1
|
Chopra U, Bhansali P, Gangi Setty SR, Chakravortty D. Endoplasmic reticulum facilitates the coordinated division of Salmonella-containing vacuoles. mBio 2025; 16:e0011425. [PMID: 40272166 PMCID: PMC12077215 DOI: 10.1128/mbio.00114-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Salmonella Typhimurium (STM) resides in a membrane-bound compartment called the Salmonella-containing vacuole (SCV) in several infected cell types where bacterial and SCV division occur synchronously to maintain a single bacterium per vacuole. However, the mechanism behind this synchronous fission is not well understood. Fission of intracellular organelles is known to be regulated by the dynamic tubular endoplasmic reticulum (ER). In this study, we evaluated the role of ER in controlling SCV division. Interestingly, Salmonella-infected cells show activation of the unfolded protein response (UPR) and expansion of ER tubules. Altering the expression of ER morphology regulators, such as reticulon-4a (Rtn4a) and CLIMP63, significantly impacted bacterial proliferation, suggesting a potential role of tubular ER in facilitating SCV division. Live-cell imaging revealed the marking of tubular ER at the center of 78% of SCV division sites. This study also explored the role of SteA (a known Salmonella effector in modulating membrane dynamics) in coordinating the SCV division. SteA resides on the SCV membranes and helps form membrane contact between SCV and ER. The colocalization of ER with SCV enclosing STMΔsteA was significantly reduced, compared with SCV of STM WT or STMΔsteA:steA. STMΔsteA shows profound defects in SCV division, resulting in multiple bacteria in a single vacuole with proliferation defects. In vivo, the STMΔsteA shows a defect in colonization in the spleen and liver and affects the initial survival rate of mice. Overall, this study suggests a coordinated role of bacterial effector SteA in promoting ER contact/association with SCVs and regulating SCV division.IMPORTANCEThis study highlights the essential role of the host endoplasmic reticulum in facilitating SCV division and maintaining a single bacterium per vacuole. The Salmonella effector SteA helps maintain the single bacterium per vacuole state. In the absence of SteA, Salmonella resides as multiple bacteria within a single large vacuole. The STMΔsteA shows reduced proliferation under in vitro conditions and exhibits colonization defects in vivo, highlighting the importance of this effector in Salmonella pathogenesis. These findings suggest that targeting SteA could provide a novel therapeutic approach to inhibit Salmonella pathogenicity.
Collapse
Affiliation(s)
- Umesh Chopra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Priyanka Bhansali
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| |
Collapse
|
2
|
Ding D, Guo J, Sun H, Yang J. Modulation of host Rab GTPases by Salmonella: mechanisms of immune evasion and intracellular replication. Mol Biol Rep 2025; 52:440. [PMID: 40304792 DOI: 10.1007/s11033-025-10547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Salmonella is one of the major pathogens responsible for foodborne illnesses worldwide, characterized by diverse serotypes and a broad host range. As an intracellular bacterium, Salmonella invades host cells and establishes a protected niche known as the Salmonella-containing vacuoles (SCVs), which provide a suitable environment for intracellular survival. Rab GTPases, key regulators of intracellular membrane trafficking, play a crucial role in the biogenesis and dynamics of SCVs. Through its type III secretion systems (T3SSs), Salmonella delivers a repertoire of effector proteins into host cells, which modulate the activity of Rab GTPases and alter membrane trafficking to facilitate SCVs formation and maintenance. This review summarizes recent advances in understanding how Salmonella effectors manipulate Rab GTPases to promote intracellular survival and evade host innate immune responses.
Collapse
Affiliation(s)
- Dandan Ding
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Jiayin Guo
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Hui Sun
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Jing Yang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China.
| |
Collapse
|
3
|
Bird LE, Xu B, Hobbs AD, Ziegler AR, Scott NE, Newton P, Thomas DR, Edgington-Mitchell LE, Newton HJ. Coxiella burnetii manipulates the lysosomal protease cathepsin B to facilitate intracellular success. Nat Commun 2025; 16:3844. [PMID: 40274809 PMCID: PMC12022341 DOI: 10.1038/s41467-025-59283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
The obligate intracellular bacterium Coxiella burnetii establishes an intracellular replicative niche termed the Coxiella-containing vacuole (CCV), which has been characterised as a bacterially modified phagolysosome. How C. burnetii withstands the acidic and degradative properties of this compartment is not well understood. We demonstrate that the key lysosomal protease cathepsin B is actively and selectively removed from C. burnetii-infected cells through a mechanism involving the Dot/Icm type IV-B secretion system effector CvpB. Overexpression of cathepsin B leads to defects in CCV biogenesis and bacterial replication, indicating that removal of this protein represents a strategy to reduce the hostility of the intracellular niche. In addition, we show that C. burnetii infection of mammalian cells induces the secretion of a wider cohort of lysosomal proteins, including cathepsin B, to the extracellular milieu via a mechanism dependent on retrograde traffic. This study reveals that C. burnetii is actively modulating the hydrolase cohort of its replicative niche to promote intracellular success and demonstrates that infection incites the secretory pathway to maintain lysosomal homoeostasis.
Collapse
Affiliation(s)
- Lauren E Bird
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Bangyan Xu
- Department of Biochemistry and Pharmacology at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew D Hobbs
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Alexander R Ziegler
- Department of Biochemistry and Pharmacology at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Patrice Newton
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - David R Thomas
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - Hayley J Newton
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
4
|
Zhao H, Zhang X, Zhang N, Zhu L, Lian H. The interplay between Salmonella and host: Mechanisms and strategies for bacterial survival. CELL INSIGHT 2025; 4:100237. [PMID: 40177681 PMCID: PMC11964643 DOI: 10.1016/j.cellin.2025.100237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 04/05/2025]
Abstract
Salmonella, an intracellular pathogen, infects both humans and animals, causing diverse diseases such as gastroenteritis and enteric fever. The Salmonella type III secretion system (T3SS), encoded within its pathogenicity islands (SPIs), is critical for bacterial virulence by directly delivering multiple effectors into eukaryotic host cells. Salmonella utilizes these effectors to facilitate its survival and replication within the host through modulating cytoskeletal dynamics, inflammatory responses, the biogenesis of Salmonella-containing vacuole (SCV), and host cell survival. Moreover, these effectors also interfere with immune responses via inhibiting innate immunity or antigen presentation. In this review, we summarize the current progress in the survival strategies employed by Salmonella and the molecular mechanisms underlying its interactions with the host. Understanding the interplay between Salmonella and host can enhance our knowledge of the bacterium's pathogenic processes and provide new insights into how it manipulates host cellular physiological activities to ensure its survival.
Collapse
Affiliation(s)
- Hongyu Zhao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, Hubei, China
| | - Xinyue Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, Hubei, China
| | - Ningning Zhang
- Yale Stem Cell Center, New Haven, CT, 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
- Yale Cooperative Center of Excellence in Hematology, New Haven, CT, 12208, USA
| | - Li Zhu
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Huan Lian
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, Hubei, China
| |
Collapse
|
5
|
Chakraborty S, Ganguli D, Nagaraja T, Gope A, Dey S, Pal A, Mandal RS, Das SS, Das S. Salmonella Typhi serine threonine kinase T4519 induces lysosomal membrane permeabilization by manipulating Toll-like receptor 2-Cystatin B-Cathepsin B-NF-κB-reactive oxygen species pathway and promotes survival within human macrophages. PLoS Pathog 2025; 21:e1013041. [PMID: 40168426 PMCID: PMC11984733 DOI: 10.1371/journal.ppat.1013041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/10/2025] [Accepted: 03/12/2025] [Indexed: 04/03/2025] Open
Abstract
Intracellular pathogens of Salmonella spp. survive and replicate within the phagosomes, called Salmonella-containing vacuoles (SCVs) inside macrophages by manipulating phagosomal maturation and phagolysosome formation. While controversies exist about the phagosomal traffic of Salmonella Typhimurium, little studies were carried out with the intracellular survival mechanisms of Salmonella Typhi (S. Typhi). We had previously reported that a eukaryote-like serine/threonine kinase of S. Typhi (T4519) contributes to survival within macrophages and activates host pro-inflammatory signaling pathways regulated by NF-κB. However, neither the mechanisms underlying NF-κB activation nor how it contributes to intracellular survival of S. Typhi were studied. Here we show, by using antibody-mediated blocking and gene knockdown studies that T4519 activates Toll-like receptor 2 (TLR2) signals in the human monocyte-derived macrophages. We computationally predicted the NH2-terminal glycine rich repeat domain of T4519 as the TLR2-binding moiety and confirmed the interaction by co-immunoprecipitation experiment. TLR2-T4519 interaction transcriptionally repressed cystatin B, a cathepsin B inhibitor, leading to the activation of cytosolic cathepsin B, leaked from the lysosomes of the infected cells. Through a series of RT-qPCR, western blotting, gene knockdown, flow cytometry and confocal microscopy experiments, we have shown that active cytosolic cathepsin B cleaves IKB-α, resulting in nuclear translocation of NF-κB and transactivation of its target genes, including reactive oxygen species (ROS), which in turn induces lysosomal membrane permeabilization (LMP). TLR2-dependent targeting of the cystatin B-cathepsin B-NF-κB-ROS pathways by T4519, leading to LMP promotes phagosomal survival of S. Typhi. This study describes a unique mechanism of the exploitation of host NF-κB signaling pathways by bacterial pathogens to promote its own persistence within macrophage cells.
Collapse
Affiliation(s)
- Swarnali Chakraborty
- Department of Clinical Medicine, ICMR - National Institute for Research in Bacterial Infections, Kolkata, West Bengal, India
| | - Debayan Ganguli
- Division of Infectious Diseases, Washington school of medicine, St. Louis, Missouri, United States of America
| | - Theeya Nagaraja
- Biocon Biologics Limited- R&D centre, Chennai, Tamil Nadu, India
| | - Animesh Gope
- Department of Clinical Medicine, ICMR - National Institute for Research in Bacterial Infections, Kolkata, West Bengal, India
| | - Sudip Dey
- Department of Clinical Medicine, ICMR - National Institute for Research in Bacterial Infections, Kolkata, West Bengal, India
| | - Ananda Pal
- Department of Clinical Medicine, ICMR - National Institute for Research in Bacterial Infections, Kolkata, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| | - Rahul Shubhra Mandal
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sudipta Sekhar Das
- Department of Cancer, Apollo Multispeciality Hospitals Limited, Kolkata, West Bengal, India
| | - Santasabuj Das
- Department of Clinical Medicine, ICMR - National Institute for Research in Bacterial Infections, Kolkata, West Bengal, India
- ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
| |
Collapse
|
6
|
Neupane R, Malla S, Karthikeyan C, Asbhy CR, Boddu SHS, Jayachandra Babu R, Tiwari AK. Endocytic highways: Navigating macropinocytosis and other endocytic routes for precision drug delivery. Int J Pharm 2025; 673:125356. [PMID: 39956408 DOI: 10.1016/j.ijpharm.2025.125356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/22/2024] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Drug molecules can reach intracellular targets by different mechanisms, such as passive diffusion, active transport, and endocytosis. Endocytosis is the process by which cells engulf extracellular material by forming a vesicle and transporting it into the cells. In addition to its biological functions, endocytosis plays a vital role in the internalization of the therapeutic molecules. Clathrin-mediated endocytosis, caveolar endocytosis, and macropinocytosis are the most researched routes in the field of drug delivery. In addition to conventional small therapeutic molecules, the use of nanoformulations and large molecules, such as nucleic acids, peptides, and antibodies, have broadened the field of drug delivery. Although the majority of small therapeutic molecules can enter cells via passive diffusion, large molecules, and advanced targeted delivery systems, such as nanoparticles, are internalized by the endocytic route. Therefore, it is imperative to understand the characteristics of the endocytic routes in greater detail to design therapeutic molecules or formulations for successful delivery to the intracellular targets. This review highlights the prospects and limitations of the major endocytic routes for drug delivery, with a major emphasis on macropinocytosis. Since macropinocytosis is a non-selective uptake of extracellular matrix, the selective induction of macropinocytosis, using compounds that induce macropinocytosis and modulate macropinosome trafficking pathways, could be a potential approach for the intracellular delivery of diverse therapeutic modalities. Furthermore, we have summarized the characteristics associated with the formulations or drug carriers that can affect the endocytic routes for cellular internalization. The techniques that are used to study the intracellular uptake processes of therapeutic molecules are briefly discussed. Finally, the major limitations for intracellular targeting, endo-lysosomal degradation, and different approaches that have been used in overcoming these limitations, are highlighted in this review.
Collapse
Affiliation(s)
- Rabin Neupane
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH 43614, USA
| | - Saloni Malla
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH 43614, USA
| | - Chandrabose Karthikeyan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484887, India
| | - Charles R Asbhy
- Department of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, St. John's University, Queens, NY 10049, USA
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, AL 36849, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH 43614, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
7
|
Roy Chowdhury A, Hajra D, Mukherjee D, Nair AV, Chakravortty D. Functional OmpA of Salmonella Typhimurium Provides Protection From Lysosomal Degradation and Inhibits Autophagic Processes in Macrophages. J Infect Dis 2025; 231:716-728. [PMID: 39078938 DOI: 10.1093/infdis/jiae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/24/2024] [Indexed: 03/18/2025] Open
Abstract
Our previous study showed that OmpA-deficient Salmonella Typhimurium failed to retain LAMP-1 around the Salmonella-containing vacuoles (SCV), and escaped in to the host cell cytosol. Here we show that the cytosolic population of S. Typhimurium ΔompA sequestered autophagic markers, syntaxin17 and LC3B, in a sseL-dependent manner and initiated lysosomal fusion. Moreover, inhibition of autophagy using bafilomycinA1 restored its intracellular proliferation. Ectopic overexpression of OmpA in S. Typhimurium ΔsifA restored its vacuolar niche and increased its interaction with LAMP-1, suggesting a sifA-independent role of OmpA in maintaining an intact SCV. Mutations in the OmpA extracellular loops impaired the LAMP-1 recruitment to SCV and caused bacterial release into the cytosol of macrophages, but unlike S. Typhimurium ΔompA, they retained their outer membrane stability and did not activate the lysosomal degradation pathway, aiding in their intramacrophage survival. Finally, OmpA extracellular loop mutations protected cytosolic S. Typhimurium ΔsifA from lysosomal surveillance, revealing a unique OmpA-dependent strategy of S. Typhimurium for its intracellular survival.
Collapse
Affiliation(s)
- Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipasree Hajra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Debapriya Mukherjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| |
Collapse
|
8
|
Worley MJ. Salmonella Type III Secretion System Effectors. Int J Mol Sci 2025; 26:2611. [PMID: 40141253 PMCID: PMC11942329 DOI: 10.3390/ijms26062611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Salmonella is estimated to infect between 200 million and over 1 billion people per year. The exact number is not known, as many cases go unreported. Integral to the pathogenesis of Salmonella, as well as numerous other Gram-negative pathogens, is its type III effectors. Salmonella possesses two distinct type III secretion systems, encoded by Salmonella pathogenicity island-1 and Salmonella pathogenicity island-2. Together, they secrete at least 49 type III effectors into host cells that are collectively responsible for many of the virulence attributes of this pathogen. These virulence factors facilitate the invasion of host cells, induce and attenuate inflammation, and change the migratory properties of infected phagocytes, among other things. The effects of all type III effectors on Salmonella virulence are discussed.
Collapse
Affiliation(s)
- Micah J Worley
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
9
|
Lu J, Wu H, Wu S, Wang S, Fan H, Ruan H, Qiao J, Caiyin Q, Wen M. Salmonella: Infection mechanism and control strategies. Microbiol Res 2025; 292:128013. [PMID: 39675139 DOI: 10.1016/j.micres.2024.128013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Salmonella is a foodborne pathogen that predominantly resides in the intestinal tract of humans and animals. Infections caused by Salmonella can lead to various illnesses, including gastroenteritis, bacteremia, septicemia, and focal infections, with severe cases potentially resulting in host mortality. The mechanisms by which Salmonella invades host cells and disseminates throughout the body are partly understood, but there are still many scientific questions to be solved. This review aims to synthesize existing research on the interactions between Salmonella and hosts, detailing a comprehensive infection mechanism from adhesion and invasion to intracellular propagation and systemic spread. Overuse of antibiotics contributes to the emergence of drug-resistant Salmonella strains. An in-depth analysis of the mechanism of Salmonella infection will provide a theoretical basis for the development of novel Salmonella control strategies. These innovative control strategies include antibiotic adjuvants, small molecules, phages, attenuated vaccines, and probiotic therapies, which show huge potential in controlling Salmonella infection.
Collapse
Affiliation(s)
- Juane Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Wu
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China; School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Shengli Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Hongfei Fan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300072, China
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| | - Mingzhang Wen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
10
|
Raj D, Nair AV, Singh A, Basu S, Sarkar K, Sharma J, Sharma S, Sharma S, Rathore M, Singh S, Prakash S, Simran, Sahu S, Kaushik AC, Siddiqi MI, Ghoshal UC, Chandra T, Bhosale V, Dasgupta A, Gupta SK, Verma S, Guha R, Chakravortty D, Ammanathan V, Lahiri A. Salmonella Typhimurium effector SseI regulates host peroxisomal dynamics to acquire lysosomal cholesterol. EMBO Rep 2025; 26:656-689. [PMID: 39695325 PMCID: PMC11811301 DOI: 10.1038/s44319-024-00328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 12/20/2024] Open
Abstract
Salmonella enterica serotype Typhimurium (Salmonella) resides and multiplies intracellularly in cholesterol-rich compartments called Salmonella-containing vacuoles (SCVs) with actin-rich tubular extensions known as Salmonella-induced filaments (SIFs). SCV maturation depends on host-derived cholesterol, but the transport mechanism of low-density lipoprotein (LDL)-derived cholesterol to SCVs remains unclear. Here we find that peroxisomes are recruited to SCVs and function as pro-bacterial organelle. The Salmonella effector protein SseI is required for the interaction between peroxisomes and the SCV. SseI contains a variant of the PTS1 peroxisome-targeting sequence, GKM, localizes to the peroxisomes and activates the host Ras GTPase, ADP-ribosylation factor-1 (ARF-1). Activation of ARF-1 leads to the recruitment of phosphatidylinsolitol-5-phosphate-4 kinase and the generation of phosphatidylinsolitol-4-5-bisphosphate on peroxisomes. This enhances the interaction of peroxisomes with lysosomes and allows for the transfer of lysosomal cholesterol to SCVs using peroxisomes as a bridge. Salmonella infection of peroxisome-depleted cells leads to the depletion of cholesterol on the SCVs, resulting in reduced SIF formation and bacterial proliferation. Taken together, our work identified peroxisomes as a target of Salmonella secretory effectors, and as conveyance of host cholesterol to enhance SCV stability, SIF integrity, and intracellular bacterial growth.
Collapse
Affiliation(s)
- Desh Raj
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Anmol Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Swarnali Basu
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Kabita Sarkar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Jyotsna Sharma
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shiva Sharma
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanmi Sharma
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Manisha Rathore
- Laboratory Animal Facility Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shriya Singh
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shakti Prakash
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Simran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Neuroscience & Ageing Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shikha Sahu
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medicine, Lucknow, India
| | - Aman Chandra Kaushik
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medicine, Lucknow, India
| | - Tulika Chandra
- Department of Transfusion Medicine, King Georges' Medical University, Lucknow, India
| | - Vivek Bhosale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Arunava Dasgupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shashi Kumar Gupta
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sonia Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Neuroscience & Ageing Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rajdeep Guha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Laboratory Animal Facility Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.
| | - Veena Ammanathan
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.
| | - Amit Lahiri
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
11
|
Torsilieri HM, Upchurch CM, Leitinger N, Casanova JE. Salmonella-induced cholesterol accumulation in infected macrophages suppresses autophagy via mTORC1 activation. Mol Biol Cell 2025; 36:ar3. [PMID: 39602284 PMCID: PMC11742112 DOI: 10.1091/mbc.e24-06-0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Salmonella enterica serovar Typhimurium is a Gram-negative bacillus that infects the host intestinal epithelium and resident macrophages. Many intracellular pathogens induce an autophagic response in host cells but have evolved mechanisms to subvert that response. Autophagy is closely linked to cellular cholesterol levels; mTORC1 senses increased cholesterol in lysosomal membranes, leading to its hyperactivity and suppression of autophagy. Previous studies indicate that Salmonella infection induces dramatic accumulation of cholesterol in macrophages, a fraction of which localizes to Salmonella containing vacuoles (SCVs). We previously reported that the bacterial effector protein SseJ triggers cholesterol accumulation through a signaling cascade involving focal adhesion kinase (FAK) and Akt. Here we show that mTORC1 is recruited to SCVs and is hyperactivated in a cholesterol-dependent manner. If cholesterol accumulation is prevented pharmacologically or through mutation of sseJ, autophagy is induced and bacterial survival is attenuated. Notably, the host lipid transfer protein OSBP (oxysterol binding protein 1) is also recruited to SCVs and its activity is necessary for both cholesterol transfer to SCVs and mTORC1 activation during infection. Finally, lipidomic analysis of Salmonella-infected macrophages revealed new insights into how Salmonella may manipulate lipid homeostasis to benefit its survival. We propose that S. Typhimurium induces cholesterol accumulation through SseJ to activate mTORC1, preventing autophagic clearance of bacteria.
Collapse
Affiliation(s)
- Holly M. Torsilieri
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Clint M. Upchurch
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - James E. Casanova
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903
| |
Collapse
|
12
|
Liu X, Wang C, Gai W, Sun Z, Fang L, Hua Z. Critical role of msgA in invasive capacity and intracellular survivability of Salmonella. Appl Environ Microbiol 2024; 90:e0020124. [PMID: 39136487 PMCID: PMC11409701 DOI: 10.1128/aem.00201-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/04/2024] [Indexed: 09/19/2024] Open
Abstract
Salmonella enterica serovar Typhimurium, which is a common foodborne pathogen, causes both intestinal and systemic infections in hosts. Salmonella has a complex pathogenic mechanism that involves invasive capacity and intracellular survivability, which hampers research on virulence of Salmonella. The virulence of Salmonella is primarily studied through Salmonella pathogenicity islands (SPIs). However, there are also genes outside these SPIs that significantly impact virulence. Macrophage survival gene msgA is positioned at a region independent of the SPIs and conserved in Salmonella. However, there has been limited research on msgA to date. This study aims to investigate the virulent function of msgA to deepen our understanding of Salmonella virulence. Proteomic and RT-qPCR analyses reveal that MsgA influences multiple metabolic pathways and the expression of SPIs. The depletion of msgA led to the significantly reduced invasive capacity and intracellular survivability, and thus the decreased virulence of Salmonella. In conclusion, our study suggests that MsgA is an important regulator that mainly regulates virulence. Further research into the function of MsgA will enhance the understanding of Salmonella pathogenesis and promote the application of Salmonella for medical treatment. IMPORTANCE Salmonella enterica serovar Typhimurium is a common foodborne pathogen, it has a complex pathogenic mechanism that involves invasive capacity and intracellular survivability. The virulence of Salmonella is primarily studied through its pathogenicity islands. In contrast, virulence genes located outside the Salmonella pathogenicity islands (SPIs) have received less attention. Macrophage survival gene (MsgA) is positioned at a region independent of the SPIs and conserved in Salmonella. Our research indicates that MsgA is a novel global regulator influencing the metabolic pathways and SPIs. Further research into the function of MsgA will enhance the understanding of Salmonella pathogenesis and promote the application of Salmonella for medical treatment.
Collapse
Affiliation(s)
- Xinqi Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chengzhi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Wenhua Gai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhaotong Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lei Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Zichun Hua
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc, Changzhou, China
| |
Collapse
|
13
|
Bhat M, Nambiar A, Edakkandiyil L, Abraham IM, Sen R, Negi M, Manjithaya R. A genetically-encoded fluorescence-based reporter to spatiotemporally investigate mannose-6-phosphate pathway. Mol Biol Cell 2024; 35:mr6. [PMID: 38888935 PMCID: PMC11321044 DOI: 10.1091/mbc.e23-09-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Maintenance of a pool of active lysosomes with acidic pH and degradative hydrolases is crucial for cell health. Abnormalities in lysosomal function are closely linked to diseases, such as lysosomal storage disorders, neurodegeneration, intracellular infections, and cancer among others. Emerging body of research suggests the malfunction of lysosomal hydrolase trafficking pathway to be a common denominator of several disease pathologies. However, available conventional tools to assess lysosomal hydrolase trafficking are insufficient and fail to provide a comprehensive picture about the trafficking flux and location of lysosomal hydrolases. To address some of the shortcomings, we designed a genetically-encoded fluorescent reporter containing a lysosomal hydrolase tandemly tagged with pH sensitive and insensitive fluorescent proteins, which can spatiotemporally trace the trafficking of lysosomal hydrolases. As a proof of principle, we demonstrate that the reporter can detect perturbations in hydrolase trafficking, that are induced by pharmacological manipulations and pathophysiological conditions like intracellular protein aggregates. This reporter can effectively serve as a probe for mapping the mechanistic intricacies of hydrolase trafficking pathway in health and disease and is a utilitarian tool to identify genetic and pharmacological modulators of this pathway, with potential therapeutic implications.
Collapse
Affiliation(s)
- Mallika Bhat
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Akshaya Nambiar
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | | | - Irine Maria Abraham
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Ritoprova Sen
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Mamta Negi
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
- Professor and chair, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| |
Collapse
|
14
|
Lee YT, Senturk M, Guan Y, Wang MC. Bacteria-organelle communication in physiology and disease. J Cell Biol 2024; 223:e202310134. [PMID: 38748249 PMCID: PMC11096858 DOI: 10.1083/jcb.202310134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/03/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Bacteria, omnipresent in our environment and coexisting within our body, exert dual beneficial and pathogenic influences. These microorganisms engage in intricate interactions with the human body, impacting both human health and disease. Simultaneously, certain organelles within our cells share an evolutionary relationship with bacteria, particularly mitochondria, best known for their energy production role and their dynamic interaction with each other and other organelles. In recent years, communication between bacteria and mitochondria has emerged as a new mechanism for regulating the host's physiology and pathology. In this review, we delve into the dynamic communications between bacteria and host mitochondria, shedding light on their collaborative regulation of host immune response, metabolism, aging, and longevity. Additionally, we discuss bacterial interactions with other organelles, including chloroplasts, lysosomes, and the endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Yi-Tang Lee
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Integrative Program of Molecular and Biochemical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Mumine Senturk
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Youchen Guan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Meng C. Wang
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
15
|
Salehinia N, Mohammad Al-Mosawi AK, Al-Moussawi DK, Sadeghi ES, Zamani A, Mahdevar M. Identification of genes related to ribosomal proteins in colorectal cancer: exploring their potential as biomarkers, prognostic indicators, and therapeutic targets. Mol Biol Rep 2024; 51:576. [PMID: 38664314 DOI: 10.1007/s11033-024-09522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/03/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) ranks as the third most commonly diagnosed cancer in both females and males, underscoring the need for the identification of effective biomarkers. METHODS AND RESULTS We assessed the expression levels of ribosomal proteins (RPs) at both mRNA and protein levels. Subsequently, leveraging the STRING database, we constructed a protein-protein interaction network and identified hub genes. The co-expression network of differentially expressed genes associated with CRC and their target hub RPs was constructed using the weighted gene co-expression network analysis algorithm. Gene ontology and molecular signatures database were conducted to gain insights into the biological roles of genes associated with the identified module. To confirm the results, the expression level of the candidate genes in the CRC samples compared to the adjacent healthy was evaluated by the RT-qPCR method. Our findings indicated that the genes related to RPs were predominantly enriched in biological processes associated with Myc Targets, Oxidative Phosphorylation, and cell proliferation. Also, results demonstrated that elevated levels of GRWD1, MCM5, IMP4, and RABEPK that related to RPs were associated with poor prognostic outcomes for CRC patients. Notably, IMP4 and RABEPK exhibited higher diagnostic value. Moreover, the expression of IMP4 and RABEPK showed a significant association with drug resistance using cancer cell line encyclopedia and genomics of drug sensitivity in cancer databases. Also, the results showed that the expression level of IMP4 and RABEPK in cancerous samples was significantly higher compared to the adjacent healthy ones. CONCLUSION The general results of this study have shown that many genes related to RPs are increased in cancer and could be associated with the death rate of patients. We also highlighted the therapeutic and prognostic potentials of RPs genes in CRC.
Collapse
Affiliation(s)
- Negin Salehinia
- Department of Biology, Islamic Azad University, Qaemshahr, Iran
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran
| | - Aseel Kamil Mohammad Al-Mosawi
- Department of biology, College of Sciences, University of Thi Qar, Nasiriyah, Iraq
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran
| | - Duaa Kamel Al-Moussawi
- General Directorate of Education in Thi-Qar, Ministry of Education, Al-Nasiriya City, Iraq
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran
| | | | - Atefeh Zamani
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran.
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohammad Mahdevar
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran.
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
16
|
Singh MK, Kenney LJ. Visualizing the invisible: novel approaches to visualizing bacterial proteins and host-pathogen interactions. Front Bioeng Biotechnol 2024; 12:1334503. [PMID: 38415188 PMCID: PMC10898356 DOI: 10.3389/fbioe.2024.1334503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
Host-pathogen interactions play a critical role in infectious diseases, and understanding the underlying mechanisms is vital for developing effective therapeutic strategies. The visualization and characterization of bacterial proteins within host cells is key to unraveling the dynamics of these interactions. Various protein labeling strategies have emerged as powerful tools for studying host-pathogen interactions, enabling the tracking, localization, and functional analysis of bacterial proteins in real-time. However, the labeling and localization of Salmonella secreted type III secretion system (T3SS) effectors in host cells poses technical challenges. Conventional methods disrupt effector stoichiometry and often result in non-specific staining. Bulky fluorescent protein fusions interfere with effector secretion, while other tagging systems such as 4Cys-FLaSH/Split-GFP suffer from low labeling specificity and a poor signal-to-noise ratio. Recent advances in state-of-the-art techniques have augmented the existing toolkit for monitoring the translocation and dynamics of bacterial effectors. This comprehensive review delves into the bacterial protein labeling strategies and their application in imaging host-pathogen interactions. Lastly, we explore the obstacles faced and potential pathways forward in the realm of protein labeling strategies for visualizing interactions between hosts and pathogens.
Collapse
Affiliation(s)
- Moirangthem Kiran Singh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Linda J. Kenney
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
17
|
Zhang Y, Xu M, Guo Y, Chen L, Vongsangnak W, Xu Q, Lu L. Programmed cell death and Salmonella pathogenesis: an interactive overview. Front Microbiol 2024; 14:1333500. [PMID: 38249488 PMCID: PMC10797706 DOI: 10.3389/fmicb.2023.1333500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Programmed cell death (PCD) is the collective term for the intrinsically regulated death of cells. Various types of cell death are triggered by their own programmed regulation during the growth and development of organisms, as well as in response to environmental and disease stresses. PCD encompasses apoptosis, pyroptosis, necroptosis, autophagy, and other forms. PCD plays a crucial role not only in the growth and development of organisms but also in serving as a component of the host innate immune defense and as a bacterial virulence strategy employed by pathogens during invasion. The zoonotic pathogen Salmonella has the ability to modulate multiple forms of PCD, including apoptosis, pyroptosis, necroptosis, and autophagy, within the host organism. This modulation subsequently impacts the bacterial infection process. This review aims to consolidate recent findings regarding the mechanisms by which Salmonella initiates and controls cell death signaling, the ways in which various forms of cell death can impede or restrict bacterial proliferation, and the interplay between cell death and innate immune pathways that can counteract Salmonella-induced suppression of host cell death. Ultimately, these insights may contribute novel perspectives for the diagnosis and treatment of clinical Salmonella-related diseases.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Maodou Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yujiao Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Qi Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Yang W, Feng Y, Yan J, Kang C, Yao T, Sun H, Cheng Z. Phosphate (Pi) Transporter PIT1 Induces Pi Starvation in Salmonella-Containing Vacuole in HeLa Cells. Int J Mol Sci 2023; 24:17216. [PMID: 38139044 PMCID: PMC10743064 DOI: 10.3390/ijms242417216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium), an important foodborne pathogen, causes diarrheal illness and gastrointestinal diseases. S. Typhimurium survives and replicates in phagocytic and non-phagocytic cells for acute or chronic infections. In these cells, S. Typhimurium resides within Salmonella-containing vacuoles (SCVs), in which the phosphate (Pi) concentration is low. S. Typhimurium senses low Pi and expresses virulence factors to modify host cells. However, the mechanism by which host cells reduce the Pi concentration in SCVs is not clear. In this study, we show that through the TLR4-MyD88-NF-κB signaling pathway, S. Typhimurium upregulates PIT1, which in turn transports Pi from SCVs into the cytosol and results in Pi starvation in SCVs. Immunofluorescence and western blotting analysis reveal that after the internalization of S. Typhimurium, PIT1 is located on SCV membranes. Silencing or overexpressing PIT1 inhibits or promotes Pi starvation, Salmonella pathogenicity island-2 (SPI-2) gene expression, and replication in SCVs. The S. Typhimurium ΔmsbB mutant or silenced TLR4-MyD88-NF-κB pathway suppresses the expression of the SPI-2 genes and promotes the fusion of SCVs with lysosomes. Our results illustrate that S. Typhimurium exploits the host innate immune responses as signals to promote intracellular replication, and they provide new insights for the development of broad-spectrum therapeutics to combat bacterial infections.
Collapse
Affiliation(s)
- Wen Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (W.Y.); (Y.F.); (J.Y.); (C.K.); (T.Y.); (H.S.)
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin 300457, China
| | - Yingxing Feng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (W.Y.); (Y.F.); (J.Y.); (C.K.); (T.Y.); (H.S.)
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jun Yan
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (W.Y.); (Y.F.); (J.Y.); (C.K.); (T.Y.); (H.S.)
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin 300457, China
| | - Chenbo Kang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (W.Y.); (Y.F.); (J.Y.); (C.K.); (T.Y.); (H.S.)
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin 300457, China
| | - Ting Yao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (W.Y.); (Y.F.); (J.Y.); (C.K.); (T.Y.); (H.S.)
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin 300457, China
| | - Hongmin Sun
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (W.Y.); (Y.F.); (J.Y.); (C.K.); (T.Y.); (H.S.)
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin 300457, China
| | - Zhihui Cheng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (W.Y.); (Y.F.); (J.Y.); (C.K.); (T.Y.); (H.S.)
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Teixeira SC, Teixeira TL, Tavares PCB, Alves RN, da Silva AA, Borges BC, Martins FA, Dos Santos MA, de Castilhos P, E Silva Brígido RT, Notário AFO, Silveira ACA, da Silva CV. Subversion strategies of lysosomal killing by intracellular pathogens. Microbiol Res 2023; 277:127503. [PMID: 37748260 DOI: 10.1016/j.micres.2023.127503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
Many pathogenic organisms need to reach either an intracellular compartment or the cytoplasm of a target cell for their survival, replication or immune system evasion. Intracellular pathogens frequently penetrate into the cell through the endocytic and phagocytic pathways (clathrin-mediated endocytosis, phagocytosis and macropinocytosis) that culminates in fusion with lysosomes. However, several mechanisms are triggered by pathogenic microorganisms - protozoan, bacteria, virus and fungus - to avoid destruction by lysosome fusion, such as rupture of the phagosome and thereby release into the cytoplasm, avoidance of autophagy, delaying in both phagolysosome biogenesis and phagosomal maturation and survival/replication inside the phagolysosome. Here we reviewed the main data dealing with phagosome maturation and evasion from lysosomal killing by different bacteria, protozoa, fungi and virus.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Thaise Lara Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | - Aline Alves da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Bruna Cristina Borges
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Flávia Alves Martins
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marlus Alves Dos Santos
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Patrícia de Castilhos
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | | | - Claudio Vieira da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
20
|
Shaji S, Selvaraj RK, Shanmugasundaram R. Salmonella Infection in Poultry: A Review on the Pathogen and Control Strategies. Microorganisms 2023; 11:2814. [PMID: 38004824 PMCID: PMC10672927 DOI: 10.3390/microorganisms11112814] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Salmonella is the leading cause of food-borne zoonotic disease worldwide. Non-typhoidal Salmonella serotypes are the primary etiological agents associated with salmonellosis in poultry. Contaminated poultry eggs and meat products are the major sources of human Salmonella infection. Horizontal and vertical transmission are the primary routes of infection in chickens. The principal virulence genes linked to Salmonella pathogenesis in poultry are located in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2). Cell-mediated and humoral immune responses are involved in the defense against Salmonella invasion in poultry. Vaccination of chickens and supplementation of feed additives like prebiotics, probiotics, postbiotics, synbiotics, and bacteriophages are currently being used to mitigate the Salmonella load in poultry. Despite the existence of various control measures, there is still a need for a broad, safe, and well-defined strategy that can confer long-term protection from Salmonella in poultry flocks. This review examines the current knowledge on the etiology, transmission, cell wall structure, nomenclature, pathogenesis, immune response, and efficacy of preventative approaches to Salmonella.
Collapse
Affiliation(s)
- Syamily Shaji
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA; (S.S.); (R.K.S.)
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA; (S.S.); (R.K.S.)
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, Athens, GA 30605, USA
| |
Collapse
|
21
|
ElGhazaly M, Collins MO, Ibler AEM, Humphreys D. Typhoid toxin hijacks Wnt5a to establish host senescence and Salmonella infection. Cell Rep 2023; 42:113181. [PMID: 37792529 DOI: 10.1016/j.celrep.2023.113181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/15/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023] Open
Abstract
Damage to our genome causes acute senescence in mammalian cells, which undergo growth arrest and release a senescence-associated secretory phenotype (SASP) that propagates the stress response to bystander cells. Thus, acute senescence is a powerful tumor suppressor. Salmonella enterica hijacks senescence through its typhoid toxin, which usurps unidentified factors in the stress secretome of senescent cells to mediate intracellular infections. Here, transcriptomics of toxin-induced senescent cells (TxSCs) and proteomics of their secretome identify the factors as Wnt5a, INHBA, and GDF15. Wnt5a establishes a positive feedback loop, driving INHBA and GDF15 expression. In fibroblasts, Wnt5a and INHBA mediate autocrine senescence in TxSCs and paracrine senescence in naive cells. Wnt5a synergizes with GDF15 to increase Salmonella invasion. Intestinal TxSCs undergo apoptosis without Wnt5a, which is required for establishing intestinal TxSCs. The study reveals how an innate defense against cancer is co-opted by a bacterial pathogen to cause widespread damage and mediate infections.
Collapse
Affiliation(s)
- Mohamed ElGhazaly
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Mark O Collins
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Angela E M Ibler
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Daniel Humphreys
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK.
| |
Collapse
|
22
|
Li W, Ren Q, Ni T, Zhao Y, Sang Z, Luo R, Li Z, Li S. Strategies adopted by Salmonella to survive in host: a review. Arch Microbiol 2023; 205:362. [PMID: 37904066 DOI: 10.1007/s00203-023-03702-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Salmonella, a Gram-negative bacterium that infects humans and animals, causes diseases ranging from gastroenteritis to severe systemic infections. Here, we discuss various strategies used by Salmonella against host cell defenses. Epithelial cell invasion largely depends on a Salmonella pathogenicity island (SPI)-1-encoded type 3 secretion system, a molecular syringe for injecting effector proteins directly into host cells. The internalization of Salmonella into macrophages is primarily driven by phagocytosis. After entering the host cell cytoplasm, Salmonella releases many effectors to achieve intracellular survival and replication using several secretion systems, primarily an SPI-2-encoded type 3 secretion system. Salmonella-containing vacuoles protect Salmonella from contacting bactericidal substances in epithelial cells and macrophages. Salmonella modulates the immunity, metabolism, cell cycle, and viability of host cells to expand its survival in the host, and the intracellular environment of Salmonella-infected cells promotes its virulence. This review provides insights into how Salmonella subverts host cell defenses for survival.
Collapse
Affiliation(s)
- Wanwu Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Qili Ren
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Ting Ni
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yifei Zhao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Zichun Sang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Renli Luo
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Zhongjie Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.
| | - Sanqiang Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
23
|
Thurston TLM, Holden DW. The Salmonella Typhi SPI-2 injectisome enigma. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001405. [PMID: 37862087 PMCID: PMC10634361 DOI: 10.1099/mic.0.001405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
The Salmonella pathogenicity island 2 (SPI-2)-encoded type III secretion system (injectisome) is assembled following uptake of bacteria into vacuoles in mammalian cells. The injectisome translocates virulence proteins (effectors) into infected cells. Numerous studies have established the requirement for a functional SPI-2 injectisome for growth of Salmonella Typhimurium in mouse macrophages, but the results of similar studies involving Salmonella Typhi and human-derived macrophages are not consistent. It is important to clarify the functions of the S. Typhi SPI-2 injectisome, not least because an inactivated SPI-2 injectisome forms the basis for live attenuated S. Typhi vaccines that have undergone extensive trials in humans. Intracellular expression of injectisome genes and effector delivery take longer in the S. Typhi/human macrophage model than for S. Typhimurium and we propose that this could explain the conflicting results. Furthermore, strains of both S. Typhimurium and S. Typhi contain intact genes for several 'core' effectors. In S. Typhimurium these cooperate to regulate the vacuole membrane and contribute to intracellular bacterial replication; similar functions are therefore likely in S. Typhi.
Collapse
Affiliation(s)
- Teresa L. M. Thurston
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - David W. Holden
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
24
|
Chandrasekhar H, Mohapatra G, Kajal K, Singh M, Walia K, Rana S, Kaur N, Sharma S, Tuli A, Das P, Srikanth CV. SifA SUMOylation governs Salmonella Typhimurium intracellular survival via modulation of lysosomal function. PLoS Pathog 2023; 19:e1011686. [PMID: 37773952 PMCID: PMC10566704 DOI: 10.1371/journal.ppat.1011686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/11/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023] Open
Abstract
One of the mechanisms shaping the pathophysiology during the infection of enteric pathogen Salmonella Typhimurium is host PTM machinery utilization by the pathogen encoded effectors. Salmonella Typhimurium (S. Tm) during infection in host cells thrives in a vacuolated compartment, Salmonella containing vacuole (SCV), which sequentially acquires host endosomal and lysosomal markers. Long tubular structures, called as Salmonella induced filaments (SIFs), are further generated by S. Tm, which are known to be required for SCV's nutrient acquisition, membrane maintenance and stability. A tightly coordinated interaction involving prominent effector SifA and various host adapters PLEKHM1, PLEKHM2 and Rab GTPases govern SCV integrity and SIF formation. Here, we report for the first time that the functional regulation of SifA is modulated by PTM SUMOylation at its 11th lysine. S. Tm expressing SUMOylation deficient lysine 11 mutants of SifA (SifAK11R) is defective in intracellular proliferation due to compromised SIF formation and enhanced lysosomal acidification. Furthermore, murine competitive index experiments reveal defective in vivo proliferation and weakened virulence of SifAK11R mutant. Concisely, our data reveal that SifAK11R mutant nearly behaves like a SifA knockout strain which impacts Rab9-MPR mediated lysosomal acidification pathway, the outcome of which culminates in reduced bacterial load in in vitro and in vivo infection model systems. Our results bring forth a novel pathogen-host crosstalk mechanism where the SUMOylation of effector SifA regulated S. Tm intracellular survival.
Collapse
Affiliation(s)
| | - Gayatree Mohapatra
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Kirti Kajal
- Regional Centre for Biotechnology, Faridabad, India
| | - Mukesh Singh
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Kshitiz Walia
- Institute of Microbial Technology, Chandigarh, India
| | - Sarika Rana
- Laboratory of Immunobiology, Universite´ Libre de Bruxelles, Gosselies, Belgium
| | - Navneet Kaur
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America
| | | | - Amit Tuli
- Institute of Microbial Technology, Chandigarh, India
| | - Prasenjit Das
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | | |
Collapse
|
25
|
Hamblin M, Schade R, Narasimhan R, Monack DM. Salmonella enterica serovar Typhi uses two type 3 secretion systems to replicate in human macrophages and colonize humanized mice. mBio 2023; 14:e0113723. [PMID: 37341487 PMCID: PMC10470537 DOI: 10.1128/mbio.01137-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/22/2023] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) is a human-restricted pathogen that replicates in macrophages. In this study, we investigated the roles of the S. Typhi type 3 secretion systems (T3SSs) encoded on Salmonella pathogenicity islands (SPI)-1 (T3SS-1) and SPI-2 (T3SS-2) during human macrophage infection. We found that mutants of S. Typhi deficient for both T3SSs were defective for intramacrophage replication as measured by flow cytometry, viable bacterial counts, and live time-lapse microscopy. T3SS-secreted proteins PipB2 and SifA contributed to S. Typhi replication and were translocated into the cytosol of human macrophages through both T3SS-1 and T3SS-2, demonstrating functional redundancy for these secretion systems. Importantly, an S. Typhi mutant strain that is deficient for both T3SS-1 and T3SS-2 was severely attenuated in the ability to colonize systemic tissues in a humanized mouse model of typhoid fever. Overall, this study establishes a critical role for S. Typhi T3SSs during its replication within human macrophages and during systemic infection of humanized mice. IMPORTANCE Salmonella enterica serovar Typhi is a human-restricted pathogen that causes typhoid fever. Understanding the key virulence mechanisms that facilitate S. Typhi replication in human phagocytes will enable rational vaccine and antibiotic development to limit the spread of this pathogen. While S. Typhimurium replication in murine models has been studied extensively, there is limited information available about S. Typhi replication in human macrophages, some of which directly conflict with findings from S. Typhimurium murine models. This study establishes that both of S. Typhi's two type 3 secretion systems (T3SS-1 and T3SS-2) contribute to intramacrophage replication and virulence.
Collapse
Affiliation(s)
- Meagan Hamblin
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Ruth Schade
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Ramya Narasimhan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Denise M. Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
26
|
Tame A, Maruyama T, Ikuta T, Chikaraishi Y, Ogawa NO, Tsuchiya M, Takishita K, Tsuda M, Hirai M, Takaki Y, Ohkouchi N, Fujikura K, Yoshida T. mTORC1 regulates phagosome digestion of symbiotic bacteria for intracellular nutritional symbiosis in a deep-sea mussel. SCIENCE ADVANCES 2023; 9:eadg8364. [PMID: 37611098 PMCID: PMC10446485 DOI: 10.1126/sciadv.adg8364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/27/2023] [Indexed: 08/25/2023]
Abstract
Phagocytosis is one of the methods used to acquire symbiotic bacteria to establish intracellular symbiosis. A deep-sea mussel, Bathymodiolus japonicus, acquires its symbiont from the environment by phagocytosis of gill epithelial cells and receives nutrients from them. However, the manner by which mussels retain the symbiont without phagosome digestion remains unknown. Here, we show that controlling the mechanistic target of rapamycin complex 1 (mTORC1) in mussels leads to retaining symbionts in gill cells. The symbiont is essential for the host mussel nutrition; however, depleting the symbiont's energy source triggers the phagosome digestion of symbionts. Meanwhile, the inhibition of mTORC1 by rapamycin prevented the digestion of the resident symbionts and of the engulfed exogenous dead symbionts in gill cells. This indicates that mTORC1 promotes phagosome digestion of symbionts under reduced nutrient supply from the symbiont. The regulation mechanism of phagosome digestion by mTORC1 through nutrient signaling with symbionts is key for maintaining animal-microbe intracellular nutritional symbiosis.
Collapse
Affiliation(s)
- Akihiro Tame
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
- School of Marine Biosciences, University of Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
- Faculty of Medical Sciences, Life Science Research Laboratory, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Tadashi Maruyama
- School of Marine Biosciences, University of Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Tetsuro Ikuta
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Yoshihito Chikaraishi
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Nanako O. Ogawa
- Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Masashi Tsuchiya
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Kiyotaka Takishita
- Department of Environmental Science, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-ku, Fukuoka 813-8529, Japan
| | - Miwako Tsuda
- Institute for Extra-cutting-edge Science and Technology Avant-grade Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Miho Hirai
- Institute for Extra-cutting-edge Science and Technology Avant-grade Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Yoshihiro Takaki
- Institute for Extra-cutting-edge Science and Technology Avant-grade Research, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Naohiko Ohkouchi
- Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Katsunori Fujikura
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Takao Yoshida
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
- School of Marine Biosciences, University of Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
27
|
Kim S, Isberg RR. The Sde phosphoribosyl-linked ubiquitin transferases protect the Legionella pneumophila vacuole from degradation by the host. Proc Natl Acad Sci U S A 2023; 120:e2303942120. [PMID: 37549300 PMCID: PMC10437418 DOI: 10.1073/pnas.2303942120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/05/2023] [Indexed: 08/09/2023] Open
Abstract
Legionella pneumophila grows intracellularly within the membrane-bound Legionella-containing vacuole (LCV) established by proteins translocated via the bacterial type IV secretion system (T4SS). The Sde family, one such group of translocated proteins, catalyzes phosphoribosyl-ubiquitin (pR-Ub) modification of target substrates. Mutational loss of the entire Sde family results in small defects in intracellular growth, making it difficult to identify a clear role for this posttranslational modification in supporting the intracellular lifestyle. Therefore, mutations that aggravate the loss of sde genes and caused intracellular growth defects were identified, providing a mechanistic connection between Sde function and vacuole biogenesis. These double mutants drove the formation of LCVs that showed vacuole disintegration within 2 h of bacterial contact. Sde proteins appeared critical for blocking access of membrane-disruptive early endosomal membrane material to the vacuole, as RNAi depletion of endosomal pathway components partially restored LCV integrity. The role of Sde proteins in preventing host degradation of the LCV was limited to the earliest stages of infection. The time that Sde proteins could prevent vacuole disruption, however, was extended by deletion of sidJ, which encodes a translocated protein that inactivates Sde protein active sites. These results indicate that Sde proteins act as temporally regulated vacuole guards during the establishment of the replication niche, possibly by constructing a physical barrier that blocks access of disruptive host compartments during the earliest steps of LCV biogenesis.
Collapse
Affiliation(s)
- Seongok Kim
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA02111
| | - Ralph R. Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA02111
| |
Collapse
|
28
|
Liu D, Huang R, Yuan K, Zhao J, Wang Z, Yi Q, Wang J. Molecular characterization of a cation-dependent mannose-6-phosphate receptor gene in Crassostrea hongkongensis and its responsiveness in Vibrio alginolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108843. [PMID: 37211330 DOI: 10.1016/j.fsi.2023.108843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
The cation-dependent mannose-6-phosphate receptor (CD-M6PR) is a P-type lectin that plays a crucial role in lysosomal enzyme transport, bacterial resistance, and viral entry. In this study, we cloned and analyzed the ORF of the CD-M6PR gene from Crassostrea hongkongensis and named it ChCD-M6PR. We analyzed the nucleotide and amino acid sequence of ChCD-M6PR, its tissue expression pattern and immune response to Vibrio alginolyticus. Our results showed that the ORF of ChCD-M6PR was 801 bp long and encoded a protein of 266 amino acids with a signal peptide at the N-terminus, as well as Man-6-P_recep, ATG27 and transmembrane structural domains. Phylogenetic analysis indicated that Crassostrea hongkongensis shared the highest similarity with Crassostrea gigas in the terms of CD-M6PR. The ChCD-M6PR gene was found to be expressed in various tissues, with the highest expression observed in the hepatopancreas and the lowest in the hemocytes by the fluorescence quantitative PCR. Furthermore, the expression of ChCD-M6PR gene was significantly up-regulated for a short time in response to Vibrio alginolyticus infection in the gill and hemocytes, while it was down-regulated in the gonads. The expression patterns of ChCD-M6PR also varied in the other tissues. The 96 h cumulative mortality rate of Crassostrea hongkongensis infected with Vibrio alginolyticus after knockdown the ChCD-M6PR gene was significantly higher. Overall, our findings suggests that ChCD-M6PR plays a crucial role in the immune response of Crassostrea hongkongensis to Vibrio alginolyticus infection, and its tissue-specific expression patterns may be indicatitive of varied immune responses across tissues.
Collapse
Affiliation(s)
- Dan Liu
- College of Fisheries and Life, Dalian Ocean University, Dalian, 116000, China; School of Life Science, Huizhou University, Huizhou, 516000, China
| | - RunQing Huang
- School of Life Science, Huizhou University, Huizhou, 516000, China
| | - Kai Yuan
- School of Life Science, Huizhou University, Huizhou, 516000, China
| | - JiaHao Zhao
- School of Life Science, Huizhou University, Huizhou, 516000, China; College of Fisherie, Tianjin Agricultural University, Tianjin, 300384, China
| | - ZhaoRui Wang
- School of Life Science, Huizhou University, Huizhou, 516000, China
| | - QiLin Yi
- College of Fisheries and Life, Dalian Ocean University, Dalian, 116000, China
| | - JiangYong Wang
- School of Life Science, Huizhou University, Huizhou, 516000, China.
| |
Collapse
|
29
|
Chatterjee R, Chowdhury AR, Mukherjee D, Chakravortty D. From Eberthella typhi to Salmonella Typhi: The Fascinating Journey of the Virulence and Pathogenicity of Salmonella Typhi. ACS OMEGA 2023; 8:25674-25697. [PMID: 37521659 PMCID: PMC10373206 DOI: 10.1021/acsomega.3c02386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
Salmonella Typhi (S. Typhi), the invasive typhoidal serovar of Salmonella enterica that causes typhoid fever in humans, is a severe threat to global health. It is one of the major causes of high morbidity and mortality in developing countries. According to recent WHO estimates, approximately 11-21 million typhoid fever illnesses occur annually worldwide, accounting for 0.12-0.16 million deaths. Salmonella infection can spread to healthy individuals by the consumption of contaminated food and water. Typhoid fever in humans sometimes is accompanied by several other critical extraintestinal complications related to the central nervous system, cardiovascular system, pulmonary system, and hepatobiliary system. Salmonella Pathogenicity Island-1 and Salmonella Pathogenicity Island-2 are the two genomic segments containing genes encoding virulent factors that regulate its invasion and systemic pathogenesis. This Review aims to shed light on a comparative analysis of the virulence and pathogenesis of the typhoidal and nontyphoidal serovars of S. enterica.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Atish Roy Chowdhury
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Debapriya Mukherjee
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Dipshikha Chakravortty
- Department
of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
- Centre
for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
30
|
Heyman O, Yehezkel D, Ciolli Mattioli C, Blumberger N, Rosenberg G, Solomon A, Hoffman D, Bossel Ben-Moshe N, Avraham R. Paired single-cell host profiling with multiplex-tagged bacterial mutants reveals intracellular virulence-immune networks. Proc Natl Acad Sci U S A 2023; 120:e2218812120. [PMID: 37399397 PMCID: PMC10334762 DOI: 10.1073/pnas.2218812120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/24/2023] [Indexed: 07/05/2023] Open
Abstract
Encounters between host cells and intracellular bacterial pathogens lead to complex phenotypes that determine the outcome of infection. Single-cell RNA sequencing (scRNA-seq) is increasingly used to study the host factors underlying diverse cellular phenotypes but has limited capacity to analyze the role of bacterial factors. Here, we developed scPAIR-seq, a single-cell approach to analyze infection with a pooled library of multiplex-tagged, barcoded bacterial mutants. Infected host cells and barcodes of intracellular bacterial mutants are both captured by scRNA-seq to functionally analyze mutant-dependent changes in host transcriptomes. We applied scPAIR-seq to macrophages infected with a library of Salmonella Typhimurium secretion system effector mutants. We analyzed redundancy between effectors and mutant-specific unique fingerprints and mapped the global virulence network of each individual effector by its impact on host immune pathways. ScPAIR-seq is a powerful tool to untangle bacterial virulence strategies and their complex interplay with host defense strategies that drive infection outcome.
Collapse
Affiliation(s)
- Ori Heyman
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Dror Yehezkel
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Camilla Ciolli Mattioli
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Neta Blumberger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Gili Rosenberg
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Aryeh Solomon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Dotan Hoffman
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Noa Bossel Ben-Moshe
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Roi Avraham
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
31
|
Chatterjee R, Nair AV, Singh A, Mehta N, Setty SRG, Chakravortty D. Syntaxin 3 SPI-2 dependent crosstalk facilitates the division of Salmonella containing vacuole. Traffic 2023; 24:270-283. [PMID: 37114883 DOI: 10.1111/tra.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023]
Abstract
Intracellular membrane fusion is mediated by membrane-bridging complexes of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). SNARE proteins are one of the key players in vesicular transport. Several reports shed light on intracellular bacteria modulating host SNARE machinery to establish infection successfully. The critical SNAREs in macrophages responsible for phagosome maturation are Syntaxin 3 (STX3) and Syntaxin 4 (STX4). Reports also suggest that Salmonella actively modulates its vacuole membrane composition to escape lysosomal fusion. Salmonella containing vacuole (SCV) harbours recycling endosomal SNARE Syntaxin 12 (STX12). However, the role of host SNAREs in SCV biogenesis and pathogenesis remains unclear. Upon knockdown of STX3, we observed a reduction in bacterial proliferation, which is concomitantly restored upon the overexpression of STX3. Live-cell imaging of Salmonella-infected cells showed that STX3 localises to the SCV membranes and thus might help in the fusion of SCV with intracellular vesicles to acquire membrane for its division. We also found the interaction STX3-SCV was abrogated when we infected with SPI-2 encoded Type 3 secretion system (T3SS) apparatus mutant (STM ∆ssaV) but not with SPI-1 encoded T3SS apparatus mutant (STM ∆invC). These observations were also consistent in the mice model of Salmonella infection. Together, these results shed light on the effector molecules secreted through T3SS encoded by SPI-2, possibly involved in interaction with host SNARE STX3, which is essential to maintain the division of Salmonella in SCV and help to maintain a single bacterium per vacuole.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Anmol Singh
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Nishi Mehta
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| |
Collapse
|
32
|
Hamblin M, Schade R, Narasimhan R, Monack DM. Salmonella enterica serovar Typhi uses two type 3 secretion systems to replicate in human macrophages and to colonize humanized mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543980. [PMID: 37333307 PMCID: PMC10274799 DOI: 10.1101/2023.06.06.543980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Salmonella enterica serovar Typhi ( S. Typhi) is a human-restricted pathogen that replicates in macrophages. In this study, we investigated the roles of the S. Typhi Type 3 secretion systems (T3SSs) encoded on Salmonella Pathogenicity Islands (SPI) -1 (T3SS-1) and -2 (T3SS-2) during human macrophage infection. We found that mutants of S . Typhi deficient for both T3SSs were defective for intramacrophage replication as measured by flow cytometry, viable bacterial counts, and live time-lapse microscopy. T3SS-secreted proteins PipB2 and SifA contributed to S. Typhi replication and were translocated into the cytosol of human macrophages through both T3SS-1 and -2, demonstrating functional redundancy for these secretion systems. Importantly, an S . Typhi mutant strain that is deficient for both T3SS-1 and -2 was severely attenuated in the ability to colonize systemic tissues in a humanized mouse model of typhoid fever. Overall, this study establishes a critical role for S. Typhi T3SSs during its replication within human macrophages and during systemic infection of humanized mice. Importance Salmonella enterica serovar Typhi is a human-restricted pathogen that causes typhoid fever. Understanding the key virulence mechanisms that facilitate S. Typhi replication in human phagocytes will enable rational vaccine and antibiotic development to limit spread of this pathogen. While S. Typhimurium replication in murine models has been studied extensively, there is limited information available about S. Typhi replication in human macrophages, some of which directly conflicts with findings from S. Typhimurium murine models. This study establishes that both of S. Typhi's two Type 3 Secretion Systems (T3SS-1 and -2) contribute to intramacrophage replication and virulence.
Collapse
|
33
|
Pillay TD, Hettiarachchi SU, Gan J, Diaz-Del-Olmo I, Yu XJ, Muench JH, Thurston TL, Pearson JS. Speaking the host language: how Salmonella effector proteins manipulate the host. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001342. [PMID: 37279149 PMCID: PMC10333799 DOI: 10.1099/mic.0.001342] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Salmonella injects over 40 virulence factors, termed effectors, into host cells to subvert diverse host cellular processes. Of these 40 Salmonella effectors, at least 25 have been described as mediating eukaryotic-like, biochemical post-translational modifications (PTMs) of host proteins, altering the outcome of infection. The downstream changes mediated by an effector's enzymatic activity range from highly specific to multifunctional, and altogether their combined action impacts the function of an impressive array of host cellular processes, including signal transduction, membrane trafficking, and both innate and adaptive immune responses. Salmonella and related Gram-negative pathogens have been a rich resource for the discovery of unique enzymatic activities, expanding our understanding of host signalling networks, bacterial pathogenesis as well as basic biochemistry. In this review, we provide an up-to-date assessment of host manipulation mediated by the Salmonella type III secretion system injectosome, exploring the cellular effects of diverse effector activities with a particular focus on PTMs and the implications for infection outcomes. We also highlight activities and functions of numerous effectors that remain poorly characterized.
Collapse
Affiliation(s)
- Timesh D. Pillay
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Sahampath U. Hettiarachchi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jiyao Gan
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Ines Diaz-Del-Olmo
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
| | - Xiu-Jun Yu
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
| | - Janina H. Muench
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Teresa L.M. Thurston
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Jaclyn S. Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
34
|
Bird LE, Edgington-Mitchell LE, Newton HJ. Eat, prey, love: Pathogen-mediated subversion of lysosomal biology. Curr Opin Immunol 2023; 83:102344. [PMID: 37245414 DOI: 10.1016/j.coi.2023.102344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 05/30/2023]
Abstract
The mammalian lysosome is classically considered the 'garbage can' of the cell, contributing to clearance of infection through its primary function as a degradative organelle. Intracellular pathogens have evolved several strategies to evade contact with this harsh environment through subversion of endolysosomal trafficking or escape into the cytosol. Pathogens can also manipulate pathways that lead to lysosomal biogenesis or alter the abundance or activity of lysosomal content. This pathogen-driven subversion of lysosomal biology is highly dynamic and depends on a range of factors, including cell type, stage of infection, intracellular niche and pathogen load. The growing body of literature in this field highlights the nuanced and complex relationship between intracellular pathogens and the host lysosome, which is critical for our understanding of infection biology.
Collapse
Affiliation(s)
- Lauren E Bird
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, VIC 3800, Australia
| | | | - Hayley J Newton
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, VIC 3800, Australia.
| |
Collapse
|
35
|
Li XM, Huang S, Li XD. Photo-ANA enables profiling of host-bacteria protein interactions during infection. Nat Chem Biol 2023; 19:614-623. [PMID: 36702958 DOI: 10.1038/s41589-022-01245-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/16/2022] [Indexed: 01/27/2023]
Abstract
Bacterial pathogens rapidly change and adapt their proteome to cope with the environment in host cells and secrete effector proteins to hijack host targets and ensure their survival and proliferation during infection. Excessive host proteins make it difficult to profile pathogens' proteome dynamics by conventional proteomics. It is even more challenging to map pathogen-host protein-protein interactions in real time, given the low abundance of bacterial effectors and weak and transient interactions in which they may be involved. Here we report a method for selectively labeling bacterial proteomes using a bifunctional amino acid, photo-ANA, equipped with a bio-orthogonal handle and a photoreactive warhead, which enables simultaneous analysis of bacterial proteome reprogramming and pathogen-host protein interactions of Salmonella enterica serovar Typhimurium (S. Typhimurium) during infection. Using photo-ANA, we identified FLOT1/2 as host interactors of S. Typhimurium effector PipB2 in late-stage infection and globally profiled the extensive interactions between host proteins and pathogens during infection.
Collapse
Affiliation(s)
- Xiao-Meng Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Siyue Huang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
36
|
Kim S, Isberg RR. The Sde Phosphoribosyl-Linked Ubiquitin Transferases protect the Legionella pneumophila vacuole from degradation by the host. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533379. [PMID: 36993347 PMCID: PMC10055210 DOI: 10.1101/2023.03.19.533379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Legionella pneumophila grows intracellularly within a host membrane-bound vacuole that is formed in response to a bacterial type IV secretion system (T4SS). T4SS translocated Sde proteins promote phosphoribosyl-linked ubiquitination of endoplasmic reticulum protein Rtn4, but the role played by this modification is obscure due to lack of clear growth defects of mutants. To identify the steps in vacuole biogenesis promoted by these proteins, mutations were identified that unmasked growth defects in Δ sde strains. Mutations in the sdhA , ridL and legA3 genes aggravated the Δ sde fitness defect, resulting in disruption of the Legionella -containing vacuole (LCV) membrane within 2 hrs of bacterial contact with host cells. Depletion of Rab5B and sorting nexin 1 partially bypassed loss of Sde proteins, consistent with Sde blocking early endosome and retrograde trafficking, similar to roles previously demonstrated for SdhA and RidL proteins. Sde protein protection of LCV lysis was only observed shortly after infection, presumably because Sde proteins are inactivated by the metaeffector SidJ during the course of infection. Deletion of SidJ extended the time that Sde proteins could prevent vacuole disruption, indicating that Sde proteins are negatively regulated at the posttranslational level and are limited to protecting membrane integrity at the earliest stages of replication. Transcriptional analysis was consistent with this timing model for an early point of execution of Sde protein. Therefore, Sde proteins act as temporally-regulated vacuole guards during establishment of the replication niche, possibly by constructing a physical barrier that blocks access of disruptive host compartments early during biogenesis of the LCV. Significance statement Maintaining replication compartment integrity is critical for growth of intravacuolar pathogens within host cells. By identifying genetically redundant pathways, Legionella pneumophila Sde proteins that promote phosphoribosyl-linked ubiquitination of target eukaryotic proteins are shown to be temporally-regulated vacuole guards, preventing replication vacuole dissolution during early stages of infection. As targeting of reticulon 4 by these proteins leads to tubular endoplasmic reticulum aggregation, Sde proteins are likely to construct a barrier that blocks access of disruptive early endosomal compartments to the replication vacuole. Our study provides a new framework for how vacuole guards function to support biogenesis of the L. pneumophila replicative niche.
Collapse
Affiliation(s)
- Seongok Kim
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| | - Ralph R Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| |
Collapse
|
37
|
Meng K, Zhu P, Shi L, Li S. Determination of the Salmonella intracellular lifestyle by the diversified interaction of Type III secretion system effectors and host GTPases. WIREs Mech Dis 2023; 15:e1587. [PMID: 36250298 DOI: 10.1002/wsbm.1587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/06/2022]
Abstract
Intracellular bacteria have developed sophisticated strategies to subvert the host endomembrane system to establish a stable replication niche. Small GTPases are critical players in regulating each step of membrane trafficking events, such as vesicle biogenesis, cargo transport, tethering, and fusion events. Salmonella is a widely studied facultative intracellular bacteria. Salmonella delivers several virulence proteins, termed effectors, to regulate GTPase dynamics and subvert host trafficking for their benefit. In this review, we summarize an updated and systematic understanding of the interactions between bacterial effectors and host GTPases in determining the intracellular lifestyle of Salmonella. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Kun Meng
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ping Zhu
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Liuliu Shi
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shan Li
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
38
|
Achi SC, Karimilangi S, Lie D, Sayed IM, Das S. The WxxxE proteins in microbial pathogenesis. Crit Rev Microbiol 2023; 49:197-213. [PMID: 35287539 PMCID: PMC9737147 DOI: 10.1080/1040841x.2022.2046546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 12/14/2022]
Abstract
Effector proteins secreted by pathogens modulate various host cellular processes and help in bacterial pathogenesis. Some of these proteins, injected by enteric pathogens via Type Three Secretion System (T3SS) were grouped together based on a conserved signature motif (WxxxE) present in them. The presence of WxxxE motif is not limited to effectors released by enteric pathogens or the T3SS but has been detected in non-enteric pathogens, plant pathogens and in association with Type II and Type IV secretion systems. WxxxE effectors are involved in actin organization, inflammation regulation, vacuole or tubule formation, endolysosomal signalling regulation, tight junction disruption, and apoptosis. The WxxxE sequence has also been identified in TIR [Toll/interleukin-1 (IL-1) receptor] domains of bacteria and host. In the present review, we have focussed on the established and predicted functions of WxxxE effectors secreted by several pathogens, including enteric, non-enteric, and plant pathogens.
Collapse
Affiliation(s)
| | - Sareh Karimilangi
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Dominique Lie
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Ibrahim M. Sayed
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Soumita Das
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
39
|
Abstract
Bacterial populations can survive exposure to antibiotics through transient phenotypic and gene expression changes. These changes can be attributed to a small subpopulation of bacteria, giving rise to antibiotic persistence. Although this phenomenon has been known for decades, much remains to be learned about the mechanisms that drive persister formation. The RNA-binding protein ProQ has recently emerged as a global regulator of gene expression. Here, we show that ProQ impacts persister formation in Salmonella. In vitro, ProQ contributes to growth arrest in a subset of cells that are able to survive treatment at high concentrations of different antibiotics. The underlying mechanism for ProQ-dependent persister formation involves the activation of metabolically costly processes, including the flagellar pathway and the type III protein secretion system encoded on Salmonella pathogenicity island 2. Importantly, we show that the ProQ-dependent phenotype is relevant during macrophage infection and allows Salmonella to survive the combined action of host immune defenses and antibiotics. Together, our data highlight the importance of ProQ in Salmonella persistence and pathogenesis. IMPORTANCE Bacteria can avoid eradication by antibiotics through a phenomenon known as persistence. Persister cells arise through phenotypic heterogeneity and constitute a small fraction of dormant cells within a population of actively growing bacteria, which is susceptible to antibiotic killing. In this study, we show that ProQ, an RNA-binding protein and global regulator of gene expression, promotes persisters in the human pathogen Salmonella enterica serovar Typhimurium. Bacteria lacking the proQ gene outcompete wild-type bacteria under laboratory conditions, are less prone to enter growth dormancy, and form fewer persister cells. The basis for these phenotypes lies in ProQ's ability to activate energy-consuming cellular processes, including flagellar motility and protein secretion. Importantly, we show that ProQ contributes to the persister phenotype during Salmonella infection of macrophages, indicating an important role of this global regulator in Salmonella pathogenesis.
Collapse
|
40
|
Newson JP, Gaissmaier MS, McHugh SC, Hardt WD. Studying antibiotic persistence in vivo using the model organism Salmonella Typhimurium. Curr Opin Microbiol 2022; 70:102224. [PMID: 36335713 DOI: 10.1016/j.mib.2022.102224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/22/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
Antibiotic persistence permits a subpopulation of susceptible bacteria to survive lethal concentrations of bactericidal antibiotics. This prolongs antibiotic therapy, promotes the evolution of antibiotic-resistant pathogen strains and can select for pathogen virulence within infected hosts. Here, we review the literature exploring antibiotic persistence in vivo, and describe the consequences of recalcitrant subpopulations, with a focus on studies using the model pathogen Salmonella Typhimurium. In vitro studies have established a concise set of features distinguishing true persisters from other forms of bacterial recalcitrance to bactericidal antibiotics. We discuss how animal infection models are useful for exploring these features in vivo, and describe how technical challenges can sometimes prevent the conclusive identification of true antibiotic persistence within infected hosts. We propose using two complementary working definitions for studying antibiotic persistence in vivo: the strict definition for studying the mechanisms of persister formation, and an operative definition for functional studies assessing the links between invasive virulence and persistence as well as the consequences for horizontal gene transfer, or the emergence of antibiotic-resistant mutants. This operative definition will enable further study of how antibiotic persisters arise in vivo, and of how surviving populations contribute to diverse downstream effects such as pathogen transmission, horizontal gene transfer and the evolution of virulence and antibiotic resistance. Ultimately, such studies will help to improve therapeutic control of antibiotic- recalcitrant populations.
Collapse
Affiliation(s)
- Joshua Pm Newson
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Marla S Gaissmaier
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Sarah C McHugh
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
41
|
Salmonella Exhibit Altered Cellular Localization in the Presence of HLA-B27 and Codistribute with Endo-Reticular Membrane. J Immunol Res 2022; 2022:9493019. [PMID: 36157878 PMCID: PMC9507774 DOI: 10.1155/2022/9493019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Salmonella enteritica (S. enteritica) induce and require unfolded protein response (UPR) pathways for intracellular replication. Salmonella infections can lead to reactive arthritis (ReA), which can exhibit associations with Human Leucocyte Antigen (HLA)-B∗27 : 05. S. enteritica normally reside in a juxtanuclear position to the Golgi apparatus, representing the formation and residence within the Salmonella-containing vacuole (SCV). Changes in cellular localization of infecting Salmonella can alter their ability to replicate. We therefore used isogenic epithelial cell lines expressing physiological levels of HLA-B∗27 : 05 heavy chain (HC) and a control HLA-B allele, HLA-B∗35 : 01.HC to determine any changes in Salmonella localization within epithelial cells. Expression of HLA-B∗27 : 05 but not HLA-B∗35 : 01 was associated with a quantifiable change in S. enteritica cellular distribution away from the Golgi apparatus. Furthermore, the Salmonella requirements for UPR induction and the consequences of the concomitant endoplasmic reticulum (ER) membrane expansion were determined. Using confocal imaging, S. enteritica bacteria exhibited a significant and quantifiable codistribution with endo-reticular membrane as determined by ER tracker staining. Isogenic S. enterica Typhimurium mutant strains, which can infect but exhibit impaired intracellular growth, demonstrated that the activation of the UPR was dependent on an integral intracellular niche. Therefore, these data identify cellular changes accompanying Salmonella induction of the UPR and in the presence of HLA-B27.
Collapse
|
42
|
Chang SJ, Hsu YT, Chen Y, Lin YY, Lara-Tejero M, Galan JE. Typhoid toxin sorting and exocytic transport from Salmonella Typhi-infected cells. eLife 2022; 11:e78561. [PMID: 35579416 PMCID: PMC9142146 DOI: 10.7554/elife.78561] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/15/2022] [Indexed: 11/13/2022] Open
Abstract
Typhoid toxin is an essential virulence factor for Salmonella Typhi, the cause of typhoid fever in humans. This toxin has an unusual biology in that it is produced by Salmonella Typhi only when located within host cells. Once synthesized, the toxin is secreted to the lumen of the Salmonella-containing vacuole from where it is transported to the extracellular space by vesicle carrier intermediates. Here, we report the identification of the typhoid toxin sorting receptor and components of the cellular machinery that packages the toxin into vesicle carriers, and exports it to the extracellular space. We found that the cation-independent mannose-6-phosphate receptor serves as typhoid toxin sorting receptor and that the coat protein COPII and the GTPase Sar1 mediate its packaging into vesicle carriers. Formation of the typhoid toxin carriers requires the specific environment of the Salmonella Typhi-containing vacuole, which is determined by the activities of specific effectors of its type III protein secretion systems. We also found that Rab11B and its interacting protein Rip11 control the intracellular transport of the typhoid toxin carriers, and the SNARE proteins VAMP7, SNAP23, and Syntaxin 4 their fusion to the plasma membrane. Typhoid toxin's cooption of specific cellular machinery for its transport to the extracellular space illustrates the remarkable adaptation of an exotoxin to exert its function in the context of an intracellular pathogen.
Collapse
Affiliation(s)
- Shu-Jung Chang
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
- Graduate Institute of Microbiology, College of Medicine, National Taiwan UniversityTaipeiTaiwan
| | - Yu-Ting Hsu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan UniversityTaipeiTaiwan
| | - Yun Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan UniversityTaipeiTaiwan
| | - Yen-Yi Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan UniversityTaipeiTaiwan
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| | - Jorge E Galan
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
43
|
Fang Z, Méresse S. Endomembrane remodeling and dynamics in Salmonella infection. MICROBIAL CELL (GRAZ, AUSTRIA) 2022; 9:24-41. [PMID: 35127930 PMCID: PMC8796136 DOI: 10.15698/mic2022.02.769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022]
Abstract
Salmonellae are bacteria that cause moderate to severe infections in humans, depending on the strain and the immune status of the infected host. These pathogens have the particularity of residing in the cells of the infected host. They are usually found in a vacuolar compartment that the bacteria shape with the help of effector proteins. Following invasion of a eukaryotic cell, the bacterial vacuole undergoes maturation characterized by changes in localization, composition and morphology. In particular, membrane tubules stretching over the microtubule cytoskeleton are formed from the bacterial vacuole. Although these tubules do not occur in all infected cells, they are functionally important and promote intracellular replication. This review focuses on the role and significance of membrane compartment remodeling observed in infected cells and the bacterial and host cell pathways involved.
Collapse
Affiliation(s)
- Ziyan Fang
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | | |
Collapse
|
44
|
Fulde M, van Vorst K, Zhang K, Westermann AJ, Busche T, Huei YC, Welitschanski K, Froh I, Pägelow D, Plendl J, Pfarrer C, Kalinowski J, Vogel J, Valentin-Weigand P, Hensel M, Tedin K, Repnik U, Hornef MW. SPI2 T3SS effectors facilitate enterocyte apical to basolateral transmigration of Salmonella-containing vacuoles in vivo. Gut Microbes 2022; 13:1973836. [PMID: 34542008 PMCID: PMC8475570 DOI: 10.1080/19490976.2021.1973836] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Salmonella pathogenicity island (SPI) 2 type three secretion system (T3SS)-mediated effector molecules facilitate bacterial survival in phagocytes but their role in the intestinal epithelium in vivo remains ill-defined. Using our neonatal murine infection model in combination with SPI2 reporter technology and RNA-Seq of sorted primary enterocytes, we demonstrate expression of SPI2 effector molecules by intraepithelial Salmonella Typhimurium (S. Typhimurium). Contrary to expectation, immunostaining revealed that infection with SPI2 T3SS-mutants resulted in significantly enlarged intraepithelial Salmonella-containing vacuoles (SCV) with altered cellular positioning, suggesting impaired apical to basolateral transmigration. Also, infection with isogenic tagged S. Typhimurium strains revealed a reduced spread of intraepithelial SPI2 T3SS mutant S. Typhimurium to systemic body sites. These results suggest that SPI2 T3SS effector molecules contribute to enterocyte apical to basolateral transmigration of the SCV during the early stage of the infection.
Collapse
Affiliation(s)
- Marcus Fulde
- Department of Veterinary Medicine, Freie Universität Berlin, Institute of Microbiology and Epizootics, Berlin, Germany,CONTACT Mathias Hornef Institute for Medical Microbiology; RWTH University Hospital; Pauwelsstr. 30, Aachen, D-52074, Germany
| | - Kira van Vorst
- Department of Veterinary Medicine, Freie Universität Berlin, Institute of Microbiology and Epizootics, Berlin, Germany
| | - Kaiyi Zhang
- Institute of Medical Microbiology, Rwth University Hospital Aachen, Aachen, Germany
| | - Alexander J. Westermann
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Tobias Busche
- Technology Platform Genomics, Center for Biotechnology (Cebitec), Bielefeld University, Bielefeld, Germany
| | - Yong Chiun Huei
- Institute of Medical Microbiology, Rwth University Hospital Aachen, Aachen, Germany
| | - Katharina Welitschanski
- Hannover Medical School, Institute for Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Isabell Froh
- Hannover Medical School, Institute for Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Dennis Pägelow
- Department of Veterinary Medicine, Freie Universität Berlin, Institute of Microbiology and Epizootics, Berlin, Germany
| | - Johanna Plendl
- Department of Veterinary Medicine, Freie Universität Berlin, Institute of Veterinary Anatomy, Berlin, Germany
| | - Christiane Pfarrer
- Institute for Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jörn Kalinowski
- Technology Platform Genomics, Center for Biotechnology (Cebitec), Bielefeld University, Bielefeld, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Peter Valentin-Weigand
- Institute of Microbiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Karsten Tedin
- Department of Veterinary Medicine, Freie Universität Berlin, Institute of Microbiology and Epizootics, Berlin, Germany
| | - Urska Repnik
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Mathias W. Hornef
- Institute of Medical Microbiology, Rwth University Hospital Aachen, Aachen, Germany
| |
Collapse
|
45
|
Sontyana B, Shrivastava R, Battu S, Ghosh S, Mukhopadhyay S. Phagosome maturation and modulation of macrophage effector function by intracellular pathogens: target for therapeutics. Future Microbiol 2021; 17:59-76. [PMID: 34877879 DOI: 10.2217/fmb-2021-0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Macrophages are important cells that regulate various innate functions. Macrophages after engulfment of pathogens proceed for phagosome maturation and finally fuse with lysosomes to kill pathogens. Although pathogen degradation is one of the important functions of phagosomes, various immune-effector functions of macrophages are also dependent on the phagosome maturation process. This review discusses signaling processes regulating phagosome maturation as well as various effector functions of macrophages such as apoptosis, antigen presentation, autophagy and inflammasome that are dependent on the phagosome maturation process. It also discusses strategies adopted by various intracellular pathogens to counteract these functions to evade intracellular destruction mechanisms. These studies may give direction for the development of new therapeutics to control various intracellular infections.
Collapse
Affiliation(s)
- Brahmaji Sontyana
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500039, Telangana, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Rohini Shrivastava
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500039, Telangana, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srikanth Battu
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500039, Telangana, India
| | - Sudip Ghosh
- Molecular Biology Unit, ICMR-National Institute of Nutrition, Jamai Osmania PO, Hyderabad, 500007, Telangana, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500039, Telangana, India
| |
Collapse
|
46
|
SdhA blocks disruption of the Legionella-containing vacuole by hijacking the OCRL phosphatase. Cell Rep 2021; 37:109894. [PMID: 34731604 PMCID: PMC8669613 DOI: 10.1016/j.celrep.2021.109894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 07/27/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022] Open
Abstract
Legionella pneumophila grows intracellularly within a replication vacuole via action of Icm/Dot-secreted proteins. One such protein, SdhA, maintains the integrity of the vacuolar membrane, thereby preventing cytoplasmic degradation of bacteria. We show here that SdhA binds and blocks the action of OCRL (OculoCerebroRenal syndrome of Lowe), an inositol 5-phosphatase pivotal for controlling endosomal dynamics. OCRL depletion results in enhanced vacuole integrity and intracellular growth of a sdhA mutant, consistent with OCRL participating in vacuole disruption. Overexpressed SdhA alters OCRL function, enlarging endosomes, driving endosomal accumulation of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), and interfering with endosomal trafficking. SdhA interrupts Rab guanosine triphosphatase (GTPase)-OCRL interactions by binding to the OCRL ASPM-SPD2-Hydin (ASH) domain, without directly altering OCRL 5-phosphatase activity. The Legionella vacuole encompassing the sdhA mutant accumulates OCRL and endosomal antigen EEA1 (Early Endosome Antigen 1), consistent with SdhA blocking accumulation of OCRL-containing endosomal vesicles. Therefore, SdhA hijacking of OCRL is associated with blocking trafficking events that disrupt the pathogen vacuole.
Collapse
|
47
|
Chen D, Burford WB, Pham G, Zhang L, Alto LT, Ertelt JM, Winter MG, Winter SE, Way SS, Alto NM. Systematic reconstruction of an effector-gene network reveals determinants of Salmonella cellular and tissue tropism. Cell Host Microbe 2021; 29:1531-1544.e9. [PMID: 34536347 DOI: 10.1016/j.chom.2021.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/24/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
The minimal genetic requirements for microbes to survive within multiorganism communities, including host-pathogen interactions, remain poorly understood. Here, we combined targeted gene mutagenesis with phenotype-guided genetic reassembly to identify a cooperative network of SPI-2 T3SS effector genes that are sufficient for Salmonella Typhimurium (STm) to cause disease in a natural host organism. Five SPI-2 effector genes support pathogen survival within the host cell cytoplasm by coordinating bacterial replication with Salmonella-containing vacuole (SCV) division. Unexpectedly, this minimal genetic repertoire does not support STm systemic infection of mice. In vivo screening revealed a second effector-gene network, encoded by the spv operon, that expands the life cycle of STm from growth in cells to deep-tissue colonization in a murine model of typhoid fever. Comparison between Salmonella infection models suggests how cooperation between effector genes drives tissue tropism in a pathogen group.
Collapse
Affiliation(s)
- Didi Chen
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wesley B Burford
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Giang Pham
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Lishu Zhang
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura T Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James M Ertelt
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Maria G Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sebastian E Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sing Sing Way
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Neal M Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
48
|
Borghesan E, Smith EP, Myeni S, Binder K, Knodler LA, Celli J. A Brucella effector modulates the Arf6-Rab8a GTPase cascade to promote intravacuolar replication. EMBO J 2021; 40:e107664. [PMID: 34423453 PMCID: PMC8488576 DOI: 10.15252/embj.2021107664] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/15/2023] Open
Abstract
Remodeling of host cellular membrane transport pathways is a common pathogenic trait of many intracellular microbes that is essential to their intravacuolar life cycle and proliferation. The bacterium Brucella abortus generates a host endoplasmic reticulum‐derived vacuole (rBCV) that supports its intracellular growth, via VirB Type IV secretion system‐mediated delivery of effector proteins, whose functions and mode of action are mostly unknown. Here, we show that the effector BspF specifically promotes Brucella replication within rBCVs by interfering with vesicular transport between the trans‐Golgi network (TGN) and recycling endocytic compartment. BspF targeted the recycling endosome, inhibited retrograde traffic to the TGN, and interacted with the Arf6 GTPase‐activating Protein (GAP) ACAP1 to dysregulate Arf6‐/Rab8a‐dependent transport within the recycling endosome, which resulted in accretion of TGN‐associated vesicles by rBCVs and enhanced bacterial growth. Altogether, these findings provide mechanistic insight into bacterial modulation of membrane transport used to promote their own proliferation within intracellular vacuoles.
Collapse
Affiliation(s)
- Elizabeth Borghesan
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Erin P Smith
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Sebenzile Myeni
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kelsey Binder
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Leigh A Knodler
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Jean Celli
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA.,Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
49
|
Study on Significance of Receptor Targeting in Killing of Intracellular Bacteria with Membrane‐Impermeable Antibiotics. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Sun J, Wang X, Lin H, Wan L, Chen J, Yang X, Li D, Zhang Y, He X, Wang B, Dong M, Zhong H, Wei C. Shigella escapes lysosomal degradation through inactivation of Rab31 by IpaH4.5. J Med Microbiol 2021; 70. [PMID: 34296983 DOI: 10.1099/jmm.0.001382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Shigella flexneri is an intracellular bacterial pathogen that utilizes a type III secretion apparatus to inject effector proteins into host cells.Hypothesis/Gap Statement. The T3SS effector IpaH4.5 is important for the virulence of Shigella.Aim. This study aimed to elucidate the molecular mechanism and host target of the IpaH4.5 as well as its roles in S. flexneri infection.Methodology. The GAP assay was used to identify substrate Rab GTPases of IpaH4.5. A coimmunoprecipitation assay was applied to identify the interaction of Rab GTPases with IpaH4.5. A confocal microscopy analysis was used to assess the effects of IpaH4.5 on mannose 6-phosphate receptor (MPR) trafficking. To identify the effects of IpaH4.5 GAP activity on the activity of lysosomal cathepsin B, the Magic Red-RR assay was used. Finally, the intracellular persistence assay was used to identify IpaH4.5 GAP activity in S. flexneri intracellular growth.Results. We found that the effector IpaH4.5 disrupts MPR trafficking and lysosomal function, thereby counteracting host lysosomal degradation. IpaH4.5 harbours TBC-like dual-finger motifs and exhibits potent RabGAP activities towards Rab31. IpaH4.5 disrupts the transport of the cation-dependent mannose 6-phosphate receptor (CD-MPR) from the Golgi to the endosome by targeting Rab31, thereby attenuating lysosomal function. As a result, the intracellular persistence of S. flexneri requires IpaH4.5 TBC-like GAP activity to mediate bacterial escape from host lysosome-mediated elimination.Conclusion. We identified an unknown function of IpaH4.5 and its potential role in S. flexneri infection.
Collapse
Affiliation(s)
- Jin Sun
- Basic Medical College, Qingdao University, Qingdao, PR China.,Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, PR China
| | - Xiaolin Wang
- Basic Medical College, Qingdao University, Qingdao, PR China.,Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, PR China
| | - Haotian Lin
- Basic Medical College, Qingdao University, Qingdao, PR China.,Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, PR China
| | - Luming Wan
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, PR China
| | - Ji Chen
- Basic Medical College, Qingdao University, Qingdao, PR China
| | - Xiaopan Yang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, PR China
| | - Dongyu Li
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, PR China
| | - Yanhong Zhang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, PR China
| | - Xiang He
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, PR China
| | - Bin Wang
- Basic Medical College, Qingdao University, Qingdao, PR China
| | - Mingxin Dong
- Basic Medical College, Qingdao University, Qingdao, PR China
| | - Hui Zhong
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, PR China
| | - Congwen Wei
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, PR China
| |
Collapse
|