1
|
Oostlander AG, Fleißner A, Slippers B. Advancing forest pathology: the need for community-driven molecular experimental model systems. THE NEW PHYTOLOGIST 2025. [PMID: 40350752 DOI: 10.1111/nph.70205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/16/2025] [Indexed: 05/14/2025]
Abstract
Forests world-wide are under escalating threat from emerging and invasive fungal and oomycete pathogens, driven by globalization and shifting climate dynamics. Effective strategies to manage the current scale and rate of changes in forest health remain hindered by our limited ability to study the underlying mechanisms of pathogen-host and pathogen-microbiome interactions, especially at a molecular and cellular level, compared to general plant pathology, where experimental and model systems exist. Such models facilitate the integration of diverse methodologies from a broader base of the research community, allowing for a more holistic and deeper examination of complex research questions. Here, we propose a framework for the development of such model systems also for forest pathology. This goal is more feasible than ever, thanks to rapid technological advancements, increasing open data availability and a globally interconnected research community. These factors create a unique opportunity to integrate ecosystem-focused research in forest pathology with a unified model organism strategy. Achieving this goal will require a dedicated community effort in the coming years, as such model systems are not discovered but built.
Collapse
Affiliation(s)
- Anne G Oostlander
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, 38106, Germany
| | - André Fleißner
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, 38106, Germany
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
2
|
Moustakas A, Zemah-Shamir S, Tase M, Zotos S, Demirel N, Zoumides C, Christoforidi I, Dindaroglu T, Albayrak T, Ayhan CK, Fois M, Manolaki P, Sandor AD, Sieber I, Stamatiadou V, Tzirkalli E, Vogiatzakis IN, Zemah-Shamir Z, Zittis G. Climate land use and other drivers' impacts on island ecosystem services: A global review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 973:179147. [PMID: 40112548 DOI: 10.1016/j.scitotenv.2025.179147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/09/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Islands are diversity hotspots and vulnerable to environmental degradation, climate variations, land use changes and societal crises. These factors can exhibit interactive impacts on ecosystem services. The study reviewed a large number of papers on the climate change-islands-ecosystem services topic worldwide. Potential inclusion of land use changes and other drivers of impacts on ecosystem services were sequentially also recorded. The study sought to investigate the impacts of climate change, land use change, and other non-climatic driver changes on island ecosystem services. Explanatory variables examined were divided into two categories: environmental variables and methodological ones. Environmental variables include sea zone geographic location, ecosystem, ecosystem services, climate, land use, other driver variables, Methodological variables include consideration of policy interventions, uncertainty assessment, cumulative effects of climate change, synergistic effects of climate change with land use change and other anthropogenic and environmental drivers, and the diversity of variables used in the analysis. Machine learning and statistical methods were used to analyze their effects on island ecosystem services. Negative climate change impacts on ecosystem services are better quantified by land use change or other non-climatic driver variables than by climate variables. The synergy of land use together with climate changes is modulating the impact outcome and critical for a better impact assessment. Analyzed together, there is little evidence of more pronounced effects for a specific sea zone, ecosystem, or ecosystem service. Climate change impacts may be underestimated due to the use of a single climate variable deployed in most studies. Policy interventions exhibit low classification accuracy in quantifying impacts indicating insufficient efficacy or integration in the studies.
Collapse
Affiliation(s)
| | - Shiri Zemah-Shamir
- School of Sustainability, Interdisciplinary Center (IDC), Reichman University, Herzliya, Israel
| | - Mirela Tase
- Department of Tourism, Aleksander Moisiu University, Durrës, Albania
| | - Savvas Zotos
- Faculty of Pure and Applied Sciences, Open University of Cyprus, Nicosia, Cyprus
| | - Nazli Demirel
- Institute of Marine Sciences and Management, Istanbul University, Turkey
| | - Christos Zoumides
- Energy, Environment and Water Research Center (EEWRC), The Cyprus Institute, Nicosia, Cyprus
| | - Irene Christoforidi
- Department of Plant Production Experimental farm, Hellenic Mediterranean University, Heraklion, Greece
| | - Turgay Dindaroglu
- Department of Forest Engineering, Karadeniz Technical University, Trabzon, Turkey
| | - Tamer Albayrak
- Department of Biology, Budur Mehmet Akif Ersoy University, Burdur, Turkey; Department of Mathematics and Science Education, Buca Faculty of Education, Dokuz Eylül University, İzmir, Turkey
| | - Cigdem Kaptan Ayhan
- Department of Landscape Architecture, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Mauro Fois
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Paraskevi Manolaki
- Faculty of Pure and Applied Sciences, Open University of Cyprus, Nicosia, Cyprus
| | - Attila D Sandor
- HUN-REN-UVMB Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary; University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Ina Sieber
- Kassel Institute for Sustainability, Kassel University, Kassel, Germany
| | | | - Elli Tzirkalli
- Faculty of Pure and Applied Sciences, Open University of Cyprus, Nicosia, Cyprus
| | - Ioannis N Vogiatzakis
- Faculty of Pure and Applied Sciences, Open University of Cyprus, Nicosia, Cyprus; Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Ziv Zemah-Shamir
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - George Zittis
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus.
| |
Collapse
|
3
|
Liu MY, Li GY, Shi L, Li YY, Liu H. Detection of the stem-boring damage by pine shoot beetle ( Tomicus spp.) to Yunan pine ( Pinus yunnanensis Franch.) using UAV hyperspectral data. FRONTIERS IN PLANT SCIENCE 2025; 16:1514580. [PMID: 40271446 PMCID: PMC12014753 DOI: 10.3389/fpls.2025.1514580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025]
Abstract
Introduction The stem-boring damage caused by pine shoot beetle (PSB, Tomicus spp.) cuts off the transmission of water and nutrients. The aggregation of beetles during the stem-boring stage results in the rapid mortality of Yunnan pines (Pinus yunnanensis Franch.). Timely identification and precise localization of stem-boring damage caused by PSB are crucial for removing infected wood and preventing further spread of the infestation. Unmanned airborne vehicle (UAV) hyperspectral data demonstrate great potential in assessing pest outbreaks in forested landscapes. However, there is a lack of studies investigating the application and accuracy of UAV hyperspectral data for detecting PSB stem-boring damage. Methods In this study, we compared the differences in spectral features of healthy pines (H level), three levels of shoot-feeding damage (E, M and S levels), and the stem-boring damage (T level), and then used the Random Forest (RF) algorithm for detecting stem-boring damage by PSB. Results The specific canopy spectral features, including red edge (such as Dr, SDr, and D711), blue edge (such as Db and SDb), and chlorophyll-related spectral indices (e.g., MCARI) were sensitive to PSB stem-boring damage. The results of RF models showed that the spectral features of first-order derivative (FD) and spectral indices (SIs) played an important role in the PSB stem-boring damage detection. Models incorporating FD bands, SIs and a combination of all variables proved more effective in detecting PSB stem-boring damage. Discussion These findings demonstrate the potential of canopy spectral features in detecting PSB stem-boring damage, which significantly contributed to the prevention and management of PSB infestations.
Collapse
Affiliation(s)
- Meng-Ying Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| | - Guang-Yun Li
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| | - Lei Shi
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
| | - Ya-Ying Li
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| | - Huai Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Blanchette RA, Rajtar NN, Lochridge AG, Held BW. Intercontinental movement of exotic fungi on decorative wood used in aquatic and terrestrial aquariums. Sci Rep 2025; 15:9142. [PMID: 40097820 PMCID: PMC11914568 DOI: 10.1038/s41598-025-94540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/14/2025] [Indexed: 03/19/2025] Open
Abstract
The intercontinental movement of fungi or fungus-like organisms brings nonnative species into areas where they may become invasive pathogens of trees and other plants. In the past century, many examples such as Dutch elm disease, sudden oak death, laurel wilt, and others have resulted in large economic losses and ecological disasters. Although various safeguards to prevent the transport of potential pathogens have been in effect, new avenues of introduction have occurred causing new disease outbreaks. This study examined fungi in wood shipped from Asia that is used for decorative purposes in aquatic and terrestrial aquariums. From 44 imported wood samples, 202 cultures representing 123 different fungal taxa were obtained and identified using molecular methods. These included 31 species not previously reported in the United States, 21 potential plant pathogens, 37 species of wood decay fungi and 24 taxa with a 97% sequence match or less to known isolates suggesting these are unknown species. The results demonstrate that wood used for decorative purposes in aquariums harbor large numbers of diverse fungi that remain viable during shipping and storage. These fungi are currently being imported into areas where they are not native, and they may pose serious biosecurity threats to the United States and other countries around the world.
Collapse
Affiliation(s)
- Robert A Blanchette
- Department of Plant Pathology, University of Minnesota, 55108, St. Paul, MN, USA.
| | - Nickolas N Rajtar
- Department of Plant Pathology, University of Minnesota, 55108, St. Paul, MN, USA
| | - Amelia G Lochridge
- Department of Plant Pathology, University of Minnesota, 55108, St. Paul, MN, USA
| | - Benjamin W Held
- Department of Plant Pathology, University of Minnesota, 55108, St. Paul, MN, USA
| |
Collapse
|
5
|
Zhang Z, Huang J, Tang Z, Zhao J, Mo X. Significant Differences in the Effects of Pine Wilt Disease Invasion on Plant Diversity in Natural and Planted Forests. INSECTS 2025; 16:295. [PMID: 40266818 PMCID: PMC11942708 DOI: 10.3390/insects16030295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 04/25/2025]
Abstract
Plants, as producers in ecosystems, are an integral part of biodiversity in terms of their species diversity. Plant diversity not only enhances the quality of ecosystem services, but also provides habitat for a wide range of plants and animals. The invasion of pine wilt disease (PWD) has posed a significant threat to plant diversity in China, but it is not clear whether this threat would be significantly different in natural and planted forests. In this study, we collected a long time series of refined forest subcompartment data on PWD occurrence and plant diversity sample survey data to analyze the loss and recovery time of plant diversity in China caused by PWD invasion, especially the degree of impact on plant diversity in natural and planted forests. The results showed that after PWD invasion, the plant diversity levels of China's national, natural, and planted forests reached a minimum in the third year of invasion, with a loss of 9.1%, 6.46%, and 9.82%, respectively, relative to the pre-invasion levels. Starting from the third year of invasion, the plant diversity levels of the three recovered gradually at different rates, among which there was a significant difference in the speed of recovery between natural forests and planted forests, which took two and three years to recover to the original level of plant diversity, respectively. This study revealed the differences in the response of plant diversity to PWD invasion between natural and planted forests and provided a theoretical basis for local governments and managers in preventing and controlling PWD and protecting plant diversity.
Collapse
Affiliation(s)
- Zijing Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (J.Z.); (X.M.)
| | - Jixia Huang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (J.Z.); (X.M.)
- Academy of Plateau Science and Sustainability, People’s Government of Qinghai Province & Beijing Normal University, Xining 810008, China
| | - Zhiyao Tang
- Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing 100871, China;
| | - Junhao Zhao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (J.Z.); (X.M.)
| | - Xiumei Mo
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (J.Z.); (X.M.)
| |
Collapse
|
6
|
Porotikova E, Brusnova N, Sushchenko A, Kolganikhina G, Vinogradova S. Bacteria Pseudomonas sp. and Pantoea sp. Are the New Etiological Agents of Diseases on Forest Trees. PLANTS (BASEL, SWITZERLAND) 2025; 14:563. [PMID: 40006822 PMCID: PMC11859248 DOI: 10.3390/plants14040563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Forest trees significantly affect human life. The spread of pathogens, including bacterial ones, poses a serious threat to their health. Despite this, however, the species composition and distribution of pathogenic bacteria, as well as the etiology of common diseases affecting forest trees, remain virtually unstudied. In this study, we, for the first time, describe different species of Pseudomonas and Pantoea as new etiological agents associated with the symptoms of leaf spotting and wood darkening on Acer tataricum L., Fraxinus pennsylvanica L., Ulmus minor Mill. Ulmus laevis Pallas. and Populus tremula L. For the identification of bacteria species, we used an integrated approach based on the characterization of their morphology, biochemistry, physiology and genetics. Phylogenetic analysis was performed using multilocus typing for five genes for Pseudomonas and six genes for Pantoea. Leaf spotting on A. tataricum, F. pennsylvanica, U. minor and U. laevis was shown to be caused by Pseudomonas cerasi, Pseudomonas congelans, Pseudomonas graminis, Pseudomonas syringae and Pantoea agglomerans both in monoinfection and coinfection. Wood darkening in U. minor U. laevis and P. tremula was found to be associated with the presence of Pantoea sp. and P. agglomerans. The coinfection of forest trees with bacteria of the genera Pseudomonas and Pantoea indicates a complex mechanism of interaction between the two populations, which will be the subject of future studies.
Collapse
Affiliation(s)
- Elena Porotikova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (E.P.); (N.B.); (A.S.)
| | - Natalia Brusnova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (E.P.); (N.B.); (A.S.)
| | - Andrei Sushchenko
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (E.P.); (N.B.); (A.S.)
| | - Galina Kolganikhina
- Institute of Forest Science, Russian Academy of Sciences, 143030 Uspenskoe, Moscow Region, Russia;
| | - Svetlana Vinogradova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (E.P.); (N.B.); (A.S.)
| |
Collapse
|
7
|
Zhang FX, Li HL, Wan JZ, Wang CJ. Identifying key monitoring areas for tree insect pest risks in China under climate change. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2355-2367. [PMID: 39460732 DOI: 10.1093/jee/toae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/19/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024]
Abstract
Climate change can exacerbate pest population growth, posing significant threats to ecosystem functions and services, social development, and food security. Risk assessment is a valuable tool for effective pest management that identifies potential pest expansion and ecosystem dispersal patterns. We applied a habitat suitability model coupled with priority protection planning software to determine key monitoring areas (KMA) for tree insect pest risks under climate change and used forest ecoregions and nature reserves to assess the ecological risk of insect pest invasion. Finally, we collated the prevention and control measures for reducing future pest invasions. The KMA for tree insect pests in our current and future climate is mainly concentrated in eastern and southern China. However, with climate change, the KMA gradually expands from southeastern to northeastern China. In the current and future climate scenarios, ecoregions requiring high monitoring levels were restricted to the eastern and southern coastal areas of China, and nature reserves requiring the highest monitoring levels were mainly distributed in southeastern China. Tree insect pest invasion assessment using ecoregions and nature reserves identified that future climates increase the risk of pest invasions in forest ecoregions and nature reserves, especially in northeastern China. The increased risk and severity of tree insect pest invasions require implementing monitoring and preventative measures in these areas. We effectively assessed the pest invasion risks using forest ecoregions and nature reserves under climate change. Our assessments suggest that monitoring and early prevention should focus on southeastern and northeastern China.
Collapse
Affiliation(s)
- Fei-Xue Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
- The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Hong-Li Li
- The Key Laboratory of Ecological Protection in the Yellow River Basin of National Forestry and Grassland Administration, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Ji-Zhong Wan
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Chun-Jing Wang
- Grupo de Biología Integrativa, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Wang B, Wen R, Mao X, Chen J, Hao X. Unveiling the co-expression network and molecular targets behind rotenone resistance in the Bursaphelenchus xylophilus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117293. [PMID: 39541702 DOI: 10.1016/j.ecoenv.2024.117293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Bursaphelenchus xylophilus is a pathogenic nematode responsible for pine wilt disease, which can cause the demise of pine trees and discoloration of trunks. As rotenone is an important botanical pesticide, its impact on B. xylophilus was investigated through RNA-seq to understand the response mechanism of nematode. The bioassay results yielded the 12-h LC30 (1.35 mg L-1) and LC50 (2.60 mg L-1) values for rotenone. Differential gene expression analysis identified 172 and 614 differentially expressed genes (DEGs) in B. xylophilus exposed to two different concentrations of rotenone (1.35 and 2.60 mg L-1). To validate these findings, the expression patterns of 10 DEGs were confirmed through RT-qPCR. Additionally, all DEGs were categorized into eight gene expression profiles using STEM. Notably, the gene ontology (GO) processes of "single-organism process," "metabolic process," and "catalytic activity" were prominently enriched in rotenone-treated samples, suggesting a role for metabolic and catalytic pathways in the nematode's response to rotenone stress. KEGG pathways related to "carbon metabolism," "drug metabolism-cytochrome P450," and "metabolism of xenobiotics by cytochrome P450" were similarly enriched, indicating potential mechanisms for detoxification resistance and oxidative stress resistance. The analysis pointed to the pivotal roles of detoxification- and oxidoreduction-related genes, as well as signal transduction-related genes, in enabling B. xylophilus to adapt to rotenone exposure. These insights could markedly enhance our understanding of nematode resistance mechanisms and potentially inform the development of more effective rotenone-based strategies for controlling B. xylophilus.
Collapse
Affiliation(s)
- Buyong Wang
- College of Agricultural and Biological Engineering, Heze University, Heze 274015, China
| | - Rongrong Wen
- College of Agricultural and Biological Engineering, Heze University, Heze 274015, China
| | - Xuenan Mao
- Wageningen University & Research, Wageningen 6700 HB, the Netherlands
| | - Jie Chen
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, College of Forestry, Southwest Forestry University, Kunming 650224, China.
| | - Xin Hao
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, College of Forestry, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
9
|
Bertelsmeier C, Bonnamour A, Brockerhoff EG, Pyšek P, Skuhrovec J, Richardson DM, Liebhold AM. Global proliferation of nonnative plants is a major driver of insect invasions. Bioscience 2024; 74:770-781. [PMID: 39555501 PMCID: PMC11566100 DOI: 10.1093/biosci/biae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 11/19/2024] Open
Abstract
Invasions by nonnative insect species can massively disrupt ecological processes, often leading to serious economic impacts. Previous work has identified propagule pressure as important driver of the trend of increasing numbers of insect invasions worldwide. In the present article, we propose an alternative hypothesis-that insect invasions are being driven by the proliferation of nonnative plants, which create niches for insect specialists and facilitate their establishment outside their native ranges where their hosts are planted or are invasive. We synthesize mechanisms by which plant invasions facilitate insect invasions, macroecological patterns supporting the tight link between plant and insect invasions, and case studies of plant invasions having facilitated subsequent insect establishment. This body of evidence indicates that plant invasions are a major driver of insect invasions. Consequently, the benefits of limiting the spread of nonnative plants include averting the proliferation of nonnative insects and their spillover onto native plant species.
Collapse
Affiliation(s)
- Cleo Bertelsmeier
- Department of Ecology and Evolution at the University of LausanneSwitzerland
| | - Aymeric Bonnamour
- Department of Ecology and Evolution at the University of LausanneSwitzerland
| | | | - Petr Pyšek
- Department of Ecology, Faculty of Science at Charles University, Prague, Czech Republic
| | | | - David M Richardson
- Department of Ecology, Faculty of Science at Charles University, Prague, Czech Republic
- Centre for Invasion Biology in the Department of Botany and Zoology at Stellenbosch University, Stellenbosch, South Africa
| | - Andrew M Liebhold
- USDA Forest Service Northern Research Station, Morgantown, West Virginia, United States
- Faculty of Forestry and Wood Sciences at the Czech University of Life Sciences Prague, Czech Republic
| |
Collapse
|
10
|
Li J, Guttmann N, Drew GC, Hector TE, Wolinska J, King KC. Excess mortality of infected ectotherms induced by warming depends on pathogen kingdom and evolutionary history. PLoS Biol 2024; 22:e3002900. [PMID: 39556605 PMCID: PMC11611255 DOI: 10.1371/journal.pbio.3002900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/02/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Climate change is causing extreme heating events and can lead to more infectious disease outbreaks, putting species persistence at risk. The extent to which warming temperatures and infection may together impair host health is unclear. Using a meta-analysis of >190 effect sizes representing 101 ectothermic animal host-pathogen systems, we demonstrate that warming significantly increased the mortality of hosts infected by bacterial pathogens. Pathogens that have been evolutionarily established within the host species showed higher virulence under warmer temperatures. Conversely, the effect of warming on novel infections-from pathogens without a shared evolutionary history with the host species-were more pronounced with larger differences between compared temperatures. We found that compared to established infections, novel infections were more deadly at lower/baseline temperatures. Moreover, we revealed that the virulence of fungal pathogens increased only when temperatures were shifted upwards towards the pathogen thermal optimum. The magnitude of all these significant effects was not impacted by host life-stage, immune complexity, pathogen inoculation methods, or exposure time. Overall, our findings reveal distinct patterns in changes of pathogen virulence during warming. We highlight the importance of pathogen taxa, thermal optima, and evolutionary history in determining the impact of global change on infection outcomes.
Collapse
Affiliation(s)
- Jingdi Li
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Nele Guttmann
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin (FU), Berlin, Germany
| | - Georgia C. Drew
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Collegium Helveticum, The joint Institute for Advanced Studies (IAS) of the ETH Zurich, The University of Zurich, &The Zurich University of the Arts, Zurich, Switzerland
| | - Tobias E. Hector
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin (FU), Berlin, Germany
| | - Kayla C. King
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
11
|
Dye AW, Houtman RM, Gao P, Anderegg WRL, Fettig CJ, Hicke JA, Kim JB, Still CJ, Young K, Riley KL. Carbon, climate, and natural disturbance: a review of mechanisms, challenges, and tools for understanding forest carbon stability in an uncertain future. CARBON BALANCE AND MANAGEMENT 2024; 19:35. [PMID: 39388012 PMCID: PMC11468384 DOI: 10.1186/s13021-024-00282-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
In this review, we discuss current research on forest carbon risk from natural disturbance under climate change for the United States, with emphasis on advancements in analytical mapping and modeling tools that have potential to drive research for managing future long-term stability of forest carbon. As a natural mechanism for carbon storage, forests are a critical component of meeting climate mitigation strategies designed to combat anthropogenic emissions. Forests consist of long-lived organisms (trees) that can store carbon for centuries or more. However, trees have finite lifespans, and disturbances such as wildfire, insect and disease outbreaks, and drought can hasten tree mortality or reduce tree growth, thereby slowing carbon sequestration, driving carbon emissions, and reducing forest carbon storage in stable pools, particularly the live and standing dead portions that are counted in many carbon offset programs. Many forests have natural disturbance regimes, but climate change and human activities disrupt the frequency and severity of disturbances in ways that are likely to have consequences for the long-term stability of forest carbon. To minimize negative effects and maximize resilience of forest carbon, disturbance risks must be accounted for in carbon offset protocols, carbon management practices, and carbon mapping and modeling techniques. This requires detailed mapping and modeling of the quantities and distribution of forest carbon across the United States and hopefully one day globally; the frequency, severity, and timing of disturbances; the mechanisms by which disturbances affect carbon storage; and how climate change may alter each of these elements. Several tools (e.g. fire spread models, imputed forest inventory models, and forest growth simulators) exist to address one or more of the aforementioned items and can help inform management strategies that reduce forest carbon risk, maintain long-term stability of forest carbon, and further explore challenges, uncertainties, and opportunities for evaluating the continued potential of, and threats to, forests as viable mechanisms for forest carbon storage, including carbon offsets. A growing collective body of research and technological improvements have advanced the science, but we highlight and discuss key limitations, uncertainties, and gaps that remain.
Collapse
Affiliation(s)
- Alex W Dye
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, USA.
| | - Rachel M Houtman
- USDA Forest Service Rocky Mountain Research Station, Missoula Fire Sciences Lab, Missoula, MT, USA
| | - Peng Gao
- Department of Earth & Ocean Sciences, University of North Carolina at Wilmington, Wilmington, NC, USA
| | - William R L Anderegg
- Wilkes Center for Climate Science and Policy, University of Utah, Salt Lake City, UT, USA
| | | | - Jeffrey A Hicke
- Department of Earth & Spatial Sciences, University of Idaho, Moscow, ID, USA
| | - John B Kim
- USDA Forest Service Western Wildland Environmental Threat Assessment Center, Corvallis, OR, USA
| | - Christopher J Still
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, USA
| | - Kevin Young
- University of North Carolina at Wilmington, Wilmington, NC, USA
| | - Karin L Riley
- USDA Forest Service Rocky Mountain Research Station, Missoula Fire Sciences Lab, Missoula, MT, USA
| |
Collapse
|
12
|
Ji J, Ma W, An J, Zhang B, Sun W, Zhang G. Nerol as a Novel Antifungal Agent: In Vitro Inhibitory Effects on Fusarium oxysporum, Pestalotiopsis neglecta, and Valsa mali and Its Potential Mechanisms against F. oxysporum. J Fungi (Basel) 2024; 10:699. [PMID: 39452651 PMCID: PMC11508397 DOI: 10.3390/jof10100699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
This study explores the in vitro antifungal effects of nerol, a linear acyclic monoterpene alcohol of plant origin, on Fusarium oxysporum, Pestalotiopsis neglecta, and Valsa mali. To further investigate the antifungal mechanism of nerol against F. oxysporum, we examined changes in mycelial morphology and cell membrane integrity-related indices, as well as the activities of antioxidant and pathogenicity-related enzymes. The results demonstrated that nerol exhibited significant concentration-dependent inhibition of mycelial growth in all three fungi, with EC50 values of 0.46 μL/mL for F. oxysporum, 1.81 μL/mL for P. neglecta, and 1.26 μL/mL for V. mali, with the strongest antifungal activity observed against F. oxysporum. Scanning electron microscopy revealed that nerol severely disrupted the mycelial structure of F. oxysporum, causing deformation, swelling, and even rupture. Treatment with 0.04 μL/mL nerol led to significant leakage of soluble proteins and intracellular ions in F. oxysporum, and the Na+/K+-ATPase activity was reduced to 28.02% of the control, indicating enhanced membrane permeability. The elevated levels of hydrogen peroxide and malondialdehyde, along with propidium iodide staining of treated microconidia, further confirmed cell membrane disruption caused by nerol. Additionally, after 12 h of exposure to 0.04 μL/mL nerol, the activity of superoxide dismutase in F. oxysporum decreased to 55.81% of the control, and the activities of catalase and peroxidase were also significantly inhibited. Nerol markedly reduced the activities of pathogenicity-related enzymes, such as endo-1,4-β-D-glucanase, polygalacturonase, and pectin lyase, affecting fungal growth and virulence. In conclusion, nerol disrupts the cell membrane integrity and permeability of F. oxysporum, reduces its virulence, and ultimately inhibits fungal growth, highlighting its potential as an alternative to chemical fungicides for controlling F. oxysporum.
Collapse
Affiliation(s)
- Jingyu Ji
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China; (J.J.); (W.M.); (J.A.); (W.S.)
| | - Weihu Ma
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China; (J.J.); (W.M.); (J.A.); (W.S.)
| | - Jiyuan An
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China; (J.J.); (W.M.); (J.A.); (W.S.)
| | - Bowen Zhang
- School of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China;
| | - Wenzhuo Sun
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China; (J.J.); (W.M.); (J.A.); (W.S.)
| | - Guocai Zhang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China; (J.J.); (W.M.); (J.A.); (W.S.)
| |
Collapse
|
13
|
Parra RBDL, Venturino E. A discrete two time scales model of a size-structured population of parasitized trees. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:7040-7066. [PMID: 39483071 DOI: 10.3934/mbe.2024309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The work presented a general discrete-time model of a population of trees affected by a parasite. The tree population was considered size-structured, and the parasite was represented by a single scalar variable. Parasite dynamics were assumed to act on a faster timescale than tree dynamics. The model was studied based on an associated nonlinear matrix model, in which the presence of the parasites was only reflected in the value of its parameters. For the model in all its generality, an explicit condition of viability/extinction of the parasite/tree community was found. In a simplified model with two size-classes of trees and particular forms of the vital rates, it was shown that the model undergoes a transcritical bifurcation and, likewise, a period-doubling bifurcation. It was found that, for any tree fertility rate that makes them viable without a parasite, if the parasite sufficiently reduces the survival of young trees, it can lead to the extinction of the entire community. The same cannot be assured if the parasite acts on adult trees. In situations where a high fertility rate coupled with a low survival rate of adult trees causes a non-parasitized population of trees to fluctuate, a parasite sufficiently damaging only young trees can stabilize the population. If, instead, the parasite acts on adult trees, we can find a destabilization condition on the tree population that brings them from a stable to an oscillating regime.
Collapse
Affiliation(s)
| | - Ezio Venturino
- Dipartimento di Matematica "Giuseppe Peano", Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy; Laboratoire Chrono-Environnement, Université de Franche-Comté, 16 route de Gray, Besançon, 25030, France Member of the INdAM research group GNCS
| |
Collapse
|
14
|
LeBoldus JM, Lynch SC, Newhouse AE, Søndreli KL, Newcombe G, Bennett PI, Muchero W, Chen JG, Busby PE, Gordon M, Liang H. Biotechnology and Genomic Approaches to Mitigating Disease Impacts on Forest Health. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:309-335. [PMID: 39251210 DOI: 10.1146/annurev-phyto-021622-114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Outbreaks of insects and diseases are part of the natural disturbance regime of all forests. However, introduced pathogens have had outsized impacts on many dominant forest tree species over the past century. Mitigating these impacts and restoring these species are dilemmas of the modern era. Here, we review the ecological and economic impact of introduced pathogens, focusing on examples in North America. We then synthesize the successes and challenges of past biotechnological approaches and discuss the integration of genomics and biotechnology to help mitigate the effects of past and future pathogen invasions. These questions are considered in the context of the transgenic American chestnut, which is the most comprehensive example to date of how biotechnological tools have been used to address the impacts of introduced pathogens on naïve forest ecosystems.
Collapse
Affiliation(s)
- Jared M LeBoldus
- Department of Botany and Plant Pathology and Department of Forest Engineering, Resources, and Management, Oregon State University, Corvallis, Oregon, USA;
| | - Shannon C Lynch
- Faculty of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Andrew E Newhouse
- Faculty of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Kelsey L Søndreli
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - George Newcombe
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, Idaho, USA
| | - Patrick I Bennett
- Rocky Mountain Research Station, United States Forest Service, Moscow, Idaho, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Posy E Busby
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Michael Gordon
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA
| | - Haiying Liang
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
15
|
Zhao Z, Yang L, Chen X. Globally suitable areas for Lycorma delicatula based on an optimized Maxent model. Ecol Evol 2024; 14:e70252. [PMID: 39310735 PMCID: PMC11413495 DOI: 10.1002/ece3.70252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
Lycorma delicatula, a globally invasive pest, has caused considerable economic losses in many countries. Determining the potential distribution range of L. delicatula is crucial for its effective management and control; however, our understanding of this species remains limited. In this study, Maxent model with occurrence records and environmental variables were fit first and then optimized by selecting the best combination of feature classes and regularization multipliers using the lowest score of corrected Akaike information criterion. Subsequently, we predicted global suitable areas for L. delicatula both currently and in the future (2041-2060, 2061-2080, and 2081-2100). The results indicated that the mean temperature of the driest quarter is the most important environmental variable limiting L. delicatula distribution. Currently, the suitable areas are concentrated in East Asia (mainly in China, South Korea, and Japan), central and eastern United States, and southern Europe. Compared with current environmental conditions, in all future climate scenarios, the number of suitable areas for L. delicatula increased. In addition, we revealed that suitable areas are likely to expand northward in the future. Our study results suggest that policymakers and governments should prioritize the development of pest management measures in suitable areas for L. delicatula, especially in high suitable areas, to control this invasive pest and minimize global economic losses.
Collapse
Affiliation(s)
- Zhengxue Zhao
- Institute of EntomologyGuizhou UniversityGuiyangChina
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of GuizhouGuizhou UniversityGuiyangChina
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous RegionGuizhou UniversityGuiyangChina
- College of AgricultureAnshun UniversityAnshunChina
| | - Lin Yang
- Institute of EntomologyGuizhou UniversityGuiyangChina
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of GuizhouGuizhou UniversityGuiyangChina
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous RegionGuizhou UniversityGuiyangChina
| | - Xiangsheng Chen
- Institute of EntomologyGuizhou UniversityGuiyangChina
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of GuizhouGuizhou UniversityGuiyangChina
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous RegionGuizhou UniversityGuiyangChina
| |
Collapse
|
16
|
Wang H, Sun Y, Yin C, Gao J, Hu J, Sung C, Wang C, Wang Z. Unraveling the interactions of Esteya vermicola, pinewood nematode, and pine hosts: Insights into population dynamics and molecular responses. CHEMOSPHERE 2024; 363:142948. [PMID: 39059633 DOI: 10.1016/j.chemosphere.2024.142948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Esteya vermicola has shown promise as an efficient biological control agent against pine wilt disease, a devastating disease in pine forests caused by the pinewood nematode (PWN, Bursaphelenchus xylophilus). However, the in vivo interactions among E. vermicola, PWN, and pine hosts are less understood, both at the population and molecular levels. In this study, we performed a series of bioassays to investigate E. vermicola colonization patterns in pine xylem and its population responses to PWN invasion in healthy and PWN-induced wilting trees. Our results demonstrated that although E. vermicola exhibits slow growth, its conidia germinate and grew along the pine tracheid, even producing lunate conidia capable of initiating PWN infections within the xylem. Interestingly, while fungal hyphae became undetectable in pine sapling xylem after inoculation, the E. vermicola population increased immediately in response to PWN invasion. Furthermore, we observed a "leap-frog" dispersal pattern of fungal colonization in PWN-induced wilting pines, facilitated by the migration of fungal-infected nematodes. Moreover, we explored the molecular mechanisms underlying fungal tolerance to pine defense systems using transcriptomic analysis. Comparative transcriptomics revealed that carbohydrate metabolism and abiotic stress-induced oxidoreductive activities are involved in the fungal tolerance to the pine defense compound β-pinene. This study enhances our understanding of how E. vermicola colonizes and persists within pine xylem, its molecular responses to plant defense compounds, and its population dynamics upon PWN invasion, validating its efficacy as a biocontrol agent against pine wilt disease.
Collapse
Affiliation(s)
- Haihua Wang
- College of Agriculture and Biotechnology, Chungnam National University, Daejeon, South Korea; North Florida Research and Education Center, University of Florida, FL, USA
| | - Yulou Sun
- Yantai Center for Disease Control and Prevention, Yantai, China
| | - Can Yin
- College of Agriculture and Biotechnology, Chungnam National University, Daejeon, South Korea; College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jie Gao
- College of Agriculture and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Jingfei Hu
- College of Technology and Data, Yantai Nanshan University, Yantai, China
| | - Chungkeun Sung
- College of Agriculture and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Chunyan Wang
- College of Forestry, Northwest A&F University, Yangling, China.
| | - Zhen Wang
- College of Pharmacy, Linyi University, Linyi, China.
| |
Collapse
|
17
|
Poudel A, Ayer S, Joshi R, Gautam J, Timilsina S, Khadka K, Bhatta KP, Maharjan M. Effect of the irregular shelterwood system on soil organic carbon stock and soil quality of Shorea robusta Gaertn. f. forest in Nepal. Heliyon 2024; 10:e35441. [PMID: 39170572 PMCID: PMC11336644 DOI: 10.1016/j.heliyon.2024.e35441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
The effective management of forests relies on the crucial role played bysilvicultural systems. However there exist a significant knowledge gap regarding impact of these systems in Nepalese forests. Therefore, this research was conducted to assess the effects of the forest management activities under irregular shelterwood system on soil organic carbon (SOC) stock and the overall soil quality of Sal (Shorea robusta Gaertn. f.) forests in Terai region of Nepal. Stratified random sampling method with 1.67 % sampling intensity was adopted in this study where management of stands was used as basis of strata. A total of 30 composite soil samples (15 each from managed and unmanaged forest stands) were collected from a depth of 0-30 cm, taken from the four corners and the center of each plot. Soil quality index (SQI) method was used for soil quality assessment using indicators on the basis of prior studies conducted in Nepal. Our study found significant difference in soil parameters except organic carbon, pH, silt, and clay among the managed and unmanaged forest stands (p < 0.05). SOC stock of unmanaged forest stands (48.87 ± 1.34 ton ha-1) was significantly greater than managed forest stands (27.76 ± 1.27 ton ha-1). Similarly, unmanaged forest stands demonstrated better soil quality with higher SQI value (0.66) than managed forest stands (0.50). This negative impact of irregular shelterwood silviculture system highlights the necessity for management interventions to enhance SOC stock and overall soil quality. To establish a robust conclusion, further replication of similar studies at different soil depths and in other management regimes, along with longitudinal studies, is essential.
Collapse
Affiliation(s)
- Anil Poudel
- College of Natural Resource Management (CNRM), Agriculture and Forestry University, Katari, 56310, Nepal
| | - Santosh Ayer
- College of Natural Resource Management (CNRM), Agriculture and Forestry University, Katari, 56310, Nepal
| | - Rajeev Joshi
- College of Natural Resource Management (CNRM), Agriculture and Forestry University, Katari, 56310, Nepal
| | - Jeetendra Gautam
- Faculty of Forestry, Agriculture and Forestry University, Hetauda, 44100, Nepal
| | - Sachin Timilsina
- Institute of Forestry, Tribhuvan University, Pokhara, 33700, Nepal
| | - Keshav Khadka
- Ministry of Forests, Environment and Soil Conservation, Lumbini Province, 32900, Nepal
| | | | - Menuka Maharjan
- School of Forestry and Natural Resource Management, Institute of Forestry, Tribhuvan University, Kathmandu, 44600, Nepal
- Institute of Forestry, Tribhuvan University, Hetauda, 44100, Nepal
| |
Collapse
|
18
|
Kushal A, Hastings A. Effect of migrations on synchrony in host-parasitoid system. J Theor Biol 2024; 590:111855. [PMID: 38789077 DOI: 10.1016/j.jtbi.2024.111855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 04/03/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Insect outbreaks can cause large scale defoliation of forest trees or destruction of crops, leading to ecosystem degradation and economic losses. Some outbreaks occur simultaneously across large geographic scales and some outbreaks occur periodically every few years across space. Parasitoids are a natural enemy of these defoliators and could help mitigate these pest outbreaks. A holistic understanding of the host-parasitoid interactions in a spatial context would thus enhance our ability to understand, predict and prevent these outbreaks. We use a discrete time deterministic model of the host parasitoid system with populations migrating between 2 patches to elucidate features of spatial host outbreaks. We show that whenever populations persist indefinitely, host outbreaks in both patches can occur alternatively (out of phase) at low migration between patches whereas host outbreaks always occur simultaneously (in phase) in both patches at high migration between patches. We show that our results are robust across a large range of parameters across different modelling approaches used typically to model intraspecific competition among hosts and parasitism, in the host-parasitoid literature. We give an analytical expression for the period of oscillations when the migration is low i.e., when host outbreaks in both patches are out of phase, show it is in agreement with numerical results. We end our paper by showing that we get the same results whether we include the biologically rooted formulations from May et al. (1981) or a general cellular automata model with qualitative rules.
Collapse
Affiliation(s)
- Appilineni Kushal
- Department of Mathematics and Statistics, University of California, One Shields Avenue, Davis, 95616, CA, USA.
| | - Alan Hastings
- Department of Environmental Science and Policy, University of California, One Shields Avenue, Davis, 95616, CA, USA; Santa Fe Institute, 9 Eddy Rd, Santa Fe, 87506, NM, USA.
| |
Collapse
|
19
|
Lindroth RL, Zierden MR, Morrow CJ, Fernandez PC. Forest defoliation by an invasive outbreak insect: Catastrophic consequences for a charismatic mega moth. Ecol Evol 2024; 14:e70046. [PMID: 39161623 PMCID: PMC11331496 DOI: 10.1002/ece3.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
Earth is now experiencing declines in insect abundance and diversity unparalleled in human history. The drivers underlying those declines are many, complex, and incompletely known. Here, using a natural experiment, we report the first test of the hypothesis that forest defoliation by an invasive outbreak insect compromises the fitness of a native insect via damage-induced increases in toxicity of the forest canopy. We demonstrate that defoliation by the invasive spongy moth (Lymantria dispar) elicits an average 8.4-fold increase in foliar defense expression among aspen (Populus tremuloides) genotypes. In turn, elevated defense dramatically reduces survivorship, feeding, and growth of a charismatic mega moth (Anthereae polyphemus). This work suggests that changes to the phytochemical landscape of forests, mediated by invasive outbreak insects, are likely to negatively impact native insects, with potential repercussions for community diversity and ecosystem function across expansive scales.
Collapse
Affiliation(s)
| | - Mark R. Zierden
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Present address:
Department of ChemistryLake Superior State UniversitySault Sainte MarieMichiganUSA
| | - Clay J. Morrow
- Department of Forest and Wildlife EcologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Present address:
Forest Products LaboratoryUnited States Forest ServiceMadisonWisconsinUSA
| | - Patricia C. Fernandez
- CONICET‐Universidad de Buenos Aires, Centro de Investigación de Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria – Pabellón 2Buenos AiresArgentina
- Departamento de Biología Aplicada y Alimentos, Cátedra de Química de BiomoléculasUniversidad de Buenos Aires, Facultad de AgronomíaBuenos AiresArgentina
| |
Collapse
|
20
|
Schebeck M, Lehmann P, Laparie M, Bentz BJ, Ragland GJ, Battisti A, Hahn DA. Seasonality of forest insects: why diapause matters. Trends Ecol Evol 2024; 39:757-770. [PMID: 38777634 DOI: 10.1016/j.tree.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Insects have major impacts on forest ecosystems, from herbivory and soil-nutrient cycling to killing trees at a large scale. Forest insects from temperate, tropical, and subtropical regions have evolved strategies to respond to seasonality; for example, by entering diapause, to mitigate adversity and to synchronize lifecycles with favorable periods. Here, we show that distinct functional groups of forest insects; that is, canopy dwellers, trunk-associated species, and soil/litter-inhabiting insects, express a variety of diapause strategies, but do not show systematic differences in diapause strategy depending on functional group. Due to the overall similarities in diapause strategies, we can better estimate the impacts of anthropogenic change on forest insect populations and, consequently, on key ecosystems.
Collapse
Affiliation(s)
- Martin Schebeck
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences, BOKU University, A-1190 Vienna, Austria.
| | - Philipp Lehmann
- Department of Animal Physiology, Zoological Institute and Museum, University of Greifswald, D-17489 Greifswald, Germany; Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden; Bolin Centre for Climate Research, SE-10691 Stockholm, Sweden
| | | | - Barbara J Bentz
- US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Logan, UT 84321, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado-Denver, Denver, CO 80204, USA
| | - Andrea Battisti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, I-35020 Legnaro, Italy
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611-0620, USA
| |
Collapse
|
21
|
Mori N, Yamashita M, Inoue MN. Integration of satellite remote sensing and MaxEnt modeling for improved detection and management of forest pests. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:616. [PMID: 38874785 DOI: 10.1007/s10661-024-12792-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Forest pests pose a major threat to ecosystem services worldwide, requiring effective monitoring and management strategies. Recently, satellite remote sensing has emerged as a valuable tool to detect defoliation caused by these pests. Lymantria dispar, a major forest pest native to Japan, Siberia, and Europe, as well as introduced regions in North America, is of particular concern. In this study, we used Sentinel-2 satellite imagery to estimate the defoliation area and predict the distribution of L. dispar in Toyama Prefecture, central Japan. The primary aim was to understand the spatial distribution of L. dispar. The normalized difference vegetation index (NDVI) difference analysis estimated a defoliation area of 7.89 km2 in Toyama Prefecture for the year 2022. MaxEnt modeling, using defoliation map as occurrence data, identified the deciduous forests between approximately 35° and 50° at elevations of 400 m and 700 m as highly suitable for L. dispar. This predicted suitability was also high for larval locations but low for egg mass locations, likely due to differences in larval habitats and ovipositing sites. This study is the first attempt to utilize NDVI-based estimates as a proxy for MaxEnt. Our results showed higher prediction accuracy than a previous study based on the occurrence records including larvae, adults, and egg masses, indicating better discrimination of the distribution of L. dispar defoliation. Therefore, our approach to integrating satellite data and species distribution models can potentially enhance the assessment of areas affected by pests for effective forest management.
Collapse
Affiliation(s)
- Natsumi Mori
- Department of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan
| | - Megumi Yamashita
- Department of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan
| | - Maki N Inoue
- Department of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
22
|
Meger J, Ulaszewski B, Pałucka M, Kozioł C, Burczyk J. Genomic prediction of resistance to Hymenoscyphus fraxineus in common ash ( Fraxinus excelsior L.) populations. Evol Appl 2024; 17:e13694. [PMID: 38707993 PMCID: PMC11069026 DOI: 10.1111/eva.13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
The increase in introduced insect pests and pathogens due to anthropogenic environmental changes has become a major concern for tree species worldwide. Common ash (Fraxinus excelsior L.) is one of such species facing a significant threat from the invasive fungal pathogen Hymenoscyphus fraxineus. Some studies have indicated that the susceptibility of ash to the pathogen is genetically determined, providing some hope for accelerated breeding programs that are aimed at increasing the resistance of ash populations. To address this challenge, we used a genomic selection strategy to identify potential genetic markers that are associated with resistance to the pathogen causing ash dieback. Through genome-wide association studies (GWAS) of 300 common ash individuals from 30 populations across Poland (ddRAD, dataset A), we identified six significant SNP loci with a p-value ≤1 × 10-4 associated with health status. To further evaluate the effectiveness of GWAS markers in predicting health status, we considered two genomic prediction scenarios. Firstly, we conducted cross-validation on dataset A. Secondly, we trained markers on dataset A and tested them on dataset B, which involved whole-genome sequencing of 20 individuals from two populations. Genomic prediction analysis revealed that the top SNPs identified via GWAS exhibited notably higher prediction accuracies compared to randomly selected SNPs, particularly with a larger number of SNPs. Cross-validation analyses using dataset A showcased high genomic prediction accuracy, predicting tree health status with over 90% accuracy across the top SNP sets ranging from 500 to 10,000 SNPs from the GWAS datasets. However, no significant results emerged for health status when the model trained on dataset A was tested on dataset B. Our findings illuminate potential genetic markers associated with resistance to ash dieback, offering support for future breeding programs in Poland aimed at combating ash dieback and bolstering conservation efforts for this invaluable tree species.
Collapse
Affiliation(s)
- Joanna Meger
- Department of Genetics, Faculty of Biological SciencesKazimierz Wielki UniversityBydgoszczPoland
| | - Bartosz Ulaszewski
- Department of Genetics, Faculty of Biological SciencesKazimierz Wielki UniversityBydgoszczPoland
| | | | | | - Jarosław Burczyk
- Department of Genetics, Faculty of Biological SciencesKazimierz Wielki UniversityBydgoszczPoland
| |
Collapse
|
23
|
Donald F, Hedges C, Purse BV, Cunniffe NJ, Green S, Asaaga FA. Utility of decision tools for assessing plant health risks from management strategies in natural environments. Ecol Evol 2024; 14:e11308. [PMID: 38706934 PMCID: PMC11066480 DOI: 10.1002/ece3.11308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Increased imports of plants and timber through global trade networks provide frequent opportunities for the introduction of novel plant pathogens that can cross-over from commercial to natural environments, threatening native species and ecosystem functioning. Prevention or management of such outbreaks relies on a diversity of cross-sectoral stakeholders acting along the invasion pathway. Yet, guidelines are often only produced for a small number of stakeholders, missing opportunities to consider ways to control outbreaks in other parts of the pathway. We used the infection of common juniper with the invasive pathogen Phytophthora austrocedri as a case study to explore the utility of decision tools for managing outbreaks of plant pathogens in the wider environment. We invited stakeholders who manage or monitor juniper populations or supply plants or management advice to participate in a survey exploring their awareness of, and ability to use, an existing decision tree produced by a coalition of statutory agencies augmented with new distribution maps designed by the authors. Awareness of the decision tree was low across all stakeholder groups including those planting juniper for restoration purposes. Stakeholders requested that decision tools contain greater detail about environmental conditions that increase host vulnerability to the pathogen, and clearer examples of when management practices implicated in pathogen introduction or spread should not be adopted. The results demonstrate the need to set clear objectives for the purpose of decision tools and to frame and co-produce them with many different stakeholders, including overlooked groups, such as growers and advisory agents, to improve management of pathogens in the wider environment.
Collapse
Affiliation(s)
- Flora Donald
- UK Centre for Ecology and HydrologyWallingfordOxfordshireUK
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Forest Research, Northern Research StationRoslinMidlothianUK
| | - Carrie Hedges
- Institute of Science and EnvironmentUniversity of CumbriaAmblesideUK
- Unit 6Cumbria WoodlandsKendalCumbriaUK
| | | | - Nik J. Cunniffe
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Sarah Green
- Forest Research, Northern Research StationRoslinMidlothianUK
| | | |
Collapse
|
24
|
Zhao Q, Li H, Chen C, Fan S, Wei J, Cai B, Zhang H. Potential Global Distribution of Paracoccus marginatus, under Climate Change Conditions, Using MaxEnt. INSECTS 2024; 15:98. [PMID: 38392517 PMCID: PMC10888652 DOI: 10.3390/insects15020098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
The papaya mealybug, Paracoccus marginatus, is an invasive pest species found all over the world. It is native to Mexico and Central America, but is now present in more than 50 countries and regions, seriously threatening the economic viability of the agricultural and forestry industry. In the current study, the global potential distribution of P. marginatus was predicted under current and future climatic conditions using MaxEnt. The results of the model assessment indicated that the area under the curve of the receiver operating characteristic ( ROC-AUC) was 0.949, while the TSS value was 0.820. The results also showed that the three variables with the greatest impact on the model were min temperature of coldest month (bio6), precipitation of wettest month (bio13), and precipitation of coldest quarter (bio19), with corresponding contributions of 46.8%, 31.1%, and 13.1%, respectively. The results indicated that the highly suitable areas were mainly located in tropical and subtropical regions, including South America, southern North America, Central America, Central Africa, Australia, the Indian subcontinent, and Southeast Asia. Under four climate scenarios in the 2050s and 2070s, the area of suitability will change very little. Moreover, the results showed that the area of suitable areas in 2070s increased under all four climate scenarios compared to the current climate. In contrast, the area of suitable habitat increases from the current to the 2050s under the SSP370 and SSP585 climate scenarios. The current study could provide a reference framework for the future control and management of papaya mealybug and other invasive species.
Collapse
Affiliation(s)
- Qing Zhao
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China
| | - Huiping Li
- Technology Center of Taiyuan Customs, No. 1 Xieyuan Road, Jingyuan District, Taiyuan City 030021, China
| | - Chao Chen
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China
| | - Shiyu Fan
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China
| | - Jiufeng Wei
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China
| | - Bo Cai
- Hainan Province Engineering Research Center for Quarantine, Prevention and Control of Exotic Pests, Haikou Customs District, Haikou 570311, China
| | - Hufang Zhang
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
25
|
Mendonça M, Vicente CSL, Espada M. Functional Characterization of ShK Domain-Containing Protein in the Plant-Parasitic Nematode Bursaphelenchus xylophilus. PLANTS (BASEL, SWITZERLAND) 2024; 13:404. [PMID: 38337937 PMCID: PMC10857297 DOI: 10.3390/plants13030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
ShK domain-containing proteins are peptides found in different parasitic and venomous organisms. From a previous transcriptomic dataset from Bursaphelenchus xylophilus, a plant-parasitic nematode that infects forest tree species, we identified 96 transcripts potentially as ShK domain-containing proteins with unknown function in the nematode genome. This study aimed to characterize and explore the functional role of genes encoding ShK domain-containing proteins in B. xylophilus biology. We selected and functionally analyzed nine candidate genes that are putatively specific to B. xylophilus. In situ hybridization revealed expression of one B. xylophilus ShK in the pharyngeal gland cells, suggesting their delivery into host cells. Most of the transcripts are highly expressed during infection and showed a significant upregulation in response to peroxide products compared to the nematode catalase enzymes. We reported, for the first time, the potential involvement of ShK domain genes in oxidative stress, suggesting that these proteins may have an important role in protecting or modulating the reactive oxygen species (ROS) activity of the host plant during parasitism.
Collapse
Affiliation(s)
| | | | - Margarida Espada
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies, and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (M.M.); (C.S.L.V.)
| |
Collapse
|
26
|
Alderotti F, Verdiani E. God save the queen! How and why the dominant evergreen species of the Mediterranean Basin is declining? AOB PLANTS 2023; 15:plad051. [PMID: 37899973 PMCID: PMC10601391 DOI: 10.1093/aobpla/plad051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/28/2023] [Indexed: 10/31/2023]
Abstract
Quercus ilex may be considered the queen tree of the Mediterranean Basin, dominating coastal forest areas up to 2000 m above sea level at some sites. However, an increase in holm oak decline has been observed in the last decade. In this review, we analysed the current literature to answer the following questions: what are the traits that allow holm oak to thrive in the Mediterranean environment, and what are the main factors that are currently weakening this species? In this framework, we attempt to answer these questions by proposing a triangle as a graphical summary. The first vertex focuses on the main morpho-anatomical, biochemical and physiological traits that allow holm oak to dominate Mediterranean forests. The other two vertices consider abiotic and biotic stressors that are closely related to holm oak decline. Here, we discuss the current evidence of holm oak responses to abiotic and biotic stresses and propose a possible solution to its decline through adequate forest management choices, thus allowing the species to maintain its ecological domain.
Collapse
Affiliation(s)
- Francesca Alderotti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Erika Verdiani
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
27
|
Williams GM, Ginzel MD, Ma Z, Adams DC, Campbell F, Lovett GM, Pildain MB, Raffa KF, Gandhi KJK, Santini A, Sniezko RA, Wingfield MJ, Bonello P. The Global Forest Health Crisis: A Public-Good Social Dilemma in Need of International Collective Action. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:377-401. [PMID: 37253697 DOI: 10.1146/annurev-phyto-021722-024626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Society is confronted by interconnected threats to ecological sustainability. Among these is the devastation of forests by destructive non-native pathogens and insects introduced through global trade, leading to the loss of critical ecosystem services and a global forest health crisis. We argue that the forest health crisis is a public-good social dilemma and propose a response framework that incorporates principles of collective action. This framework enables scientists to better engage policymakers and empowers the public to advocate for proactive biosecurity and forest health management. Collective action in forest health features broadly inclusive stakeholder engagement to build trust and set goals; accountability for destructive pest introductions; pooled support for weakest-link partners; and inclusion of intrinsic and nonmarket values of forest ecosystems in risk assessment. We provide short-term and longer-term measures that incorporate the above principles to shift the societal and ecological forest health paradigm to a more resilient state.
Collapse
Affiliation(s)
- Geoffrey M Williams
- International Programs, US Forest Service, US Department of Agriculture, Lansing, Michigan, USA;
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Matthew D Ginzel
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
- Department of Entomology, Purdue University, West Lafayette, Indiana, USA
| | - Zhao Ma
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
| | - Damian C Adams
- Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Faith Campbell
- Center for Invasive Species Prevention, Bethesda, Maryland, USA
| | - Gary M Lovett
- Cary Institute of Ecosystem Studies, Millbrook, New York, USA
| | - María Belén Pildain
- Centro de Investigación y Extensión Forestal Andino Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas, Esquel, Chubut, Argentina
| | - Kenneth F Raffa
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kamal J K Gandhi
- D. B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| | - Alberto Santini
- Institute for Sustainable Plant Protection, National Research Council, Sesto Fiorentino, Italy
| | - Richard A Sniezko
- Dorena Genetic Resource Center, US Forest Service, US Department of Agriculture, Cottage Grove, Oregon, USA
| | - Michael J Wingfield
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Pierluigi Bonello
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA;
| |
Collapse
|
28
|
Delavaux CS, Crowther TW, Zohner CM, Robmann NM, Lauber T, van den Hoogen J, Kuebbing S, Liang J, de-Miguel S, Nabuurs GJ, Reich PB, Abegg M, Adou Yao YC, Alberti G, Almeyda Zambrano AM, Alvarado BV, Alvarez-Dávila E, Alvarez-Loayza P, Alves LF, Ammer C, Antón-Fernández C, Araujo-Murakami A, Arroyo L, Avitabile V, Aymard GA, Baker TR, Bałazy R, Banki O, Barroso JG, Bastian ML, Bastin JF, Birigazzi L, Birnbaum P, Bitariho R, Boeckx P, Bongers F, Bouriaud O, Brancalion PHS, Brandl S, Brienen R, Broadbent EN, Bruelheide H, Bussotti F, Gatti RC, César RG, Cesljar G, Chazdon R, Chen HYH, Chisholm C, Cho H, Cienciala E, Clark C, Clark D, Colletta GD, Coomes DA, Cornejo Valverde F, Corral-Rivas JJ, Crim PM, Cumming JR, Dayanandan S, de Gasper AL, Decuyper M, Derroire G, DeVries B, Djordjevic I, Dolezal J, Dourdain A, Engone Obiang NL, Enquist BJ, Eyre TJ, Fandohan AB, Fayle TM, Feldpausch TR, Ferreira LV, Fischer M, Fletcher C, Frizzera L, Gamarra JGP, Gianelle D, Glick HB, Harris DJ, Hector A, Hemp A, Hengeveld G, Hérault B, Herbohn JL, Herold M, Hillers A, Honorio Coronado EN, Hui C, Ibanez TT, Amaral I, Imai N, Jagodziński AM, Jaroszewicz B, Johannsen VK, Joly CA, Jucker T, Jung I, Karminov V, et alDelavaux CS, Crowther TW, Zohner CM, Robmann NM, Lauber T, van den Hoogen J, Kuebbing S, Liang J, de-Miguel S, Nabuurs GJ, Reich PB, Abegg M, Adou Yao YC, Alberti G, Almeyda Zambrano AM, Alvarado BV, Alvarez-Dávila E, Alvarez-Loayza P, Alves LF, Ammer C, Antón-Fernández C, Araujo-Murakami A, Arroyo L, Avitabile V, Aymard GA, Baker TR, Bałazy R, Banki O, Barroso JG, Bastian ML, Bastin JF, Birigazzi L, Birnbaum P, Bitariho R, Boeckx P, Bongers F, Bouriaud O, Brancalion PHS, Brandl S, Brienen R, Broadbent EN, Bruelheide H, Bussotti F, Gatti RC, César RG, Cesljar G, Chazdon R, Chen HYH, Chisholm C, Cho H, Cienciala E, Clark C, Clark D, Colletta GD, Coomes DA, Cornejo Valverde F, Corral-Rivas JJ, Crim PM, Cumming JR, Dayanandan S, de Gasper AL, Decuyper M, Derroire G, DeVries B, Djordjevic I, Dolezal J, Dourdain A, Engone Obiang NL, Enquist BJ, Eyre TJ, Fandohan AB, Fayle TM, Feldpausch TR, Ferreira LV, Fischer M, Fletcher C, Frizzera L, Gamarra JGP, Gianelle D, Glick HB, Harris DJ, Hector A, Hemp A, Hengeveld G, Hérault B, Herbohn JL, Herold M, Hillers A, Honorio Coronado EN, Hui C, Ibanez TT, Amaral I, Imai N, Jagodziński AM, Jaroszewicz B, Johannsen VK, Joly CA, Jucker T, Jung I, Karminov V, Kartawinata K, Kearsley E, Kenfack D, Kennard DK, Kepfer-Rojas S, Keppel G, Khan ML, Killeen TJ, Kim HS, Kitayama K, Köhl M, Korjus H, Kraxner F, Laarmann D, Lang M, Lewis SL, Lu H, Lukina NV, Maitner BS, Malhi Y, Marcon E, Marimon BS, Marimon-Junior BH, Marshall AR, Martin EH, Martynenko O, Meave JA, Melo-Cruz O, Mendoza C, Merow C, Mendoza AM, Moreno VS, Mukul SA, Mundhenk P, Nava-Miranda MG, Neill D, Neldner VJ, Nevenic RV, Ngugi MR, Niklaus PA, Oleksyn J, Ontikov P, Ortiz-Malavasi E, Pan Y, Paquette A, Parada-Gutierrez A, Parfenova EI, Park M, Parren M, Parthasarathy N, Peri PL, Pfautsch S, Phillips OL, Picard N, Piedade MTTF, Piotto D, Pitman NCA, Polo I, Poorter L, Poulsen AD, Pretzsch H, Ramirez Arevalo F, Restrepo-Correa Z, Rodeghiero M, Rolim SG, Roopsind A, Rovero F, Rutishauser E, Saikia P, Salas-Eljatib C, Saner P, Schall P, Schepaschenko D, Scherer-Lorenzen M, Schmid B, Schöngart J, Searle EB, Seben V, Serra-Diaz JM, Sheil D, Shvidenko AZ, Silva-Espejo JE, Silveira M, Singh J, Sist P, Slik F, Sonké B, Souza AF, Miscicki S, Stereńczak KJ, Svenning JC, Svoboda M, Swanepoel B, Targhetta N, Tchebakova N, Ter Steege H, Thomas R, Tikhonova E, Umunay PM, Usoltsev VA, Valencia R, Valladares F, van der Plas F, Do TV, van Nuland ME, Vasquez RM, Verbeeck H, Viana H, Vibrans AC, Vieira S, von Gadow K, Wang HF, Watson JV, Werner GDA, Wiser SK, Wittmann F, Woell H, Wortel V, Zagt R, Zawiła-Niedźwiecki T, Zhang C, Zhao X, Zhou M, Zhu ZX, Zo-Bi IC, Maynard DS. Native diversity buffers against severity of non-native tree invasions. Nature 2023; 621:773-781. [PMID: 37612513 PMCID: PMC10533391 DOI: 10.1038/s41586-023-06440-7] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/14/2023] [Indexed: 08/25/2023]
Abstract
Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.
Collapse
Affiliation(s)
- Camille S Delavaux
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland.
| | - Thomas W Crowther
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Constantin M Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Niamh M Robmann
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Thomas Lauber
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Johan van den Hoogen
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Sara Kuebbing
- The Forest School at The Yale School of the Environment, Yale University, New Haven, CT, USA
| | - Jingjing Liang
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Sergio de-Miguel
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Solsona, Spain
| | | | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St Paul, MN, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Institute for Global Change Biology, and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Meinrad Abegg
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Yves C Adou Yao
- UFR Biosciences, University Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Giorgio Alberti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Angelica M Almeyda Zambrano
- Spatial Ecology and Conservation Laboratory, Department of Tourism, Recreation and Sport Management, University of Florida, Gainesville, FL, USA
| | | | | | | | - Luciana F Alves
- Center for Tropical Research, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Clara Antón-Fernández
- Division of Forest and Forest Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | | | - Luzmila Arroyo
- Museo de Historia Natural Noel kempff Mercado, Santa Cruz, Bolivia
| | | | - Gerardo A Aymard
- UNELLEZ-Guanare, Programa de Ciencias del Agro y el Mar, Herbario Universitario (PORT), Portuguesa, Venezuela
- Compensation International S. A. Ci Progress-GreenLife, Bogotá, Colombia
| | | | - Radomir Bałazy
- Department of Geomatics, Forest Research Institute, Raszyn, Poland
| | - Olaf Banki
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Jorcely G Barroso
- Centro Multidisciplinar, Universidade Federal do Acre, Rio Branco, Brazil
| | - Meredith L Bastian
- Proceedings of the National Academy of Sciences, Washington, DC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Jean-Francois Bastin
- TERRA Teach and Research Centre, Gembloux Agro Bio-Tech, University of Liege, Liege, Belgium
| | - Luca Birigazzi
- United Nation Framework Convention on Climate Change, Bonn, Germany
| | - Philippe Birnbaum
- Institut Agronomique néo-Calédonien (IAC), Nouméa, New Caledonia
- AMAP, University of Montpellier, Montpellier, France
- CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Robert Bitariho
- Institute of Tropical Forest Conservation, Mbarara University of Sciences and Technology, Mbarara, Uganda
| | - Pascal Boeckx
- Isotope Bioscience Laboratory-ISOFYS, Ghent University, Ghent, Belgium
| | - Frans Bongers
- Wageningen University and Research, Wageningen, The Netherlands
| | - Olivier Bouriaud
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control (MANSiD), Stefan cel Mare University of Suceava, Suceava, Romania
| | - Pedro H S Brancalion
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Roel Brienen
- School of Geography, University of Leeds, Leeds, UK
| | - Eben N Broadbent
- Spatial Ecology and Conservation Laboratory, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - Helge Bruelheide
- Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle-Wittenberg, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Filippo Bussotti
- Department of Agriculture, Food, Environment and Forest (DAGRI), University of Firenze, Florence, Italy
| | - Roberto Cazzolla Gatti
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Ricardo G César
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Goran Cesljar
- Department of Spatial Regulation, GIS and Forest Policy, Institute of Forestry, Belgrade, Serbia
| | - Robin Chazdon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada
| | - Chelsea Chisholm
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Hyunkook Cho
- Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea
| | - Emil Cienciala
- IFER-Institute of Forest Ecosystem Research, Jilove u Prahy, Czech Republic
- Global Change Research Institute CAS, Brno, Czech Republic
| | - Connie Clark
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - David Clark
- Department of Biology, University of Missouri-St Louis, St Louis, MO, USA
| | - Gabriel D Colletta
- Programa de Pós-graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - David A Coomes
- Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, UK
| | | | - José J Corral-Rivas
- Facultad de Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Philip M Crim
- Department of Biology, West Virginia University, Morgantown, WV, USA
- Department of Physical and Biological Sciences, The College of Saint Rose, Albany, NY, USA
| | | | - Selvadurai Dayanandan
- Biology Department, Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - André L de Gasper
- Natural Science Department, Universidade Regional de Blumenau, Blumenau, Brazil
| | - Mathieu Decuyper
- Wageningen University and Research, Wageningen, The Netherlands
- World Agroforestry (ICRAF), Nairobi, Kenya
| | - Géraldine Derroire
- Cirad, UMR EcoFoG (AgroParisTech, CNRS, INRAE), Université des Antilles, Université de la Guyane, Campus Agronomique, Kourou, France
| | - Ben DeVries
- Department of Geographical Sciences, University of Maryland, College Park, MD, USA
| | | | - Jiri Dolezal
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Aurélie Dourdain
- Cirad, UMR EcoFoG (AgroParisTech, CNRS, INRAE), Université des Antilles, Université de la Guyane, Campus Agronomique, Kourou, France
| | | | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- The Santa Fe Institute, Santa Fe, NM, USA
| | - Teresa J Eyre
- Queensland Herbarium, Department of Environment and Science, Toowong, Queensland, Australia
| | | | - Tom M Fayle
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Ted R Feldpausch
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Leandro V Ferreira
- Museu Paraense Emílio Goeldi. Coordenação de Ciências da Terra e Ecologia, Belém, Pará, Brazil
| | - Markus Fischer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Lorenzo Frizzera
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'adige, Italy
| | - Javier G P Gamarra
- Forestry Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Damiano Gianelle
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'adige, Italy
| | | | | | - Andrew Hector
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Andreas Hemp
- Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany
| | | | - Bruno Hérault
- Cirad, UPR Forêts et Sociétés, University of Montpellier, Montpellier, France
- Department of Forestry and Environment, National Polytechnic Institute (INP-HB), Yamoussoukro, Côte d'Ivoire
| | - John L Herbohn
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Martin Herold
- Wageningen University and Research, Wageningen, The Netherlands
| | - Annika Hillers
- Centre for Conservation Science, The Royal Society for the Protection of Birds, Sandy, UK
- Wild Chimpanzee Foundation, Liberia Office, Monrovia, Liberia
| | | | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
- Theoretical Ecology Unit, African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Thomas T Ibanez
- AMAP, University of Montpellier, Montpellier, France
- CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Iêda Amaral
- National Institute of Amazonian Research, Manaus, Brazil
| | - Nobuo Imai
- Department of Forest Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Andrzej M Jagodziński
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Poznań University of Life Sciences, Department of Game Management and Forest Protection, Poznań, Poland
| | - Bogdan Jaroszewicz
- Faculty of Biology, Białowieża Geobotanical Station, University of Warsaw, Białowieża, Poland
| | - Vivian Kvist Johannsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Carlos A Joly
- Department of Plant Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, Brazil
| | - Tommaso Jucker
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Ilbin Jung
- Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea
| | - Viktor Karminov
- Forestry Faculty, Bauman Moscow State Technical University, Mytischi, Russia
| | | | - Elizabeth Kearsley
- CAVElab-Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, Ghent, Belgium
| | - David Kenfack
- CTFS-ForestGEO, Smithsonian Tropical Research Institute, Balboa, Panama
| | - Deborah K Kennard
- Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO, USA
| | - Sebastian Kepfer-Rojas
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Gunnar Keppel
- UniSA STEM and Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Mohammed Latif Khan
- Department of Botany, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | | | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, South Korea
- National Center for Agro Meteorology, Seoul, South Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | - Michael Köhl
- Institute for World Forestry, University of Hamburg, Hamburg, Germany
| | - Henn Korjus
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Florian Kraxner
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | - Diana Laarmann
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Mait Lang
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Simon L Lewis
- School of Geography, University of Leeds, Leeds, UK
- Department of Geography, University College London, London, UK
| | - Huicui Lu
- Faculty of Forestry, Qingdao Agricultural University, Qingdao, China
| | - Natalia V Lukina
- Center for Forest Ecology and Productivity, Russian Academy of Sciences, Moscow, Russia
| | - Brian S Maitner
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Eric Marcon
- AgroParisTech, UMR-AMAP, Cirad, CNRS, INRA, IRD, Université de Montpellier, Montpellier, France
| | | | - Ben Hur Marimon-Junior
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Andrew R Marshall
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Department of Environment and Geography, University of York, York, UK
- Flamingo Land, Malton, UK
| | - Emanuel H Martin
- Department of Wildlife Management, College of African Wildlife Management, Mweka, Tanzania
| | - Olga Martynenko
- Forestry Faculty, Bauman Moscow State Technical University, Mytischi, Russia
| | - Jorge A Meave
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Casimiro Mendoza
- Colegio de Profesionales Forestales de Cochabamba, Cochabamba, Bolivia
| | - Cory Merow
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Abel Monteagudo Mendoza
- Jardín Botánico de Missouri, Pasco, Peru
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Vanessa S Moreno
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Sharif A Mukul
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Department of Environment and Development Studies, United International University, Dhaka, Bangladesh
| | - Philip Mundhenk
- Institute for World Forestry, University of Hamburg, Hamburg, Germany
| | - María Guadalupe Nava-Miranda
- Laboratorio de geomática, Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Mexico
- Programa de doctorado en Ingeniería para el desarrollo rural y civil, Escuela de Doctorado Internacional de la Universidad de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Environment and Development Studies, United International University, Dhaka, Bangladesh
| | - David Neill
- Universidad Estatal Amazónica, Puyo, Pastaza, Ecuador
| | - Victor J Neldner
- Queensland Herbarium, Department of Environment and Science, Toowong, Queensland, Australia
| | | | - Michael R Ngugi
- Queensland Herbarium, Department of Environment and Science, Toowong, Queensland, Australia
| | - Pascal A Niklaus
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland
| | - Jacek Oleksyn
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Petr Ontikov
- Forestry Faculty, Bauman Moscow State Technical University, Mytischi, Russia
| | | | - Yude Pan
- Climate, Fire, and Carbon Cycle Sciences, USDA Forest Service, Durham, NC, USA
| | - Alain Paquette
- Centre for Forest Research, Université du Québec à Montréal, Montreal, Quebec, Canada
| | | | - Elena I Parfenova
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Minjee Park
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
| | - Marc Parren
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Pablo L Peri
- Instituto Nacional de Tecnología Agropecuaria (INTA), Universidad Nacional de la Patagonia Austral (UNPA), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Río Gallegos, Argentina
| | - Sebastian Pfautsch
- School of Social Sciences (Urban Studies), Western Sydney University, Penrith, New South Wales, Australia
| | | | - Nicolas Picard
- Forestry Department, Food and Agriculture Organization of the United Nations, Rome, Italy
| | | | - Daniel Piotto
- Laboratório de Dendrologia e Silvicultura Tropical, Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | | | - Irina Polo
- Jardín Botánico de Medellín, Medellin, Colombia
| | - Lourens Poorter
- Wageningen University and Research, Wageningen, The Netherlands
| | | | - Hans Pretzsch
- Chair for Forest Growth and Yield Science, TUM School for Life Sciences, Technical University of Munich, Munich, Germany
| | | | - Zorayda Restrepo-Correa
- Servicios Ecosistémicos y Cambio Climático (SECC), Fundación Con Vida & Corporación COL-TREE, Medellín, Colombia
| | - Mirco Rodeghiero
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'adige, Italy
- Centro Agricoltura, Alimenti, Ambiente, University of Trento, San Michele All'adige, Italy
| | - Samir G Rolim
- Laboratório de Dendrologia e Silvicultura Tropical, Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | - Anand Roopsind
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - Francesco Rovero
- Department of Biology, University of Florence, Florence, Italy
- Tropical Biodiversity, MUSE-Museo delle Scienze, Trento, Italy
| | | | - Purabi Saikia
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Christian Salas-Eljatib
- Centro de Modelación y Monitoreo de Ecosistemas, Universidad Mayor, Santiago, Chile
- Vicerrectoria de Investigacion y Postgrado, Universidad de La Frontera, Temuco, Chile
- Depto. de Silvicultura y Conservacion de la Naturaleza, Universidad de Chile, Temuco, Chile
| | | | - Peter Schall
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Dmitry Schepaschenko
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
- Siberian Federal University, Krasnoyarsk Russian Federation, Krasnoyarsk, Russia
| | | | - Bernhard Schmid
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland
| | | | - Eric B Searle
- Centre for Forest Research, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Vladimír Seben
- National Forest Centre, Forest Research Institute Zvolen, Zvolen, Slovakia
| | - Josep M Serra-Diaz
- Université de Lorraine, AgroParisTech, INRAE, Silva, Nancy, France
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Douglas Sheil
- Forest Ecology and Forest Management, Wageningen University and Research, Wageningen, The Netherlands
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Anatoly Z Shvidenko
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | | | - Marcos Silveira
- Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Acre, Brazil
| | - James Singh
- Guyana Forestry Commission, Georgetown, France
| | - Plinio Sist
- Cirad, UPR Forêts et Sociétés, University of Montpellier, Montpellier, France
| | - Ferry Slik
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| | - Bonaventure Sonké
- Plant Systematic and Ecology Laboratory, Department of Biology, Higher Teachers' Training College, University of Yaoundé I, Yaoundé, Cameroon
| | - Alexandre F Souza
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | | | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Miroslav Svoboda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | | | | | - Nadja Tchebakova
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Hans Ter Steege
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Quantitative Biodiversity Dynamics, Betafaculty, Utrecht University, Utrecht, The Netherlands
| | - Raquel Thomas
- Iwokrama International Centre for Rainforest Conservation and Development (IIC), Georgetown, Guyana
| | - Elena Tikhonova
- Center for Forest Ecology and Productivity, Russian Academy of Sciences, Moscow, Russia
| | - Peter M Umunay
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | - Vladimir A Usoltsev
- Botanical Garden of Ural Branch of Russian Academy of Sciences, Ural State Forest Engineering University, Yekaterinburg, Russia
| | | | | | - Fons van der Plas
- Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands
| | - Tran Van Do
- Silviculture Research Institute, Vietnamese Academy of Forest Sciences, Hanoi, Vietnam
| | | | | | - Hans Verbeeck
- CAVElab-Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, Ghent, Belgium
| | - Helder Viana
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Viseu, Portugal
- Department of Ecology and Sustainable Agriculture, Agricultural High School, Polytechnic Institute of Viseu, Viseu, Portugal
| | - Alexander C Vibrans
- Natural Science Department, Universidade Regional de Blumenau, Blumenau, Brazil
- Department of Forest Engineering Universidade Regional de Blumenau, Blumenau, Brazil
| | - Simone Vieira
- Environmental Studies and Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Klaus von Gadow
- Department of Forest and Wood Science, University of Stellenbosch, Stellenbosch, South Africa
| | - Hua-Feng Wang
- Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - James V Watson
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV, USA
| | | | - Susan K Wiser
- Manaaki Whenua-Landcare Research, Lincoln, New Zealand
| | - Florian Wittmann
- Department of Wetland Ecology, Institute for Geography and Geoecology, Karlsruhe Institute for Technology, Karlsruhe, Germany
| | | | - Verginia Wortel
- Centre for Agricultural Research in Suriname (CELOS), Paramaribo, Suriname
| | - Roderik Zagt
- Tropenbos International, Wageningen, The Netherlands
| | | | - Chunyu Zhang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xiuhai Zhao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Mo Zhou
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Zhi-Xin Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Irie C Zo-Bi
- Department of Forestry and Environment, National Polytechnic Institute (INP-HB), Yamoussoukro, Côte d'Ivoire
| | - Daniel S Maynard
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
- Department of Genetics, Evolution, and Environment, University College London, London, UK
| |
Collapse
|
29
|
Franić I, Allan E, Prospero S, Adamson K, Attorre F, Auger-Rozenberg MA, Augustin S, Avtzis D, Baert W, Barta M, Bauters K, Bellahirech A, Boroń P, Bragança H, Brestovanská T, Brurberg MB, Burgess T, Burokienė D, Cleary M, Corley J, Coyle DR, Csóka G, Černý K, Davydenko K, de Groot M, Diez JJ, Doğmuş Lehtijärvi HT, Drenkhan R, Edwards J, Elsafy M, Eötvös CB, Falko R, Fan J, Feddern N, Fürjes-Mikó Á, Gossner MM, Grad B, Hartmann M, Havrdova L, Kádasi Horáková M, Hrabětová M, Justesen MJ, Kacprzyk M, Kenis M, Kirichenko N, Kovač M, Kramarets V, Lacković N, Lantschner MV, Lazarević J, Leskiv M, Li H, Madsen CL, Malumphy C, Matošević D, Matsiakh I, May TW, Meffert J, Migliorini D, Nikolov C, O'Hanlon R, Oskay F, Paap T, Parpan T, Piškur B, Ravn HP, Richard J, Ronse A, Roques A, Ruffner B, Santini A, Sivickis K, Soliani C, Talgø V, Tomoshevich M, Uimari A, Ulyshen M, Vettraino AM, Villari C, Wang Y, Witzell J, Zlatković M, Eschen R. Climate, host and geography shape insect and fungal communities of trees. Sci Rep 2023; 13:11570. [PMID: 37463904 DOI: 10.1038/s41598-023-36795-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
Non-native pests, climate change, and their interactions are likely to alter relationships between trees and tree-associated organisms with consequences for forest health. To understand and predict such changes, factors structuring tree-associated communities need to be determined. Here, we analysed the data consisting of records of insects and fungi collected from dormant twigs from 155 tree species at 51 botanical gardens or arboreta in 32 countries. Generalized dissimilarity models revealed similar relative importance of studied climatic, host-related and geographic factors on differences in tree-associated communities. Mean annual temperature, phylogenetic distance between hosts and geographic distance between locations were the major drivers of dissimilarities. The increasing importance of high temperatures on differences in studied communities indicate that climate change could affect tree-associated organisms directly and indirectly through host range shifts. Insect and fungal communities were more similar between closely related vs. distant hosts suggesting that host range shifts may facilitate the emergence of new pests. Moreover, dissimilarities among tree-associated communities increased with geographic distance indicating that human-mediated transport may serve as a pathway of the introductions of new pests. The results of this study highlight the need to limit the establishment of tree pests and increase the resilience of forest ecosystems to changes in climate.
Collapse
Affiliation(s)
- Iva Franić
- CABI, Delémont, Switzerland.
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.
| | - Eric Allan
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Simone Prospero
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Kalev Adamson
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Fabio Attorre
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | | | | | - Dimitrios Avtzis
- Forest Research Institute, Hellenic Agricultural Organization-Demeter, Thessaloniki, Greece
| | - Wim Baert
- Meise Botanic Garden, Meise, Belgium
| | - Marek Barta
- Institute of Forest Ecology, Slovak Academy of Sciences, Nitra, Slovakia
| | | | - Amani Bellahirech
- National Research Institute of Rural Engineering, Water and Forests (INRGREF), Ariana, Tunisia
| | - Piotr Boroń
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Krakow, Poland
| | - Helena Bragança
- Instituto Nacional de Investigação Agrária e Veterinária I. P. (INIAV I. P.), Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | - Tereza Brestovanská
- Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Pruhonice, Czech Republic
| | - May Bente Brurberg
- NIBIO, Norwegian Institute of Bioeconomy Research, Ås, Norway
- NMBU-Norwegian University of Life Sciences, Ås, Norway
| | | | - Daiva Burokienė
- Institute of Botany at the Nature Research Centre, Vilnius, Lithuania
| | - Michelle Cleary
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Juan Corley
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (INTA-CONICET), Bariloche, Argentina
| | - David R Coyle
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, USA
| | - György Csóka
- Department of Forest Protection, Forest Research Institute, University of Sopron, Mátrafüred, Hungary
| | - Karel Černý
- Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Pruhonice, Czech Republic
| | - Kateryna Davydenko
- Ukrainian Research Institute of Forestry and Forest Melioration, Kharkiv, Ukraine
| | | | - Julio Javier Diez
- Sustainable Forest Management Research Institute, University of Valladolid-INIA, Palencia, Spain
- Department of Vegetal Production and Forest Resources, University of Valladolid, Palencia, Spain
| | | | - Rein Drenkhan
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Jacqueline Edwards
- School of Applied Systems Biology, La Trobe University, Melbourne, Vic, Australia
- Agriculture Victoria Research, Agribio Centre, Bundoora, Vic, Australia
| | - Mohammed Elsafy
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Csaba Béla Eötvös
- Department of Forest Protection, Forest Research Institute, University of Sopron, Mátrafüred, Hungary
| | - Roman Falko
- Ukrainian Research Institute of Mountain Forestry, Ivano-Frankivsk, Ukraine
| | - Jianting Fan
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Nina Feddern
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Ágnes Fürjes-Mikó
- Department of Forest Protection, Forest Research Institute, University of Sopron, Mátrafüred, Hungary
| | - Martin M Gossner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
| | - Bartłomiej Grad
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Krakow, Poland
| | - Martin Hartmann
- Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland
| | - Ludmila Havrdova
- Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Pruhonice, Czech Republic
| | | | - Markéta Hrabětová
- Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Pruhonice, Czech Republic
| | - Mathias Just Justesen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Magdalena Kacprzyk
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Krakow, Poland
| | | | - Natalia Kirichenko
- Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
- Siberian Federal University, Krasnoyarsk, Russia
| | - Marta Kovač
- Croatian Forest Research Institute, Jastrebarsko, Croatia
| | | | | | - Maria Victoria Lantschner
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (INTA-CONICET), Bariloche, Argentina
| | - Jelena Lazarević
- Biotechnical Faculty, University of Montenegro, Podgorica, Montenegro
| | | | | | - Corrie Lynne Madsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Chris Malumphy
- Fera Science Ltd, National Agri-food Innovation Campus, York, UK
| | | | - Iryna Matsiakh
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Ukrainian National Forestry University, Lviv, Ukraine
| | - Tom W May
- Royal Botanic Gardens Victoria, Melbourne, Vic, Australia
| | - Johan Meffert
- National Plant Protection Organisation, Netherlands Food and Consumers Product Safety Authority, Ministry of Agriculture, Nature and Food Quality, Wageningen, The Netherlands
| | - Duccio Migliorini
- National Research Council C.N.R., Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Italy
| | - Christo Nikolov
- National Forest Centre, Forest Research Institute, Zvolen, Slovakia
| | | | - Funda Oskay
- Faculty of Forestry, Çankırı Karatekin University, Cankiri, Turkey
| | - Trudy Paap
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Taras Parpan
- Ukrainian Research Institute of Mountain Forestry, Ivano-Frankivsk, Ukraine
| | | | - Hans Peter Ravn
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - John Richard
- Tanzania Forestry Research Institute (TAFORI), Lushoto, Tanzania
| | | | | | - Beat Ruffner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Alberto Santini
- National Research Council C.N.R., Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Italy
| | - Karolis Sivickis
- Institute of Botany at the Nature Research Centre, Vilnius, Lithuania
| | - Carolina Soliani
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (INTA-CONICET), Bariloche, Argentina
| | - Venche Talgø
- NIBIO, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Maria Tomoshevich
- Central Siberian Botanical Garden, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Anne Uimari
- Natural Resources Institute Finland, Suonenjoki, Finland
| | - Michael Ulyshen
- USDA Forest Service, Southern Research Station, Athens, GA, USA
| | | | - Caterina Villari
- D.B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Yongjun Wang
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Johanna Witzell
- Forestry and Wood Technology, Linnaeus University, Växjö, Sweden
| | - Milica Zlatković
- Institute of Lowland Forestry and Environment (ILFE), University of Novi Sad, Novi Sad, Serbia
| | | |
Collapse
|
30
|
Chen X, Avia K, Forler A, Remoué C, Venon A, Rousselet A, Lucas G, Kwarteng AO, Rover R, Le Guilloux M, Belcram H, Combes V, Corti H, Olverà-Vazquez S, Falque M, Alins G, Kirisits T, Ursu TM, Roman A, Volk GM, Bazot S, Cornille A. Ecological and evolutionary drivers of phenotypic and genetic variation in the European crabapple [Malus sylvestris (L.) Mill.], a wild relative of the cultivated apple. ANNALS OF BOTANY 2023; 131:1025-1037. [PMID: 37148364 PMCID: PMC10332392 DOI: 10.1093/aob/mcad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Studying the relationship between phenotypic and genetic variation in populations distributed across environmental gradients can help us to understand the ecological and evolutionary processes involved in population divergence. We investigated the patterns of genetic and phenotypic diversity in the European crabapple, Malus sylvestris, a wild relative of the cultivated apple (Malus domestica) that occurs naturally across Europe in areas subjected to different climatic conditions, to test for divergence among populations. METHODS Growth rates and traits related to carbon uptake in seedlings collected across Europe were measured in controlled conditions and associated with the genetic status of the seedlings, which was assessed using 13 microsatellite loci and the Bayesian clustering method. Isolation-by-distance, isolation-by-climate and isolation-by-adaptation patterns, which can explain genetic and phenotypic differentiation among M. sylvestris populations, were also tested. KEY RESULTS A total of 11.6 % of seedlings were introgressed by M. domestica, indicating that crop-wild gene flow is ongoing in Europe. The remaining seedlings (88.4 %) belonged to seven M. sylvestris populations. Significant phenotypic trait variation among M. sylvestris populations was observed. We did not observe significant isolation by adaptation; however, the significant association between genetic variation and the climate during the Last Glacial Maximum suggests that there has been local adaptation of M. sylvestris to past climates. CONCLUSIONS This study provides insight into the phenotypic and genetic differentiation among populations of a wild relative of the cultivated apple. This might help us to make better use of its diversity and provide options for mitigating the impact of climate change on the cultivated apple through breeding.
Collapse
Affiliation(s)
- X Chen
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - K Avia
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000 Colmar, France
| | - A Forler
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - C Remoué
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - A Venon
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - A Rousselet
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - G Lucas
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - A O Kwarteng
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - R Rover
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - M Le Guilloux
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - H Belcram
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - V Combes
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - H Corti
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - S Olverà-Vazquez
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - M Falque
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| | - G Alins
- Institut de Recerca i Tecnologia Agroalimentàries, IRTA-Fruit Production, PCiTAL, Parc 21 de Gardeny, edifici Fruitcentre, 25003 Lleida, Spain
| | - T Kirisits
- Institute of Forest Entomology, Forest Pathology and Forest Protection (IFFF), Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Peter-Jordan-Straße 82 (Franz Schwackhöfer-Haus), A-1190 Vienna, Austria
| | - T M Ursu
- NIRDBS, Institute of Biological Research Cluj-Napoca, 48 Republicii St., Cluj-Napoca, Romania
| | - A Roman
- NIRDBS, Institute of Biological Research Cluj-Napoca, 48 Republicii St., Cluj-Napoca, Romania
| | - G M Volk
- USDA-ARS National Laboratory for Genetic Resources Preservation, 1111 South Mason Street, Fort Collins, CO 80521, USA
| | - S Bazot
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris‐Saclay, Orsay, France
| | - A Cornille
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190 Gif-sur-Yvette, France
| |
Collapse
|
31
|
Faria JMS, Cavaco T, Gonçalves D, Barbosa P, Teixeira DM, Moiteiro C, Inácio ML. First Report on the Synergistic Interaction between Essential Oils against the Pinewood Nematode Bursaphelenchus xylophilus. PLANTS (BASEL, SWITZERLAND) 2023; 12:2438. [PMID: 37446999 DOI: 10.3390/plants12132438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Control of the pinewood nematode (PWN), the causal agent of pine wilt disease, can be achieved through the trunk injection of nematicides; however, many pesticides have been linked to environmental and human health concerns. Essential oils (EOs) are suitable alternatives due to their biodegradability and low toxicity to mammals. These complex mixtures of plant volatiles often display multiple biological activities and synergistic interactions between their compounds. The present work profiled the toxicity of eight EOs against the PWN in comparison to their 1:1 mixtures, to screen for successful synergistic interactions. Additionally, the main compounds of the most synergistic mixtures were characterized for their predicted environmental fate and toxicity to mammals in comparison to emamectin benzoate, a commercial nematicide used against PWN. The mixtures of Cymbopogon citratus with Mentha piperita and of Foeniculum vulgare with Satureja montana EOs showed the highest activities, with half-maximal effective concentrations (EC50) of 0.09 and 0.05 µL/mL, respectively. For these, complete PWN mortality was reached after only ca. 15 min or 2 h of direct contact, respectively. Their major compounds had a higher predicted affinity to air and water environmental compartments and are reported to have very low toxicity to mammals, with low acute oral and dermal toxicities. In comparison, emamectin benzoate showed lower nematicidal activity, a higher affinity to the soil and sediments environmental compartments and higher reported oral and dermal toxicity to mammals. Overall, uncovering synergistic activities in combinations of EOs from plants of different families may prove to be a source of biopesticides with optimized toxicity against PWNs.
Collapse
Affiliation(s)
- Jorge M S Faria
- INIAV, I.P., National Institute for Agrarian and Veterinary Research, I.P., Quinta do Marquês, 2780-159 Oeiras, Portugal
- MED, Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Évora University, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Tomás Cavaco
- INIAV, I.P., National Institute for Agrarian and Veterinary Research, I.P., Quinta do Marquês, 2780-159 Oeiras, Portugal
- Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-107 Lisboa, Portugal
| | - Diogo Gonçalves
- INIAV, I.P., National Institute for Agrarian and Veterinary Research, I.P., Quinta do Marquês, 2780-159 Oeiras, Portugal
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro Barbosa
- MED, Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Évora University, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Dora Martins Teixeira
- HERCULES Laboratory, Évora University, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal
- Science and Technology School, Évora University, Rua Romão Ramalho nº 59, 7000-671 Évora, Portugal
| | - Cristina Moiteiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Maria L Inácio
- INIAV, I.P., National Institute for Agrarian and Veterinary Research, I.P., Quinta do Marquês, 2780-159 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
32
|
Tree insect pests and pathogens: a global systematic review of their impacts in urban areas. Urban Ecosyst 2023. [DOI: 10.1007/s11252-022-01317-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Abstract
Trees contribute greatly to urban environments and human well-being, yet relatively little is known about the extent to which a rising incidence of tree insect pests and pathogens may be affecting these contributions. To address this issue, we undertook a systematic review and synthesis of the diverse global empirical evidence on the impacts of urban tree insect pests and pathogens, using bibliographic databases. Following screening and appraisal of over 3000 articles from a wide range of fields, 100 studies from 28 countries, spanning 1979–2021, were conceptually sorted into a three-part framework: (1) environmental impacts, representing 95 of the studies, including those reporting on tree damage, mortality, reduced growth, and changes in tree function; (2) social impacts were reported by 35 of studies, including on aesthetics, human health, and safety hazards; and (3) economic impacts, reported in 24 of studies, including on costs of pest management, and economic losses. There has been a considerable increase in urban impact studies since 2011. Evidence gaps exist on impacts on climate-regulating capacity, including temperature regulation, water retention, soil erosion, and wind protection, but also on specific hazards, nuisances, human well-being, property damages, and hazard liabilities. As a knowledge synthesis, this article presents the best available evidence of urban tree insect / pathogen impacts to guide policy, management and further research. It will enable us to better forecast how growing threats will affect the urban forest and plan for these eventualities.
Collapse
|
33
|
Lovell-Read FA, Parnell S, Cunniffe NJ, Thompson RN. Using 'sentinel' plants to improve early detection of invasive plant pathogens. PLoS Comput Biol 2023; 19:e1010884. [PMID: 36730434 PMCID: PMC9928126 DOI: 10.1371/journal.pcbi.1010884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/14/2023] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Infectious diseases of plants present an ongoing and increasing threat to international biosecurity, with wide-ranging implications. An important challenge in plant disease management is achieving early detection of invading pathogens, which requires effective surveillance through the implementation of appropriate monitoring programmes. However, when monitoring relies on visual inspection as a means of detection, surveillance is often hindered by a long incubation period (delay from infection to symptom onset) during which plants may be infectious but not displaying visible symptoms. 'Sentinel' plants-alternative susceptible host species that display visible symptoms of infection more rapidly-could be introduced to at-risk populations and included in monitoring programmes to act as early warning beacons for infection. However, while sentinel hosts exhibit faster disease progression and so allow pathogens to be detected earlier, this often comes at a cost: faster disease progression typically promotes earlier onward transmission. Here, we construct a computational model of pathogen transmission to explore this trade-off and investigate how including sentinel plants in monitoring programmes could facilitate earlier detection of invasive plant pathogens. Using Xylella fastidiosa infection in Olea europaea (European olive) as a current high profile case study, for which Catharanthus roseus (Madagascan periwinkle) is a candidate sentinel host, we apply a Bayesian optimisation algorithm to determine the optimal number of sentinel hosts to introduce for a given sampling effort, as well as the optimal division of limited surveillance resources between crop and sentinel plants. Our results demonstrate that including sentinel plants in monitoring programmes can reduce the expected prevalence of infection upon outbreak detection substantially, increasing the feasibility of local outbreak containment.
Collapse
Affiliation(s)
| | - Stephen Parnell
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Robin N. Thompson
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
34
|
Nahrung HF, Liebhold AM, Brockerhoff EG, Rassati D. Forest Insect Biosecurity: Processes, Patterns, Predictions, Pitfalls. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:211-229. [PMID: 36198403 DOI: 10.1146/annurev-ento-120220-010854] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The economic and environmental threats posed by non-native forest insects are ever increasing with the continuing globalization of trade and travel; thus, the need for mitigation through effective biosecurity is greater than ever. However, despite decades of research and implementation of preborder, border, and postborder preventative measures, insect invasions continue to occur, with no evidence of saturation, and are even predicted to accelerate. In this article, we review biosecurity measures used to mitigate the arrival, establishment, spread, and impacts of non-native forest insects and possible impediments to the successful implementation of these measures. Biosecurity successes are likely under-recognized because they are difficult to detect and quantify, whereas failures are more evident in the continued establishment of additional non-native species. There are limitations in existing biosecurity systems at global and country scales (for example, inspecting all imports is impossible, no phytosanitary measures are perfect, knownunknowns cannot be regulated against, and noncompliance is an ongoing problem). Biosecurity should be a shared responsibility across countries, governments, stakeholders, and individuals.
Collapse
Affiliation(s)
- Helen F Nahrung
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia;
| | - Andrew M Liebhold
- US Forest Service Northern Research Station, Morgantown, West Virginia, USA;
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Czech Republic
| | - Eckehard G Brockerhoff
- Forest Health and Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland;
| | - Davide Rassati
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Italy;
| |
Collapse
|
35
|
Zhao H, Xian X, Liang T, Wan F, Shi J, Liu W. Constructing an Ensemble Model and Niche Comparison for the Management Planning of Eucalyptus Longhorned Borer Phoracantha semipunctata under Climate Change. INSECTS 2023; 14:84. [PMID: 36662011 PMCID: PMC9866156 DOI: 10.3390/insects14010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Phoracantha semipunctata is a destructive invasive alien forest pest worldwide. It primarily damages the eucalyptus via adults, affecting almost all parts of the eucalyptus. Its larvae develop in almost all major tissues of the plant. Phoracantha semipunctata spreads both via the migration of adults and global trade in intercontinental translocation. Currently, this pest has spread to six continents worldwide, except Antarctica, resulting in substantial economic losses. Based on global occurrence data and environmental variables, the potential global geographical distribution of P. semipunctata was predicted using an ensemble model. The centroid shift, overlap, unfilling, and expansion scheme were selected to assess niche dynamics during the global invasion process. Our results indicated that the AUC and TSS values of the ensemble model were 0.993 and 0.917, respectively, indicating the high prediction accuracy of the model. The distribution pattern of P. semipunctata is primarily attributed to the temperature seasonality (bio4), mean temperature of the warmest quarter (bio10), and human influence index variables. The potential geographical distribution of P. semipunctata is primarily in western and southwestern Asia, western Europe, western and southern North America, southern South America, southern Africa, and eastern and southern Oceania. The potential geographical distribution of P. semipunctata showed a downward trend in the 2030s and the 2050s. The distribution centroid showed a general tendency to shift southward from the near-current to future climate. Phoracantha semipunctata has largely conserved its niche during the global invasion process. More attention should be paid to the early warning, prevention, and control of P. semipunctata in the countries and regions where it has not yet become invasive.
Collapse
Affiliation(s)
- Haoxiang Zhao
- The College of Forestry, Beijing Forestry University, Beijing 100193, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Xiaoqing Xian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Te Liang
- The College of Forestry, Beijing Forestry University, Beijing 100193, China
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Juan Shi
- The College of Forestry, Beijing Forestry University, Beijing 100193, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China
| |
Collapse
|
36
|
Plenderleith FA, Palmer SC, Travis JM, Lancaster LT, Stockan JA, Mitchell RJ. The consequences of tree disease and pre-emptive felling on functional and genetic connectivity for woodland invertebrates. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Drake-Schultheis L, D'Antonio CM, Oono R. Patterns and Distribution of Botryosphaeriaceae Fungi Related to Dieback in Big Berry Manzanita. PHYTOPATHOLOGY 2022; 112:2341-2350. [PMID: 35731020 DOI: 10.1094/phyto-02-22-0044-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dieback and mortality in wildland plant species due to climate change have been on the rise in recent decades, and latent fungal pathogens might play a significant role in these events. During a severe multiyear drought, canopy dieback associated with latent pathogens in the Botryosphaeriaceae (Bot) family was observed in stands of a dominant shrub species, big berry manzanita (Arctostaphylos glauca), across chaparral landscapes in California. These fungi are significant pathogens of woody agricultural species, especially in hosts experiencing stress, and have become a threat to economically important crops worldwide. However, little is known regarding their occurrence, distribution, and impact in wildland systems. We conducted a field survey of 300 A. glauca shrubs across an elevational gradient to identify Bot species infection as it relates to (i) A. glauca dieback severity and (ii) landscape variables associated with plant drought stress. Our results show that Bots are widely infecting A. glauca across the landscape, and there is a significant correlation between elevation and dieback severity. Dieback severity was significantly higher at lower elevations, suggesting that infected shrubs at lower elevations are at greater risk than those at higher elevations. Furthermore, two Bot species, Neofusicoccum australe and Botryosphaeria dothidea, were most frequently isolated, with N. australe being the most common and, based on haplotype analysis, likely the most recently introduced of the two. Our results confirm the wide distribution of latent Bot fungi in a wild shrubland system and provide valuable insight into areas of greatest risk for future shrub dieback and mortality. These findings could be particularly useful for informing future wildlands management strategies with regard to introduced latent pathogens.
Collapse
Affiliation(s)
- Laura Drake-Schultheis
- Ecology, Evolution, and Marine Biology Department, University of California, Santa Barbara, CA 93106
- Life Sciences Department, Westmont College, Santa Barbara, CA 93108
| | - Carla M D'Antonio
- Ecology, Evolution, and Marine Biology Department, University of California, Santa Barbara, CA 93106
| | - Ryoko Oono
- Ecology, Evolution, and Marine Biology Department, University of California, Santa Barbara, CA 93106
| |
Collapse
|
38
|
Botella L, Jung MH, Rost M, Jung T. Natural Populations from the Phytophthora palustris Complex Show a High Diversity and Abundance of ssRNA and dsRNA Viruses. J Fungi (Basel) 2022; 8:1118. [PMID: 36354885 PMCID: PMC9698713 DOI: 10.3390/jof8111118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 12/02/2022] Open
Abstract
We explored the virome of the "Phytophthora palustris complex", a group of aquatic specialists geographically limited to Southeast and East Asia, the native origin of many destructive invasive forest Phytophthora spp. Based on high-throughput sequencing (RNAseq) of 112 isolates of "P. palustris" collected from rivers, mangroves, and ponds, and natural forests in subtropical and tropical areas in Indonesia, Taiwan, and Japan, 52 putative viruses were identified, which, to varying degrees, were phylogenetically related to the families Botybirnaviridae, Narnaviridae, Tombusviridae, and Totiviridae, and the order Bunyavirales. The prevalence of all viruses in their hosts was investigated and confirmed by RT-PCR. The rich virus composition, high abundance, and distribution discovered in our study indicate that viruses are naturally infecting taxa from the "P. palustris complex" in their natural niche, and that they are predominant members of the host cellular environment. Certain Indonesian localities are the viruses' hotspots and particular "P. palustris" isolates show complex multiviral infections. This study defines the first bi-segmented bunya-like virus together with the first tombus-like and botybirna-like viruses in the genus Phytophthora and provides insights into the spread and evolution of RNA viruses in the natural populations of an oomycete species.
Collapse
Affiliation(s)
- Leticia Botella
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
- Department of Genetics and Agrobiotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic
| | - Marília Horta Jung
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - Michael Rost
- Department of Genetics and Agrobiotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic
| | - Thomas Jung
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| |
Collapse
|
39
|
Predicting the effects of climate change on the cross-scale epidemiological dynamics of a fungal plant pathogen. Sci Rep 2022; 12:14823. [PMID: 36050344 PMCID: PMC9437057 DOI: 10.1038/s41598-022-18851-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
The potential for climate change to exacerbate the burden of human infectious diseases is increasingly recognized, but its effects on infectious diseases of plants have received less attention. Understanding the impacts of climate on the epidemiological dynamics of plant pathogens is imperative, as these organisms play central roles in natural ecosystems and also pose a serious threat to agricultural production and food security. We use the fungal ‘flax rust’ pathogen (Melampsora lini) and its subalpine wildflower host Lewis flax (Linum lewisii) to investigate how climate change might affect the dynamics of fungal plant pathogen epidemics using a combination of empirical and modeling approaches. Our results suggest that climate change will initially slow transmission at both the within- and between-host scales. However, moderate resurgences in disease spread are predicted as warming progresses, especially if the rate of greenhouse gas emissions continues to increase at its current pace. These findings represent an important step towards building a holistic understanding of climate effects on plant infectious disease that encompasses demographic, epidemiological, and evolutionary processes. A core result is that neglecting processes at any one scale of plant pathogen transmission may bias projections of climate effects, as climate drivers have variable and cascading impacts on processes underlying transmission that occur at different scales.
Collapse
|
40
|
Achieving effective outreach for invasive species: firewood case studies from 2005 to 2016. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02848-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
41
|
Water Availability Determines Tree Growth and Physiological Response to Biotic and Abiotic Stress in a Temperate North American Urban Forest. FORESTS 2022. [DOI: 10.3390/f13071012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Warmer temperatures and frequent drought directly affect urban tree health. Both abiotic conditions also affect tree health via increased density of some insect pests. Warming is predicted to benefit urban trees by increasing carbon sequestration and allocation to biomass. However, increased drought and pests are rarely considered despite often co-occurring with heat. To determine the combined effects of these abiotic and biotic factors, we manipulated water availability for established urban red maple trees across a gradient of warming and pest density and measured leaf-level processes and tree growth over two years. We find that water availability is a major determinant of tree growth, physiological processes, and resilience to urban stress factors. Maples performed better with more water, which also made them resistant to effects of temperature and pest density. However, when drought became too severe, leaf-level processes declined with warming. Tree basal area growth was unaffected after two years, but stem elongation increased with increasing water, temperature, and pest density. We discuss potential mechanisms driving these responses and the implications in the context of urban forest management. Urban forest designs that reduce drought and align species adaptations to local conditions are critical for designing more resilient and productive urban forests.
Collapse
|
42
|
White R, Marzano M, Fesenko E, Inman A, Jones G, Agstner B, Mumford R. Technology development for the early detection of plant pests: a framework for assessing Technology Readiness Levels (TRLs) in environmental science. JOURNAL OF PLANT DISEASES AND PROTECTION : SCIENTIFIC JOURNAL OF THE GERMAN PHYTOMEDICAL SOCIETY (DPG) 2022; 129:1249-1261. [PMID: 36119355 PMCID: PMC9468069 DOI: 10.1007/s41348-022-00599-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Innovation in environmental fields such as plant health is complex because of unbounded challenges and lack of certainty of commercial uptake. In this paper we present a Technology Readiness Level (TRL) framework, specifically to assist with assessment of technologies to support detection of tree pests and pathogens, but also for wider potential adaptation. Biosecurity can be enhanced by improved early detection of pests and pathogens, but development and deployment of new technologies requires robust scrutiny. We critically analyse the concept, practice and applicability of TRLs. Interviews revealed scientist perspectives during the development process of five novel early plant pest and pathogen detection technologies. A retrospective, collective narrative of one technology from concept to commercial deployment was undertaken. We then developed a calculator tool for assessment of biosecurity TRLs. Our findings illustrate the iterative process of technology development, the challenges in final TRLs of acquiring funding to move from proven success to viable product, inefficiencies created through the need for multiple projects for each technology and the imperative to consider the wider socio-ecological technical landscape, including policy context. End user engagement was particularly valuable at beginning and end of the TRL scale. We conclude that the TRL framework comprises a robust approach to assess technologies in that it facilitates progress tracking, evaluation of success likelihood and identification of opportunities for investment. However, its potential will only be realised for environmental management if it is integrated into the socio-ecological technical landscape and wider discussions regarding knowledge co-production and valuing nature. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s41348-022-00599-3.
Collapse
Affiliation(s)
- Rehema White
- School of Geography and Sustainable Development, University of St Andrews, Irvine Building, North Street, Fife, KY16 9AL Scotland
| | - Mariella Marzano
- Forest Research, Northern Research Station, Roslin, Midlothian EH25 9SY Scotland
| | - Elena Fesenko
- Present Address: Food Standards Agency, Foss House, Kings Pool, 1-2 Peasholme Green, York, YO1 7PR England
| | - Alan Inman
- Fera Science Ltd, National Agri-Food Innovation Campus, Sand Hutton, York, YO41 1LZ England
| | - Glyn Jones
- Fera Science Ltd, National Agri-Food Innovation Campus, Sand Hutton, York, YO41 1LZ England
| | - Barbara Agstner
- Fera Science Ltd, National Agri-Food Innovation Campus, Sand Hutton, York, YO41 1LZ England
| | - Rick Mumford
- Present Address: Food Standards Agency, Foss House, Kings Pool, 1-2 Peasholme Green, York, YO1 7PR England
- Fera Science Ltd, National Agri-Food Innovation Campus, Sand Hutton, York, YO41 1LZ England
| |
Collapse
|
43
|
Hamelin RC, Bilodeau GJ, Heinzelmann R, Hrywkiw K, Capron A, Dort E, Dale AL, Giroux E, Kus S, Carleson NC, Grünwald NJ, Feau N. Genomic biosurveillance detects a sexual hybrid in the sudden oak death pathogen. Commun Biol 2022; 5:477. [PMID: 35589982 PMCID: PMC9120034 DOI: 10.1038/s42003-022-03394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/21/2022] [Indexed: 11/24/2022] Open
Abstract
Invasive exotic pathogens pose a threat to trees and forest ecosystems worldwide, hampering the provision of essential ecosystem services such as carbon sequestration and water purification. Hybridization is a major evolutionary force that can drive the emergence of pathogens. Phytophthora ramorum, an emergent pathogen that causes the sudden oak and larch death, spreads as reproductively isolated divergent clonal lineages. We use a genomic biosurveillance approach by sequencing genomes of P. ramorum from survey and inspection samples and report the discovery of variants of P. ramorum that are the result of hybridization via sexual recombination between North American and European lineages. We show that these hybrids are viable, can infect a host and produce spores for long-term survival and propagation. Genome sequencing revealed genotypic combinations at 54,515 single nucleotide polymorphism loci not present in parental lineages. More than 6,000 of those genotypes are predicted to have a functional impact in genes associated with host infection, including effectors, carbohydrate-active enzymes and proteases. We also observed post-meiotic mitotic recombination that could generate additional genotypic and phenotypic variation and contribute to homoploid hybrid speciation. Our study highlights the importance of plant pathogen biosurveillance to detect variants, including hybrids, and inform management and control.
Collapse
Affiliation(s)
- Richard C Hamelin
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada.
| | | | - Renate Heinzelmann
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Kelly Hrywkiw
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Arnaud Capron
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Erika Dort
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Angela L Dale
- New Construction Materials, FPInnovations, Vancouver, BC, Canada
| | - Emilie Giroux
- Ottawa Plant Laboratory, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Stacey Kus
- New Construction Materials, FPInnovations, Vancouver, BC, Canada
| | - Nick C Carleson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Niklaus J Grünwald
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
- Horticultural Crops Research Unit, USDA ARS, Corvallis, OR, USA
| | - Nicolas Feau
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
44
|
Wadkin LE, Branson J, Hoppit A, Parker NG, Golightly A, Baggaley AW. Inference for epidemic models with time-varying infection rates: Tracking the dynamics of oak processionary moth in the UK. Ecol Evol 2022; 12:e8871. [PMID: 35509609 PMCID: PMC9058805 DOI: 10.1002/ece3.8871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022] Open
Abstract
Invasive pests pose a great threat to forest, woodland, and urban tree ecosystems. The oak processionary moth (OPM) is a destructive pest of oak trees, first reported in the UK in 2006. Despite great efforts to contain the outbreak within the original infested area of South‐East England, OPM continues to spread. Here, we analyze data consisting of the numbers of OPM nests removed each year from two parks in London between 2013 and 2020. Using a state‐of‐the‐art Bayesian inference scheme, we estimate the parameters for a stochastic compartmental SIR (susceptible, infested, and removed) model with a time‐varying infestation rate to describe the spread of OPM. We find that the infestation rate and subsequent basic reproduction number have remained constant since 2013 (with R0 between one and two). This shows further controls must be taken to reduce R0 below one and stop the advance of OPM into other areas of England. Synthesis. Our findings demonstrate the applicability of the SIR model to describing OPM spread and show that further controls are needed to reduce the infestation rate. The proposed statistical methodology is a powerful tool to explore the nature of a time‐varying infestation rate, applicable to other partially observed time series epidemic data.
Collapse
Affiliation(s)
- Laura E Wadkin
- School of Mathematics, Statistics and Physics Newcastle University Newcastle upon Tyne UK
| | - Julia Branson
- GeoData, Geography and Environmental Science University of Southampton Southampton UK
| | | | - Nicholas G Parker
- School of Mathematics, Statistics and Physics Newcastle University Newcastle upon Tyne UK
| | - Andrew Golightly
- School of Mathematics, Statistics and Physics Newcastle University Newcastle upon Tyne UK.,Department of Mathematical Sciences Durham University Durham UK
| | - Andrew W Baggaley
- School of Mathematics, Statistics and Physics Newcastle University Newcastle upon Tyne UK
| |
Collapse
|
45
|
Are Trees Planted along the Roads Sustainable? A Large-Scale Study in the Czech Republic. SUSTAINABILITY 2022. [DOI: 10.3390/su14095026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trees provide a wide variety of ecosystem services to society and form the character of the environment and landscape. The analyses of tree populations and their resistance to changing conditions related to climate change typically focus on urban tree communities or forest trees. Similar studies on non-forest trees in the open landscape are largely missing; even the evidence on tree species abundance and distribution is sporadic. The article aims to expand the current evidence by a large-scale study on roadside trees in the Czech Republic. Using an extensive dataset that covers 91.2% of the total tree population along roads in nine NUTS3 regions, we assess the state and observed practices in selecting tree genera for roadside planting and discuss the implications for sustainable tree planning and management. Our survey documented 133,169 tree individuals belonging to 116 species and 40 genera. The results show that 75% of the total roadside plantings along second-class motorways and first-class roads are represented by seven main genera of deciduous trees (Acer, Fraxinus, Tilia, Malus, Betula, Populus, and Quercus), the distribution of which is similar across most Czech regions. New plantings have shifted only a little from the original species distribution. Traditional roadside species are becoming a more popular choice among new plantings, and the effort not to let the invasive trees outgrow into the mature stage is apparent. Most of the original and newly planted species are relatively suitable for emerging risks related to climate change. To achieve more sustainable patterns in roadside tree species composition in the future, especially the susceptibility of some commonly planted roadside tree species to emerging pests and diseases (e.g., Fraxinus excelsior) and to unfavorable site conditions typical for roadside tree stands (Tilia cordata) is of relevance to tree managers. The relative abundance of tree genera was proven to be similar in most studied regions, which makes the recommendations equally relevant for roadside tree managers across the country.
Collapse
|
46
|
Franić I, Prospero S, Adamson K, Allan E, Attorre F, Auger-Rozenberg MA, Augustin S, Avtzis D, Baert W, Barta M, Bauters K, Bellahirech A, Boroń P, Bragança H, Brestovanská T, Brurberg MB, Burgess T, Burokienė D, Cleary M, Corley J, Coyle DR, Csóka G, Černý K, Davydenko K, de Groot M, Diez JJ, Doğmuş Lehtijärvi HT, Drenkhan R, Edwards J, Elsafy M, Eötvös CB, Falko R, Fan J, Feddern N, Fürjes-Mikó Á, Gossner MM, Grad B, Hartmann M, Havrdova L, Horáková MK, Hrabětová M, Justesen MJ, Kacprzyk M, Kenis M, Kirichenko N, Kovač M, Kramarets V, Lacković N, Lantschner MV, Lazarević J, Leskiv M, Li H, Madsen CL, Malumphy C, Matošević D, Matsiakh I, May TW, Meffert J, Migliorini D, Nikolov C, O'Hanlon R, Oskay F, Paap T, Parpan T, Piškur B, Ravn HP, Richard J, Ronse A, Roques A, Ruffner B, Sivickis K, Soliani C, Talgø V, Tomoshevich M, Uimari A, Ulyshen M, Vettraino AM, Villari C, Wang Y, Witzell J, Zlatković M, Eschen R. Worldwide diversity of endophytic fungi and insects associated with dormant tree twigs. Sci Data 2022; 9:62. [PMID: 35232978 PMCID: PMC8888713 DOI: 10.1038/s41597-022-01162-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
International trade in plants and climate change are two of the main factors causing damaging tree pests (i.e. fungi and insects) to spread into new areas. To mitigate these risks, a large-scale assessment of tree-associated fungi and insects is needed. We present records of endophytic fungi and insects in twigs of 17 angiosperm and gymnosperm genera, from 51 locations in 32 countries worldwide. Endophytic fungi were characterized by high-throughput sequencing of 352 samples from 145 tree species in 28 countries. Insects were reared from 227 samples of 109 tree species in 18 countries and sorted into taxonomic orders and feeding guilds. Herbivorous insects were grouped into morphospecies and were identified using molecular and morphological approaches. This dataset reveals the diversity of tree-associated taxa, as it contains 12,721 fungal Amplicon Sequence Variants and 208 herbivorous insect morphospecies, sampled across broad geographic and climatic gradients and for many tree species. This dataset will facilitate applied and fundamental studies on the distribution of fungal endophytes and insects in trees. Measurement(s) | metagenomics analysis • Cytochrome C Oxidase Subunit 1 | Technology Type(s) | amplicon sequencing • Dideoxy Chain Termination DNA Sequencing | Factor Type(s) | tree species • geographic location • mean annual temperature • mean annual precipitation | Sample Characteristic - Organism | Fungi • Insecta | Sample Characteristic - Environment | dormant tree twigs |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.16764229
Collapse
Affiliation(s)
- Iva Franić
- CABI, Delémont, Switzerland. .,Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland. .,Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| | - Simone Prospero
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Kalev Adamson
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Eric Allan
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Fabio Attorre
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Marie Anne Auger-Rozenberg
- Forest Zoology Research Unit, French National Research Institute for Agriculture, Food and Environment (URZF INRAE), Orléans, France
| | - Sylvie Augustin
- Forest Zoology Research Unit, French National Research Institute for Agriculture, Food and Environment (URZF INRAE), Orléans, France
| | - Dimitrios Avtzis
- Forest Research Institute, Hellenic Agricultural Organization - Demeter, Thessaloniki, Greece
| | - Wim Baert
- Meise Botanic Garden, Meise, Belgium
| | - Marek Barta
- Institute of Forest Ecology, Slovak Academy of Sciences, Nitra, Slovakia
| | | | - Amani Bellahirech
- National Research Institute of Rural Engineering, Water and Forests (INRGREF), Ariana, Tunisia
| | - Piotr Boroń
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Krakow, Poland
| | - Helena Bragança
- Instituto Nacional de Investigação Agrária e Veterinária I. P. (INIAV I. P.), Oeiras, Portugal.,GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | - Tereza Brestovanská
- Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Pruhonice, Czech Republic
| | - May Bente Brurberg
- NIBIO, Norwegian Institute of Bioeconomy Research, Ås, Norway.,NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Treena Burgess
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Daiva Burokienė
- Institute of Botany at the Nature Research Centre, Vilnius, Lithuania
| | - Michelle Cleary
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Juan Corley
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (INTA-CONICET), Bariloche, Argentina
| | - David R Coyle
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, South Carolina, USA
| | - György Csóka
- University of Sopron, Forest Research Institute, Department of Forest Protection, Mátrafüred, Hungary
| | - Karel Černý
- Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Pruhonice, Czech Republic
| | - Kateryna Davydenko
- Ukrainian Research Institute of Forestry and Forest Melioration, Kharkiv, Ukraine
| | | | - Julio Javier Diez
- Sustainable Forest Management Research Institute, University of Valladolid-INIA, Palencia, Spain.,Department of Vegetal Production and Forest Resources, University of Valladolid, Palencia, Spain
| | | | - Rein Drenkhan
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Jacqueline Edwards
- School of Applied Systems Biology, La Trobe University, Melbourne, Victoria, Australia.,Agriculture Victoria Research, Agribio Centre, Bundoora, Victoria, Australia
| | - Mohammed Elsafy
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Csaba Béla Eötvös
- University of Sopron, Forest Research Institute, Department of Forest Protection, Mátrafüred, Hungary
| | - Roman Falko
- Ukrainian Research Institute of Mountain Forestry, Ivano-Frankivsk, Ukraine
| | - Jianting Fan
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Nina Feddern
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Ágnes Fürjes-Mikó
- University of Sopron, Forest Research Institute, Department of Forest Protection, Mátrafüred, Hungary
| | - Martin M Gossner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.,Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
| | - Bartłomiej Grad
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Krakow, Poland
| | - Martin Hartmann
- Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland
| | - Ludmila Havrdova
- Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Pruhonice, Czech Republic
| | | | - Markéta Hrabětová
- Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Pruhonice, Czech Republic
| | - Mathias Just Justesen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Magdalena Kacprzyk
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Krakow, Poland
| | | | - Natalia Kirichenko
- Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.,Siberian Federal University, Krasnoyarsk, Russia
| | - Marta Kovač
- Croatian Forest Research Institute, Jastrebarsko, Croatia
| | | | | | - Maria Victoria Lantschner
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (INTA-CONICET), Bariloche, Argentina
| | - Jelena Lazarević
- Biotechnical Faculty, University of Montenegro, Podgorica, Montenegro
| | | | | | - Corrie Lynne Madsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Chris Malumphy
- Fera Science Ltd, National Agri-food Innovation Campus, York, UK
| | | | | | - Tom W May
- Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia
| | - Johan Meffert
- National Plant Protection Organisation, Netherlands Food and Consumers Product Safety Authority, Ministry of Agriculture, Nature and Food Quality, Wageningen, Netherlands
| | - Duccio Migliorini
- Institute for Sustainable Plant Protection (IPSP), National Research Council C.N.R., Sesto Fiorentino, Italy
| | - Christo Nikolov
- National Forest Centre, Forest Research Institute, Zvolen, Slovakia
| | - Richard O'Hanlon
- Department of Agriculture, Food and the Marine, Dublin, Republic of Ireland.,Agri-Food & Biosciences Institute (AFBI), Belfast, UK
| | - Funda Oskay
- Faculty of Forestry, Çankırı Karatekin University, Cankiri, Turkey
| | - Trudy Paap
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.,South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
| | - Taras Parpan
- Ukrainian Research Institute of Mountain Forestry, Ivano-Frankivsk, Ukraine
| | | | - Hans Peter Ravn
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - John Richard
- Tanzania Forestry Research Institute (TAFORI), Lushoto, Tanzania
| | | | - Alain Roques
- Forest Zoology Research Unit, French National Research Institute for Agriculture, Food and Environment (URZF INRAE), Orléans, France
| | - Beat Ruffner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Karolis Sivickis
- Institute of Botany at the Nature Research Centre, Vilnius, Lithuania
| | - Carolina Soliani
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (INTA-CONICET), Bariloche, Argentina
| | - Venche Talgø
- NIBIO, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Maria Tomoshevich
- Central Siberian Botanical Garden, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Anne Uimari
- Natural Resources Institute Finland, Suonenjoki, Finland
| | - Michael Ulyshen
- USDA Forest Service, Southern Research Station, Athens, Georgia, USA
| | | | - Caterina Villari
- D.B. Warnell School of Forestry & Natural Resources, University of Georgia, Athens, Georgia, USA
| | - Yongjun Wang
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Johanna Witzell
- Forestry and Wood Technology, Linnaeus University, Växjö, Sweden
| | - Milica Zlatković
- Institute of Lowland Forestry and Environment (ILFE), University of Novi Sad, Novi Sad, Serbia
| | | |
Collapse
|
47
|
Cavender-Bares J, Logan B. Novel insights on the linkage between enhanced photoprotection and oak decline. TREE PHYSIOLOGY 2022; 42:203-207. [PMID: 34865175 DOI: 10.1093/treephys/tpab153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Jeannine Cavender-Bares
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue Saint Paul, MN 55108, USA
| | - Barry Logan
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| |
Collapse
|
48
|
Kulabhusan PK, Tripathi A, Kant K. Gold Nanoparticles and Plant Pathogens: An Overview and Prospective for Biosensing in Forestry. SENSORS 2022; 22:s22031259. [PMID: 35162004 PMCID: PMC8840466 DOI: 10.3390/s22031259] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022]
Abstract
Plant diseases and their diagnoses are currently one of the global challenges and cause significant impact to the economy of farmers and industries depending on plant-based products. Plant pathogens such as viruses, bacteria, fungi, and pollution caused by the nanomaterial, as well as other important elements of pollution, are the main reason for the loss of plants in agriculture and in forest ecosystems. Presently, various techniques are used to detect pathogens in trees, which includes DNA-based techniques, as well as other microscopy based identification and detection. However, these methodologies require complex instruments and time. Lately, nanomaterial-based new biosensing systems for early detection of diseases, with specificity and sensitivity, are developed and applied. This review highlights the nanomaterial-based biosensing methods of disease detection. Precise and time effective identification of plant pathogens will help to reduce losses in agriculture and forestry. This review focuses on various plant diseases and the requirements for a reliable, fast, and cost-effective testing method, as well as new biosensing technologies for the detection of diseases of field plants in forests at early stages of their growth.
Collapse
Affiliation(s)
- Prabir Kumar Kulabhusan
- Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast BT9 5DL, UK;
| | - Anugrah Tripathi
- Monitoring and Evolution Division, Directorate of Research, Indian Council of Forestry Research and Education, Dehradun 248006, India;
| | - Krishna Kant
- Departamento de Química Física, Campus Universitario, CINBIO Universidade de Vigo, 36310 Vigo, Spain
- Correspondence:
| |
Collapse
|
49
|
Bussell EH, Cunniffe NJ. Optimal strategies to protect a sub-population at risk due to an established epidemic. J R Soc Interface 2022; 19:20210718. [PMID: 35016554 PMCID: PMC8753150 DOI: 10.1098/rsif.2021.0718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Epidemics can particularly threaten certain sub-populations. For example, for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the elderly are often preferentially protected. For diseases of plants and animals, certain sub-populations can drive mitigation because they are intrinsically more valuable for ecological, economic, socio-cultural or political reasons. Here, we use optimal control theory to identify strategies to optimally protect a ‘high-value’ sub-population when there is a limited budget and epidemiological uncertainty. We use protection of the Redwood National Park in California in the face of the large ongoing state-wide epidemic of sudden oak death (caused by Phytophthora ramorum) as a case study. We concentrate on whether control should be focused entirely within the National Park itself, or whether treatment of the growing epidemic in the surrounding ‘buffer region’ can instead be more profitable. We find that, depending on rates of infection and the size of the ongoing epidemic, focusing control on the high-value region is often optimal. However, priority should sometimes switch from the buffer region to the high-value region only as the local outbreak grows. We characterize how the timing of any switch depends on epidemiological and logistic parameters, and test robustness to systematic misspecification of these factors due to imperfect prior knowledge.
Collapse
Affiliation(s)
- Elliott H Bussell
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Nik J Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
50
|
Marini L, Ayres MP, Jactel H. Impact of Stand and Landscape Management on Forest Pest Damage. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:181-199. [PMID: 34606366 DOI: 10.1146/annurev-ento-062321-065511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One promising approach to mitigate the negative impacts of insect pests in forests is to adapt forestry practices to create ecosystems that are more resistant and resilient to biotic disturbances. At the stand scale, local stand management practices often cause idiosyncratic effects on forest pests depending on the environmental context and the focal pest species. However, increasing tree diversity appears to be a general strategy for reducing pest damage across several forest types. At the landscape scale, increasing forest heterogeneity (e.g., intermixing different forest types and/or age classes) represents a promising frontier for improving forest resistance and resilience and for avoiding large-scale outbreaks. In addition to their greater resilience, heterogeneous forest landscapes frequently support a wide range of ecosystem functions and services. A challenge will be to develop cooperation and coordination among multiple actors at spatial scales that transcend historical practices in forest management.
Collapse
Affiliation(s)
- Lorenzo Marini
- DAFNAE, University of Padova, 35020 Legnaro, Padova, Italy;
| | - Matthew P Ayres
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Hervé Jactel
- INRAE, University of Bordeaux, BIOGECO, F-33610 Cestas, France
| |
Collapse
|