1
|
Feng G, Zhuge P, Zou Y, Zhang Z, Guo J, Ma J. Distribution characteristics of intestinal flora in patients with OSAHS and the relationship between different intestinal flora and sleep disorders, hypoxemia and obesity. Sleep Breath 2024; 28:1155-1163. [PMID: 38221554 PMCID: PMC11196319 DOI: 10.1007/s11325-024-02992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/27/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
OBJECTIVE To investigate the distribution characteristics of intestinal flora in patients with obstructive sleep apnoea hypopnea syndrome (OSAHS) of different severities and the relationship between different intestinal flora and sleep structure disorder, hypoxemia and obesity. METHODS A total of 25 healthy volunteers and 80 patients with OSAHS were enrolled in this study. The control group was healthy, and the experimental group comprised patients with OSAHS. The apnoea-hypopnea index (AHI), minimum saturation of peripheral oxygen (SpO2min), mean saturation of peripheral oxygen, body mass index, maximum apnoea time and other indicators were collected in clinical practice. The patients with OSAHS were divided into 20 mild and 42 moderate OSAHS cases, as well as 18 patients with severe OSAHS according to the AHI classification. Bioinformatics-related statistics were analysed using the QIIME2 software, and clinical data were analysed with the SPSS 22.0 software. RESULTS The changes in microbial alpha diversity in the intestinal flora of patients with OSAHS showed that richness, diversity and evenness decreased, but the beta diversity did not change significantly. The Thermus Anoxybacillus, Anaerofustis, Blautia, Sediminibacterium, Ralstonia, Pelomonas, Ochrobactrum, Thermus Sediminibacterium, Ralstonia, Coccidia, Cyanobacteria, Anoxic bacilli and Anaerobes were negatively correlated with AHI (r = -0.38, -0.36, -0.35, -0.33, -0.31, -0.29, -0.22, -0.18) and positively correlated with SpO2min (r =0.38, 0.2, 0.25, 0.22, 0.24, 0.11, 0.23, 0.15). CONCLUSION Some bacteria showed a significant correlation with clinical sleep monitoring data, which provides a possibility for the assessment of disease risk, but the mechanisms of their actions in the intestinal tract are not clear at present. Further research and observations are needed.
Collapse
Affiliation(s)
- Guofei Feng
- Department of ENT, Jinhua Central Hospital, No. 365, East Renmin Road, Jinhua City, 321000, Zhejiang, China.
| | - Pan Zhuge
- Department of ENT, Jinhua Central Hospital, No. 365, East Renmin Road, Jinhua City, 321000, Zhejiang, China
| | - Yaping Zou
- Department of ENT, Jinhua Central Hospital, No. 365, East Renmin Road, Jinhua City, 321000, Zhejiang, China
| | - Zhifeng Zhang
- Department of ENT, Jinhua Central Hospital, No. 365, East Renmin Road, Jinhua City, 321000, Zhejiang, China
| | - Jiandong Guo
- Department of ENT, Jinhua Central Hospital, No. 365, East Renmin Road, Jinhua City, 321000, Zhejiang, China
| | - Junxiang Ma
- Department of ENT, Jinhua Central Hospital, No. 365, East Renmin Road, Jinhua City, 321000, Zhejiang, China
| |
Collapse
|
2
|
Kim J, Jeon SG, Kwak MJ, Park SJ, Hong H, Choi SB, Lee JH, Kim SW, Kim AR, Park YK, Kim BK, Yang BG. Triglyceride-Catabolizing Lactiplantibacillus plantarum GBCC_F0227 Shows an Anti-Obesity Effect in a High-Fat-Diet-Induced C57BL/6 Mouse Obesity Model. Microorganisms 2024; 12:1086. [PMID: 38930468 PMCID: PMC11205564 DOI: 10.3390/microorganisms12061086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Given the recognized involvement of the gut microbiome in the development of obesity, considerable efforts are being made to discover probiotics capable of preventing and managing obesity. In this study, we report the discovery of Lactiplantibacillus plantarum GBCC_F0227, isolated from fermented food, which exhibited superior triglyceride catabolism efficacy compared to L. plantarum WCSF1. Molecular analysis showed elevated expression levels of α/β hydrolases with lipase activity (abH04, abH08_1, abH08_2, abH11_1, and abH11_2) in L. plantarum GBCC_F0227 compared to L. plantarum WCFS1, demonstrating its enhanced lipolytic activity. In a high-fat-diet (HFD)-induced mouse obesity model, the administration of L. plantarum GBCC_F0227 mitigated weight gain, reduced blood triglycerides, and diminished fat mass. Furthermore, L. plantarum GBCC_F0227 upregulated adiponectin gene expression in adipose tissue, indicative of favorable metabolic modulation, and showed robust growth and low cytotoxicity, underscoring its industrial viability. Therefore, our findings encourage the further investigation of L. plantarum GBCC_F0227's therapeutic applications for the prevention and treatment of obesity and associated metabolic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bo-Gie Yang
- Research Institute, GI Biome Inc., Seongnam-si 13201, Republic of Korea; (J.K.); (S.-G.J.); (M.-J.K.); (S.-J.P.); (H.H.); (S.-B.C.); (J.-H.L.); (S.-W.K.); (A.-R.K.); (Y.-K.P.); (B.K.K.)
| |
Collapse
|
3
|
Lee SH, Kim SH, Park SC. [Dietary Management of Obesity]. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2024; 83:87-93. [PMID: 38522851 DOI: 10.4166/kjg.2024.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 03/26/2024]
Abstract
Obesity is defined as a condition characterized by the abnormal accumulation of fat cells, which results in increased body weight. Worldwide, obesity is progressively on the rise, leading to an increased prevalence of chronic conditions such as cardiovascular disease, type 2 diabetes, and hyperlipidemia. Obesity is a result of the interplay between genetic, metabolic, social, behavioral, and cultural factors, necessitating an interdisciplinary and multimodal management approach. Diet therapy, which includes dietary modifications and nutritional interventions, is a fundamental component of the multifaceted approach to managing obesity. The principle of diet therapy is based on achieving weight loss through a negative energy balance and maintaining weight through an equilibrium of energy intake and expenditure. Strategies for weight loss and control rely on caloric restriction, macronutrient distribution, and dietary patterns such as the Mediterranean and Dietary Approaches to Stop Hypertension (DASH) diets. Recently, studies have been conducted on weight control using information and communication technology-based interventions, as well as interventions based on intestinal microorganisms which consider inter-individual variability and long-term adherence. In conclusion, diet therapy stands as a pivotal element in the management of obesity, providing a personalized and comprehensive approach to weight control. By combining evidence-based dietary strategies with behavioral modifications and consistent support, healthcare professionals can enable individuals to attain and sustain a healthier weight, thereby reducing related health risks.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Department of Internal Medicine, Kangwon National University College of Medicine, Chuncheon, Korea
| | - San Ha Kim
- Department of Internal Medicine, Kangwon National University College of Medicine, Chuncheon, Korea
| | - Sung Chul Park
- Department of Internal Medicine, Kangwon National University College of Medicine, Chuncheon, Korea
| |
Collapse
|
4
|
Guo GJ, Yao F, Lu WP, Xu HM. Gut microbiome and metabolic-associated fatty liver disease: Current status and potential applications. World J Hepatol 2023; 15:867-882. [PMID: 37547030 PMCID: PMC10401411 DOI: 10.4254/wjh.v15.i7.867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/11/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is one of the most common chronic liver diseases worldwide. In recent years, the occurrence rate of MAFLD has been on the rise, mainly due to lifestyle changes, high-calorie diets, and imbalanced dietary structures, thereby posing a threat to human health and creating heavy social and economic burdens. With the development of 16S sequencing and integrated multi-omics analysis, the role of the gut microbiota (GM) and its metabolites in MAFLD has been further recognized. The GM plays a role in digestion, energy metabolism, vitamin synthesis, the prevention of pathogenic bacteria colonisation, and immunoregulation. The gut-liver axis is one of the vital links between the GM and the liver. Toxic substances in the intestine can enter the liver through the portal vascular system when the intestinal barrier is severely damaged. The liver also influences the GM in various ways, such as bile acid circulation. The gut-liver axis is essential in maintaining the body's normal physiological state and plays a role in the onset and prognosis of many diseases, including MAFLD. This article reviews the status of the GM and MAFLD and summarizes the GM characteristics in MAFLD. The relationship between the GM and MAFLD is discussed in terms of bile acid circulation, energy metabolism, micronutrients, and signalling pathways. Current MAFLD treatments targeting the GM are also listed.
Collapse
Affiliation(s)
- Gong-Jing Guo
- Gastroenterology Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, Guangdong Province, China
| | - Fei Yao
- Department of Science and Education, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, Guangdong Province, China
| | - Wei-Peng Lu
- The First Clinical School, Guangzhou Medical University, Guangzhou 510120, Guangdong Province, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China.
| |
Collapse
|
5
|
Zhou T, Mao X, Jiang W, Pan Y, Chen X, Hu J, Kong X, Xia H. Assessment of Auricularia cornea var. Li. polysaccharides potential to improve hepatic, antioxidation and intestinal microecology in rats with non-alcoholic fatty liver disease. Front Nutr 2023; 10:1161537. [PMID: 37377484 PMCID: PMC10292627 DOI: 10.3389/fnut.2023.1161537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023] Open
Abstract
Non-alcoholic fatty acid liver disease (NAFLD) is a reputed global health concern, affecting children and young adults. Accumulating evidence suggests that edible fungi polysaccharides have the potential to relieve NAFLD. Our previous study found that Auricularia cornea var. Li. polysaccharides (ACP) could improve immune by regulating gut microbiota. However, its NAFLD-alleviating potentials have been scarcely reported. This study analyzed the protective effects of Auricularia cornea var. Li. polysaccharides on high-fat diet (HFD)-induced NAFLD and mechanistic actions. We first analyzed the histology and hepatic lipid profile of animals to evaluate this variant's ameliorating effects on NAFLD. Then, antioxidant and anti-inflammatory potentials of ACP were studied. Finally, we explored changes in the gut microbiome diversity for mechanistic insights from the gut-liver region. Results showed that supplementation with ACP substantially reduced homeostasis model assessment-insulin resistance (HOMA-IR), body fat, liver index rates and weight gain (p < 0.05). This variant also improved HDL-C levels while decreasing triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels which were initially triggered by HFD. ACP mediation also decreased the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels considerably with H&E technique indicating that it can reduce liver lipid accumulation, thus lowering liver damages risks (p < 0.05). The antioxidant potentials of ACP were also demonstrated as it decreased the hepatic levels of malondialdehyde (MDA) and increased the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX). Proinflammatory markers like IL-6, IL-1β and TNF-α concentrations were decreased by ACP supplementation, accompanied with increased IL-4 levels. Finally, ACP supplementation regulated the intestinal microbiota to near normal patterns. In all, ACP protects HFD-induced NAFLD by improving liver characteristics and regulating colonic flora composition, our findings assert that ACP can be a promising strategy in NAFLD therapy.
Collapse
Affiliation(s)
- Tiantian Zhou
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Xue Mao
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Wei Jiang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Yu Pan
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Xijun Chen
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Jihua Hu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Xianghui Kong
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Haihua Xia
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| |
Collapse
|
6
|
Mahmoudi H, Hossainpour H. Application and development of fecal microbiota transplantation in the treatment of gastrointestinal and metabolic diseases: A review. Saudi J Gastroenterol 2023; 29:3-11. [PMID: 36412458 PMCID: PMC10117003 DOI: 10.4103/sjg.sjg_131_22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fecal microbiota transplantation (FMT) restores a balanced intestinal flora, which helps to cure recurrent Clostridium difficile infections (RCDI). FMT has also been used to treat other gastrointestinal diseases, including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and chronic constipation, as well as a variety of non-GI disorders. The purpose of this review is to discuss gut microbiota and FMT treatment of GI and non-GI diseases. An imbalanced gut microbiota is known to predispose one to Clostridium difficile infections (CDI), IBD, and IBS. However, the complex role of the gut microbiota in maintaining health is a newer concept that is being increasingly studied. The microbiome plays a major role in cellular immunity and metabolism and has been implicated in the pathogenesis of non-GI autoimmune diseases, chronic fatigue syndrome, obesity, and even some neuropsychiatric disorders. Many recent studies have reported that viral gastroenteritis can affect intestinal epithelial cells, and SARS-CoV-2 virus has been identified in the stool of infected patients. FMT is a highly effective cure for RCDI, but a better understanding of the gut microbiota in maintaining health and controlled studies of FMT in a variety of conditions are needed before FMT can be accepted and used clinically.
Collapse
Affiliation(s)
- Hassan Mahmoudi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences; Department of Nursing and Paramedical, Nahavand School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hadi Hossainpour
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Gan G, Zhang R, Lu B, Luo Y, Chen S, Lei H, Li Y, Cai Z, Huang X. Gut microbiota may mediate the impact of chronic apical periodontitis on atherosclerosis in apolipoprotein E-deficient mice. Int Endod J 2023; 56:53-68. [PMID: 36208054 DOI: 10.1111/iej.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 12/13/2022]
Abstract
AIM There are growing evidences linking chronic apical periodontitis (CAP) to atherosclerosis. Gut microbiota is found to be involved in the development of atherosclerosis. Recent studies have shown that CAP could change the diversity and composition of the gut microbiota. It was therefore, we hypothesized that gut microbiota and its metabolites could mediate the impact of CAP on atherosclerosis. METHODOLOGY Twenty-four 5-week-old lipoprotein E knockout (apoE-/- ) mice were randomly divided into four groups: the CAP group, Con group, Co-CAP (cohoused with CAP) and Co-Con (cohoused with Con) group. In the CAP group, sterile cotton wool containing P. gingivalis was placed into the exposed pulp chamber, followed by coronal resin-based composite restoration of the bilateral maxillary first and second molars. In the Con group, a sham operation was performed. Biweekly, mice in the CAP group were anaesthetised to check the sealing of coronal access. Meanwhile, the animals in the Con group were anaesthetised. The cohousing approach was used to introduce gut microbiota from the CAP and Con groups into the Co-CAP and Co-Con groups, respectively. Alterations in the abundance and diversity of the gut microbiota were detected using 16S rRNA sequencing, Oil-red O staining was used to demonstrate the extent of lesions, and serum levels of trimethylamine N-oxide (TMAO), and immunohistochemistry of flavin-containing monooxygenase 3 (FMO3) in liver were used to assess TMAO-related metabolic alterations. RESULTS Alterations of alpha and beta diversity were shown both in the CAP and the Co-CAP groups. Moreover, the percentage of atherosclerotic lesion area increased in the CAP and Co-CAP groups (p < .05). Linear discriminant analysis effect size (LEfSe) at the family level found the increases of Lachnospiraceae and Ruminococcaceae (p < .05), which were positively correlated with serum TMAO levels (p < .05). In the redundancy analysis technique (RDA), serum levels of TMAO were positively associated with the atherosclerotic lesions. Co-occurrence analysis revealed that the relative abundances of Lachnospiraceae and Porphyromonadacae were positively correlated with both the percentage of lesion area and TMAO level (p < .05). CONCLUSION Thus, within the limitations of this study, the data suggest that the gut microbiota can mediate the effects of CAP on atherosclerosis.
Collapse
Affiliation(s)
- Guowu Gan
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Ren Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Beibei Lu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yufang Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shuai Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Huaxiang Lei
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yijun Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhiyu Cai
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Wang Y, Wang Z, Wan Y, Jin F, Shi X, Xing Z, Tian B, Li B. Assessing the in vivo ameliorative effects of Lactobacillus acidophilus KLDS1.0901 for induced non-alcoholic fatty liver disease treatment. Front Nutr 2023; 10:1147423. [PMID: 37020807 PMCID: PMC10067668 DOI: 10.3389/fnut.2023.1147423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/20/2023] [Indexed: 04/07/2023] Open
Abstract
Reputed as a significant metabolic disorder, non-alcoholic fatty liver disease (NAFLD) is characterized by high-fat deposits in the liver and causes substantial economic challenges to any country's workforce. Previous studies have indicated that some lactic acid bacteria may effectively prevent or treat NAFLD. Overall, L. acidophilus KLDS1.0901 protected against HFD-induced NAFLD by improving liver characteristics and modulating microbiota composition, and thus could be a candidate for improving NAFLD. This study aimed to assess the protective effects of L. acidophilus KLDS1.0901 on a high-fat diet(HFD)-induced NAFLD. First, hepatic lipid profile and histological alterations were determined to study whether L. acidophilus KLDS1.0901 could ameliorate NAFLD. Then, the intestinal permeability and gut barrier were explored. Finally, gut microbiota was analyzed to elucidate the mechanism from the insights of the gut-liver axis. The results showed that Lactobacillus KLDS1.0901 administration significantly decreased body weight, Lee's index body, fat rate, and liver index. L. acidophilus KLDS1.0901 administration significantly improved lipid profiles by decreasing the hepatic levels of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) and by increasing the high-density lipoprotein cholesterol (HDL-C) levels. A conspicuous decrease of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum was observed after L. acidophilus KLDS1.0901 administration. Meanwhile, the H&E and Oil Red O-stained staining showed that L. acidophilus KLDS1.0901 significantly reduced liver lipid accumulation of HFD-fed mice by decreasing the NAS score and lipid area per total area. Our results showed that L. acidophilus KLDS1.0901 administration decreased the interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-alpha (TNF-α) concentrations accompanied by the increase of interleukin-10 (IL-10). L. acidophilus KLDS1.0901 administration could improve the intestinal barrier function by upregulating the mRNA levels of occludin, claudin-1, ZO-1, and Muc-2, which were coupled to the decreases of the concentration of LPS and D-lactic acid. Notably, L. acidophilus KLDS1.0901 administration modulated the gut microbiota to a near-normal pattern. Hence, our results suggested that L. acidophilus KLDS1.0901 can be used as a candidate to ameliorate NAFLD.
Collapse
Affiliation(s)
- Yanbo Wang
- College of Food, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Zengbo Wang
- College of Food, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yang Wan
- College of Food, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Furong Jin
- College of Food, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiaodan Shi
- College of Food, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Zhishuang Xing
- College of Food, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Bo Tian
- College of Food, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- *Correspondence: Bo Tian
| | - Bailiang Li
- College of Food, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Bailiang Li
| |
Collapse
|
9
|
Miao ZH, Wang JN, Shen X, Zhou QQ, Luo YT, Liang HJ, Wang SJ, Qi SH, Cheng RY, He F. Long-term use of Lacticaseibacillus paracasei N1115 from early life alleviates high-fat-diet-induced obesity and dysmetabolism in mice. Benef Microbes 2022; 13:407-416. [PMID: 36239668 DOI: 10.3920/bm2021.0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Obesity has become one of the most serious public health problems worldwide, and an increasing number of studies indicate that the gut microbiota can affect host metabolism. Therefore, the present study was conducted to evaluate whether long-term use of probiotics can alleviate host obesity and metabolism by altering gut microbiota. The high-fat diet (HFD) starting from weaned period led to higher levels of visceral fat and a significantly heavier liver in male mice. Moreover, HFD resulted in disorders of glucose and lipid metabolism, changes in insulin-resistance indices (IR), and an increase in serum insulin and leptin in mice. Of note, 15 weeks use of Lacticaseibacillus paracasei N1115 decreased visceral fat, liver weight, serum levels of insulin and leptin, and IR and alleviated lipid dysmetabolism. HFD resulted in a significant increase in the relative abundance of Bilophila, Lachnoclostridium, and Blautia and may decrease the faecal short-chain fatty acid (SCFA) levels in mice; in turn, treatment with the potential probiotic strain L. paracasei N1115 protected mice from these negative effects. HFD significant impaired the physiology of the host especially in male mice and dramatically changed the composition of host gut microbiota. However, the use of potential probiotic strain, such as L. paracasei N1115, may prevent these impairments due to HFD via effecting the host gut microbiota and SCFA.
Collapse
Affiliation(s)
- Z H Miao
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3section, South Renmin Road, 610041 Chengdu, Sichuan, China P.R
| | - J N Wang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3section, South Renmin Road, 610041 Chengdu, Sichuan, China P.R
| | - X Shen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3section, South Renmin Road, 610041 Chengdu, Sichuan, China P.R
| | - Q Q Zhou
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3section, South Renmin Road, 610041 Chengdu, Sichuan, China P.R
| | - Y T Luo
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3section, South Renmin Road, 610041 Chengdu, Sichuan, China P.R
| | - H J Liang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3section, South Renmin Road, 610041 Chengdu, Sichuan, China P.R
| | - S J Wang
- College of Food and Biology Hebei University of Science and Technology, 36Shitong Road, 050221 Shijiazhuang, Hebei, China P.R
| | - S H Qi
- Basic Research and Development Center, Hebei Inatrual Bio-tech Co. Ltd., Shijiazhuang, Hebei, China P.R
| | - R Y Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3section, South Renmin Road, 610041 Chengdu, Sichuan, China P.R
| | - F He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, 3section, South Renmin Road, 610041 Chengdu, Sichuan, China P.R
| |
Collapse
|
10
|
Chronic lead exposure exacerbates hepatic glucolipid metabolism disorder and gut microbiota dysbiosis in high-fat-diet mice. Food Chem Toxicol 2022; 170:113451. [PMID: 36198340 DOI: 10.1016/j.fct.2022.113451] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
Abstract
Lead (Pb) and obesity are co-occurring risk factors for metabolic disorders. However, there is still a lack of study on the combined effects of both stressors on metabolism. C57BL/6J mice were exposed to 200 mg/L Pb or/and HFD for 24 weeks and were used to investigate the effects and underlying mechanisms of chronic Pb exposure on obese mice. The results showed that Pb significantly increased body weight, visceral obesity, fasting blood glucose levels, and insulin resistance, and aggravated liver damage, hepatic lipid accumulation and steatosis in HFD-fed mice. Further analysis showed that Pb significantly inhibited insulin signaling pathway PI3K/AKT and fatty acid β-oxidation, and accelerated fatty acid synthesis. Moreover, Pb exacerbated HFD-induced disruption of gut microbiota homeostasis, manifested by increased proportions of pathogenic genera such as Desulfovibrio, Alistipes and Helicobacter, and decreased proportions of beneficial microbes Akkermansia and Barnesiella, which were negatively associated with obesity. These results indicated that Pb exposure exacerbated the disruption of liver glucolipid metabolism in HFD mice possibly by disrupting gut microbiota.
Collapse
|
11
|
Madhogaria B, Bhowmik P, Kundu A. Correlation between human gut microbiome and diseases. INFECTIOUS MEDICINE 2022; 1:180-191. [PMID: 38077626 PMCID: PMC10699709 DOI: 10.1016/j.imj.2022.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 03/21/2024]
Abstract
Human gut microbiome is a major source of human bacterial population and a significant contribution to both positive and harmful effects. Due to its involvement in a variety of interactions, gut microorganisms have a great impact on our health throughout our lives. The impact of gut microbial population is been studied intensively in last two decades. Extensive literature survey focusing developments in the field were searched in English language Electronic Databases like PubMed, Google Scholar, Pubag, Google books, and Research Gate were mostly used to understand the role of human gut mirobiome and its role in different human diseases. Gut microbiome in healthy subjects differs from those who suffer from diseases. Type 2 diabetes, obesity, non-alcoholic liver disease, and cardiometabolic diseases have all been linked to dysbiosis of the gut microbiota. Pathogenesis of many disorders is also linked to changes in gut microbiota. Other diseases like cancer, arithritis, autism, depression, anxiety, sleep disorder, HIV, hypertension, and gout are also related to gut microbiota dysbiosis. We focus in this review on recent studies looking into the link between gut microbiome dysbiosis and disease etiology. Research on how gut microbiota affects host metabolism has been changed in past decades from descriptive analyses to high throughput integrative omics data analysis such as metagenomics and metabolomics. Identification of molecular mechanisms behind reported associations is been carried out in human, animals, and cells for measure of host physiology and mechanics. Still many the mechanisms are not completely understood.
Collapse
Affiliation(s)
- Barkha Madhogaria
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| | - Priyanka Bhowmik
- Department of Biological Sciences, Adamas University, Barrackpore-Barasat Road, 24 Paragnas North, Jagannathpur, Kolkata, West Bengal, India
| | - Atreyee Kundu
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| |
Collapse
|
12
|
Forlano R, Sivakumar M, Mullish BH, Manousou P. Gut Microbiota—A Future Therapeutic Target for People with Non-Alcoholic Fatty Liver Disease: A Systematic Review. Int J Mol Sci 2022; 23:ijms23158307. [PMID: 35955434 PMCID: PMC9368436 DOI: 10.3390/ijms23158307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents an increasing cause of liver disease, affecting one-third of the population worldwide. Despite many medications being in the pipeline to treat the condition, there is still no pharmaceutical agent licensed to treat the disease. As intestinal bacteria play a crucial role in the pathogenesis and progression of liver damage in patients with NAFLD, it has been suggested that manipulating the microbiome may represent a therapeutical option. In this review, we summarise the latest evidence supporting the manipulation of the intestinal microbiome as a potential therapy for treating liver disease in patients with NAFLD.
Collapse
Affiliation(s)
- Roberta Forlano
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W2 1NY, UK; (R.F.); (B.H.M.)
| | - Mathuri Sivakumar
- Faculty of Medicine, University of Birmingham, Birmingham B15 2TT, UK;
| | - Benjamin H. Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W2 1NY, UK; (R.F.); (B.H.M.)
| | - Pinelopi Manousou
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W2 1NY, UK; (R.F.); (B.H.M.)
- Correspondence:
| |
Collapse
|
13
|
Yadav M, Kumar T, Kanakan A, Maurya R, Pandey R, Chauhan NS. Isolation and Characterization of Human Intestinal Bacteria Cytobacillus oceanisediminis NB2 for Probiotic Potential. Front Microbiol 2022; 13:932795. [PMID: 35910631 PMCID: PMC9326467 DOI: 10.3389/fmicb.2022.932795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/17/2022] [Indexed: 11/27/2022] Open
Abstract
Systemic characterization of the human gut microbiota highlighted its vast therapeutic potential. Despite having enormous potential, the non-availability of their culture representatives created a bottleneck to understand the concept of microbiome-based therapeutics. The present study is aimed to isolate and evaluate the probiotic potential of a human gut isolate. Physiochemical, morphological, and phylogenetic characterization of a human gut isolate identifies it as a rod-shaped gram-negative microbe taxonomically affiliated with the Cytobacillus genus, having an optimal growth at 37°C in a partially alkaline environment (pH 8.0). This human gut isolate showed continuous growth in the presence of salts (up to 7% NaCl and 10% KCl), antibiotics, metals and metalloids [silver nitrate (up to 2 mM); lead acetate (up to 2 mM); sodium arsenate (up to 10 mM); potassium dichromate (up to 2 mM)], gastric and intestinal conditions, diverse temperature (25–50°C), and pH (5–9) conditions making it fit to survive in the highly variable gut environment. Genomic characterization identified the presence of gene clusters for diverse bio-catalytic activity, stress response, and antimicrobial activity, as well as it indicated the absence of pathogenic gene islands. A combination of functional features like anti-amylase, anti-lipase, glutenase, prolyl endopeptidase, lactase, bile salt hydrolase, cholesterol oxidase, and anti-pathogenic activity is indicative of its probiotic potential in various disorders. This was further substantiated by the CaCo-2 cell line assay confirming its cellular adherence and biosafety. Conclusively, human gut isolate possessed significant probiotic potential that can be used to promote animal and human health.
Collapse
Affiliation(s)
- Monika Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Tarun Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Akshay Kanakan
- Integrative GENomics of Host-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Ranjeet Maurya
- Integrative GENomics of Host-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajesh Pandey
- Integrative GENomics of Host-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
- *Correspondence: Nar Singh Chauhan
| |
Collapse
|
14
|
Xu B, Ye Z, Tian T, Zhu R, Liu C, Fang X, Zhang D, Fu M, Gao S, Zhao D. Loganin regulates glycolipid metabolism by influencing intestinal microbiota and AMPK signaling in obese mice. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Chen L, Pu Y, Xu Y, He X, Cao J, Ma Y, Jiang W. Anti-diabetic and anti-obesity: Efficacy evaluation and exploitation of polyphenols in fruits and vegetables. Food Res Int 2022; 157:111202. [PMID: 35761524 DOI: 10.1016/j.foodres.2022.111202] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
|
16
|
Positive Interventional Effect of Engineered Butyrate-Producing Bacteria on Metabolic Disorders and Intestinal Flora Disruption in Obese Mice. Microbiol Spectr 2022; 10:e0114721. [PMID: 35293806 PMCID: PMC9045090 DOI: 10.1128/spectrum.01147-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The substantially increased prevalence of obesity and obesity-related diseases has generated considerable concern. Currently, synthetic biological strategies have played an essential role in preventing and treating chronic diseases such as obesity. A growing number of symbiotic bacteria used as vectors for genetic engineering have been applied to create living therapeutics. In this study, using Bacillus subtilis as a cellular chassis, we constructed the engineered butyrate-producing strain BsS-RS06551 with a butyrate yield of 1.5 g/liter. A mouse model of obesity induced by a high-fat diet (HFD) was established to study the long-term intervention effects of this butyrate-producing bacteria on obesity. Combined with phenotypic assay results, we found that BsS-RS06551 could effectively retard body weight gain induced by a high-fat diet and visceral fat accumulation of mice, whereas it could improve glucose tolerance and insulin tolerance, reducing liver damage. We explored the BsS-RS06551 mechanism of action on host function and changes in intestinal flora by integrating multiple omics profiling, including untargeted metabolomics and metagenomics. The results showed that 24 major differential metabolites were involved in the metabolic regulation of BsS-RS06551 to prevent obesity in mice, including bile acid metabolism, branch chain amino acids, aromatic amino acids, and other metabolic pathways. Continuous ingestion of BsS-RS06551 could regulate gut microbiota composition and structure and enhance intestinal flora metabolic function abundance, which was closely related to host interactions. Our results demonstrated that engineered butyrate-producing bacteria had potential as an effective strategy to prevent obesity. IMPORTANCE Obesity is a chronic metabolic disease with an imbalance between energy intake and energy expenditure, and obesity-related metabolic diseases have become increasingly common. There is an urgent need to develop effective interventions for the prevention and treatment of obesity. This study showed that long-term consumption of BsS-RS06551 had a significant inhibitory effect on obesity induced by a high-fat diet and was more potent in inhibiting obesity than prebiotic inulin. In addition, this study showed a beneficial effect on host glucose, lipid metabolism, and gut microbe composition. Considering its colonization potential, this engineered bacteria provided a new strategy for the effective and convenient treatment of obesity in the long term.
Collapse
|
17
|
Yan Y, Yi X, Duan Y, Jiang B, Huang T, Inglis BM, Zheng B, Si W. Alteration of the gut microbiota in rhesus monkey with spontaneous osteoarthritis. BMC Microbiol 2021; 21:328. [PMID: 34837955 PMCID: PMC8627091 DOI: 10.1186/s12866-021-02390-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Background The spontaneous osteoarthritis (OA) in rhesus macaque is similar to OA in human, which maintains an upright body posture and shows very similar biomechanical properties of bones to humans. At present, there is no good treatment for OA. This study aims to explore relationship between OA and intestinal microbiota, and provide a reference for the treatment of clinical OA. Results We collected colonic contents of the 20 rhesus macaque (6–15 years old, female) for intestinal microbiota analysis by metagenomics sequencing, of which 10 were spontaneous OA monkeys and 10 were normal monkeys. Our results showed the diversity of gut microbiota in monkeys with OA was decreased compared to the normal monkeys (p = 0.16). Mollicutes, Tenericutes, Coprobacillus and Faecalitalea may be biomarkers for the monkeys of OA. Lactobacillus found significantly increased in OA monkeys. Prevotella and Ruminococcus were higher in the normal group than OA group. Zinc/manganese transport system permease protein (p = 0.0011) and Cyclopropane-fatty-acyl-phospholipid synthase (p = 0.0012) are a microbiota metabolic pathway related to cartilage production. Conclusions Our results indicate that the diversity and composition of intestinal microbiota in monkeys with OA are different compared to the normal monkeys. we have found microbes that may be a biomarker for the diagnosis of osteoarthritis. Functional analysis of the microbiota also predicts cartilage damage in the monkeys with osteoarthritis. Non-human primates are closely related to humans, so this study can provide a reference for the development of drugs for the treatment of OA.
Collapse
Affiliation(s)
- Yaping Yan
- School of Medicine, Yunnan University, Kunming, Yunnan, China.,State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Xiaoyan Yi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yanchao Duan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Bin Jiang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Tianzhuang Huang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Briauna Marie Inglis
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Bingrong Zheng
- School of Medicine, Yunnan University, Kunming, Yunnan, China.
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
18
|
Yadav M, Chauhan NS. Microbiome therapeutics: exploring the present scenario and challenges. Gastroenterol Rep (Oxf) 2021; 10:goab046. [PMID: 35382166 PMCID: PMC8972995 DOI: 10.1093/gastro/goab046] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/11/2022] Open
Abstract
Human gut-microbiome explorations have enriched our understanding of microbial colonization, maturation, and dysbiosis in health-and-disease subsets. The enormous metabolic potential of gut microbes and their role in the maintenance of human health is emerging, with new avenues to use them as therapeutic agents to overcome human disorders. Microbiome therapeutics are aimed at engineering the gut microbiome using additive, subtractive, or modulatory therapy with an application of native or engineered microbes, antibiotics, bacteriophages, and bacteriocins. This approach could overcome the limitation of conventional therapeutics by providing personalized, harmonized, reliable, and sustainable treatment. Its huge economic potential has been shown in the global therapeutics market. Despite the therapeutic and economical potential, microbiome therapeutics is still in the developing stage and is facing various technical and administrative issues that require research attention. This review aims to address the current knowledge and landscape of microbiome therapeutics, provides an overview of existing health-and-disease applications, and discusses the potential future directions of microbiome modulations.
Collapse
Affiliation(s)
- Monika Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
19
|
Puca P, Petito V, Laterza L, Lopetuso LR, Neri M, Del Chierico F, Boskoski I, Gasbarrini A, Scaldaferri F. Bariatric procedures and microbiota: patient selection and outcome prediction. Ther Adv Gastrointest Endosc 2021; 14:26317745211014746. [PMID: 34368762 PMCID: PMC8299956 DOI: 10.1177/26317745211014746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/11/2021] [Indexed: 11/15/2022] Open
Abstract
Obesity is a major health issue throughout the world and bariatric surgery plays a key role in its management and treatment. The role of microbiota in determining the pathogenesis of obesity has been widely studied, while its role in determining the outcome of bariatric surgery is an emerging issue that will be an outcome in near future studies. Studies on mice first showed the key role of microbiota in determining obesity, highlighting the fat mass increase in mice transplanted with microbiota from fat individuals, as well as the different microbiota composition between mice undergone to low-fat or high-fat diets. This led to characterize the asset of microbiota composition in obesity: increased abundance of Firmicutes, reduced abundance of Bacteroidetes and other taxonomical features. Variations on the composition of gut microbiome have been detected in patients undergone to diet and/or bariatric surgery procedures. Patients undergone to restricting diets showed lower level of trimethylamine N-oxide and other metabolites strictly associated to microbiome, as well as patients treated with bariatric surgery showed, after the procedure, changes in the relative abundance of Bacteroidetes, Firmicutes and other phyla with a role in the pathogenesis of obesity. Eventually, studies have been led about the effects that the modification of microbiota could have on obesity itself, mainly focusing on elements like fecal microbiota transplantation and probiotics such as inulin. This series of studies and considerations represent the first step in order to select patients eligible to bariatric surgery and to predict their outcome.
Collapse
Affiliation(s)
- Pierluigi Puca
- Dipartimento di Medicina e chirurgia traslazionale, Università Cattolica Del Sacro Cuore-Sede Di Roma, Roma, Italy
| | - Valentina Petito
- Dipartimento di Medicina e chirurgia traslazionale, Università Cattolica Del Sacro Cuore-Sede Di Roma, Roma, Italy
| | - Lucrezia Laterza
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Loris Riccardo Lopetuso
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Matteo Neri
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italia
| | - Federica Del Chierico
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ivo Boskoski
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy; Dipartimento di Medicina e chirurgia traslazionale, Università Cattolica Del Sacro Cuore-Sede Di Roma, Roma, Italy; Cemad, Uoc Medicina Interna E Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Antonio Gasbarrini
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy; Dipartimento di Medicina e chirurgia traslazionale, Università Cattolica Del Sacro Cuore-Sede Di Roma, Roma, Italy; Cemad, Uoc Medicina Interna E Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Franco Scaldaferri
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Roma, Italy; Dipartimento di Medicina e chirurgia traslazionale, Università Cattolica Del Sacro Cuore-Sede Di Roma, Roma, Italy; Cemad, Uoc Medicina Interna E Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| |
Collapse
|
20
|
Zhang L, Wu X, Yang R, Chen F, Liao Y, Zhu Z, Wu Z, Sun X, Wang L. Effects of Berberine on the Gastrointestinal Microbiota. Front Cell Infect Microbiol 2021; 10:588517. [PMID: 33680978 PMCID: PMC7933196 DOI: 10.3389/fcimb.2020.588517] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/31/2020] [Indexed: 01/14/2023] Open
Abstract
The gastrointestinal microbiota is a multi-faceted system that is unraveling novel contributors to the development and progression of several diseases. Berberine has been used to treat obesity, diabetes mellitus, atherosclerosis, and metabolic diseases in China. There are also clinical trials regarding berberine use in cardiovascular, gastrointestinal, and endocrine diseases. Berberine elicits clinical benefits at standard doses and has low toxicity. The mechanism underlying the role of berberine in lipid‐lowering and insulin resistance is incompletely understood, but one of the possible mechanisms is related to its effect on the gastrointestinal microbiota. An extensive search in electronic databases (PubMed, Scopus, Embase, Web of Sciences, Science Direct) was used to identify the role of the gastrointestinal microbiota in the berberine treatment. The aim of this review was to summarize the pharmacologic effects of berberine on animals and humans by regulation of the gastrointestinal microbiota.
Collapse
Affiliation(s)
- Lichao Zhang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xiaoying Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruibing Yang
- Medical Department, Xizang Minzu University, Xianyang, China
| | - Fang Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yao Liao
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zifeng Zhu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lifu Wang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
21
|
Advances in modelling the human microbiome-gut-brain axis in vitro. Biochem Soc Trans 2021; 49:187-201. [PMID: 33544117 PMCID: PMC7924999 DOI: 10.1042/bst20200338] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/23/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
The human gut microbiome has emerged as a key player in the bidirectional communication of the gut–brain axis, affecting various aspects of homeostasis and pathophysiology. Until recently, the majority of studies that seek to explore the mechanisms underlying the microbiome–gut–brain axis cross-talk, relied almost exclusively on animal models, and particularly gnotobiotic mice. Despite the great progress made with these models, various limitations, including ethical considerations and interspecies differences that limit the translatability of data to human systems, pushed researchers to seek for alternatives. Over the past decades, the field of in vitro modelling of tissues has experienced tremendous growth, thanks to advances in 3D cell biology, materials, science and bioengineering, pushing further the borders of our ability to more faithfully emulate the in vivo situation. The discovery of stem cells has offered a new source of cells, while their use in generating gastrointestinal and brain organoids, among other tissues, has enabled the development of novel 3D tissues that better mimic the native tissue structure and function, compared with traditional assays. In parallel, organs-on-chips technology and bioengineered tissues have emerged as highly promising alternatives to animal models for a wide range of applications. Here, we discuss how recent advances and trends in this area can be applied in host–microbe and host–pathogen interaction studies. In addition, we highlight paradigm shifts in engineering more robust human microbiome-gut-brain axis models and their potential to expand our understanding of this complex system and hence explore novel, microbiome-based therapeutic approaches.
Collapse
|
22
|
Unusan N. Essential oils and microbiota: Implications for diet and weight control. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
|
24
|
Morar N, Skorburg JA. Why We Never Eat Alone: The Overlooked Role of Microbes and Partners in Obesity Debates in Bioethics. JOURNAL OF BIOETHICAL INQUIRY 2020; 17:435-448. [PMID: 32964353 DOI: 10.1007/s11673-020-10047-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Debates about obesity in bioethics tend to unfold in predictable epicycles between individual choices and behaviours (e.g., restraint, diet, exercise) and the oppressive socio-economic structures constraining them (e.g., food deserts, advertising). Here, we argue that recent work from two cutting-edge research programmes in microbiology and social psychology can advance this conceptual stalemate in the literature. We begin in section 1 by discussing two promising lines of obesity research involving the human microbiome and relationship partners. Then, in section 2, we show how this research has made viable novel strategies for fighting obesity, including microbial therapies and dyad-level interventions. Finally, in section 3, we consider objections to our account and conclude by arguing that attention to the most immediate features of our biological and social environment offers a middle ground solution, while also raising important new issues for bioethicists.
Collapse
Affiliation(s)
- Nicolae Morar
- University of Oregon, Environmental Studies Program and Department of Philosophy, 1295 University of Oregon, Eugene, OR, 97403, USA
| | | |
Collapse
|
25
|
Su CW, Chen CY, Jiao L, Long SR, Mao T, Ji Q, O'Donnell S, Stanton C, Zheng S, Walker WA, Cherayil BJ, Shi HN. Helminth-Induced and Th2-Dependent Alterations of the Gut Microbiota Attenuate Obesity Caused by High-Fat Diet. Cell Mol Gastroenterol Hepatol 2020; 10:763-778. [PMID: 32629118 PMCID: PMC7498948 DOI: 10.1016/j.jcmgh.2020.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Epidemiological and animal studies have indicated an inverse correlation between the rising prevalence of obesity and metabolic syndrome and exposure to helminths. Whether helminth-induced immune response contributes to microbiota remodeling in obesity remains unknown. The aim of this study is to explore the immune-regulatory role of helminth in the prevention of HFD-induced obesity through remodeling gut microbiome. METHODS C57BL/6J WT and STAT6-/- mice were infected with Heligmosomoides polygyrus and followed by high fat diet (HFD) feeding for 6 weeks. The host immune response, body weight, and fecal microbiota composition were analyzed. We used adoptive transfer of M2 macrophages and microbiota transplantation approaches to determine the impact of these factors on HFD-obesity. We also examined stool microbiota composition and short chain fatty acids (SCFAs) concentration and determined the expression of SCFA-relevant receptors in the recipient mice. RESULTS Helminth infection of STAT6-/- (Th2-deficient) mice and adoptive transfer of helminth-induced alternatively activated (M2) macrophages demonstrated that the helminth-associated Th2 immune response plays an important role in the protection against obesity and induces changes in microbiota composition. Microbiota transplantation showed that helminth-induced, Th2-dependent alterations of the gut microbiota are sufficient to confer protection against obesity. Collectively, these results indicate that helminth infection protects against HFD-induced obesity by Th2-dependent, M2 macrophage-mediated alterations of the intestinal microbiota. CONCLUSION Our findings provide new mechanistic insights into the complex interplay between helminth infection, the immune system and the gut microbiota in a HFD-induced obesity model and holds promise for gut microbiome-targeted immunotherapy in obesity prevention.
Collapse
Affiliation(s)
- Chien Wen Su
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Chih-Yu Chen
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Lefei Jiao
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Shao Rong Long
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Tangyou Mao
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Qiaorong Ji
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Shane O'Donnell
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Shasha Zheng
- Department of Nutrition, California Baptist University, Riverside, California
| | - W Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Bobby J Cherayil
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Hai Ning Shi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts.
| |
Collapse
|
26
|
Chen HT, Huang HL, Li YQ, Xu HM, Zhou YJ. Therapeutic advances in non-alcoholic fatty liver disease: A microbiota-centered view. World J Gastroenterol 2020; 26:1901-1911. [PMID: 32390701 PMCID: PMC7201149 DOI: 10.3748/wjg.v26.i16.1901] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent metabolic disorder with steadily increasing incidence rates worldwide, especially in the West. There are no drugs available at present to treat NAFLD, and the primary therapeutic options include weight loss and the combination of healthy diet and exercise. Therefore, novel interventions are required that can target the underlying risk factors. Gut microbiota is an "invisible organ" of the human body and vital for normal metabolism and immuno-modulation. The number and diversity of microbes differ across the gastrointestinal tract from the mouth to the anus, and is most abundant in the intestine. Since dysregulated gut microbiota is an underlying pathological factor of NAFLD, it is a viable therapeutic target that can be modulated by antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and microbial metabolites. In this review, we summarize the most recent advances in gut microbiota-targeted therapies against NAFLD in clinical and experimental studies, and critically evaluate novel targets and strategies for treating NAFLD.
Collapse
Affiliation(s)
- Hui-Ting Chen
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong Province, China
| | - Hong-Li Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong Province, China
| | - Yong-Qiang Li
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong Province, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong Province, China
| | - Yong-Jian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong Province, China
| |
Collapse
|
27
|
Junejo SA, Geng H, Li S, Kaka AK, Rashid A, Zhou Y. Superfine wheat bran improves the hyperglycemic and hyperlipidemic properties in a high-fat rat model. Food Sci Biotechnol 2020; 29:559-567. [PMID: 32296567 DOI: 10.1007/s10068-019-00684-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/31/2019] [Accepted: 09/16/2019] [Indexed: 11/29/2022] Open
Abstract
Wheat bran (WB) is an abundant source of fiber, promoting the health for constipation, irritable bowel syndrome, and gastrointestinal disorders. However, the role of superfine-WB in improving the obesity, hyperglycemia, and hyperlipidemia needs to be revealed. The superfine-WB (low and high treatments) was studied on body-weight, blood sugar, serum, and liver lipids in a high-fat rat model for 5-weeks. The high-fat diet substantially increased body-weight, sugar levels, lipids, and malondialdehyde in serum and liver. In contrast, the superfine-WB treatments reduced food and energy intake, postprandial glucose, body-weight, blood and liver cholesterol, triglycerides, malondialdehyde, low-density lipoprotein, and increased the level of high-density lipoprotein. Additionally, when the two different concentrations were compared, the maximum impact was exhibited by the superfine-WB containing high concentration. These results suggest that the superfine-WB significantly improves the hyperglycemia, hyperlipidemia, and possibly also protecting against other acute, recurrent, or chronic diseases.
Collapse
Affiliation(s)
- Shahid Ahmed Junejo
- 1Key Laboratory of Agricultural Products Processing Engineering, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei, 230036 People's Republic of China.,2School of Food Science and Engineering, The Key Laboratory for Green Processing of Natural Products and Products Safety, South China University of Technology, Guangzhou, 510640 People's Republic of China
| | - Huihui Geng
- 1Key Laboratory of Agricultural Products Processing Engineering, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei, 230036 People's Republic of China
| | - Songnan Li
- 2School of Food Science and Engineering, The Key Laboratory for Green Processing of Natural Products and Products Safety, South China University of Technology, Guangzhou, 510640 People's Republic of China
| | - Ajeet Kumar Kaka
- Department of Post-Harvest Technology and Process Engineering, Khairpur College of Agricultural Engineering and Technology, Khairpur Mir's, Pakistan
| | - Alam Rashid
- 1Key Laboratory of Agricultural Products Processing Engineering, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei, 230036 People's Republic of China
| | - Yibin Zhou
- 1Key Laboratory of Agricultural Products Processing Engineering, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei, 230036 People's Republic of China
| |
Collapse
|
28
|
Li H, Liu F, Lu J, Shi J, Guan J, Yan F, Li B, Huo G. Probiotic Mixture of Lactobacillus plantarum Strains Improves Lipid Metabolism and Gut Microbiota Structure in High Fat Diet-Fed Mice. Front Microbiol 2020; 11:512. [PMID: 32273874 PMCID: PMC7113563 DOI: 10.3389/fmicb.2020.00512] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
The global prevalence of obesity is rising year by year, which has become a public health problem worldwide. In recent years, animal studies and clinical studies have shown that some lactic acid bacteria possess an anti-obesity effect. In our previous study, mixed lactobacilli (Lactobacillus plantarum KLDS1.0344 and Lactobacillus plantarum KLDS1.0386) exhibited anti-obesity effects in vivo by significantly reducing body weight gain, Lee's index and body fat rate; however, its underlying mechanisms of action remain unclear. Therefore, the present study aims to explore the possible mechanisms for the inhibitory effect of mixed lactobacilli on obesity. C57BL/6J mice were randomly divided into three groups including control group (Control), high fat diet group (HFD) and mixed lactobacilli group (MX), and fed daily for eight consecutive weeks. The results showed that mixed lactobacilli supplementation significantly improved blood lipid levels and liver function, and alleviated liver oxidative stress. Moreover, the mixed lactobacilli supplementation significantly inhibited lipid accumulation in the liver and regulated lipid metabolism in epididymal fat pads. Notably, the mixed lactobacilli treatment modulated the gut microbiota, resulting in a significant increase in acetic acid and butyric acid. Additionally, Spearman's correlation analysis found that several specific genera were significantly correlated with obesity-related indicators. These results indicated that the mixed lactobacilli supplementation could manipulate the gut microbiota and its metabolites (acetic acid and butyric acid), resulting in reduced liver lipid accumulation and improved lipid metabolism of adipose tissue, which inhibited obesity.
Collapse
Affiliation(s)
- Huizhen Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Jingjing Lu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Jialu Shi
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Jiaqi Guan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Fenfen Yan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| |
Collapse
|
29
|
Melatonin Orchestrates Lipid Homeostasis through the Hepatointestinal Circadian Clock and Microbiota during Constant Light Exposure. Cells 2020; 9:cells9020489. [PMID: 32093272 PMCID: PMC7072737 DOI: 10.3390/cells9020489] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Misalignment between natural light rhythm and modern life activities induces disruption of the circadian rhythm. It is mainly evident that light at night (LAN) interferes with the human endocrine system and contributes to the increasing rates of obesity and lipid metabolic disease. Maintaining hepatointestinal circadian homeostasis is vital for improving lipid homeostasis. Melatonin is a chronobiotic substance that plays a main role in stabilizing bodily rhythm and has shown beneficial effects in protecting against obesity. Based on the dual effect of circadian rhythm regulation and antiobesity, we tested the effect of melatonin in mice under constant light exposure. Exposure to 24-h constant light (LL) increased weight and insulin resistance compared with those of the control group (12-h light–12-h dark cycle, LD), and simultaneous supplementation in the melatonin group (LLM) ameliorated this phenotype. Constant light exposure disturbed the expression pattern of a series of transcripts, including lipid metabolism, circadian regulation and nuclear receptors in the liver. Melatonin also showed beneficial effects in improving lipid metabolism and circadian rhythm homeostasis. Furthermore, the LL group had increased absorption and digestion of lipids in the intestine as evidenced by the elevated influx of lipids in the duodenum and decrease in the efflux of lipids in the jejunum. More interestingly, melatonin ameliorated the gut microbiota dysbiosis and improved lipid efflux from the intestine. Thus, these findings offer a novel clue regarding the obesity-promoting effect attributed to LAN and suggest a possibility for obesity therapy by melatonin in which melatonin could ameliorate rhythm disorder and intestinal dysbiosis.
Collapse
|
30
|
Xie Y, Zhang C, Wang Z, Wei C, Liao N, Wen X, Niu C, Yi L, Wang Z, Xi Z. Fluorogenic Assay for Acetohydroxyacid Synthase: Design and Applications. Anal Chem 2019; 91:13582-13590. [PMID: 31603309 DOI: 10.1021/acs.analchem.9b02739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Acetohydroxyacid synthase (AHAS) exists in plants and many microorganisms (including gut flora) but not in mammals, making it an attractive drug target. Fluorescent-based methods should be practical for high-throughput screening of inhibitors. Herein, we describe the development of the first AHAS fluorogenic assay based on an intramolecular charge transfer (ICT)-based fluorescent probe. The assay is facile, sensitive, and continuous and can be applied toward various AHASs from different species, AHAS mutants, and crude cell lysates. The fluorogenic assay was successfully applied for (1) high-throughput screening of commerical herbicides toward different AHASs for choosing matching herbicides, (2) identification of a Soybean AHAS gene with broad-spectrum herbicide resistance, and (3) identification of selective inhibitors toward intestinal-bacterial AHASs. Among the AHAS inhibitors, an active agent was found for selective inhibition of obesity-associated Ruminococcus torques growth, implying the possibility of AHAS inhibitors for the ultimate goal toward antiobesity therapeutics. The fluorogenic assay opens the door for high-throughput programs in AHAS-related fields, and the design principle might be applied for development of fluorogenic assays of other synthases.
Collapse
Affiliation(s)
- Yonghui Xie
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Changyu Zhang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess , Beijing University of Chemical Technology (BUCT) , Beijing 100029 , P. R. China
| | - Zhihua Wang
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
| | - Chao Wei
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Ningjing Liao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Congwei Niu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess , Beijing University of Chemical Technology (BUCT) , Beijing 100029 , P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering , Nankai University , Tianjin 300071 , P. R. China
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering , Nankai University , Tianjin 300071 , P. R. China
| |
Collapse
|
31
|
Zhang C, Liu J, He X, Sheng Y, Yang C, Li H, Xu J, Xu W, Huang K. Caulis Spatholobi Ameliorates Obesity through Activating Brown Adipose Tissue and Modulating the Composition of Gut Microbiota. Int J Mol Sci 2019; 20:ijms20205150. [PMID: 31627416 PMCID: PMC6829277 DOI: 10.3390/ijms20205150] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022] Open
Abstract
Obesity is associated with disrupted energy homeostasis and intestinal dysbiosis. Caulis Spatholobi, traditional Chinese medicine for herbal therapy, contains a wide range of bioactive compounds and has a specific pharmacological function. However, its effects on obesity and related metabolic disorder have remained largely unexplored. In this study, we showed that the water extract of Caulis Spatholobi (WECS) has a significant effect in inhibiting body weight gain, decreasing adiposity, maintaining glucose homeostasis, reducing insulin resistance and improving hepatic steatosis in diet-introduced obesity (DIO) mice. Besides, the administration of WECS significantly increased the expression levels of genes involved in the brown adipose tissue (BAT) activation and thermogenesis in DIO mice. Also, the activation of BAT treated with WECS was also confirmed in BAT primary cells. Mechanisms, the improvement of glucose homeostasis and insulin resistance may be related to the upregulated MAPK and AMPK pathways in white adipose tissue (WAT) and BAT. Notably, WECS also improved the obesity-induced gut microbiota dysbiosis, which induced an increase of anti-obesity and anti-diabetes related bacteria genus. In conclusion, Caulis Spatholobi can ameliorate obesity through activating brown adipose tissue and modulating the composition of gut microbiota. Our findings provide a novel perspective on Chinese medicine applications and provide a promising therapeutic approach for the treatment of obesity and metabolic disorders.
Collapse
Affiliation(s)
- Chuanhai Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China.
| | - Junyu Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China.
| | - Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China.
| | - Yao Sheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China.
| | - Cui Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China.
| | - Haoyu Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China.
| | - Jia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China.
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China.
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|
32
|
Interaction between high-fat diet and ethanol intake leads to changes on the fecal microbiome. J Nutr Biochem 2019; 72:108215. [DOI: 10.1016/j.jnutbio.2019.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/24/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
|
33
|
Zhou Y, Xu H, Huang H, Li Y, Chen H, He J, Du Y, Chen Y, Zhou Y, Nie Y. Are There Potential Applications of Fecal Microbiota Transplantation beyond Intestinal Disorders? BIOMED RESEARCH INTERNATIONAL 2019; 2019:3469754. [PMID: 31467881 PMCID: PMC6699279 DOI: 10.1155/2019/3469754] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/04/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
Intestinal microbial dysbiosis is associated with various intestinal and extraintestinal disorders. Fecal microbiota transplantation (FMT), a type of fecal bacteriotherapy, is considered an effective therapeutic option for recurrent Clostridium difficile infection (rCDI) and also has important value in other intestinal diseases including irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). The purpose of this review is to discuss promising therapeutic value in extraintestinal diseases associated with gut microbial dysbiosis, including liver, metabolic, chronic kidney, neuropsychiatric, allergic, autoimmune, and hematological diseases as well as tumors.
Collapse
Affiliation(s)
- Youlian Zhou
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Haoming Xu
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Hongli Huang
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Yingfei Li
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Huiting Chen
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Jie He
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Yanlei Du
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Ye Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yongjian Zhou
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Yuqiang Nie
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| |
Collapse
|
34
|
Liu R, Nikolajczyk BS. Tissue Immune Cells Fuel Obesity-Associated Inflammation in Adipose Tissue and Beyond. Front Immunol 2019; 10:1587. [PMID: 31379820 PMCID: PMC6653202 DOI: 10.3389/fimmu.2019.01587] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Obesity-associated inflammation stems from a combination of cell-intrinsic changes of individual immune cell subsets and the dynamic crosstalk amongst a broad array of immune cells. Although much of the focus of immune cell contributions to metabolic disease has focused on adipose tissue-associated cells, these potent sources of inflammation inhabit other metabolic regulatory tissues, including liver and gut, and recirculate to promote systemic inflammation and thus obesity comorbidities. Tissue-associated immune cells, especially T cell subpopulations, have become a hotspot of inquiry based on their contributions to obesity, type 2 diabetes, non-alcoholic fatty liver diseases and certain types of cancers. The cell-cell interactions that take place under the stress of obesity are mediated by intracellular contact and cytokine production, and constitute a complicated network that drives the phenotypic alterations of immune cells and perpetuates a feed-forward loop of metabolic decline. Herein we discuss immune cell functions in various tissues and obesity-associated cancers from the viewpoint of inflammation. We also emphasize recent advances in the understanding of crosstalk amongst immune cell subsets under obese conditions, and suggest future directions for focused investigations with clinical relevance.
Collapse
Affiliation(s)
- Rui Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Barbara S. Nikolajczyk
- Department of Pharmacology and Nutritional Sciences, Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
35
|
Abstract
The gut microbiome can influence host energy balances and metabolic programming. While this information is valuable in a disease context, it also has important implications for understanding host energetics from an ecological and evolutionary perspective. Here I argue that gut microbial influences on host life history-the timing of events that make up an organism's life-are an overlooked but robust area of study given that variation in life history is linked directly to host energetic budgets and allocation patterns. Additionally, while cultural influences on life history complicate the exploration of these links in humans, nonhuman primates represent an alternative system in which more robust associations can be made. By integrating human and nonhuman primate microbiome research within the context of life history theory, we will be able to more effectively pinpoint microbial contributions to host phenotypes. This information will improve our understanding of host-microbe interactions in health and disease and will transform the fields of ecology and evolution more generally.
Collapse
|
36
|
Leong KSW, Jayasinghe TN, Derraik JGB, Albert BB, Chiavaroli V, Svirskis DM, Beck KL, Conlon CA, Jiang Y, Schierding W, Vatanen T, Holland DJ, O'Sullivan JM, Cutfield WS. Protocol for the Gut Bugs Trial: a randomised double-blind placebo-controlled trial of gut microbiome transfer for the treatment of obesity in adolescents. BMJ Open 2019; 9:e026174. [PMID: 31005929 PMCID: PMC6500264 DOI: 10.1136/bmjopen-2018-026174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Animal studies showed that germ-free mice inoculated with normal mouse gut bacteria developed obesity, insulin resistance and higher triglyceride levels, despite similar food intake. In humans, an association has been found between obesity and gut microbiome dysbiosis. However, gut microbiome transfer has not been evaluated for the treatment of human obesity. We will examine the effectiveness of gut microbiome transfer using encapsulated material for the treatment of obesity in adolescents. METHODS AND ANALYSIS A two-arm, double-blind, placebo-controlled, randomised clinical trial of a single course of gut microbiome transfer will be conducted in 80 obese [body mass index (BMI) ≥30 kg/m2] adolescents (males and females, aged 14-18 years) in Auckland, New Zealand. Healthy lean donors (males and females, aged 18-28 years) will provide fresh stool samples from which bacteria will be isolated and double encapsulated. Participants (recipients) will be randomised at 1:1 to control (placebo) or treatment (gut microbiome transfer), stratified by sex. Recipients will receive 28 capsules over two consecutive mornings (~14 mL of frozen microbial suspension or saline). Clinical assessments will be performed at baseline, 6, 12 and 26 weeks, and will include: anthropometry, blood pressure, fasting metabolic markers, dietary intake, physical activity levels and health-related quality of life. Insulin sensitivity (Matsuda index), gut microbiota population structure characterised by 16S rRNA amplicon sequencing and body composition (using dual-energy X-ray absorptiometry) will be assessed at baseline, 6, 12 and 26 weeks. 24-hour ambulatory blood pressure monitoring will be performed at baseline and at 6 weeks. The primary outcome is BMI SD scores (SDS) at 6 weeks, with BMI SDS at 12 and 26 weeks as secondary outcomes. Other secondary outcomes include insulin sensitivity, adiposity (total body fat percentage) and gut microbial composition at 6, 12 and 26 weeks. Statistical analysis will be performed on the principle of intention to treat. ETHICS AND DISSEMINATION Ethics approval was provided by the Northern A Health and Disability Ethics Committee (Ministry of Health, New Zealand; 16/NTA/172). The trial results will be published in peer-reviewed journals and presented at international conferences. TRIAL REGISTRATION NUMBER ACTRN12615001351505; Pre-results.
Collapse
Affiliation(s)
- Karen S W Leong
- Liggins Institute, University of Auckland, Auckland, New Zealand
- A Better Start - National Science Challenge, University of Auckland, Auckland, New Zealand
| | | | - José G B Derraik
- Liggins Institute, University of Auckland, Auckland, New Zealand
- A Better Start - National Science Challenge, University of Auckland, Auckland, New Zealand
| | | | | | - Darren M Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kathryn L Beck
- School of Sport Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - Cathryn A Conlon
- School of Sport Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - Yannan Jiang
- Department of Statistics, The University of Auckland, Auckland, New Zealand
| | | | - Tommi Vatanen
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - David J Holland
- Department of Infectious Diseases, Counties Manukau District Health Board, Auckland, New Zealand
| | - Justin M O'Sullivan
- Liggins Institute, University of Auckland, Auckland, New Zealand
- A Better Start - National Science Challenge, University of Auckland, Auckland, New Zealand
| | - Wayne S Cutfield
- Liggins Institute, University of Auckland, Auckland, New Zealand
- A Better Start - National Science Challenge, University of Auckland, Auckland, New Zealand
| |
Collapse
|
37
|
Junejo SA, Zhang L, Yang L, Wang N, Zhou Y, Xia Y, Wang H. Anti-hyperlipidemic and hepatoprotective properties of wheat bran with different particle sizes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1990-1996. [PMID: 30270442 DOI: 10.1002/jsfa.9397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Wheat bran has been shown to have health-promoting benefits in relation to diabetes, colorectal cancer, cardiovascular disease, constipation, irritable bowel syndrome, diverticulitis, and gastrointestinal disease. However, its effects on obesity, hyperglycemia, hepatotoxicity, and hyperlipidemia are not yet clear. The effects of the consumption of wheat bran of different particle sizes (coarse, 427.55 µm versus ultra-fine, 11.63 µm) on body weight, serum glucose, liver, and blood lipid metabolism levels in high-fat-diet induced rats fed for 5 weeks were investigated. RESULTS The high-fat diet significantly increased body weight, serum glucose, serum and liver lipids, and malondialdehyde levels. However, addition of coarse and ultra-fine wheat bran to a high-fat diet decreased weight gain, reduced the levels of serum and liver total cholesterol, triglycerides, malondialdehyde, serum low-density lipoprotein, and serum glucose, and improved serum high-density lipoprotein. Moreover, when two particle sizes were compared, the highest impact was exhibited by the wheat bran containing the larger particle size. CONCLUSIONS The results suggest that micronized wheat bran significantly improves anti-hyperlipidemic and hepatoprotective properties that might provide a safeguard to protect humans against metabolic syndrome abnormalities and other acute, recurrent, or chronic diseases. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shahid A Junejo
- School of Tea and Food Technology, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Liping Yang
- School of Tea and Food Technology, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei, China
| | - Naifu Wang
- School of Tea and Food Technology, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei, China
| | - Yibin Zhou
- School of Tea and Food Technology, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei, China
| | - Yuesheng Xia
- School of Tea and Food Technology, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei, China
| | - Haisong Wang
- School of Tea and Food Technology, Anhui Agricultural University, 130 Chang Jiang West Road, Hefei, China
| |
Collapse
|
38
|
Li X, Song L, Zhu S, Xiao Y, Huang Y, Hua Y, Chu Q, Ren Z. Two Strains of Lactobacilli Effectively Decrease the Colonization of VRE in a Mouse Model. Front Cell Infect Microbiol 2019; 9:6. [PMID: 30761273 PMCID: PMC6363661 DOI: 10.3389/fcimb.2019.00006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 01/09/2019] [Indexed: 12/26/2022] Open
Abstract
Vancomycin-resistant Enterococcus (VRE) infection is a serious challenge for clinical management and there is no effective treatment at present. Fecal microbiota transplantation (FMT) and probiotic intervention have been shown to be promising approaches for reducing the colonization of certain pathogenic bacteria in the gastrointestinal tract, however, no such studies have been done on VRE. In this study, we evaluated the effect of FMT and two Lactobacillus strains (Y74 and HT121) on the colonization of VRE in a VRE-infection mouse model. We found that both Lactobacilli strains reduced VRE colonization rapidly. Fecal microbiota and colon mRNA expression analyses further showed that mice in FMT and the two Lactobacilli treatment groups restored their intestinal microbiota diversity faster than those in the phosphate buffer saline (PBS) treated group. Administration of Lactobacilli restored Firmicutes more quickly to the normal level, compared to FMT or PBS treatment, but restored Bacteroides to their normal level less quickly than FMT did. Furthermore, these treatments also had an impact on the relative abundance of intestinal microbiota composition from phylum to species level. RNA-seq showed that FMT treatment induced the expression of more genes in the colon, compared to the Lactobacilli treatment. Defense-related genes such as defensin α, Apoa1, and RegIII were down-regulated in both FMT and the two Lactobacilli treatment groups. Taken together, our findings indicate that both FMT and Lactobacilli treatments were effective in decreasing the colonization of VRE in the gut.
Collapse
Affiliation(s)
- Xianping Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention - Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liqiong Song
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention - Chinese Center for Disease Control and Prevention, Beijing, China
| | - Siyi Zhu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention - Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuchun Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention - Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanming Huang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention - Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuting Hua
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention - Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiongfang Chu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention - Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhihong Ren
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention - Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
39
|
Sui W, Xie X, Liu R, Wu T, Zhang M. Effect of wheat bran modification by steam explosion on structural characteristics and rheological properties of wheat flour dough. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.06.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
40
|
罗 月, 刘 斐, 陈 慕, 唐 文, 杨 月, 谭 细, 周 宏. [A machine learning model based on initial gut microbiome data for predicting changes of Bifidobacterium after prebiotics consumption]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:251-260. [PMID: 29643029 PMCID: PMC6744178 DOI: 10.3969/j.issn.1673-4254.2018.03.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate the effects of prebiotics supplementation for 9 days on gut microbiota structure and function and establish a machine learning model based on the initial gut microbiota data for predicting the variation of Bifidobacterium after prebiotic intake. METHODS With a randomized double-blind self-controlled design, 35 healthy volunteers were asked to consume fructo-oligosaccharides (FOS) or galacto-oligosaccharides (GOS) for 9 days (16 g per day). 16S rRNA gene high-throughput sequencing was performed to investigate the changes of gut microbiota after prebiotics intake. PICRUSt was used to infer the differences between the functional modules of the bacterial communities. Random forest model based on the initial gut microbiota data was used to identify the changes in Bifidobacterium after 5 days of prebiotic intake and then to build a continuous index to predict the changes of Bifidobacterium. The data of fecal samples collected after 9 days of GOS intervention were used to validate the model. RESULTS Fecal samples analysis with QIIME revealed that FOS intervention for 5 days reduced the intestinal flora alpha diversity, which rebounded on day 9; in GOS group, gut microbiota alpha diversity decreased progressively during the intervention. Neither FOS nor GOS supplement caused significant changes in β diversity of gut microbiota. The area under the curve (AUC) of the prediction model was 89.6%. The continuous index could successfully predict the changes in Bifidobacterium (R=0.45, P=0.01), and the prediction accuracy was verified by the validation model (R=0.62, P=0.01). CONCLUSION Short-term prebiotics intervention can significantly decrease α-diversity of the intestinal flora. The machine learning model based on initial gut microbiota data can accurately predict the changes in Bifidobacterium, which sheds light on personalized nutrition intervention and precise modulation of the intestinal flora.
Collapse
Affiliation(s)
- 月梅 罗
- 南方医科大学公共卫生学院环境卫生学系,广东 广州 510515Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
- 南方医科大学珠江医院检验医学部器官衰竭 研究国家重点实验室,广东 广州 510515State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Guangzhou 510515, China
| | - 斐童 刘
- 南方医科大学公共卫生学院环境卫生学系,广东 广州 510515Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
- 南方医科大学珠江医院检验医学部器官衰竭 研究国家重点实验室,广东 广州 510515State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Guangzhou 510515, China
| | - 慕璇 陈
- 南方医科大学珠江医院检验医学部器官衰竭 研究国家重点实验室,广东 广州 510515State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Guangzhou 510515, China
| | - 文丽 唐
- 南方医科大学珠江医院检验医学部器官衰竭 研究国家重点实验室,广东 广州 510515State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Guangzhou 510515, China
| | - 月莲 杨
- 南方医科大学珠江医院检验医学部器官衰竭 研究国家重点实验室,广东 广州 510515State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Guangzhou 510515, China
- 南方医科大学 南方医科大学珠江医院老年病科,广东 广州 510515Department of Geriatrics, Guangzhou 510515, China
| | - 细兰 谭
- 南方医科大学公共卫生学院环境卫生学系,广东 广州 510515Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
- 南方医科大学珠江医院检验医学部器官衰竭 研究国家重点实验室,广东 广州 510515State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Guangzhou 510515, China
- 南方医科大学珠江医院感染科,广东 广州 510282Department of Infectious Diseases4, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 宏伟 周
- 南方医科大学公共卫生学院环境卫生学系,广东 广州 510515Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
- 南方医科大学珠江医院检验医学部器官衰竭 研究国家重点实验室,广东 广州 510515State Key Laboratory of Organ Failure Research, Division of Laboratory Medicine, Guangzhou 510515, China
| |
Collapse
|
41
|
Mahabir S, Willett WC, Friedenreich CM, Lai GY, Boushey CJ, Matthews CE, Sinha R, Colditz GA, Rothwell JA, Reedy J, Patel AV, Leitzmann MF, Fraser GE, Ross S, Hursting SD, Abnet CC, Kushi LH, Taylor PR, Prentice RL. Research Strategies for Nutritional and Physical Activity Epidemiology and Cancer Prevention. Cancer Epidemiol Biomarkers Prev 2018; 27:233-244. [PMID: 29254934 PMCID: PMC7992195 DOI: 10.1158/1055-9965.epi-17-0509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/02/2017] [Accepted: 12/04/2017] [Indexed: 12/24/2022] Open
Abstract
Very large international and ethnic differences in cancer rates exist, are minimally explained by genetic factors, and show the huge potential for cancer prevention. A substantial portion of the differences in cancer rates can be explained by modifiable factors, and many important relationships have been documented between diet, physical activity, and obesity, and incidence of important cancers. Other related factors, such as the microbiome and the metabolome, are emerging as important intermediary components in cancer prevention. It is possible with the incorporation of newer technologies and studies including long follow-up and evaluation of effects across the life cycle, additional convincing results will be produced. However, several challenges exist for cancer researchers; for example, measurement of diet and physical activity, and lack of standardization of samples for microbiome collection, and validation of metabolomic studies. The United States National Cancer Institute convened the Research Strategies for Nutritional and Physical Activity Epidemiology and Cancer Prevention Workshop on June 28-29, 2016, in Rockville, Maryland, during which the experts addressed the state of the science and areas of emphasis. This current paper reflects the state of the science and priorities for future research. Cancer Epidemiol Biomarkers Prev; 27(3); 233-44. ©2017 AACR.
Collapse
Affiliation(s)
- Somdat Mahabir
- Environmental Epidemiology Branch, Epidemiology and Genomics Research Program (EGRP), Division of Cancer Control and Population Sciences (DCCPS), National Cancer Institute (NCI), Bethesda, Maryland.
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, Massachusetts
| | - Christine M Friedenreich
- Department of Cancer Epidemiology and Prevention Research, Cancer Control Alberta, Alberta Health Services, Edmonton, Alberta, Canada
| | - Gabriel Y Lai
- Environmental Epidemiology Branch, Epidemiology and Genomics Research Program (EGRP), Division of Cancer Control and Population Sciences (DCCPS), National Cancer Institute (NCI), Bethesda, Maryland
| | - Carol J Boushey
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Charles E Matthews
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), NCI, Bethesda, Maryland
| | - Rashmi Sinha
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), NCI, Bethesda, Maryland
| | - Graham A Colditz
- Division of Public Health Sciences, Department of Surgery, Washington University and Alvin J. Siteman Cancer Center, St. Louis, Missouri
| | - Joseph A Rothwell
- Nutrition and Metabolism Section, Biomarkers Group, International Agency for Cancer Research (IARC), Lyon, France
| | - Jill Reedy
- Risk Factor Assessment Branch, EGRP, DCCPS, NCI, Bethesda, Maryland
| | - Alpa V Patel
- Cancer Prevention Study-3, American Cancer Society, Atlanta, Georgia
| | - Michael F Leitzmann
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Gary E Fraser
- School of Public Health, School of Medicine, Loma Linda University, Loma Linda, California
| | - Sharon Ross
- Nutritional Science Research Group, Division of Cancer Prevention, NCI, Bethesda, Maryland
| | - Stephen D Hursting
- Nutrition Research Institute, Lineberger Comprehensive Cancer Center and University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christian C Abnet
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), NCI, Bethesda, Maryland
| | - Lawrence H Kushi
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Philip R Taylor
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), NCI, Bethesda, Maryland
| | - Ross L Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
42
|
Han M, Hao L, Lin Y, Li F, Wang J, Yang H, Xiao L, Kristiansen K, Jia H, Li J. A novel affordable reagent for room temperature storage and transport of fecal samples for metagenomic analyses. MICROBIOME 2018; 6:43. [PMID: 29482661 PMCID: PMC5828344 DOI: 10.1186/s40168-018-0429-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The number of large-scale studies on the gut microbiota in human cohorts is rapidly increasing. However, the few and expensive options for storage of fecal samples at room temperature have been an obstacle for large-scale metagenomic studies and the development of clinical/commercial personal metagenomic sequencing. RESULTS In this study, we systematically tested a novel N-octylpyridinium bromide-based fecal sample preservation method and compared it with other currently used storage methods. We found that the N-octylpyridinium bromide-based method enabled preservation of the bacterial composition in fecal samples transported and stored at room temperature for up to at least 14 days. CONCLUSIONS We describe a novel chemical stabilizer that allows cost-effective transportation and storage at room temperature for several days with preservation of bacterial composition. This method will facilitate sample collection even in remote area and also enable transport via normal commercial transportation routes.
Collapse
Affiliation(s)
- Mo Han
- BGI-Shenzhen, Shenzhen, 518083, China.
- China National Genebank, BGI-Shenzhen, Shenzhen, 518120, China.
| | - Lilan Hao
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Genebank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Yuxiang Lin
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Genebank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Fang Li
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Genebank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Genebank, BGI-Shenzhen, Shenzhen, 518120, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Genebank, BGI-Shenzhen, Shenzhen, 518120, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Liang Xiao
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Genebank, BGI-Shenzhen, Shenzhen, 518120, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, 518083, China
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, 518083, China
- Department of Biology, Laboratory of Genomics and Molecular Biomedicine, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Huijue Jia
- BGI-Shenzhen, Shenzhen, 518083, China.
- China National Genebank, BGI-Shenzhen, Shenzhen, 518120, China.
- Shenzhen Key Laboratory of Human commensal microorganisms and Health Research, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Junhua Li
- BGI-Shenzhen, Shenzhen, 518083, China.
- China National Genebank, BGI-Shenzhen, Shenzhen, 518120, China.
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, 510006, China.
- Shenzhen Key Laboratory of Human commensal microorganisms and Health Research, BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
43
|
Ghoshal UC, Gwee KA, Holtmann G, Li Y, Park SJ, Simadibrata M, Sugano K, Wu K, Quigley EMM, Cohen H. The role of the microbiome and the use of probiotics in gastrointestinal disorders in adults in the Asia-Pacific region - background and recommendations of a regional consensus meeting. J Gastroenterol Hepatol 2018; 33:57-69. [PMID: 28589613 DOI: 10.1111/jgh.13840] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/28/2017] [Accepted: 05/30/2017] [Indexed: 12/11/2022]
Abstract
The Asia-Pacific region is diverse, with regard to ethnicity, culture, and economic development incorporating some of the world's least and most developed nations. Gastrointestinal diseases are common in the Asia-Pacific region, and their prevalence, presentation, and management vary considerably within the region. There is growing evidence for an important role for the human gut microbiota in gastrointestinal health. As a consequence, geographic variations in the composition of the gut microbiota may contribute to variations in both the prevalence and response to therapy of specific diseases. Probiotics have been proposed as a valuable option in the prevention and treatment of a number of gastrointestinal illnesses, but the quality of available evidence to support their efficacy is variable. A meeting of international experts in adult and pediatric gastroenterology was held at the Sorbonne University, Paris, France, on April 11 and 12, 2016, to discuss current evidence supporting the use of probiotics in gastrointestinal disorders in the Asia-Pacific region. This article provides an overview of the discussions held at this meeting and recommends the formation of an Asia-Pacific Consortium on Gut Microbiota similar to those established in Europe and North America.
Collapse
Affiliation(s)
- Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Kok-Ann Gwee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gerald Holtmann
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital Brisbane, University of Queensland, Brisbane, Queensland, Australia
| | - Yanmei Li
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Soo Jung Park
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Marcellus Simadibrata
- Faculty of Medicine, University of Indonesia and Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia.,RSUPN Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Kentaro Sugano
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Kaichun Wu
- Fourth Military Medical University, Xi'an, China
| | - Eamonn M M Quigley
- Division of Gastroenterology and Hepatology, Lynda K and David M Underwood Center for Digestive Disorders, Houston Methodist Hospital, Houston, Texas, USA
| | - Henry Cohen
- Clínica de Gastroenterología, Facultad de Medicina, Montevideo, Uruguay
| |
Collapse
|
44
|
La Fata G, Rastall RA, Lacroix C, Harmsen HJM, Mohajeri MH, Weber P, Steinert RE. Recent Development of Prebiotic Research-Statement from an Expert Workshop. Nutrients 2017; 9:E1376. [PMID: 29261110 PMCID: PMC5748826 DOI: 10.3390/nu9121376] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/22/2022] Open
Abstract
A dietary prebiotic is defined as 'a substrate that is selectively utilized by host microorganisms conferring a health benefit'. Although this definition evolved concomitantly with the knowledge and technological developments that accrued in the last twenty years, what qualifies as prebiotic continues to be a matter of debate. In this statement, we report the outcome of a workshop where academic experts working in the field of prebiotic research met with scientists from industry. The workshop covered three main topics: (i) evolution of the prebiotic concept/definition; (ii) the gut modeling in vitro technology PolyFermS to study prebiotic effects; and (iii) the potential novel microbiome-modulating effects associated with vitamins. The future of prebiotic research is very promising. Indeed, the technological developments observed in recent years provide scientists with powerful tools to investigate the complex ecosystem of gut microbiota. Combining multiple in vitro approaches with in vivo studies is key to understanding the mechanisms of action of prebiotics consumption and their potential beneficial effects on the host.
Collapse
Affiliation(s)
- Giorgio La Fata
- DSM Nutritional Products Ltd., R & D Human Nutrition and Health, P.O. Box 2676, CH-4002 Basel, Switzerland.
| | - Robert A Rastall
- Department of Food and Nutritional Science, The University of Reading, Whiteknights Campus, Reading RG6 6AP, UK.
| | - Christophe Lacroix
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, CH-8092 Zürich, Switzerland.
| | - Hermie J M Harmsen
- Department of Medical Microbiology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands.
| | - M Hasan Mohajeri
- DSM Nutritional Products Ltd., R & D Human Nutrition and Health, P.O. Box 2676, CH-4002 Basel, Switzerland.
| | - Peter Weber
- DSM Nutritional Products Ltd., R & D Human Nutrition and Health, P.O. Box 2676, CH-4002 Basel, Switzerland.
| | - Robert E Steinert
- DSM Nutritional Products Ltd., R & D Human Nutrition and Health, P.O. Box 2676, CH-4002 Basel, Switzerland.
- Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zürich, 8091 Zürich, Switzerland.
| |
Collapse
|
45
|
Bacterial bile salt hydrolase: an intestinal microbiome target for enhanced animal health. Anim Health Res Rev 2017; 17:148-158. [PMID: 28155801 DOI: 10.1017/s1466252316000153] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To effectively mitigate antimicrobial resistance in the agricultural ecosystem, there is an increasing pressure to reduce and eliminate the use of in-feed antibiotics for growth promotion and disease prevention in food animals. However, limiting antibiotic use could compromise animal production efficiency and health. Thus, there is an urgent need to develop effective alternatives to antibiotic growth promoters (AGPs). Increasing evidence has shown that the growth-promoting effect of AGPs was highly correlated with the reduced activity of bile salt hydrolase (BSH), an intestinal bacterial enzyme that has a negative impact on host fat digestion and energy harvest; consistent with this finding, the population of Lactobacillus species, the major intestinal BSH-producer, was significantly reduced in response to AGP use. Thus, BSH is a key mechanistic microbiome target for developing novel alternatives to AGPs. Despite recent significant progress in the characterization of diverse BSH enzymes, research on BSH is still in its infancy. This review is focused on the function of BSH and its significant impacts on host physiology in human beings, laboratory animals and food animals. The gaps in BSH-based translational microbiome research for enhanced animal health are also identified and discussed.
Collapse
|
46
|
Shore SA, Cho Y. Obesity and Asthma: Microbiome-Metabolome Interactions. Am J Respir Cell Mol Biol 2017; 54:609-17. [PMID: 26949916 DOI: 10.1165/rcmb.2016-0052ps] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Obesity is a risk factor for asthma, but obese subjects with asthma respond poorly to standard asthma drugs. Obesity also alters gut bacterial community structure. Obesity-related changes in gut bacteria contribute to weight gain and other obesity-related conditions, including insulin resistance and systemic inflammation. Here, we review the rationale for the hypothesis that obesity-related changes in gut bacteria may also play a role in obesity-related asthma. The metabolomes of the liver, serum, urine, and adipose tissue are altered in obesity. Gut bacteria produce a large number of metabolites, which can reach the blood and circulate to other organs, and gut bacteria-derived metabolites have been shown to contribute to disease processes outside the gastrointestinal tract, including cardiovascular disease. Here, we describe the potential roles for two such classes of metabolites in obesity-related asthma: short-chain fatty acids and bile acids. Greater understanding of the role of microbiota in obesity-related asthma could lead to novel microbiota-based treatments for these hard-to-treat patients.
Collapse
Affiliation(s)
- Stephanie A Shore
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Youngji Cho
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
47
|
Hao L, Xia Z, Yang H, Wang J, Han M. Ionic liquid-based reagents improve the stability of midterm fecal sample storage. J Microbiol Methods 2017; 139:68-73. [PMID: 28506638 DOI: 10.1016/j.mimet.2017.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 11/17/2022]
Abstract
Fecal samples are widely used in metagenomic research, which aims to elucidate the relationship between human health and the intestinal microbiota. However, the best conditions for stable and reliable storage and transport of these samples at room temperature are still unknown, and whether samples stored at room temperature for several days will maintain their microbiota composition is still unknown. Here, we established and tested a preservation method using reagents containing imidazolium- or pyridinium-based ionic liquids. We stored human fecal samples in these reagents for up to 7 days at different temperatures. Subsequently, all samples were sequenced and compared with fresh samples and/or samples treated under other conditions. The 16S rRNA sequencing results suggested that ionic liquid-based reagents could stabilize the composition of the microbiota in fecal samples during a 7-day storage period, particularly when stored at room temperature. Thus, this method may have implications in the storage of fecal samples for metagenomic research.
Collapse
Affiliation(s)
- Lilan Hao
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China; BGI Research, BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Zhongkui Xia
- BGI Research, BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Huanming Yang
- BGI Research, BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China; James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Jian Wang
- BGI Research, BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China; James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Mo Han
- BGI Research, BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China.
| |
Collapse
|
48
|
Interactions between soluble dietary fibers and wheat gluten in dough studied by confocal laser scanning microscopy. Food Res Int 2017; 95:19-27. [PMID: 28395821 DOI: 10.1016/j.foodres.2017.02.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 11/24/2022]
Abstract
Four soluble dietary fiber (SDF) fractions characterized by major components of AXs, relatively narrow molecular weight distribution, different substituted ratio, and structure-sensitive parameter (ρ) were prepared from wheat bran. The fractions were added to wheat dough to determine the interactions between the dough's network and the SDF fractions relative to their physicochemical characteristics. Furthermore, a comprehensive study focusing on the dough texture characteristic, tensile properties, thermodynamic stability, and the microstructure was conducted by performing texture profile analysis (TPA), differential scanning calorimetry (DSC), and confocal laser scanning microscopy (CLSM) experiments. Additionally, an estimation function of the interactions parameters between the dough's network and the SDF fractions related to the factor molecular weight and ρ of the SDFs was established. The results indicated that the SDF fractions exhibiting a medium molecular weight, and a higher substitution degree and di-substituted ratio, were the most suitable fortifier providing benefits to the dough's qualities. Furthermore, the research methodology might support the high potential of SDF fractions as fortifier for flour-based products.
Collapse
|
49
|
Han KH, Lee CH, Kinoshita M, Oh CH, Shimada KI, Fukushima M. Spent turmeric reduces fat mass in rats fed a high-fat diet. Food Funct 2017; 7:1814-24. [PMID: 26583652 DOI: 10.1039/c5fo00764j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Indigestible carbohydrates may improve obesity. Spent turmeric contains high levels of dietary fibre and resistant starch (RS), which have fermentation potential in vitro. We hypothesised that indigestible carbohydrates in spent turmeric might prevent obesity development. In the first study, rats were administered 10% turmeric powder (TP) or spent turmeric powder (STP) in a high-fat (HF) diet for 28 d. In the second study, rats were fed 10% STP in a HF diet with or without antibiotics for 15 d. In the third study, rats were treated with a STP-containing suspension. In study 1, the TP and STP diet increased the caecal short-chain fatty acid (SCFA) content compared to that of a control diet. The lower energy intake in the TP and STP group was strongly related to the decrease in visceral fat weight. In study 2, after caecal fermentation suppression with antibiotics, STP treatment decreased the visceral fat mass. In study 3, the plasma glucose levels and incremental area under the curve (AUC) after ingestion of a STP-containing suspension were lower than those after ingestion of suspension alone. These findings suggest the reduction of carbohydrate absorption during the gastrointestinal passage after TP and STP treatment. Our data indicate that the reduced obesity development in rats fed a HF diet may be attributed to the low metabolisable energy density of carbohydrates in the spent turmeric, independent of SCFA-mediated factors.
Collapse
Affiliation(s)
- Kyu-Ho Han
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| | - Chang-Hyun Lee
- Department of Anatomy, College of Oriental Medicine, Woosuk University, Jeonbuk 565-701, Korea
| | - Mikio Kinoshita
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| | - Chan-Ho Oh
- Department of Food & Biotechnology, College of Food Science, Woosuk University, Jeonbuk 565-701, Korea
| | - Ken-ichiro Shimada
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| | - Michihiro Fukushima
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
50
|
Djuric Z. Obesity-associated cancer risk: the role of intestinal microbiota in the etiology of the host proinflammatory state. Transl Res 2017; 179:155-167. [PMID: 27522986 PMCID: PMC5164980 DOI: 10.1016/j.trsl.2016.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/10/2016] [Accepted: 07/20/2016] [Indexed: 02/06/2023]
Abstract
Obesity increases the risks of many cancers. One important mechanism behind this association is the obesity-associated proinflammatory state. Although the composition of the intestinal microbiome undoubtedly can contribute to the proinflammatory state, perhaps the most important aspect of host-microbiome interactions is host exposure to components of intestinal bacteria that stimulate inflammatory reactions. Systemic exposures to intestinal bacteria can be modulated by dietary factors through altering both the composition of the intestinal microbiota and the absorption of bacterial products from the intestinal lumen. In particular, high-fat and high-energy diets have been shown to facilitate absorption of bacterial lipopolysaccharide (LPS) from intestinal bacteria. Biomarkers of bacterial exposures that have been measured in blood include LPS-binding protein, sCD14, fatty acids characteristic of intestinal bacteria, and immunoglobulins specific for bacterial LPS and flagellin. The optimal strategies to reduce these proinflammatory exposures, whether by altering diet composition, avoiding a positive energy balance, or reducing adipose stores, likely differ in each individual. Biomarkers that assess systemic bacterial exposures therefore should be useful to (1) optimize and personalize preventive approaches for individuals and groups with specific characteristics and to (2) gain insight into the possible mechanisms involved with different preventive approaches.
Collapse
Affiliation(s)
- Zora Djuric
- Department of Family Medicine, University of Michigan, Ann Arbor, Mich; Department of Nutritional Sciences, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|