1
|
Sahota A, Paulose Nadappuram B, Kwan Z, Lesept F, Howden JH, Claxton S, Kittler JT, Devine MJ, Edel JB, Ivanov AP. Spatial and Temporal Single-Cell Profiling of RNA Compartmentalization in Neurons with Nanotweezers. ACS NANO 2025; 19:18522-18533. [PMID: 40326740 PMCID: PMC12096465 DOI: 10.1021/acsnano.5c02056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Emerging techniques for mapping mRNAs within the subcellular compartments of live cells hold great promise for advancing our understanding of the spatial distribution of transcripts and enabling the study of single-cell dynamics in health and disease. This is particularly critical for polarized cells, such as neurons, where mRNA compartmentalization is essential for regulating gene expression, and defects in these localization mechanisms are linked to numerous neurological disorders. However, many subcellular analysis techniques require a compromise between subcellular precision, live-cell measurements, and nondestructive access to single cells in their native microenvironment. To overcome these challenges, we employ a single-cell technology that we have recently developed, the nanotweezer, which features a nanoscale footprint (∼100 nm), avoids cytoplasmic fluid aspiration, and enables rapid RNA isolation from living cells with minimal invasiveness. Using this tool, we investigate single-cell mRNA compartmentalization in the soma and dendrites of hippocampal neurons at different stages of neuronal development. By combining precise targeting with sequential sampling, we track changes in mRNA abundance at dendritic spine regions of the same neuron, both before and after stimulation. This minimally invasive approach enables time-resolved, subcellular gene expression profiling of the same single cell. This could provide critical insights into polarized cells and advance our understanding of biological processes and complex diseases.
Collapse
Affiliation(s)
- Annie Sahota
- Department
of Chemistry, Imperial College London, Molecular
Science Research Hub, LondonW12 0BZ, United
Kingdom
| | - Binoy Paulose Nadappuram
- Department
of Chemistry, Imperial College London, Molecular
Science Research Hub, LondonW12 0BZ, United
Kingdom
- Department
of Pure and Applied Chemistry, University
of Strathclyde, GlasgowG1 1BX, United
Kingdom
| | - Zoe Kwan
- Department
of Chemistry, Imperial College London, Molecular
Science Research Hub, LondonW12 0BZ, United
Kingdom
| | - Flavie Lesept
- Department
of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, LondonWC1E 6BT, United
Kingdom.
| | - Jack H. Howden
- Department
of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, LondonWC1E 6BT, United
Kingdom.
| | - Suzanne Claxton
- Kinases
and Brain Development Lab, The Francis Crick
Institute, 1 Midland Road, LondonNW1 1AT, United Kingdom
| | - Josef T. Kittler
- Department
of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, LondonWC1E 6BT, United
Kingdom.
| | - Michael J. Devine
- Mitochondrial
Neurobiology Lab, The Francis Crick Institute, 1 Midland Road, LondonNW1 1AT, United Kingdom
- Department
of Clinical and Movement Neurosciences, UCL Queen Square Institute
of Neurology, University College London, LondonWC1N 3BG, United Kingdom
| | - Joshua B. Edel
- Department
of Chemistry, Imperial College London, Molecular
Science Research Hub, LondonW12 0BZ, United
Kingdom
| | - Aleksandar P. Ivanov
- Department
of Chemistry, Imperial College London, Molecular
Science Research Hub, LondonW12 0BZ, United
Kingdom
| |
Collapse
|
2
|
Yan J, Cheng L, Li Y, Wang R, Wang J. Advancements in Single-Molecule Fluorescence Detection Techniques and Their Expansive Applications in Drug Discovery and Neuroscience. BIOSENSORS 2025; 15:283. [PMID: 40422023 DOI: 10.3390/bios15050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 05/28/2025]
Abstract
Single-molecule fluorescence technology stands at the forefront of scientific research as a sophisticated tool, pushing the boundaries of our understanding. This review comprehensively summarizes the technological advancements in single-molecule fluorescence detection, highlighting the latest achievements in the development of single-molecule fluorescent probes, imaging systems, and biosensors. It delves into the applications of these cutting-edge tools in drug discovery and neuroscience research, encompassing the design and monitoring of complex drug delivery systems, the elucidation of pharmacological mechanisms and pharmacokinetics, the intricacies of neuronal signaling and synaptic function, and the molecular underpinnings of neurodegenerative diseases. The exceptional sensitivity demonstrated in these applications underscores the vast potential of single-molecule fluorescence technology in modern biomedical research, heralding its expansion into other scientific domains.
Collapse
Affiliation(s)
- Jing Yan
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
- Holosensor Medical Technology Ltd., Room 12, No. 1798, Zhonghuayuan West Road, Yushan Town, Suzhou 215000, China
| | - Lin Cheng
- Holosensor Medical Technology Ltd., Room 12, No. 1798, Zhonghuayuan West Road, Yushan Town, Suzhou 215000, China
| | - Yitong Li
- Holosensor Medical Technology Ltd., Room 12, No. 1798, Zhonghuayuan West Road, Yushan Town, Suzhou 215000, China
| | - Ru Wang
- Holosensor Medical Technology Ltd., Room 12, No. 1798, Zhonghuayuan West Road, Yushan Town, Suzhou 215000, China
| | - Jie Wang
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Wingfield JL, Puthanveettil SV. Decoding the complex journeys of RNAs along neurons. Nucleic Acids Res 2025; 53:gkaf293. [PMID: 40243060 PMCID: PMC12004114 DOI: 10.1093/nar/gkaf293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Neurons are highly polarized, specialized cells that must overcome immense challenges to ensure the health and survival of the organism in which they reside. They can spread over meters and persist for decades yet communicate at sub-millisecond and millimeter scales. Thus, neurons require extreme levels of spatial-temporal control. Neurons employ molecular motors to transport coding and noncoding RNAs to distal synapses. Intracellular trafficking of RNAs enables neurons to locally regulate protein synthesis and synaptic activity. The way in which RNAs get loaded onto molecular motors and transported to their target locations, particularly following synaptic plasticity, is explored below.
Collapse
Affiliation(s)
- Jenna L Wingfield
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, United States
| | - Sathyanarayanan V Puthanveettil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, United States
| |
Collapse
|
4
|
Zhang Y, Zhu J, Xie H, He Y. Physics-informed deep learning for stochastic particle dynamics estimation. Proc Natl Acad Sci U S A 2025; 122:e2418643122. [PMID: 40014572 DOI: 10.1073/pnas.2418643122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/25/2025] [Indexed: 03/01/2025] Open
Abstract
Single-particle tracking has enabled quantitative studies of complex systems, providing nanometer localization precision and millisecond temporal resolution in heterogeneous environments. However, at micro- or nanometer scales, probe dynamics become inherently stochastic due to Brownian motion and complex interactions, leading to varied diffusion behaviors. Typically, analysis of such trajectory data involves certain moving-window operation and assumes the existence of some pseudo-steady states, particularly when evaluating predefined parameters or specific types of diffusion modes. Here, we introduce the stochastic particle-informed neural network (SPINN), a physics-informed deep learning framework that integrates stochastic differential equations to model and infer particle diffusion dynamics. The SPINN autonomously explores parameter spaces and distinguishes between deterministic and stochastic components with single-frame resolution. Using the anomalous diffusion dataset, we validated SPINN's ability to reduce frame-to-frame variability while preserving key statistical correlations, allowing for accurate characterization of different stochastic processes. When applied to the diffusion of single gold nanorods in hydrogels, the SPINN revealed enhanced microrheological properties during hydrogel gelation and uncovered interfacial dynamics during dextran/tetra-PEG liquid-liquid phase separation. By improving the temporal resolution of stochastic dynamics, the SPINN facilitates the estimation and prediction of complex diffusion behaviors, offering insights into underlying physical mechanisms at mesoscopic scales.
Collapse
Affiliation(s)
- Yongyu Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Junlun Zhu
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hao Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yan He
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
5
|
Feicht L, Dangel A, Jansen RP. Expression of transgenic biotin ligases in inducible neuronal murine cell lines by integration into the mHipp11 gene locus. PLoS One 2025; 20:e0315806. [PMID: 40036200 PMCID: PMC11878913 DOI: 10.1371/journal.pone.0315806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/02/2024] [Indexed: 03/06/2025] Open
Abstract
Biotin proximity labeling is a powerful method for identifying proteins associated with a specific organelle, a bait protein, or RNA. It requires the expression of a modified biotin ligase by transient transfection or from a stably integrated expression construct. Because such stable integration of transgenes into stem cells can lead to silencing during differentiation, targeting a biotin ligase to a genomic safe harbor site would be beneficial. Here, we report on the successful targeting and expression of two biotin ligase constructs to the mouse Hipp11 locus during neuronal differentiation. While randomly integrated MicroID and TurboID are expressed and active in mouse embryonic stem cells (mESCs), expression ceases upon differentiation into mESC-derived neurons, which is independent of the promoter used. In contrast, targeting of the same expression cassette to the mHipp11 locus results in expression, correct localization, and biotinylation activity not only in mESCs but also in neurons 8-10 days after differentiation. This demonstrates that the mouse Hipp11 locus is a promising genomic integration site for transgenic biotin ligases in mESCs and mESC-derived neurons.
Collapse
Affiliation(s)
- Lisa Feicht
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Germany
| | - Aaron Dangel
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Germany
| | - Ralf-Peter Jansen
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Germany
| |
Collapse
|
6
|
Biayna J, Dumbović G. Decoding subcellular RNA localization one molecule at a time. Genome Biol 2025; 26:45. [PMID: 40033325 PMCID: PMC11874642 DOI: 10.1186/s13059-025-03507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
Eukaryotic cells are highly structured and composed of multiple membrane-bound and membraneless organelles. Subcellular RNA localization is a critical regulator of RNA function, influencing various biological processes. At any given moment, RNAs must accurately navigate the three-dimensional subcellular environment to ensure proper localization and function, governed by numerous factors, including splicing, RNA stability, modifications, and localizing sequences. Aberrant RNA localization can contribute to the development of numerous diseases. Here, we explore diverse RNA localization mechanisms and summarize advancements in methods for determining subcellular RNA localization, highlighting imaging techniques transforming our ability to study RNA dynamics at the single-molecule level.
Collapse
Affiliation(s)
- Josep Biayna
- Goethe University Frankfurt, Center for Molecular Medicine, Institute for Cardiovascular Regeneration, Frankfurt, Germany
| | - Gabrijela Dumbović
- Goethe University Frankfurt, Center for Molecular Medicine, Institute for Cardiovascular Regeneration, Frankfurt, Germany.
- Cardio-Pulmonary Institute (CPI), Goethe University, Frankfurt, Frankfurt, Germany.
- German Center of Cardiovascular Research (DZHK), Partner Site Rhein/Main, Frankfurt, Germany.
| |
Collapse
|
7
|
Bergmann C, Mousaei K, Rizzoli SO, Tchumatchenko T. How energy determines spatial localisation and copy number of molecules in neurons. Nat Commun 2025; 16:1424. [PMID: 39915472 PMCID: PMC11802781 DOI: 10.1038/s41467-025-56640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
In neurons, the quantities of mRNAs and proteins are traditionally assumed to be determined by functional, electrical or genetic factors. Yet, there may also be global, currently unknown computational rules that are valid across different molecular species inside a cell. Surprisingly, our results show that the energy for molecular turnover is a significant cellular expense, en par with spiking cost, and which requires energy-saving strategies. We show that the drive to save energy determines transcript quantities and their location while acting differently on each molecular species depending on the length, longevity and other features of the respective molecule. We combined our own data and experimental reports from five other large-scale mRNA and proteomics screens, comprising more than ten thousand molecular species to reveal the underlying computational principles of molecular localisation. We found that energy minimisation principles explain experimentally-reported exponential rank distributions of mRNA and protein copy numbers. Our results further reveal robust energy benefits when certain mRNA classes are moved into dendrites, for example mRNAs of proteins with long amino acid chains or mRNAs with large non-coding regions and long half-lives proving surprising insights at the level of molecular populations.
Collapse
Affiliation(s)
- Cornelius Bergmann
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Kanaan Mousaei
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Silvio O Rizzoli
- Department for Neuro- and Sensory Physiology, University Medical Center Göttingen Center for Biostructural Imaging of Neurodegeneration, BIN Humboldtallee 23, 37073, Göttingen, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
8
|
Beliveau BJ, Akilesh S. A guide to studying 3D genome structure and dynamics in the kidney. Nat Rev Nephrol 2025; 21:97-114. [PMID: 39406927 PMCID: PMC12023896 DOI: 10.1038/s41581-024-00894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
The human genome is tightly packed into the 3D environment of the cell nucleus. Rapidly evolving and sophisticated methods of mapping 3D genome architecture have shed light on fundamental principles of genome organization and gene regulation. The genome is physically organized on different scales, from individual genes to entire chromosomes. Nuclear landmarks such as the nuclear envelope and nucleoli have important roles in compartmentalizing the genome within the nucleus. Genome activity (for example, gene transcription) is also functionally partitioned within this 3D organization. Rather than being static, the 3D organization of the genome is tightly regulated over various time scales. These dynamic changes in genome structure over time represent the fourth dimension of the genome. Innovative methods have been used to map the dynamic regulation of genome structure during important cellular processes including organism development, responses to stimuli, cell division and senescence. Furthermore, disruptions to the 4D genome have been linked to various diseases, including of the kidney. As tools and approaches to studying the 4D genome become more readily available, future studies that apply these methods to study kidney biology will provide insights into kidney function in health and disease.
Collapse
Affiliation(s)
- Brian J Beliveau
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Park J, Cook S, Lee D, Choi J, Yoo S, Bae S, Im HJ, Lee D, Choi H. Generation of super-resolution images from barcode-based spatial transcriptomics by deep image prior. CELL REPORTS METHODS 2025; 5:100937. [PMID: 39729996 PMCID: PMC11840945 DOI: 10.1016/j.crmeth.2024.100937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/17/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024]
Abstract
Spatially resolved transcriptomics (ST) has revolutionized the field of biology by providing a powerful tool for analyzing gene expression in situ. However, current ST methods, particularly barcode-based methods, have limitations in reconstructing high-resolution images from barcodes sparsely distributed in slides. Here, we present SuperST, an algorithm that enables the reconstruction of dense matrices (higher-resolution and non-zero-inflated matrices) from low-resolution ST libraries. SuperST is based on deep image prior, which reconstructs spatial gene expression patterns as image matrices. Compared with previous methods, SuperST generated output images that more closely resembled immunofluorescence images for given gene expression maps. Furthermore, we demonstrated how one can combine images created by SuperST with computer vision algorithms. In this context, we proposed a method for extracting features from the images, which can aid in spatial clustering of genes. By providing a dense matrix for each gene in situ, SuperST can successfully address the resolution and zero-inflation issue.
Collapse
Affiliation(s)
- Jeongbin Park
- Portrai, Inc., Dongsullagil, 78-18 Jongrogu, Seoul, Republic of Korea
| | - Seungho Cook
- Portrai, Inc., Dongsullagil, 78-18 Jongrogu, Seoul, Republic of Korea
| | - Dongjoo Lee
- Portrai, Inc., Dongsullagil, 78-18 Jongrogu, Seoul, Republic of Korea
| | - Jinyeong Choi
- Portrai, Inc., Dongsullagil, 78-18 Jongrogu, Seoul, Republic of Korea
| | - Seongjin Yoo
- Portrai, Inc., Dongsullagil, 78-18 Jongrogu, Seoul, Republic of Korea
| | - Sungwoo Bae
- Portrai, Inc., Dongsullagil, 78-18 Jongrogu, Seoul, Republic of Korea
| | - Hyung-Jun Im
- Portrai, Inc., Dongsullagil, 78-18 Jongrogu, Seoul, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Cancer Research Institute, Seoul National University, 03080 Seoul, Republic of Korea; Research Institute for Convergence Science, Seoul National University, 08826 Seoul, Republic of Korea
| | - Daeseung Lee
- Portrai, Inc., Dongsullagil, 78-18 Jongrogu, Seoul, Republic of Korea
| | - Hongyoon Choi
- Portrai, Inc., Dongsullagil, 78-18 Jongrogu, Seoul, Republic of Korea; Department of Nuclear Medicine, Seoul National University Hospital, 03080 Seoul, Republic of Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, 03080 Seoul, Republic of Korea.
| |
Collapse
|
10
|
Bensidoun P, Verbrugghe M, Lagha M. Imaging Translation in Early Embryo Development. Methods Mol Biol 2025; 2923:215-229. [PMID: 40418452 DOI: 10.1007/978-1-0716-4522-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
The ultimate output of gene expression is to ensure that proteins are synthesized at the right levels, locations, and timings. Recently different imaging-based methods have been developed to visualize the translation of single mRNA molecules. These methods rely on signal amplification with the introduction of an array of a short peptide sequence (a tag such as SunTag), recognized by a genetically encodable single-chain antibody (a detector such as scFv). In this chapter, we discuss such methods to image and quantify translation dynamics in the early Drosophila embryo and provide examples based on a twist-32XSunTag reporter. We outline a step-by-step protocol to light-up translation in living embryos. We also detail a combinatorial strategy in fixed samples (smFISH-IF), allowing to distinguish single mRNA molecules engaged in translation.
Collapse
Affiliation(s)
- Pierre Bensidoun
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, University of Montpellier, Montpellier, France
| | - Morgane Verbrugghe
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, University of Montpellier, Montpellier, France
| | - Mounia Lagha
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, University of Montpellier, Montpellier, France.
| |
Collapse
|
11
|
Yatsuzuka K, Katsuda Y, Sato SI. Live-Cell Imaging of Multiple Endogenous mRNAs Using RNA Aptamers and Chemical Probes. Methods Mol Biol 2025; 2875:189-204. [PMID: 39535650 DOI: 10.1007/978-1-0716-4248-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Imaging of RNA dynamics in living cells is increasingly important to understanding and measuring spatially restricted gene expression. We recently developed a live-cell RNA imaging method that combines an RNA aptamer with a fluorescent chemical probe. The method uses a combination of transfection of a plasmid encoding a gene-specific RNA aptamer with a cell-permeable synthetic small molecule whose fluorescence is restored only when the RNA aptamer hybridizes with its cognitive mRNAs. The versatile method permits the observation of the formation process of stress RNA granules crucial for cellular response to the environment. Simple approaches for simultaneous imaging of multiple RNAs would be essential to gain deeper insights into the functions and dynamics of RNA in cells.
Collapse
Affiliation(s)
- Kenji Yatsuzuka
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Yousuke Katsuda
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Shin-Ichi Sato
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
12
|
Li Y, Zhu S. Polar localization and local translation of RHO-RELATED PROTEIN FROM PLANTS2 mRNAs promote root hair growth in Arabidopsis. THE PLANT CELL 2024; 37:koae333. [PMID: 39692591 DOI: 10.1093/plcell/koae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/05/2024] [Accepted: 12/16/2024] [Indexed: 12/19/2024]
Abstract
Root hairs are tip-growing cells that anchor plants in the soil and are critical for water uptake, nutrient acquisition, and plant-environment interactions. While the molecular mechanisms that maintain the polar growth of root hairs through the asymmetric distribution of proteins, such as RHO-RELATED PROTEIN FROM PLANTS 2 (ROP2), have been described, it is unclear whether and how the transcripts encoding these tip-localized proteins are polarly localized and locally translated. Here, we demonstrated that ROP2 mRNA exhibits polar localization in Arabidopsis (Arabidopsis thaliana) root hairs. We showed that region VI (250-350 bp downstream of the stop codon) of the ROP2 3' untranslated region (UTR) is necessary for proper mRNA localization. Moreover, region VI-mediated ROP2 mRNA polar localization was required for local translation of ROP2 transcripts, contributing to the proper subcellular localization of ROP2. Region III (100-200 bp downstream of the stop codon) influenced the local translation of ROP2 mRNA. Phenotypic investigations demonstrated that both regions III and VI of the ROP2 3' UTR play crucial roles in modulating root hair growth. These findings help explain the local protein biosynthesis of ROP2, advancing our understanding of the regulatory mechanism and genetic basis of mRNA localization and local translation in plants.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China
| |
Collapse
|
13
|
Kiebler MA, Bauer KE. RNA granules in flux: dynamics to balance physiology and pathology. Nat Rev Neurosci 2024; 25:711-725. [PMID: 39367081 DOI: 10.1038/s41583-024-00859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 10/06/2024]
Abstract
The life cycle of an mRNA is a complex process that is tightly regulated by interactions between the mRNA and RNA-binding proteins, forming molecular machines known as RNA granules. Various types of these membrane-less organelles form inside cells, including neurons, and contribute critically to various physiological processes. RNA granules are constantly in flux, change dynamically and adapt to their local environment, depending on their intracellular localization. The discovery that RNA condensates can form by liquid-liquid phase separation expanded our understanding of how compartments may be generated in the cell. Since then, a plethora of new functions have been proposed for distinct condensates in cells that await their validation in vivo. The finding that dysregulation of RNA granules (for example, stress granules) is likely to affect neurodevelopmental and neurodegenerative diseases further boosted interest in this topic. RNA granules have various physiological functions in neurons and in the brain that we would like to focus on. We outline examples of state-of-the-art experiments including timelapse microscopy in neurons to unravel the precise functions of various types of RNA granule. Finally, we distinguish physiologically occurring RNA condensation from aberrant aggregation, induced by artificial RNA overexpression, and present visual examples to discriminate both forms in neurons.
Collapse
Affiliation(s)
- Michael A Kiebler
- Biomedical Center (BMC), Department of Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany.
| | - Karl E Bauer
- Biomedical Center (BMC), Department of Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| |
Collapse
|
14
|
Tarannum R, Mun G, Quddos F, Swanger SA, Steward O, Farris S. Dendritically localized RNAs are packaged as diversely composed ribonucleoprotein particles with heterogeneous copy number states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603387. [PMID: 39071419 PMCID: PMC11275876 DOI: 10.1101/2024.07.13.603387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Localization of mRNAs to dendrites is a fundamental mechanism by which neurons achieve spatiotemporal control of gene expression. Translationally repressed neuronal mRNA transport granules, also referred to as ribonucleoprotein particles (RNPs), have been shown to be trafficked as single or low copy number RNPs and as larger complexes with multiple copies and/or species of mRNAs. However, there is little evidence of either population in intact neuronal circuits. Using single molecule fluorescence in situ hybridization studies in the dendrites of adult rat and mouse hippocampus, we provide evidence that supports the existence of multi-transcript RNPs with the constituents varying in amounts for each RNA species. By competing-off fluorescently labeled probe with serial increases of unlabeled probe, we detected stepwise decreases in Arc RNP number and fluorescence intensity, suggesting Arc RNAs localize to dendrites in both low- and multiple-copy number RNPs. When probing for multiple mRNAs, we find that localized RNPs are heterogeneous in size and colocalization patterns that vary per RNA. Further, localized RNAs that are targeted by the same trans-acting element (FMRP) display greater levels of colocalization compared to an RNA not targeted by FMRP. Simultaneous visualization of a dozen FMRP-targeted mRNA species using highly multiplexed imaging demonstrates that dendritic RNAs are mostly trafficked as heteromeric cargoes of multiple types of RNAs (at least one or more RNAs). Moreover, the composition of these RNA cargoes, as assessed by colocalization, correlates with the abundance of the transcripts even after accounting for the expected differences in colocalization based on expression. Collectively, these results suggest that dendritic RNPs are packaged as heterogeneous co-assemblies of different mRNAs and that RNP contents may be driven, at least partially, by highly abundant dendritic RNAs; a model that favors efficiency over fine-tuned control for sustaining long-distance trafficking of thousands of messenger molecules.
Collapse
Affiliation(s)
- Renesa Tarannum
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
- Translational Biology, Medicine & Health Graduate Program, Virginia Tech, Blacksburg, Virginia
| | - Grace Mun
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
| | - Fatima Quddos
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
- Translational Biology, Medicine & Health Graduate Program, Virginia Tech, Blacksburg, Virginia
| | - Sharon A. Swanger
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | | | - Shannon Farris
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| |
Collapse
|
15
|
Kim DW, Moon HC, Lee BH, Park HY. Decoding Arc transcription: a live-cell study of stimulation patterns and transcriptional output. Learn Mem 2024; 31:a054024. [PMID: 39260877 PMCID: PMC11407692 DOI: 10.1101/lm.054024.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) plays a crucial role in synaptic plasticity, a process integral to learning and memory. Arc transcription is induced within a few minutes of stimulation, making it a useful marker for neuronal activity. However, the specific neuronal activity patterns that initiate Arc transcription have remained elusive due to the inability to observe mRNA transcription in live cells in real time. Using a genetically encoded RNA indicator (GERI) mouse model that expresses endogenous Arc mRNA tagged with multiple GFPs, we investigated Arc transcriptional activity in response to various electrical field stimulation patterns. The GERI mouse model was generated by crossing the Arc-PBS knock-in mouse, engineered with binding sites in the 3' untranslated region (UTR) of Arc mRNA, and the transgenic mouse expressing the cognate binding protein fused to GFP. In dissociated hippocampal neurons, we found that the pattern of stimulation significantly affects Arc transcription. Specifically, theta-burst stimulation consisting of high-frequency (100 Hz) bursts delivered at 10 Hz frequency induced the highest rate of Arc transcription. Concurrently, the amplitudes of nuclear calcium transients also reached their peak with 10 Hz burst stimulation, indicating a correlation between calcium concentration and transcription. However, our dual-color single-cell imaging revealed that there were no significant differences in calcium amplitudes between Arc-positive and Arc-negative neurons upon 10 Hz burst stimulation, suggesting the involvement of other factors in the induction of Arc transcription. Our live-cell RNA imaging provides a deeper insight into the complex regulation of transcription by activity patterns and calcium signaling pathways.
Collapse
Affiliation(s)
- Dong Wook Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyungseok C Moon
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Hun Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
16
|
Chekulaeva M. Mechanistic insights into the basis of widespread RNA localization. Nat Cell Biol 2024; 26:1037-1046. [PMID: 38956277 DOI: 10.1038/s41556-024-01444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
The importance of subcellular mRNA localization is well established, but the underlying mechanisms mostly remain an enigma. Early studies suggested that specific mRNA sequences recruit RNA-binding proteins (RBPs) to regulate mRNA localization. However, despite the observation of thousands of localized mRNAs, only a handful of these sequences and RBPs have been identified. This suggests the existence of alternative, and possibly predominant, mechanisms for mRNA localization. Here I re-examine currently described mRNA localization mechanisms and explore alternative models that could account for its widespread occurrence.
Collapse
Affiliation(s)
- Marina Chekulaeva
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
17
|
Abstract
The translation of messenger RNA (mRNA) into proteins represents the culmination of gene expression. Recent technological advances have revolutionized our ability to investigate this process with unprecedented precision, enabling the study of translation at the single-molecule level in real time within live cells. In this review, we provide an overview of single-mRNA translation reporters. We focus on the core technology, as well as the rapid development of complementary probes, tags, and accessories that enable the visualization and quantification of a wide array of translation dynamics. We then highlight notable studies that have utilized these reporters in model systems to address key biological questions. The high spatiotemporal resolution of these studies is shedding light on previously unseen phenomena, uncovering the full heterogeneity and complexity of translational regulation.
Collapse
Affiliation(s)
- Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
| | - O'Neil Wiggan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA;
- Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
18
|
Lee M, Moon HC, Jeong H, Kim DW, Park HY, Shin Y. Optogenetic control of mRNA condensation reveals an intimate link between condensate material properties and functions. Nat Commun 2024; 15:3216. [PMID: 38622120 PMCID: PMC11018775 DOI: 10.1038/s41467-024-47442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Biomolecular condensates, often assembled through phase transition mechanisms, play key roles in organizing diverse cellular activities. The material properties of condensates, ranging from liquid droplets to solid-like glasses or gels, are key features impacting the way resident components associate with one another. However, it remains unclear whether and how different material properties would influence specific cellular functions of condensates. Here, we combine optogenetic control of phase separation with single-molecule mRNA imaging to study relations between phase behaviors and functional performance of condensates. Using light-activated condensation, we show that sequestering target mRNAs into condensates causes translation inhibition. Orthogonal mRNA imaging reveals highly transient nature of interactions between individual mRNAs and condensates. Tuning condensate composition and material property towards more solid-like states leads to stronger translational repression, concomitant with a decrease in molecular mobility. We further demonstrate that β-actin mRNA sequestration in neurons suppresses spine enlargement during chemically induced long-term potentiation. Our work highlights how the material properties of condensates can modulate functions, a mechanism that may play a role in fine-tuning the output of condensate-driven cellular activities.
Collapse
Affiliation(s)
- Min Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea
| | - Hyungseok C Moon
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
| | - Hyeonjeong Jeong
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, USA
| | - Dong Wook Kim
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea.
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, USA.
| | - Yongdae Shin
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea.
- Department of Mechanical Engineering, Seoul National University, Seoul, Korea.
| |
Collapse
|
19
|
Sun C. Single-Molecule-Resolution Approaches in Synaptic Biology. J Phys Chem B 2024; 128:3061-3068. [PMID: 38513216 DOI: 10.1021/acs.jpcb.3c08026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Synapses between neurons are the primary loci for information transfer and storage in the brain. An individual neuron, alone, can make over 10000 synaptic contacts. It is, however, not easy to investigate what goes on locally within a synapse because many synaptic compartments are only a few hundred nanometers wide in size─close to the diffraction limit of light. To observe the biomolecular machinery and processes within synapses, in situ single-molecule techniques are emerging as powerful tools. Guided by important biological questions, this Perspective will highlight recent advances in using these techniques to obtain in situ measurements of synaptic molecules in three aspects: the cell-biological machinery within synapses, the synaptic architecture, and the synaptic neurotransmitter receptors. These advances showcase the increasing importance of single-molecule-resolution techniques for accessing subcellular biophysical and biomolecular information related to the brain.
Collapse
Affiliation(s)
- Chao Sun
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus C, Denmark
| |
Collapse
|
20
|
Pham TG, Wu J. Recent advances in methods for live-cell RNA imaging. NANOSCALE 2024; 16:5537-5545. [PMID: 38414383 DOI: 10.1039/d4nr00129j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
As one of the most fundamental building blocks of life, RNA plays critical roles in diverse biological processes, from X chromosome inactivation, genome stability maintenance, to embryo development. Being able to visualize the localization and dynamics of RNA can provide critical insights into these fundamental processes. In this review, we provide an overview of current methods for live-cell RNA imaging with a focus on methods for visualizing RNA in living mammalian cells with single-molecule resolution.
Collapse
Affiliation(s)
- Tien G Pham
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Jiahui Wu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
21
|
Zheng F, Kawabe Y, Kamihira M. RNA Aptamer-Mediated Gene Activation Systems for Inducible Transgene Expression in Animal Cells. ACS Synth Biol 2024; 13:230-241. [PMID: 38073086 DOI: 10.1021/acssynbio.3c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
RNA expression analyses can be used to obtain various information from inside cells, such as physical conditions, the chemical environment, and endogenous signals. For detecting RNA, the system regulating intracellular gene expression has the potential for monitoring RNA expression levels in real time within living cells. Synthetic biology provides powerful tools for detecting and analyzing RNA inside cells. Here, we devised an RNA aptamer-mediated gene activation system, RAMGA, to induce RNA-triggered gene expression activation by employing an inducible complex formation strategy grounded in synthetic biology. This methodology connects DNA-binding domains and transactivators through target RNA using RNA-binding domains, including phage coat proteins. MS2 bacteriophage coat protein fused with a transcriptional activator and PP7 bacteriophage coat protein fused with the tetracycline repressor (tetR) can be bridged by target RNA encoding MS2 and PP7 stem-loops, resulting in transcriptional activation. We generated recombinant CHO cells containing an inducible GFP expression module governed by a minimal promoter with a tetR-responsive element. Cells carrying the trigger RNA exhibited robust reporter gene expression, whereas cells lacking it exhibited no expression. GFP expression was upregulated over 200-fold compared with that in cells without a target RNA expression vector. Moreover, this system can detect the expression of mRNA tagged with aptamer tags and modulate reporter gene expression based on the target mRNA level without affecting the expression of the original mRNA-encoding gene. The RNA-triggered gene expression systems developed in this study have potential as a new platform for establishing gene circuits, evaluating endogenous gene expression, and developing novel RNA detectors.
Collapse
Affiliation(s)
- Feiyang Zheng
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
22
|
Eck E, Moretti B, Schlomann BH, Bragantini J, Lange M, Zhao X, VijayKumar S, Valentin G, Loureiro C, Soroldoni D, Royer LA, Oates AC, Garcia HG. Single-cell transcriptional dynamics in a living vertebrate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574108. [PMID: 38260569 PMCID: PMC10802376 DOI: 10.1101/2024.01.03.574108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The ability to quantify transcriptional dynamics in individual cells via live imaging has revolutionized our understanding of gene regulation. However, such measurements are lacking in the context of vertebrate embryos. We addressed this deficit by applying MS2-MCP mRNA labeling to the quantification of transcription in zebrafish, a model vertebrate. We developed a platform of transgenic organisms, light sheet fluorescence microscopy, and optimized image analysis that enables visualization and quantification of MS2 reporters. We used these tools to obtain the first single-cell, real-time measurements of transcriptional dynamics of the segmentation clock. Our measurements challenge the traditional view of smooth clock oscillations and instead suggest a model of discrete transcriptional bursts that are organized in space and time. Together, these results highlight how measuring single-cell transcriptional activity can reveal unexpected features of gene regulation and how this data can fuel the dialogue between theory and experiment.
Collapse
Affiliation(s)
- Elizabeth Eck
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, USA
| | - Bruno Moretti
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA, USA
| | - Brandon H. Schlomann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Merlin Lange
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA, USA
| | - Xiang Zhao
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA, USA
| | | | | | | | | | - Loïc A. Royer
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA, USA
| | - Andrew C. Oates
- Institute of Bioengineering, EPFL; Lausanne, CH
- Department of Cell and Developmental Biology, UCL; London, UK
- The Francis Crick Institute; London, UK
| | - Hernan G. Garcia
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Physics, University of California, Berkeley, CA, USA
- Institute for Quantitative Biosciences-QB3, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA, USA
| |
Collapse
|
23
|
Yin P, Ge M, Xie S, Zhang L, Kuang S, Nie Z. A universal orthogonal imaging platform for living-cell RNA detection using fluorogenic RNA aptamers. Chem Sci 2023; 14:14131-14139. [PMID: 38098702 PMCID: PMC10717586 DOI: 10.1039/d3sc04957d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
MicroRNAs (miRNAs) are crucial regulators of gene expression at the post-transcriptional level, offering valuable insights into disease mechanisms and prospects for targeted therapeutic interventions. Herein, we present a class of miRNA-induced light-up RNA sensors (miLS) that are founded on the toehold mediated principle and employ the fluorogenic RNA aptamers Pepper and Squash as imaging modules. By incorporating a sensor switch to disrupt the stabilizing stem of these aptamers, our design offers enhanced flexibility and convertibility for different target miRNAs and aptamers. These sensors detect multiple miRNA targets (miR-21 and miR-122) with detection limits of 0.48 and 0.2 nM, respectively, while achieving a robust signal-to-noise ratio of up to 44 times. Capitalizing on the distinct fluorescence imaging channels afforded by Pepper-HBC620 (red) and Squash-DFHBI-1T (green), we establish an orthogonal miRNA activation imaging platform, enabling the simultaneous visualization of different intracellular miRNAs in living cells. Our dual-color orthogonal miLS imaging platform provides a powerful tool for sequence-specific miRNA imaging in different cells, opening up new avenues for studying the intricate functions of RNA in living cells.
Collapse
Affiliation(s)
- Peng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 China
| | - Mingmin Ge
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 China
| | - Shiyi Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 China
| | - Li Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 China
| | - Shi Kuang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 China
| |
Collapse
|
24
|
Chen K, Wang Y. CRISPR/Cas systems for in situ imaging of intracellular nucleic acids: Concepts and applications. Biotechnol Bioeng 2023; 120:3446-3464. [PMID: 37641170 DOI: 10.1002/bit.28543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Accurate and precise localization of intracellular nucleic acids is crucial for regulating genetic information transcription and diagnosing diseases. Although intracellular nucleic acid imaging methods are available for various cell types, their widespread utilization is impeded by the intricate nature of the process and its exorbitant cost. Recently, numerous intracellular nucleic acid labeling techniques based on clustered regularly interspaced short palindromic repeats (CRISPR) have been established due to their modularity, flexibility, and specificity. In this work, we present various CRISPR methods that are currently employed for visualizing intracellular genomic sequences and RNA, based on their detection principles and application scenarios. Furthermore, we discuss the advantages and drawbacks of the existing CRISPR imaging methods, as well as future research directions. We anticipate that with continued refinement, more advanced CRISPR-based imaging techniques can be developed to better elucidate the localization and dynamics of intracellular nucleic acids, thereby providing a powerful tool for molecular biology research and clinical molecular pathology diagnosis.
Collapse
Affiliation(s)
- Kun Chen
- Department of Clinical Laboratory, Peking University Cancer Hospital & Institute, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China
| | - Yufei Wang
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, China
| |
Collapse
|
25
|
Wang CM, Wu CY, Lin CE, Hsu MC, Lin JC, Huang CC, Lien TY, Lin HK, Chang TW, Chiang HC. Forgotten memory storage and retrieval in Drosophila. Nat Commun 2023; 14:7153. [PMID: 37935667 PMCID: PMC10630420 DOI: 10.1038/s41467-023-42753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/20/2023] [Indexed: 11/09/2023] Open
Abstract
Inaccessibility of stored memory in ensemble cells through the forgetting process causes animals to be unable to respond to natural recalling cues. While accumulating evidence has demonstrated that reactivating memory-stored cells can switch cells from an inaccessible state to an accessible form and lead to recall of previously learned information, the underlying cellular and molecular mechanisms remain elusive. The current study used Drosophila as a model to demonstrate that the memory of one-trial aversive olfactory conditioning, although inaccessible within a few hours after learning, is stored in KCαβ and retrievable after mild retraining. One-trial aversive conditioning triggers protein synthesis to form a long-lasting cellular memory trace, approximately 20 days, via creb in KCαβ, and a transient cellular memory trace, approximately one day, via orb in MBON-α3. PPL1-α3 negatively regulates forgotten one-trial conditioning memory retrieval. The current study demonstrated that KCαβ, PPL1-α3, and MBON-α3 collaboratively regulate the formation of forgotten one-cycle aversive conditioning memory formation and retrieval.
Collapse
Affiliation(s)
- Chih-Ming Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chun-Yuan Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chen-En Lin
- Department of Medicine, National Cheng-Kung University, Tainan, Taiwan, ROC
| | - Ming-Chi Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Jing-Chun Lin
- Department of Medicine, National Cheng-Kung University, Tainan, Taiwan, ROC
| | - Chuan-Chin Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ting-Yu Lien
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan, ROC
| | - Hsin-Kai Lin
- Department of Medicine, National Cheng-Kung University, Tainan, Taiwan, ROC
| | - Ting-Wei Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Hsueh-Cheng Chiang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan, ROC.
| |
Collapse
|
26
|
Ahn H, Durang X, Shim JY, Park G, Jeon J, Park HY. Statistical modeling of mRNP transport in dendrites: A comparative analysis of β-actin and Arc mRNP dynamics. Traffic 2023; 24:522-532. [PMID: 37545033 PMCID: PMC10946522 DOI: 10.1111/tra.12913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023]
Abstract
Localization of messenger RNA (mRNA) in dendrites is crucial for regulating gene expression during long-term memory formation. mRNA binds to RNA-binding proteins (RBPs) to form messenger ribonucleoprotein (mRNP) complexes that are transported by motor proteins along microtubules to their target synapses. However, the dynamics by which mRNPs find their target locations in the dendrite have not been well understood. Here, we investigated the motion of endogenous β-actin and Arc mRNPs in dissociated mouse hippocampal neurons using the MS2 and PP7 stem-loop systems, respectively. By evaluating the statistical properties of mRNP movement, we found that the aging Lévy walk model effectively describes both β-actin and Arc mRNP transport in proximal dendrites. A critical difference between β-actin and Arc mRNPs was the aging time, the time lag between transport initiation and measurement initiation. The longer mean aging time of β-actin mRNP (~100 s) compared with that of Arc mRNP (~30 s) reflects the longer half-life of constitutively expressed β-actin mRNP. Furthermore, our model also permitted us to estimate the ratio of newly generated and pre-existing β-actin mRNPs in the dendrites. This study offers a robust theoretical framework for mRNP transport, which provides insight into how mRNPs locate their targets in neurons.
Collapse
Affiliation(s)
- Hyerim Ahn
- Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisMinneapolisUSA
| | - Xavier Durang
- Department of PhysicsPohang University of Science and TechnologyPohangRepublic of Korea
| | - Jae Youn Shim
- Department of Physics and AstronomySeoul National UniversitySeoulRepublic of Korea
| | - Gaeun Park
- Department of Physics and AstronomySeoul National UniversitySeoulRepublic of Korea
| | - Jae‐Hyung Jeon
- Department of PhysicsPohang University of Science and TechnologyPohangRepublic of Korea
- Asia Pacific Center for Theoretical PhysicsPohangRepublic of Korea
| | - Hye Yoon Park
- Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisMinneapolisUSA
- Department of Physics and AstronomySeoul National UniversitySeoulRepublic of Korea
- Institute of Applied PhysicsSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
27
|
Eichenberger BT, Griesbach E, Mitchell J, Chao JA. Following the Birth, Life, and Death of mRNAs in Single Cells. Annu Rev Cell Dev Biol 2023; 39:253-275. [PMID: 37843928 DOI: 10.1146/annurev-cellbio-022723-024045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Recent advances in single-molecule imaging of mRNAs in fixed and living cells have enabled the lives of mRNAs to be studied with unprecedented spatial and temporal detail. These approaches have moved beyond simply being able to observe specific events and have begun to allow an understanding of how regulation is coupled between steps in the mRNA life cycle. Additionally, these methodologies are now being applied in multicellular systems and animals to provide more nuanced insights into the physiological regulation of RNA metabolism.
Collapse
Affiliation(s)
- Bastian T Eichenberger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
- University of Basel, Basel, Switzerland
| | - Esther Griesbach
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
| | - Jessica Mitchell
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland;
| |
Collapse
|
28
|
Wang J, Horlacher M, Cheng L, Winther O. RNA trafficking and subcellular localization-a review of mechanisms, experimental and predictive methodologies. Brief Bioinform 2023; 24:bbad249. [PMID: 37466130 PMCID: PMC10516376 DOI: 10.1093/bib/bbad249] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/30/2023] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
RNA localization is essential for regulating spatial translation, where RNAs are trafficked to their target locations via various biological mechanisms. In this review, we discuss RNA localization in the context of molecular mechanisms, experimental techniques and machine learning-based prediction tools. Three main types of molecular mechanisms that control the localization of RNA to distinct cellular compartments are reviewed, including directed transport, protection from mRNA degradation, as well as diffusion and local entrapment. Advances in experimental methods, both image and sequence based, provide substantial data resources, which allow for the design of powerful machine learning models to predict RNA localizations. We review the publicly available predictive tools to serve as a guide for users and inspire developers to build more effective prediction models. Finally, we provide an overview of multimodal learning, which may provide a new avenue for the prediction of RNA localization.
Collapse
Affiliation(s)
- Jun Wang
- Bioinformatics Centre, Department of Biology, University of Copenhagen, København Ø 2100, Denmark
| | - Marc Horlacher
- Computational Health Center, Helmholtz Center, Munich, Germany
| | - Lixin Cheng
- Shenzhen People’s Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China
| | - Ole Winther
- Bioinformatics Centre, Department of Biology, University of Copenhagen, København Ø 2100, Denmark
- Center for Genomic Medicine, Rigshospitalet (Copenhagen University Hospital), Copenhagen 2100, Denmark
- Section for Cognitive Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
29
|
Loedige I, Baranovskii A, Mendonsa S, Dantsuji S, Popitsch N, Breimann L, Zerna N, Cherepanov V, Milek M, Ameres S, Chekulaeva M. mRNA stability and m 6A are major determinants of subcellular mRNA localization in neurons. Mol Cell 2023; 83:2709-2725.e10. [PMID: 37451262 PMCID: PMC10529935 DOI: 10.1016/j.molcel.2023.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/04/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
For cells to perform their biological functions, they need to adopt specific shapes and form functionally distinct subcellular compartments. This is achieved in part via an asymmetric distribution of mRNAs within cells. Currently, the main model of mRNA localization involves specific sequences called "zipcodes" that direct mRNAs to their proper locations. However, while thousands of mRNAs localize within cells, only a few zipcodes have been identified, suggesting that additional mechanisms contribute to localization. Here, we assess the role of mRNA stability in localization by combining the isolation of the soma and neurites of mouse primary cortical and mESC-derived neurons, SLAM-seq, m6A-RIP-seq, the perturbation of mRNA destabilization mechanisms, and the analysis of multiple mRNA localization datasets. We show that depletion of mRNA destabilization elements, such as m6A, AU-rich elements, and suboptimal codons, functions as a mechanism that mediates the localization of mRNAs associated with housekeeping functions to neurites in several types of neurons.
Collapse
Affiliation(s)
- Inga Loedige
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Artem Baranovskii
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Samantha Mendonsa
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Sayaka Dantsuji
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Niko Popitsch
- Max Perutz Labs, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
| | - Laura Breimann
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Nadja Zerna
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Vsevolod Cherepanov
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Miha Milek
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Stefan Ameres
- Max Perutz Labs, University of Vienna, Vienna BioCenter, 1030 Vienna, Austria
| | - Marina Chekulaeva
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany.
| |
Collapse
|
30
|
Wilkerson JR, Ifrim MF, Valdez-Sinon AN, Hahn P, Bowles JE, Molinaro G, Janusz-Kaminska A, Bassell GJ, Huber KM. FMRP phosphorylation and interactions with Cdh1 regulate association with dendritic RNA granules and MEF2-triggered synapse elimination. Neurobiol Dis 2023; 182:106136. [PMID: 37120096 PMCID: PMC10370323 DOI: 10.1016/j.nbd.2023.106136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023] Open
Abstract
Fragile X Messenger Ribonucleoprotein (FMRP) is necessary for experience-dependent, developmental synapse elimination and the loss of this process may underlie the excess dendritic spines and hyperconnectivity of cortical neurons in Fragile X Syndrome, a common inherited form of intellectual disability and autism. Little is known of the signaling pathways that regulate synapse elimination and if or how FMRP is regulated during this process. We have characterized a model of synapse elimination in CA1 neurons of organotypic hippocampal slice cultures that is induced by expression of the active transcription factor Myocyte Enhancer Factor 2 (MEF2) and relies on postsynaptic FMRP. MEF2-induced synapse elimination is deficient in Fmr1 KO CA1 neurons, and is rescued by acute (24 h), postsynaptic and cell autonomous reexpression of FMRP in CA1 neurons. FMRP is an RNA binding protein that suppresses mRNA translation. Derepression is induced by posttranslational mechanisms downstream of metabotropic glutamate receptor signaling. Dephosphorylation of FMRP at S499 triggers ubiquitination and degradation of FMRP which then relieves translation suppression and promotes synthesis of proteins encoded by target mRNAs. Whether this mechanism functions in synapse elimination is not known. Here we demonstrate that phosphorylation and dephosphorylation of FMRP at S499 are both necessary for synapse elimination as well as interaction of FMRP with its E3 ligase for FMRP, APC/Cdh1. Using a bimolecular ubiquitin-mediated fluorescence complementation (UbFC) assay, we demonstrate that MEF2 promotes ubiquitination of FMRP in CA1 neurons that relies on activity and interaction with APC/Cdh1. Our results suggest a model where MEF2 regulates posttranslational modifications of FMRP via APC/Cdh1 to regulate translation of proteins necessary for synapse elimination.
Collapse
Affiliation(s)
- Julia R Wilkerson
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Marius F Ifrim
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Patricia Hahn
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jacob E Bowles
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gemma Molinaro
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Kimberly M Huber
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
31
|
Gerber A, van Otterdijk S, Bruggeman FJ, Tutucci E. Understanding spatiotemporal coupling of gene expression using single molecule RNA imaging technologies. Transcription 2023; 14:105-126. [PMID: 37050882 PMCID: PMC10807504 DOI: 10.1080/21541264.2023.2199669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Across all kingdoms of life, gene regulatory mechanisms underlie cellular adaptation to ever-changing environments. Regulation of gene expression adjusts protein synthesis and, in turn, cellular growth. Messenger RNAs are key molecules in the process of gene expression. Our ability to quantitatively measure mRNA expression in single cells has improved tremendously over the past decades. This revealed an unexpected coordination between the steps that control the life of an mRNA, from transcription to degradation. Here, we provide an overview of the state-of-the-art imaging approaches for measurement and quantitative understanding of gene expression, starting from the early visualizations of single genes by electron microscopy to current fluorescence-based approaches in single cells, including live-cell RNA-imaging approaches to FISH-based spatial transcriptomics across model organisms. We also highlight how these methods have shaped our current understanding of the spatiotemporal coupling between transcriptional and post-transcriptional events in prokaryotes. We conclude by discussing future challenges of this multidisciplinary field.Abbreviations: mRNA: messenger RNA; rRNA: ribosomal rDNA; tRNA: transfer RNA; sRNA: small RNA; FISH: fluorescence in situ hybridization; RNP: ribonucleoprotein; smFISH: single RNA molecule FISH; smiFISH: single molecule inexpensive FISH; HCR-FISH: Hybridization Chain-Reaction-FISH; RCA: Rolling Circle Amplification; seqFISH: Sequential FISH; MERFISH: Multiplexed error robust FISH; UTR: Untranslated region; RBP: RNA binding protein; FP: fluorescent protein; eGFP: enhanced GFP, MCP: MS2 coat protein; PCP: PP7 coat protein; MB: Molecular beacons; sgRNA: single guide RNA.
Collapse
Affiliation(s)
- Alan Gerber
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Sander van Otterdijk
- Systems Biology Lab, A-LIFE department, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank J. Bruggeman
- Systems Biology Lab, A-LIFE department, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Evelina Tutucci
- Systems Biology Lab, A-LIFE department, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Thu M, Yanai K, Shigeto H, Yamamura S, Watanabe K, Ohtsuki T. FRET probe for detecting two mutations in one EGFR mRNA. Analyst 2023; 148:2626-2632. [PMID: 37191032 DOI: 10.1039/d3an00554b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Technologies for visualizing and tracking RNA are essential in molecular biology, including in disease-related fields. In this study, we propose a novel probe set (DAt-probe and T-probe) that simultaneously detects two mutations in the same RNA using fluorescence resonance energy transfer (FRET). The DAt-probe carrying the fluorophore Atto488 and the quencher Dabcyl were used to detect a cancer mutation (exon19del), and the T-probe carrying the fluorophore Tamra was used to detect drug resistance mutations (T790M) in epidermal growth factor receptor (EGFR) mRNA. These probes were designed to induce FRET when both mutations were present in the mRNA. Gel electrophoresis confirmed that the two probes could efficiently bind to the mutant mRNA. We measured the FRET ratios using wild-type and double-mutant RNAs and found a significant difference between them. Even in living cells, the FRET probe could visualize mutant RNA. As a result, we conclude that this probe set provides a method for detecting two mutations in the single EGFR mRNA via FRET.
Collapse
Affiliation(s)
- Myat Thu
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.
| | - Kouta Yanai
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.
| | - Hajime Shigeto
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Shohei Yamamura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Kazunori Watanabe
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.
| | - Takashi Ohtsuki
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.
| |
Collapse
|
33
|
Bauer KE, de Queiroz BR, Kiebler MA, Besse F. RNA granules in neuronal plasticity and disease. Trends Neurosci 2023:S0166-2236(23)00104-2. [PMID: 37202301 DOI: 10.1016/j.tins.2023.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 05/20/2023]
Abstract
RNA granules are dynamic entities controlling the spatiotemporal distribution and translation of RNA molecules. In neurons, a variety of RNA granules exist both in the soma and in cellular processes. They contain transcripts encoding signaling and synaptic proteins as well as RNA-binding proteins causally linked to several neurological disorders. In this review, we highlight that neuronal RNA granules exhibit properties of biomolecular condensates that are regulated upon maturation and physiological aging and how they are reversibly remodeled in response to neuronal activity to control local protein synthesis and ultimately synaptic plasticity. Moreover, we propose a framework of how neuronal RNA granules mature over time in healthy conditions and how they transition into pathological inclusions in the context of late-onset neurodegenerative diseases.
Collapse
Affiliation(s)
- Karl E Bauer
- Biomedical Center (BMC), Department of Anatomy and Cell Biology, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Bruna R de Queiroz
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Michael A Kiebler
- Biomedical Center (BMC), Department of Anatomy and Cell Biology, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany.
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
34
|
Pecori F, Torres-Padilla ME. Dynamics of nuclear architecture during early embryonic development and lessons from liveimaging. Dev Cell 2023; 58:435-449. [PMID: 36977375 PMCID: PMC10062924 DOI: 10.1016/j.devcel.2023.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Nuclear organization has emerged as a potential key regulator of genome function. During development, the deployment of transcriptional programs must be tightly coordinated with cell division and is often accompanied by major changes in the repertoire of expressed genes. These transcriptional and developmental events are paralleled by changes in the chromatin landscape. Numerous studies have revealed the dynamics of nuclear organization underlying them. In addition, advances in live-imaging-based methodologies enable the study of nuclear organization with high spatial and temporal resolution. In this Review, we summarize the current knowledge of the changes in nuclear architecture in the early embryogenesis of various model systems. Furthermore, to highlight the importance of integrating fixed-cell and live approaches, we discuss how different live-imaging techniques can be applied to examine nuclear processes and their contribution to our understanding of transcription and chromatin dynamics in early development. Finally, we provide future avenues for outstanding questions in this field.
Collapse
Affiliation(s)
- Federico Pecori
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany; Faculty of Biology, Ludwig Maximilians University, Munich, Germany.
| |
Collapse
|
35
|
Sun C, Schuman E. A multi-omics view of neuronal subcellular protein synthesis. Curr Opin Neurobiol 2023; 80:102705. [PMID: 36913750 DOI: 10.1016/j.conb.2023.102705] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023]
Abstract
While it has long been known that protein synthesis is necessary for long-term memory in the brain, the logistics of neuronal protein synthesis is complicated by the extensive subcellular compartmentalization of the neuron. Local protein synthesis solves many of the logistic problems posed by the extreme complexity of dendritic and axonal arbors and the huge number of synapses. Here we review recent multi-omic and quantitative studies that elaborate a systems view of decentralized neuronal protein synthesis. We highlight recent insights from the transcriptomic, translatomic, and proteomic levels, discuss the nuanced logic of local protein synthesis for different protein features, and list the missing information needed to build a comprehensive logistic model for neuronal protein supply.
Collapse
Affiliation(s)
- Chao Sun
- Max Planck Institute for Brain Research, Frankfurt, Germany; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Denmark; Aarhus University, Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark. https://twitter.com/LukeChaoSun
| | - Erin Schuman
- Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
36
|
Hu Y, Xu J, Gao E, Fan X, Wei J, Ye B, Xu S, Ma W. Enhanced single RNA imaging reveals dynamic gene expression in live animals. eLife 2023; 12:82178. [PMID: 36867026 PMCID: PMC10032653 DOI: 10.7554/elife.82178] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/01/2023] [Indexed: 03/04/2023] Open
Abstract
Imaging endogenous mRNAs in live animals is technically challenging. Here, we describe an MS2-based signal amplification with the Suntag system that enables live-cell RNA imaging of high temporal resolution and with 8xMS2 stem-loops, which overcomes the obstacle of inserting a 1300 nt 24xMS2 into the genome for the imaging of endogenous mRNAs. Using this tool, we were able to image the activation of gene expression and the dynamics of endogenous mRNAs in the epidermis of live C. elegans.
Collapse
Affiliation(s)
- Yucen Hu
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jingxiu Xu
- International Biomedicine-X research center of the Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Erqing Gao
- International Biomedicine-X research center of the Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xueyuan Fan
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jieli Wei
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Bingcheng Ye
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Suhong Xu
- International Biomedicine-X research center of the Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Center for Stem Cell and Regenerative Medicine and Department of Burn and wound repair of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weirui Ma
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
Gala DS, Titlow JS, Teodoro RO, Davis I. Far from home: the role of glial mRNA localization in synaptic plasticity. RNA (NEW YORK, N.Y.) 2023; 29:153-169. [PMID: 36442969 PMCID: PMC9891262 DOI: 10.1261/rna.079422.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurons and glia are highly polarized cells, whose distal cytoplasmic functional subdomains require specific proteins. Neurons have axonal and dendritic cytoplasmic extensions containing synapses whose plasticity is regulated efficiently by mRNA transport and localized translation. The principles behind these mechanisms are equally attractive for explaining rapid local regulation of distal glial cytoplasmic projections, independent of their cell nucleus. However, in contrast to neurons, mRNA localization has received little experimental attention in glia. Nevertheless, there are many functionally diverse glial subtypes containing extensive networks of long cytoplasmic projections with likely localized regulation that influence neurons and their synapses. Moreover, glia have many other neuron-like properties, including electrical activity, secretion of gliotransmitters and calcium signaling, influencing, for example, synaptic transmission, plasticity and axon pruning. Here, we review previous studies concerning glial transcripts with important roles in influencing synaptic plasticity, focusing on a few cases involving localized translation. We discuss a variety of important questions about mRNA transport and localized translation in glia that remain to be addressed, using cutting-edge tools already available for neurons.
Collapse
Affiliation(s)
- Dalia S Gala
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Joshua S Titlow
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Rita O Teodoro
- iNOVA4Health, NOVA Medical School-Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - Ilan Davis
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
38
|
Huang Y, Gao BQ, Meng Q, Yang LZ, Ma XK, Wu H, Pan YH, Yang L, Li D, Chen LL. CRISPR-dCas13-tracing reveals transcriptional memory and limited mRNA export in developing zebrafish embryos. Genome Biol 2023; 24:15. [PMID: 36658633 PMCID: PMC9854193 DOI: 10.1186/s13059-023-02848-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Understanding gene transcription and mRNA-protein (mRNP) dynamics in single cells in a multicellular organism has been challenging. The catalytically dead CRISPR-Cas13 (dCas13) system has been used to visualize RNAs in live cells without genetic manipulation. We optimize this system to track developmentally expressed mRNAs in zebrafish embryos and to understand features of endogenous transcription kinetics and mRNP export. RESULTS We report that zygotic microinjection of purified CRISPR-dCas13-fluorescent proteins and modified guide RNAs allows single- and dual-color tracking of developmentally expressed mRNAs in zebrafish embryos from zygotic genome activation (ZGA) until early segmentation period without genetic manipulation. Using this approach, we uncover non-synchronized de novo transcription between inter-alleles, synchronized post-mitotic re-activation in pairs of alleles, and transcriptional memory as an extrinsic noise that potentially contributes to synchronized post-mitotic re-activation. We also reveal rapid dCas13-engaged mRNP movement in the nucleus with a corralled and diffusive motion, but a wide varying range of rate-limiting mRNP export, which can be shortened by Alyref and Nxf1 overexpression. CONCLUSIONS This optimized dCas13-based toolkit enables robust spatial-temporal tracking of endogenous mRNAs and uncovers features of transcription and mRNP motion, providing a powerful toolkit for endogenous RNA visualization in a multicellular developmental organism.
Collapse
Affiliation(s)
- Youkui Huang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Bao-Qing Gao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Quan Meng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liang-Zhong Yang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Xu-Kai Ma
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Yu-Hang Pan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
39
|
APC couples neuronal mRNAs to multiple kinesins, EB1, and shrinking microtubule ends for bidirectional mRNA motility. Proc Natl Acad Sci U S A 2022; 119:e2211536119. [PMID: 36469763 PMCID: PMC9897468 DOI: 10.1073/pnas.2211536119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Understanding where in the cytoplasm mRNAs are translated is increasingly recognized as being as important as knowing the timing and level of protein expression. mRNAs are localized via active motor-driven transport along microtubules (MTs) but the underlying essential factors and dynamic interactions are largely unknown. Using biochemical in vitro reconstitutions with purified mammalian proteins, multicolor TIRF-microscopy, and interaction kinetics measurements, we show that adenomatous polyposis coli (APC) enables kinesin-1- and kinesin-2-based mRNA transport, and that APC is an ideal adaptor for long-range mRNA transport as it forms highly stable complexes with 3'UTR fragments of several neuronal mRNAs (APC-RNPs). The kinesin-1 KIF5A binds and transports several neuronal mRNP components such as FMRP, PURα and mRNA fragments weakly, whereas the transport frequency of the mRNA fragments is significantly increased by APC. APC-RNP-motor complexes can assemble on MTs, generating highly processive mRNA transport events. We further find that end-binding protein 1 (EB1) recruits APC-RNPs to dynamically growing MT ends and APC-RNPs track shrinking MTs, producing MT minus-end-directed RNA motility due to the high dwell times of APC on MTs. Our findings establish APC as a versatile mRNA-kinesin adaptor and a key factor for the assembly and bidirectional movement of neuronal transport mRNPs.
Collapse
|
40
|
van Tartwijk FW, Kaminski CF. Protein Condensation, Cellular Organization, and Spatiotemporal Regulation of Cytoplasmic Properties. Adv Biol (Weinh) 2022; 6:e2101328. [PMID: 35796197 DOI: 10.1002/adbi.202101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/15/2022] [Indexed: 01/28/2023]
Abstract
The cytoplasm is an aqueous, highly crowded solution of active macromolecules. Its properties influence the behavior of proteins, including their folding, motion, and interactions. In particular, proteins in the cytoplasm can interact to form phase-separated assemblies, so-called biomolecular condensates. The interplay between cytoplasmic properties and protein condensation is critical in a number of functional contexts and is the subject of this review. The authors first describe how cytoplasmic properties can affect protein behavior, in particular condensate formation, and then describe the functional implications of this interplay in three cellular contexts, which exemplify how protein self-organization can be adapted to support certain physiological phenotypes. The authors then describe the formation of RNA-protein condensates in highly polarized cells such as neurons, where condensates play a critical role in the regulation of local protein synthesis, and describe how different stressors trigger extensive reorganization of the cytoplasm, both through signaling pathways and through direct stress-induced changes in cytoplasmic properties. Finally, the authors describe changes in protein behavior and cytoplasmic properties that may occur in extremophiles, in particular organisms that have adapted to inhabit environments of extreme temperature, and discuss the implications and functional importance of these changes.
Collapse
Affiliation(s)
- Francesca W van Tartwijk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| |
Collapse
|
41
|
Pelea O, Fulga TA, Sauka-Spengler T. RNA-Responsive gRNAs for Controlling CRISPR Activity: Current Advances, Future Directions, and Potential Applications. CRISPR J 2022; 5:642-659. [PMID: 36206027 PMCID: PMC9618385 DOI: 10.1089/crispr.2022.0052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/17/2022] [Indexed: 01/31/2023] Open
Abstract
CRISPR-Cas9 has emerged as a major genome manipulation tool. As Cas9 can cause off-target effects, several methods for controlling the expression of CRISPR systems were developed. Recent studies have shown that CRISPR activity could be controlled by sensing expression levels of endogenous transcripts. This is particularly interesting, as endogenous RNAs could harbor important information about the cell type, disease state, and environmental challenges cells are facing. Single-guide RNA (sgRNA) engineering played a major role in the development of RNA-responsive CRISPR systems. Following further optimizations, RNA-responsive sgRNAs could enable the development of novel therapeutic and research applications. This review introduces engineering strategies that could be employed to modify Streptococcus pyogenes sgRNAs with a focus on recent advances made toward the development of RNA-responsive sgRNAs. Future directions and potential applications of these technologies are also discussed.
Collapse
Affiliation(s)
- Oana Pelea
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; and Kansas City, Missouri, USA
| | - Tudor A. Fulga
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; and Kansas City, Missouri, USA
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; and Kansas City, Missouri, USA
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| |
Collapse
|
42
|
Lee BH, Bang S, Lee S, Jeon NL, Park HY. Dynamics of axonal β-actin mRNA in live hippocampal neurons. Traffic 2022; 23:496-505. [PMID: 36054788 PMCID: PMC9804286 DOI: 10.1111/tra.12865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/09/2022] [Accepted: 08/10/2022] [Indexed: 01/05/2023]
Abstract
Localization of mRNA facilitates spatiotemporally controlled protein expression in neurons. In axons, mRNA transport followed by local protein synthesis plays a critical role in axonal growth and guidance. However, it is not yet clearly understood how mRNA is transported to axonal subcellular sites and what regulates axonal mRNA localization. Using a transgenic mouse model in which endogenous β-actin mRNA is fluorescently labeled, we investigated β-actin mRNA movement in axons of hippocampal neurons. We cultured neurons in microfluidic devices to separate axons from dendrites and performed single-particle tracking of axonal β-actin mRNA. Compared with dendritic β-actin mRNA, axonal β-actin mRNA showed less directed motion and exhibited mostly subdiffusive motion, especially near filopodia and boutons in mature dissociated hippocampal neurons. We found that axonal β-actin mRNA was likely to colocalize with actin patches (APs), regions that have a high density of filamentous actin (F-actin) and are known to have a role in branch initiation. Moreover, simultaneous imaging of F-actin and axonal β-actin mRNA in live neurons revealed that moving β-actin mRNA tended to be docked in the APs. Our findings reveal that axonal β-actin mRNA localization is facilitated by actin networks and suggest that localized β-actin mRNA plays a potential role in axon branch formation.
Collapse
Affiliation(s)
- Byung Hun Lee
- Department of Physics and AstronomySeoul National UniversitySeoulRepublic of Korea
| | - Seokyoung Bang
- Department of Mechanical EngineeringSeoul National UniversitySeoulRepublic of Korea,Department of Medical BiotechnologyDongguk UniversityGoyangRepublic of Korea
| | - Seung‐Ryeol Lee
- Department of Mechanical EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Noo Li Jeon
- Department of Mechanical EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Hye Yoon Park
- Department of Physics and AstronomySeoul National UniversitySeoulRepublic of Korea,The Institute of Applied PhysicsSeoul National UniversitySeoulRepublic of Korea,Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
43
|
Kipper K, Mansour A, Pulk A. Neuronal RNA granules are ribosome complexes stalled at the pre-translocation state. J Mol Biol 2022; 434:167801. [PMID: 36038000 DOI: 10.1016/j.jmb.2022.167801] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
The polarized cell morphology of neurons dictates many neuronal processes, including the axodendridic transport of specific mRNAs and subsequent translation. mRNAs together with ribosomes and RNA-binding proteins form RNA granules that are targeted to axodendrites for localized translation in neurons. It has been established that localized protein synthesis in neurons is essential for long-term memory formation, synaptic plasticity, and neurodegeneration. We have used proteomics and electron microscopy to characterize neuronal RNA granules (nRNAg) isolated from rat brain tissues or human neuroblastoma. We show that ribosome containing RNA granules are morula-like structures when visualized by electron microscopy. Crosslinking-coupled mass-spectrometry identified potential G3BP2 binding site on the ribosome near the eIF3d-binding site on the 40S ribosomal subunit. We used cryo-EM to resolve the structure of the ribosome-component of nRNAg. The cryo-EM reveals that predominant particles in nRNAg are 80S ribosomes, resembling the pre-translocation state where tRNA's are in the hybrid A/P and P/E site. We also describe a new kind of principal motion of the ribosome, which we call the rocking motion.
Collapse
Affiliation(s)
- Kalle Kipper
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Abbas Mansour
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Arto Pulk
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia.
| |
Collapse
|
44
|
Abstract
Arc is one of the genes that are rapidly transcribed by neuronal activity and thus used as a marker for memory trace or engram cells. However, the dynamics of engram cell populations is not well-known because of the difficulty in monitoring the rapid and transient gene expression in live animals. Using a mouse model in which endogenous Arc messenger RNA (mRNA) is fluorescently labeled, we demonstrate that Arc-expressing neuronal populations have distinct dynamics in different brain regions and that only a small subpopulation that consistently expresses Arc during both memory encoding and retrieval exhibits context-specific calcium activity. This live-animal RNA-imaging technique will offer a powerful tool for connecting gene expression to neuronal activity patterns and to behavior. Memories are thought to be encoded in populations of neurons called memory trace or engram cells. However, little is known about the dynamics of these cells because of the difficulty in real-time monitoring of them over long periods of time in vivo. To overcome this limitation, we present a genetically encoded RNA indicator (GERI) mouse for intravital chronic imaging of endogenous Arc messenger RNA (mRNA)—a popular marker for memory trace cells. We used our GERI to identify Arc-positive neurons in real time without the delay associated with reporter protein expression in conventional approaches. We found that the Arc-positive neuronal populations rapidly turned over within 2 d in the hippocampal CA1 region, whereas ∼4% of neurons in the retrosplenial cortex consistently expressed Arc following contextual fear conditioning and repeated memory retrievals. Dual imaging of GERI and a calcium indicator in CA1 of mice navigating a virtual reality environment revealed that only the population of neurons expressing Arc during both encoding and retrieval exhibited relatively high calcium activity in a context-specific manner. This in vivo RNA-imaging approach opens the possibility of unraveling the dynamics of the neuronal population underlying various learning and memory processes.
Collapse
|
45
|
Le P, Ahmed N, Yeo GW. Illuminating RNA biology through imaging. Nat Cell Biol 2022; 24:815-824. [PMID: 35697782 PMCID: PMC11132331 DOI: 10.1038/s41556-022-00933-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 05/06/2022] [Indexed: 12/14/2022]
Abstract
RNA processing plays a central role in accurately transmitting genetic information into functional RNA and protein regulators. To fully appreciate the RNA life-cycle, tools to observe RNA with high spatial and temporal resolution are critical. Here we review recent advances in RNA imaging and highlight how they will propel the field of RNA biology. We discuss current trends in RNA imaging and their potential to elucidate unanswered questions in RNA biology.
Collapse
Affiliation(s)
- Phuong Le
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Noorsher Ahmed
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
46
|
Wang Q, Xiao F, Su H, Liu H, Xu J, Tang H, Qin S, Fang Z, Lu Z, Wu J, Weng X, Zhou X. Inert Pepper aptamer-mediated endogenous mRNA recognition and imaging in living cells. Nucleic Acids Res 2022; 50:e84. [PMID: 35580055 PMCID: PMC9371900 DOI: 10.1093/nar/gkac368] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/01/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
The development of RNA aptamers/fluorophores system is highly desirable for understanding the dynamic molecular biology of RNAs in vivo. Peppers-based imaging systems have been reported and applied for mRNA imaging in living cells. However, the need to insert corresponding RNA aptamer sequences into target RNAs and relatively low fluorescence signal limit its application in endogenous mRNA imaging. Herein, we remolded the original Pepper aptamer and developed a tandem array of inert Pepper (iPepper) fluorescence turn-on system. iPepper allows for efficient and selective imaging of diverse endogenous mRNA species in live cells with minimal agitation of the target mRNAs. We believe iPepper would significantly expand the applications of the aptamer/fluorophore system in endogenous mRNA imaging, and it has the potential to become a powerful tool for real-time studies in living cells and biological processing.
Collapse
Affiliation(s)
- Qi Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China
| | - Feng Xiao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China
| | - Haomiao Su
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China.,Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, USA
| | - Hui Liu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China
| | - Jinglei Xu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China
| | - Heng Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China
| | - Shanshan Qin
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China
| | - Zhentian Fang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China
| | - Ziang Lu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China
| | - Jian Wu
- School of Medicine, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China.,The Institute of Advanced Studies, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China
| |
Collapse
|
47
|
A Proposed Role for Interactions between Argonautes, miRISC, and RNA Binding Proteins in the Regulation of Local Translation in Neurons and Glia. J Neurosci 2022; 42:3291-3301. [PMID: 35444007 PMCID: PMC9034781 DOI: 10.1523/jneurosci.2391-21.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
The first evidence of local translation in the CNS appeared nearly 40 years ago, when electron microscopic studies showed polyribosomes localized to the base of dendritic spines. Since then, local translation has been established as an important regulatory mechanism for gene expression in polarized or functionally compartmentalized cells. While much attention has been placed on characterizing the local transcriptome and regulatory "grammar" directing mRNA localization in neurons and glia, less is understood about how these cells subsequently de-repress mRNA translation in their peripheral processes to produce a rapid translational response to stimuli. MicroRNA-mediated translation regulation offers a possible solution to this question. Not only do miRNAs provide the specificity needed for targeted gene regulation, but association and dynamic interactions between Argonaute (AGO) with sequence-specific RNA-binding proteins may provide a molecular switch to allow for de-repression of target mRNAs. Here, we review the expression and activity of different AGO proteins in miRNA-induced silencing complexes in neurons and glia and discuss known pathways of miRNA-mediated regulation, including activity-dependent pre-miRNA maturation in dendrites. We further detail work on AGO and RNA-binding protein interactions that allow for the reversal of miRNA-mediated translational silencing, and we propose a model for how intercellular communication may play a role in the regulation of local translation.
Collapse
|
48
|
Flamand MN, Meyer KD. m6A and YTHDF proteins contribute to the localization of select neuronal mRNAs. Nucleic Acids Res 2022; 50:4464-4483. [PMID: 35438793 PMCID: PMC9071445 DOI: 10.1093/nar/gkac251] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/11/2022] [Accepted: 03/30/2022] [Indexed: 01/08/2023] Open
Abstract
The transport of mRNAs to distal subcellular compartments is an important component of spatial gene expression control in neurons. However, the mechanisms that control mRNA localization in neurons are not completely understood. Here, we identify the abundant base modification, m6A, as a novel regulator of this process. Transcriptome-wide analysis following genetic loss of m6A reveals hundreds of transcripts that exhibit altered subcellular localization in hippocampal neurons. Additionally, using a reporter system, we show that mutation of specific m6A sites in select neuronal transcripts diminishes their localization to neurites. Single molecule fluorescent in situ hybridization experiments further confirm our findings and identify the m6A reader proteins YTHDF2 and YTHDF3 as mediators of this effect. Our findings reveal a novel function for m6A in controlling mRNA localization in neurons and enable a better understanding of the mechanisms through which m6A influences gene expression in the brain.
Collapse
Affiliation(s)
- Mathieu N Flamand
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
49
|
Huang NC, Luo KR, Yu TS. Development of a split fluorescent protein-based RNA live-cell imaging system to visualize mRNA distribution in plants. PLANT METHODS 2022; 18:15. [PMID: 35130941 PMCID: PMC8822845 DOI: 10.1186/s13007-022-00849-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/24/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND RNA live-cell imaging systems have been used to visualize subcellular mRNA distribution in living cells. The RNA-binding protein (RBP)-based RNA imaging system exploits specific RBP and the corresponding RNA recognition sequences to indirectly label mRNAs. Co-expression of fluorescent protein-fused RBP and target mRNA conjugated with corresponding RNA recognition sequences allows for visualizing mRNAs by confocal microscopy. To minimize the background fluorescence in the cytosol, the nuclear localization sequence has been used to sequester the RBP not bound to mRNA in the nucleus. However, strong fluorescence in the nucleus may limit the visualization of nucleus-localized RNA and sometimes may interfere in detecting fluorescence signals in the cytosol, especially in cells with low signal-to-noise ratio. RESULTS We eliminated the background fluorescence in the nucleus by using the split fluorescent protein-based approach. We fused two different RBPs with the N- or C-terminus of split fluorescent proteins (FPs). Co-expression of RBPs with the target mRNA conjugated with the corresponding RNA recognition sequences can bring split FPs together to reconstitute functional FPs for visualizing target mRNAs. We optimized the system with minimal background fluorescence and used the imaging system to visualize mRNAs in living plant cells. CONCLUSIONS We established a background-free RNA live-cell imaging system that provides a platform to visualize subcellular mRNA distribution in living plant cells.
Collapse
Affiliation(s)
- Nien-Chen Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Kai-Ren Luo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Tien-Shin Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan
| |
Collapse
|
50
|
Hatano Y, Mashiko D, Tokoro M, Yao T, Yamagata K. Chromosome counting in the mouse zygote using low-invasive super-resolution live-cell imaging. Genes Cells 2022; 27:214-228. [PMID: 35114033 DOI: 10.1111/gtc.12925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/27/2022]
Abstract
In preimplantation embryos, an abnormal chromosome number causes developmental failure and a reduction in the pregnancy rate. Conventional chromosome testing methods requiring biopsy reduce the risk of associated genetic diseases; nevertheless, the reduction in cell number also reduces the pregnancy rate. Therefore, we attempted to count the chromosomes in mouse embryos using super-resolution live-cell imaging as a new method of chromosome counting that does not reduce the cell number or viability. We counted the forty chromosomes at the first mitosis by injecting embryos with histone H2B-mCherry mRNA under conditions by which pups could be obtained; however, the results were often an underestimation of chromosome number and varied by embryo and time point. Therefore, we developed a method to count the chromosomes via CRISPR/dCas-mediated live-cell fluorescence in situ hybridization targeting the sequence of the centromere region, enabling us to count the chromosomes more accurately in mouse embryos. The methodology presented here may provide useful information for assisted reproductive technologies, such as those used in livestock animals/humans, as a technique for assessing the chromosomal integrity of embryos prior to transfer.
Collapse
Affiliation(s)
- Yu Hatano
- Faculty of Biology-Oriented Science and Technology, KINDAI University, Kinokawa, Wakayama, Japan
| | - Daisuke Mashiko
- Faculty of Biology-Oriented Science and Technology, KINDAI University, Kinokawa, Wakayama, Japan
| | - Mikiko Tokoro
- Faculty of Biology-Oriented Science and Technology, KINDAI University, Kinokawa, Wakayama, Japan.,Asada Institute for Reproductive Medicine, Asada Ladies Clinic, Aichi, Japan
| | - Tatsuma Yao
- Faculty of Biology-Oriented Science and Technology, KINDAI University, Kinokawa, Wakayama, Japan.,Research and Development Center, Fuso Pharmaceutical Industries, Ltd., Osaka, Japan
| | - Kazuo Yamagata
- Faculty of Biology-Oriented Science and Technology, KINDAI University, Kinokawa, Wakayama, Japan
| |
Collapse
|