1
|
Velasteguí E, Castillo ME, Ortiz F, Espín S, Espinel E, Loyola LA, Báez-Cevallos D, Kyriakidis NC, Romero-Alvarez D, Baroja I, Bastidas-Caldes C. HLA Class I and II allelic diversity among Ecuadorian transplant candidates: A comprehensive retrospective analysis. Mol Immunol 2025; 182:76-82. [PMID: 40239304 DOI: 10.1016/j.molimm.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/27/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025]
Abstract
The Major Histocompatibility Complex (MHC) comprises over 220 genes encoding proteins that are vital for the functioning of the immune system. These genes are divided into three classes: HLA class I, II, and III. The polymorphism of MHC genes serves to enhance the immune response by increasing the diversity of antigen presentation. In Ecuador, a country with a diverse population comprising numerous ethnic groups, it is crucial to comprehend the distribution of HLA alleles in order to facilitate several health approaches such as personalized medicine and organ transplantation. The present study employed data from Ecuador's National Institute of Organ, Tissue, and Cell Donation and Transplantation (INDOT) from 2017 to 2022. The data were analyzed to determine the distribution of HLA class I (HLA-A, HLA-B, HLA-C) and class II (HLA-DRB1, DRB3, DRB4, DQB1) alleles. A total of 1530 HLA alleles were identified among the 2352 patients included in the study. The highest variability was observed in Class I alleles, with HLA-A02 (32 %) and HLA-B35 (21 %) being the most common. In the case of class II, the most prevalent alleles were DRB104 and DQB103, with frequencies of 25.1 % and 48 %, respectively. It is notable that significant regional variations in allele frequencies were observed across Ecuador. The findings of this comprehensive study provide valuable insights into Ecuador's HLA allele distribution, contributing to genetic research, personalized medicine, and organ transplant matching. However, the results also highlight the need for further studies to better understand genetic diversity and improve public health strategies.
Collapse
Affiliation(s)
- Erick Velasteguí
- Instituto Nacional de Donación y Trasplante de Órganos Tejidos y Células INDOT, Quito 170530, Ecuador
| | - María Esther Castillo
- Instituto Nacional de Donación y Trasplante de Órganos Tejidos y Células INDOT, Quito 170530, Ecuador
| | - Felipe Ortiz
- Instituto Nacional de Donación y Trasplante de Órganos Tejidos y Células INDOT, Quito 170530, Ecuador
| | - Sofía Espín
- Instituto Nacional de Donación y Trasplante de Órganos Tejidos y Células INDOT, Quito 170530, Ecuador
| | - Eduardo Espinel
- Instituto Nacional de Donación y Trasplante de Órganos Tejidos y Células INDOT, Quito 170530, Ecuador
| | - Luis Alberto Loyola
- Instituto Nacional de Donación y Trasplante de Órganos Tejidos y Células INDOT, Quito 170530, Ecuador
| | - David Báez-Cevallos
- Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito 170134, Ecuador
| | - Nikolaos C Kyriakidis
- Dirección General de Investigación y Vinculación, Universidad de las Américas, Quito 170124, Ecuador; Center for Hematology and Regenerative Medicine, Department of Medicine Hudddinge, Karolinska Institute, Stockholm 14157, Sweden
| | - Daniel Romero-Alvarez
- Research Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity, Health Science Faculty, School of Biomedical Sciences, Universidad Internacional SEK (UISEK), Quito, Ecuador
| | - Isabel Baroja
- Cancer Research Group, Faculty of Engineering and Applied Sciences, Universidad de Las Américas, Quito 170124, Ecuador; IDIBAPS Biomedical Research Institute, University of Barcelona, Barcelona 08036, Spain
| | - Carlos Bastidas-Caldes
- Faculty of Engineering and Applied Sciences, Biotechnology, Universidad de las Américas, Quito 170124, Ecuador.
| |
Collapse
|
2
|
Patin E, Quintana-Murci L. Tracing the Evolution of Human Immunity Through Ancient DNA. Annu Rev Immunol 2025; 43:57-82. [PMID: 39705165 DOI: 10.1146/annurev-immunol-082323-024638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Infections have imposed strong selection pressures throughout human evolution, making the study of natural selection's effects on immunity genes highly complementary to disease-focused research. This review discusses how ancient DNA studies, which have revolutionized evolutionary genetics, increase our understanding of the evolution of human immunity. These studies have shown that interbreeding between modern humans and Neanderthals or Denisovans has influenced present-day immune responses, particularly to viruses. Additionally, ancient genomics enables the tracking of how human immunity has evolved across cultural transitions, highlighting strong selection since the Bronze Age in Europe (<4,500 years) and potential genetic adaptations to epidemics raging during the Middle Ages and the European colonization of the Americas. Furthermore, ancient genomic studies suggest that the genetic risk for noninfectious immune disorders has gradually increased over millennia because alleles associated with increased risk for autoimmunity and inflammation once conferred resistance to infections. The challenge now is to extend these findings to diverse, non-European populations and to provide a more global understanding of the evolution of human immunity.
Collapse
Affiliation(s)
- Etienne Patin
- Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Human Evolutionary Genetics Unit, Paris, France;
| | - Lluis Quintana-Murci
- Human Genomics and Evolution, Collège de France, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Human Evolutionary Genetics Unit, Paris, France;
| |
Collapse
|
3
|
Moya ND, Yan SM, McCoy RC, Andersen EC. The long and short of hyperdivergent regions. Trends Genet 2025; 41:303-314. [PMID: 39706705 PMCID: PMC11981857 DOI: 10.1016/j.tig.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024]
Abstract
The increasing prevalence of genome sequencing and assembly has uncovered evidence of hyperdivergent genomic regions - loci with excess genetic diversity - in species across the tree of life. Hyperdivergent regions are often enriched for genes that mediate environmental responses, such as immunity, parasitism, and sensory perception. Especially in self-fertilizing species where the majority of the genome is homozygous, the existence of hyperdivergent regions might imply the historical action of evolutionary forces such as introgression and/or balancing selection. We anticipate that the application of new sequencing technologies, broader taxonomic sampling, and evolutionary modeling of hyperdivergent regions will provide insights into the mechanisms that generate and maintain genetic diversity within and between species.
Collapse
Affiliation(s)
- Nicolas D Moya
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Stephanie M Yan
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Versoza CJ, Ehmke EE, Jensen JD, Pfeifer SP. Characterizing the Rates and Patterns of De Novo Germline Mutations in the Aye-Aye (Daubentonia madagascariensis). Mol Biol Evol 2025; 42:msaf034. [PMID: 40048663 PMCID: PMC11884812 DOI: 10.1093/molbev/msaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 03/09/2025] Open
Abstract
Given the many levels of biological variation in mutation rates observed to date in primates-spanning from species to individuals to genomic regions-future steps in our understanding of mutation rate evolution will not only be aided by a greater breadth of species coverage across the primate clade but also by a greater depth as afforded by an evaluation of multiple trios within individual species. In order to help bridge these gaps, we here present an analysis of a species representing one of the most basal splits on the primate tree (aye-ayes), combining whole-genome sequencing of seven parent-offspring trios from a three-generation pedigree with a novel computational pipeline that takes advantage of recently developed pan-genome graphs, thereby circumventing the application of (highly subjective) quality metrics that has previously been shown to result in notable differences in the detection of de novo mutations and ultimately estimates of mutation rates. This deep sampling has enabled both a detailed picture of parental age effects and sex dependency in mutation rates, which we here compare with previously studied primates, but has also provided unique insights into the nature of genetic variation in one of the most endangered primates on the planet.
Collapse
Affiliation(s)
- Cyril J Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Jeffrey D Jensen
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Susanne P Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
5
|
Murray CS, Karram M, Bass DJ, Doceti M, Becker D, Nunez JCB, Ratan A, Bergland AO. Trans-Specific Polymorphisms Between Cryptic Daphnia Species Affect Fitness and Behavior. Mol Ecol 2025; 34:e17632. [PMID: 39716959 PMCID: PMC11754708 DOI: 10.1111/mec.17632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/25/2024]
Abstract
Shared polymorphisms, loci with identical alleles across species, are of unique interest in evolutionary biology as they may represent cases of selection maintaining ancient genetic variation post-speciation, or contemporary selection promoting convergent evolution. In this study, we investigate the abundance of shared polymorphism between two members of the Daphnia pulex species complex. We test whether the presence of shared mutations is consistent with the action of balancing selection or alternative hypotheses such as hybridization, incomplete lineage sorting or convergent evolution. We analyzed over 2,000 genomes from six taxa in the D. pulex species group and examined the prevalence and distribution of shared alleles between the focal species pair, North American and European D. pulex. We show that North American and European D. pulex diverged over 10 million years ago, yet retained tens of thousands of shared polymorphisms. We suggest that the number of shared polymorphisms between North American and European D. pulex cannot be fully explained by hybridization or incomplete lineage sorting alone. We show that most shared polymorphisms could be the product of convergent evolution, that a limited number appear to be old trans-specific polymorphisms, and that balancing selection is affecting convergent and ancient mutations alike. Finally, we provide evidence that a blue wavelength opsin gene with trans-specific polymorphisms has functional effects on behavior and fitness in the wild.
Collapse
Affiliation(s)
- Connor S. Murray
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Genome SciencesUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Madison Karram
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - David J. Bass
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Madison Doceti
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Dörthe Becker
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- School of Biosciences, Ecology and Evolutionary BiologyUniversity of SheffieldSheffieldUK
| | - Joaquin C. B. Nunez
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of BiologyUniversity of VermontBurlingtonVermontUSA
| | - Aakrosh Ratan
- Department of Genome SciencesUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Alan O. Bergland
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
6
|
Lan WX, Mo Q, Jin MM, Wen YH, Yang MQ, Ma H, Huang HQ, Huang MJ. Exploring the phylogenetic framework and trait evolution of Impatiens through chloroplast genome analysis. BMC PLANT BIOLOGY 2024; 24:1218. [PMID: 39702025 DOI: 10.1186/s12870-024-05964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND The genus Impatiens, which includes both annual and perennial herbs, holds considerable ornamental, economic, and medicinal value. However, it posed significant challenges for taxonomic and systematic reconstruction. This was largely attributed to its high intraspecific diversity and low interspecific variation in morphological characteristics. In this study, we sequenced samples from 12 Impatiens species native to China and assessed their phylogenetic resolution using the complete chloroplast genome, in conjunction with published samples of Impatiens. In addition, a comparative analysis of chloroplast genomes were conducted to explore the evolution of the chloroplast genome in Impatiens. RESULTS The chloroplast genomes of 12 Impatiens species exhibited high similarity to previously published samples in terms of genome size, gene content, and sequence. The chloroplast genome of Impatiens exhibited a typical four-part structure, with lengths ranging from 146,987 bp(I. morsei)- 152,872 bp(I. jinpingensis). Our results identified 10 mutant hotspot regions (rps16, rps16-trnG, trnS-trnR, and rpoB-trnC) that could serve as effective molecular markers for phylogenetic analyses and species identification within the Impatiens. Phylogenetic analyses supported the classification of Impatiens as a monophyletic taxon. The identified affinities supported the taxonomic classification of the subgenus Clavicarpa within the Impatiens, with subgenus Clavicarpa being the first taxon to diverge. In phylogenetic tree,the Impatiens was divided into eight distinct clades. The results of ancestral trait reconstruction suggested that the ancestral traits of Impatiens included a perennial life cycle, four sepals and three pollen grooves. However, the ancestral morphology regarding fruit shape, flower colour, and spacing length remained ambiguous. CONCLUDE Our study largely supported the family-level taxonomic treatment of Impatiens species in China and demonstrated the utility of whole chloroplast genome sequences for phylogenetic resolution. Comparative analysis of the chloroplast genomes of Impatiens facilitated the development of molecular markers.The results of ancestral trait reconstruction showed that the ancestor type of habit was perennial, the number of sepals was 4, and morphology and number of aperture was 3 colpus. The traits of capsule shape, flower colour, and spur length underwent a complex evolutionary process. Our results provided data support for further studies and some important new insights into the evolution of the Impatiens.
Collapse
Affiliation(s)
- Wen-Xiang Lan
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Qing Mo
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Meng-Meng Jin
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Yong-Hui Wen
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Meng-Qing Yang
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Hui Ma
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Hai-Quan Huang
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, Yunnan, 650224, China.
| | - Mei-Juan Huang
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, Yunnan, 650224, China.
| |
Collapse
|
7
|
Versoza CJ, Ehmke EE, Jensen JD, Pfeifer SP. Characterizing the rates and patterns of de novo germline mutations in the aye-aye ( Daubentonia madagascariensis). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622690. [PMID: 39605388 PMCID: PMC11601268 DOI: 10.1101/2024.11.08.622690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Given the many levels of biological variation in mutation rates observed to date in primates - spanning from species to individuals to genomic regions - future steps in our understanding of mutation rate evolution will be aided by both a greater breadth of species coverage across the primate clade, but also by a greater depth as afforded by an evaluation of multiple trios within individual species. In order to help bridge these gaps, we here present an analysis of a species representing one of the most basal splits on the primate tree (aye-ayes), combining whole-genome sequencing of seven parent-offspring trios from a three-generation pedigree with a novel computational pipeline that takes advantage of recently developed pan-genome graphs, thereby circumventing the application of (highly subjective) quality metrics that has previously been shown to result in notable differences in the detection of de novo mutations, and ultimately estimates of mutation rates. This deep sampling has enabled both a detailed picture of parental age effects as well as sex dependency in mutation rates which we here compare with previously studied primates, but has also provided unique insights into the nature of genetic variation in one of the most endangered primates on the planet.
Collapse
Affiliation(s)
- Cyril J. Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Jeffrey D. Jensen
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Susanne P. Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
8
|
Soni V, Terbot JW, Versoza CJ, Pfeifer SP, Jensen JD. A whole-genome scan for evidence of recent positive and balancing selection in aye-ayes ( Daubentonia madagascariensis) utilizing a well-fit evolutionary baseline model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622667. [PMID: 39605496 PMCID: PMC11601216 DOI: 10.1101/2024.11.08.622667] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The aye-aye (Daubentonia madagascariensis) is one of the 25 most endangered primate species in the world, maintaining amongst the lowest genetic diversity of any primate measured to date. Characterizing patterns of genetic variation within aye-aye populations, and the relative influences of neutral and selective processes in shaping that variation, is thus important for future conservation efforts. In this study, we performed the first whole-genome scans for recent positive and balancing selection in the species, utilizing high-coverage population genomic data from newly sequenced individuals. We generated null thresholds for our genomic scans by creating an evolutionarily appropriate baseline model that incorporates the demographic history of this aye-aye population, and identified a small number of candidate genes. Most notably, a suite of genes involved in olfaction - a key trait in these nocturnal primates - were identified as experiencing long-term balancing selection. We also conducted analyses to quantify the expected statistical power to detect positive and balancing selection in this population using site frequency spectrum-based inference methods, once accounting for the potentially confounding contributions of population history, recombination and mutation rate variation, and purifying and background selection. This work, presenting the first high-quality, genome-wide polymorphism data across the functional regions of the aye-aye genome, thus provides important insights into the landscape of episodic selective forces in this highly endangered species.
Collapse
Affiliation(s)
- Vivak Soni
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - John W. Terbot
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Cyril J. Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Susanne P. Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jeffrey D. Jensen
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
9
|
Dodge TO, Kim BY, Baczenas JJ, Banerjee SM, Gunn TR, Donny AE, Given LA, Rice AR, Haase Cox SK, Weinstein ML, Cross R, Moran BM, Haber K, Haghani NB, Machin Kairuz JA, Gellert HR, Du K, Aguillon SM, Tudor MS, Gutiérrez-Rodríguez C, Rios-Cardenas O, Morris MR, Schartl M, Powell DL, Schumer M. Structural genomic variation and behavioral interactions underpin a balanced sexual mimicry polymorphism. Curr Biol 2024; 34:4662-4676.e9. [PMID: 39326413 DOI: 10.1016/j.cub.2024.08.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/15/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
How phenotypic diversity originates and persists within populations are classic puzzles in evolutionary biology. While balanced polymorphisms segregate within many species, it remains rare for both the genetic basis and the selective forces to be known, leading to an incomplete understanding of many classes of traits under balancing selection. Here, we uncover the genetic architecture of a balanced sexual mimicry polymorphism and identify behavioral mechanisms that may be involved in its maintenance in the swordtail fish Xiphophorus birchmanni. We find that ∼40% of X. birchmanni males develop a "false gravid spot," a melanic pigmentation pattern that mimics the "pregnancy spot" associated with sexual maturity in female live-bearing fish. Using genome-wide association mapping, we detect a single intergenic region associated with variation in the false gravid spot phenotype, which is upstream of kitlga, a melanophore patterning gene. By performing long-read sequencing within and across populations, we identify complex structural rearrangements between alternate alleles at this locus. The false gravid spot haplotype drives increased allele-specific expression of kitlga, which provides a mechanistic explanation for the increased melanophore abundance that causes the spot. By studying social interactions in the laboratory and in nature, we find that males with the false gravid spot experience less aggression; however, they also receive increased attention from other males and are disdained by females. These behavioral interactions may contribute to the maintenance of this phenotypic polymorphism in natural populations. We speculate that structural variants affecting gene regulation may be an underappreciated driver of balanced polymorphisms across diverse species.
Collapse
Affiliation(s)
- Tristram O Dodge
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México.
| | - Bernard Y Kim
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - John J Baczenas
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Shreya M Banerjee
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México; Center for Population Biology and Department of Evolution and Ecology, University of California, Davis, 475 Storer Mall, Davis, CA 95616, USA
| | - Theresa R Gunn
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México
| | - Alex E Donny
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México
| | - Lyle A Given
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Andreas R Rice
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Sophia K Haase Cox
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - M Luke Weinstein
- Department of Biological Sciences, Ohio University, 7 Depot St., Athens, OH 45701, USA
| | - Ryan Cross
- Department of Biological Sciences, Ohio University, 7 Depot St., Athens, OH 45701, USA
| | - Benjamin M Moran
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México
| | - Kate Haber
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Berkeley High School, 1980 Allston Way, Berkeley, CA 94704, USA
| | - Nadia B Haghani
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México
| | | | - Hannah R Gellert
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Kang Du
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, 601 University Drive, San Marcos, TX 78666, USA
| | - Stepfanie M Aguillon
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 612 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - M Scarlett Tudor
- Cooperative Extension and Aquaculture Research Institute, University of Maine, 33 Salmon Farm Road, Franklin, ME 04634, USA
| | - Carla Gutiérrez-Rodríguez
- Red de Biología Evolutiva, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz 91073, México
| | - Oscar Rios-Cardenas
- Red de Biología Evolutiva, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz 91073, México
| | - Molly R Morris
- Department of Biological Sciences, Ohio University, 7 Depot St., Athens, OH 45701, USA
| | - Manfred Schartl
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, 601 University Drive, San Marcos, TX 78666, USA; Developmental Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Daniel L Powell
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México; Department of Biology, Louisiana State University, 202 Life Science Building, Baton Rouge, LA 70803, USA
| | - Molly Schumer
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México; Howard Hughes Medical Institute, 327 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Karageorgiou C, Gokcumen O, Dennis MY. Deciphering the role of structural variation in human evolution: a functional perspective. Curr Opin Genet Dev 2024; 88:102240. [PMID: 39121701 PMCID: PMC11485010 DOI: 10.1016/j.gde.2024.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Advances in sequencing technologies have enabled the comparison of high-quality genomes of diverse primate species, revealing vast amounts of divergence due to structural variation. Given their large size, structural variants (SVs) can simultaneously alter the function and regulation of multiple genes. Studies estimate that collectively more than 3.5% of the genome is divergent in humans versus other great apes, impacting thousands of genes. Functional genomics and gene-editing tools in various model systems recently emerged as an exciting frontier - investigating the wide-ranging impacts of SVs on molecular, cellular, and systems-level phenotypes. This review examines existing research and identifies future directions to broaden our understanding of the functional roles of SVs on phenotypic innovations and diversity impacting uniquely human features, ranging from cognition to metabolic adaptations.
Collapse
Affiliation(s)
- Charikleia Karageorgiou
- Department of Biological Sciences, University at Buffalo, 109 Cooke Hall, Buffalo, NY 14260, USA. https://twitter.com/@evobioclio
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, 109 Cooke Hall, Buffalo, NY 14260, USA
| | - Megan Y Dennis
- Department of Biochemistry & Molecular Medicine, Genome Center, and MIND Institute, University of California, Davis, CA 95616, USA.
| |
Collapse
|
11
|
L Rocha J, Lou RN, Sudmant PH. Structural variation in humans and our primate kin in the era of telomere-to-telomere genomes and pangenomics. Curr Opin Genet Dev 2024; 87:102233. [PMID: 39042999 PMCID: PMC11695101 DOI: 10.1016/j.gde.2024.102233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
Structural variants (SVs) account for the majority of base pair differences both within and between primate species. However, our understanding of inter- and intra-species SV has been historically hampered by the quality of draft primate genomes and the absence of genome resources for key taxa. Recently, advances in long-read sequencing and genome assembly have begun to radically reshape our understanding of SVs. Two landmark achievements include the publication of a human telomere-to-telomere (T2T) genome as well as the development of the first human pangenome reference. In this review, we first look back to the major works laying the foundation for these projects. We then examine the ways in which T2T genome assemblies and pangenomes are transforming our understanding of and approach to primate SV. Finally, we discuss what the future of primate SV research may look like in the era of T2T genomes and pangenomics.
Collapse
Affiliation(s)
- Joana L Rocha
- Department of Integrative Biology, University of California, Berkeley, Berkeley, USA. https://twitter.com/@joanocha
| | - Runyang N Lou
- Department of Integrative Biology, University of California, Berkeley, Berkeley, USA. https://twitter.com/@NicolasLou10
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, USA.
| |
Collapse
|
12
|
Mullinax SR, Darby AM, Gupta A, Chan P, Smith BR, Unckless RL. A suite of selective pressures supports the maintenance of alleles of a Drosophila immune peptide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.18.553899. [PMID: 37662279 PMCID: PMC10473621 DOI: 10.1101/2023.08.18.553899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The innate immune system provides hosts with a crucial first line of defense against pathogens. While immune genes are often among the fastest evolving genes in the genome, in Drosophila , antimicrobial peptides (AMPs) are notable exceptions. Instead, AMPs may be under balancing selection, such that over evolutionary timescales multiple alleles are maintained in populations. In this study, we focus on the Drosophila antimicrobial peptide Diptericin A, which has a segregating amino acid polymorphism associated with differential survival after infection with the Gram-negative bacteria Providencia rettgeri . Diptericin A also helps control opportunistic gut infections by common Drosophila gut microbes, especially those of Lactobacillus plantarum . In addition to genotypic effects on gut immunity, we also see strong sex-specific effects that are most prominent in flies without functional diptericin A . To further characterize differences in microbiomes between different diptericin genotypes, we used 16S metagenomics to look at the microbiome composition. We used both lab reared and wild caught flies for our sequencing and looked at overall composition as well as the differential abundance of individual bacterial families. Overall, we find flies that are homozygous for one allele of diptericin A are better equipped to survive a systemic infection from P. rettgeri , but in general have a shorter lifespans after being fed common gut commensals. Our results suggest a possible mechanism for the maintenance of genetic variation of diptericin A through the complex interactions of sex, systemic immunity, and the maintenance of the gut microbiome.
Collapse
|
13
|
Cornetti L, Fields PD, Du Pasquier L, Ebert D. Long-term balancing selection for pathogen resistance maintains trans-species polymorphisms in a planktonic crustacean. Nat Commun 2024; 15:5333. [PMID: 38909039 PMCID: PMC11193740 DOI: 10.1038/s41467-024-49726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/18/2024] [Indexed: 06/24/2024] Open
Abstract
Balancing selection is an evolutionary process that maintains genetic polymorphisms at selected loci and strongly reduces the likelihood of allele fixation. When allelic polymorphisms that predate speciation events are maintained independently in the resulting lineages, a pattern of trans-species polymorphisms may occur. Trans-species polymorphisms have been identified for loci related to mating systems and the MHC, but they are generally rare. Trans-species polymorphisms in disease loci are believed to be a consequence of long-term host-parasite coevolution by balancing selection, the so-called Red Queen dynamics. Here we scan the genomes of three crustaceans with a divergence of over 15 million years and identify 11 genes containing identical-by-descent trans-species polymorphisms with the same polymorphisms in all three species. Four of these genes display molecular footprints of balancing selection and have a function related to immunity. Three of them are located in or close to loci involved in resistance to a virulent bacterial pathogen, Pasteuria, with which the Daphnia host is known to coevolve. This provides rare evidence of trans-species polymorphisms for loci known to be functionally relevant in interactions with a widespread and highly specific parasite. These findings support the theory that specific antagonistic coevolution is able to maintain genetic diversity over millions of years.
Collapse
Affiliation(s)
- Luca Cornetti
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
- Syngenta Crop Protection AG, Stein, Switzerland
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Louis Du Pasquier
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland.
| |
Collapse
|
14
|
Soni V, Jensen JD. Temporal challenges in detecting balancing selection from population genomic data. G3 (BETHESDA, MD.) 2024; 14:jkae069. [PMID: 38551137 DOI: 10.1093/g3journal/jkae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/21/2023] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
The role of balancing selection in maintaining genetic variation remains an open question in population genetics. Recent years have seen numerous studies identifying candidate loci potentially experiencing balancing selection, most predominantly in human populations. There are however numerous alternative evolutionary processes that may leave similar patterns of variation, thereby potentially confounding inference, and the expected signatures of balancing selection additionally change in a temporal fashion. Here we use forward-in-time simulations to quantify expected statistical power to detect balancing selection using both site frequency spectrum- and linkage disequilibrium-based methods under a variety of evolutionarily realistic null models. We find that whilst site frequency spectrum-based methods have little power immediately after a balanced mutation begins segregating, power increases with time since the introduction of the balanced allele. Conversely, linkage disequilibrium-based methods have considerable power whilst the allele is young, and power dissipates rapidly as the time since introduction increases. Taken together, this suggests that site frequency spectrum-based methods are most effective at detecting long-term balancing selection (>25N generations since the introduction of the balanced allele) whilst linkage disequilibrium-based methods are effective over much shorter timescales (<1N generations), thereby leaving a large time frame over which current methods have little power to detect the action of balancing selection. Finally, we investigate the extent to which alternative evolutionary processes may mimic these patterns, and demonstrate the need for caution in attempting to distinguish the signatures of balancing selection from those of both neutral processes (e.g. population structure and admixture) as well as of alternative selective processes (e.g. partial selective sweeps).
Collapse
Affiliation(s)
- Vivak Soni
- School of Life Sciences, Center for Evolution & Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Jeffrey D Jensen
- School of Life Sciences, Center for Evolution & Medicine, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
15
|
Knief U, Müller IA, Stryjewski KF, Metzler D, Sorenson MD, Wolf JBW. Evolution of Chromosomal Inversions across an Avian Radiation. Mol Biol Evol 2024; 41:msae092. [PMID: 38743589 PMCID: PMC11152452 DOI: 10.1093/molbev/msae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/05/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Chromosomal inversions are structural mutations that can play a prominent role in adaptation and speciation. Inversions segregating across species boundaries (trans-species inversions) are often taken as evidence for ancient balancing selection or adaptive introgression, but can also be due to incomplete lineage sorting. Using whole-genome resequencing data from 18 populations of 11 recognized munia species in the genus Lonchura (N = 176 individuals), we identify four large para- and pericentric inversions ranging in size from 4 to 20 Mb. All four inversions cosegregate across multiple species and predate the numerous speciation events associated with the rapid radiation of this clade across the prehistoric Sahul (Australia, New Guinea) and Bismarck Archipelago. Using coalescent theory, we infer that trans-specificity is improbable for neutrally segregating variation despite substantial incomplete lineage sorting characterizing this young radiation. Instead, the maintenance of all three autosomal inversions (chr1, chr5, and chr6) is best explained by selection acting along ecogeographic clines not observed for the collinear parts of the genome. In addition, the sex chromosome inversion largely aligns with species boundaries and shows signatures of repeated positive selection for both alleles. This study provides evidence for trans-species inversion polymorphisms involved in both adaptation and speciation. It further highlights the importance of informing selection inference using a null model of neutral evolution derived from the collinear part of the genome.
Collapse
Affiliation(s)
- Ulrich Knief
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
- Evolutionary Biology & Ecology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ingo A Müller
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 11418 Stockholm, Sweden
- Division of Systematics and Evolution, Department of Zoology, Stockholm University, 11418 Stockholm, Sweden
| | | | - Dirk Metzler
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | | | - Jochen B W Wolf
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
16
|
Murray CS, Karram M, Bass DJ, Doceti M, Becker D, Nunez JCB, Ratan A, Bergland AO. Balancing selection and the functional effects of shared polymorphism in cryptic Daphnia species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589693. [PMID: 38659826 PMCID: PMC11042267 DOI: 10.1101/2024.04.16.589693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The patterns of genetic variation within and between related taxa represent the genetic history of a species. Shared polymorphisms, loci with identical alleles across species, are of unique interest as they may represent cases of ancient selection maintaining functional variation post-speciation. In this study, we investigate the abundance of shared polymorphism in the Daphnia pulex species complex. We test whether shared mutations are consistent with the action of balancing selection or alternative hypotheses such as hybridization, incomplete lineage sorting, or convergent evolution. We analyzed over 2,000 genomes from North American and European D. pulex and several outgroup species to examine the prevalence and distribution of shared alleles between the focal species pair, North American and European D. pulex. We show that while North American and European D. pulex diverged over ten million years ago, they retained tens of thousands of shared alleles. We found that the number of shared polymorphisms between North American and European D. pulex cannot be explained by hybridization or incomplete lineage sorting alone. Instead, we show that most shared polymorphisms could be the product of convergent evolution, that a limited number appear to be old trans-specific polymorphisms, and that balancing selection is affecting young and ancient mutations alike. Finally, we provide evidence that a blue wavelength opsin gene with trans-specific polymorphisms has functional effects on behavior and fitness in the wild. Ultimately, our findings provide insights into the genetic basis of adaptation and the maintenance of genetic diversity between species.
Collapse
Affiliation(s)
- Connor S. Murray
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Madison Karram
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - David J. Bass
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Madison Doceti
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Dörthe Becker
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK
| | | | - Aakrosh Ratan
- Center of Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Alan O. Bergland
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
17
|
Paul K, Restoux G, Phocas F. Genome-wide detection of positive and balancing signatures of selection shared by four domesticated rainbow trout populations (Oncorhynchus mykiss). Genet Sel Evol 2024; 56:13. [PMID: 38389056 PMCID: PMC10882880 DOI: 10.1186/s12711-024-00884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Evolutionary processes leave footprints along the genome over time. Highly homozygous regions may correspond to positive selection of favorable alleles, while maintenance of heterozygous regions may be due to balancing selection phenomena. We analyzed data from 176 fish from four disconnected domestic rainbow trout populations that were genotyped using a high-density Axiom Trout genotyping 665K single nucleotide polymorphism array, including 20 from the US and 156 from three French lines. Using methods based on runs of homozygosity and extended haplotype homozygosity, we detected signatures of selection in these four populations. RESULTS Nine genomic regions that included 253 genes were identified as being under positive selection in all four populations Most were located on chromosome 2 but also on chromosomes 12, 15, 16, and 20. In addition, four heterozygous regions that contain 29 genes that are putatively under balancing selection were also shared by the four populations. These were located on chromosomes 10, 13, and 19. Regardless of the homozygous or heterozygous nature of the regions, in each region, we detected several genes that are highly conserved among vertebrates due to their critical roles in cellular and nuclear organization, embryonic development, or immunity. We identified new candidate genes involved in rainbow trout fitness, as well as 17 genes that were previously identified to be under positive selection, 10 of which in other fishes (auts2, atp1b3, zp4, znf135, igf-1α, brd2, col9a2, mrap2, pbx1, and emilin-3). CONCLUSIONS Using material from disconnected populations of different origins allowed us to draw a genome-wide map of signatures of positive selection that are shared between these rainbow trout populations, and to identify several regions that are putatively under balancing selection. These results provide a valuable resource for future investigations of the dynamics of genetic diversity and genome evolution during domestication.
Collapse
Affiliation(s)
- Katy Paul
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Gwendal Restoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Florence Phocas
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| |
Collapse
|
18
|
Pennance T, Calvelo J, Tennessen JA, Burd R, Cayton J, Bollmann SR, Blouin MS, Spaan JM, Hoffmann FG, Ogara G, Rawago F, Andiego K, Mulonga B, Odhiambo M, Loker ES, Laidemitt MR, Lu L, Iriarte A, Odiere MR, Steinauer ML. The genome and transcriptome of the snail Biomphalaria sudanica s.l.: immune gene diversification and highly polymorphic genomic regions in an important African vector of Schistosoma mansoni. BMC Genomics 2024; 25:192. [PMID: 38373909 PMCID: PMC10875847 DOI: 10.1186/s12864-024-10103-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Control and elimination of schistosomiasis is an arduous task, with current strategies proving inadequate to break transmission. Exploration of genetic approaches to interrupt Schistosoma mansoni transmission, the causative agent for human intestinal schistosomiasis in sub-Saharan Africa and South America, has led to genomic research of the snail vector hosts of the genus Biomphalaria. Few complete genomic resources exist, with African Biomphalaria species being particularly underrepresented despite this being where the majority of S. mansoni infections occur. Here we generate and annotate the first genome assembly of Biomphalaria sudanica sensu lato, a species responsible for S. mansoni transmission in lake and marsh habitats of the African Rift Valley. Supported by whole-genome diversity data among five inbred lines, we describe orthologs of immune-relevant gene regions in the South American vector B. glabrata and present a bioinformatic pipeline to identify candidate novel pathogen recognition receptors (PRRs). RESULTS De novo genome and transcriptome assembly of inbred B. sudanica originating from the shoreline of Lake Victoria (Kisumu, Kenya) resulted in a haploid genome size of ~ 944.2 Mb (6,728 fragments, N50 = 1.067 Mb), comprising 23,598 genes (BUSCO = 93.6% complete). The B. sudanica genome contains orthologues to all described immune genes/regions tied to protection against S. mansoni in B. glabrata, including the polymorphic transmembrane clusters (PTC1 and PTC2), RADres, and other loci. The B. sudanica PTC2 candidate immune genomic region contained many PRR-like genes across a much wider genomic region than has been shown in B. glabrata, as well as a large inversion between species. High levels of intra-species nucleotide diversity were seen in PTC2, as well as in regions linked to PTC1 and RADres orthologues. Immune related and putative PRR gene families were significantly over-represented in the sub-set of B. sudanica genes determined as hyperdiverse, including high extracellular diversity in transmembrane genes, which could be under pathogen-mediated balancing selection. However, no overall expansion in immunity related genes was seen in African compared to South American lineages. CONCLUSIONS The B. sudanica genome and analyses presented here will facilitate future research in vector immune defense mechanisms against pathogens. This genomic/transcriptomic resource provides necessary data for the future development of molecular snail vector control/surveillance tools, facilitating schistosome transmission interruption mechanisms in Africa.
Collapse
Affiliation(s)
- Tom Pennance
- College of Osteopathic Medicine of the Pacific - Northwest, Western University of Health Sciences, Lebanon, OR, USA.
| | - Javier Calvelo
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Universidad de La República, Montevideo, 11600, Uruguay
| | | | - Ryan Burd
- College of Osteopathic Medicine of the Pacific - Northwest, Western University of Health Sciences, Lebanon, OR, USA
| | - Jared Cayton
- College of Osteopathic Medicine of the Pacific - Northwest, Western University of Health Sciences, Lebanon, OR, USA
| | | | | | - Johannie M Spaan
- College of Osteopathic Medicine of the Pacific - Northwest, Western University of Health Sciences, Lebanon, OR, USA
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS, USA
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS, USA
| | - George Ogara
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Fredrick Rawago
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Kennedy Andiego
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Boaz Mulonga
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Meredith Odhiambo
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Eric S Loker
- Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Martina R Laidemitt
- Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Lijun Lu
- Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Universidad de La República, Montevideo, 11600, Uruguay
| | - Maurice R Odiere
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Michelle L Steinauer
- College of Osteopathic Medicine of the Pacific - Northwest, Western University of Health Sciences, Lebanon, OR, USA.
| |
Collapse
|
19
|
Hayeck TJ, Li Y, Mosbruger TL, Bradfield JP, Gleason AG, Damianos G, Shaw GTW, Duke JL, Conlin LK, Turner TN, Fernández-Viña MA, Sarmady M, Monos DS. The Impact of Patterns in Linkage Disequilibrium and Sequencing Quality on the Imprint of Balancing Selection. Genome Biol Evol 2024; 16:evae009. [PMID: 38302106 PMCID: PMC10853003 DOI: 10.1093/gbe/evae009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
Regions under balancing selection are characterized by dense polymorphisms and multiple persistent haplotypes, along with other sequence complexities. Successful identification of these patterns depends on both the statistical approach and the quality of sequencing. To address this challenge, at first, a new statistical method called LD-ABF was developed, employing efficient Bayesian techniques to effectively test for balancing selection. LD-ABF demonstrated the most robust detection of selection in a variety of simulation scenarios, compared against a range of existing tests/tools (Tajima's D, HKA, Dng, BetaScan, and BalLerMix). Furthermore, the impact of the quality of sequencing on detection of balancing selection was explored, as well, using: (i) SNP genotyping and exome data, (ii) targeted high-resolution HLA genotyping (IHIW), and (iii) whole-genome long-read sequencing data (Pangenome). In the analysis of SNP genotyping and exome data, we identified known targets and 38 new selection signatures in genes not previously linked to balancing selection. To further investigate the impact of sequencing quality on detection of balancing selection, a detailed investigation of the MHC was performed with high-resolution HLA typing data. Higher quality sequencing revealed the HLA-DQ genes consistently demonstrated strong selection signatures otherwise not observed from the sparser SNP array and exome data. The HLA-DQ selection signature was also replicated in the Pangenome samples using considerably less samples but, with high-quality long-read sequence data. The improved statistical method, coupled with higher quality sequencing, leads to more consistent identification of selection and enhanced localization of variants under selection, particularly in complex regions.
Collapse
Affiliation(s)
- Tristan J Hayeck
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yang Li
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy L Mosbruger
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Adam G Gleason
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - George Damianos
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Grace Tzun-Wen Shaw
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jamie L Duke
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura K Conlin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tychele N Turner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marcelo A Fernández-Viña
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, USA
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, USA
| | - Mahdi Sarmady
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dimitri S Monos
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Raja A, Kuiper JJW. Evolutionary immuno-genetics of endoplasmic reticulum aminopeptidase II (ERAP2). Genes Immun 2023; 24:295-302. [PMID: 37925533 PMCID: PMC10721543 DOI: 10.1038/s41435-023-00225-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Endoplasmic reticulum aminopeptidase 2 (ERAP2) is a proteolytic enzyme involved in adaptive immunity. The ERAP2 gene is highly polymorphic and encodes haplotypes that confer resistance against lethal infectious diseases, but also increase the risk for autoimmune disorders. Identifying how ERAP2 influences susceptibility to these traits requires an understanding of the selective pressures that shaped and maintained allelic variation throughout human evolution. Our review discusses the genetic regulation of haplotypes and diversity in naturally occurring ERAP2 allotypes in the global population. We outline how these ERAP2 haplotypes evolved during human history and highlight the presence of Neanderthal DNA sequences in ERAP2 of modern humans. Recent evidence suggests that human adaptation during the last ~10,000 years and historic pandemics left a significant mark on the ERAP2 gene that determines susceptibility to infectious and inflammatory diseases today.
Collapse
Affiliation(s)
- Aroosha Raja
- Department of Ophthalmology, Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Jonas J W Kuiper
- Department of Ophthalmology, Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
21
|
Truong L, Matern BM, El-Lagta N, Mobegi FM, Askar M, Ogret Y, Oguz FS, Kwok J, D'Orsogna L, Martinez P, Petersdorf E, Tilanus MGJ, De Santis D. Report from the extended HLA-DPA1 ~ promoter ~ HLA-DPB1 haplotype of the 18th international HLA and immunogenetics workshop. HLA 2023; 102:690-706. [PMID: 37452528 DOI: 10.1111/tan.15155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/04/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
The primary goal of the HLA-DPA1 ~ promoter ~ HLA-DPB1 haplotype component of the 18th IHIWS was to characterise the extended haplotypes within the HLA-DP region and survey the extent of genetic diversity in this region across human populations. In this report, we analysed single-nucleotide polymorphisms (SNPs) in 255 subjects from 6 different cohorts. The results from the HLA-DP haplotype component have validated findings from the initial pilot study. SNPs in this region were inherited in strong linkage, particularly HLA-DPA1, SNP-linked promoter haplotypes and motifs in exon 2 of HLA-DPB1. We reported 17 SNP-linked haplotypes in the promoter region. Together with HLA-DPA1 and HLA-DPB1 alleles, they formed 74 distinct extended HLA-DP haplotypes in 438 sequences. We also observed the presence of region-specific alleles and promoter haplotypes. Our approach involved phasing extended SNPs including promoter SNPs, HLA-DPA1 and HLA-DPB1 alleles, in a 22 kb region, GRCh38/hg38 (chr6:33,064,111-33,086,679), followed by clustering of these SNPs as one extended haplotype. This hierarchical clustering revealed four major clades, suggesting that haplotypes within each clade may have diverged from a common ancestral haplotype and undergone similar evolutionary processes. The correlation between HLA-DPA1 and the promoter region raises questions about the role of HLA-DPA1 antigen in the heterodimer. This finding requires validation on a larger sample size specifically designed for anthropological analysis. Nevertheless, the results from this study highlight the clinical potential of selecting better-matched donors for patients awaiting haematopoietic stem cell transplants from genetically overlapping groups that share common ancestral haplotypes.
Collapse
Affiliation(s)
- Linh Truong
- Department of Clinical Immunology, PathWest, Fiona Stanley Hospital, Perth, Western Australia, Australia
- UWA Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Benedict M Matern
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
| | - Naser El-Lagta
- Department of Clinical Immunology, PathWest, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Fredrick M Mobegi
- Department of Clinical Immunology, PathWest, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Medhat Askar
- QU Health Cluster & Department of Basic Sciences, College of Medicine, Qatar University, Doha, Qatar
| | - Yeliz Ogret
- Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Fatma S Oguz
- Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Janette Kwok
- Division of Transplantation and Immunogenetics, Queen Mary Hospital, Hong Kong, China
| | - Lloyd D'Orsogna
- Department of Clinical Immunology, PathWest, Fiona Stanley Hospital, Perth, Western Australia, Australia
- UWA Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Patricia Martinez
- Department of Clinical Immunology, PathWest, Fiona Stanley Hospital, Perth, Western Australia, Australia
- UWA Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Effie Petersdorf
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Marcel G J Tilanus
- School for Oncology and Reproduction, GROW, Maastricht University, Maastricht, Netherlands
| | - Dianne De Santis
- Department of Clinical Immunology, PathWest, Fiona Stanley Hospital, Perth, Western Australia, Australia
- UWA Medical School, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
22
|
Urnikyte A, Masiulyte A, Pranckeniene L, Kučinskas V. Disentangling archaic introgression and genomic signatures of selection at human immunity genes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105528. [PMID: 37977419 DOI: 10.1016/j.meegid.2023.105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Pathogens and infectious diseases have imposed exceptionally strong selective pressure on ancient and modern human genomes and contributed to the current variation in many genes. There is evidence that modern humans acquired immune variants through interbreeding with ancient hominins, but the impact of such variants on human traits is not fully understood. The main objectives of this research were to infer the genetic signatures of positive selection that may be involved in adaptation to infectious diseases and to investigate the function of Neanderthal alleles identified within a set of 50 Lithuanian genomes. Introgressed regions were identified using the machine learning tool ArchIE. Recent positive selection signatures were analysed using iHS. We detected high-scoring signals of positive selection at innate immunity genes (EMB, PARP8, HLAC, and CDSN) and evaluated their interactions with the structural proteins of pathogens. Interactions with human immunodeficiency virus (HIV) 1 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were identified. Overall, genomic regions introgressed from Neanderthals were shown to be enriched in genes related to immunity, keratinocyte differentiation, and sensory perception.
Collapse
Affiliation(s)
- Alina Urnikyte
- Faculty of Medicine, Department of Human and Medical Genetics, Institute of Biomedical Sciences, Vilnius University, Santariskiu Street 2, Vilnius LT-08661, Lithuania.
| | - Abigaile Masiulyte
- Faculty of Medicine, Department of Human and Medical Genetics, Institute of Biomedical Sciences, Vilnius University, Santariskiu Street 2, Vilnius LT-08661, Lithuania
| | - Laura Pranckeniene
- Faculty of Medicine, Department of Human and Medical Genetics, Institute of Biomedical Sciences, Vilnius University, Santariskiu Street 2, Vilnius LT-08661, Lithuania.
| | - Vaidutis Kučinskas
- Faculty of Medicine, Department of Human and Medical Genetics, Institute of Biomedical Sciences, Vilnius University, Santariskiu Street 2, Vilnius LT-08661, Lithuania.
| |
Collapse
|
23
|
Stevens L, Martínez-Ugalde I, King E, Wagah M, Absolon D, Bancroft R, Gonzalez de la Rosa P, Hall JL, Kieninger M, Kloch A, Pelan S, Robertson E, Pedersen AB, Abreu-Goodger C, Buck AH, Blaxter M. Ancient diversity in host-parasite interaction genes in a model parasitic nematode. Nat Commun 2023; 14:7776. [PMID: 38012132 PMCID: PMC10682056 DOI: 10.1038/s41467-023-43556-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
Host-parasite interactions exert strong selection pressures on the genomes of both host and parasite. These interactions can lead to negative frequency-dependent selection, a form of balancing selection that is hypothesised to explain the high levels of polymorphism seen in many host immune and parasite antigen loci. Here, we sequence the genomes of several individuals of Heligmosomoides bakeri, a model parasite of house mice, and Heligmosomoides polygyrus, a closely related parasite of wood mice. Although H. bakeri is commonly referred to as H. polygyrus in the literature, their genomes show levels of divergence that are consistent with at least a million years of independent evolution. The genomes of both species contain hyper-divergent haplotypes that are enriched for proteins that interact with the host immune response. Many of these haplotypes originated prior to the divergence between H. bakeri and H. polygyrus, suggesting that they have been maintained by long-term balancing selection. Together, our results suggest that the selection pressures exerted by the host immune response have played a key role in shaping patterns of genetic diversity in the genomes of parasitic nematodes.
Collapse
Affiliation(s)
- Lewis Stevens
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK.
| | - Isaac Martínez-Ugalde
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Erna King
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | - Martin Wagah
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | | | - Rowan Bancroft
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Jessica L Hall
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Sarah Pelan
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | - Elaine Robertson
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Amy B Pedersen
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Cei Abreu-Goodger
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Amy H Buck
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
24
|
Levi R, Levi L, Louzoun Y. Bw4 ligand and direct T-cell receptor binding induced selection on HLA A and B alleles. Front Immunol 2023; 14:1236080. [PMID: 38077375 PMCID: PMC10703150 DOI: 10.3389/fimmu.2023.1236080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction The HLA region is the hallmark of balancing selection, argued to be driven by the pressure to present a wide variety of viral epitopes. As such selection on the peptide-binding positions has been proposed to drive HLA population genetics. MHC molecules also directly binds to the T-Cell Receptor and killer cell immunoglobulin-like receptors (KIR). Methods We here combine the HLA allele frequencies in over six-million Hematopoietic Stem Cells (HSC) donors with a novel machine-learning-based method to predict allele frequency. Results We show for the first time that allele frequency can be predicted from their sequences. This prediction yields a natural measure for selection. The strongest selection is affecting KIR binding regions, followed by the peptide-binding cleft. The selection from the direct interaction with the KIR and TCR is centered on positively charged residues (mainly Arginine), and some positions in the peptide-binding cleft are not associated with the allele frequency, especially Tyrosine residues. Discussion These results suggest that the balancing selection for peptide presentation is combined with a positive selection for KIR and TCR binding.
Collapse
Affiliation(s)
| | | | - Yoram Louzoun
- Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
25
|
Pennance T, Calvelo J, Tennessen JA, Burd R, Cayton J, Bollmann SR, Blouin MS, Spaan JM, Hoffmann FG, Ogara G, Rawago F, Andiego K, Mulonga B, Odhiambo M, Loker ES, Laidemitt MR, Lu L, Iriarte A, Odiere M, Steinauer ML. The genome and transcriptome of the snail Biomphalaria sudanica s.l.: Immune gene diversification and highly polymorphic genomic regions in an important African vector of Schistosoma mansoni. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565203. [PMID: 37961413 PMCID: PMC10635097 DOI: 10.1101/2023.11.01.565203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Control and elimination of schistosomiasis is an arduous task, with current strategies proving inadequate to break transmission. Exploration of genetic approaches to interrupt Schistosoma mansoni transmission, the causative agent for human intestinal schistosomiasis in sub-Saharan Africa and South America, has led to genomic research of the snail vector hosts of the genus Biomphalaria. Few complete genomic resources exist, with African Biomphalaria species being particularly underrepresented despite this being where the majority of S. mansoni infections occur. Here we generate and annotate the first genome assembly of Biomphalaria sudanica sensu lato, a species responsible for S. mansoni transmission in lake and marsh habitats of the African Rift Valley. Supported by whole-genome diversity data among five inbred lines, we describe orthologs of immune-relevant gene regions in the South American vector B. glabrata and present a bioinformatic pipeline to identify candidate novel pathogen recognition receptors (PRRs). Results De novo genome and transcriptome assembly of inbred B. sudanica originating from the shoreline of Lake Victoria (Kisumu, Kenya) resulted in a haploid genome size of ~944.2 Mb (6732 fragments, N50=1.067 Mb), comprising 23,598 genes (BUSCO=93.6% complete). The B. sudanica genome contains orthologues to all described immune genes/regions tied to protection against S. mansoni in B. glabrata. The B. sudanica PTC2 candidate immune genomic region contained many PRR-like genes across a much wider genomic region than has been shown in B. glabrata, as well as a large inversion between species. High levels of intra-species nucleotide diversity were seen in PTC2, as well as in regions linked to PTC1 and RADres orthologues. Immune related and putative PRR gene families were significantly over-represented in the sub-set of B. sudanica genes determined as hyperdiverse, including high extracellular diversity in transmembrane genes, which could be under pathogen-mediated balancing selection. However, no overall expansion in immunity related genes were seen in African compared to South American lineages. Conclusions The B. sudanica genome and analyses presented here will facilitate future research in vector immune defense mechanisms against pathogens. This genomic/transcriptomic resource provides necessary data for the future development of molecular snail vector control/surveillance tools, facilitating schistosome transmission interruption mechanisms in Africa.
Collapse
Affiliation(s)
- Tom Pennance
- College of Osteopathic Medicine of the Pacific – Northwest, Western University of Health Sciences, Lebanon OR, USA
| | - Javier Calvelo
- Laboratorio Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | | | - Ryan Burd
- College of Osteopathic Medicine of the Pacific – Northwest, Western University of Health Sciences, Lebanon OR, USA
| | - Jared Cayton
- College of Osteopathic Medicine of the Pacific – Northwest, Western University of Health Sciences, Lebanon OR, USA
| | | | | | - Johannie M. Spaan
- College of Osteopathic Medicine of the Pacific – Northwest, Western University of Health Sciences, Lebanon OR, USA
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS USA
| | - George Ogara
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Fredrick Rawago
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Kennedy Andiego
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Boaz Mulonga
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Meredith Odhiambo
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Eric S. Loker
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A
| | - Martina R. Laidemitt
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A
| | - Lijun Lu
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A
| | - Andrés Iriarte
- Laboratorio Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Maurice Odiere
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS USA
| | - Michelle L. Steinauer
- College of Osteopathic Medicine of the Pacific – Northwest, Western University of Health Sciences, Lebanon OR, USA
| |
Collapse
|
26
|
Pivirotto AM, Platt A, Patel R, Kumar S, Hey J. Analyses of allele age and fitness impact reveal human beneficial alleles to be older than neutral controls. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561569. [PMID: 37873438 PMCID: PMC10592680 DOI: 10.1101/2023.10.09.561569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A classic population genetic prediction is that alleles experiencing directional selection should swiftly traverse allele frequency space, leaving detectable reductions in genetic variation in linked regions. However, despite this expectation, identifying clear footprints of beneficial allele passage has proven to be surprisingly challenging. We addressed the basic premise underlying this expectation by estimating the ages of large numbers of beneficial and deleterious alleles in a human population genomic data set. Deleterious alleles were found to be young, on average, given their allele frequency. However, beneficial alleles were older on average than non-coding, non-regulatory alleles of the same frequency. This finding is not consistent with directional selection and instead indicates some type of balancing selection. Among derived beneficial alleles, those fixed in the population show higher local recombination rates than those still segregating, consistent with a model in which new beneficial alleles experience an initial period of balancing selection due to linkage disequilibrium with deleterious recessive alleles. Alleles that ultimately fix following a period of balancing selection will leave a modest 'soft' sweep impact on the local variation, consistent with the overall paucity of species-wide 'hard' sweeps in human genomes.
Collapse
Affiliation(s)
| | - Alexander Platt
- Temple University, Department of Biology, Philadelphia PA 19122, USA
- University of Pennsylvania, Department of Genetics, Philadelphia PA 19104, USA
| | - Ravi Patel
- Temple University, Department of Biology, Philadelphia PA 19122, USA
- Institute for Genomics and Evolutionary Medicine, Temple University, PA 19122, USA
| | - Sudhir Kumar
- Temple University, Department of Biology, Philadelphia PA 19122, USA
- Institute for Genomics and Evolutionary Medicine, Temple University, PA 19122, USA
| | - Jody Hey
- Temple University, Department of Biology, Philadelphia PA 19122, USA
| |
Collapse
|
27
|
Zhao S, Chi L, Chen H. CEGA: a method for inferring natural selection by comparative population genomic analysis across species. Genome Biol 2023; 24:219. [PMID: 37789379 PMCID: PMC10548728 DOI: 10.1186/s13059-023-03068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
We developed maximum likelihood method for detecting positive selection or balancing selection using multilocus or genomic polymorphism and divergence data from two species. The method is especially useful for investigating natural selection in noncoding regions. Simulations demonstrate that the method outperforms existing methods in detecting both positive and balancing selection. We apply the method to population genomic data from human and chimpanzee. The list of genes identified under selection in the noncoding regions is prominently enriched in pathways related to the brain and nervous system. Therefore, our method will serve as a useful tool for comparative population genomic analysis.
Collapse
Affiliation(s)
- Shilei Zhao
- CAS Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- School of Future Technology, College of Life Sciences and Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lianjiang Chi
- CAS Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Hua Chen
- CAS Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- School of Future Technology, College of Life Sciences and Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
28
|
Gao H, Hamp T, Ede J, Schraiber JG, McRae J, Singer-Berk M, Yang Y, Dietrich ASD, Fiziev PP, Kuderna LFK, Sundaram L, Wu Y, Adhikari A, Field Y, Chen C, Batzoglou S, Aguet F, Lemire G, Reimers R, Balick D, Janiak MC, Kuhlwilm M, Orkin JD, Manu S, Valenzuela A, Bergman J, Rousselle M, Silva FE, Agueda L, Blanc J, Gut M, de Vries D, Goodhead I, Harris RA, Raveendran M, Jensen A, Chuma IS, Horvath JE, Hvilsom C, Juan D, Frandsen P, de Melo FR, Bertuol F, Byrne H, Sampaio I, Farias I, do Amaral JV, Messias M, da Silva MNF, Trivedi M, Rossi R, Hrbek T, Andriaholinirina N, Rabarivola CJ, Zaramody A, Jolly CJ, Phillips-Conroy J, Wilkerson G, Abee C, Simmons JH, Fernandez-Duque E, Kanthaswamy S, Shiferaw F, Wu D, Zhou L, Shao Y, Zhang G, Keyyu JD, Knauf S, Le MD, Lizano E, Merker S, Navarro A, Bataillon T, Nadler T, Khor CC, Lee J, Tan P, Lim WK, Kitchener AC, Zinner D, Gut I, Melin A, Guschanski K, Schierup MH, Beck RMD, Umapathy G, Roos C, Boubli JP, Lek M, Sunyaev S, O'Donnell-Luria A, Rehm HL, Xu J, Rogers J, Marques-Bonet T, Farh KKH. The landscape of tolerated genetic variation in humans and primates. Science 2023; 380:eabn8153. [PMID: 37262156 DOI: 10.1126/science.abn8197] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/22/2023] [Indexed: 06/03/2023]
Abstract
Personalized genome sequencing has revealed millions of genetic differences between individuals, but our understanding of their clinical relevance remains largely incomplete. To systematically decipher the effects of human genetic variants, we obtained whole-genome sequencing data for 809 individuals from 233 primate species and identified 4.3 million common protein-altering variants with orthologs in humans. We show that these variants can be inferred to have nondeleterious effects in humans based on their presence at high allele frequencies in other primate populations. We use this resource to classify 6% of all possible human protein-altering variants as likely benign and impute the pathogenicity of the remaining 94% of variants with deep learning, achieving state-of-the-art accuracy for diagnosing pathogenic variants in patients with genetic diseases.
Collapse
Affiliation(s)
- Hong Gao
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Tobias Hamp
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Jeffrey Ede
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Joshua G Schraiber
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Jeremy McRae
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Moriel Singer-Berk
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, 02142, USA
| | - Yanshen Yang
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | | | - Petko P Fiziev
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Lukas F K Kuderna
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Laksshman Sundaram
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Yibing Wu
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Aashish Adhikari
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Yair Field
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Chen Chen
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Serafim Batzoglou
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Francois Aguet
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| | - Gabrielle Lemire
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, 02142, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Rebecca Reimers
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel Balick
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mareike C Janiak
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Martin Kuhlwilm
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, 1030 Vienna, Austria
| | - Joseph D Orkin
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Département d'anthropologie, Université de Montréal, 3150 Jean-Brillant, Montréal, QC H3T 1N8, Canada
| | - Shivakumara Manu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Alejandro Valenzuela
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Juraj Bergman
- Bioinformatics Research Centre, Aarhus University, Aarhus 8000, Denmark
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | | | - Felipe Ennes Silva
- Research Group on Primate Biology and Conservation, Mamirauá Institute for Sustainable Development, Estrada da Bexiga 2584, Tefé, Amazonas, CEP 69553-225, Brazil
- Evolutionary Biology and Ecology (EBE), Département de Biologie des Organismes, Université libre de Bruxelles (ULB), Av. Franklin D. Roosevelt 50, CP 160/12, B-1050 Brussels, Belgium
| | - Lidia Agueda
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Julie Blanc
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Dorien de Vries
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Ian Goodhead
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - R Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Axel Jensen
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, SE-75236 Uppsala, Sweden
| | | | - Julie E Horvath
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - David Juan
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | | | - Fabrício Bertuol
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas, 69080-900, Brazil
| | - Hazel Byrne
- Department of Anthropology, University of Utah, Salt Lake City, UT 84102, USA
| | - Iracilda Sampaio
- Universidade Federal do Para, Guamá, Belém - PA, 66075-110, Brazil
| | - Izeni Farias
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas, 69080-900, Brazil
| | - João Valsecchi do Amaral
- Research Group on Terrestrial Vertebrate Ecology, Mamirauá Institute for Sustainable Development, Tefé, Amazonas, 69553-225, Brazil
- Rede de Pesquisa para Estudos sobre Diversidade, Conservação e Uso da Fauna na Amazônia - RedeFauna, Manaus, Amazonas, 69080-900, Brazil
- Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica - ComFauna, Iquitos, Loreto, 16001, Peru
| | - Mariluce Messias
- Universidade Federal de Rondonia, Porto Velho, Rondônia, 78900-000, Brazil
- PPGREN - Programa de Pós-Graduação "Conservação e Uso dos Recursos Naturais and BIONORTE - Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, Universidade Federal de Rondonia, Porto Velho, Rondônia, 78900-000, Brazil
| | - Maria N F da Silva
- Instituto Nacional de Pesquisas da Amazonia, Petrópolis, Manaus - AM, 69067-375, Brazil
| | - Mihir Trivedi
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Rogerio Rossi
- Universidade Federal do Mato Grosso, Boa Esperança, Cuiabá - MT, 78060-900, Brazil
| | - Tomas Hrbek
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas, 69080-900, Brazil
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Nicole Andriaholinirina
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, 401, Madagascar
| | - Clément J Rabarivola
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, 401, Madagascar
| | - Alphonse Zaramody
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, 401, Madagascar
| | | | | | - Gregory Wilkerson
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christian Abee
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joe H Simmons
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eduardo Fernandez-Duque
- Yale University, New Haven, CT 06520, USA
- Universidad Nacional de Formosa, Argentina Fundacion ECO, Formosa, Argentina
| | | | - Fekadu Shiferaw
- Guinea Worm Eradication Program, The Carter Center Ethiopia, PoB 16316, Addis Ababa 1000, Ethiopia
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Long Zhou
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Guojie Zhang
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
- Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Shangcheng District, Hangzhou 310006, China
| | - Julius D Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), Head Office, P.O. Box 661, Arusha, Tanzania
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald - Insei Riems, Germany
| | - Minh D Le
- Department of Environmental Ecology, Faculty of Environmental Sciences, University of Science and Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi 100000, Vietnam
| | - Esther Lizano
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
| | - Stefan Merker
- Department of Zoology, State Museum of Natural History Stuttgart, 70191 Stuttgart, Germany
| | - Arcadi Navarro
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Av. Doctor Aiguader, N88, 08003 Barcelona, Spain
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, C. Wellington 30, 08005 Barcelona, Spain
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, Aarhus 8000, Denmark
| | - Tilo Nadler
- Cuc Phuong Commune, Nho Quan District, Ninh Binh Province 430000, Vietnam
| | - Chiea Chuen Khor
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Jessica Lee
- Mandai Nature, 80 Mandai Lake Road, Singapore 729826, Republic of Singapore
| | - Patrick Tan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore 168582, Republic of Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 168582, Republic of Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore 168582, Republic of Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 168582, Republic of Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore 168582, Republic of Singapore
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK
- School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, Germany Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
- Leibniz Science Campus Primate Cognition, 37077 Göttingen, Germany
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Universitat Pompeu Fabra, Pg. Luís Companys 23, 08010 Barcelona, Spain
| | - Amanda Melin
- Department of Anthropology & Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
- Department of Medical Genetics, 3330 Hospital Drive NW, HMRB 202, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Katerina Guschanski
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, SE-75236 Uppsala, Sweden
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH8 9XP, UK
| | | | - Robin M D Beck
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Govindhaswamy Umapathy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Jean P Boubli
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shamil Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, 02142, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, 02142, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jinbo Xu
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA, 94404, USA
| |
Collapse
|
29
|
Huang G, Wu W, Chen Y, Zhi X, Zou P, Ning Z, Fan Q, Liu Y, Deng S, Zeng K, Zhou R. Balancing selection on an MYB transcription factor maintains the twig trichome color variation in Melastoma normale. BMC Biol 2023; 21:122. [PMID: 37226197 DOI: 10.1186/s12915-023-01611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The factors that maintain phenotypic and genetic variation within a population have received long-term attention in evolutionary biology. Here the genetic basis and evolution of the geographically widespread variation in twig trichome color (from red to white) in a shrub Melastoma normale was investigated using Pool-seq and evolutionary analyses. RESULTS The results show that the twig trichome coloration is under selection in different light environments and that a 6-kb region containing an R2R3 MYB transcription factor gene is the major region of divergence between the extreme red and white morphs. This gene has two highly divergent groups of alleles, one of which likely originated from introgression from another species in this genus and has risen to high frequency (> 0.6) within each of the three populations under investigation. In contrast, polymorphisms in other regions of the genome show no sign of differentiation between the two morphs, suggesting that genomic patterns of diversity have been shaped by homogenizing gene flow. Population genetics analysis reveals signals of balancing selection acting on this gene, and it is suggested that spatially varying selection is the most likely mechanism of balancing selection in this case. CONCLUSIONS This study demonstrate that polymorphisms on a single transcription factor gene largely confer the twig trichome color variation in M. normale, while also explaining how adaptive divergence can occur and be maintained in the face of gene flow.
Collapse
Affiliation(s)
- Guilian Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wei Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yongmei Chen
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan, 643000, China
| | - Xueke Zhi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Peishan Zou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zulin Ning
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Qiang Fan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shulin Deng
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Kai Zeng
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
30
|
Gao H, Hamp T, Ede J, Schraiber JG, McRae J, Singer-Berk M, Yang Y, Dietrich A, Fiziev P, Kuderna L, Sundaram L, Wu Y, Adhikari A, Field Y, Chen C, Batzoglou S, Aguet F, Lemire G, Reimers R, Balick D, Janiak MC, Kuhlwilm M, Orkin JD, Manu S, Valenzuela A, Bergman J, Rouselle M, Silva FE, Agueda L, Blanc J, Gut M, de Vries D, Goodhead I, Harris RA, Raveendran M, Jensen A, Chuma IS, Horvath J, Hvilsom C, Juan D, Frandsen P, de Melo FR, Bertuol F, Byrne H, Sampaio I, Farias I, do Amaral JV, Messias M, da Silva MNF, Trivedi M, Rossi R, Hrbek T, Andriaholinirina N, Rabarivola CJ, Zaramody A, Jolly CJ, Phillips-Conroy J, Wilkerson G, Abee C, Simmons JH, Fernandez-Duque E, Kanthaswamy S, Shiferaw F, Wu D, Zhou L, Shao Y, Zhang G, Keyyu JD, Knauf S, Le MD, Lizano E, Merker S, Navarro A, Batallion T, Nadler T, Khor CC, Lee J, Tan P, Lim WK, Kitchener AC, Zinner D, Gut I, Melin A, Guschanski K, Schierup MH, Beck RMD, Umapathy G, Roos C, Boubli JP, Lek M, Sunyaev S, O’Donnell A, Rehm H, Xu J, Rogers J, Marques-Bonet T, Kai-How Farh K. The landscape of tolerated genetic variation in humans and primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538953. [PMID: 37205491 PMCID: PMC10187174 DOI: 10.1101/2023.05.01.538953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Personalized genome sequencing has revealed millions of genetic differences between individuals, but our understanding of their clinical relevance remains largely incomplete. To systematically decipher the effects of human genetic variants, we obtained whole genome sequencing data for 809 individuals from 233 primate species, and identified 4.3 million common protein-altering variants with orthologs in human. We show that these variants can be inferred to have non-deleterious effects in human based on their presence at high allele frequencies in other primate populations. We use this resource to classify 6% of all possible human protein-altering variants as likely benign and impute the pathogenicity of the remaining 94% of variants with deep learning, achieving state-of-the-art accuracy for diagnosing pathogenic variants in patients with genetic diseases. One Sentence Summary Deep learning classifier trained on 4.3 million common primate missense variants predicts variant pathogenicity in humans.
Collapse
Affiliation(s)
- Hong Gao
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Tobias Hamp
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Jeffrey Ede
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Joshua G. Schraiber
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Jeremy McRae
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Moriel Singer-Berk
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Boston, Massachusetts, 02142, USA
| | - Yanshen Yang
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Anastasia Dietrich
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Petko Fiziev
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Lukas Kuderna
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Laksshman Sundaram
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Yibing Wu
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Aashish Adhikari
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Yair Field
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Chen Chen
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Serafim Batzoglou
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Francois Aguet
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| | - Gabrielle Lemire
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Boston, Massachusetts, 02142, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School; Boston, Massachusetts, 02115, USA
| | - Rebecca Reimers
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School; Boston, Massachusetts, 02115, USA
| | - Daniel Balick
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School; Boston, Massachusetts, 02115, USA
| | - Mareike C. Janiak
- School of Science, Engineering & Environment, University of Salford; Salford, M5 4WT, United Kingdom
| | - Martin Kuhlwilm
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Department of Evolutionary Anthropology, University of Vienna; Djerassiplatz 1, 1030, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna; 1030, Vienna, Austria
| | - Joseph D. Orkin
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Département d’anthropologie, Université de Montréal; 3150 Jean-Brillant, Montréal, QC, H3T 1N8, Canada
| | - Shivakumara Manu
- Academy of Scientific and Innovative Research (AcSIR); Ghaziabad, 201002, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology; Hyderabad, 500007, India
| | - Alejandro Valenzuela
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Juraj Bergman
- Bioinformatics Research Centre, Aarhus University; Aarhus, 8000, Denmark
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University; Aarhus, 8000, Denmark
| | | | - Felipe Ennes Silva
- Research Group on Primate Biology and Conservation, Mamirauá Institute for Sustainable Development; Estrada da Bexiga 2584, Tefé, Amazonas, CEP 69553-225, Brazil
- Faculty of Sciences, Department of Organismal Biology, Unit of Evolutionary Biology and Ecology, Université Libre de Bruxelles (ULB); Avenue Franklin D. Roosevelt 50, 1050, Brussels, Belgium
| | - Lidia Agueda
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Julie Blanc
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Dorien de Vries
- School of Science, Engineering & Environment, University of Salford; Salford, M5 4WT, United Kingdom
| | - Ian Goodhead
- School of Science, Engineering & Environment, University of Salford; Salford, M5 4WT, United Kingdom
| | - R. Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine; Houston, Texas, 77030, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine; Houston, Texas, 77030, USA
| | - Axel Jensen
- Department of Ecology and Genetics, Animal Ecology, Uppsala University; SE-75236, Uppsala, Sweden
| | | | - Julie Horvath
- North Carolina Museum of Natural Sciences; Raleigh, North Carolina, 27601, USA
- Department of Biological and Biomedical Sciences, North Carolina Central University; Durham, North Carolina , 27707, USA
- Department of Biological Sciences, North Carolina State University; Raleigh, North Carolina , 27695, USA
- Department of Evolutionary Anthropology, Duke University; Durham, North Carolina , 27708, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - David Juan
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | | | - Fabricio Bertuol
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL); Manaus, Amazonas, 69080-900, Brazil
| | - Hazel Byrne
- Department of Anthropology, University of Utah; Salt Lake City, Utah, 84102, USA
| | - Iracilda Sampaio
- Universidade Federal do Para; Guamá, Belém - PA, 66075-110, Brazil
| | - Izeni Farias
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL); Manaus, Amazonas, 69080-900, Brazil
| | - João Valsecchi do Amaral
- Research Group on Terrestrial Vertebrate Ecology, Mamirauá Institute for Sustainable Development; Tefé, Amazonas, 69553-225, Brazil
- Rede de Pesquisa para Estudos sobre Diversidade, Conservação e Uso da Fauna na Amazônia – RedeFauna; Manaus, Amazonas, 69080-900, Brazil
- Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica – ComFauna; Iquitos, Loreto, 16001, Peru
| | - Mariluce Messias
- Universidade Federal de Rondonia; Porto Velho, Rondônia, 78900-000, Brazil
- PPGREN - Programa de Pós-Graduação “Conservação e Uso dos Recursos Naturais and BIONORTE - Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, Universidade Federal de Rondonia; Porto Velho, Rondônia, 78900-000, Brazil
| | - Maria N. F. da Silva
- Instituto Nacional de Pesquisas da Amazonia; Petrópolis, Manaus - AM, 69067-375, Brazil
| | - Mihir Trivedi
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology; Hyderabad, 500007, India
| | - Rogerio Rossi
- Universidade Federal do Mato Grosso; Boa Esperança, Cuiabá - MT, 78060-900, Brazil
| | - Tomas Hrbek
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL); Manaus, Amazonas, 69080-900, Brazil
- Department of Biology, Trinity University; San Antonio, Texas, 78212, USA
| | - Nicole Andriaholinirina
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga; Mahajanga, 401, Madagascar
| | - Clément J. Rabarivola
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga; Mahajanga, 401, Madagascar
| | - Alphonse Zaramody
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga; Mahajanga, 401, Madagascar
| | | | | | - Gregory Wilkerson
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center; Houston, Texas, 77030, USA
| | | | - Joe H. Simmons
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center; Houston, Texas, 77030, USA
| | - Eduardo Fernandez-Duque
- Yale University; New Haven, Connecticut, 06520, USA
- Universidad Nacional de Formosa, Argentina Fundacion ECO, Formosa, Argentina
| | | | | | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences; Kunming, Yunnan, 650223, China
| | - Long Zhou
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences; Kunming, Yunnan, 650223, China
| | - Guojie Zhang
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen; Copenhagen, DK-2100, Denmark
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Liangzhu Laboratory, Zhejiang University Medical Center; 1369 West Wenyi Road, Hangzhou, 311121, China
- Women’s Hospital, School of Medicine, Zhejiang University; 1 Xueshi Road, Shangcheng District, Hangzhou, 310006, China
| | - Julius D. Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), Head Office; P.O.Box 661, Arusha, Tanzania
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health; 17493 Greifswald - Isle of Riems, Germany
| | - Minh D. Le
- Department of Environmental Ecology, Faculty of Environmental Sciences, University of Science and Central Institute for Natural Resources and Environmental Studies, Vietnam National University; Hanoi, 100000, Vietnam
| | - Esther Lizano
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Stefan Merker
- Department of Zoology, State Museum of Natural History Stuttgart; 70191 Stuttgart, Germany
| | - Arcadi Navarro
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra, Pg. Luís Companys 23, Barcelona, 08010, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology; Av. Doctor Aiguader, N88, Barcelona, 08003, Spain
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation; C. Wellington 30, Barcelona, 08005, Spain
| | - Thomas Batallion
- Bioinformatics Research Centre, Aarhus University; Aarhus, 8000, Denmark
| | - Tilo Nadler
- Cuc Phuong Commune; Nho Quan District, Ninh Binh Province, 430000, Vietnam
| | - Chiea Chuen Khor
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Jessica Lee
- Mandai Nature; 80 Mandai Lake Road, Singapore 729826, Republic of Singapore
| | - Patrick Tan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM); Singapore 168582, Republic of Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School; Singapore 168582, Republic of Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM); Singapore 168582, Republic of Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School; Singapore 168582, Republic of Singapore
- SingHealth Duke-NUS Genomic Medicine Centre; Singapore 168582, Republic of Singapore
| | - Andrew C. Kitchener
- Department of Natural Sciences, National Museums Scotland; Chambers Street, Edinburgh, EH1 1JF, UK
- School of Geosciences, University of Edinburgh; Drummond Street, Edinburgh, EH8 9XP, UK
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, Germany Primate Center, Leibniz Institute for Primate Research; 37077 Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität Göttingen; 37077 Göttingen, Germany
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Baldiri i Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra, Pg. Luís Companys 23, Barcelona, 08010, Spain
| | - Amanda Melin
- Leibniz Science Campus Primate Cognition; 37077 Göttingen, Germany
- Department of Anthropology & Archaeology and Department of Medical Genetics
| | - Katerina Guschanski
- Department of Ecology and Genetics, Animal Ecology, Uppsala University; SE-75236, Uppsala, Sweden
- Alberta Children’s Hospital Research Institute; University of Calgary; 2500 University Dr NW T2N 1N4, Calgary, Alberta, Canada
| | | | - Robin M. D. Beck
- School of Science, Engineering & Environment, University of Salford; Salford, M5 4WT, United Kingdom
| | - Govindhaswamy Umapathy
- Academy of Scientific and Innovative Research (AcSIR); Ghaziabad, 201002, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology; Hyderabad, 500007, India
| | - Christian Roos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh; Edinburgh, EH8 9XP, UK
| | - Jean P. Boubli
- School of Science, Engineering & Environment, University of Salford; Salford, M5 4WT, United Kingdom
| | - Monkol Lek
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research; Kellnerweg 4, 37077 Göttingen, Germany
| | - Shamil Sunyaev
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School; Boston, Massachusetts, 02115, USA
- Department of Genetics, Yale School of Medicine; New Haven, Connecticut, 06520, USA
| | - Anne O’Donnell
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Boston, Massachusetts, 02142, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School; Boston, Massachusetts, 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Heidi Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Boston, Massachusetts, 02142, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School; Boston, Massachusetts, 02115, USA
| | - Jinbo Xu
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
- Toyota Technological Institute at Chicago; Chicago, Illinois, 60637, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine; Houston, Texas, 77030, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC); PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Baldiri i Reixac 4, 08028, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra, Pg. Luís Companys 23, Barcelona, 08010, Spain
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc.; Foster City, California, 94404, USA
| |
Collapse
|
31
|
Wroblewski EE, Guethlein LA, Anderson AG, Liu W, Li Y, Heisel SE, Connell AJ, Ndjango JBN, Bertolani P, Hart JA, Hart TB, Sanz CM, Morgan DB, Peeters M, Sharp PM, Hahn BH, Parham P. Malaria-driven adaptation of MHC class I in wild bonobo populations. Nat Commun 2023; 14:1033. [PMID: 36823144 PMCID: PMC9950436 DOI: 10.1038/s41467-023-36623-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
The malaria parasite Plasmodium falciparum causes substantial human mortality, primarily in equatorial Africa. Enriched in affected African populations, the B*53 variant of HLA-B, a cell surface protein that presents peptide antigens to cytotoxic lymphocytes, confers protection against severe malaria. Gorilla, chimpanzee, and bonobo are humans' closest living relatives. These African apes have HLA-B orthologs and are infected by parasites in the same subgenus (Laverania) as P. falciparum, but the consequences of these infections are unclear. Laverania parasites infect bonobos (Pan paniscus) at only one (TL2) of many sites sampled across their range. TL2 spans the Lomami River and has genetically divergent subpopulations of bonobos on each side. Papa-B, the bonobo ortholog of HLA-B, includes variants having a B*53-like (B07) peptide-binding supertype profile. Here we show that B07 Papa-B occur at high frequency in TL2 bonobos and that malaria appears to have independently selected for different B07 alleles in the two subpopulations.
Collapse
Affiliation(s)
- Emily E Wroblewski
- Department of Anthropology, Washington University in St. Louis, Saint Louis, 63130, MO, USA.
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aaron G Anderson
- Department of Anthropology, Washington University in St. Louis, Saint Louis, 63130, MO, USA
| | - Weimin Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yingying Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sara E Heisel
- Department of Anthropology, Washington University in St. Louis, Saint Louis, 63130, MO, USA
| | - Andrew Jesse Connell
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jean-Bosco N Ndjango
- Department of Ecology and Management of Plant and Animal Resources, Faculty of Sciences, University of Kisangani, BP 2012, Kisangani, Democratic Republic of the Congo
| | - Paco Bertolani
- Institute of Human Sciences, School of Anthropology and Museum Ethnography, University of Oxford, Oxford, UK
| | - John A Hart
- Frankfurt Zoological Society, Lomami National Park Project, Kinshasa, Democratic Republic of the Congo
| | - Terese B Hart
- Frankfurt Zoological Society, Lomami National Park Project, Kinshasa, Democratic Republic of the Congo
| | - Crickette M Sanz
- Department of Anthropology, Washington University in St. Louis, Saint Louis, 63130, MO, USA
- Congo Program, Wildlife Conservation Society, Brazzaville, Republic of the Congo
| | - David B Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL, 60614, USA
| | - Martine Peeters
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090, Montpellier, France
| | - Paul M Sharp
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK
- Centre for Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
32
|
Aqil A, Speidel L, Pavlidis P, Gokcumen O. Balancing selection on genomic deletion polymorphisms in humans. eLife 2023; 12:79111. [PMID: 36625544 PMCID: PMC9943071 DOI: 10.7554/elife.79111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
A key question in biology is why genomic variation persists in a population for extended periods. Recent studies have identified examples of genomic deletions that have remained polymorphic in the human lineage for hundreds of millennia, ostensibly owing to balancing selection. Nevertheless, genome-wide investigation of ancient and possibly adaptive deletions remains an imperative exercise. Here, we demonstrate an excess of polymorphisms in present-day humans that predate the modern human-Neanderthal split (ancient polymorphisms), which cannot be explained solely by selectively neutral scenarios. We analyze the adaptive mechanisms that underlie this excess in deletion polymorphisms. Using a previously published measure of balancing selection, we show that this excess of ancient deletions is largely owing to balancing selection. Based on the absence of signatures of overdominance, we conclude that it is a rare mode of balancing selection among ancient deletions. Instead, more complex scenarios involving spatially and temporally variable selective pressures are likely more common mechanisms. Our results suggest that balancing selection resulted in ancient deletions harboring disproportionately more exonic variants with GWAS (genome-wide association studies) associations. We further found that ancient deletions are significantly enriched for traits related to metabolism and immunity. As a by-product of our analysis, we show that deletions are, on average, more deleterious than single nucleotide variants. We can now argue that not only is a vast majority of common variants shared among human populations, but a considerable portion of biologically relevant variants has been segregating among our ancestors for hundreds of thousands, if not millions, of years.
Collapse
Affiliation(s)
- Alber Aqil
- Department of Biological Sciences, University at BuffaloBuffaloUnited States
| | - Leo Speidel
- University College London, Genetics InstituteLondonUnited Kingdom
- The Francis Crick InstituteLondonUnited Kingdom
| | - Pavlos Pavlidis
- Institute of Computer Science (ICS), Foundation of Research and Technology-HellasHeraklionGreece
| | - Omer Gokcumen
- Department of Biological Sciences, University at BuffaloBuffaloUnited States
| |
Collapse
|
33
|
Sowpati DT, Tallapaka KB. Host genetics in disease susceptibility and protection. GENOMIC SURVEILLANCE AND PANDEMIC PREPAREDNESS 2023:27-48. [DOI: 10.1016/b978-0-443-18769-8.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
34
|
Vallier M, Suwandi A, Ehrhardt K, Belheouane M, Berry D, Čepić A, Galeev A, Johnsen JM, Grassl GA, Baines JF. Pathometagenomics reveals susceptibility to intestinal infection by Morganella to be mediated by the blood group-related B4galnt2 gene in wild mice. Gut Microbes 2023; 15:2164448. [PMID: 36683151 PMCID: PMC9872957 DOI: 10.1080/19490976.2022.2164448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/15/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Infectious disease is widely considered to be a major driver of evolution. A preponderance of signatures of balancing selection at blood group-related genes is thought to be driven by inherent trade-offs in susceptibility to disease. B4galnt2 is subject to long-term balancing selection in house mice, where two divergent allele classes direct alternative tissue-specific expression of a glycosyltransferase in the intestine versus blood vessels. The blood vessel allele class leads to prolonged bleeding times similar to von Willebrand disease in humans, yet has been maintained for millions of years. Based on in vivo functional studies in inbred lab strains, it is hypothesized that the cost of prolonged bleeding times may be offset by an evolutionary trade-off involving susceptibility to a yet unknown pathogen(s). To identify candidate pathogens for which resistance could be mediated by B4galnt2 genotype, we here employed a novel "pathometagenomic" approach in a wild mouse population, which combines bacterial 16S rRNA gene-based community profiling with histopathology of gut tissue. Through subsequent isolation, genome sequencing and controlled experiments in lab mice, we show that the presence of the blood vessel allele is associated with resistance to a newly identified subspecies of Morganella morganii, a clinically important opportunistic pathogen. Given the increasing importance of zoonotic events, the approach outlined here may find useful application in the detection of emerging diseases in wild animal populations.
Collapse
Affiliation(s)
- Marie Vallier
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Guest Group Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Abdulhadi Suwandi
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover, Germany
| | - Katrin Ehrhardt
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover, Germany
| | - Meriem Belheouane
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Guest Group Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Aleksa Čepić
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Guest Group Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Alibek Galeev
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Guest Group Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jill M. Johnsen
- Bloodworks Research Institute, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover, Germany
| | - John F. Baines
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Guest Group Evolutionary Medicine, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
35
|
Xie HB, Yan C, Adeola AC, Wang K, Huang CP, Xu MM, Qiu Q, Yin X, Fan CY, Ma YF, Yin TT, Gao Y, Deng JK, Okeyoyin AO, Oluwole OO, Omotosho O, Okoro VMO, Omitogun OG, Dawuda PM, Olaogun SC, Nneji LM, Ayoola AO, Sanke OJ, Luka PD, Okoth E, Lekolool I, Mijele D, Bishop RP, Han J, Wang W, Peng MS, Zhang YP. African Suid Genomes Provide Insights into the Local Adaptation to Diverse African Environments. Mol Biol Evol 2022; 39:6840307. [PMID: 36413509 PMCID: PMC9733430 DOI: 10.1093/molbev/msac256] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/21/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
African wild suids consist of several endemic species that represent ancient members of the family Suidae and have colonized diverse habitats on the African continent. However, limited genomic resources for African wild suids hinder our understanding of their evolution and genetic diversity. In this study, we assembled high-quality genomes of a common warthog (Phacochoerus africanus), a red river hog (Potamochoerus porcus), as well as an East Asian Diannan small-ear pig (Sus scrofa). Phylogenetic analysis showed that common warthog and red river hog diverged from their common ancestor around the Miocene/Pliocene boundary, putatively predating their entry into Africa. We detected species-specific selective signals associated with sensory perception and interferon signaling pathways in common warthog and red river hog, respectively, which contributed to their local adaptation to savannah and tropical rainforest environments, respectively. The structural variation and evolving signals in genes involved in T-cell immunity, viral infection, and lymphoid development were identified in their ancestral lineage. Our results provide new insights into the evolutionary histories and divergent genetic adaptations of African suids.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming-Min Xu
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| | - Xue Yin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Chen-Yu Fan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yun-Fei Ma
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ting-Ting Yin
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Yun Gao
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Jia-Kun Deng
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Agboola O Okeyoyin
- National Park Service Headquarter, Federal Capital Territory, Abuja 900108, Nigeria
| | - Olufunke O Oluwole
- Institute of Agricultural Research and Training, Obafemi Awolowo University, Ibadan, Nigeria
| | - Oladipo Omotosho
- Department of Veterinary Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Victor M O Okoro
- Department of Animal Science and Technology, School of Agriculture and Agricultural Technology, Federal University of Technology, Owerri 460114, Nigeria
| | - Ofelia G Omitogun
- Department of Animal Sciences, Obafemi Awolowo University, Ile-Ife 220282, Nigeria
| | - Philip M Dawuda
- Department of Veterinary Surgery and Theriogenology, College of Veterinary Medicine, University of Agriculture Makurdi, Makurdi 970001, Nigeria
| | - Sunday C Olaogun
- Department of Veterinary Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Lotanna M Nneji
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming 650204, China
| | - Adeola O Ayoola
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming 650204, China
| | - Oscar J Sanke
- Taraba State Ministry of Agriculture and Natural Resources, Jalingo 660213, Nigeria
| | - Pam D Luka
- National Veterinary Research Institute, Vom 930103, Nigeria
| | - Edward Okoth
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | | | | | - Richard P Bishop
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | | | - Wen Wang
- Corresponding authors: E-mails: ; ; ;
| | | | | |
Collapse
|
36
|
Schield DR, Perry BW, Adams RH, Holding ML, Nikolakis ZL, Gopalan SS, Smith CF, Parker JM, Meik JM, DeGiorgio M, Mackessy SP, Castoe TA. The roles of balancing selection and recombination in the evolution of rattlesnake venom. Nat Ecol Evol 2022; 6:1367-1380. [PMID: 35851850 PMCID: PMC9888523 DOI: 10.1038/s41559-022-01829-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 06/15/2022] [Indexed: 02/02/2023]
Abstract
The origin of snake venom involved duplication and recruitment of non-venom genes into venom systems. Several studies have predicted that directional positive selection has governed this process. Venom composition varies substantially across snake species and venom phenotypes are locally adapted to prey, leading to coevolutionary interactions between predator and prey. Venom origins and contemporary snake venom evolution may therefore be driven by fundamentally different selection regimes, yet investigations of population-level patterns of selection have been limited. Here, we use whole-genome data from 68 rattlesnakes to test hypotheses about the factors that drive genomic diversity and differentiation in major venom gene regions. We show that selection has resulted in long-term maintenance of genetic diversity within and between species in multiple venom gene families. Our findings are inconsistent with a dominant role of directional positive selection and instead support a role of long-term balancing selection in shaping venom evolution. We also detect rapid decay of linkage disequilibrium due to high recombination rates in venom regions, suggesting that venom genes have reduced selective interference with nearby loci, including other venom paralogues. Our results provide an example of long-term balancing selection that drives trans-species polymorphism and help to explain how snake venom keeps pace with prey resistance.
Collapse
Affiliation(s)
- Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| | - Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Richard H Adams
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, USA
| | | | | | | | - Cara F Smith
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, USA
| | - Joshua M Parker
- Life Science Department, Fresno City College, Fresno, CA, USA
| | - Jesse M Meik
- Department of Biological Sciences, Tarleton State University, Stephenville, TX, USA
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
37
|
Collen EJ, Johar AS, Teixeira JC, Llamas B. The immunogenetic impact of European colonization in the Americas. Front Genet 2022; 13:918227. [PMID: 35991555 PMCID: PMC9388791 DOI: 10.3389/fgene.2022.918227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
The introduction of pathogens originating from Eurasia into the Americas during early European contact has been associated with high mortality rates among Indigenous peoples, likely contributing to their historical and precipitous population decline. However, the biological impacts of imported infectious diseases and resulting epidemics, especially in terms of pathogenic effects on the Indigenous immunity, remain poorly understood and highly contentious to this day. Here, we examine multidisciplinary evidence underpinning colonization-related immune genetic change, providing contextualization from anthropological studies, paleomicrobiological evidence of contrasting host-pathogen coevolutionary histories, and the timings of disease emergence. We further summarize current studies examining genetic signals reflecting post-contact Indigenous population bottlenecks, admixture with European and other populations, and the putative effects of natural selection, with a focus on ancient DNA studies and immunity-related findings. Considering current genetic evidence, together with a population genetics theoretical approach, we show that post-contact Indigenous immune adaptation, possibly influenced by selection exerted by introduced pathogens, is highly complex and likely to be affected by multifactorial causes. Disentangling putative adaptive signals from those of genetic drift thus remains a significant challenge, highlighting the need for the implementation of population genetic approaches that model the short time spans and complex demographic histories under consideration. This review adds to current understandings of post-contact immunity evolution in Indigenous peoples of America, with important implications for bettering our understanding of human adaptation in the face of emerging infectious diseases.
Collapse
Affiliation(s)
- Evelyn Jane Collen
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Angad Singh Johar
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - João C. Teixeira
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Culture History and Language, The Australian National University, Canberra, ACT, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, Australia
- Telethon Kids Institute, Indigenous Genomics Research Group, Adelaide, SA, Australia
| |
Collapse
|
38
|
Soni V, Vos M, Eyre-Walker A. A new test suggests hundreds of amino acid polymorphisms in humans are subject to balancing selection. PLoS Biol 2022; 20:e3001645. [PMID: 35653351 PMCID: PMC9162324 DOI: 10.1371/journal.pbio.3001645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
The role that balancing selection plays in the maintenance of genetic diversity remains unresolved. Here, we introduce a new test, based on the McDonald–Kreitman test, in which the number of polymorphisms that are shared between populations is contrasted to those that are private at selected and neutral sites. We show that this simple test is robust to a variety of demographic changes, and that it can also give a direct estimate of the number of shared polymorphisms that are directly maintained by balancing selection. We apply our method to population genomic data from humans and provide some evidence that hundreds of nonsynonymous polymorphisms are subject to balancing selection.
Collapse
Affiliation(s)
- Vivak Soni
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Michiel Vos
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn, United Kingdom
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Velazquez-Arcelay K, Benton ML, Capra JA. Diverse functions associate with non-coding polymorphisms shared between humans and chimpanzees. BMC Ecol Evol 2022; 22:68. [PMID: 35606693 PMCID: PMC9125839 DOI: 10.1186/s12862-022-02020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background Long-term balancing selection (LTBS) can maintain allelic variation at a locus over millions of years and through speciation events. Variants shared between species in the state of identity-by-descent, hereafter “trans-species polymorphisms”, can result from LTBS, often due to host–pathogen interactions. For instance, the major histocompatibility complex (MHC) locus contains TSPs present across primates. Several hundred candidate LTBS regions have been identified in humans and chimpanzees; however, because many are in non-protein-coding regions of the genome, the functions and potential adaptive roles for most remain unknown. Results We integrated diverse genomic annotations to explore the functions of 60 previously identified regions with multiple shared polymorphisms (SPs) between humans and chimpanzees, including 19 with strong evidence of LTBS. We analyzed genome-wide functional assays, expression quantitative trait loci (eQTL), genome-wide association studies (GWAS), and phenome-wide association studies (PheWAS) for all the regions. We identify functional annotations for 59 regions, including 58 with evidence of gene regulatory function from GTEx or functional genomics data and 19 with evidence of trait association from GWAS or PheWAS. As expected, the SPs associate in humans with many immune system phenotypes, including response to pathogens, but we also find associations with a range of other phenotypes, including body size, alcohol intake, cognitive performance, risk-taking behavior, and urate levels. Conclusions The diversity of traits associated with non-coding regions with multiple SPs support previous hypotheses that functions beyond the immune system are likely subject to LTBS. Furthermore, several of these trait associations provide support and candidate genetic loci for previous hypothesis about behavioral diversity in human and chimpanzee populations, such as the importance of variation in risk sensitivity. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02020-x.
Collapse
|
40
|
Stolyarova AV, Neretina TV, Zvyagina EA, Fedotova AV, Kondrashov A, Bazykin GA. Complex fitness landscape shapes variation in a hyperpolymorphic species. eLife 2022; 11:76073. [PMID: 35532122 PMCID: PMC9187340 DOI: 10.7554/elife.76073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
It is natural to assume that patterns of genetic variation in hyperpolymorphic species can reveal large-scale properties of the fitness landscape that are hard to detect by studying species with ordinary levels of genetic variation. Here, we study such patterns in a fungus Schizophyllum commune, the most polymorphic species known. Throughout the genome, short-range linkage disequilibrium (LD) caused by attraction of minor alleles is higher between pairs of nonsynonymous than of synonymous variants. This effect is especially pronounced for pairs of sites that are located within the same gene, especially if a large fraction of the gene is covered by haploblocks, genome segments where the gene pool consists of two highly divergent haplotypes, which is a signature of balancing selection. Haploblocks are usually shorter than 1000 nucleotides, and collectively cover about 10% of the S. commune genome. LD tends to be substantially higher for pairs of nonsynonymous variants encoding amino acids that interact within the protein. There is a substantial correlation between LDs at the same pairs of nonsynonymous mutations in the USA and the Russian populations. These patterns indicate that selection in S. commune involves positive epistasis due to compensatory interactions between nonsynonymous alleles. When less polymorphic species are studied, analogous patterns can be detected only through interspecific comparisons. Changes to DNA known as mutations may alter how the proteins and other components of a cell work, and thus play an important role in allowing living things to evolve new traits and abilities over many generations. Whether a mutation is beneficial or harmful may differ depending on the genetic background of the individual – that is, depending on other mutations present in other positions within the same gene – due to a phenomenon called epistasis. Epistasis is known to affect how various species accumulate differences in their DNA compared to each other over time. For example, a mutation that is rare in humans and known to cause disease may be widespread in other primates because its negative effect is canceled out by another mutation that is standard for these species but absent in humans. However, it remains unclear whether epistasis plays a significant part in shaping genetic differences between individuals of the same species. A type of fungus known as Schizophyllum commune lives on rotting wood and is found across the world. It is one of the most genetically diverse species currently known, so there is a higher chance of pairs of compensatory mutations occurring and persisting for a long time in S. commune than in most other species, providing a unique opportunity to study epistasis. Here, Stolyarova et al. studied two distinct populations of S. commune, one from the USA and one from Russia. The team found that – unlike in humans, flies and other less genetically diverse species – epistasis maintains combinations of mutations in S. commune that individually would be harmful to the fungus but together compensate for each other. For example, pairs of mutations affecting specific molecules known as amino acids – the building blocks of proteins – that physically interact with each other tended to be found together in the same individuals. One potential downside of having pairs of compensatory mutations in the genome is that when the organism reproduces, the process of making sex cells may split up these pairs so that harmful mutations are inherited without their partner mutations. Thus, epistasis may have helped shape the way S. commune and other genetically diverse species have evolved.
Collapse
Affiliation(s)
| | - Tatiana V Neretina
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Elena A Zvyagina
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Anna V Fedotova
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Alexey Kondrashov
- Department of Ecology and Evolutionary Biology, University of Michigan-Ann Arbor, Ann Arbor, United States
| | - Georgii A Bazykin
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
41
|
Alharbi AF, Sheng N, Nicol K, Strömberg N, Hollox EJ. Balancing selection at the human salivary agglutinin gene (DMBT1) driven by host-microbe interactions. iScience 2022; 25:104189. [PMID: 35494225 PMCID: PMC9038570 DOI: 10.1016/j.isci.2022.104189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/07/2022] [Accepted: 03/30/2022] [Indexed: 11/19/2022] Open
Abstract
Discovering loci under balancing selection in humans can identify loci with alleles that affect response to the environment and disease. Genome variation data have identified the 5′ region of the DMBT1 gene as undergoing balancing selection in humans. DMBT1 encodes the pattern-recognition glycoprotein DMBT1, also known as SALSA, gp340, or salivary agglutinin. DMBT1 binds to a variety of pathogens through a tandemly arranged scavenger receptor cysteine-rich (SRCR) domain, with the number of domains polymorphic in humans. We show that the signal of balancing selection is driven by one haplotype usually carrying a shorter SRCR repeat and another usually carrying a longer SRCR repeat. DMBT1 encoded by a shorter SRCR repeat allele does not bind a cariogenic and invasive Streptococcus mutans strain, in contrast to the long SRCR allele that shows binding. Our results suggest that balancing selection at DMBT1 is due to host-microbe interactions of encoded SRCR tandem repeat alleles. Clear evidence from many analyses show balancing selection at DMBT1 Scavenger-receptor cysteine-rich domain array associated with balancing selection Genetic variation, not alternative splicing, responsible for protein isoforms Long, but not short, DMBT1 isoforms bind a cariogenic strain of Streptococcus mutans
Collapse
Affiliation(s)
- Adel F. Alharbi
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Medina Regional Laboratory, General Directorate of Health Affairs, Ministry of Health, Medina, Saudi Arabia
| | - Nongfei Sheng
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Katie Nicol
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | | - Edward J. Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Corresponding author
| |
Collapse
|
42
|
Maróstica AS, Nunes K, Castelli EC, Silva NSB, Weir BS, Goudet J, Meyer D. How HLA diversity is apportioned: influence of selection and relevance to transplantation. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200420. [PMID: 35430892 PMCID: PMC9014195 DOI: 10.1098/rstb.2020.0420] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In his 1972 paper ‘The apportionment of human diversity’, Lewontin showed that, when averaged over loci, genetic diversity is predominantly attributable to differences among individuals within populations. However, selection can alter the apportionment of diversity of specific genes or genomic regions. We examine genetic diversity at the human leucocyte antigen (HLA) loci, located within the major histocompatibility complex (MHC) region. HLA genes code for proteins that are critical to adaptive immunity and are well-documented targets of balancing selection. The single-nucleotide polymorphisms (SNPs) within HLA genes show strong signatures of balancing selection on large timescales and are broadly shared among populations, displaying low FST values. However, when we analyse haplotypes defined by these SNPs (which define ‘HLA alleles’), we find marked differences in frequencies between geographic regions. These differences are not reflected in the FST values because of the extreme polymorphism at HLA loci, illustrating challenges in interpreting FST. Differences in the frequency of HLA alleles among geographic regions are relevant to bone-marrow transplantation, which requires genetic identity at HLA loci between patient and donor. We discuss the case of Brazil's bone marrow registry, where a deficit of enrolled volunteers with African ancestry reduces the chance of finding donors for individuals with an MHC region of African ancestry. This article is part of the theme issue ‘Celebrating 50 years since Lewontin's apportionment of human diversity’.
Collapse
Affiliation(s)
- André Silva Maróstica
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Kelly Nunes
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Erick C. Castelli
- Departamento de Patologia, Universidade Estadual Paulista - Unesp, Faculdade de Medicina de Botucatu, Botucatu, SP, Brazil
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University - Unesp, Botucatu, SP, Brazil
| | - Nayane S. B. Silva
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University - Unesp, Botucatu, SP, Brazil
| | - Bruce S. Weir
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Diogo Meyer
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
43
|
Cheng X, DeGiorgio M. BalLeRMix +: mixture model approaches for robust joint identification of both positive selection and long-term balancing selection. Bioinformatics 2021; 38:861-863. [PMID: 34664624 PMCID: PMC8756184 DOI: 10.1093/bioinformatics/btab720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/13/2021] [Accepted: 10/13/2021] [Indexed: 02/03/2023] Open
Abstract
SUMMARY The growing availability of genomewide polymorphism data has fueled interest in detecting diverse selective processes affecting population diversity. However, no model-based approaches exist to jointly detect and distinguish the two complementary processes of balancing and positive selection. We extend the BalLeRMix B-statistic framework described in Cheng and DeGiorgio (2020) for detecting balancing selection and present BalLeRMix+, which implements five B statistic extensions based on mixture models to robustly identify both types of selection. BalLeRMix+ is implemented in Python and computes the composite likelihood ratios and associated model parameters for each genomic test position. AVAILABILITY AND IMPLEMENTATION BalLeRMix+ is freely available at https://github.com/bioXiaoheng/BallerMixPlus. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
|
44
|
Zhou C, Zhang Q, Chen Y, Huang J, Guo Q, Li Y, Wang W, Qiu Y, Guan W, Zhang J, Guo J, Shi S, Wu D, Zheng X, Nie L, Tan J, Huang C, Ma Y, Yang F, Fu X, Du B, Zhu L, Chen R, Li Z, Yuan L, He G. Balancing selection and wild gene pool contribute to resistance in global rice germplasm against planthopper. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1695-1711. [PMID: 34302720 DOI: 10.1111/jipb.13157] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Interactions and co-evolution between plants and herbivorous insects are critically important in agriculture. Brown planthopper (BPH) is the most severe insect of rice, and the biotypes adapt to feed on different rice genotypes. Here, we present genomics analyses on 1,520 global rice germplasms for resistance to three BPH biotypes. Genome-wide association studies identified 3,502 single nucleotide polymorphisms (SNPs) and 59 loci associated with BPH resistance in rice. We cloned a previously unidentified gene Bph37 that confers resistance to BPH. The associated loci showed high nucleotide diversity. Genome-wide scans for trans-species polymorphisms revealed ancient balancing selection at the loci. The secondarily evolved insect biotypes II and III exhibited significantly higher virulence and overcame more rice varieties than the primary biotype I. In response, more SNPs and loci evolved in rice for resistance to biotypes II and III. Notably, three exceptional large regions with high SNP density and resistance-associated loci on chromosomes 4 and 6 appear distinct between the resistant and susceptible rice varieties. Surprisingly, these regions in resistant rice might have been retained from wild species Oryza nivara. Our findings expand the understanding of long-term interactions between rice and BPH and provide resistance genes and germplasm resources for breeding durable BPH-resistant rice varieties.
Collapse
Affiliation(s)
- Cong Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qian Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jin Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qin Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Yongfu Qiu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning, 530004, China
| | - Wei Guan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jing Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jianping Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shaojie Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Di Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaohong Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lingyun Nie
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiaoyan Tan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Chaomei Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yinhua Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Fang Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiqin Fu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhikang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Longping Yuan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
45
|
Fredericksen M, Ameline C, Krebs M, Hüssy B, Fields PD, Andras JP, Ebert D. Infection phenotypes of a coevolving parasite are highly diverse, structured, and specific. Evolution 2021; 75:2540-2554. [PMID: 34431523 PMCID: PMC9290032 DOI: 10.1111/evo.14323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022]
Abstract
Understanding how diversity is maintained in natural populations is a major goal of evolutionary biology. In coevolving hosts and parasites, negative frequency-dependent selection is one mechanism predicted to maintain genetic variation. While much is known about host diversity, parasite diversity remains understudied in coevolutionary research. Here, we survey natural diversity in a bacterial parasite by characterizing infection phenotypes for over 50 isolates in relation to 12 genotypes of their host, Daphnia magna. We find striking phenotypic variation among parasite isolates, and we discover the parasite can infect its host through at least five different attachment sites. Variation in attachment success at each site is explained to varying degrees by host and parasite genotypes. A spatial correlation analysis showed that infectivity of different isolates does not correlate with geographic distance, meaning isolates from widespread populations are equally able to infect the host. Overall, our results reveal that infection phenotypes of this parasite are highly diverse. Our results are consistent with the prediction that under Red Queen coevolutionary dynamics both the host and the parasite should show high genetic diversity for traits of functional importance in their interactions.
Collapse
Affiliation(s)
- Maridel Fredericksen
- Department of Environmental Sciences, Zoology, University of Basel, CH-4051, Switzerland
| | - Camille Ameline
- Department of Environmental Sciences, Zoology, University of Basel, CH-4051, Switzerland
| | - Michelle Krebs
- Department of Environmental Sciences, Zoology, University of Basel, CH-4051, Switzerland
| | - Benjamin Hüssy
- Department of Environmental Sciences, Zoology, University of Basel, CH-4051, Switzerland
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, CH-4051, Switzerland
| | - Jason P Andras
- Department of Environmental Sciences, Zoology, University of Basel, CH-4051, Switzerland.,Department of Biological Sciences, Clapp Laboratory, Mount Holyoke College, South Hadley, Massachusetts
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, CH-4051, Switzerland
| |
Collapse
|
46
|
Roberts Kingman GA, Lee D, Jones FC, Desmet D, Bell MA, Kingsley DM. Longer or shorter spines: Reciprocal trait evolution in stickleback via triallelic regulatory changes in Stanniocalcin2a. Proc Natl Acad Sci U S A 2021; 118:e2100694118. [PMID: 34321354 PMCID: PMC8346906 DOI: 10.1073/pnas.2100694118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Vertebrates have repeatedly modified skeletal structures to adapt to their environments. The threespine stickleback is an excellent system for studying skeletal modifications, as different wild populations have either increased or decreased the lengths of their prominent dorsal and pelvic spines in different freshwater environments. Here we identify a regulatory locus that has a major morphological effect on the length of stickleback dorsal and pelvic spines, which we term Maser (major spine enhancer). Maser maps in a closely linked supergene complex that controls multiple armor, feeding, and behavioral traits on chromosome IV. Natural alleles in Maser are differentiated between marine and freshwater sticklebacks; however, alleles found among freshwater populations are also differentiated, with distinct alleles found in short- and long-spined freshwater populations. The distinct freshwater alleles either increase or decrease expression of the bone growth inhibitor gene Stanniocalcin2a in developing spines, providing a simple genetic mechanism for either increasing or decreasing spine lengths in natural populations. Genomic surveys suggest many recurrently differentiated loci in sticklebacks are similarly specialized into three or more distinct alleles, providing multiple ancient standing variants in particular genes that may contribute to a range of phenotypes in different environments.
Collapse
Affiliation(s)
| | - David Lee
- Stanford University School of Humanities and Sciences, Stanford University, Stanford, CA 94305
| | - Felicity C Jones
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Danielle Desmet
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Michael A Bell
- University of California Museum of Paleontology, University of California, Berkeley, CA 94720
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305;
- HHMI, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
47
|
Bourgeois Y, Fields P, Bento G, Ebert D. Balancing selection for pathogen resistance reveals an intercontinental signature of Red Queen coevolution. Mol Biol Evol 2021; 38:4918-4933. [PMID: 34289047 PMCID: PMC8557431 DOI: 10.1093/molbev/msab217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The link between long-term host–parasite coevolution and genetic diversity is key to understanding genetic epidemiology and the evolution of resistance. The model of Red Queen host–parasite coevolution posits that high genetic diversity is maintained when rare host resistance variants have a selective advantage, which is believed to be the mechanistic basis for the extraordinarily high levels of diversity at disease-related genes such as the major histocompatibility complex in jawed vertebrates and R-genes in plants. The parasites that drive long-term coevolution are, however, often elusive. Here we present evidence for long-term balancing selection at the phenotypic (variation in resistance) and genomic (resistance locus) level in a particular host–parasite system: the planktonic crustacean Daphnia magna and the bacterium Pasteuria ramosa. The host shows widespread polymorphisms for pathogen resistance regardless of geographic distance, even though there is a clear genome-wide pattern of isolation by distance at other sites. In the genomic region of a previously identified resistance supergene, we observed consistent molecular signals of balancing selection, including higher genetic diversity, older coalescence times, and lower differentiation between populations, which set this region apart from the rest of the genome. We propose that specific long-term coevolution by negative-frequency-dependent selection drives this elevated diversity at the host's resistance loci on an intercontinental scale and provide an example of a direct link between the host’s resistance to a virulent pathogen and the large-scale diversity of its underlying genes.
Collapse
Affiliation(s)
- Yann Bourgeois
- University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, 4051 Basel, Switzerland
| | - Peter Fields
- University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, 4051 Basel, Switzerland
| | - Gilberto Bento
- University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, 4051 Basel, Switzerland
| | - Dieter Ebert
- University of Basel, Department of Environmental Sciences, Zoology, Vesalgasse 1, 4051 Basel, Switzerland
| |
Collapse
|
48
|
Nunes K, Maia MHT, Dos Santos EJM, Dos Santos SEB, Guerreiro JF, Petzl-Erler ML, Bedoya G, Gallo C, Poletti G, Llop E, Tsuneto L, Bortolini MC, Rothhammer F, Single R, Ruiz-Linares A, Rocha J, Meyer D. How natural selection shapes genetic differentiation in the MHC region: A case study with Native Americans. Hum Immunol 2021; 82:523-531. [PMID: 33812704 PMCID: PMC8217218 DOI: 10.1016/j.humimm.2021.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022]
Abstract
The Human Leukocyte Antigen (HLA) loci are extremely well documented targets of balancing selection, yet few studies have explored how selection affects population differentiation at these loci. In the present study we investigate genetic differentiation at HLA genes by comparing differentiation at microsatellites distributed genomewide to those in the MHC region. Our study uses a sample of 494 individuals from 30 human populations, 28 of which are Native Americans, all of whom were typed for genomewide and MHC region microsatellites. We find greater differentiation in the MHC than in the remainder of the genome (FST-MHC = 0.130 and FST-Genomic = 0.087), and use a permutation approach to show that this difference is statistically significant, and not accounted for by confounding factors. This finding lies in the opposite direction to the expectation that balancing selection reduces population differentiation. We interpret our findings as evidence that selection favors different sets of alleles in distinct localities, leading to increased differentiation. Thus, balancing selection at HLA genes simultaneously increases intra-population polymorphism and inter-population differentiation in Native Americans.
Collapse
Affiliation(s)
- Kelly Nunes
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | - Gabriel Bedoya
- Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Giovanni Poletti
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Elena Llop
- Instituto de Ciencias Biomédicas, Faculdad de Medicina, Universidade de Chile, Santiago, Chile
| | - Luiza Tsuneto
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, Brazil
| | - Maria Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Richard Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT, USA
| | - Andrés Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200433, China; D Aix-Marseille University, CNRS, EFS, ADES, Marseille 13007, France
| | - Jorge Rocha
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal; CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Porto, Portugal.
| | - Diogo Meyer
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
49
|
Liu Q, Mishra M, Saxena AS, Wu H, Qiu Y, Zhang X, You X, Ding S, Miyamoto MM. Balancing selection maintains ancient polymorphisms at conserved enhancers for the olfactory receptor genes of a Chinese marine fish. Mol Ecol 2021; 30:4023-4038. [PMID: 34107131 DOI: 10.1111/mec.16016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/10/2021] [Accepted: 06/01/2021] [Indexed: 12/22/2022]
Abstract
The study of balancing selection, as a selective force maintaining adaptive genetic variation in gene pools longer than expected by drift, is currently experiencing renewed interest due to the increased availability of new data, methods of analysis, and case studies. In this investigation, evidence of balancing selection operating on conserved enhancers of the olfactory receptor (OR) genes is presented for the Chinese sleeper (Bostrychus sinensis), a coastal marine fish that is emerging as a model species for evolutionary studies in the Northwest Pacific marginal seas. Coupled with tests for Gene Ontology enrichment and transcription factor binding, population genomic data allow for the identification of an OR cluster in the sleeper with a downstream flanking region containing three enhancers that are conserved with human and other fish species. Phylogenetic and population genetic analyses indicate that the enhancers are under balancing selection as evidenced by their translineage polymorphisms, excess common alleles, and increased within-group diversities. Age comparisons between the translineage polymorphisms and most recent common ancestors of neutral genealogies substantiate that the former are old, and thus, due to ancient balancing selection. The survival and reproduction of vertebrates depend on their sense of smell, and thereby, on their ORs. In addition to locus duplication and allelic variation of structural genes, this study highlights a third mechanism by which receptor diversity can be achieved for detecting and responding to the huge variety of environmental odorants (i.e., by balancing selection acting on OR gene expression through their enhancer variability).
Collapse
Affiliation(s)
- Qiaohong Liu
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mrinal Mishra
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Ayush S Saxena
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Haohao Wu
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Qiu
- Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, BGI Academy of Sciences, BGI Marine, Shenzhen, China
| | - Xinhui Zhang
- Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, BGI Academy of Sciences, BGI Marine, Shenzhen, China
| | - Xinxin You
- Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, BGI Academy of Sciences, BGI Marine, Shenzhen, China
| | - Shaoxiong Ding
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | | |
Collapse
|
50
|
Lee D, Zdraljevic S, Stevens L, Wang Y, Tanny RE, Crombie TA, Cook DE, Webster AK, Chirakar R, Baugh LR, Sterken MG, Braendle C, Félix MA, Rockman MV, Andersen EC. Balancing selection maintains hyper-divergent haplotypes in Caenorhabditis elegans. Nat Ecol Evol 2021; 5:794-807. [PMID: 33820969 PMCID: PMC8202730 DOI: 10.1038/s41559-021-01435-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
Across diverse taxa, selfing species have evolved independently from outcrossing species thousands of times. The transition from outcrossing to selfing decreases the effective population size, effective recombination rate and heterozygosity within a species. These changes lead to a reduction in genetic diversity, and therefore adaptive potential, by intensifying the effects of random genetic drift and linked selection. Within the nematode genus Caenorhabditis, selfing has evolved at least three times, and all three species, including the model organism Caenorhabditis elegans, show substantially reduced genetic diversity relative to outcrossing species. Selfing and outcrossing Caenorhabditis species are often found in the same niches, but we still do not know how selfing species with limited genetic diversity can adapt to these environments. Here, we examine the whole-genome sequences from 609 wild C. elegans strains isolated worldwide and show that genetic variation is concentrated in punctuated hyper-divergent regions that cover 20% of the C. elegans reference genome. These regions are enriched in environmental response genes that mediate sensory perception, pathogen response and xenobiotic stress response. Population genomic evidence suggests that genetic diversity in these regions has been maintained by long-term balancing selection. Using long-read genome assemblies for 15 wild strains, we show that hyper-divergent haplotypes contain unique sets of genes and show levels of divergence comparable to levels found between Caenorhabditis species that diverged millions of years ago. These results provide an example of how species can avoid the evolutionary dead end associated with selfing.
Collapse
Affiliation(s)
- Daehan Lee
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Stefan Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, CA, USA
| | - Lewis Stevens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Ye Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, People's Republic of China
| | - Robyn E Tanny
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Timothy A Crombie
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Daniel E Cook
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Amy K Webster
- Department of Biology, Duke University, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | | | - L Ryan Baugh
- Department of Biology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, INSERM, École Normale Supérieure, Paris Sciences et Lettres, Paris, France
| | - Matthew V Rockman
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|