1
|
Lu J, Yang Y, Yin T. Expression of poplar sex-determining gene affects plant drought tolerance and the underlying molecular mechanism. HORTICULTURE RESEARCH 2025; 12:uhaf066. [PMID: 40303440 PMCID: PMC12038252 DOI: 10.1093/hr/uhaf066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/23/2025] [Indexed: 05/02/2025]
Abstract
It is frequently observed that plant sexes differ in their response to environmental stress. Poplars are dioecious plants, and sex separation of poplars is triggered by the sex-limited expression of the poplar sex-determining gene FERR. In this study, we over-expressed FERR in a male poplar and knocked it out in a female poplar. The over-expression lines exhibited distinct morphological and physiological changes rendering the transformed plants more tolerant to drought stress. By contrast, no obvious change in drought tolerance was observed in the knockout lines. Transcriptome sequencing and molecular interaction analysis demonstrated that the effect of FERR on drought tolerance was conferred by competitive interaction with protein phosphatase 2C and SNF1-related protein kinase 2 (SnRK2). Under drought stress, an FERR-SnRK2s-ARR5 complex forms and activates the ABA signaling pathway. Our results provide direct evidence that the expression of the poplar sex-determining gene pleiotropically affects plant drought tolerance.
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory for Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Breeding of Jiangsu Province, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Yonghua Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Tongming Yin
- State Key Laboratory for Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Breeding of Jiangsu Province, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| |
Collapse
|
2
|
Charlesworth D. Sex chromosome evolution in haploid plants: Microchromosomes, disappearing chromosomes, and giant chromosomes. Proc Natl Acad Sci U S A 2025; 122:e2425050122. [PMID: 40232793 PMCID: PMC12037016 DOI: 10.1073/pnas.2425050122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
As in many diploid organisms with genetic sex determination, haploid-dominant organisms have also evolved sex chromosomes or extensive genomic regions that lack genetic recombination. An understanding of sex chromosome evolution should explain the causes and consequences of such regions in both diploids and haploids. However, haploids have been little studied, even though differences from sex chromosomes in diploids carry implications concerning the evolution of suppressed recombination in diploid organisms, and make predictions about genome evolution in the sex-linked regions of haploids that can now be tested by approaches using genome sequences. I review these ideas, and the current empirical evidence concerning them, in more detail than recent reviews focusing on progress in understanding the mechanisms involved in sex determination. I also discuss evidence that one specific prediction, that genetic degeneration should be minor in haploids, is not upheld. I suggest that this prediction does not take account of all processes leading to gene loss from sex-linked regions and that profound degeneration may evolve if sex-linked genes become duplicated to autosomes, a process that also appears to occur in diploids. I emphasize types of data that are needed to make progress in testing several of the ideas described.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, University of Edinburgh, EdinburghEH9 3FL, United Kingdom
| |
Collapse
|
3
|
Roberts MD, Davis O, Josephs EB, Williamson RJ. K-mer-based Approaches to Bridging Pangenomics and Population Genetics. Mol Biol Evol 2025; 42:msaf047. [PMID: 40111256 PMCID: PMC11925024 DOI: 10.1093/molbev/msaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/10/2025] [Accepted: 02/04/2025] [Indexed: 03/12/2025] Open
Abstract
Many commonly studied species now have more than one chromosome-scale genome assembly, revealing a large amount of genetic diversity previously missed by approaches that map short reads to a single reference. However, many species still lack multiple reference genomes and correctly aligning references to build pangenomes can be challenging for many species, limiting our ability to study this missing genomic variation in population genetics. Here, we argue that k-mers are a very useful but underutilized tool for bridging the reference-focused paradigms of population genetics with the reference-free paradigms of pangenomics. We review current literature on the uses of k-mers for performing three core components of most population genetics analyses: identifying, measuring, and explaining patterns of genetic variation. We also demonstrate how different k-mer-based measures of genetic variation behave in population genetic simulations according to the choice of k, depth of sequencing coverage, and degree of data compression. Overall, we find that k-mer-based measures of genetic diversity scale consistently with pairwise nucleotide diversity (π) up to values of about π=0.025 (R2=0.97) for neutrally evolving populations. For populations with even more variation, using shorter k-mers will maintain the scalability up to at least π=0.1. Furthermore, in our simulated populations, k-mer dissimilarity values can be reliably approximated from counting bloom filters, highlighting a potential avenue to decreasing the memory burden of k-mer-based genomic dissimilarity analyses. For future studies, there is a great opportunity to further develop methods to identifying selected loci using k-mers.
Collapse
Affiliation(s)
- Miles D Roberts
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| | - Olivia Davis
- Department of Computer Science and Software Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803, USA
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Robert J Williamson
- Department of Computer Science and Software Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803, USA
- Department of Biology and Biomedical Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803, USA
| |
Collapse
|
4
|
Zhu Y, Ahmad Z, Lv Y, Zhang Y, Chen G. Insight into the Characterization of Two Female Suppressor Gene Families: SOFF and SyGI in Plants. Genes (Basel) 2025; 16:280. [PMID: 40149432 PMCID: PMC11941796 DOI: 10.3390/genes16030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES The Suppressor of Female Function (SOFF) and Shy Girl (SyGI) gene families play vital roles in sex determination in dioecious plants. However, their evolutionary dynamics and functional characteristics remain largely unexplored. METHODS Through this study, a systematic bioinformatics analysis of SOFF and SyGI families was performed in plants to explore their evolutionary relationships, gene structures, motif synteny and functional predictions. RESULTS Phylogenetic analysis showed that the SOFF family expanded over time and was divided into two subfamilies and seven groups, while SyGI was a smaller family made of compact molecules with three groups. Synteny analysis revealed that 125 duplicated gene pairs were identified in Kiwifruit where WGD/segmental duplication played a major role in duplicating these events. Structural analysis predicted that SOFF genes have a DUF 247 domain with a transmembrane region, while SyGI sequences have an REC-like conserved domain, with a "barrel-shaped" structure consisting of five α-helices and five β-strands. Promoter region analysis highlighted their probable regulatory roles in plant development, hormone signaling and stress responses. Protein interaction analysis exhibited only four SOFF genes with a close interaction with other genes, while SyGI genes had extensive interactions, particularly with cytokinin signal transduction pathways. CONCLUSIONS The current study offers a crucial understanding of the molecular evolution and functional characteristics of SOFF and SyGI gene families, providing a foundation for future functional validation and genetic studies on developmental regulation and sex determination in dioecious plants. Also, this research enhances our insight into plant reproductive biology and offers possible targets for breeding and genetic engineering approaches.
Collapse
Affiliation(s)
- Yanrui Zhu
- Department of Agronomy, College of Agriculture, Tarim University, Alar 843300, China;
- Key Laboratory of Genetic Improvement and Efficient Production for Specialty Crops in Arid Southern Xinjiang of Xinjiang Corps, Tarim University, Alar 843300, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Zeeshan Ahmad
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Youjun Lv
- Anyang Institute of Technology, Anyang 455000, China;
| | - Yongshan Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Guodong Chen
- Department of Agronomy, College of Agriculture, Tarim University, Alar 843300, China;
- Key Laboratory of Genetic Improvement and Efficient Production for Specialty Crops in Arid Southern Xinjiang of Xinjiang Corps, Tarim University, Alar 843300, China
| |
Collapse
|
5
|
Akagi T, Fujita N, Shirasawa K, Tanaka H, Nagaki K, Masuda K, Horiuchi A, Kuwada E, Kawai K, Kunou R, Nakamura K, Ikeda Y, Toyoda A, Itoh T, Ushijima K, Charlesworth D. Rapid and dynamic evolution of a giant Y chromosome in Silene latifolia. Science 2025; 387:637-643. [PMID: 39913598 DOI: 10.1126/science.adk9074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/08/2024] [Accepted: 08/13/2024] [Indexed: 04/23/2025]
Abstract
Some plants have massive sex-linked regions. To test hypotheses about their evolution, we sequenced the genome of Silene latifolia, in which giant heteromorphic sex chromosomes were first discovered in 1923. It has long been known that the Y chromosome consists mainly of a male-specific region that does not recombine with the X chromosome and carries the sex-determining genes and genes with other male functions. However, only with a whole Y chromosome assembly can candidate genes be validated experimentally and their locations determined and related to the suppression of recombination. We describe the genomic changes as the ancestral chromosome evolved into the current XY pair, testing ideas about the evolution of large nonrecombining regions and the mechanisms that created the present recombination pattern.
Collapse
Affiliation(s)
- Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- Japan Science and Technology Agency (JST), PRESTO, Kawaguchi-shi, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Naoko Fujita
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- National Museum of Nature and Science, Tsukuba-shi, Ibaraki, Japan
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, Kazusa-Kamatari, Kisarazu, Chiba, Japan
| | - Hiroyuki Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Kiyotaka Nagaki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Kanae Masuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Ayano Horiuchi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Eriko Kuwada
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Kanta Kawai
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Riko Kunou
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Koki Nakamura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Koichiro Ushijima
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | | |
Collapse
|
6
|
Li N, Wang B, Shang X, Yang Q, Yang L, Tao M, Muhammad S, Shi A, Deng C. SpMS1, a male sterility factor, interacts with SpAP1 to regulate unisexual flower development in dioecious spinach. PLANT & CELL PHYSIOLOGY 2025; 66:60-74. [PMID: 39575517 DOI: 10.1093/pcp/pcae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/29/2024] [Accepted: 11/21/2024] [Indexed: 01/30/2025]
Abstract
The emergence of unisexual flower is an important event during plant evolution. The molecular mechanism underlying the formation of unisexual flowers remains unclear in dioecious spinach. In this study, we identified the spinach MALE STERILITY1 gene, SpMS1, which serves as a masculine factor to regulate male fertility and sex reversion. Silencing SpMS1 led to stamen sterility in male flowers and the development of masculine traits in female flowers. Overexpression of SpMS1 in wild-type Arabidopsis resulted in sterile stamens and irregular pollen exine. Notably, ectopic expression of SpMS1 in Arabidopsis ms1 mutants restored pollen viability and flower fertility. Furthermore, our findings demonstrate that SpMS1 interacts with MADS-box transcription factor SpAP1 to regulate unisexual flower development. Thus, SpMS1 exhibits a conserved function in pollen fertility akin to bisexual flowers, while also acting as a key regulator of unisexual flower development in spinach. This study sheds light on the mechanism of sex differentiation in dioecious plants and also provides valuable insights for manipulating male sterility in plant breeding programs.
Collapse
Affiliation(s)
- Ning Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Bingxin Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xinran Shang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Qiangwei Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Liang Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Minjie Tao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Shoaib Muhammad
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Chuanliang Deng
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
7
|
Groh JS, Vik DC, Davis M, Monroe JG, Stevens KA, Brown PJ, Langley CH, Coop G. Ancient structural variants control sex-specific flowering time morphs in walnuts and hickories. Science 2025; 387:eado5578. [PMID: 39745948 DOI: 10.1126/science.ado5578] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/01/2024] [Indexed: 01/04/2025]
Abstract
Balanced mating type polymorphisms offer a distinct window into the forces shaping sexual reproduction strategies. Multiple hermaphroditic genera in Juglandaceae, including walnuts (Juglans) and hickories (Carya), show a 1:1 genetic dimorphism for male versus female flowering order (heterodichogamy). We map two distinct Mendelian inheritance mechanisms to ancient (>37 million years old) genus-wide structural DNA polymorphisms. The dominant haplotype for female-first flowering in Juglans contains tandem repeats of the 3' untranslated region of a gene putatively involved in trehalose-6-phosphate metabolism and is associated with increased cis gene expression in developing male flowers, possibly mediated by small RNAs. The Carya locus contains ~20 syntenic genes and shows molecular signatures of sex chromosome-like evolution. Inheritance mechanisms for heterodichogamy are deeply conserved, yet may occasionally turn over, as in sex determination.
Collapse
Affiliation(s)
- Jeffrey S Groh
- Department of Evolution and Ecology, University of California, Davis, CA, USA
- Center for Population Biology, University of California, Davis, CA, USA
| | - Diane C Vik
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - Matthew Davis
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - J Grey Monroe
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Kristian A Stevens
- Department of Evolution and Ecology, University of California, Davis, CA, USA
- Department of Computer Science, University of California, Davis, CA, USA
| | - Patrick J Brown
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Charles H Langley
- Department of Evolution and Ecology, University of California, Davis, CA, USA
- Center for Population Biology, University of California, Davis, CA, USA
| | - Graham Coop
- Department of Evolution and Ecology, University of California, Davis, CA, USA
- Center for Population Biology, University of California, Davis, CA, USA
| |
Collapse
|
8
|
Shi J, Toscani M, Dowling CA, Schilling S, Melzer R. Identification of genes associated with sex expression and sex determination in hemp (Cannabis sativa L.). JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:175-190. [PMID: 39468733 DOI: 10.1093/jxb/erae429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/26/2024] [Indexed: 10/30/2024]
Abstract
Dioecy in flowering plants has evolved independently many times, and thus the genetic mechanisms underlying sex determination are diverse. In hemp (Cannabis sativa), sex is controlled by a pair of sex chromosomes (XX for females and XY for males). In an attempt to understand the molecular mechanism responsible for sex expression in hemp plants, we carried out RNA sequencing of male and female plants at different developmental stages. Using a pipeline involving differential gene expression analysis and weighted gene co-expression network analysis, we identified genes important for male and female flower development. We also demonstrate that sex-biased expression is already established at very early vegetative stages, before the onset of reproductive development, and identify several genes encoding transcription factors of the REM, bZIP, and MADS families as candidate sex-determination genes in hemp. Our findings demonstrate that the gene regulatory networks governing male and female development in hemp diverge at a very early stage, leading to profound morphological differences between male and female hemp plants.
Collapse
Affiliation(s)
- Jiaqi Shi
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Matteo Toscani
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Caroline A Dowling
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Susanne Schilling
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Rainer Melzer
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Božović D, Li M, Sabovljević AD, Sabovljević MS, Varotto C. Sex determination in bryophytes: current state of the art. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6939-6956. [PMID: 39129663 DOI: 10.1093/jxb/erae347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
With the advent of genomic and other omics technologies, the last decades have witnessed a series of steady and important breakthroughs in the understanding of genetic determinants of different reproductive systems in vascular plants and especially on how sexual reproduction shaped their evolution. In contrast, the molecular mechanisms of these fundamental aspects of the biology of bryophytes, a group of non-vascular embryophyte plants sister to all tracheophytes, are still largely obscure. The recent characterization of the sex chromosomes and genetic switches determining sex in bryophytes and emerging approaches for molecular sexing of gametophytes hold great promise for elucidation of the evolutionary history as well as the conservation of this species-rich but understudied group of land plants.
Collapse
Affiliation(s)
- Djordje Božović
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre of Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige (TN), Italy
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
| | - Mingai Li
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre of Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige (TN), Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Aneta D Sabovljević
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
| | - Marko S Sabovljević
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, 040 01 Košice, Slovakia
| | - Claudio Varotto
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre of Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige (TN), Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
10
|
Carey SB, Aközbek L, Lovell JT, Jenkins J, Healey AL, Shu S, Grabowski P, Yocca A, Stewart A, Jones T, Barry K, Rajasekar S, Talag J, Scutt C, Lowry PP, Munzinger J, Knox EB, Soltis DE, Soltis PS, Grimwood J, Schmutz J, Leebens-Mack J, Harkess A. ZW sex chromosome structure in Amborella trichopoda. NATURE PLANTS 2024; 10:1944-1954. [PMID: 39587314 DOI: 10.1038/s41477-024-01858-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024]
Abstract
Sex chromosomes have evolved hundreds of times across the flowering plant tree of life; their recent origins in some members of this clade can shed light on the early consequences of suppressed recombination, a crucial step in sex chromosome evolution. Amborella trichopoda, the sole species of a lineage that is sister to all other extant flowering plants, is dioecious with a young ZW sex determination system. Here we present a haplotype-resolved genome assembly, including highly contiguous assemblies of the Z and W chromosomes. We identify a ~3-megabase sex-determination region (SDR) captured in two strata that includes a ~300-kilobase inversion that is enriched with repetitive sequences and contains a homologue of the Arabidopsis METHYLTHIOADENOSINE NUCLEOSIDASE (MTN1-2) genes, which are known to be involved in fertility. However, the remainder of the SDR does not show patterns typically found in non-recombining SDRs, such as repeat accumulation and gene loss. These findings are consistent with the hypothesis that dioecy is derived in Amborella and the sex chromosome pair has not significantly degenerated.
Collapse
Affiliation(s)
- Sarah B Carey
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Laramie Aközbek
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - John T Lovell
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Adam L Healey
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Paul Grabowski
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alan Yocca
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Ada Stewart
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Teresa Jones
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Jayson Talag
- Arizona Genomics Institute, University of Arizona, Tucson, AZ, USA
| | - Charlie Scutt
- Laboratoire Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon-1, CNRS, INRA, Lyon, France
| | - Porter P Lowry
- Missouri Botanical Garden, St Louis, MO, USA
- Institut de Systématique, Évolution, et Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, École Pratique des Hautes Études, Université des Antilles, Paris, France
| | - Jérôme Munzinger
- AMAP, Univ. Montpellier, IRD, CIRAD, CNRS, INRAE, Montpellier, France
| | - Eric B Knox
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
| |
Collapse
|
11
|
Akagi T, Sugano SS. Random epigenetic inactivation of the X-chromosomal HaMSter gene causes sex ratio distortion in persimmon. NATURE PLANTS 2024; 10:1643-1651. [PMID: 39333352 DOI: 10.1038/s41477-024-01805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024]
Abstract
In contrast to the recent progress in the genome sequencing of plant sex chromosomes, the functional contribution of the genes in sex chromosomes remains little known1. They were classically thought to be related to sexual dimorphism, which is beneficial to male or female functions, including segregation ratios. Here we focused on the functional evolution of the sex ratio distortion-related locus Half Male Sterile/Inviable (HaMSter), which is located in the short sex-linked region in diploid persimmon (Diospyros lotus). The expression of HaMSter, encoding a plant1589-like undefined protein, is necessary for production of viable seeds. Notably, only X-allelic HaMSter is substantially expressed and half of the maternal X alleles of HaMSter is randomly inactivated, which results in sex ratio distortion in seeds. Genome-wide DNA methylome analyses revealed endosperm-specific DNA hypermethylation, especially in the X-linked region. The maintenance/release of this hypermethylation is linked to inactivation/activation of HaMSter expression, respectively, which determines the sex ratio distortion pattern.
Collapse
Affiliation(s)
- Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
- Japan Science and Technology Agency (JST), PRESTO, Kawaguchi-shi, Saitama, Japan.
| | - Shigeo S Sugano
- Bioproduction Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
12
|
Li J, Yao X, Lai H, Zhang X, Zhong J. The diversification of the shoot branching system: A quantitative and comparative perspective in meristem determinacy. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102574. [PMID: 38917775 DOI: 10.1016/j.pbi.2024.102574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
Reiterative shoot branching largely defines important yield components of crops and is essentially controlled by programs that direct the initiation, dormancy release, and differentiation of meristems in the axils of leaves. Here, we focus on meristem determinacy, defining the number of reiterations that shape the shoot architectures and exhibit enormous diversity in a wide range of species. The meristem determinacy per se is hierarchically complex and context-dependent for the successively emerged meristems, representing a crucial mechanism in shaping the complexity of the shoot branching. In addition, we have highlighted that two key components of axillary meristem developmental programs may have been co-opted in controlling flower/ear number of an axillary inflorescence in legumes/maize, hinting at the diversification of axillary-meristem-patterning programs in different lineages. This begs the question how axillary meristem patterning programs may have diversified during plant evolution and hence helped shape the rich variation in shoot branching systems.
Collapse
Affiliation(s)
- Jiajia Li
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xiani Yao
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Huan Lai
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xuelian Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jinshun Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Laboratory of the Developmental Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou 510642, Guangdong, China; South China Institute for Soybean Innovation Research, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
13
|
Lesaffre T, Pannell JR, Mullon C. An explanation for the prevalence of XY over ZW sex determination in species derived from hermaphroditism. Proc Natl Acad Sci U S A 2024; 121:e2406305121. [PMID: 39316051 PMCID: PMC11459199 DOI: 10.1073/pnas.2406305121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
The many independent transitions from hermaphroditism to separate sexes (dioecy) in flowering plants and some animal clades must often have involved the emergence of a heterogametic sex-determining locus, the basis of XY and ZW sex determination (i.e., male and female heterogamety). Current estimates indicate that XY sex determination is much more frequent than ZW, but the reasons for this asymmetry are unclear. One proposition is that separate sexes evolve through the invasion of sterility mutations at closely linked loci, in which case XY sex determination evolves if the initial male sterility mutation is fully recessive. Alternatively, dioecy may evolve via the gradual divergence of male and female phenotypes, but the genetic basis of such divergence and its connection to XY and ZW systems remain poorly understood. Using mathematical modeling, we show how dioecy with XY or ZW sex determination can emerge from the joint evolution of resource allocation to male and female function with its genetic architecture. Our model reveals that whether XY or ZW sex determination evolves depends on the trade-off between allocation to male and female function, and on the mating system of the ancestral hermaphrodites, with selection for female specialization or inbreeding avoidance both favoring XY sex determination. Together, our results cast light on an important but poorly understood path from hermaphroditism to dioecy, and provide an adaptive hypothesis for the preponderance of XY systems. Beyond sex and sex determination, our model shows how ecology can influence the way selection shapes the genetic architecture of polymorphic traits.
Collapse
Affiliation(s)
- Thomas Lesaffre
- Department of Ecology and Evolution, University of Lausanne, 1015Lausanne, Switzerland
| | - John R. Pannell
- Department of Ecology and Evolution, University of Lausanne, 1015Lausanne, Switzerland
| | - Charles Mullon
- Department of Ecology and Evolution, University of Lausanne, 1015Lausanne, Switzerland
| |
Collapse
|
14
|
Hobza R, Bačovský V, Čegan R, Horáková L, Hubinský M, Janíček T, Janoušek B, Jedlička P, Kružlicová J, Kubát Z, Rodríguez Lorenzo JL, Novotná P, Hudzieczek V. Sexy ways: approaches to studying plant sex chromosomes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5204-5219. [PMID: 38652048 PMCID: PMC11389836 DOI: 10.1093/jxb/erae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Sex chromosomes have evolved in many plant species with separate sexes. Current plant research is shifting from examining the structure of sex chromosomes to exploring their functional aspects. New studies are progressively unveiling the specific genetic and epigenetic mechanisms responsible for shaping distinct sexes in plants. While the fundamental methods of molecular biology and genomics are generally employed for the analysis of sex chromosomes, it is often necessary to modify classical procedures not only to simplify and expedite analyses but sometimes to make them possible at all. In this review, we demonstrate how, at the level of structural and functional genetics, cytogenetics, and bioinformatics, it is essential to adapt established procedures for sex chromosome analysis.
Collapse
Affiliation(s)
- Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Radim Čegan
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Lucie Horáková
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Marcel Hubinský
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Janíček
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Bohuslav Janoušek
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Pavel Jedlička
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Jana Kružlicová
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Zdeněk Kubát
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - José Luis Rodríguez Lorenzo
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| | - Pavla Novotná
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Vojtěch Hudzieczek
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 00 Brno, Czech Republic
| |
Collapse
|
15
|
Hayashi S, Abe T, Igawa T, Katsura Y, Kazama Y, Nozawa M. Sex chromosome cycle as a mechanism of stable sex determination. J Biochem 2024; 176:81-95. [PMID: 38982631 PMCID: PMC11289310 DOI: 10.1093/jb/mvae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Recent advances in DNA sequencing technology have enabled the precise decoding of genomes in non-model organisms, providing a basis for unraveling the patterns and mechanisms of sex chromosome evolution. Studies of different species have yielded conflicting results regarding the traditional theory that sex chromosomes evolve from autosomes via the accumulation of deleterious mutations and degeneration of the Y (or W) chromosome. The concept of the 'sex chromosome cycle,' emerging from this context, posits that at any stage of the cycle (i.e., differentiation, degeneration, or loss), sex chromosome turnover can occur while maintaining stable sex determination. Thus, understanding the mechanisms that drive both the persistence and turnover of sex chromosomes at each stage of the cycle is crucial. In this review, we integrate recent findings on the mechanisms underlying maintenance and turnover, with a special focus on several organisms having unique sex chromosomes. Our review suggests that the diversity of sex chromosomes in the maintenance of stable sex determination is underappreciated and emphasizes the need for more research on the sex chromosome cycle.
Collapse
Affiliation(s)
- Shun Hayashi
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takuya Abe
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi 981-8558, Japan
| | - Takeshi Igawa
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yukako Katsura
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan
| | - Yusuke Kazama
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji, Fukui 910-1195, Japan
| | - Masafumi Nozawa
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
16
|
Li H, Chen L, Liu R, Cao S, Lu Z. Comparative Proteomic Analysis of Floral Buds before and after Opening in Walnut ( Juglans regia L.). Int J Mol Sci 2024; 25:7878. [PMID: 39063121 PMCID: PMC11276623 DOI: 10.3390/ijms25147878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The walnut (Juglans regia L.) is a typical and an economically important tree species for nut production with heterodichogamy. The absence of female and male flowering periods seriously affects both the pollination and fruit setting rates of walnuts, thereby affecting the yield and quality. Therefore, studying the characteristics and processes of flower bud differentiation helps in gaining a deeper understanding of the regularity of the mechanism of heterodichogamy in walnuts. In this study, a total of 3540 proteins were detected in walnut and 885 unique differentially expressed proteins (DEPs) were identified using the isobaric tags for the relative and absolute quantitation (iTRAQ)-labeling method. Among all DEPs, 12 common proteins were detected in all four of the obtained contrasts. GO and KEGG analyses of 12 common DEPs showed that their functions are distributed in the cytoplasm metabolic pathways, photosynthesis, glyoxylate and dicarboxylate metabolism, and the biosynthesis of secondary metabolites, which are involved in energy production and conversion, synthesis, and the breakdown of proteomes. In addition, a function analysis was performed, whereby the DEPs were classified as involved in photosynthesis, morphogenesis, metabolism, or the stress response. A total of eight proteins were identified as associated with the morphogenesis of stamen development, such as stamen-specific protein FIL1-like (XP_018830780.1), putative leucine-rich repeat receptor-like serine/threonine-protein kinase At2g24130 (XP_018822513.1), cytochrome P450 704B1-like isoform X2 (XP_018845266.1), ervatamin-B-like (XP_018824181.1), probable glucan endo-1,3-beta-glucosidase A6 (XP_018844051.1), pathogenesis-related protein 5-like (XP_018835774.1), GDSL esterase/lipase At5g22810-like (XP_018833146.1), and fatty acyl-CoA reductase 2 (XP_018848853.1). Our results predict several crucial proteins and deepen the understanding of the biochemical mechanism that regulates the formation of male and female flower buds in walnuts.
Collapse
Affiliation(s)
- Haoxian Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China; (H.L.); (L.C.); (R.L.); (S.C.)
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Nanfan Research Institute, Sanya 572000, China
| | - Lina Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China; (H.L.); (L.C.); (R.L.); (S.C.)
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Ruitao Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China; (H.L.); (L.C.); (R.L.); (S.C.)
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| | - Shangyin Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China; (H.L.); (L.C.); (R.L.); (S.C.)
| | - Zhenhua Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China; (H.L.); (L.C.); (R.L.); (S.C.)
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- National Nanfan Research Institute, Sanya 572000, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou 450000, China
| |
Collapse
|
17
|
Scott MF, Immler S. One-factor sex determination evolves without linkage between feminizing and masculinizing mutations. Proc Biol Sci 2024; 291:20240693. [PMID: 38981518 PMCID: PMC11335001 DOI: 10.1098/rspb.2024.0693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024] Open
Abstract
The evolution of separate sexes from cosexuality requires at least two mutations: a feminizing allele to cause female development and a masculinizing allele to cause male development. Classically, the double mutant is assumed to be sterile, which leads to two-factor sex determination where male and female sex chromosomes differ at two loci. However, several species appear to have one-factor sex determination where sexual development depends on variation at a single locus. We show that one-factor sex determination evolves when the double mutant develops as a male or a female. The feminizing allele fixes when the double mutant is male, and the masculinizing allele fixes when the double mutant is female. The other locus then gives XY or ZW sex determination based on dominance: for example, a dominant masculinizer becomes a Y chromosome. Although the resulting sex determination system differs, the conditions required for feminizers and masculinizers to spread are the same as in classical models, with the important difference that the two alleles do not need to be linked. Thus, we reveal alternative pathways for the evolution of sex determination and discuss how they can be distinguished using new data on the genetics of sex determination.
Collapse
Affiliation(s)
- Michael F. Scott
- School of Biological Sciences, University of East Anglia, Norwich Research Park, NorwichNR4 7TJ, UK
| | - Simone Immler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, NorwichNR4 7TJ, UK
| |
Collapse
|
18
|
Huang HY, Zhang S, Choucha FA, Verdenaud M, Tan FQ, Pichot C, Parsa HS, Slavkovic F, Chen Q, Troadec C, Marcel F, Dogimont C, Quadrana L, Boualem A, Bendahmane A. Harbinger transposon insertion in ethylene signaling gene leads to emergence of new sexual forms in cucurbits. Nat Commun 2024; 15:4877. [PMID: 38849342 PMCID: PMC11161486 DOI: 10.1038/s41467-024-49250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
In flowering plants, the predominant sexual morph is hermaphroditism, and the emergence of unisexuality is poorly understood. Using Cucumis melo (melon) as a model system, we explore the mechanisms driving sexual forms. We identify a spontaneous mutant exhibiting a transition from bisexual to unisexual male flower, and identify the causal mutation as a Harbinger transposon impairing the expression of Ethylene Insensitive 2 (CmEIN2) gene. Genetics and transcriptomic analysis reveal a dual role of CmEIN2 in both sex determination and fruit shape formation. Upon expression of CmACS11, EIN2 is recruited to repress the expression of the carpel inhibitor, CmWIP1. Subsequently, EIN2 is recruited to mediate stamina inhibition. Following the sex determination phase, EIN2 promotes fruit shape elongation. Genome-wide analysis reveals that Harbinger transposon mobilization is triggered by environmental cues, and integrates preferentially in active chromatin, particularly within promoter regions. Characterization of a large collection of melon germplasm points to active transpositions in the wild, compared to cultivated accessions. Our study underscores the association between chromatin dynamics and the temporal aspects of mobile genetic element insertions, providing valuable insights into plant adaptation and crop genome evolution.
Collapse
Affiliation(s)
- Hsin-Ya Huang
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Siqi Zhang
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Fadi Abou Choucha
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Marion Verdenaud
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Feng-Quan Tan
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Clement Pichot
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Hadi Shirazi Parsa
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Filip Slavkovic
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Qinghe Chen
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Christelle Troadec
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Fabien Marcel
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Catherine Dogimont
- INRAE, Génétique et Amélioration des Fruits et Légumes (GAFL), 84143, Montfavet, France
| | - Leandro Quadrana
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Adnane Boualem
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France.
| |
Collapse
|
19
|
Wang Y, Gong GN, Wang Y, Zhang RG, Hörandl E, Zhang ZX, Charlesworth D, He L. Gap-free X and Y chromosome assemblies of Salix arbutifolia reveal an evolutionary change from male to female heterogamety in willows, without a change in the position of the sex-determining locus. THE NEW PHYTOLOGIST 2024; 242:2872-2887. [PMID: 38581199 DOI: 10.1111/nph.19744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
In the Vetrix clade of Salix, a genus of woody flowering plants, sex determination involves chromosome 15, but an XY system has changed to a ZW system. We studied the detailed genetic changes involved. We used genome sequencing, with chromosome conformation capture (Hi-C) and PacBio HiFi reads to assemble chromosome level gap-free X and Y of Salix arbutifolia, and distinguished the haplotypes in the 15X- and 15Y-linked regions, to study the evolutionary history of the sex-linked regions (SLRs). Our sequencing revealed heteromorphism of the X and Y haplotypes of the SLR, with the X-linked region being considerably larger than the corresponding Y region, mainly due to accumulated repetitive sequences and gene duplications. The phylogenies of single-copy orthogroups within the SLRs indicate that S. arbutifolia and Salix purpurea share an ancestral SLR within a repeat-rich region near the chromosome 15 centromere. During the change in heterogamety, the X-linked region changed to a W-linked one, while the Z was derived from the Y.
Collapse
Affiliation(s)
- Yi Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100091, China
| | - Guang-Nan Gong
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yuan Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Ren-Gang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, 37073, Göttingen, Germany
| | - Zhi-Xiang Zhang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100091, China
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Li He
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| |
Collapse
|
20
|
Ma Y, Fu W, Wan S, Li Y, Mao H, Khalid E, Zhang W, Ming R. Gene Regulatory Network Controlling Flower Development in Spinach ( Spinacia oleracea L.). Int J Mol Sci 2024; 25:6127. [PMID: 38892313 PMCID: PMC11173220 DOI: 10.3390/ijms25116127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Spinach (Spinacia oleracea L.) is a dioecious, diploid, wind-pollinated crop cultivated worldwide. Sex determination plays an important role in spinach breeding. Hence, this study aimed to understand the differences in sexual differentiation and floral organ development of dioecious flowers, as well as the differences in the regulatory mechanisms of floral organ development of dioecious and monoecious flowers. We compared transcriptional-level differences between different genders and identified differentially expressed genes (DEGs) related to spinach floral development, as well as sex-biased genes to investigate the flower development mechanisms in spinach. In this study, 9189 DEGs were identified among the different genders. DEG analysis showed the participation of four main transcription factor families, MIKC_MADS, MYB, NAC, and bHLH, in spinach flower development. In our key findings, abscisic acid (ABA) and gibberellic acid (GA) signal transduction pathways play major roles in male flower development, while auxin regulates both male and female flower development. By constructing a gene regulatory network (GRN) for floral organ development, core transcription factors (TFs) controlling organ initiation and growth were discovered. This analysis of the development of female, male, and monoecious flowers in spinach provides new insights into the molecular mechanisms of floral organ development and sexual differentiation in dioecious and monoecious plants in spinach.
Collapse
Affiliation(s)
- Yaying Ma
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.M.); (W.F.)
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.L.); (H.M.); (E.K.)
| | - Wenhui Fu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.M.); (W.F.)
| | - Suyan Wan
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.L.); (H.M.); (E.K.)
| | - Yikai Li
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.L.); (H.M.); (E.K.)
| | - Haoming Mao
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.L.); (H.M.); (E.K.)
| | - Ehsan Khalid
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.L.); (H.M.); (E.K.)
| | - Wenping Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Ray Ming
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.L.); (H.M.); (E.K.)
| |
Collapse
|
21
|
Wang WQ, Liu XF, Zhu YJ, Zhu JZ, Liu C, Wang ZY, Shen XX, Allan AC, Yin XR. Identification of miRNA858 long-loop precursors in seed plants. THE PLANT CELL 2024; 36:1637-1654. [PMID: 38114096 PMCID: PMC11062470 DOI: 10.1093/plcell/koad315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
MicroRNAs (miRNAs) are a class of nonprotein-coding short transcripts that provide a layer of post-transcriptional regulation essential to many plant biological processes. MiR858, which targets the transcripts of MYB transcription factors, can affect a range of secondary metabolic processes. Although miR858 and its 187-nt precursor have been well studied in Arabidopsis (Arabidopsis thaliana), a systematic investigation of miR858 precursors and their functions across plant species is lacking due to a problem in identifying the transcripts that generate this subclass. By re-evaluating the transcript of miR858 and relaxing the length cut-off for identifying hairpins, we found in kiwifruit (Actinidia chinensis) that miR858 has long-loop hairpins (1,100 to 2,100 nt), whose intervening sequences between miRNA generating complementary sites were longer than all previously reported miRNA hairpins. Importantly, these precursors of miR858 containing long-loop hairpins (termed MIR858L) are widespread in seed plants including Arabidopsis, varying between 350 and 5,500 nt. Moreover, we showed that MIR858L has a greater impact on proanthocyanidin and flavonol levels in both Arabidopsis and kiwifruit. We suggest that an active MIR858L-MYB regulatory module appeared in the transition of early land plants to large upright flowering plants, making a key contribution to plant secondary metabolism.
Collapse
Affiliation(s)
- Wen-qiu Wang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-fen Liu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yong-jing Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jia-zhen Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Chao Liu
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Zhi-ye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xing-Xing Shen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Xue-ren Yin
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
22
|
Charlesworth D, Harkess A. Why should we study plant sex chromosomes? THE PLANT CELL 2024; 36:1242-1256. [PMID: 38163640 PMCID: PMC11062472 DOI: 10.1093/plcell/koad278] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024]
Abstract
Understanding plant sex chromosomes involves studying interactions between developmental and physiological genetics, genome evolution, and evolutionary ecology. We focus on areas of overlap between these. Ideas about how species with separate sexes (dioecious species, in plant terminology) can evolve are even more relevant to plants than to most animal taxa because dioecy has evolved many times from ancestral functionally hermaphroditic populations, often recently. One aim of studying plant sex chromosomes is to discover how separate males and females evolved from ancestors with no such genetic sex-determining polymorphism, and the diversity in the genetic control of maleness vs femaleness. Different systems share some interesting features, and their differences help to understand why completely sex-linked regions may evolve. In some dioecious plants, the sex-determining genome regions are physically small. In others, regions without crossing over have evolved sometimes extensive regions with properties very similar to those of the familiar animal sex chromosomes. The differences also affect the evolutionary changes possible when the environment (or pollination environment, for angiosperms) changes, as dioecy is an ecologically risky strategy for sessile organisms. Dioecious plants have repeatedly reverted to cosexuality, and hermaphroditic strains of fruit crops such as papaya and grapes are desired by plant breeders. Sex-linked regions are predicted to become enriched in genes with sex differences in expression, especially when higher expression benefits one sex function but harms the other. Such trade-offs may be important for understanding other plant developmental and physiological processes and have direct applications in plant breeding.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
23
|
Luo H, Lu Z, Guan J, Yan M, Liu Z, Wan Y, Zhou G. Gene co-expression network analysis in areca floral organ and the potential role of the AcMADS17 and AcMADS23 in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112049. [PMID: 38408509 DOI: 10.1016/j.plantsci.2024.112049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Areca catechu L., a monocot belonging to the palm family, is monoecious, with female and male flowers separately distributed on the same inflorescence. To discover the molecular mechanism of flower development in Areca, we sequenced different floral samples to generate tissue-specific transcriptomic profiles. We conducted a comparative analysis of the transcriptomic profiles of apical sections of the inflorescence with male flowers and the basal section of the inflorescence with female flowers. Based on the RNA sequencing dataset, we applied weighted gene co-expression network analysis (WGCNA) to identify sepal, petal, stamen, stigma and other specific modules as well as hub genes involved in specific floral organ development. The syntenic and expression patterns of AcMADS-box genes were analyzed in detail. Furthermore, we analyzed the open chromatin regions and transcription factor PI binding sites in male and female flowers by assay for transposase-accessible chromatin sequencing (ATAC-seq) assay. Heterologous expression revealed the important role of AcMADS17 and AcMADS23 in floral organ development. Our results provide a valuable genomic resource for the functional analysis of floral organ development in Areca.
Collapse
Affiliation(s)
- Haifen Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Zhongliang Lu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Junqi Guan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Mengyao Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Zheng Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yinglang Wan
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Guangzhen Zhou
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China.
| |
Collapse
|
24
|
Sonsungsan P, Nganga ML, Lieberman MC, Amundson KR, Stewart V, Plaimas K, Comai L, Henry IM. A k-mer-based bulked segregant analysis approach to map seed traits in unphased heterozygous potato genomes. G3 (BETHESDA, MD.) 2024; 14:jkae035. [PMID: 38366577 PMCID: PMC10989861 DOI: 10.1093/g3journal/jkae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
High-throughput sequencing-based methods for bulked segregant analysis (BSA) allow for the rapid identification of genetic markers associated with traits of interest. BSA studies have successfully identified qualitative (binary) and quantitative trait loci (QTLs) using QTL mapping. However, most require population structures that fit the models available and a reference genome. Instead, high-throughput short-read sequencing can be combined with BSA of k-mers (BSA-k-mer) to map traits that appear refractory to standard approaches. This method can be applied to any organism and is particularly useful for species with genomes diverged from the closest sequenced genome. It is also instrumental when dealing with highly heterozygous and potentially polyploid genomes without phased haplotype assemblies and for which a single haplotype can control a trait. Finally, it is flexible in terms of population structure. Here, we apply the BSA-k-mer method for the rapid identification of candidate regions related to seed spot and seed size in diploid potato. Using a mixture of F1 and F2 individuals from a cross between 2 highly heterozygous parents, candidate sequences were identified for each trait using the BSA-k-mer approach. Using parental reads, we were able to determine the parental origin of the loci. Finally, we mapped the identified k-mers to a closely related potato genome to validate the method and determine the genomic loci underlying these sequences. The location identified for the seed spot matches with previously identified loci associated with pigmentation in potato. The loci associated with seed size are novel. Both loci are relevant in future breeding toward true seeds in potato.
Collapse
Affiliation(s)
- Pajaree Sonsungsan
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mwaura Livingstone Nganga
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Meric C Lieberman
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Kirk R Amundson
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Victoria Stewart
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Kitiporn Plaimas
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Isabelle M Henry
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
25
|
Pelayo MA, Wellmer F. Breaking boundaries: a novel role for CUC genes in sex determination in cucurbits. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1796-1799. [PMID: 38534185 PMCID: PMC10967247 DOI: 10.1093/jxb/erae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
This article comments on:
Segura M, García A, Gamarra G, Benítez A, Iglesias-Moya J, Martínez C, Jamilena M. 2024. An miR164-resistant mutation in the transcription factor gene CpCUC2B enhances carpel arrest and ectopic boundary specification in Cucurbita pepo flower development. Journal of Experimental Botany 75, 1948–1966.
Collapse
Affiliation(s)
| | - Frank Wellmer
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
26
|
Luthringer R, Raphalen M, Guerra C, Colin S, Martinho C, Zheng M, Hoshino M, Badis Y, Lipinska AP, Haas FB, Barrera-Redondo J, Alva V, Coelho SM. Repeated co-option of HMG-box genes for sex determination in brown algae and animals. Science 2024; 383:eadk5466. [PMID: 38513029 DOI: 10.1126/science.adk5466] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024]
Abstract
In many eukaryotes, genetic sex determination is not governed by XX/XY or ZW/ZZ systems but by a specialized region on the poorly studied U (female) or V (male) sex chromosomes. Previous studies have hinted at the existence of a dominant male-sex factor on the V chromosome in brown algae, a group of multicellular eukaryotes distantly related to animals and plants. The nature of this factor has remained elusive. Here, we demonstrate that an HMG-box gene acts as the male-determining factor in brown algae, mirroring the role HMG-box genes play in sex determination in animals. Over a billion-year evolutionary timeline, these lineages have independently co-opted the HMG box for male determination, representing a paradigm for evolution's ability to recurrently use the same genetic "toolkit" to accomplish similar tasks.
Collapse
Affiliation(s)
- Rémy Luthringer
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Morgane Raphalen
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Carla Guerra
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Sébastien Colin
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Claudia Martinho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Min Zheng
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Masakazu Hoshino
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
- Research Center for Inland Seas, Kobe University, Kobe 658-0022, Japan
| | - Yacine Badis
- Roscoff Biological Station, CNRS-Sorbonne University, Place Georges Teissier, 29680 Roscoff, France
| | - Agnieszka P Lipinska
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Fabian B Haas
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Josué Barrera-Redondo
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
27
|
Yamano K, Haseda A, Iwabuchi K, Osabe T, Sudo Y, Pachakkil B, Tanaka K, Suzuki Y, Toyoda A, Hirakawa H, Onodera Y. QTL analysis of femaleness in monoecious spinach and fine mapping of a major QTL using an updated version of chromosome-scale pseudomolecules. PLoS One 2024; 19:e0296675. [PMID: 38394294 PMCID: PMC10890751 DOI: 10.1371/journal.pone.0296675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/15/2023] [Indexed: 02/25/2024] Open
Abstract
Although spinach is predominantly dioecious, monoecious plants with varying proportions of female and male flowers are also present. Recently, monoecious inbred lines with highly female and male conditions have been preferentially used as parents for F1-hybrids, rather than dioecious lines. Accordingly, identifying the loci for monoecism is an important issue for spinach breeding. We here used long-read sequencing and Hi-C technology to construct SOL_r2.0_pseudomolecule, a set of six pseudomolecules of spinach chromosomes (total length: 879.2 Mb; BUSCO complete 97.0%) that are longer and more genetically complete than our previous version of pseudomolecules (688.0 Mb; 81.5%). Three QTLs, qFem2.1, qFem3.1, and qFem6.1, responsible for monoecism were mapped to SOL_r2.0_pseudomolecule. qFem3.1 had the highest LOD score and corresponded to the M locus, which was previously identified as a determinant of monoecious expression, by genetic analysis of progeny from female and monoecious plants. The other QTLs were shown to modulate the ratio of female to male flowers in monoecious plants harboring a dominant allele of the M gene. Our findings will enable breeders to efficiently produce highly female- and male-monoecious parental lines for F1-hybrids by pyramiding the three QTLs. Through fine-mapping, we narrowed the candidate region for the M locus to a 19.5 kb interval containing three protein-coding genes and one long non-coding RNA gene. Among them, only RADIALIS-like-2a showed a higher expression in the reproductive organs, suggesting that it might play a role in reproductive organogenesis. However, there is no evidence that it is involved in the regulation of stamen and pistil initiation, which are directly related to the floral sex differentiation system in spinach. Given that auxin is involved in reproductive organ formation in many plant species, genes related to auxin transport/response, in addition to floral organ formation, were identified as candidates for regulators of floral sex-differentiation from qFem2.1 and qFem6.1.
Collapse
Affiliation(s)
- Kaoru Yamano
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Akane Haseda
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Keisuke Iwabuchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Takayuki Osabe
- School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yuki Sudo
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Babil Pachakkil
- Department of International Agricultural Development, Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
- Department of Informatics, Tokyo University of Information Sciences, Chiba, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Hideki Hirakawa
- The Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Yasuyuki Onodera
- The Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
28
|
Filatov DA. Evolution of a plant sex chromosome driven by expanding pericentromeric recombination suppression. Sci Rep 2024; 14:1373. [PMID: 38228625 DOI: 10.1038/s41598-024-51153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024] Open
Abstract
Recombination suppression around sex-determining gene(s) is a key step in evolution of sex chromosomes, but it is not well understood how it evolves. Recently evolved sex-linked regions offer an opportunity to understand the mechanisms of recombination cessation. This paper analyses such a region on Silene latifolia (Caryophyllaceae) sex chromosomes, where recombination was suppressed in the last 120 thousand years ("stratum 3"). Locating the boundaries of the stratum 3 in S. latifolia genome sequence revealed that this region is far larger than assumed previously-it is about 14 Mb long and includes 202 annotated genes. A gradient of X:Y divergence detected in the stratum 3, with divergence increasing proximally, indicates gradual recombination cessation, possibly caused by expansion of pericentromeric recombination suppression (PRS) into the pseudoautosomal region. Expansion of PRS was also the likely cause for the formation of the older stratum 2 on S. latifolia sex chromosomes. The role of PRS in sex chromosome evolution has been underappreciated, but it may be a significant factor, especially in the species with large chromosomes where PRS is often extensive.
Collapse
Affiliation(s)
- Dmitry A Filatov
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK.
| |
Collapse
|
29
|
Unnikrishnan R, Balakrishnan S, Sumod M, Sujanapal P, Balan B, Dev SA. Gender specific SNP markers in Coscinium fenestratum (Gaertn.) Colebr. for resource augmentation. Mol Biol Rep 2024; 51:93. [PMID: 38194000 DOI: 10.1007/s11033-023-09044-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/06/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Unregulated extraction of highly traded medicinal plant species results in drastic decline of the natural resources and alters viable sex ratio of populations. Conservation and long-term survival of such species, require gender specific restoration programs to ensure reproductive success. However, it is often difficult to differentiate sex of individuals before reaching reproductive maturity. C. fenestratum is one of the medicinally important and overexploited dioecious woody liana, with a reproductive maturity of 15 years. Currently, no information is available to identify sex of C. fenestratum in seedling stage while augmenting the resources. Thus, the current study envisages to utilize transcriptomics approach for gender differentiation which is imperative for undertaking viable resource augmentation programmes. METHODS AND RESULTS Gender specific SNPs with probable role in sexual reproduction/sex determination was located using comparative transcriptomics approach (sampling male and female individuals), alongside gene ontology and annotation. Nine sets of primers were synthesized from 7 transcripts (involved in sexual reproduction/other biological process) containing multiple SNP variants. Out of the nine primer pairs, only one SNP locus with no available information of its role in reproduction, showed consistent and accurate results (males-heterozygous and females-homozygous), in the analyzed 40 matured individuals of known sexes. Thus validated the efficiency of this SNP marker in differentiating male and female individuals. CONCLUSIONS The study could identify SNPs linked to the loci with apparent role in gender differentiation. This SNP marker can be used for early sexing of seedlings for in-situ conservation and resource augmentation of C. fenestratum in Kerala, India.
Collapse
Affiliation(s)
- Remya Unnikrishnan
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala, 680653, India
- Cochin University of Science & Technology, Kochi, Kerala, India
| | - Swathi Balakrishnan
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala, 680653, India
- Cochin University of Science & Technology, Kochi, Kerala, India
| | - M Sumod
- Sustainable Forest Management Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala, 680653, India
| | - P Sujanapal
- Sustainable Forest Management Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala, 680653, India
| | - Bipin Balan
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze-Ed. 4, Palermo, 90128, Italy
| | - Suma Arun Dev
- Forest Genetics and Biotechnology Division, Kerala Forest Research Institute, Peechi, Thrissur, Kerala, 680653, India.
| |
Collapse
|
30
|
Wang XB, Lu HW, Liu QY, Li AL, Zhou HL, Zhang Y, Zhu TQ, Ruan J. An effective strategy for assembling the sex-limited chromosome. Gigascience 2024; 13:giae015. [PMID: 38626722 PMCID: PMC11020242 DOI: 10.1093/gigascience/giae015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/17/2024] [Accepted: 03/15/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND Most currently available reference genomes lack the sequence map of sex-limited (such as Y and W) chromosomes, which results in incomplete assemblies that hinder further research on sex chromosomes. Recent advancements in long-read sequencing and population sequencing have provided the opportunity to assemble sex-limited chromosomes without the traditional complicated experimental efforts. FINDINGS We introduce the first computational method, Sorting long Reads of Y or other sex-limited chromosome (SRY), which achieves improved assembly results compared to flow sorting. Specifically, SRY outperforms in the heterochromatic region and demonstrates comparable performance in other regions. Furthermore, SRY enhances the capabilities of the hybrid assembly software, resulting in improved continuity and accuracy. CONCLUSIONS Our method enables true complete genome assembly and facilitates downstream research of sex-limited chromosomes.
Collapse
Affiliation(s)
- Xiao-Bo Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
- The Shennong Laboratory/Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hong-Wei Lu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Qing-You Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - A-Lun Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Hong-Ling Zhou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yong Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tian-Qi Zhu
- National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Jue Ruan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| |
Collapse
|
31
|
Gallagher JP, Man J, Chiaramida A, Rozza IK, Patterson EL, Powell MM, Schrager-Lavelle A, Multani DS, Meeley RB, Bartlett ME. GRASSY TILLERS1 ( GT1) and SIX-ROWED SPIKE1 ( VRS1) homologs share conserved roles in growth repression. Proc Natl Acad Sci U S A 2023; 120:e2311961120. [PMID: 38096411 PMCID: PMC10742383 DOI: 10.1073/pnas.2311961120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Crop engineering and de novo domestication using gene editing are new frontiers in agriculture. However, outside of well-studied crops and model systems, prioritizing engineering targets remains challenging. Evolution can guide us, revealing genes with deeply conserved roles that have repeatedly been selected in the evolution of plant form. Homologs of the transcription factor genes GRASSY TILLERS1 (GT1) and SIX-ROWED SPIKE1 (VRS1) have repeatedly been targets of selection in domestication and evolution, where they repress growth in many developmental contexts. This suggests a conserved role for these genes in regulating growth repression. To test this, we determined the roles of GT1 and VRS1 homologs in maize (Zea mays) and the distantly related grass brachypodium (Brachypodium distachyon) using gene editing and mutant analysis. In maize, gt1; vrs1-like1 (vrl1) mutants have derepressed growth of floral organs. In addition, gt1; vrl1 mutants bore more ears and more branches, indicating broad roles in growth repression. In brachypodium, Bdgt1; Bdvrl1 mutants have more branches, spikelets, and flowers than wild-type plants, indicating conserved roles for GT1 and VRS1 homologs in growth suppression over ca. 59 My of grass evolution. Importantly, many of these traits influence crop productivity. Notably, maize GT1 can suppress growth in arabidopsis (Arabidopsis thaliana) floral organs, despite ca. 160 My of evolution separating the grasses and arabidopsis. Thus, GT1 and VRS1 maintain their potency as growth regulators across vast timescales and in distinct developmental contexts. This work highlights the power of evolution to inform gene editing in crop improvement.
Collapse
Affiliation(s)
- Joseph P. Gallagher
- Biology Department, University of Massachusetts, Amherst, MA01003
- Forage Seed and Cereal Research Unit, US Department of Agriculture, Agricultural Research Service, Corvallis, OR97331
| | - Jarrett Man
- Biology Department, University of Massachusetts, Amherst, MA01003
| | | | | | | | - Morgan M. Powell
- Biology Department, University of Massachusetts, Amherst, MA01003
| | | | - Dilbag S. Multani
- Corteva Agriscience, Johnston, IA50131
- Napigen, Inc., Wilmington, DE19803
| | | | | |
Collapse
|
32
|
Masuda K, Kuwada E, Suzuki M, Suzuki T, Niikawa T, Uchida S, Akagi T. Transcriptomic Interpretation on Explainable AI-Guided Intuition Uncovers Premonitory Reactions of Disordering Fate in Persimmon Fruit. PLANT & CELL PHYSIOLOGY 2023; 64:1323-1330. [PMID: 37225398 DOI: 10.1093/pcp/pcad050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/15/2023] [Accepted: 07/06/2023] [Indexed: 05/26/2023]
Abstract
Deep neural network (DNN) techniques, as an advanced machine learning framework, have allowed various image diagnoses in plants, which often achieve better prediction performance than human experts in each specific field. Notwithstanding, in plant biology, the application of DNNs is still mostly limited to rapid and effective phenotyping. The recent development of explainable CNN frameworks has allowed visualization of the features in the prediction by a convolutional neural network (CNN), which potentially contributes to the understanding of physiological mechanisms in objective phenotypes. In this study, we propose an integration of explainable CNN and transcriptomic approach to make a physiological interpretation of a fruit internal disorder in persimmon, rapid over-softening. We constructed CNN models to accurately predict the fate to be rapid softening in persimmon cv. Soshu, only with photo images. The explainable CNNs, such as Gradient-weighted Class Activation Mapping (Grad-Class Activation Mapping (CAM)) and guided Grad-CAM, visualized specific featured regions relevant to the prediction of rapid softening, which would correspond to the premonitory symptoms in a fruit. Transcriptomic analyses to compare the featured regions of the predicted rapid-softening and control fruits suggested that rapid softening is triggered by precocious ethylene signal-dependent cell wall modification, despite exhibiting no direct phenotypic changes. Further transcriptomic comparison between the featured and non-featured regions in the predicted rapid-softening fruit suggested that premonitory symptoms reflected hypoxia and the related stress signals finally to induce ethylene signals. These results would provide a good example for the collaboration of image analysis and omics approaches in plant physiology, which uncovered a novel aspect of fruit premonitory reactions in the rapid-softening fate.
Collapse
Affiliation(s)
- Kanae Masuda
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushimanaka, Kita Ward, Okayama, 700-8530 Japan
| | - Eriko Kuwada
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushimanaka, Kita Ward, Okayama, 700-8530 Japan
| | - Maria Suzuki
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushimanaka, Kita Ward, Okayama, 700-8530 Japan
| | - Tetsuya Suzuki
- Gifu Prefectural Agricultural Technology Center, 729-1 Matamaru Gifu, 501-1152 Japan
| | - Takeshi Niikawa
- Gifu Prefectural Agricultural Technology Center, 729-1 Matamaru Gifu, 501-1152 Japan
| | - Seiichi Uchida
- Faculty of Information Science and Electrical Engineering, Kyusyu University, 744 Motooka, Nishi Ward, Fukuoka, 819-0395 Japan
| | - Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushimanaka, Kita Ward, Okayama, 700-8530 Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012 Japan
| |
Collapse
|
33
|
Sun P, Nishiyama S, Li H, Mai Y, Han W, Suo Y, Liang C, Du H, Diao S, Wang Y, Yuan J, Zhang Y, Tao R, Li F, Fu J. Genetic insights into the dissolution of dioecy in diploid persimmon Diospyros oleifera Cheng. BMC PLANT BIOLOGY 2023; 23:606. [PMID: 38030968 PMCID: PMC10688080 DOI: 10.1186/s12870-023-04610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Dioecy, a sexual system of single-sexual (gynoecious/androecious) individuals, is rare in flowering plants. This rarity may be a result of the frequent transition from dioecy into systems with co-sexual individuals. RESULTS In this study, co-sexual expression (monoecy and hermaphroditic development), previously thought to be polyploid-specific in Diospyros species, was identified in the diploid D. oleifeara historically. We characterized potential genetic mechanisms that underlie the dissolution of dioecy to monoecy and andro(gyno)monoecy, based on multiscale genome-wide investigations of 150 accessions of Diospyros oleifera. We found all co-sexual plants, including monoecious and andro(gyno)monoecious individuals, possessed the male determinant gene OGI, implying the presence of genetic factors controlling gynoecia development in genetically male D. oleifera. Importantly, discrepancies in the OGI/MeGI module were found in diploid monoecious D. oleifera compared with polyploid monoecious D. kaki, including no Kali insertion on the promoter of OGI, no different abundance of smRNAs targeting MeGI (a counterpart of OGI), and no different expression of MeGI between female and male floral buds. On the contrary, in both single- and co-sexual plants, female function was expressed in the presence of a genome-wide decrease in methylation levels, along with sexually distinct regulatory networks of smRNAs and their targets. Furthermore, a genome-wide association study (GWAS) identified a genomic region and a DUF247 gene cluster strongly associated with the monoecious phenotype and several regions that may contribute to andromonoecy. CONCLUSIONS Collectively, our findings demonstrate stable breakdown of the dioecious system in D. oleifera, presumably also a result of genomic features of the Y-linked region.
Collapse
Affiliation(s)
- Peng Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China
| | - Soichiro Nishiyama
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Huawei Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China
| | - Yini Mai
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China
| | - Weijuan Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China
| | - Yujing Suo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China
| | - Chengzhi Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huilong Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Songfeng Diao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China
| | - Yiru Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China
| | - Jiaying Yuan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China
| | - Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-Ku, Kyoto, 606-8502, Japan.
| | - Fangdong Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China.
| | - Jianmin Fu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-Timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China.
| |
Collapse
|
34
|
Kazama Y, Kobayashi T, Filatov DA. Evolution of sex-determination in dioecious plants: From active Y to X/A balance? Bioessays 2023; 45:e2300111. [PMID: 37694687 PMCID: PMC11475520 DOI: 10.1002/bies.202300111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Sex chromosomes in plants have been known for a century, but only recently have we begun to understand the mechanisms behind sex determination in dioecious plants. Here, we discuss evolution of sex determination, focusing on Silene latifolia, where evolution of separate sexes is consistent with the classic "two mutations" model-a loss of function male sterility mutation and a gain of function gynoecium suppression mutation, which turned an ancestral hermaphroditic population into separate males and females. Interestingly, the gynoecium suppression function in S. latifolia evolved via loss of function in at least two sex-linked genes and works via gene dosage balance between sex-linked, and autosomal genes. This system resembles X/A-ratio-based sex determination systems in Drosophila and Rumex, and could represent a steppingstone in the evolution of X/A-ratio-based sex determination from an active Y system.
Collapse
Affiliation(s)
- Yusuke Kazama
- Graduate school of Bioscience and BiotechnologyFukui Prefectural UniversityEiheiji‐choFukuiJapan
- RIKEN Nishina CenterWakoSaitamaJapan
| | - Taiki Kobayashi
- Graduate school of Bioscience and BiotechnologyFukui Prefectural UniversityEiheiji‐choFukuiJapan
| | | |
Collapse
|
35
|
Li N, Zhou J, Zhang W, Liu W, Wang B, She H, Mirbahar AA, Li S, Zhang Y, Gao W, Qian W, Deng C. A rapid method for assembly of single chromosome and identification of sex determination region based on single-chromosome sequencing. THE NEW PHYTOLOGIST 2023; 240:892-903. [PMID: 37533136 DOI: 10.1111/nph.19176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/08/2023] [Indexed: 08/04/2023]
Abstract
The sex-determining-region (SDR) may offer the best prospects for studying sex-determining gene, recombination suppression, and chromosome heteromorphism. However, current progress of SDR identification and cloning showed following shortcomings: large near-isogenic lines need to be constructed, and a relatively large population is needed; the cost of whole-genome sequencing and assembly is high. Herein, the X/Y chromosomes of Spinacia oleracea L. subsp. turkestanica were successfully microdissected and assembled using single-chromosome sequencing. The assembly length of X and Y chromosome is c. 192.1 and 195.2 Mb, respectively. Three large inversions existed between X and Y chromosome. The SDR size of X and Y chromosome is c. 13.2 and 24.1 Mb, respectively. MSY region and six male-biased genes were identified. A Y-chromosome-specific marker in SDR was constructed and used to verify the chromosome assembly quality at cytological level via fluorescence in situ hybridization. Meanwhile, it was observed that the SDR located on long arm of Y chromosome and near the centromere. Overall, a technical system was successfully established for rapid cloning the SDR and it is also applicable to rapid assembly of specific chromosome in other plants. Furthermore, this study laid a foundation for studying the molecular mechanism of sex chromosome evolution in spinach.
Collapse
Affiliation(s)
- Ning Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Jian Zhou
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wanqing Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wenjia Liu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Bingxin Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Hongbing She
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ameer Ahmed Mirbahar
- Date Palm Research Institute, Shah Abdul Latif University, Khairpur, Sindh, 66020, Pakistan
| | - Shufen Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yulan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wujun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wei Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chuanliang Deng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
36
|
Rashid D, Devani RS, Rodriguez-Granados NY, Abou-Choucha F, Troadec C, Morin H, Tan FQ, Marcel F, Huang HY, Hanique M, Zhang S, Verdenaud M, Pichot C, Rittener V, Huang Y, Benhamed M, Dogimont C, Boualem A, Bendahmane A. Ethylene produced in carpel primordia controls CmHB40 expression to inhibit stamen development. NATURE PLANTS 2023; 9:1675-1687. [PMID: 37653338 DOI: 10.1038/s41477-023-01511-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Sex determination evolved to control the development of unisexual flowers. In agriculture, it conditions how plants are cultivated and bred. We investigated how female flowers develop in monoecious cucurbits. We discovered in melon, Cucumis melo, a mechanism in which ethylene produced in the carpel is perceived in the stamen primordia through spatially differentially expressed ethylene receptors. Subsequently, the CmEIN3/CmEIL1 ethylene signalling module, in stamen primordia, activates the expression of CmHB40, a transcription factor that downregulates genes required for stamen development and upregulates genes associated with organ senescence. Investigation of melon genetic biodiversity revealed a haplotype, originating in Africa, altered in EIN3/EIL1 binding to CmHB40 promoter and associated with bisexual flower development. In contrast to other bisexual mutants in cucurbits, CmHB40 mutations do not alter fruit shape. By disentangling fruit shape and sex-determination pathways, our work opens up new avenues in plant breeding.
Collapse
Affiliation(s)
- Dali Rashid
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Ravi Sureshbhai Devani
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Natalia Yaneth Rodriguez-Granados
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Fadi Abou-Choucha
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Christelle Troadec
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Halima Morin
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Feng-Quan Tan
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Fabien Marcel
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Hsin-Ya Huang
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Melissa Hanique
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Siqi Zhang
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Marion Verdenaud
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Clement Pichot
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Vincent Rittener
- Génétique et Amélioration des Fruits et Légumes (GAFL), INRAE, Montfavet, France
| | - Ying Huang
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Catherine Dogimont
- Génétique et Amélioration des Fruits et Légumes (GAFL), INRAE, Montfavet, France
| | - Adnane Boualem
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France.
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France.
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France.
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France.
| |
Collapse
|
37
|
She H, Liu Z, Li S, Xu Z, Zhang H, Cheng F, Wu J, Wang X, Deng C, Charlesworth D, Gao W, Qian W. Evolution of the spinach sex-linked region within a rarely recombining pericentromeric region. PLANT PHYSIOLOGY 2023; 193:1263-1280. [PMID: 37403642 DOI: 10.1093/plphys/kiad389] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023]
Abstract
Sex chromosomes have evolved independently in many different plant lineages. Here, we describe reference genomes for spinach (Spinacia oleracea) X and Y haplotypes by sequencing homozygous XX females and YY males. The long arm of 185-Mb chromosome 4 carries a 13-Mb X-linked region (XLR) and 24.1-Mb Y-linked region (YLR), of which 10 Mb is Y specific. We describe evidence that this reflects insertions of autosomal sequences creating a "Y duplication region" or "YDR" whose presence probably directly reduces genetic recombination in the immediately flanking regions, although both the X and Y sex-linked regions are within a large pericentromeric region of chromosome 4 that recombines rarely in meiosis of both sexes. Sequence divergence estimates using synonymous sites indicate that YDR genes started diverging from their likely autosomal progenitors about 3 MYA, around the time when the flanking YLR stopped recombining with the XLR. These flanking regions have a higher density of repetitive sequences in the YY than the XX assembly and include slightly more pseudogenes compared with the XLR, and the YLR has lost about 11% of the ancestral genes, suggesting some degeneration. Insertion of a male-determining factor would have caused Y linkage across the entire pericentromeric region, creating physically small, highly recombining, terminal pseudoautosomal regions. These findings provide a broader understanding of the origin of sex chromosomes in spinach.
Collapse
Affiliation(s)
- Hongbing She
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyuan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shufen Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Zhaosheng Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Helong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Feng Cheng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuanliang Deng
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Deborah Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Wujun Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Wei Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
38
|
Guo D, Wang R, Fang J, Zhong Y, Qi X. Development of sex-linked markers for gender identification of Actinidia arguta. Sci Rep 2023; 13:12780. [PMID: 37550389 PMCID: PMC10406875 DOI: 10.1038/s41598-023-39561-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
The fruit of the dioecious plant Actinidia arguta has become a great attraction recently. It has long been difficult to distinguish the genders of hybrid seedlings before flowering, therefore increasing the expenditures of breeding. To produce reliable molecular marker for gender identification, this research utilized whole-genome re-sequencing of 15 males and 15 females from an 8-year-old cross population to develop gender specific markers. P51 and P11 were identified as sex-linked markers after verification. Both of these markers, according to the PCR results, only amplified a single band in male samples. These two markers were tested in 97 hybrids (52 females and 45 males) and 31 wild individuals (13 females and 18 males), with an accuracy of 96.88% and 96.09%, correspondingly. This research also verified the universalities of the two markers in Actinidia chinensis samples, and it could be inferred from the PCR results that neither marker was applicable to A. chinensis samples. The BLAST results of the two markers demonstrated that the two markers were closely aligned with different parts of the Y male-specific region of A. chinensis genome, thus they were likely to be useful for the research on the mechanism of sex determination of A. arguta. The two male-linked makers, P51 and P11, have already been used in sex-identification of A. arguta seedlings.
Collapse
Affiliation(s)
- Dandan Guo
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Ran Wang
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jinbao Fang
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Yunpeng Zhong
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| | - Xiujuan Qi
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
39
|
Bobadilla LK, Baek Y, Tranel PJ. Comparative transcriptomic analysis of male and females in the dioecious weeds Amaranthus palmeri and Amaranthus tuberculatus. BMC PLANT BIOLOGY 2023; 23:339. [PMID: 37365527 DOI: 10.1186/s12870-023-04286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Waterhemp (Amaranthus tuberculatus (Moq.) Sauer) and Palmer amaranth (Amaranthus palmeri S. Wats.) are two dioecious and important weed species in the world that can rapidly evolve herbicide-resistance traits. Understanding these two species' dioecious and sex-determination mechanisms could open opportunities for new tools to control them. This study aims to identify the differential expression patterns between males and females in A. tuberculatus and A. palmeri. Multiple analyses, including differential expression, co-expression, and promoter analyses, used RNA-seq data from multiple tissue types to identify putative essential genes for sex determination in both dioecious species. RESULTS Genes were identified as potential key players for sex determination in A. palmeri. Genes PPR247, WEX, and ACD6 were differentially expressed between the sexes and located at scaffold 20 within or near the male-specific Y (MSY) region. Multiple genes involved with flower development were co-expressed with these three genes. For A. tuberculatus, no differentially expressed gene was identified within the MSY region; however, multiple autosomal class B and C genes were identified as differentially expressed and possible candidate genes. CONCLUSIONS This is the first study comparing the global expression profile between males and females in dioecious weedy Amaranthus species. Results narrow down putative essential genes for sex-determination in A. palmeri and A. tuberculatus and also strengthen the hypothesis of two different evolutionary events for dioecy within the genus.
Collapse
Affiliation(s)
- Lucas K Bobadilla
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Yousoon Baek
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
40
|
Yue J, Krasovec M, Kazama Y, Zhang X, Xie W, Zhang S, Xu X, Kan B, Ming R, Filatov DA. The origin and evolution of sex chromosomes, revealed by sequencing of the Silene latifolia female genome. Curr Biol 2023:S0960-9822(23)00678-4. [PMID: 37290443 DOI: 10.1016/j.cub.2023.05.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/07/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
White campion (Silene latifolia, Caryophyllaceae) was the first vascular plant where sex chromosomes were discovered. This species is a classic model for studies on plant sex chromosomes due to presence of large, clearly distinguishable X and Y chromosomes that originated de novo about 11 million years ago (mya), but lack of genomic resources for this relatively large genome (∼2.8 Gb) remains a significant hurdle. Here we report S. latifolia female genome assembly integrated with sex-specific genetic maps of this species, focusing on sex chromosomes and their evolution. The analysis reveals a highly heterogeneous recombination landscape with strong reduction in recombination rate in the central parts of all chromosomes. Recombination on the X chromosome in female meiosis primarily occurs at the very ends, and over 85% of the X chromosome length is located in a massive (∼330 Mb) gene-poor, rarely recombining pericentromeric region (Xpr). The results indicate that the non-recombining region on the Y chromosome (NRY) initially evolved in a relatively small (∼15 Mb), actively recombining region at the end of the q-arm, possibly as a result of inversion on the nascent X chromosome. The NRY expanded about 6 mya via linkage between the Xpr and the sex-determining region, which may have been caused by expanding pericentromeric recombination suppression on the X chromosome. These findings shed light on the origin of sex chromosomes in S. latifolia and yield genomic resources to assist ongoing and future investigations into sex chromosome evolution.
Collapse
Affiliation(s)
- Jingjing Yue
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Marc Krasovec
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK; Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Yusuke Kazama
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-cho, Fukui 910-1195, Japan
| | - Xingtan Zhang
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518100, China
| | - Wangyang Xie
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shencheng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518100, China
| | - Xiuming Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361100, China
| | - Baolin Kan
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ray Ming
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Dmitry A Filatov
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK.
| |
Collapse
|
41
|
Hyden B, Zou J, Wilkerson DG, Carlson CH, Robles AR, DiFazio SP, Smart LB. Structural variation of a sex-linked region confers monoecy and implicates GATA15 as a master regulator of sex in Salix purpurea. THE NEW PHYTOLOGIST 2023; 238:2512-2523. [PMID: 36866707 DOI: 10.1111/nph.18853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/21/2023] [Indexed: 05/19/2023]
Abstract
The Salicaceae, including Populus and Salix, are dioecious perennials that utilize different sex determination systems. This family provides a useful system to better understand the evolution of dioecy and sex chromosomes. Here, a rare monoecious genotype of Salix purpurea, 94003, was self- and cross-pollinated and progeny sex ratios were used to test hypotheses on possible mechanisms of sex determination. To delimit genomic regions associated with monoecious expression, the 94003 genome sequence was assembled and DNA- and RNA-Seq of progeny inflorescences was performed. Based on alignments of progeny shotgun DNA sequences to the haplotype-resolved monoecious 94003 genome assembly and reference male and female genomes, a 1.15 Mb sex-linked region on Chr15W was confirmed to be absent in monecious plants. Inheritance of this structural variation is responsible for the loss of a male-suppressing function in what would otherwise be genetic females (ZW), resulting in monoecy (ZWH or WWH ), or lethality, if homozygous (WH WH ). We present a refined, two-gene sex determination model for Salix purpurea, mediated by ARR17 and GATA15 that is different from the single-gene ARR17-mediated system in the related genus Populus.
Collapse
Affiliation(s)
- Brennan Hyden
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
| | - Junzhu Zou
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
- Research Institute of Forestry, Chinese Academy of Forestry, Dongxiaofu No. 1, Haidian District, Beijing, 100091, China
| | - Dustin G Wilkerson
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
| | - Craig H Carlson
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Ayiana Rivera Robles
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
| |
Collapse
|
42
|
Nashiki A, Matsuo H, Takano K, Fitriyah F, Isobe S, Shirasawa K, Yoshioka Y. Identification of novel sex determination loci in Japanese weedy melon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:136. [PMID: 37231314 DOI: 10.1007/s00122-023-04381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Japanese weedy melon exhibits unique sex expression with interactions between previously reported sex determination genes and two novel loci. Sex expression contributes to fruit quality and yield in the Cucurbitaceae. In melon, orchestrated regulation by sex determination genes explains the mechanism of sex expression, resulting in a great variety of sexual morphologies. In this study, we examined the Japanese weedy melon UT1, which does not follow the reported model of sex expression. We conducted QTL analysis using F2 plants for flower sex on the main stem and the lateral branch and mapped "occurrence of pistil-bearing flower on the main stem" locus on Chr. 3 (Opbf3.1) and "type of pistil-bearing flower" (female or bisexual) loci on Chr. 2 (tpbf2.1) and Chr. 8 (tpbf8.1). The Opbf3.1 included the known sex determination gene CmACS11. Sequence comparison of CmACS11 between parental lines revealed three nonsynonymous SNPs. A CAPS marker developed from one of the SNPs was closely linked to the occurrence of pistil-bearing flowers on the main stem in two F2 populations with different genetic backgrounds. The UT1 allele on Opbf3.1 was dominant in F1 lines from crosses between UT1 and diverse cultivars and breeding lines. This study suggests that Opbf3.1 and tpbf8.1 may promote the development of pistil and stamen primordia by inhibiting CmWIP1 and CmACS-7 functions, respectively, making the UT1 plants hermaphrodite. The results of this study provide new insights into the molecular mechanisms of sex determination in melons and considerations for the application of femaleness in melon breeding.
Collapse
Affiliation(s)
- Akito Nashiki
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroki Matsuo
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kota Takano
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Fauziatul Fitriyah
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Sachiko Isobe
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Yosuke Yoshioka
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
43
|
Mao J, Wei S, Chen Y, Yang Y, Yin T. The proposed role of MSL-lncRNAs in causing sex lability of female poplars. HORTICULTURE RESEARCH 2023; 10:uhad042. [PMID: 37188057 PMCID: PMC10177001 DOI: 10.1093/hr/uhad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/02/2023] [Indexed: 05/17/2023]
Abstract
Labile sex expression is frequently observed in dioecious plants, but the underlying genetic mechanism remains largely unknown. Sex plasticity is also observed in many Populus species. Here we carried out a systematic study on a maleness-promoting gene, MSL, detected in the Populus deltoides genome. Our results showed that both strands of MSL contained multiple cis-activating elements, which generated long non-coding RNAs (lncRNAs) promoting maleness. Although female P. deltoides did not have the male-specific MSL gene, a large number of partial sequences with high sequence similarity to this gene were detected in the female poplar genome. Based on sequence alignment, the MSL sequence could be divided into three partial sequences, and heterologous expression of these partial sequences in Arabidopsis confirmed that they could promote maleness. Since activation of the MSL sequences can only result in female sex lability, we propose that MSL-lncRNAs might play a role in causing sex lability of female poplars.
Collapse
Affiliation(s)
| | | | - Yingnan Chen
- State Key Laboratory for Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Breeding of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China
| | - Yonghua Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | | |
Collapse
|
44
|
Zhang Y, Lin W, Chu C, Ni M. Sex-specific outbreeding advantages and sexual dimorphism in the seedlings of dioecious trees. AMERICAN JOURNAL OF BOTANY 2023; 110:e16153. [PMID: 36905311 DOI: 10.1002/ajb2.16153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 05/11/2023]
Abstract
PREMISE Dioecious trees are important components of many forest ecosystems. Outbreeding advantage and sexual dimorphism are two major mechanisms that explain the persistence of dioecious plants; however, they have rarely been studied in dioecious trees. METHODS We investigated the influence of sex and genetic distance between parental trees (GDPT) on the growth and functional traits of multiple seedlings of a dioecious tree, Diospyros morrisiana. RESULTS We found significant positive relationships between GDPT and seedling sizes and tissue density. However, the positive outbreeding effects on seedling growth mainly manifested in female seedlings, but were not prominent in males. Among seedlings, the male ones generally had higher biomass and leaf area than female seedlings, but such differences diminished as GDPT increased. CONCLUSIONS Our research highlights that outbreeding advantage in plants can be sex-specific and that sexual dimorphism begins from the seedling stage of dioecious trees.
Collapse
Affiliation(s)
- Yonghua Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325000, China
| | - Wei Lin
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Ming Ni
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
45
|
Masuda K, Akagi T. Evolution of sex in crops: recurrent scrap and rebuild. BREEDING SCIENCE 2023; 73:95-107. [PMID: 37404348 PMCID: PMC10316312 DOI: 10.1270/jsbbs.22082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/20/2022] [Indexed: 07/06/2023]
Abstract
Sexuality is the main strategy for maintaining genetic diversity within a species. In flowering plants (angiosperms), sexuality is derived from ancestral hermaphroditism and multiple sexualities can be expressed in an individual. The mechanisms conferring chromosomal sex determination in plants (or dioecy) have been studied for over a century by both biologists and agricultural scientists, given the importance of this field for crop cultivation and breeding. Despite extensive research, the sex determining gene(s) in plants had not been identified until recently. In this review, we dissect plant sex evolution and determining systems, with a focus on crop species. We introduced classic studies with theoretical, genetic, and cytogenic approaches, as well as more recent research using advanced molecular and genomic techniques. Plants have undergone very frequent transitions into, and out of, dioecy. Although only a few sex determinants have been identified in plants, an integrative viewpoint on their evolutionary trends suggests that recurrent neofunctionalization events are potentially common, in a "scrap and (re)build" cycle. We also discuss the potential association between crop domestication and transitions in sexual systems. We focus on the contribution of duplication events, which are particularly frequent in plant taxa, as a trigger for the creation of new sexual systems.
Collapse
Affiliation(s)
- Kanae Masuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
- JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
46
|
Lichilín N, Salzburger W, Böhne A. No evidence for sex chromosomes in natural populations of the cichlid fish Astatotilapia burtoni. G3 (BETHESDA, MD.) 2023; 13:6989787. [PMID: 36649174 PMCID: PMC9997565 DOI: 10.1093/g3journal/jkad011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/14/2022] [Accepted: 12/16/2022] [Indexed: 01/18/2023]
Abstract
Sex determination (SD) is not conserved among teleost fishes and can even differ between populations of the same species. Across the outstandingly species-rich fish family Cichlidae, more and more SD systems are being discovered. Still, the picture of SD evolution in this group is far from being complete. Lake Tanganyika and its affluent rivers are home to Astatotilapia burtoni, which belongs to the extremely successful East African cichlid lineage Haplochromini. Previously, in different families of an A. burtoni laboratory strain, an XYW system and an XY system have been described. The latter was also found in a second laboratory strain. In a laboratory-reared family descending from a population of the species' southern distribution, a second XY system was discovered. Yet, an analysis of sex chromosomes for the whole species distribution is missing. Here, we examined the genomes of 11 natural populations of A. burtoni, encompassing a wide range of its distribution, for sex-linked regions. We did not detect signs of differentiated sex chromosomes and also not the previously described sex chromosomal systems present in laboratory lines, suggesting different SD systems in the same species under natural and (long-term) artificial conditions. We suggest that SD in A. burtoni is more labile than previously assumed and consists of a combination of non-genetic, polygenic, or poorly differentiated sex chromosomes.
Collapse
Affiliation(s)
- Nicolás Lichilín
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland.,Department of Neuroscience and Developmental Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Astrid Böhne
- Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland.,Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Adenauerallee 127, 53113 Bonn, Germany
| |
Collapse
|
47
|
Wang F, Ren X, Jiang M, Hou K, Xin G, Yan F, Zhao P, Liu W. Male-linked gene TsRPL10a' in androdioecious tree Tapiscia sinensis: implications for sex differentiation by influencing gynoecium development. TREE PHYSIOLOGY 2023; 43:486-500. [PMID: 36401877 DOI: 10.1093/treephys/tpac131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 05/03/2023]
Abstract
The mechanism of sex differentiation in androdioecy is of great significance for illuminating the origin and evolution of dioecy. Tapiscia sinensis Oliv. is a functionally androdioecious species with both male and hermaphroditic individuals. Male flowers of T. sinensis lack the ovules of gynoecia compared with hermaphrodites. To identify sex simply and accurately, and further find the potential determinants of sex differentiation in T. sinensis, we found that TsRPL10a', a duplicate of TsRPL10a, was a male-linked gene. The promoter (5' untranslated region and the first intron) of TsRPL10a' can be used to accurately identify sex in T. sinensis. TsRPL10a is a ribosomal protein that is involved in gynoecium development, and sufficient ribosomal levels are necessary for female gametogenesis. The expression level of TsRPL10a was significantly downregulated in male flower primordia compared with hermaphrodites. The RNA fluorescence in situ hybridization (FISH) assay demonstrated that TsRPL10a was almost undetectable in male gynoecia at the gynoecial ridge stage, which was a key period of ovule formation by scanning electron microscope observation. In male flowers, although the promoter activity of TsRPL10a was significantly higher than TsRPL10a' verified by transgenic Arabidopsis thaliana, the transcriptional expression ratio of TsRPL10a was obviously lower than TsRPL10a' and reached its lowest at the gynoecial ridge stage, indicating the existence of a female suppressor. The promoter similarity of TsRPL10a and TsRPL10a' was only 45.29%; the genomic sequence similarity was 89.8%; four amino acids were altered in TsRPL10a'. The secondary structure of TsRPL10a' was different from TsRPL10a, and TsRPL10a' did not exhibit FISH and GUS expression in the gynoecium the way TsRPL10a did. From the perspective of RT-qPCR, its high expression level, followed by the low expression level of TsRPL10a in male flowers, indicates its antagonism function with TsRPL10a. The evolutionary analysis, subcellular localization and flower expression pattern suggested that TsRPL10a might be functionally conserved with AtRPL10aA, AtRPL10aB and AtRPL10aC in A. thaliana. Overall, we speculated that TsRPL10a and its duplicate TsRPL10a' might be involved in sex differentiation by influencing gynoecium development in T. sinensis.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Xiaolong Ren
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Minggao Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Kunpeng Hou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Guiliang Xin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Feng Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Wenzhe Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| |
Collapse
|
48
|
Sekimoto H, Komiya A, Tsuyuki N, Kawai J, Kanda N, Ootsuki R, Suzuki Y, Toyoda A, Fujiyama A, Kasahara M, Abe J, Tsuchikane Y, Nishiyama T. A divergent RWP-RK transcription factor determines mating type in heterothallic Closterium. THE NEW PHYTOLOGIST 2023; 237:1636-1651. [PMID: 36533897 DOI: 10.1111/nph.18662] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The Closterium peracerosum-strigosum-littorale complex (Closterium, Zygnematophyceae) has an isogamous mating system. Members of the Zygnematophyceae are the closest relatives to extant land plants and are distantly related to chlorophytic models, for which a genetic basis of mating type (MT) determination has been reported. We thus investigated MT determination in Closterium. We sequenced genomes representing the two MTs, mt+ and mt-, in Closterium and identified CpMinus1, a gene linked to the mt- phenotype. We analyzed its function using reverse genetics methods. CpMinus1 encodes a divergent RWP-RK domain-containing-like transcription factor and is specifically expressed during gamete differentiation. Introduction of CpMinus1 into an mt+ strain was sufficient to convert it to a phenotypically mt- strain, while CpMinus1-knockout mt- strains were phenotypically mt+. We propose that CpMinus1 is the major MT determinant that acts by evoking the mt- phenotype and suppressing the mt+ phenotype in heterothallic Closterium. CpMinus1 likely evolved independently in the Zygnematophyceae lineage, which lost an egg-sperm anisogamous mating system. mt- specific regions possibly constitute an MT locus flanked by common sequences that undergo some recombination.
Collapse
Affiliation(s)
- Hiroyuki Sekimoto
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Ayumi Komiya
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Natsumi Tsuyuki
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Junko Kawai
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Naho Kanda
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Ryo Ootsuki
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8568, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Masahiro Kasahara
- Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8568, Japan
| | - Jun Abe
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Yuki Tsuchikane
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kakumacho, Kanazawa, Ishikawa, 920-1192, Japan
| |
Collapse
|
49
|
Akagi T, Varkonyi-Gasic E, Shirasawa K, Catanach A, Henry IM, Mertten D, Datson P, Masuda K, Fujita N, Kuwada E, Ushijima K, Beppu K, Allan AC, Charlesworth D, Kataoka I. Recurrent neo-sex chromosome evolution in kiwifruit. NATURE PLANTS 2023; 9:393-402. [PMID: 36879018 DOI: 10.1038/s41477-023-01361-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 05/18/2023]
Abstract
Sex chromosome evolution is thought to be tightly associated with the acquisition and maintenance of sexual dimorphisms. Plant sex chromosomes have evolved independently in many lineages1,2 and can provide a powerful comparative framework to study this. We assembled and annotated genome sequences of three kiwifruit species (genus Actinidia) and uncovered recurrent sex chromosome turnovers in multiple lineages. Specifically, we observed structural evolution of the neo-Y chromosomes, which was driven via rapid bursts of transposable element insertions. Surprisingly, sexual dimorphisms were conserved in the different species studied, despite the fact that the partially sex-linked genes differ between them. Using gene editing in kiwifruit, we demonstrated that one of the two Y-chromosome-encoded sex-determining genes, Shy Girl, shows pleiotropic effects that can explain the conserved sexual dimorphisms. These plant sex chromosomes therefore maintain sexual dimorphisms through the conservation of a single gene, without a process involving interactions between separate sex-determining genes and genes for sexually dimorphic traits.
Collapse
Affiliation(s)
- Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
- Japan Science and Technology Agency (JST), PRESTO, Kawaguchi-shi, Japan.
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, Kazusa-Kamatari, Kisarazu, Japan
| | - Andrew Catanach
- The New Zealand Institute for Plant and Food Research Limited (PFR), Christchurch, New Zealand
| | - Isabelle M Henry
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA
| | - Daniel Mertten
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Paul Datson
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
- The Kiwifruit Breeding Centre, Auckland, New Zealand
| | - Kanae Masuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Naoko Fujita
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Eriko Kuwada
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Koichiro Ushijima
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Kenji Beppu
- Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Ikuo Kataoka
- Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| |
Collapse
|
50
|
Charlesworth D. Why and how do Y chromosome stop recombining? J Evol Biol 2023; 36:632-636. [PMID: 36683363 DOI: 10.1111/jeb.14137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 01/24/2023]
|