMC7947759 DOI: 10.1093/molbev/msaa270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
tRNAs are important players in the protein synthesis machinery, where they act as adapter molecules for translating the mRNA codons into the corresponding amino acid sequence. In a series of highly conserved maturation steps, the primary transcripts are converted into mature tRNAs. In the amoebozoan Acanthamoeba castellanii, a highly unusual evolution of some of these processing steps was identified that are based on unconventional RNA polymerase activities. In this context, we investigated the synthesis of the 3'-terminal CCA-end that is added posttranscriptionally by a specialized polymerase, the tRNA nucleotidyltransferase (CCA-adding enzyme). The majority of eukaryotic organisms carry only a single gene for a CCA-adding enzyme that acts on both the cytosolic and the mitochondrial tRNA pool. In a bioinformatic analysis of the genome of this organism, we identified a surprising multitude of genes for enzymes that contain the active site signature of eukaryotic/eubacterial tRNA nucleotidyltransferases. In vitro activity analyses of these enzymes revealed that two proteins represent bona fide CCA-adding enzymes, one of them carrying an N-terminal sequence corresponding to a putative mitochondrial target signal. The other enzymes have restricted activities and represent CC- and A-adding enzymes, respectively. The A-adding enzyme is of particular interest, as its sequence is closely related to corresponding enzymes from Proteobacteria, indicating a horizontal gene transfer. Interestingly, this unusual diversity of nucleotidyltransferase genes is not restricted to Acanthamoeba castellanii but is also present in other members of the Acanthamoeba genus, indicating an ancient evolutionary trait.
Collapse
Affiliation(s)
- Lieselotte Erber
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| |
Collapse
|
35
|
Chujo T, Tomizawa K. Human transfer RNA modopathies: diseases caused by aberrations in transfer RNA modifications. FEBS J 2021; 288:7096-7122. [PMID: 33513290 PMCID: PMC9255597 DOI: 10.1111/febs.15736] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/13/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
tRNA molecules are post-transcriptionally modified by tRNA modification enzymes. Although composed of different chemistries, more than 40 types of human tRNA modifications play pivotal roles in protein synthesis by regulating tRNA structure and stability as well as decoding genetic information on mRNA. Many tRNA modifications are conserved among all three kingdoms of life, and aberrations in various human tRNA modification enzymes cause life-threatening diseases. Here, we describe the class of diseases and disorders caused by aberrations in tRNA modifications as 'tRNA modopathies'. Aberrations in over 50 tRNA modification enzymes are associated with tRNA modopathies, which most frequently manifest as dysfunctions of the brain and/or kidney, mitochondrial diseases, and cancer. However, the molecular mechanisms that link aberrant tRNA modifications to human diseases are largely unknown. In this review, we provide a comprehensive compilation of human tRNA modification functions, tRNA modification enzyme genes, and tRNA modopathies, and we summarize the elucidated pathogenic mechanisms underlying several tRNA modopathies. We will also discuss important questions that need to be addressed in order to understand the molecular pathogenesis of tRNA modopathies.
Collapse
Affiliation(s)
- Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Japan
| |
Collapse
|
36
|
RNA Metabolism Guided by RNA Modifications: The Role of SMUG1 in rRNA Quality Control. Biomolecules 2021; 11:biom11010076. [PMID: 33430019 PMCID: PMC7826747 DOI: 10.3390/biom11010076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
RNA modifications are essential for proper RNA processing, quality control, and maturation steps. In the last decade, some eukaryotic DNA repair enzymes have been shown to have an ability to recognize and process modified RNA substrates and thereby contribute to RNA surveillance. Single-strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1) is a base excision repair enzyme that not only recognizes and removes uracil and oxidized pyrimidines from DNA but is also able to process modified RNA substrates. SMUG1 interacts with the pseudouridine synthase dyskerin (DKC1), an enzyme essential for the correct assembly of small nucleolar ribonucleoproteins (snRNPs) and ribosomal RNA (rRNA) processing. Here, we review rRNA modifications and RNA quality control mechanisms in general and discuss the specific function of SMUG1 in rRNA metabolism. Cells lacking SMUG1 have elevated levels of immature rRNA molecules and accumulation of 5-hydroxymethyluridine (5hmU) in mature rRNA. SMUG1 may be required for post-transcriptional regulation and quality control of rRNAs, partly by regulating rRNA and stability.
Collapse
|
37
|
Beenstock J, Ona SM, Porat J, Orlicky S, Wan LCK, Ceccarelli DF, Maisonneuve P, Szilard RK, Yin Z, Setiaputra D, Mao DYL, Khan M, Raval S, Schriemer DC, Bayfield MA, Durocher D, Sicheri F. A substrate binding model for the KEOPS tRNA modifying complex. Nat Commun 2020; 11:6233. [PMID: 33277478 PMCID: PMC7718258 DOI: 10.1038/s41467-020-19990-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/02/2020] [Indexed: 11/09/2022] Open
Abstract
The KEOPS complex, which is conserved across archaea and eukaryotes, is composed of four core subunits; Pcc1, Kae1, Bud32 and Cgi121. KEOPS is crucial for the fitness of all organisms examined. In humans, pathogenic mutations in KEOPS genes lead to Galloway-Mowat syndrome, an autosomal-recessive disease causing childhood lethality. Kae1 catalyzes the universal and essential tRNA modification N6-threonylcarbamoyl adenosine, but the precise roles of all other KEOPS subunits remain an enigma. Here we show using structure-guided studies that Cgi121 recruits tRNA to KEOPS by binding to its 3' CCA tail. A composite model of KEOPS bound to tRNA reveals that all KEOPS subunits form an extended tRNA-binding surface that we have validated in vitro and in vivo to mediate the interaction with the tRNA substrate and its modification. These findings provide a framework for understanding the inner workings of KEOPS and delineate why all KEOPS subunits are essential.
Collapse
MESH Headings
- Archaeal Proteins/chemistry
- Archaeal Proteins/genetics
- Archaeal Proteins/metabolism
- Crystallography, X-Ray
- Methanocaldococcus/genetics
- Methanocaldococcus/metabolism
- Models, Molecular
- Multiprotein Complexes/chemistry
- Multiprotein Complexes/genetics
- Multiprotein Complexes/metabolism
- Nucleic Acid Conformation
- Protein Binding
- Protein Domains
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Lys/chemistry
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
Collapse
Affiliation(s)
- Jonah Beenstock
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Samara Mishelle Ona
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jennifer Porat
- Department of Biology, York University, Toronto, ON, Canada
| | - Stephen Orlicky
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Leo C K Wan
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Derek F Ceccarelli
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Pierre Maisonneuve
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Rachel K Szilard
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Zhe Yin
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Dheva Setiaputra
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Daniel Y L Mao
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Morgan Khan
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | - Shaunak Raval
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | - David C Schriemer
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | | | - Daniel Durocher
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Frank Sicheri
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
38
|
Hennig O, Philipp S, Bonin S, Rollet K, Kolberg T, Jühling T, Betat H, Sauter C, Mörl M. Adaptation of the Romanomermis culicivorax CCA-Adding Enzyme to Miniaturized Armless tRNA Substrates. Int J Mol Sci 2020; 21:E9047. [PMID: 33260740 PMCID: PMC7730189 DOI: 10.3390/ijms21239047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022] Open
Abstract
The mitochondrial genome of the nematode Romanomermis culicivorax encodes for miniaturized hairpin-like tRNA molecules that lack D- as well as T-arms, strongly deviating from the consensus cloverleaf. The single tRNA nucleotidyltransferase of this organism is fully active on armless tRNAs, while the human counterpart is not able to add a complete CCA-end. Transplanting single regions of the Romanomermis enzyme into the human counterpart, we identified a beta-turn element of the catalytic core that-when inserted into the human enzyme-confers full CCA-adding activity on armless tRNAs. This region, originally identified to position the 3'-end of the tRNA primer in the catalytic core, dramatically increases the enzyme's substrate affinity. While conventional tRNA substrates bind to the enzyme by interactions with the T-arm, this is not possible in the case of armless tRNAs, and the strong contribution of the beta-turn compensates for an otherwise too weak interaction required for the addition of a complete CCA-terminus. This compensation demonstrates the remarkable evolutionary plasticity of the catalytic core elements of this enzyme to adapt to unconventional tRNA substrates.
Collapse
Affiliation(s)
- Oliver Hennig
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Susanne Philipp
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Sonja Bonin
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Kévin Rollet
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Tim Kolberg
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Tina Jühling
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| | - Claude Sauter
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (O.H.); (S.P.); (S.B.); (K.R.); (T.K.); (T.J.); (H.B.)
| |
Collapse
|
39
|
Chen Y, Shen J. Mucosal immunity and tRNA, tRF, and tiRNA. J Mol Med (Berl) 2020; 99:47-56. [PMID: 33200232 DOI: 10.1007/s00109-020-02008-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/15/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
Mucosal immunity has crucial roles in human diseases such as respiratory tract infection, inflammatory bowel diseases (IBD), and colorectal cancer (CRC). Recent studies suggest that the mononuclear phagocyte system, cancer cells, bacteria, and viruses induce the mucosal immune reaction by various pathways, and can be major factors in the pathogenesis of these diseases. Transfer RNA (tRNA) and its fragments, including tRNA-derived RNA fragments (tRFs) and tRNA-derived stress-induced RNAs (tiRNAs), have emerged as a hot topic in recent years. They not only are verified as essential for transcription and translation but also play roles in cellular homeostasis and functions, such as cell metastasis, proliferation, and apoptosis. However, the specific relationship between their biological regulation and mucosal immunity remains unclear to date. In the present review, we carry out a comprehensive discussion on the specific roles of tRNA, tRFs, and tiRNAs relevant to mucosal immunity and related diseases.
Collapse
Affiliation(s)
- Yueying Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, 160# Pu Jian Ave, Shanghai, 200127, China
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160# Pu Jian Ave, Shanghai, 200127, China
- Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai, 200127, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, 160# Pu Jian Ave, Shanghai, 200127, China.
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160# Pu Jian Ave, Shanghai, 200127, China.
- Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai, 200127, China.
| |
Collapse
|
40
|
Lu X, Huang J, Wu S, Zheng Q, Liu P, Feng H, Su X, Fu H, Xi Q, Wang G. The tRNA-like small noncoding RNA mascRNA promotes global protein translation. EMBO Rep 2020; 21:e49684. [PMID: 33073493 DOI: 10.15252/embr.201949684] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 01/05/2023] Open
Abstract
mascRNA is a small cytoplasmic RNA derived from the lncRNA MALAT1. After being processed by the tRNA processing enzymes RNase P and RNase Z, mascRNA undergoes CCA addition like tRNAs and folds into a tRNA-like cloverleaf structure. While MALAT1 functions in multiple cellular processes, the role of mascRNA was largely unknown. Here, we show that mascRNA binds directly to the multi-tRNA synthetase complex (MSC) component glutaminyl-tRNA synthetase (QARS). mascRNA promotes global protein translation and cell proliferation by positively regulating QARS protein levels. Our results uncover a role of mascRNA that is independent of MALAT1, but could be part of the molecular mechanism of MALAT1's function in cancer, and provide a paradigm for understanding tRNA-like structures in mammalian cells.
Collapse
Affiliation(s)
- Xinping Lu
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinliang Huang
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sipeng Wu
- State Key laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Qian Zheng
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, China
| | - Peipei Liu
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, China
| | - Huimin Feng
- State Key laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiaoqing Su
- State Key laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Haipeng Fu
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiaoran Xi
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, China
| | - Geng Wang
- MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing, China.,State Key laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| |
Collapse
|
41
|
|
42
|
Gast M, Rauch BH, Haghikia A, Nakagawa S, Haas J, Stroux A, Schmidt D, Schumann P, Weiss S, Jensen L, Kratzer A, Kraenkel N, Müller C, Börnigen D, Hirose T, Blankenberg S, Escher F, Kühl AA, Kuss AW, Meder B, Landmesser U, Zeller T, Poller W. Long noncoding RNA NEAT1 modulates immune cell functions and is suppressed in early onset myocardial infarction patients. Cardiovasc Res 2020; 115:1886-1906. [PMID: 30924864 DOI: 10.1093/cvr/cvz085] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 02/15/2019] [Accepted: 03/27/2019] [Indexed: 12/16/2022] Open
Abstract
AIMS Inflammation is a key driver of atherosclerosis and myocardial infarction (MI), and beyond proteins and microRNAs (miRs), long noncoding RNAs (lncRNAs) have been implicated in inflammation control. To obtain further information on the possible role of lncRNAs in the context of atherosclerosis, we obtained comprehensive transcriptome maps of circulating immune cells (peripheral blood mononuclear cells, PBMCs) of early onset MI patients. One lncRNA significantly suppressed in post-MI patients was further investigated in a murine knockout model. METHODS AND RESULTS Individual RNA-sequencing (RNA-seq) was conducted on PBMCs from 28 post-MI patients with a history of MI at age ≤50 years and stable disease ≥3 months before study participation, and from 31 healthy individuals without manifest cardiovascular disease or family history of MI as controls. RNA-seq revealed deregulated protein-coding transcripts and lncRNAs in post-MI PBMCs, among which nuclear enriched abundant transcript (NEAT1) was the most highly expressed lncRNA, and the only one significantly suppressed in patients. Multivariate statistical analysis of validation cohorts of 106 post-MI patients and 85 controls indicated that the PBMC NEAT1 levels were influenced (P = 0.001) by post-MI status independent of statin intake, left ventricular ejection fraction, low-density lipoprotein or high-density lipoprotein cholesterol, or age. We investigated NEAT1-/- mice as a model of NEAT1 deficiency to evaluate if NEAT1 depletion may directly and causally alter immune regulation. RNA-seq of NEAT1-/- splenocytes identified disturbed expression and regulation of chemokines/receptors, innate immunity genes, tumour necrosis factor (TNF) and caspases, and increased production of reactive oxygen species (ROS) under baseline conditions. NEAT1-/- spleen displayed anomalous Treg and TH cell differentiation. NEAT1-/- bone marrow-derived macrophages (BMDMs) displayed altered transcriptomes with disturbed chemokine/chemokine receptor expression, increased baseline phagocytosis (P < 0.0001), and attenuated proliferation (P = 0.0013). NEAT1-/- BMDMs responded to LPS with increased (P < 0.0001) ROS production and disturbed phagocytic activity (P = 0.0318). Monocyte-macrophage differentiation was deregulated in NEAT1-/- bone marrow and blood. NEAT1-/- mice displayed aortic wall CD68+ cell infiltration, and there was evidence of myocardial inflammation which could lead to severe and potentially life-threatening structural damage in some of these animals. CONCLUSION The study indicates distinctive alterations of lncRNA expression in post-MI patient PBMCs. Regarding the monocyte-enriched NEAT1 suppressed in post-MI patients, the data from NEAT1-/- mice identify NEAT1 as a novel lncRNA-type immunoregulator affecting monocyte-macrophage functions and T cell differentiation. NEAT1 is part of a molecular circuit also involving several chemokines and interleukins persistently deregulated post-MI. Individual profiling of this circuit may contribute to identify high-risk patients likely to benefit from immunomodulatory therapies. It also appears reasonable to look for new therapeutic targets within this circuit.
Collapse
Affiliation(s)
- Martina Gast
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany
| | - Bernhard H Rauch
- Institute for Pharmacology, Universitätsmedizin Greifswald, Felix-Hausdorff-Strasse 3, Greifswald, Germany.,German Center for Cardiovascular Research (DZHK), Site Greifswald, Felix-Hausdorff-Strasse 3, Greifswald
| | - Arash Haghikia
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany.,RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama, Japan.,Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 jo, Nishi 6-chome, Kita-ku, Sapporo, Japan
| | - Jan Haas
- Department of Cardiology, Institute for Cardiomyopathies, University Hospital Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Site Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany
| | - Andrea Stroux
- Institute for Biometry and Clinical Epidemiology, Hindenburgdamm 30, Berlin, Germany
| | - David Schmidt
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany
| | - Paul Schumann
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genome Research, University of Greifswald, Felix-Hausdorff-Strasse 8, Greifswald, Germany
| | - Lars Jensen
- Interfaculty Institute for Genetics and Functional Genome Research, University of Greifswald, Felix-Hausdorff-Strasse 8, Greifswald, Germany
| | - Adelheid Kratzer
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany
| | - Nicolle Kraenkel
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany
| | - Christian Müller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Site Hamburg/Lübeck/Kiel, Martinistrasse 52, Hamburg, Germany
| | - Daniela Börnigen
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Site Hamburg/Lübeck/Kiel, Martinistrasse 52, Hamburg, Germany
| | - Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Stefan Blankenberg
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Site Hamburg/Lübeck/Kiel, Martinistrasse 52, Hamburg, Germany
| | - Felicitas Escher
- German Center for Cardiovascular Research (DZHK), Site Berlin, Hindenburgdamm 30, Berlin, Germany.,Institute of Cardiac Diagnostics and Therapy (IKDT), Hindenburgdamm 30, Berlin, Germany.,Department of Cardiology CVK, Hindenburgdamm 30, Berlin, Germany
| | - Anja A Kühl
- iPATH.Berlin-Core Unit Immunopathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas W Kuss
- Interfaculty Institute for Genetics and Functional Genome Research, University of Greifswald, Felix-Hausdorff-Strasse 8, Greifswald, Germany
| | - Benjamin Meder
- Department of Cardiology, Institute for Cardiomyopathies, University Hospital Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Site Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany.,Department of Genetics, Genome Technology Center, Stanford University Medical School, Stanford, CA, USA
| | - Ulf Landmesser
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Site Berlin, Hindenburgdamm 30, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Strasse 2, Berlin, Germany
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Site Hamburg/Lübeck/Kiel, Martinistrasse 52, Hamburg, Germany
| | - Wolfgang Poller
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Site Berlin, Hindenburgdamm 30, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Hindenburgdamm 30, Berlin, Germany
| |
Collapse
|
43
|
Erber L, Hoffmann A, Fallmann J, Hagedorn M, Hammann C, Stadler PF, Betat H, Prohaska S, Mörl M. Unusual Occurrence of Two Bona-Fide CCA-Adding Enzymes in Dictyostelium discoideum. Int J Mol Sci 2020; 21:ijms21155210. [PMID: 32717856 PMCID: PMC7432833 DOI: 10.3390/ijms21155210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/12/2023] Open
Abstract
Dictyostelium discoideum, the model organism for the evolutionary supergroup of Amoebozoa, is a social amoeba that, upon starvation, undergoes transition from a unicellular to a multicellular organism. In its genome, we identified two genes encoding for tRNA nucleotidyltransferases. Such pairs of tRNA nucleotidyltransferases usually represent collaborating partial activities catalyzing CC- and A-addition to the tRNA 3'-end, respectively. In D. discoideum, however, both enzymes exhibit identical activities, representing bona-fide CCA-adding enzymes. Detailed characterization of the corresponding activities revealed that both enzymes seem to be essential and are regulated inversely during different developmental stages of D. discoideum. Intriguingly, this is the first description of two functionally equivalent CCA-adding enzymes using the same set of tRNAs and showing a similar distribution within the cell. This situation seems to be a common feature in Dictyostelia, as other members of this phylum carry similar pairs of tRNA nucleotidyltransferase genes in their genome.
Collapse
Affiliation(s)
- Lieselotte Erber
- Institute for Biochemistry, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (H.B.)
| | - Anne Hoffmann
- Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany; (A.H.); (J.F.); (P.F.S.); (S.P.)
| | - Jörg Fallmann
- Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany; (A.H.); (J.F.); (P.F.S.); (S.P.)
| | - Monica Hagedorn
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany; (M.H.); (C.H.)
| | - Christian Hammann
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany; (M.H.); (C.H.)
| | - Peter F. Stadler
- Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany; (A.H.); (J.F.); (P.F.S.); (S.P.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, Leipzig University, 04103 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
- Facultad de Ciencias, Universidad National de Colombia, Sede Bogotá, Carrera 45 No. 26-85, Colombia
- Santa Fe Institute for Complex Systems, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
- Department of Theoretical Chemistry of the University of Vienna, A-1090 Vienna, Austria
| | - Heike Betat
- Institute for Biochemistry, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (H.B.)
| | - Sonja Prohaska
- Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany; (A.H.); (J.F.); (P.F.S.); (S.P.)
- Computational EvoDevo Group, Department of Computer Science, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (H.B.)
- Correspondence: ; Tel.: +49-341-9736-911; Fax: +49-341-9736-919
| |
Collapse
|
44
|
Slade A, Kattini R, Campbell C, Holcik M. Diseases Associated with Defects in tRNA CCA Addition. Int J Mol Sci 2020; 21:E3780. [PMID: 32471101 PMCID: PMC7312816 DOI: 10.3390/ijms21113780] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
tRNA nucleotidyl transferase 1 (TRNT1) is an essential enzyme catalyzing the addition of terminal cytosine-cytosine-adenosine (CCA) trinucleotides to all mature tRNAs, which is necessary for aminoacylation. It was recently discovered that partial loss-of-function mutations in TRNT1 are associated with various, seemingly unrelated human diseases including sideroblastic anemia with B-cell immunodeficiency, periodic fevers and developmental delay (SIFD), retinitis pigmentosa with erythrocyte microcytosis, and progressive B-cell immunodeficiency. In addition, even within the same disease, the severity and range of the symptoms vary greatly, suggesting a broad, pleiotropic impact of imparting TRNT1 function on diverse cellular systems. Here, we describe the current state of knowledge of the TRNT1 function and the phenotypes associated with mutations in TRNT1.
Collapse
Affiliation(s)
| | | | | | - Martin Holcik
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.S.); (R.K.); (C.C.)
| |
Collapse
|
45
|
Sahlu BW, Zhao S, Wang X, Umer S, Zou H, Huang J, Zhu H. Long noncoding RNAs: new insights in modulating mammalian spermatogenesis. J Anim Sci Biotechnol 2020; 11:16. [PMID: 32128162 PMCID: PMC7047388 DOI: 10.1186/s40104-019-0424-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis is a complex differentiating developmental process in which undifferentiated spermatogonial germ cells differentiate into spermatocytes, spermatids, and finally, to mature spermatozoa. This multistage developmental process of spermatogenesis involves the expression of many male germ cell-specific long noncoding RNAs (lncRNAs) and highly regulated and specific gene expression. LncRNAs are a recently discovered large class of noncoding cellular transcripts that are still relatively unexplored. Only a few of them have post-meiotic; however, lncRNAs are involved in many cellular biological processes. The expression of lncRNAs is biologically relevant in the highly dynamic and complex program of spermatogenesis and has become a research focus in recent genome studies. This review considers the important roles and novel regulatory functions whereby lncRNAs modulate mammalian spermatogenesis.
Collapse
Affiliation(s)
- Bahlibi Weldegebriall Sahlu
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China.,Tigray Agricultural Research Institute, Mekelle Agricultural Research Center, Mekelle, Ethiopia
| | - Shanjiang Zhao
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| | - Xiuge Wang
- 3Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250131 People's Republic of China
| | - Saqib Umer
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| | - Huiying Zou
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| | - Jinming Huang
- 3Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250131 People's Republic of China
| | - Huabin Zhu
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| |
Collapse
|
46
|
Czech A. Deep sequencing of tRNA's 3'-termini sheds light on CCA-tail integrity and maturation. RNA (NEW YORK, N.Y.) 2020; 26:199-208. [PMID: 31719125 PMCID: PMC6961547 DOI: 10.1261/rna.072330.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
The 3'-termini of tRNA are the point of amino acid linkage and thus crucial for their function in delivering amino acids to the ribosome and other enzymes. Therefore, to provide tRNA functionality, cells have to ensure the integrity of the 3'-terminal CCA-tail, which is generated during maturation by the 3'-trailer processing machinery and maintained by the CCA-adding enzyme. We developed a new tRNA sequencing method that is specifically tailored to assess the 3'-termini of E. coli tRNA. Intriguingly, we found a significant fraction of tRNAs with damaged CCA-tails under exponential growth conditions and, surprisingly, this fraction decreased upon transition into stationary phase. Interestingly, tRNAs bearing guanine as a discriminator base are generally unaffected by CCA-tail damage. In addition, we showed tRNA species-specific 3'-trailer processing patterns and reproduced in vitro findings on preferences of the maturation enzyme RNase T in vivo.
Collapse
Affiliation(s)
- Andreas Czech
- Institute of Biochemistry and Molecular Biology, Chemistry Department, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
47
|
Erber L, Franz P, Betat H, Prohaska S, Mörl M. Divergent Evolution of Eukaryotic CC- and A-Adding Enzymes. Int J Mol Sci 2020; 21:ijms21020462. [PMID: 31936900 PMCID: PMC7014341 DOI: 10.3390/ijms21020462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/04/2022] Open
Abstract
Synthesis of the CCA end of essential tRNAs is performed either by CCA-adding enzymes or as a collaboration between enzymes restricted to CC- and A-incorporation. While the occurrence of such tRNA nucleotidyltransferases with partial activities seemed to be restricted to Bacteria, the first example of such split CCA-adding activities was reported in Schizosaccharomyces pombe. Here, we demonstrate that the choanoflagellate Salpingoeca rosetta also carries CC- and A-adding enzymes. However, these enzymes have distinct evolutionary origins. Furthermore, the restricted activity of the eukaryotic CC-adding enzymes has evolved in a different way compared to their bacterial counterparts. Yet, the molecular basis is very similar, as highly conserved positions within a catalytically important flexible loop region are missing in the CC-adding enzymes. For both the CC-adding enzymes from S. rosetta as well as S. pombe, introduction of the loop elements from closely related enzymes with full activity was able to restore CCA-addition, corroborating the significance of this loop in the evolution of bacterial as well as eukaryotic tRNA nucleotidyltransferases. Our data demonstrate that partial CC- and A-adding activities in Bacteria and Eukaryotes are based on the same mechanistic principles but, surprisingly, originate from different evolutionary events.
Collapse
Affiliation(s)
- Lieselotte Erber
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (P.F.); (H.B.)
| | - Paul Franz
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (P.F.); (H.B.)
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (P.F.); (H.B.)
| | - Sonja Prohaska
- Computational EvoDevo Group, Department of Computer Science, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany;
- Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
- Santa Fe Institute for Complex Systems, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; (L.E.); (P.F.); (H.B.)
- Correspondence: ; Tel.: +49-341-9736-911; Fax: +49-341-9736-919
| |
Collapse
|
48
|
Pawar K, Shigematsu M, Loher P, Honda S, Rigoutsos I, Kirino Y. Exploration of CCA-added RNAs revealed the expression of mitochondrial non-coding RNAs regulated by CCA-adding enzyme. RNA Biol 2019; 16:1817-1825. [PMID: 31512554 DOI: 10.1080/15476286.2019.1664885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Post-transcriptional non-template additions of nucleotides to 3'-ends of RNAs play important roles in the stability and function of RNA molecules. Although tRNA nucleotidyltransferase (CCA-adding enzyme) is known to add CCA trinucleotides to 3'-ends of tRNAs, whether other RNA species can be endogenous substrates of CCA-adding enzyme has not been widely explored yet. Herein, we used YAMAT-seq to identify non-tRNA substrates of CCA-adding enzyme. YAMAT-seq captures RNA species that form secondary structures with 4-nt protruding 3'-ends of the sequence 5'-NCCA-3', which is the hallmark structure of RNAs that are generated by CCA-adding enzyme. By executing YAMAT-seq for human breast cancer cells and mining the sequence data, we identified novel candidate substrates of CCA-adding enzyme. These included fourteen 'CCA-RNAs' that only contain CCA as non-genomic sequences, and eleven 'NCCA-RNAs' that contain CCA and other nucleotides as non-genomic sequences. All newly-identified (N)CCA-RNAs were derived from the mitochondrial genome and were localized in mitochondria. Knockdown of CCA-adding enzyme severely reduced the expression levels of (N)CCA-RNAs, suggesting that the CCA-adding enzyme-catalyzed CCA additions stabilize the expression of (N)CCA-RNAs. Furthermore, expression levels of (N)CCA-RNAs were severely reduced by various cellular treatments, including UV irradiation, amino acid starvation, inhibition of mitochondrial respiratory complexes, and inhibition of the cell cycle. These results revealed a novel CCA-mediated regulatory pathway for the expression of mitochondrial non-coding RNAs.
Collapse
Affiliation(s)
- Kamlesh Pawar
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Phillipe Loher
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shozo Honda
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
49
|
Schaffer AE, Pinkard O, Coller JM. tRNA Metabolism and Neurodevelopmental Disorders. Annu Rev Genomics Hum Genet 2019; 20:359-387. [PMID: 31082281 DOI: 10.1146/annurev-genom-083118-015334] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
tRNAs are short noncoding RNAs required for protein translation. The human genome includes more than 600 putative tRNA genes, many of which are considered redundant. tRNA transcripts are subject to tightly controlled, multistep maturation processes that lead to the removal of flanking sequences and the addition of nontemplated nucleotides. Furthermore, tRNAs are highly structured and posttranscriptionally modified. Together, these unique features have impeded the adoption of modern genomics and transcriptomics technologies for tRNA studies. Nevertheless, it has become apparent from human neurogenetic research that many tRNA biogenesis proteins cause brain abnormalities and other neurological disorders when mutated. The cerebral cortex, cerebellum, and peripheral nervous system show defects, impairment, and degeneration upon tRNA misregulation, suggesting that they are particularly sensitive to changes in tRNA expression or function. An integrated approach to identify tRNA species and contextually characterize tRNA function will be imperative to drive future tool development and novel therapeutic design for tRNA-associated disorders.
Collapse
Affiliation(s)
- Ashleigh E Schaffer
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| | - Otis Pinkard
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| | - Jeffery M Coller
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| |
Collapse
|
50
|
Affiliation(s)
- Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|