1
|
Li Y, Zhu J, Zhai F, Ge Y, Zhan Z, Wang S, Kong L, Zhao J, Hu L, Wang S, Shi J, Mao J, Yu Z, Wang H, Jin J, Zhao M, Li H, Jin X. LMNB2-mediated high PD-L1 transcription triggers the immune escape of hepatocellular carcinoma. Cell Death Discov 2025; 11:269. [PMID: 40483310 PMCID: PMC12145441 DOI: 10.1038/s41420-025-02540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/01/2025] [Accepted: 05/21/2025] [Indexed: 06/11/2025] Open
Abstract
While immune checkpoint inhibitors targeting programmed cell death-ligand 1 (PD-L1) demonstrate clinical efficacy in hepatocellular carcinoma (HCC), tumor cells frequently evade immune surveillance through PD-L1 overexpression, a phenomenon whose regulatory mechanisms remain poorly understood. Through integrated analysis of single-cell transcription sequence data, we identified aberrant upregulation of Lamin B2 (LMNB2) specifically in immunotherapy-sensitive HCC patients. Functional characterization revealed that LMNB2 acts as a transcriptional regulator of PD-L1, potentiating immune escape mechanisms in HCC cells during co-culture with Jurkat cells. Notably, we discovered that speckle-type POZ protein (SPOP) directly interacts with LMNB2 to mediate its ubiquitination and proteasomal degradation, thereby maintaining physiological PD-L1 expression levels. Clinically relevant SPOP mutations or reduced SPOP expression impaired this regulatory mechanism, leading to LMNB2 accumulation and subsequent PD-L1 hyperactivation. Importantly, combinatorial targeting of LMNB2 with Atezolizumab (PD-L1 inhibitor) displayed a synergistic effect on suppressing tumor progression both in vitro and in vivo, particularly in HCC models with SPOP mutations or LMNB2 overexpression. These findings unveil a novel ubiquitination-dependent regulatory axis in HCC immune evasion and propose targeted co-inhibition strategies to overcome HCC immunotherapy resistance.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Yidong Ge
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Ziqing Zhan
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Shuyan Wang
- Department of Histopathology, Ningbo Clinical Pathology Diagnosis Center, 315040, Ningbo, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jianan Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Lecheng Hu
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Siyuan Wang
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jiaxin Shi
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jianing Mao
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Zongdong Yu
- Department of Neurosurgery, Shangrao People's Hospital, 334099, Shangrao, Jiangxi, China
| | - Haoyun Wang
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jiabei Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Mengxiang Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China
- Department of Stomatology, The First Affiliated Hospital of Ningbo University, Ningbo University, 315010, Ningbo, Zhejiang, China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| | - Xiaofeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China.
| |
Collapse
|
2
|
Zhai F, Li Y, Zheng J, Yan C, Wang S, Yang W, Jin J, Luo X, Zhan Z, Shi J, Wang S, Lin Y, Kong L, Ge Y, Wang H, Ye M, Jin X. SPOP/NOLC1/B4GALT1 signaling axis enhances paclitaxel resistance in endometrial cancer by inducing O-dysglycosylation. Oncogene 2025:10.1038/s41388-025-03347-7. [PMID: 40097806 DOI: 10.1038/s41388-025-03347-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/18/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
The effective treatment of paclitaxel-resistant patients remains a major challenge. We found that nucleolar and coiled body phosphoprotein 1 (NOLC1) was highly expressed in the paclitaxel-resistant endometrial cancer (ECa) cells and pathological tissue of ECa patients, which could promote the occurrence and progression of ECa cells. Mechanistically, we confirmed that the E3 ubiquitin ligase substrate-binding adaptor SPOP mediates the ubiquitination and degradation of NOLC1, thereby maintaining normal protein levels. However, ECa-associated SPOP mutants abrogated the binding and ubiquitination of NOLC1, resulting in the accumulation of NOLC1, and ultimately promoting the proliferation, migration, and invasion of ECa cells. In addition, we demonstrated that NOLC1 could act as a transcriptional factor to activate the transcriptional expression of B4GALT1, ultimately leading to abnormal glycosylation metabolism. Moreover, knockdown of B4GALT1 can partly counteract the cancer-promoting effect caused by the overexpression of NOLC1 in vitro and in vivo. Based on these findings, an O-glycosylation inhibitor combined with paclitaxel could effectively improve the sensitivity of paclitaxel-resistant cells. In summary, we found that SPOP can negatively regulate the NOLC1-B4GALT1 signaling axis in ECa, whereas ECa-associated SPOP mutants lead to abnormal activation of this signaling axis, leading to glycosylation metabolism disorders. In addition, paclitaxel combined with B4GALT1-KD or glycosylation inhibitors can significantly inhibit the growth of paclitaxel-resistant endometrial cancer cells.
Collapse
Affiliation(s)
- Fengguang Zhai
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, China
- Department of Radiotherapy and Chemotherapy, The First Hospital of Ningbo University, Ningbo, China
| | - Yuxuan Li
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, China
| | - Jingfei Zheng
- Department of Obstetrics and Gynecology, Yinzhou Renmin Hospital Affiliated to Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Chunhong Yan
- Department of Obstetrics and Gynecology, Yinzhou Renmin Hospital Affiliated to Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Shuyan Wang
- Department of Histopathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Weili Yang
- Department of Gynecology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Jiabei Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, China
| | - Xia Luo
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, China
| | - Ziqing Zhan
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, China
- Department of Radiotherapy and Chemotherapy, The First Hospital of Ningbo University, Ningbo, China
| | - Jiaxin Shi
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, China
| | - Siyuan Wang
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, China
| | - Yan Lin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, China
| | - Yidong Ge
- Department of Gynecology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Haoyun Wang
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, China.
- Department of Radiotherapy and Chemotherapy, The First Hospital of Ningbo University, Ningbo, China.
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, China.
| |
Collapse
|
3
|
Ong JY, Abdusamad M, Ramirez I, Gholkar A, Zhang X, Gimeno TV, Torres JZ. Cul3 substrate adaptor SPOP targets Nup153 for degradation. Mol Biol Cell 2025; 36:ar24. [PMID: 39785820 PMCID: PMC11974958 DOI: 10.1091/mbc.e24-04-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
SPOP is a Cul3 substrate adaptor responsible for the degradation of many proteins related to cell growth and proliferation. Because mutation or misregulation of SPOP drives cancer progression, understanding the suite of SPOP substrates is important to understanding the regulation of cell proliferation. Here, we identify Nup153, a component of the nuclear basket of the nuclear pore complex, as a novel substrate of SPOP. SPOP and Nup153 bind to each other and colocalize at the nuclear envelope and some nuclear foci in cells. The binding interaction between SPOP and Nup153 is complex and multivalent. Nup153 is ubiquitylated and degraded upon expression of SPOPWT but not its substrate binding-deficient mutant SPOPF102C. Depletion of SPOP via RNAi leads to Nup153 stabilization. Upon loss of SPOP activity, the nuclear envelope localization of spindle assembly checkpoint protein Mad1, which is tethered to the nuclear envelope by Nup153, is stronger. Altogether, our results demonstrate that SPOP regulates Nup153 levels and expands our understanding of the role of SPOP in protein and cellular homeostasis.
Collapse
Affiliation(s)
- Joseph Y. Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Mai Abdusamad
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Ivan Ramirez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Ankur Gholkar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Xiaoxuan Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Thomas V. Gimeno
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jorge Z. Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
4
|
Alamillo L, Ng DCM, Currie J, Black A, Pandi B, Manda V, Pavelka J, Schaal P, Travers JG, McKinsey TA, Lam MPY, Lau E. Deuterium labeling enables proteome wide turnover kinetics analysis in cell culture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635596. [PMID: 39975278 PMCID: PMC11838351 DOI: 10.1101/2025.01.30.635596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The half-life of proteins is tightly regulated and underlies many cellular processes. It remains unclear the extent to which proteins are dynamically synthesized and degraded in different cell types and cell states. We introduce an improved D2O labeling workflow and apply it to examine the landscape of protein turnover in pluripotent and differentiating human induced pluripotent stem cells (hiPSC). The majority of hiPSC proteins show minimal turnover beyond cell doubling rates, but we also identify over 100 new fast-turnover proteins not previously described as short-lived. These include proteins that function in cell division and cell cycle checkpoints, that are enriched in APC/C and SPOP degrons, and that are depleted upon pluripotency exit. Differentiation rapidly shifts the set of fast-turnover proteins toward including RNA binding and splicing proteins. The ability to identify fast-turnover proteins in different cell cultures also facilitates secretome analysis, as exemplified by studies of hiPSC-derived cardiac myocytes and primary human cardiac fibroblasts. The presented workflow is broadly applicable to protein turnover studies in diverse primary, pluripotent, and transformed cells.
Collapse
Affiliation(s)
- Lorena Alamillo
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dominic C. M. Ng
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jordan Currie
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Alexander Black
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Boomathi Pandi
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Vyshnavi Manda
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jay Pavelka
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Peyton Schaal
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joshua G. Travers
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Timothy A. McKinsey
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Maggie P. Y. Lam
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Edward Lau
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research & Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Pedrani M, Salfi G, Merler S, Testi I, Cani M, Turco F, Trevisi E, Tortola L, Treglia G, Di Tanna GL, Vogl U, Gillessen S, Theurillat JP, Pereira Mestre R. Prognostic and Predictive Role of SPOP Mutations in Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol Oncol 2024; 7:1199-1215. [PMID: 38704358 DOI: 10.1016/j.euo.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 05/06/2024]
Abstract
CONTEXT Mutations in the speckle-type POZ (SPOP) gene are frequently identified in prostate cancer (PC); yet, prognostic implications for affected patients remain unclear. Limited consensus exists regarding tailored treatments for SPOP-mutant (SPOPmut) PC. OBJECTIVE To elucidate the prognostic and predictive significance of SPOP mutations across distinct PC stages and treatments. EVIDENCE ACQUISITION A systematic literature search of PubMed, Embase, and Scopus was conducted up to January 29, 2024. The meta-analysis included studies comparing survival outcomes between SPOPmut and SPOP wild-type (SPOPwt) PC. EVIDENCE SYNTHESIS From 669 records, 26 studies (including five abstracts) were analyzed. A meta-analysis of metastasis-free survival in localized (hazard ratio [HR]: 0.72, 95% confidence interval [CI]: 0.59-0.88; p < 0.01) and overall survival (OS) in metastatic PC (HR: 0.64, 95% CI: 0.53-0.76; p < 0.01) showed a favorable prognosis for patients with SPOPmut PC. In metastatic settings, SPOP mutations correlated with improved progression-free survival (PFS) and OS in patients undergoing androgen deprivation therapy ± androgen receptor signaling inhibitor (HR: 0.51, 95% CI: 0.35-0.76, p < 0.01, and HR: 0.60, 95% CI:0.46-0.79, p < 0.01, respectively). In metastatic castration-resistant PC, only abiraterone provided improved PFS and OS to patients with SPOP mutations compared with patients with SPOPwt, but data were limited. SPOP mutations did not correlate with improved PFS (p = 0.80) or OS (p = 0.27) for docetaxel. CONCLUSIONS Patients with SPOPmut PC seem to exhibit superior oncological outcomes compared with patients with SPOPwt. Tailored risk stratification and treatment approaches should be explored in such patients. PATIENT SUMMARY Speckle-type POZ (SPOP) mutations could be a favorable prognostic factor in patients with prostate cancer (PC) and may also predict better progression-free and overall survival than treatment with hormonal agents. Therefore, less intensified treatments omitting chemotherapy for patients with SPOP-mutant PC should be explored in clinical trials.
Collapse
Affiliation(s)
- Martino Pedrani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Salfi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Sara Merler
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Institute of Oncology Research (IOR), Bellinzona, Switzerland; Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine, University of Verona and Verona University Hospital Trust, Verona, Italy; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Irene Testi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Massimiliano Cani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Oncology Unit, Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano, Italy
| | - Fabio Turco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Elena Trevisi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Luigi Tortola
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Giorgio Treglia
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Gian Luca Di Tanna
- Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Ursula Vogl
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Silke Gillessen
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Ricardo Pereira Mestre
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland; Institute of Oncology Research (IOR), Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Clinical Research Unit, myDoctorAngel Sagl, Bioggio, Switzerland.
| |
Collapse
|
6
|
Salovska B, Li W, Bernhardt OM, Germain PL, Gandhi T, Reiter L, Liu Y. A Comprehensive and Robust Multiplex-DIA Workflow Profiles Protein Turnover Regulations Associated with Cisplatin Resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620709. [PMID: 39554001 PMCID: PMC11565775 DOI: 10.1101/2024.10.28.620709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Measuring protein turnover is essential for understanding cellular biological processes and advancing drug discovery. The multiplex DIA mass spectrometry (DIA-MS) approach, combined with dynamic SILAC labeling (pulse-SILAC, or pSILAC), has proven to be a reliable method for analyzing protein turnover and degradation kinetics. Previous multiplex DIA-MS workflows have employed various strategies, including leveraging the highest isotopic labeling channels of peptides to enhance the detection of isotopic MS signal pairs or clusters. In this study, we introduce an improved and robust workflow that integrates a novel machine learning strategy and channel-specific statistical filtering, enabling dynamic adaptation to systematic or temporal variations in channel ratios. This allows comprehensive profiling of protein turnover throughout the pSILAC experiment without relying solely on the highest channel signals. Additionally, we developed KdeggeR , a data processing and analysis package optimized for pSILAC-DIA experiments, which estimates and visualizes peptide and protein degradation rates and dynamic profiles. Our integrative workflow was benchmarked on both 2-channel and 3-channel standard DIA datasets and across two mass spectrometry platforms, demonstrating its broad applicability. Finally, applying this workflow to an aneuploid cancer cell model before and after cisplatin resistance development demonstrated a strong negative correlation between transcript regulation and protein degradation for major protein complex subunits. We also identified specific protein turnover signatures associated with cisplatin resistance.
Collapse
Affiliation(s)
- Barbora Salovska
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Wenxue Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | | | - Pierre-Luc Germain
- Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | | | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
- Department of Biomedical Informatics & Data Science, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
7
|
Kim D, Bhargava R, Wang SC, Lee D, Patel R, Oh S, Bowman RW, Na CH, O'Sullivan RJ, Miller KM. TRIM24 directs replicative stress responses to maintain ALT telomeres via chromatin signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.618947. [PMID: 39463989 PMCID: PMC11507842 DOI: 10.1101/2024.10.18.618947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
An inability to replicate the genome can cause replication stress and genome instability. Here, we develop BLOCK-ID, a proteomic method to identify and visualize proteins at stressed replication forks. This approach successfully identified novel mediators of the replication stress response, including the chromatin acetylation reader protein TRIM24. In validating TRIM24 function, we uncovered its crucial role in coordinating Alternative Lengthening of Telomeres (ALT), a cancer-specific telomere extension pathway involving replication stress. Our data reveal that TRIM24 is directed to telomeres via a p300/CBP-dependent acetylation chromatin signaling cascade, where it organizes ALT-associated PML bodies (APBs) to promote telomere DNA synthesis. Strikingly, we demonstrate that when artificially tethered at telomeres, TRIM24 can stimulate new telomere DNA synthesis in a SUMO-dependent manner, independently of p300/CBP or PML-dependent APBs. Thus, this study identifies a TRIM24 chromatin signaling pathway required for ALT telomere maintenance.
Collapse
|
8
|
Huang HT, Lumpkin RJ, Tsai RW, Su S, Zhao X, Xiong Y, Chen J, Mageed N, Donovan KA, Fischer ES, Sellers WR. Ubiquitin-specific proximity labeling for the identification of E3 ligase substrates. Nat Chem Biol 2024; 20:1227-1236. [PMID: 38514884 DOI: 10.1038/s41589-024-01590-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
Protein ubiquitylation controls diverse processes within eukaryotic cells, including protein degradation, and is often dysregulated in disease. Moreover, small-molecule degraders that redirect ubiquitylation activities toward disease targets are an emerging and promising therapeutic class. Over 600 E3 ubiquitin ligases are expressed in humans, but their substrates remain largely elusive, necessitating the development of new methods for their discovery. Here we report the development of E3-substrate tagging by ubiquitin biotinylation (E-STUB), a ubiquitin-specific proximity labeling method that biotinylates ubiquitylated substrates in proximity to an E3 ligase of interest. E-STUB accurately identifies the direct ubiquitylated targets of protein degraders, including collateral targets and ubiquitylation events that do not lead to substrate degradation. It also detects known substrates of E3 ligase CRBN and VHL with high specificity. With the ability to elucidate proximal ubiquitylation events, E-STUB may facilitate the development of proximity-inducing therapeutics and act as a generalizable method for E3-substrate mapping.
Collapse
Affiliation(s)
- Hai-Tsang Huang
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ryan J Lumpkin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ryan W Tsai
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Shuyao Su
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Xu Zhao
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Yuan Xiong
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - James Chen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Nada Mageed
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - William R Sellers
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Yao Y, Zhou S, Yan Y, Fu K, Xiao S. The tripartite motif-containing 24 is a multifunctional player in human cancer. Cell Biosci 2024; 14:103. [PMID: 39160596 PMCID: PMC11334367 DOI: 10.1186/s13578-024-01289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024] Open
Abstract
Tripartite motif-containing 24 (TRIM24), also known as transcriptional intermediary factor 1α (TIF1α), is the founding member of TIF1 family. Recent evidence indicates that aberrant expression of TRIM24, functions as an oncogene, is associated with poor prognosis across various cancer types. TRIM24 exhibits a multifaceted structure comprising an N-terminal TRIM region with a RING domain, B-box type 1 and type 2 domains, and a coiled-coil region, as well as a C-terminal plant-homeodomain (PHD)-bromodomain. The bromodomain serves as a 'reader' of epigenetic histone marks, regulating chromatin structure and gene expression by linking associated proteins to acetylated nucleosomal targets, thereby controlling transcription of genes. Notably, bromodomains have emerged as compelling targets for cancer therapeutic development. In addition, TRIM24 plays specialized roles as a signal transduction molecule, orchestrating various cellular signaling cascades in cancer cells. Herein, we review the recent advancements in understanding the functions of TRIM24, and demonstrate the research progress in utilizing TRIM24 as a target for cancer therapy.
Collapse
Affiliation(s)
- Yuanbing Yao
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
| | - Sheng Zhou
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
- Department of Ultrasound, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yue Yan
- Yanbian University Medical School, Yanji, Jilin, China
| | - Kai Fu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Center MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87# Xiangya Road, Changsha, 410008, Hunan, China.
| | - Shuai Xiao
- The First Affiliated Hospital, Department of Gastrointestinal Surgery, Hengyang Medical School, University of South China, 69# Chuanshan Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
10
|
Jiao D, Sun H, Zhao X, Chen Y, Lv Z, Shi Q, Li Y, Wang C, Gao K. mTORC1/S6K1 signaling promotes sustained oncogenic translation through modulating CRL3 IBTK-mediated ubiquitination of eIF4A1 in cancer cells. eLife 2024; 12:RP92236. [PMID: 38738857 PMCID: PMC11090508 DOI: 10.7554/elife.92236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Enhanced protein synthesis is a crucial molecular mechanism that allows cancer cells to survive, proliferate, metastasize, and develop resistance to anti-cancer treatments, and often arises as a consequence of increased signaling flux channeled to mRNA-bearing eukaryotic initiation factor 4F (eIF4F). However, the post-translational regulation of eIF4A1, an ATP-dependent RNA helicase and subunit of the eIF4F complex, is still poorly understood. Here, we demonstrate that IBTK, a substrate-binding adaptor of the Cullin 3-RING ubiquitin ligase (CRL3) complex, interacts with eIF4A1. The non-degradative ubiquitination of eIF4A1 catalyzed by the CRL3IBTK complex promotes cap-dependent translational initiation, nascent protein synthesis, oncogene expression, and cervical tumor cell growth both in vivo and in vitro. Moreover, we show that mTORC1 and S6K1, two key regulators of protein synthesis, directly phosphorylate IBTK to augment eIF4A1 ubiquitination and sustained oncogenic translation. This link between the CRL3IBTK complex and the mTORC1/S6K1 signaling pathway, which is frequently dysregulated in cancer, represents a promising target for anti-cancer therapies.
Collapse
Affiliation(s)
- Dongyue Jiao
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Huiru Sun
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Xiaying Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Yingji Chen
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Zeheng Lv
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Qing Shi
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Yao Li
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Chenji Wang
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji UniversityShanghaiChina
| |
Collapse
|
11
|
Hao B, Chen K, Zhai L, Liu M, Liu B, Tan M. Substrate and Functional Diversity of Protein Lysine Post-translational Modifications. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae019. [PMID: 38862432 PMCID: PMC12016574 DOI: 10.1093/gpbjnl/qzae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 11/11/2023] [Accepted: 01/08/2024] [Indexed: 06/13/2024]
Abstract
Lysine post-translational modifications (PTMs) are widespread and versatile protein PTMs that are involved in diverse biological processes by regulating the fundamental functions of histone and non-histone proteins. Dysregulation of lysine PTMs is implicated in many diseases, and targeting lysine PTM regulatory factors, including writers, erasers, and readers, has become an effective strategy for disease therapy. The continuing development of mass spectrometry (MS) technologies coupled with antibody-based affinity enrichment technologies greatly promotes the discovery and decoding of PTMs. The global characterization of lysine PTMs is crucial for deciphering the regulatory networks, molecular functions, and mechanisms of action of lysine PTMs. In this review, we focus on lysine PTMs, and provide a summary of the regulatory enzymes of diverse lysine PTMs and the proteomics advances in lysine PTMs by MS technologies. We also discuss the types and biological functions of lysine PTM crosstalks on histone and non-histone proteins and current druggable targets of lysine PTM regulatory factors for disease therapy.
Collapse
Affiliation(s)
- Bingbing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kaifeng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Muyin Liu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
12
|
Ren D, Li W, Zeng R, Liu X, Liang H, Xiong W, Yang C, Jin X. Retinoblastoma-associated protein is important for TRIM24-mediated activation of the mTOR signaling pathway through DUSP2 action in prostate cancer. Cell Death Differ 2024; 31:592-604. [PMID: 38514847 PMCID: PMC11094112 DOI: 10.1038/s41418-024-01282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
RB transcriptional corepressor 1 (RB) deletion is the most important genomic factor associated with the prognosis of castration-resistant prostate cancer (CRPC) patients receiving androgen receptor (AR) signaling inhibitor therapy. Loss of RB could support prostate cancer cell growth in a hormone-independent manner, but the underlying mechanism by which RB regulates tumor progression extends far beyond the cell cycle pathway. A previous study indicated that RB inactivates AKT signaling but has no effect on mTOR signaling in cancer cells. Here, we found that the S249/T252 site in RB is key to regulating the transcriptional activity of the tumor-promoting factor TRIM24 in CRPC, as identified through FXXXV mapping. The RB/TRIM24 complex functions through DUSP2, which serves as an intermediate bridge, to activate the mTOR pathway and promote prostate cancer progression. Accordingly, we designed RB-linker-proteolysis-targeting chimera (PROTAC) molecules, which decreased TRIM24 protein levels and inactivated the mTOR signaling pathway, thereby inhibiting prostate cancer. Therefore, this study not only elucidates the novel function of RB but also provides a theoretical basis for the development of new drugs for treating prostate cancer.
Collapse
Affiliation(s)
- Da Ren
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Ruijiang Zeng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Xinlin Liu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Huaiyuan Liang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Wei Xiong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Chunguang Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
13
|
Lee CJ, Lee H, Kim SR, Nam SB, Lee GE, Yang KE, Lee GJ, Chun SH, Kang HC, Lee JY, Lee HS, Cho SJ, Cho YY. ELK3 destabilization by speckle-type POZ protein suppresses prostate cancer progression and docetaxel resistance. Cell Death Dis 2024; 15:274. [PMID: 38632244 PMCID: PMC11024157 DOI: 10.1038/s41419-024-06647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
Accumulating evidence demonstrates that the activity regulation of ELK3, a member of the E26 transformation-specific oncogene family, is critical to regulating cell proliferation, migration, and survival in human cancers. However, the molecular mechanisms of how ELK3 induces chemoresistance in prostate cancer (PCa) have not been elucidated. In this study, we found that SPOP and ELK3 are an interacting partner. The interaction between SPOP and ELK3 resulted in increased ELK3 ubiquitination and destruction, assisted by checkpoint kinase-mediated ELK3 phosphorylation. Notably, the modulation of SPOP-mediated ELK3 protein stability affected the c-Fos-induced cell proliferation and invasion of PCa cells. The clinical involvement of the SPOP-ELK3 axis in PCa development was confirmed by an immunohistochemical assay on 123 PCa tissues, with an inverse correlation between increased ELK3 and decreased SPOP being present in ~80% of the specimens. This observation was supported by immunohistochemistry analysis using a SPOP-mutant PCa specimen. Finally, docetaxel treatment induced cell death by activating checkpoint kinase- and SPOP-mediated ELK3 degradation, while SPOP-depleted or SPOP-mutated PCa cells showed cell death resistance. Notably, this observation was correlated with the protein levels of ELK3. Taken together, our study reveals the precise mechanism of SPOP-mediated degradation of ELK3 and provides evidence that SPOP mutations contribute to docetaxel resistance in PCa.
Collapse
Affiliation(s)
- Cheol-Jung Lee
- BK21-4th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
- Biopharmaceutical research center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute (KBSI), 162, Cheongju, 28119, Korea
| | - Heejung Lee
- Department of Hospital Pathology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seo Ree Kim
- Division of Medical Oncology, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Soo-Bin Nam
- BK21-4th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
- Biopharmaceutical research center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute (KBSI), 162, Cheongju, 28119, Korea
| | - Ga-Eun Lee
- BK21-4th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
| | - Kyeong Eun Yang
- Biopharmaceutical research center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute (KBSI), 162, Cheongju, 28119, Korea
| | - Guk Jin Lee
- Division of Medical Oncology, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang Hoon Chun
- Division of Medical Oncology, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Han Chang Kang
- BK21-4th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
- RCD Control·Material Research Institute, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Joo Young Lee
- BK21-4th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
- RCD Control·Material Research Institute, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Hye Suk Lee
- BK21-4th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
- RCD Control·Material Research Institute, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Sung-Jun Cho
- University of Minnesota Department of Medicine, 420, Delaware St., SE, Minneapolis, MN, MN55455, USA
| | - Yong-Yeon Cho
- BK21-4th Team, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea.
- RCD Control·Material Research Institute, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
14
|
Bidot S, Yin J, Zhou P, Zhang L, Deeb KK, Smith G, Hill CE, Xiu J, Bilen MA, Case KB, Tinsley M, Carthon B, Harik LR. Genetic Profiling of African American Patients With Prostatic Adenocarcinoma Metastatic to the Lymph Nodes: A Pilot Study. Arch Pathol Lab Med 2024; 148:310-317. [PMID: 37327205 DOI: 10.5858/arpa.2022-0274-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT.— Genetic profiling data of prostatic adenocarcinoma are derived from predominantly White patients. In African Americans, prostatic adenocarcinoma has a poorer prognosis, raising the possibility of distinct genetic alterations. OBJECTIVE.— To investigate the genomic alterations of prostatic adenocarcinoma metastatic to regional lymph nodes in African American patients, with an emphasis on SPOP mutation. DESIGN.— We retrospectively reviewed African American patients with pN1 prostatic adenocarcinoma managed with radical prostatectomy and lymph node dissection. Comprehensive molecular profiling was performed, and androgen receptor signaling scores were calculated. RESULTS.— Nineteen patients were included. The most frequent genetic alteration was SPOP mutations (5 of 17; 29.4% [95% CI: 10.3-56.0]). While most alterations were associated with a high androgen receptor signaling score, mutant SPOP was exclusively associated with a low median and interquartile range (IQR) androgen receptor signaling score (0.788 [IQR 0.765-0.791] versus 0.835 [IQR 0.828-0.842], P = .003). In mutant SPOP, mRNA expression of SPOP inhibitor G3BP1 and SPOP substrates showed a significantly decreased expression of AR (33.40 [IQR 28.45-36.30] versus 59.53 [IQR 53.10-72.83], P = .01), TRIM24 (3.95 [IQR 3.28-5.03] versus 9.80 [IQR 7.39-11.70], P = .008), and NCOA3 (15.19 [IQR 10.59-15.93] versus 21.88 [IQR 18.41-28.33], P = .046). CONCLUSIONS.— African American patients with metastatic prostate adenocarcinoma might have a higher prevalence of mutant SPOP (30%), compared to ∼10% in unselected cohorts with lower expressions of SPOP substrates. In our study, in patients with mutant SPOP, the mutation was associated with decreased SPOP substrate expression and androgen receptor signaling, raising concern for suboptimal efficacy of androgen deprivation therapy in this subset of patients.
Collapse
Affiliation(s)
- Samuel Bidot
- From the Departments of Pathology and Laboratory Medicine (Bidot, Zhang, Deeb, Smith, Hill, Tinsley, Harik)
| | - Jun Yin
- Department of Clinical and Translational Research, Caris Life Sciences, Phoenix, Arizona (Yin, Xiu)
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York (Zhou)
| | - Linsheng Zhang
- From the Departments of Pathology and Laboratory Medicine (Bidot, Zhang, Deeb, Smith, Hill, Tinsley, Harik)
| | - Kristin K Deeb
- From the Departments of Pathology and Laboratory Medicine (Bidot, Zhang, Deeb, Smith, Hill, Tinsley, Harik)
| | - Geoffrey Smith
- From the Departments of Pathology and Laboratory Medicine (Bidot, Zhang, Deeb, Smith, Hill, Tinsley, Harik)
| | - Charles E Hill
- From the Departments of Pathology and Laboratory Medicine (Bidot, Zhang, Deeb, Smith, Hill, Tinsley, Harik)
| | - Joanne Xiu
- Department of Clinical and Translational Research, Caris Life Sciences, Phoenix, Arizona (Yin, Xiu)
| | - Mehmet A Bilen
- Hematology and Oncology (Bilen, Carthon)
- Winship Cancer Institute of Emory University, Atlanta, GA (Bilen, Harik)
| | | | - Mazie Tinsley
- From the Departments of Pathology and Laboratory Medicine (Bidot, Zhang, Deeb, Smith, Hill, Tinsley, Harik)
| | | | - Lara R Harik
- From the Departments of Pathology and Laboratory Medicine (Bidot, Zhang, Deeb, Smith, Hill, Tinsley, Harik)
- Winship Cancer Institute of Emory University, Atlanta, GA (Bilen, Harik)
| |
Collapse
|
15
|
Deng Y, Ding W, Ma K, Zhan M, Sun L, Zhou Z, Lu L. SPOP point mutations regulate substrate preference and affect its function. Cell Death Dis 2024; 15:172. [PMID: 38409107 PMCID: PMC10897488 DOI: 10.1038/s41419-024-06565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
The adaptor SPOP recruits substrates to CUL3 E3 ligase for ubiquitination and degradation. Structurally, SPOP harbors a MATH domain for substrate recognition, and a BTB domain responsible for binding CUL3. Reported point mutations always occur in SPOP's MATH domain and are through to disrupt affinities of SPOP to substrates, thereby leading to tumorigenesis. In this study, we identify the tumor suppressor IRF2BP2 as a novel substrate of SPOP. SPOP enables to attenuate IRF2BP2-inhibited cell proliferation and metastasis in HCC cells. However, overexpression of wild-type SPOP alone suppresses HCC cell proliferation and metastasis. In addition, a HCC-derived mutant, SPOP-M35L, shows an increased affinity to IRF2BP2 in comparison with wild-type SPOP. SPOP-M35L promotes HCC cell proliferation and metastasis, suggesting that M35L mutation possibly reprograms SPOP from a tumor suppressor to an oncoprotein. Taken together, this study uncovers mutations in SPOP's MATH lead to distinct functional consequences in context-dependent manners, rather than simply disrupting its interactions with substrates, raising a noteworthy concern that we should be prudent to select SPOP as therapeutic target for cancers.
Collapse
Affiliation(s)
- Yanran Deng
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 210009, Nanjing, China
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, 330022, Nanchang, China
| | - Wenhao Ding
- College of Life Sciences, Shandong Agricultural University, 271018, Tai'an, China
| | - Kaize Ma
- College of Life Sciences, Shandong Agricultural University, 271018, Tai'an, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), 519000, Zhuhai, Guangdong, China
| | - Li Sun
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 210009, Nanjing, China.
| | - Zizhang Zhou
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, 330022, Nanchang, China.
- College of Life Sciences, Shandong Agricultural University, 271018, Tai'an, China.
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), 519000, Zhuhai, Guangdong, China.
| |
Collapse
|
16
|
Yu Z, Wu X, Zhu J, Yan H, Li Y, Zhang H, Zhong Y, Lin M, Ye G, Li X, Jin J, Li K, Wang J, Zhuang H, Lin T, He J, Lu C, Xu Z, Zhang X, Li H, Jin X. BCLAF1 binds SPOP to stabilize PD-L1 and promotes the development and immune escape of hepatocellular carcinoma. Cell Mol Life Sci 2024; 81:82. [PMID: 38340178 PMCID: PMC10858942 DOI: 10.1007/s00018-024-05144-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Interaction between programmed death-1 (PD-1) ligand 1 (PD-L1) on tumor cells and PD-1 on T cells allows tumor cells to evade T cell-mediated immune surveillance. Strategies targeting PD-1/PD-L1 have shown clinical benefits in a variety of cancers. However, limited response rates in hepatocellular carcinoma (HCC) have prompted us to investigate the molecular regulation of PD-L1. Here, we identify B cell lymphoma-2-associated transcription factor 1 (BCLAF1) as a key PD-L1 regulator in HCC. Specifically, BCLAF1 interacts with SPOP, an E3 ligase that mediates the ubiquitination and degradation of PD-L1, thereby competitively inhibiting SPOP-PD-L1 interaction and subsequent ubiquitination and degradation of PD-L1. Furthermore, we determined an SPOP-binding consensus (SBC) motif mediating the BCLAF1-SPOP interaction on BCLAF1 protein and mutation of BCLAF1-SBC motif disrupts the regulation of the SPOP-PD-L1 axis. In addition, BCLAF1 expression was positively correlated with PD-L1 expression and negatively correlated with biomarkers of T cell activation, including CD3 and CD8, as well as with the level of immune cell infiltration in HCC tissues. Besides, BCLAF1 depletion leads to a significant reduction of PD-L1 expression in vitro, and this reduction of PD-L1 promoted T cell-mediated cytotoxicity. Notably, overexpression of BCLAF1 sensitized tumor cells to checkpoint therapy in an in vitro HCC cells-Jurkat cells co-culture model, whereas BCLAF1-SBC mutant decreased tumor cell sensitivity to checkpoint therapy, suggesting that BCLAF1 and its SBC motif serve as a novel therapeutic target for enhancing anti-tumor immunity in HCC.
Collapse
Affiliation(s)
- Zongdong Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Xiang Wu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
| | - Huan Yan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
| | - Yuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Hui Zhang
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Yeling Zhong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Man Lin
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Ganghui Ye
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Xinming Li
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Jiabei Jin
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Kailang Li
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Jie Wang
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Hui Zhuang
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Ting Lin
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Jian He
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Changjiang Lu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
| | - Zeping Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
| | - Xie Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China.
| | - Xiaofeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China.
| |
Collapse
|
17
|
Gong DA, Zhou P, Chang WY, Yang JY, Zhang YL, Huang AL, Tang N, Wang K. SPOP promotes CREB5 ubiquitination to inhibit MET signaling in liver cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119642. [PMID: 37996058 DOI: 10.1016/j.bbamcr.2023.119642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Liver cancer is ranked as the sixth most prevalent from of malignancy globally and stands as the third primary contributor to cancer-related mortality. Metastasis is the main reason for liver cancer treatment failure and patient deaths. Speckle-type POZ protein (SPOP) serves as a crucial substrate junction protein within the cullin-RING E3 ligase complex, acting as a significant tumor suppressor in liver cancer. Nevertheless, the precise molecular mechanism underlying the role of SPOP in liver cancer metastasis remain elusive. In the current study, we identified cAMP response element binding 5 (CREB5) as a novel SPOP substrate in liver cancer. SPOP facilitates non-degradative K63-polyubiquitination of CREB5 on K432 site, consequently hindering its capacity to activate receptor tyrosine kinase MET. Moreover, liver cancer-associated SPOP mutant S119N disrupts the SPOP-CREB5 interactions and impairs the ubiquitination of CREB5.This disruption ultimately leads to the activation of the MET signaling pathway and enhances metastatic properties of hepatoma cells both in vitro and in vivo. In conclusion, our findings highlight the functional significance of the SPOP-CREB5-MET axis in liver cancer metastasis.
Collapse
Affiliation(s)
- De-Ao Gong
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Peng Zhou
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Wen-Yi Chang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jia-Yao Yang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yan-Lai Zhang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Kai Wang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
18
|
Chou MC, Wang YH, Chen FY, Kung CY, Wu KP, Kuo JC, Chan SJ, Cheng ML, Lin CY, Chou YC, Ho MC, Firestine S, Huang JR, Chen RH. PAICS ubiquitination recruits UBAP2 to trigger phase separation for purinosome assembly. Mol Cell 2023; 83:4123-4140.e12. [PMID: 37848033 DOI: 10.1016/j.molcel.2023.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Purinosomes serve as metabolons to enhance de novo purine synthesis (DNPS) efficiency through compartmentalizing DNPS enzymes during stressed conditions. However, the mechanism underpinning purinosome assembly and its pathophysiological functions remains elusive. Here, we show that K6-polyubiquitination of the DNPS enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase (PAICS) by cullin-5/ankyrin repeat and SOCS box containing 11 (Cul5/ASB11)-based ubiquitin ligase plays a driving role in purinosome assembly. Upon several purinosome-inducing cues, ASB11 is upregulated by relieving the H3K9me3/HP1α-mediated transcriptional silencing, thus stimulating PAICS polyubiquitination. The polyubiquitinated PAICS recruits ubiquitin-associated protein 2 (UBAP2), a ubiquitin-binding protein with multiple stretches of intrinsically disordered regions, thereby inducing phase separation to trigger purinosome assembly for enhancing DNPS pathway flux. In human melanoma, ASB11 is highly expressed to facilitate a constitutive purinosome formation to which melanoma cells are addicted for supporting their proliferation, viability, and tumorigenesis in a xenograft model. Our study identifies a driving mechanism for purinosome assembly in response to cellular stresses and uncovers the impact of purinosome formation on human malignancies.
Collapse
Affiliation(s)
- Ming-Chieh Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Hsuan Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Fei-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Ying Kung
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Shu-Jou Chan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Chih-Yu Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Steven Firestine
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Jie-Rong Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
19
|
Singh S, Yeat NY, Wang YT, Lin SY, Kuo IY, Wu KP, Wang WJ, Wang WC, Su WC, Wang YC, Chen RH. PTPN23 ubiquitination by WDR4 suppresses EGFR and c-MET degradation to define a lung cancer therapeutic target. Cell Death Dis 2023; 14:671. [PMID: 37821451 PMCID: PMC10567730 DOI: 10.1038/s41419-023-06201-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
Aberrant overexpression or activation of EGFR drives the development of non-small cell lung cancer (NSCLC) and acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) by secondary EGFR mutations or c-MET amplification/activation remains as a major hurdle for NSCLC treatment. We previously identified WDR4 as a substrate adaptor of Cullin 4 ubiquitin ligase and an association of WDR4 high expression with poor prognosis of lung cancer. Here, using an unbiased ubiquitylome analysis, we uncover PTPN23, a component of the ESCRT complex, as a substrate of WDR4-based ubiquitin ligase. WDR4-mediated PTPN23 ubiquitination leads to its proteasomal degradation, thereby suppressing lysosome trafficking and degradation of wild type EGFR, EGFR mutant, and c-MET. Through this mechanism, WDR4 sustains EGFR and c-MET signaling to promote NSCLC proliferation, migration, invasion, stemness, and metastasis. Clinically, PTPN23 is downregulated in lung cancer and its low expression correlates with WDR4 high expression and poor prognosis. Targeting WDR4-mediated PTPN23 ubiquitination by a peptide that competes with PTPN23 for binding WDR4 promotes EGFR and c-MET degradation to block the growth and progression of EGFR TKI-resistant NSCLC. These findings identify a central role of WDR4/PTPN23 axis in EGFR and c-MET trafficking and a potential therapeutic target for treating EGFR TKI-resistant NSCLC.
Collapse
Affiliation(s)
- Shaifali Singh
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
- Institute of Molecular & Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Nai Yang Yeat
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Ya-Ting Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Shu-Yu Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - I-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
| | - Won-Jing Wang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Wen-Ching Wang
- Institute of Molecular & Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Wu-Chou Su
- Division of Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
20
|
Cavalcante L, Deshmukh SK, Ribeiro JR, Carneiro BA, Dizon DS, Angara K, Mattox T, Wu S, Xiu J, Walker P, Oberley M, Nabhan C, Huang H, Antonarakis ES. Opposing Roles of SPOP Mutations in Human Prostate and Endometrial Cancers. JCO Precis Oncol 2023; 7:e2300088. [PMID: 37677121 DOI: 10.1200/po.23.00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/09/2023] [Accepted: 07/12/2023] [Indexed: 09/09/2023] Open
Abstract
PURPOSE Recurrent gene mutations in speckle-type POZ protein (SPOP), the substrate-binding component of E3 ubiquitin ligase, are associated with tumor progression in prostate and endometrial cancers. Here, we characterized SPOP mutations in these cancers and explored their association with molecular and immune signatures and patient outcomes. METHODS There were 7,398 prostate cancer and 19,188 endometrial cancer samples analyzed for clinical and molecular profiles at Caris Life Sciences. Overall survival (OS) was analyzed using Kaplan-Meier survival curves. Statistical significance was determined using chi-square and Mann-Whitney U tests, with P values adjusted for multiple comparisons. RESULTS SPOP mutations were identified in 9.2% of prostate and 4.3% of endometrial cancers. Mutations clustered in the SPOP meprin and TRAF-C homology domain, with no significant overlap between cancer types. SPOP mutation was associated with differential comutation profiles and opposing tumor immune microenvironment signatures for each cancer, with greater immune infiltration in SPOP-mutated endometrial cancer. SPOP-mutated prostate and endometrial cancers displayed altered epigenetic gene expression, including opposite regulation of BRD2 transcripts. In SPOP-mutant prostate cancer, higher expression of androgen receptor-regulated transcripts and improved OS after treatment with hormonal agents were observed. In endometrial cancer, hormone receptor expression was significantly lower in SPOP-mutated tumors and differences in OS were highly dependent on the particular hotspot mutation and histologic subtype. CONCLUSION These data indicate that SPOP mutations drive opposing molecular and immune landscapes in prostate and endometrial cancers-suggesting a loss-of-function mechanism in prostate cancer and gain-of-function mechanism in endometrial cancer-and provide a rationale for tailored therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | - Benedito A Carneiro
- Lifespan Cancer Institute, Legorreta Cancer Center at Brown University, Providence, RI
| | - Don S Dizon
- Lifespan Cancer Institute, Legorreta Cancer Center at Brown University, Providence, RI
| | | | | | | | | | | | | | | | - Haojie Huang
- Mayo Clinic College of Medicine and Science, Rochester, MN
| | | |
Collapse
|
21
|
Gao Y, Shan Z, Jian C, Wang Y, Yao X, Li S, Ti X, Zhao G, Liu C, Zhang Q. HIB/SPOP inhibits Ci/Gli-mediated tumorigenesis by modulating the RNA Polymerase II components stabilities. iScience 2023; 26:107334. [PMID: 37554435 PMCID: PMC10404538 DOI: 10.1016/j.isci.2023.107334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/09/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023] Open
Abstract
Hedgehog (Hh) signaling mediated by transcription factor Ci/Gli plays a vital role in embryonic development and adult tissue homeostasis in invertebrates and vertebrates, whose dysregulation leads to many human disorders, including cancer. However, till now, cofactors of Ci/Gli which can affect tumorigenesis are not well known. Here, through genetic screen, we find overexpression of active Ci alone is not sufficient to generate tumor-like eye phenotype in Drosophila, however, its overexpression combined with knockdown of hib causes a striking tumor-like big eye phenotype. Mechanistically, HIB/SPOP inhibits Ci/Gli-mediated tumorigenesis by modulating the RNA polymerase II (RNAPII) components Rpb3/Rpb7 stabilities in E3 ligase dependent manner. In addition, Ci/Gli can promote HIB/SPOP-mediated Rpb7/Rpb3 degradation. Taken together, our results indicate Ci/Gli needs to hook up with suitable RNAPII together to achieve the tumor-like eye phenotype and HIB/SPOP plays dual roles through controlling Ci/Gli and Rpb3/Rpb7 protein stabilities to temper Ci/Gli/RNAPII-mediated tumorigenesis.
Collapse
Affiliation(s)
- Yuxue Gao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Zhaoliang Shan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Chunhua Jian
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Xia Yao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Shengnan Li
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Xiuxiu Ti
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Guochun Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Chen Liu
- Department of Medical Genetics, Nanjing Medical University, Nanjing 211166, China
| | - Qing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
| |
Collapse
|
22
|
Patel LR, Stratton SA, McLaughlin M, Krause P, Allton K, Rivas AL, Barbosa D, Hart T, Barton MC. Genome-wide CRISPR-Cas9 screen analyzed by SLIDER identifies network of repressor complexes that regulate TRIM24. iScience 2023; 26:107126. [PMID: 37426340 PMCID: PMC10329041 DOI: 10.1016/j.isci.2023.107126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/12/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
TRIM24 is an oncogenic chromatin reader that is frequently overexpressed in human tumors and associated with poor prognosis. However, TRIM24 is rarely mutated, duplicated, or rearranged in cancer. This raises questions about how TRIM24 is regulated and what changes in its regulation are responsible for its overexpression. Here, we perform a genome-wide CRISPR-Cas9 screen by fluorescence-activated cell sorting (FACS) that nominated 220 negative regulators and elucidated a regulatory network that includes the KAP1 corepressor, CNOT deadenylase, and GID/CTLH E3 ligase. Knocking out required components of these three complexes caused TRIM24 overexpression, confirming their negative regulation of TRIM24. Our findings identify regulators of TRIM24 that nominate previously unexplored contexts for this oncoprotein in biology and disease. These findings were enabled by SLIDER, a new scoring system designed and vetted in our study as a broadly applicable tool for analysis of CRISPR screens performed by FACS.
Collapse
Affiliation(s)
- Lalit R. Patel
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sabrina A. Stratton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Megan McLaughlin
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick Krause
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, US
| | - Kendra Allton
- The Neurodegeneration Consortium, Therapeutics Discovery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrés López Rivas
- School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Daniela Barbosa
- Department of Molecular Biology, University of Texas Southwestern, Dallas, TX, USA
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelle C. Barton
- Division of Oncological Sciences, Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, US
| |
Collapse
|
23
|
De La Cruz-Herrera CF, Tatham MH, Siddiqi UZ, Shire K, Marcon E, Greenblatt JF, Hay RT, Frappier L. Changes in SUMO-modified proteins in Epstein-Barr virus infection identifies reciprocal regulation of TRIM24/28/33 complexes and the lytic switch BZLF1. PLoS Pathog 2023; 19:e1011477. [PMID: 37410772 DOI: 10.1371/journal.ppat.1011477] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
SUMO modifications regulate the function of many proteins and are important in controlling herpesvirus infections. We performed a site-specific proteomic analysis of SUMO1- and SUMO2-modified proteins in Epstein-Barr virus (EBV) latent and lytic infection to identify proteins that change in SUMO modification status in response to EBV reactivation. Major changes were identified in all three components of the TRIM24/TRIM28/TRIM33 complex, with TRIM24 being rapidly degraded and TRIM33 being phosphorylated and SUMOylated in response to EBV lytic infection. Further experiments revealed TRIM24 and TRIM33 repress expression of the EBV BZLF1 lytic switch gene, suppressing EBV reactivation. However, BZLF1 was shown to interact with TRIM24 and TRIM33, resulting in disruption of TRIM24/TRIM28/TRIM33 complexes, degradation of TRIM24 and modification followed by degradation of TRIM33. Therefore, we have identified TRIM24 and TRIM33 as cellular antiviral defence factors against EBV lytic infection and established the mechanism by which BZLF1 disables this defence.
Collapse
Affiliation(s)
| | - Michael H Tatham
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Umama Z Siddiqi
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Kathy Shire
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Jack F Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Ronald T Hay
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
24
|
Ong JY, Torres JZ. Cul3 substrate adaptor SPOP targets Nup153 for degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.13.540659. [PMID: 37293018 PMCID: PMC10245568 DOI: 10.1101/2023.05.13.540659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
SPOP is a Cul3 substrate adaptor responsible for degradation of many proteins related to cell growth and proliferation. Because mutation or misregulation of SPOP drives cancer progression, understanding the suite of SPOP substrates is important to understanding regulation of cell proliferation. Here, we identify Nup153, a component of the nuclear basket of the nuclear pore complex, as a novel substrate of SPOP. SPOP and Nup153 bind to each other and colocalize at the nuclear envelope and some nuclear foci in cells. The binding interaction between SPOP and Nup153 is complex and multivalent. Nup153 is ubiquitylated and degraded upon expression of SPOPWT but not its substrate binding-deficient mutant SPOPF102C. Depletion of SPOP via RNAi leads to Nup153 stabilization. Upon loss of SPOP, the nuclear envelope localization of spindle assembly checkpoint protein Mad1, which is tethered to the nuclear envelope by Nup153, is stronger. Altogether, our results demonstrate SPOP regulates Nup153 levels and expands our understanding of the role of SPOP in protein and cellular homeostasis.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
25
|
Cuneo MJ, O'Flynn BG, Lo YH, Sabri N, Mittag T. Higher-order SPOP assembly reveals a basis for cancer mutant dysregulation. Mol Cell 2023; 83:731-745.e4. [PMID: 36693379 PMCID: PMC9992347 DOI: 10.1016/j.molcel.2022.12.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/19/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023]
Abstract
The speckle-type POZ protein (SPOP) functions in the Cullin3-RING ubiquitin ligase (CRL3) as a receptor for the recognition of substrates involved in cell growth, survival, and signaling. SPOP mutations have been attributed to the development of many types of cancers, including prostate and endometrial cancers. Prostate cancer mutations localize in the substrate-binding site of the substrate recognition (MATH) domain and reduce or prevent binding. However, most endometrial cancer mutations are dispersed in seemingly inconspicuous solvent-exposed regions of SPOP, offering no clear basis for their cancer-causing and peculiar gain-of-function properties. Herein, we present the first structure of SPOP in its oligomeric form, uncovering several new interfaces important for SPOP self-assembly and normal function. Given that many previously unaccounted-for cancer mutations are localized in these newly identified interfaces, we uncover molecular mechanisms underlying dysregulation of SPOP function, with effects ranging from gross structural changes to enhanced self-association, and heightened stability and activity.
Collapse
Affiliation(s)
- Matthew J Cuneo
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38103, USA
| | - Brian G O'Flynn
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38103, USA
| | - Yu-Hua Lo
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38103, USA
| | - Nafiseh Sabri
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38103, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38103, USA.
| |
Collapse
|
26
|
O-GlcNAcylation of SPOP promotes carcinogenesis in hepatocellular carcinoma. Oncogene 2023; 42:725-736. [PMID: 36604567 DOI: 10.1038/s41388-022-02589-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023]
Abstract
Aberrantly elevated O-GlcNAcylation level is commonly observed in human cancer patients, and has been proposed as a potential therapeutic target. Speckle-type POZ protein (SPOP), an important substrate adaptor of cullin3-RING ubiquitin ligase, plays a key role in the initiation and development of various cancers. However, the regulatory mechanisms governing SPOP and its function during hepatocellular carcinoma (HCC) progression remain unclear. Here, we show that, in HCC, SPOP is highly O-GlcNAcylated by O-GlcNAc transferase (OGT) at Ser96. In normal liver cells, the SPOP protein mainly localizes in the cytoplasm and mediates the ubiquitination of the oncoprotein neurite outgrowth inhibitor-B (Nogo-B) (also known as reticulon 4 B) by recognizing its N-terminal SPOP-binding consensus (SBC) motifs. However, O-GlcNAcylation of SPOP at Ser96 increases the nuclear positioning of SPOP in hepatoma cells, alleviating the ubiquitination of the Nogo-B protein, thereby promoting HCC progression in vitro and in vivo. In addition, ablation of O-GlcNAcylation by an S96A mutation increased the cytoplasmic localization of SPOP, thereby inhibiting the Nogo-B/c-FLIP cascade and HCC progression. Our findings reveal a novel post-translational modification of SPOP and identify a novel SPOP substrate, Nogo-B, in HCC. Intervention with the hyper O-GlcNAcylation of SPOP may provide a novel strategy for HCC treatment.
Collapse
|
27
|
Thomasen FE, Cuneo MJ, Mittag T, Lindorff-Larsen K. Conformational and oligomeric states of SPOP from small-angle X-ray scattering and molecular dynamics simulations. eLife 2023; 12:e84147. [PMID: 36856266 PMCID: PMC9998093 DOI: 10.7554/elife.84147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Speckle-type POZ protein (SPOP) is a substrate adaptor in the ubiquitin proteasome system, and plays important roles in cell-cycle control, development, and cancer pathogenesis. SPOP forms linear higher-order oligomers following an isodesmic self-association model. Oligomerization is essential for SPOP's multivalent interactions with substrates, which facilitate phase separation and localization to biomolecular condensates. Structural characterization of SPOP in its oligomeric state and in solution is, however, challenging due to the inherent conformational and compositional heterogeneity of the oligomeric species. Here, we develop an approach to simultaneously and self-consistently characterize the conformational ensemble and the distribution of oligomeric states of SPOP by combining small-angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations. We build initial conformational ensembles of SPOP oligomers using coarse-grained molecular dynamics simulations, and use a Bayesian/maximum entropy approach to refine the ensembles, along with the distribution of oligomeric states, against a concentration series of SAXS experiments. Our results suggest that SPOP oligomers behave as rigid, helical structures in solution, and that a flexible linker region allows SPOP's substrate-binding domains to extend away from the core of the oligomers. Additionally, our results are in good agreement with previous characterization of the isodesmic self-association of SPOP. In the future, the approach presented here can be extended to other systems to simultaneously characterize structural heterogeneity and self-assembly.
Collapse
Affiliation(s)
- F Emil Thomasen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Matthew J Cuneo
- Department of Structural Biology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
28
|
Gao K, Shi Q, Gu Y, Yang W, He Y, Lv Z, Ding Y, Cao W, Wang C, Wan X. SPOP mutations promote tumor immune escape in endometrial cancer via the IRF1-PD-L1 axis. Cell Death Differ 2023; 30:475-487. [PMID: 36481790 PMCID: PMC9950446 DOI: 10.1038/s41418-022-01097-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Blockade of programmed cell death 1 (PD-1)/programmed cell death 1 ligand (PD-L1) has evolved into one of the most promising immunotherapy strategies for cancer patients. Tumor cells frequently overexpress PD-L1 to evade T cell-mediated immune surveillance. However, the specific genetic alterations that drive aberrant overexpression of PD-L1 in cancer cells remain poorly understood. The gene encoding the E3 ubiquitin ligase substrate-binding adaptor SPOP is frequently mutated in endometrial cancer (EC). Here, we report that SPOP negatively regulates PD-L1 expression at the transcriptional level. Wild-type SPOP binds to IRF1, a primary transcription factor responsible for the inducible expression of PD-L1, and subsequently triggers its ubiquitin- proteasomal degradation to suppress IRF1-mediated transcriptional upregulation of PD-L1. In contrast, EC-associated SPOP mutants lose their capacity to degrade IRF1 but stabilize IRF1, and upregulate PD-L1 expression. EC-associated SPOP mutations accelerate xenograft tumor growth partially by increasing IRF1 and PD-L1 expression. Together, we identify SPOP as a negative regulator of the IRF1-PD-L1 axis and characterize the critical roles of IRF1 and PD-L1 in SPOP mutation-driven tumor immune evasion in EC.
Collapse
Affiliation(s)
- Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Qing Shi
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ye Gu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wanqi Yang
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuanlong He
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zeheng Lv
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yan Ding
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wenxin Cao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chenji Wang
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Xiaoping Wan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
29
|
Punetha A, Kotiya D. Advancements in Oncoproteomics Technologies: Treading toward Translation into Clinical Practice. Proteomes 2023; 11:2. [PMID: 36648960 PMCID: PMC9844371 DOI: 10.3390/proteomes11010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Proteomics continues to forge significant strides in the discovery of essential biological processes, uncovering valuable information on the identity, global protein abundance, protein modifications, proteoform levels, and signal transduction pathways. Cancer is a complicated and heterogeneous disease, and the onset and progression involve multiple dysregulated proteoforms and their downstream signaling pathways. These are modulated by various factors such as molecular, genetic, tissue, cellular, ethnic/racial, socioeconomic status, environmental, and demographic differences that vary with time. The knowledge of cancer has improved the treatment and clinical management; however, the survival rates have not increased significantly, and cancer remains a major cause of mortality. Oncoproteomics studies help to develop and validate proteomics technologies for routine application in clinical laboratories for (1) diagnostic and prognostic categorization of cancer, (2) real-time monitoring of treatment, (3) assessing drug efficacy and toxicity, (4) therapeutic modulations based on the changes with prognosis and drug resistance, and (5) personalized medication. Investigation of tumor-specific proteomic profiles in conjunction with healthy controls provides crucial information in mechanistic studies on tumorigenesis, metastasis, and drug resistance. This review provides an overview of proteomics technologies that assist the discovery of novel drug targets, biomarkers for early detection, surveillance, prognosis, drug monitoring, and tailoring therapy to the cancer patient. The information gained from such technologies has drastically improved cancer research. We further provide exemplars from recent oncoproteomics applications in the discovery of biomarkers in various cancers, drug discovery, and clinical treatment. Overall, the future of oncoproteomics holds enormous potential for translating technologies from the bench to the bedside.
Collapse
Affiliation(s)
- Ankita Punetha
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers University, 225 Warren St., Newark, NJ 07103, USA
| | - Deepak Kotiya
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 900 South Limestone St., Lexington, KY 40536, USA
| |
Collapse
|
30
|
Feng K, Shi Q, Jiao D, Chen Y, Yang W, Su K, Wang Y, Huang Y, Zhang P, Li Y, Wang C. SPOP inhibits BRAF-dependent tumorigenesis through promoting non-degradative ubiquitination of BRAF. Cell Biosci 2022; 12:211. [PMID: 36585710 PMCID: PMC9805134 DOI: 10.1186/s13578-022-00950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The gene encoding the E3 ubiquitin ligase substrate-binding adapter Speckle-type BTB/POZ protein (SPOP) is frequently mutated in prostate cancer (PCa) and endometrial cancer (EC); however, the molecular mechanisms underlying the contribution of SPOP mutations to tumorigenesis remain poorly understood. METHODS BRAF harbors a potential SPOP-binding consensus motif (SBC) motif. Co-immunoprecipitation assays demonstrated that BRAF interacts with SPOP. A series of functional analyses in cell lines were performed to investigate the biological significance of MAPK/ERK activation caused by SPOP mutations. RESULTS Cytoplasmic SPOP binds to and induces non-degradative ubiquitination of BRAF, thereby reducing the interaction between BRAF and other core components of the MAPK/ERK pathway. SPOP ablation increased MAPK/ERK activation. EC- or PCa-associated SPOP mutants showed a reduced capacity to bind and ubiquitinate BRAF. Moreover, cancer-associated BRAF mutations disrupted the BRAF-SPOP interaction and allowed BRAF to evade SPOP-mediated ubiquitination, thereby upregulating MAPK/ERK signaling and enhancing the neoplastic phenotypes of cancer cells. CONCLUSIONS Our findings provide new insights into the molecular link between SPOP mutation-driven tumorigenesis and aberrant BRAF-dependent activation of the MAPK/ERK pathway.
Collapse
Affiliation(s)
- Kai Feng
- grid.8547.e0000 0001 0125 2443Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438 China ,grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Qing Shi
- grid.8547.e0000 0001 0125 2443Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Dongyue Jiao
- grid.8547.e0000 0001 0125 2443Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yingji Chen
- grid.8547.e0000 0001 0125 2443Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Wanqi Yang
- grid.8547.e0000 0001 0125 2443Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Ke Su
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yalan Wang
- grid.8547.e0000 0001 0125 2443Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yan Huang
- grid.8547.e0000 0001 0125 2443Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Pingzhao Zhang
- grid.8547.e0000 0001 0125 2443Department of Pathology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China
| | - Yao Li
- grid.8547.e0000 0001 0125 2443Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Chenji Wang
- grid.8547.e0000 0001 0125 2443Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438 China
| |
Collapse
|
31
|
Chen Z, Li Z, Li C, Li B, Wang H, Nong D, Li X, Huang G, Lin J, Li W. Speckle-type POZ protein could play a potential inhibitory role in human renal cell carcinoma. BMC Cancer 2022; 22:1277. [PMID: 36474188 PMCID: PMC9727862 DOI: 10.1186/s12885-022-10340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Speckle-type POZ protein(SPOP), a substrate adaptor of Cul3 ubiquitin ligase, plays crucial roles in solid neoplasms by promoting the ubiquitination and degradation of substrates. Limited studies have shown that SPOP is overexpressed in human renal cell carcinoma (RCC) tissue. However, the exact role of SPOP in RCC remains unclear and needs to be further elucidated. The present study showed that SPOP was expressed at different levels in different RCC cell lines. The purpose of this study was to explore the roles of SPOP in the biological features of RCC cells and the expression levels of SPOP in human tissue microarray (TMA) and kidney tissues. METHODS Here, SPOP was overexpressed by lentiviral vector transfection in ACHN and Caki-1 cells, and SPOP was knocked down in Caki-2 cells with similar transfection methods. The transfection efficiency was evaluated by quantitative PCR and western blotting analyses. The role of SPOP in the proliferation, migration, invasion and apoptosis of cell lines was determined by the MTT, wound-healing, transwell and flow cytometry assays. Moreover, the cells were treated with different drug concentrations in proliferation and apoptosis assays to investigate the effect of sunitinib and IFN-α2b on the proliferation and apoptosis of SPOP-overexpressing cells and SPOP-knockdown RCC cells. Finally, immunohistochemical staining of SPOP was performed in kidney tissues and TMAs, which included RCC tissues and corresponding adjacent normal tissues. RESULTS Overexpression of SPOP inhibited cell proliferation, migration and invasion and increased cell apoptosis. Interestingly, sunitinib and IFN-α2b at several concentrations increased the proliferation inhibitory rate and total apoptosis rate of cells overexpressing SPOP. The findings of the present study showed that the SPOP protein was significantly expressed at low levels in most clear cell RCC (ccRCC) tissues and at relatively high levels in the majority of adjacent normal tissues and kidney tissues. Kaplan-Meier survival analysis showed that there was no statistically significant difference in cumulative survival based on the data of different SPOP expression levels in TMA and patients. CONCLUSIONS In contrast to previous studies, our findings demonstrated that overexpression of SPOP might suppress the progression of RCC cells, which was supported by cell experiments and immunohistochemical staining. SPOP could be a potential tumour inhibitor in RCC.
Collapse
Affiliation(s)
- Zhi Chen
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Zuan Li
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Chunlin Li
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Bingcai Li
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Haojian Wang
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Deyong Nong
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Ximing Li
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Guihai Huang
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Junhao Lin
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Wei Li
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| |
Collapse
|
32
|
Wasim S, Lee SY, Kim J. Complexities of Prostate Cancer. Int J Mol Sci 2022; 23:14257. [PMID: 36430730 PMCID: PMC9696501 DOI: 10.3390/ijms232214257] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Prostate cancer has a long disease history and a wide variety and uncertainty in individual patients' clinical progress. In recent years, we have seen a revolutionary advance in both prostate cancer patient care and in the research field. The power of deep sequencing has provided cistromic and transcriptomic knowledge of prostate cancer that has not discovered before. Our understanding of prostate cancer biology, from bedside and molecular imaging techniques, has also been greatly advanced. It is important that our current theragnostic schemes, including our diagnostic modalities, therapeutic responses, and the drugs available to target non-AR signaling should be improved. This review article discusses the current progress in the understanding of prostate cancer biology and the recent advances in diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Sobia Wasim
- Department of Neuroscience, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Sang-Yoon Lee
- Department of Neuroscience, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
33
|
Swami U, Graf RP, Nussenzveig RH, Fisher V, Tukachinsky H, Schrock AB, Li G, Ross JS, Sayegh N, Tripathi N, Mathew Thomas V, Oxnard GR, Antonarakis ES, Agarwal N. SPOP Mutations as a Predictive Biomarker for Androgen Receptor Axis-Targeted Therapy in De Novo Metastatic Castration-Sensitive Prostate Cancer. Clin Cancer Res 2022; 28:4917-4925. [PMID: 36088616 DOI: 10.1158/1078-0432.ccr-22-2228] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Intensification of androgen deprivation therapy (ADT) with either docetaxel or androgen receptor axis-targeted therapies (ARAT) are the current standard of care for patients with metastatic castration-sensitive prostate cancer (mCSPC). However, biomarkers guiding treatment selection are lacking. We hypothesized that ADT intensification with ARAT, but not with docetaxel, would be associated with improved outcomes in patients with de novo (dn)-mCSPC harboring SPOP mutations. EXPERIMENTAL DESIGN Patient-level data from a deidentified nationwide (U.S.-based) prostate cancer clinico-genomic database between January 2011 and December 2021 were extracted. Eligibility criteria: diagnosis of metastatic disease within 30 days of original prostate cancer diagnosis, genomic profiling of a tissue biopsy collected within 90 days of original diagnosis, and initiation of ARAT or docetaxel within 120 days of initial diagnosis. The log-rank test and Cox proportional hazards models were used to compare time to castration-resistant prostate cancer (TTCRPC) and overall survival (OS) for patients with and without SPOP mutations undergoing ADT intensification with ARAT or docetaxel. RESULTS In the ARAT cohort, presence of SPOP mutation compared with wild-type was associated with more favorable TTCRPC [not reached (NR) vs. 16.7 months; adjusted HR (aHR), 0.20; 95% confidence interval (CI), 0.06-0.63; P = 0.006] and OS (NR vs. 27.2 months; aHR, 0.19; 95% CI, 0.05-0.79; P = 0.022). In contrast, SPOP mutation status was not associated with TTCRPC or OS in docetaxel-treated cohort. CONCLUSIONS In real-world settings, SPOP mutations were associated with improved outcomes to ADT plus ARAT (but not ADT plus docetaxel) in patients with dn-mCSPC. This may serve as a predictive biomarker to guide treatment selection for patients with mCSPC.
Collapse
Affiliation(s)
- Umang Swami
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Ryon P Graf
- Foundation Medicine, Cambridge, Massachusetts
| | - Roberto H Nussenzveig
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | | | | | | | - Gerald Li
- Foundation Medicine, Cambridge, Massachusetts
| | - Jeffrey S Ross
- Foundation Medicine, Cambridge, Massachusetts.,Departments of Urology and Pathology, Upstate Medical University, Syracuse, New York
| | - Nicolas Sayegh
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Nishita Tripathi
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Vinay Mathew Thomas
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | | | | | - Neeraj Agarwal
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
34
|
Yang X, Zhu Q. SPOP in Cancer: Phenomena, Mechanisms and Its Role in Therapeutic Implications. Genes (Basel) 2022; 13:2051. [PMID: 36360288 PMCID: PMC9690554 DOI: 10.3390/genes13112051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/14/2022] [Accepted: 11/04/2022] [Indexed: 11/15/2023] Open
Abstract
Speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) is a cullin 3-based E3 ubiquitin ligase adaptor protein that plays a crucial role in ubiquitin-mediated protein degradation. Recently, SPOP has attracted major research attention as it is frequently mutated in a range of cancers, highlighting pleiotropic tumorigenic effects and associations with treatment resistance. Structurally, SPOP contains a functionally critical N-terminal meprin and TRAF homology (MATH) domain for many SPOP substrates. SPOP has two other domains, including the internal Bric-a-brac-Tramtrack/Broad (BTB) domain, which is linked with SPOP dimerization and binding to cullin3, and a C-terminal nuclear localization sequence (NLS). The dysregulation of SPOP-mediated proteolysis is associated with the development and progression of different cancers since abnormalities in SPOP function dysregulate cellular signaling pathways by targeting oncoproteins or tumor suppressors in a tumor-specific manner. SPOP is also involved in genome stability through its role in the DNA damage response and DNA replication. More recently, studies have shown that the expression of SPOP can be modulated in various ways. In this review, we summarize the current understanding of SPOP's functions in cancer and discuss how to design a rational therapeutic target.
Collapse
Affiliation(s)
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
35
|
Comprehensive Analysis of Ubiquitome Changes in Nicotiana benthamiana after Rice Stripe Virus Infection. Viruses 2022; 14:v14112349. [PMID: 36366447 PMCID: PMC9694600 DOI: 10.3390/v14112349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 02/01/2023] Open
Abstract
Rice stripe virus (RSV) is one of the most devastating viruses affecting rice production. During virus infection, ubiquitination plays an important role in the dynamic regulation of host defenses. We combined the ubiquitomics approach with the label-free quantitation proteomics approach to investigate potential ubiquitination status changes of Nicotiana benthamiana infected with RSV. Bioinformatics analyses were performed to elucidate potential associations between proteins with differentially ubiquitinated sites (DUSs) and various cellular components/pathways during virus infection. In total, 399 DUSs in 313 proteins were identified and quantified, among them 244 ubiquitinated lysine (Kub) sites in 186 proteins were up-regulated and 155 Kub sites in 127 proteins were down-regulated at 10 days after RSV infection. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses indicated that proteins with up-regulated Kub sites were significantly enriched in the ribosome. Silencing of 3-isopropylmalate dehydratase large subunit through virus-induced gene silencing delayed RSV infection, while silencing of mRNA-decapping enzyme-like protein promoted RSV symptom in the late stage of infection. Moreover, ubiquitination was observed in all seven RSV-encoded proteins. Our study supplied the comprehensive analysis of the ubiquitination changes in N. benthamiana after RSV infection, which is helpful for understanding RSV pathogenesis and RSV-host interactions.
Collapse
|
36
|
Greene AN, Solomon MB, Privette Vinnedge LM. Novel molecular mechanisms in Alzheimer's disease: The potential role of DEK in disease pathogenesis. Front Aging Neurosci 2022; 14:1018180. [PMID: 36275000 PMCID: PMC9582447 DOI: 10.3389/fnagi.2022.1018180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease and age-related dementias (AD/ADRD) are debilitating diseases that exact a significant physical, emotional, cognitive, and financial toll on the individual and their social network. While genetic risk factors for early-onset AD have been identified, the molecular and genetic drivers of late-onset AD, the most common subtype, remain a mystery. Current treatment options are limited for the 35 million people in the United States with AD/ADRD. Thus, it is critically important to identify novel molecular mechanisms of dementia-related pathology that may be targets for the development of new interventions. Here, we summarize the overarching concepts regarding AD/ADRD pathogenesis. Then, we highlight one potential molecular driver of AD/ADRD, the chromatin remodeling protein DEK. We discuss in vitro, in vivo, and ex vivo findings, from our group and others, that link DEK loss with the cellular, molecular, and behavioral signatures of AD/ADRD. These include associations between DEK loss and cellular and molecular hallmarks of AD/ADRD, including apoptosis, Tau expression, and Tau hyperphosphorylation. We also briefly discuss work that suggests sex-specific differences in the role of DEK in AD/ADRD pathogenesis. Finally, we discuss future directions for exploiting the DEK protein as a novel player and potential therapeutic target for the treatment of AD/ADRD.
Collapse
Affiliation(s)
- Allie N. Greene
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Matia B. Solomon
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Psychology, University of Cincinnati, Cincinnati, OH, United States
| | - Lisa M. Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
37
|
The speckle-type POZ protein (SPOP) inhibits breast cancer malignancy by destabilizing TWIST1. Cell Death Dis 2022; 8:389. [PMID: 36115849 PMCID: PMC9482615 DOI: 10.1038/s41420-022-01182-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/21/2022]
Abstract
Epithelial-mesenchymal transition (EMT) inducing transcription factor TWIST1 plays a vital role in cancer metastasis. How the tumor-suppressive E3 ligase, speckle-type POZ protein (SPOP), regulates TWIST1 in breast cancer remains unknown. In this study, we report that SPOP physically interacts with, ubiquitinates, and destabilizes TWIST1. SPOP promotes K63-and K48-linked ubiquitination of TWIST1, predominantly at K73, thereby suppressing cancer cell migration and invasion. Silencing SPOP significantly enhances EMT, which accelerates breast cancer cell migration and invasiveness in vitro and lung metastasis in vivo. Clinically, SPOP is negatively correlated with the levels of TWIST1 in highly invasive breast carcinomas. Reduced SPOP expression, along with elevated TWIST1 levels, is associated with poor prognosis in advanced breast cancer patients, particularly those with metastatic triple-negative breast cancer (TNBC). Taken together, we have disclosed a new mechanism linking SPOP to TWIST1 degradation. Thus SPOP may serve as a prognostic marker and a potential therapeutic target for advanced TNBC patients.
Collapse
|
38
|
Cotter K, Rubin MA. The evolving landscape of prostate cancer somatic mutations. Prostate 2022; 82 Suppl 1:S13-S24. [PMID: 35657155 PMCID: PMC9328313 DOI: 10.1002/pros.24353] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The landscape of somatic mutations in prostate cancer (PCa) has quickly evolved over the past years. RESULTS This evolution was in part due to the improved quality and lower cost of genomic sequencing platforms available to an ever-larger group of clinicians and researchers. The result of these efforts is a better understanding of early and late mutations that are enriched or nearly exclusive to treated PCa. There are, however, some important limitations to the current knowledge. The expanding variety of next-generation sequencing (NGS) assays either capture a wide spectrum of mutations but at low coverage or are focused panels that cover a select number of genes, most often cancer-related, at a deep coverage. Both of these approaches have their advantages, but ultimately miss low-frequency mutations or fail to cover the spectrum of potential mutations. Additionally, some alterations, such as the common ETS gene fusions, require a mixture of DNA and RNA analysis to capture the true frequency. Finally, almost all studies rely on bulk PCa tumor samples, which fail to consider tumor heterogeneity. Given all these caveats, the true picture of the somatic landscape of PCa continues to develop. SUMMARY In this review, the focus will be on how the landscape of mutations evolves during disease progression considering therapy. It will focus on a select group of early and late mutations and utilize SPOP mutations to illustrate recurrent alterations that may have clinical implications.
Collapse
Affiliation(s)
- Kellie Cotter
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Mark A. Rubin
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
- Bern Center for Precision MedicineUniversity of BernBernSwitzerland
| |
Collapse
|
39
|
Fan Y, Hou T, Dan W, Zhu Y, Liu B, Wei Y, Wang Z, Gao Y, Zeng J, Li L. ERK1/2 inhibits Cullin 3/SPOP-mediated PrLZ ubiquitination and degradation to modulate prostate cancer progression. Cell Death Differ 2022; 29:1611-1624. [PMID: 35194188 PMCID: PMC9345960 DOI: 10.1038/s41418-022-00951-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 11/09/2022] Open
Abstract
The gene encoding the E3 ubiquitin ligase substrate-binding adaptor SPOP is frequently mutated in prostate cancer (PCa), but how SPOP functions as a tumor suppressor and contributes to PCa pathogenesis remains poorly understood. Prostate Leucine Zipper (PrLZ) serves as a prostate-specific and androgen-responsive gene, which plays a pivotal role in the malignant progression of PCa. However, the upstream regulatory mechanism of PrLZ protein stability and its physiological contribution to PCa carcinogenesis remain largely elusive. Here we report that PrLZ can be degraded by SPOP. PrLZ abundance is elevated in SPOP-mutant expressing PCa cell lines and patient specimens. Meanwhile, ERK1/2 might regulate SPOP-mediated PrLZ degradation through phosphorylating PrLZ at Ser40, which blocks the interaction between SPOP and PrLZ. In addition, we identify IL-6 might act as an upstream PrLZ degradation regulator via promoting its phosphorylation by ERK1/2, leading to its impaired recognition by SPOP. Thus, our study reveals a novel SPOP substrate PrLZ which might be controlled by ERK1/2-mediated phosphorylation, thereby facilitating to explore novel drug targets and improve therapeutic strategy for PCa.
Collapse
|
40
|
Su M, Liu N, Zhang Z, Zhang J. Osmoregulatory strategies of estuarine fish Scatophagus argus in response to environmental salinity changes. BMC Genomics 2022; 23:545. [PMID: 35907798 PMCID: PMC9339187 DOI: 10.1186/s12864-022-08784-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Scatophagus argus, an estuarine inhabitant, can rapidly adapt to different salinity environments. However, the knowledge of the molecular mechanisms underlying its strong salinity tolerance remains unclear. The gill, as the main osmoregulatory organ, plays a vital role in the salinity adaptation of the fish, and thus relative studies are constructive to reveal unique osmoregulatory mechanisms in S. argus. RESULTS In the present study, iTRAQ coupled with nanoLC-MS/MS techniques were employed to explore branchial osmoregulatory mechanisms in S. argus acclimated to different salinities. Among 1,604 identified proteins, 796 differentially expressed proteins (DEPs) were detected. To further assess osmoregulatory strategies in the gills under different salinities, DEPs related to osmoregulatory (22), non-directional (18), hypo- (52), and hypersaline (40) stress responses were selected. Functional annotation analysis of these selected DEPs indicated that the cellular ion regulation (e.g. Na+-K+-ATPase [NKA] and Na+-K+-2Cl- cotransporter 1 [NKCC1]) and ATP synthesis were deeply involved in the osmoregulatory process. As an osmoregulatory protein, NKCC1 expression was inhibited under hyposaline stress but showed the opposite trend in hypersaline conditions. The expression levels of NKA α1 and β1 were only increased under hypersaline challenge. However, hyposaline treatments could enhance branchial NKA activity, which was inhibited under hypersaline environments, and correspondingly, reduced ATP content was observed in gill tissues exposed to hyposaline conditions, while its contents were increased in hypersaline groups. In vitro experiments indicated that Na+, K+, and Cl- ions were pumped out of branchial cells under hypoosmotic stress, whereas they were absorbed into cells under hyperosmotic conditions. Based on our results, we speculated that NKCC1-mediated Na+ influx was inhibited, and proper Na+ efflux was maintained by improving NKA activity under hyposaline stress, promoting the rapid adaptation of branchial cells to the hyposaline condition. Meanwhile, branchial cells prevented excessive loss of ions by increasing NKA internalization and reducing ATP synthesis. In contrast, excess ions in cells exposed to the hyperosmotic medium were excreted with sufficient energy supply, and reduced NKA activity and enhanced NKCC1-mediated Na+ influx were considered a compensatory regulation. CONCLUSIONS S. argus exhibited divergent osmoregulatory strategies in the gills when encountering hypoosmotic and hyperosmotic stresses, facilitating effective adaptabilities to a wide range of environmental salinity fluctuation.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Nanxi Liu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zhengqi Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
41
|
Zhai F, Li J, Ye M, Jin X. The functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination. Gene X 2022; 832:146562. [PMID: 35580799 DOI: 10.1016/j.gene.2022.146562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 02/09/2023] Open
Abstract
Ubiquitination of substrates usually have two fates: one is degraded by 26S proteasome, and the other is non-degradative ubiquitination modification which is associated with cell cycle regulation, chromosome inactivation, protein transportation, tumorigenesis, achondroplasia, and neurological diseases. Cullin3 (CUL3), a scaffold protein, binding with the Bric-a-Brac-Tramtrack-Broad-complex (BTB) domain of substrates recognition adaptor and RING-finger protein 1 (RBX1) form ubiquitin ligases (E3). Based on the current researches, this review has summarized the functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination.
Collapse
Affiliation(s)
- Fengguang Zhai
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jingyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
42
|
Hou C, Li Y, Wang M, Wu H, Li T. Systematic prediction of degrons and E3 ubiquitin ligase binding via deep learning. BMC Biol 2022; 20:162. [PMID: 35836176 PMCID: PMC9281121 DOI: 10.1186/s12915-022-01364-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/29/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Degrons are short linear motifs, bound by E3 ubiquitin ligase to target protein substrates to be degraded by the ubiquitin-proteasome system. Mutations leading to deregulation of degron functionality disrupt control of protein abundance due to mistargeting of proteins destined for degradation and often result in pathologies. Targeting degrons by small molecules also emerges as an exciting drug design strategy to upregulate the expression of specific proteins. Despite their essential function and disease targetability, reliable identification of degrons remains a conundrum. Here, we developed a deep learning-based model named Degpred that predicts general degrons directly from protein sequences. RESULTS We showed that the BERT-based model performed well in predicting degrons singly from protein sequences. Then, we used the deep learning model Degpred to predict degrons proteome-widely. Degpred successfully captured typical degron-related sequence properties and predicted degrons beyond those from motif-based methods which use a handful of E3 motifs to match possible degrons. Furthermore, we calculated E3 motifs using predicted degrons on the substrates in our collected E3-substrate interaction dataset and constructed a regulatory network of protein degradation by assigning predicted degrons to specific E3s with calculated motifs. Critically, we experimentally verified that a predicted SPOP binding degron on CBX6 prompts CBX6 degradation and mediates the interaction with SPOP. We also showed that the protein degradation regulatory system is important in tumorigenesis by surveying degron-related mutations in TCGA. CONCLUSIONS Degpred provides an efficient tool to proteome-wide prediction of degrons and binding E3s singly from protein sequences. Degpred successfully captures typical degron-related sequence properties and predicts degrons beyond those from previously used motif-based methods, thus greatly expanding the degron landscape, which should advance the understanding of protein degradation, and allow exploration of uncharacterized alterations of proteins in diseases. To make it easier for readers to access collected and predicted datasets, we integrated these data into the website http://degron.phasep.pro/ .
Collapse
Affiliation(s)
- Chao Hou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191 China
| | - Yuxuan Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191 China
| | - Mengyao Wang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Hong Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, 100191 China
| |
Collapse
|
43
|
Signature for Prostate Cancer Based on Autophagy-Related Genes and a Nomogram for Quantitative Risk Stratification. DISEASE MARKERS 2022; 2022:7598942. [PMID: 35860692 PMCID: PMC9293571 DOI: 10.1155/2022/7598942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Background. Prostate cancer (PCa) ranks as the most common malignancy and the second leading cause of cancer-related death among males worldwide. The essential role of autophagy in the progression of PCa and treatment resistance has been preliminarily revealed. However, comprehensive molecular elucidations of the correlation between PCa and autophagy are rare. Method. We obtained transcription information and corresponding clinicopathological profiles of PCa patients from TCGA, MSKCC, and GEO datasets. LAASO analysis was employed to select gene signatures and estimate the autophagy score for each patient. Correlations between the signature and prognosis of PCa were investigated by K-M and multivariate Cox regression analyses. A nomogram was established on the basis of the above results. Further validations relied on ROC, calibration analysis, decision curve analysis, and external cohorts. Variable activated signaling pathways were revealed using GSVA algorithms, and the genetic alteration landscape was elucidated via the oncodrive module from the “maftools” R package. In addition, we also examined the therapeutic role of the signature based on phenotype data from GDSC 2016. Result. Six autophagy-related genes were eventually selected to establish the signature, including ULK1, CAPN10, FKBP5, UBE2T, NLRC4, and BNIP3L. We used these genes and corresponding coefficients to calculate an autophagy score (AutS) for each patient in this study. A high AutS group and a low AutS group were divided on the mean AutS of the patients. Longer overall survival, higher Gleason score and PSA, and better response to ADT were observed in patients with high AutS. Meanwhile, we found that high AutS PCa was related to more proliferation-associated signaling activation and higher genetic mutation frequencies, manifesting a poor prognosis. A nomogram was constructed based on GS, T stage, PSA, and AutS as covariates. Its discriminative efficacy and clinical value were validated using robust statistical methods. Finally, we tested its prognostic value through two external cohorts and six published signatures. Conclusion. The autophagy-related gene signature is a highly discriminative model for risk stratification and drug therapy in PCa, and a nomogram incorporating AutS might be a promising tool for precision medicine.
Collapse
|
44
|
Nevedomskaya E, Haendler B. From Omics to Multi-Omics Approaches for In-Depth Analysis of the Molecular Mechanisms of Prostate Cancer. Int J Mol Sci 2022; 23:6281. [PMID: 35682963 PMCID: PMC9181488 DOI: 10.3390/ijms23116281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer arises following alterations at different cellular levels, including genetic and epigenetic modifications, transcription and translation dysregulation, as well as metabolic variations. High-throughput omics technologies that allow one to identify and quantify processes involved in these changes are now available and have been instrumental in generating a wealth of steadily increasing data from patient tumors, liquid biopsies, and from tumor models. Extensive investigation and integration of these data have led to new biological insights into the origin and development of multiple cancer types and helped to unravel the molecular networks underlying this complex pathology. The comprehensive and quantitative analysis of a molecule class in a biological sample is named omics and large-scale omics studies addressing different prostate cancer stages have been performed in recent years. Prostate tumors represent the second leading cancer type and a prevalent cause of cancer death in men worldwide. It is a very heterogenous disease so that evaluating inter- and intra-tumor differences will be essential for a precise insight into disease development and plasticity, but also for the development of personalized therapies. There is ample evidence for the key role of the androgen receptor, a steroid hormone-activated transcription factor, in driving early and late stages of the disease, and this led to the development and approval of drugs addressing diverse targets along this pathway. Early genomic and transcriptomic studies have allowed one to determine the genes involved in prostate cancer and regulated by androgen signaling or other tumor-relevant signaling pathways. More recently, they have been supplemented by epigenomic, cistromic, proteomic and metabolomic analyses, thus, increasing our knowledge on the intricate mechanisms involved, the various levels of regulation and their interplay. The comprehensive investigation of these omics approaches and their integration into multi-omics analyses have led to a much deeper understanding of the molecular pathways involved in prostate cancer progression, and in response and resistance to therapies. This brings the hope that novel vulnerabilities will be identified, that existing therapies will be more beneficial by targeting the patient population likely to respond best, and that bespoke treatments with increased efficacy will be available soon.
Collapse
Affiliation(s)
| | - Bernard Haendler
- Research and Early Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany;
| |
Collapse
|
45
|
Novel insights into the SPOP E3 ubiquitin ligase: From the regulation of molecular mechanisms to tumorigenesis. Biomed Pharmacother 2022; 149:112882. [PMID: 35364375 DOI: 10.1016/j.biopha.2022.112882] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 11/20/2022] Open
Abstract
Ubiquitin-mediated protein degradation is the primary biological process by which protein abundance is regulated and protein homeostasis is maintained in eukaryotic cells. Speckle-type pox virus and zinc finger (POZ) protein (SPOP) is a typical substrate adaptor of the Cullin 3-RING ligase (CRL3) family; it serves as a bridge between the Cullin 3 (Cul3) scaffold protein and its substrates. In recent years, SPOP has received increasing attention because of its versatility in its regulatory pathways and the diversity of tumor types involved. Mechanistically, SPOP substrates are involved in a wide range of biological processes, and abnormalities in SPOP function perturb downstream biological processes and promote tumorigenesis. Additionally, liquid-liquid phase separation (LLPS), a potential mechanism of membraneless organelle formation, was recently found to mediate the self-triggered colocalization of substrates with higher-order oligomers of SPOP. Herein, we summarize the structure of SPOP and the specific mechanisms by which it mediates the efficient ubiquitination of substrates. Additionally, we review the biological functions of SPOP, the regulation of SPOP expression, the role of SPOP in tumorigenesis and its therapeutic value.
Collapse
|
46
|
Steger M, Karayel Ö, Demichev V. Ubiquitinomics: history, methods and applications in basic research and drug discovery. Proteomics 2022; 22:e2200074. [PMID: 35353442 DOI: 10.1002/pmic.202200074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/08/2022]
Abstract
The ubiquitin-proteasome system (UPS) was discovered about 40 years ago and is known to regulate a multitude of cellular processes including protein homeostasis. ubiquitylated proteins are recognized by downstream effectors, resulting in alterations of protein abundance, activity, or localization. Not surprisingly, the ubiquitylation machinery is dysregulated in numerous diseases, including cancers and neurodegeneration. Mass spectrometry (MS)-based proteomics has emerged as a transformative technology for characterizing protein ubiquitylation in an unbiased fashion. Here, we provide an overview of the different MS-based approaches for studying protein ubiquitylation. We review various methods for enriching and quantifying ubiquitin modifications at the peptide or protein level, outline MS acquisition and data processing approaches and discuss key challenges. Finally, we examine how MS-based ubiquitinomics can aid both basic biology and drug discovery research. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Martin Steger
- Evotec München GmbH, Martinsried, 82152, Germany.,Present address: Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Özge Karayel
- Max Planck Institute of Biochemistry, Martinsried, 82152, Germany.,Current address: Department of Physiological Chemistry, Genentech, South San Francisco, CA, 94080, USA
| | - Vadim Demichev
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| |
Collapse
|
47
|
Xiang Q, Luo G, Zhang C, Hu Q, Wang C, Wu T, Xu H, Hu J, Zhuang X, Zhang M, Wu S, Xu J, Zhang Y, Liu J, Xu Y. Discovery, optimization and evaluation of 1-(indolin-1-yl)ethan-1-ones as novel selective TRIM24/BRPF1 bromodomain inhibitors. Eur J Med Chem 2022; 236:114311. [PMID: 35385803 DOI: 10.1016/j.ejmech.2022.114311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 12/12/2022]
Abstract
TRIM24 (tripartite motif-containing protein 24) and BRPF1 (bromodomain and PHD finger containing protein 1) are epigenetics "readers" and potential therapeutic targets for cancer and other diseases. Here we describe the structure-guided design of 1-(indolin-1-yl)ethan-1-ones as novel TRIM24/BRPF1 bromodomain inhibitors. The representative compound 20l (Y08624) is a new TRIM24/BRPF1 dual inhibitor, with IC50 values of 0.98 and 1.16 μM, respectively. Cellular activity of 20l was validated by viability assay in prostate cancer (PC) cell lines. In PC xenograft models, 20l suppressed tumor growth (50 mg/kg/day, TGI = 53%) without exhibiting noticeable toxicity. Compound 20l represents a versatile starting point for the development of more potent TRIM24/BRPF1 inhibitors.
Collapse
Affiliation(s)
- Qiuping Xiang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Guolong Luo
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Cheng Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Qingqing Hu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Chao Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Tianbang Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hongrui Xu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiankang Hu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Xiaoxi Zhuang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Maofeng Zhang
- College of Pharmacy, Taizhou Polytechnic College, Taizhou, 225300, China
| | - Shuang Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yan Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yong Xu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China.
| |
Collapse
|
48
|
Mukhopadhyay C, Zhou P. G3BP1 modulates SPOP to promote prostate tumorigenesis. Mol Cell Oncol 2022; 9:2030171. [PMID: 35252555 PMCID: PMC8890399 DOI: 10.1080/23723556.2022.2030171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/01/2022]
Abstract
Speckle-type POZ protein (SPOP), a Cullin 3-based ubiquitin ligase (CUL3SPOP), acts as a prostate-specific tumor suppressor. Loss-of-function mutations in SPOP occur in 10% of primary prostate cancer with a high Gleason grade and poor prognosis. However, it is unclear how the ubiquitin ligase activity of SPOP is controlled and how dysregulation of SPOP contributes to malignant transformation. Here, we identified GTPase Activating Protein (SH3 Domain) Binding Protein 1 (G3BP1) as an interactor and upstream regulator of CUL3SPOP, and it functions as an inhibitor of CUL3SPOP ubiquitin ligase, suggesting a distinctive mode of CUL3SPOP inactivation that aggravates prostate cancer.
Collapse
Affiliation(s)
- Chandrani Mukhopadhyay
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
49
|
Gong Y, Chen Y. UbE3-APA: a bioinformatic strategy to elucidate ubiquitin E3 ligase activities in quantitative proteomics study. Bioinformatics 2022; 38:2211-2218. [PMID: 35139152 PMCID: PMC9004656 DOI: 10.1093/bioinformatics/btac069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/09/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
MOTIVATION Ubiquitination is widely involved in protein homeostasis and cell signaling. Ubiquitin E3 ligases are critical regulators of ubiquitination that recognize and recruit specific ubiquitination targets for the final rate-limiting step of ubiquitin transfer reactions. Understanding the ubiquitin E3 ligase activities will provide knowledge in the upstream regulator of the ubiquitination pathway and reveal potential mechanisms in biological processes and disease progression. Recent advances in mass spectrometry-based proteomics have enabled deep profiling of ubiquitylome in a quantitative manner. Yet, functional analysis of ubiquitylome dynamics and pathway activity remains challenging. RESULTS Here, we developed a UbE3-APA, a computational algorithm and stand-alone python-based software for Ub E3 ligase Activity Profiling Analysis. Combining an integrated annotation database with statistical analysis, UbE3-APA identifies significantly activated or suppressed E3 ligases based on quantitative ubiquitylome proteomics datasets. Benchmarking the software with published quantitative ubiquitylome analysis confirms the genetic manipulation of SPOP enzyme activity through overexpression and mutation. Application of the algorithm in the re-analysis of a large cohort of ubiquitination proteomics study revealed the activation of PARKIN and the co-activation of other E3 ligases in mitochondria depolarization-induced mitophagy process. We further demonstrated the application of the algorithm in the DIA (data-independent acquisition)-based quantitative ubiquitylome analysis. AVAILABILITY AND IMPLEMENTATION Source code and binaries are freely available for download at URL: https://github.com/Chenlab-UMN/Ub-E3-ligase-Activity-Profiling-Analysis, implemented in python and supported on Linux and MS Windows. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yao Gong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA,Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yue Chen
- To whom correspondence should be addressed.
| |
Collapse
|
50
|
Burleson M, Deng JJ, Qin T, Duong TM, Yan Y, Gu X, Das D, Easley A, Liss MA, Yew PR, Bedolla R, Kumar AP, Huang THM, Zou Y, Chen Y, Chen CL, Huang H, Sun LZ, Boyer TG. GLI3 Is Stabilized by SPOP Mutations and Promotes Castration Resistance via Functional Cooperation with Androgen Receptor in Prostate Cancer. Mol Cancer Res 2022; 20:62-76. [PMID: 34610962 PMCID: PMC9258906 DOI: 10.1158/1541-7786.mcr-21-0108] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
Although the Sonic hedgehog (SHH) signaling pathway has been implicated in promoting malignant phenotypes of prostate cancer, details on how it is activated and exerts its oncogenic role during prostate cancer development and progression is less clear. Here, we show that GLI3, a key SHH pathway effector, is transcriptionally upregulated during androgen deprivation and posttranslationally stabilized in prostate cancer cells by mutation of speckle-type POZ protein (SPOP). GLI3 is a substrate of SPOP-mediated proteasomal degradation in prostate cancer cells and prostate cancer driver mutations in SPOP abrogate GLI3 degradation. Functionally, GLI3 is necessary and sufficient for the growth and migration of androgen receptor (AR)-positive prostate cancer cells, particularly under androgen-depleted conditions. Importantly, we demonstrate that GLI3 physically interacts and functionally cooperates with AR to enrich an AR-dependent gene expression program leading to castration-resistant growth of xenografted prostate tumors. Finally, we identify an AR/GLI3 coregulated gene signature that is highly correlated with castration-resistant metastatic prostate cancer and predictive of disease recurrence. Together, these findings reveal that hyperactivated GLI3 promotes castration-resistant growth of prostate cancer and provide a rationale for therapeutic targeting of GLI3 in patients with castration-resistant prostate cancer (CRPC). IMPLICATIONS: We describe two clinically relevant mechanisms leading to hyperactivated GLI3 signaling and enhanced AR/GLI3 cross-talk, suggesting that GLI3-specific inhibitors might prove effective to block prostate cancer development or delay CRPC.
Collapse
Affiliation(s)
- Marieke Burleson
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas
| | - Janice J Deng
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Tai Qin
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Thu Minh Duong
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas
| | - Yuqian Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Xiang Gu
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Debodipta Das
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Acarizia Easley
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Michael A Liss
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - P Renee Yew
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas
| | - Roble Bedolla
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | | | - Tim Hui-Ming Huang
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas
| | - Chun-Liang Chen
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Lu-Zhe Sun
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, Texas.
| | - Thomas G Boyer
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas.
| |
Collapse
|