1
|
Cordeiro S, Musinszki M. Thermosensitivity of TREK K2P channels is controlled by a PKA switch and depends on the microtubular network. Pflugers Arch 2025:10.1007/s00424-025-03089-1. [PMID: 40372488 DOI: 10.1007/s00424-025-03089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/16/2025]
Abstract
Temperature sensing is an essential component of animal perception and enables individuals to avoid painful or lethal temperatures. Many temperature sensors in central and peripheral neurons are ion channels. Here, we focus on the thermosensitive TREK/TRAAK subfamily of K2P channels-the only known K+ selective thermosensitive channels. The C-terminal domain is essential for the temperature activation of TREK channels, but the mechanism of temperature sensation and the nature of the temperature sensor are unknown. We studied the thermosensitivity of representatives of all K2P channel subfamilies and identified TREK-1 and TREK-2 as the only thermosensitive K2P channels, while TRAAK, the third member of the mechano-gated subfamily, showed no temperature dependence. We transferred the thermosensitivity of TREK-1 to TRAAK channels by exchanging the C-termini, demonstrating that the C-terminal domain is sufficient to confer thermosensitivity. By gradually truncating the C-terminus, we isolated a specific temperature responsive element (TRE) consisting of 18 amino acids that constitutes a unique feature in mammalian thermosensitive channels. Within this TRE lie both the binding domain for microtubule associated protein 2 (MAP2) and the PKA phosphorylation site. Pharmacological disruption of the microtubular network as well as the loss of the MAP2 binding site suppressed the temperature response, and PKA activation completely abolished temperature sensitivity. Thus, the connection to the microtubular network enables the thermosensitivity of TREK channels, which is not intrinsic to the channel itself, while the PKA-mediated phosphorylation status acts as a switch that determines if TREK channels are thermosensitive at all.
Collapse
Affiliation(s)
- Sönke Cordeiro
- Institute of Physiology, Kiel University, Kiel, Germany.
| | | |
Collapse
|
2
|
Khanra NK, Wang C, Delgado BD, Long SB. Structure of the human TWIK-2 potassium channel and its inhibition by pimozide. Proc Natl Acad Sci U S A 2025; 122:e2425709122. [PMID: 40343992 DOI: 10.1073/pnas.2425709122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/09/2025] [Indexed: 05/11/2025] Open
Abstract
The potassium channel TWIK-2 is crucial for ATP-induced activation of the NLRP3 inflammasome in macrophages. The channel is a member of the two-pore domain potassium (K2P) channel superfamily and an emerging therapeutic target to mitigate severe inflammatory injury involving NLRP3 activation. We report the cryo-EM structure of human TWIK-2. In comparison to other K2P channels, the structure reveals an unusual "up" conformation of Tyr111 in the selectivity filter and a resulting SF1-P1 pocket behind the filter. Density for acyl chains is present in fenestrations within the transmembrane region that connects the central cavity of the pore to the lipid membrane. Despite its importance as a drug target, limited pharmacological tools are available for TWIK-2. A previous study suggested that the FDA-approved small molecule pimozide might inhibit TWIK-2. Using a reconstituted system, we show that pimozide directly inhibits the channel and we determine a cryo-EM structure of a complex with the drug. Pimozide displaces the acyl chains within the fenestrations and binds below the selectivity filter where it would impede ion permeation. The drug may access its binding site by lateral diffusion in the membrane, suggesting that other hydrophobic small molecules could have utility for inhibiting TWIK-2. The work defines the structure of TWIK-2 and provides a structural foundation for development of more specific inhibitors with potential utility as anti-inflammatory drugs.
Collapse
Affiliation(s)
- Nandish K Khanra
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Chongyuan Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Bryce D Delgado
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Graduate Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY 10065
| | - Stephen B Long
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
3
|
Neureiter EG, Erickson-Oberg MQ, Nigam A, Johnson JW. Inhibition of NMDA receptors and other ion channel types by membrane-associated drugs. Front Pharmacol 2025; 16:1561956. [PMID: 40371334 PMCID: PMC12075551 DOI: 10.3389/fphar.2025.1561956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/15/2025] [Indexed: 05/16/2025] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ion channels present at most excitatory synapses in the brain that play essential roles in cognitive functions including learning and memory consolidation. However, NMDAR dysregulation is implicated in many nervous system disorders. Diseases that involve pathological hyperactivity of NMDARs can be treated clinically through inhibition by channel blocking drugs. NMDAR channel block can occur via two known mechanisms. First, in traditional block, charged drug molecules can enter the channel directly from the extracellular solution after NMDAR activation and channel opening. Second, uncharged molecules of channel blocking drug can enter the hydrophobic plasma membrane, and upon NMDAR activation the membrane-associated drug can transit into the channel through a fenestration within the NMDAR. This membrane-associated mechanism of action is called membrane to channel inhibition (MCI) and is not well understood despite the clinical importance of NMDAR channel blocking drugs. Intriguingly, a hydrophobic route of access for drugs is not unique to NMDARs. Our review will address inhibition of NMDARs and other ion channels by membrane-associated drugs and consider how the path of access may affect a drug's therapeutic potential.
Collapse
Affiliation(s)
| | | | | | - Jon W. Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Youn T, Kim G, Hariharan P, Li X, Ahmed W, Byrne B, Liu X, Guan L, Chae PS. Improved Pendant-Bearing Glucose-Neopentyl Glycols for Membrane Protein Stability. Bioconjug Chem 2025; 36:707-717. [PMID: 40105011 DOI: 10.1021/acs.bioconjchem.4c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Membrane proteins are biologically and pharmaceutically significant, and determining their 3D structures requires a membrane-mimetic system to maintain protein stability. Detergent micelles are widely used as membrane mimetics; however, their dynamic structures often lead to the denaturation and aggregation of encapsulated membrane proteins. To address the limitations of classical detergents in stabilizing membrane proteins, we previously reported a class of glucose-neopentyl glycols (GNGs) and their pendant-bearing versions (P-GNGs), several of which proved more effective than DDM in stabilizing membrane proteins. In this study, we synthesized additional GNG derivatives by varying the lengths of the pendant (P-GNGs), and by introducing hemifluorinated pendants to the GNG scaffold (fluorinated pendant-bearing GNGs or FP-GNGs). The synthetic flexibility of the GNG chemical architecture allowed us to create a diverse range of derivatives, essential for the effective optimization of detergent properties. When tested with two model membrane proteins (a transporter and a G-protein coupled receptor (GPCR)), most of the new (F)P-GNGs demonstrated superior stabilization of these membrane proteins compared to DDM, the original GNG (OGNG)), and a previously developed P-GNG (i.e., GNG-3,14). Notably, several P-GNGs synthesized in this study were as effective as or even better than lauryl maltose neopentyl glycol (LMNG) in stabilizing a human GPCR, beta2 adrenergic receptor (β2AR). Enhanced protein stability was particularly observed for the P-GNGs with a butyl (C4) or pentyl (C5) pendant, indicating that these pendant sizes are optimal for membrane protein stability. The volumes of these pendants appear to minimize the empty spaces in the micelle interiors, thereby enhancing detergent-detergent interactions in micelles complexed with the membrane proteins. Additionally, we identified one FP-GNG that was more efficient at extracting the transporter and more effective at stabilizing the GPCR than DDM. Thus, the current study demonstrates that both chain length and number of fluorine atoms in the pendants of the P-GNGs were crucial determinants for membrane protein stability. We not only developed a few (F)P-GNGs that are significantly more effective than maltoside detergents (LMNG/DDM) for protein extraction and stability but we also provided an effective strategy for detergent design through the utilization of partially fluorinated pendants of varying length.
Collapse
Affiliation(s)
- Taeyeol Youn
- Department of Bionano Engineering, Hanyang University ERICA, Ansan 155-88, South Korea
| | - Ganghee Kim
- Department of Bionano Engineering, Hanyang University ERICA, Ansan 155-88, South Korea
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Xianglan Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Waqar Ahmed
- Department of Bionano Engineering, Hanyang University ERICA, Ansan 155-88, South Korea
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Xiangyu Liu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Pil Seok Chae
- Department of Bionano Engineering, Hanyang University ERICA, Ansan 155-88, South Korea
| |
Collapse
|
5
|
Riel EB, Bu W, Joseph TT, Khajoueinejad L, Eckenhoff RG, Riegelhaupt PM. The cryo-EM structure and physical basis for anesthetic inhibition of the THIK1 K2P channel. Proc Natl Acad Sci U S A 2025; 122:e2421654122. [PMID: 40178898 PMCID: PMC12002230 DOI: 10.1073/pnas.2421654122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/02/2025] [Indexed: 04/05/2025] Open
Abstract
THIK1 tandem pore domain (K2P) potassium channels regulate microglial surveillance of the central nervous system and responsiveness to inflammatory insults. With microglia recognized as critical to the pathogenesis of neurodegenerative diseases, THIK1 channels are putative therapeutic targets to control microglia dysfunction. While THIK channels can principally be distinguished from other K2Ps by their distinctive inhibitory response to volatile anesthetics (VAs), molecular details governing THIK channel gating remain largely unexplored. Here, we report a 3.2 Å cryo-electron microscopy structure of the THIK1 channel in a closed conformation. A central pore gate located directly below the THIK1 selectivity filter is formed by inward-facing TM4 helix tyrosine residues that occlude the ion conduction pathway. VA inhibition of THIK requires closure of this central pore gate. Using a combination of anesthetic photolabeling, electrophysiology, and molecular dynamics simulation, we identify a functionally critical THIK1 VA binding site positioned between the central gate and a structured section of the THIK1 TM2/TM3 loop. Our results demonstrate the molecular architecture of the THIK1 channel and elucidate critical structural features involved in regulation of THIK1 channel gating and anesthetic inhibition.
Collapse
Affiliation(s)
- Elena B. Riel
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY10065
| | - Weiming Bu
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
| | - Thomas T. Joseph
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
| | - Leila Khajoueinejad
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY10065
| | - Roderic G. Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
| | - Paul M. Riegelhaupt
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY10065
| |
Collapse
|
6
|
Liu K, Ji Y, Xie Y, Wang C, Zhou J, Wei Z, Wang X, Zheng X, Cen Y, Zhang F, Xu B. Discovery of Isobenzofuran-1(3 H)-one Derivatives as Selective TREK-1 Inhibitors with In Vitro and In Vivo Neuroprotective Effects. J Med Chem 2025; 68:5804-5823. [PMID: 40040241 DOI: 10.1021/acs.jmedchem.4c03146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
TREK-1 regulates neuronal excitability and neuronal cell apoptosis, and inhibition of TREK-1 is a potential strategy to prevent cell death and achieve neuroprotection in an ischemic stroke. In this work, a series of novel isobenzofuran-1(3H)-one derivatives were designed and synthesized as TREK-1 inhibitors, and extensive structure-activity relationships led to the discovery of potent and selective TREK-1 inhibitors having IC50 values of a low micromolar level. Among them, Cpd8l potently and selectively inhibited TREK-1 (IC50 = 0.81 μM, selectivity >30 fold over other K+, Na+, and TRP channels). Cpd8l remarkably reduced the neuron death in the OGD/R-induced cortical neuronal injury model, while adenovirus silencing TREK-1 reduced its neuroprotective effect. Furthermore, Cpd8l could effectively ameliorate brain injury in MCAO/R model mice. Collectively, this work demonstrates that Cpd8l may serve as a novel lead compound to develop a highly potent and selective TREK-1 inhibitor for ischemic stroke treatment.
Collapse
Affiliation(s)
- Kaiyue Liu
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yunyun Ji
- The Affiliated Nanjing Pukou Traditional Chinese Medicine Hospital, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Yiming Xie
- The Affiliated Nanjing Pukou Traditional Chinese Medicine Hospital, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Chengyan Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Zhou
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ziyi Wei
- The Affiliated Nanjing Pukou Traditional Chinese Medicine Hospital, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Xiaoyu Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaotong Zheng
- The Affiliated Nanjing Pukou Traditional Chinese Medicine Hospital, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Yao Cen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Fan Zhang
- The Affiliated Nanjing Pukou Traditional Chinese Medicine Hospital, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Normal University, Guilin 541004, China
| | - Bailing Xu
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
7
|
Khanra NK, Wang C, Delgado BD, Long SB. Structure of the human TWIK-2 potassium channel and its inhibition by pimozide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639991. [PMID: 40060494 PMCID: PMC11888252 DOI: 10.1101/2025.02.24.639991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The potassium channel TWIK-2 is crucial for ATP-induced activation of the NLRP3 inflammasome in macrophages. The channel is a member of the two-pore domain potassium (K2P) channel superfamily and an emerging therapeutic target to mitigate severe inflammatory injury involving NLRP3 activation. We report the cryo-EM structure of human TWIK-2. In comparison to other K2P channels, the structure reveals a unique 'up' conformation of Tyr111 in the selectivity filter and a SF1-P1 pocket behind the filter that could serve as a binding site for channel modulators. Density for acyl chains is present in fenestrations within the transmembrane region that connect the central cavity of the pore to the lipid membrane. Limited pharmacological tools are available for TWIK-2 despite its importance as a drug target. We show that the small molecule pimozide inhibits TWIK-2 and determine a structure of the channel with pimozide. Pimozide displaces the acyl chains and binds below the selectivity filter to block ion conduction. The drug may access its binding site via the membrane, suggesting that other hydrophobic small molecules could have utility for inhibiting TWIK-2. The work defines the structure of TWIK-2 and provides a structural foundation for development of specific inhibitors with potential utility as anti-inflammatory drugs. Significance Statement The TWIK-2 potassium channel is a member of the two-pore domain potassium (K2P) channel superfamily and a potential therapeutic target to control severe inflammatory injury involving the NLRP3 inflammasome. We report the cryo-EM structure of the human TWIK-2 channel at 2.85 Å resolution, revealing differences in comparison to other K2P channels. We identify that pimozide, an FDA-approved drug for Tourette syndrome, inhibits TWIK-2. A cryo-EM structure of TWIK-2 in complex with pimozide identifies its binding location and mechanism of inhibition. The work provides a structural foundation for development of specific TWIK-2 inhibitors that have potential therapeutic utility for inflammatory diseases involving NLRP3 activation.
Collapse
|
8
|
Roy-Chowdhury S, Jang S, Abderemane-Ali F, Naughton F, Grabe M, Minor DL. Structure of the human K 2P13.1 channel reveals a hydrophilic pore restriction and lipid cofactor site. Nat Struct Mol Biol 2025:10.1038/s41594-024-01476-3. [PMID: 40011746 DOI: 10.1038/s41594-024-01476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/17/2024] [Indexed: 02/28/2025]
Abstract
Polyunsaturated fatty acid (PUFA) lipids modulate the neuronal and microglial leak potassium channel K2P13.1 (THIK1) and other voltage-gated ion channel (VGIC) superfamily members through poorly understood mechanisms. Here we present cryo-electron microscopy structures of human THIK1 and mutants, revealing a unique two-chamber aqueous inner cavity obstructed by a hydrophilic barrier important for gating, the flow restrictor, and a P1-M4 intersubunit interface lipid at a site, the PUFA site, corresponding to the K2P small-molecule modulator pocket. This overlap, together with functional studies, indicates that PUFA site lipids are THIK1 cofactors. Comparison with a PUFA-responsive VGIC, Kv7.1, reveals a shared modulatory role for the pore domain intersubunit interface, providing a framework for understanding PUFA action on the VGIC superfamily. Our findings reveal the distinct THIK1 architecture, highlight the importance of the P1-M4 interface for K2P control by natural and synthetic ligands and should aid in the development of THIK subfamily modulators for neuroinflammation and autism.
Collapse
Affiliation(s)
| | - Seil Jang
- Cardiovascular Research Institute, UCSF Medical Center, San Francisco, CA, USA
| | - Fayal Abderemane-Ali
- Cardiovascular Research Institute, UCSF Medical Center, San Francisco, CA, USA
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Fiona Naughton
- Cardiovascular Research Institute, UCSF Medical Center, San Francisco, CA, USA
| | - Michael Grabe
- Cardiovascular Research Institute, UCSF Medical Center, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, UCSF Medical Center, San Francisco, CA, USA.
- Departments of Biochemistry and Biophysics and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
9
|
Ma Q, Hernandez CC, Navratna V, Kumar A, Lee A, Mosalaganti S. Insights into the structure and modulation of human TWIK-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639014. [PMID: 40161613 PMCID: PMC11952367 DOI: 10.1101/2025.02.19.639014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The T andem of pore domain in a W eak I nward R ectifying K + channel 2 (TWIK-2; KCNK6) is a member of the Two-Pore Domain K + (K2P) channel family, which is associated with pulmonary hypertension, lung injury, and inflammation. The structure and regulatory mechanisms of TWIK-2 remain largely unknown. Here, we present the cryo-electron microscopy (cryo-EM) structure of human TWIK-2 at ~3.7 Å and highlight its conserved and unique features. Using automated whole-cell patch clamp recordings, we demonstrate that gating in TWIK-2 is voltage-dependent and insensitive to changes in the extracellular pH. We identify key residues that influence TWIK-2 activity by employing structure and sequence-guided site-directed mutagenesis and provide insights into the possible mechanism of TWIK-2 regulation. Additionally, we demonstrate the application of high-throughput automated whole-cell patch clamp platforms to screen small molecule modulators of TWIK-2. Our work serves as a foundation for designing high-throughput small molecule screening campaigns to identify specific high-affinity TWIK-2 modulators, including promising new anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Qianqian Ma
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Ciria C Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Vikas Navratna
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Arvind Kumar
- Thermo Fisher Scientific, Waltham, Massachusetts, 02451, United States
| | - Abraham Lee
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Biophysics, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, 48109, United States
| |
Collapse
|
10
|
Elliott ER, Cooper RL. Fluoxetine antagonizes the acute response of LPS: Blocks K2P channels. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110045. [PMID: 39307514 DOI: 10.1016/j.cbpc.2024.110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
The channels responsible for maintaining resting membrane potential are known as K2P (two-P-domain K+ subunit) channels, a subset of which are known to be blocked by Fluoxetine. In this experiment, the compound's effects on the membrane potential were examined on muscles in larval Drosophila overexpressing a subtype of K2P channel (known in Drosophila as dORKA1 or ORKA1) and compared to larvae without overexpression. The compound was also observed in sequence and/or combination with a form of lipopolysaccharide (LPS) that transiently activates K2P channels. Different concentrations of Fluoxetine were tested, and it was also examined in cocktail with the LPS. At 25 μM Fluoxetine exposure, muscle in control larvae underwent depolarization, while muscles overexpressing K2P channels hyperpolarized; at 50 μM, however, much more variable responses were observed. The LPS caused hyperpolarization in both larval strains, but the effect was more transient in the Canton-S line than in the K2P overexpressors. Finally, LPS continued to cause hyperpolarization even in the presence of Fluoxetine, while Fluoxetine quickly depolarized the muscle during exposure to LPS. The cocktail showed a smaller effect on muscles overexpressing ORKA1 as compared to the controls, indicating that Fluoxetine does not block the ORKA1 subtype. This study is significant because it demonstrates how overexpression of K2P channels alters membrane response to LPS and Fluoxetine exposure.
Collapse
Affiliation(s)
| | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington 40506, KY, USA.
| |
Collapse
|
11
|
Gaburjakova J, Domsicova M, Poturnayova A, Gaburjakova M. Flecainide Specifically Targets the Monovalent Countercurrent Through the Cardiac Ryanodine Receptor, While a Dominant Opposing Ca 2+/Ba 2+ Current Is Present. Int J Mol Sci 2024; 26:203. [PMID: 39796059 PMCID: PMC11719481 DOI: 10.3390/ijms26010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly arrhythmogenic syndrome triggered by stress, primarily linked to gain-of-function point mutations in the cardiac ryanodine receptor (RyR2). Flecainide, as an effective therapy for CPVT, is a known blocker of the surface-membrane Na+ channel, also affecting the intracellular RyR2 channel. The therapeutic relevance of the flecainide-RyR2 interaction remains controversial, as flecainide blocks only the RyR2 current flowing in the opposite direction to the physiological Ca2+ release from the sarcoplasmic reticulum (SR). However, it has been proposed that charge-compensating countercurrent from the cytosol to SR lumen plays a critical role, and its reduction may indeed suppress excessive diastolic SR Ca2+ release through RyR2 channels in CPVT. Monitoring single-channel properties, we examined whether flecainide can target intracellular pathways for charge-balancing currents carried by RyR2 and SR Cl- channels under cell-like conditions. Particularly, the Tris+ countercurrent flowed through the RyR2 channel simultaneously with a dominant reverse Ca2+/Ba2+ current. We demonstrate that flecainide blocked the RyR2-mediated countercurrent without affecting channel activity. In contrast, the SR Cl- channel was completely resistant to flecainide. Based on these findings, it is reasonable to propose that the primary intracellular target of flecainide in vivo is the RyR2-mediated countercurrent.
Collapse
Affiliation(s)
| | | | | | - Marta Gaburjakova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia; (J.G.); (M.D.); (A.P.)
| |
Collapse
|
12
|
Kim G, Van NTH, Nam JH, Lee W. Unraveling the Molecular Reason of Opposing Effects of α-Mangostin and Norfluoxetine on TREK-2 at the Same Binding Site. ChemMedChem 2024; 19:e202400409. [PMID: 39145995 PMCID: PMC11617644 DOI: 10.1002/cmdc.202400409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
TWIK-related K+ channel (TREK)-2, expressed in sensory neurons, is involved in setting membrane potential, and its modulations contributes to the generation of nociceptive signals. Although acute and chronic pain is a common symptom experienced by patients with various conditions, most existing analgesics exhibit low efficacy and are associated with adverse effects. For this reason, finding the novel modulator of TREK-2 is of significance for the development of new analgesics. Recent studies have shown that α-Mangostin (α-MG) activates TREK-2, facilitating analgesic effects, yet the underlying molecular mechanisms remain elusive. Intriguingly, even though norfluoxetine (NFx) is known to inhibit TREK-2, α-MG is also observed to share a same binding site with NFx, and this implies that TREK-2 might be modulated in a highly complicated manner. Therefore, we examine the mechanism of how TREK-2 is activated by α-MG using computational methods and patch clamp experiments in the present study. Based on these results, we offer an explanation of how α-MG and NFx exhibit opposing effects at the same binding site of TREK-2. These findings will broaden our understanding of TREK-2 modulation, providing clues for designing novel analgesic drugs.
Collapse
Affiliation(s)
- Gangrae Kim
- Department of BiochemistryKangwon National UniversityCollege of Natural SciencesChuncheon24341Republic of Korea
| | - Nhung Thi Hong Van
- Department of PhysiologyDongguk UniversityCollege of MedicineGyeongju38066Republic of Korea
| | - Joo Hyun Nam
- Department of PhysiologyDongguk UniversityCollege of MedicineGyeongju38066Republic of Korea
| | - Wook Lee
- Department of BiochemistryKangwon National UniversityCollege of Natural SciencesChuncheon24341Republic of Korea
| |
Collapse
|
13
|
Zhang Y, Li J, Pan J, Deng S. Research progress of two-pore potassium channel in myocardial ischemia-reperfusion injury. Front Physiol 2024; 15:1473501. [PMID: 39534859 PMCID: PMC11554511 DOI: 10.3389/fphys.2024.1473501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a secondary injury caused by restoring blood flow after acute myocardial infarction, which may lead to serious arrhythmia and heart damage. In recent years, the role of potassium channels in MIRI has attracted much attention, especially the members of the two-pore domain potassium (K2P) channel family. K2P channel has unique structure and function, and the formation of its heterodimer increases its functional diversity. This paper reviews the structural characteristics, types, expression and physiological functions of K2P channel in the heart. In particular, we pay attention to whether members of the subfamily such as TWIK, TREK, TASK, TALK, THIK and TRESK participate in MIRI and their related mechanisms. Future research will help to reveal the molecular mechanism of K2P channel in MIRI and provide new strategies for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | - Shengli Deng
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
14
|
Mendez-Otalvaro E, Kopec W, de Groot BL. Effect of two activators on the gating of a K 2P channel. Biophys J 2024; 123:3408-3420. [PMID: 39161093 PMCID: PMC11480771 DOI: 10.1016/j.bpj.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/27/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
TWIK-related potassium channel 1 (TREK1), a two-pore-domain mammalian potassium (K+) channel, regulates the resting potential across cell membranes, presenting a promising therapeutic target for neuropathy treatment. The gating of this channel converges in the conformation of the narrowest part of the pore: the selectivity filter (SF). Various hypotheses explain TREK1 gating modulation, including the dynamics of loops connecting the SF with transmembrane helices and the stability of hydrogen bond (HB) networks adjacent to the SF. Recently, two small molecules (Q6F and Q5F) were reported as activators that affect TREK1 by increasing its open probability in single-channel current measurements. Here, using molecular dynamics simulations, we investigate the effect of these ligands on the previously proposed modulation mechanisms of TREK1 gating compared to the apo channel. Our findings reveal that loop dynamics at the upper region of the SF exhibit only a weak correlation with permeation events/nonpermeation periods, whereas the HB network behind the SF appears more correlated. These nonpermeation periods arise from both distinct mechanisms: a C-type inactivation (resulting from dilation at the top of the SF), which has been described previously, and a carbonyl flipping in an SF binding site. We find that, besides the prevention of C-type inactivation in the channel, the ligands increase the probability of permeation by modulating the dynamics of the carbonyl flipping, influenced by a threonine residue at the bottom of the SF. These results offer insights for rational ligand design to optimize the gating modulation of TREK1 and related K+ channels.
Collapse
Affiliation(s)
- Edward Mendez-Otalvaro
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Wojciech Kopec
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Department of Chemistry, Queen Mary University of London, London, United Kingdom.
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
15
|
Lewis AH, Cronin ME, Grandl J. Piezo1 ion channels are capable of conformational signaling. Neuron 2024; 112:3161-3175.e5. [PMID: 39043183 PMCID: PMC11427155 DOI: 10.1016/j.neuron.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024]
Abstract
Piezo1 is a mechanically activated ion channel that senses forces with short latency and high sensitivity. Piezos undergo large conformational changes, induce far-reaching deformation onto the membrane, and modulate the function of two-pore potassium (K2P) channels. Taken together, this led us to hypothesize that Piezos may be able to signal their conformational state to other nearby proteins. Here, we use chemical control to acutely restrict Piezo1 conformational flexibility and show that Piezo1 conformational changes, but not ion permeation through them, are required for modulating the K2P channel K2P2.1 (TREK1). Super-resolution imaging and stochastic simulations further reveal that both channels do not co-localize, which implies that modulation is not mediated through direct binding interactions; however, at high Piezo1 densities, most TREK1 channels are within the predicted Piezo1 membrane footprint, suggesting that the footprint may underlie conformational signaling. We speculate that physiological roles originally attributed to Piezo1 ionotropic function could, alternatively, involve conformational signaling.
Collapse
Affiliation(s)
- Amanda H Lewis
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Marie E Cronin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
16
|
Neelsen LC, Riel EB, Rinné S, Schmid FR, Jürs BC, Bedoya M, Langer JP, Eymsh B, Kiper AK, Cordeiro S, Decher N, Baukrowitz T, Schewe M. Ion occupancy of the selectivity filter controls opening of a cytoplasmic gate in the K 2P channel TALK-2. Nat Commun 2024; 15:7545. [PMID: 39215031 PMCID: PMC11364775 DOI: 10.1038/s41467-024-51812-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Two-pore domain K+ (K2P) channel activity was previously thought to be controlled primarily via a selectivity filter (SF) gate. However, recent crystal structures of TASK-1 and TASK-2 revealed a lower gate at the cytoplasmic pore entrance. Here, we report functional evidence of such a lower gate in the K2P channel K2P17.1 (TALK-2, TASK-4). We identified compounds (drugs and lipids) and mutations that opened the lower gate allowing the fast modification of pore cysteine residues. Surprisingly, stimuli that directly target the SF gate (i.e., pHe., Rb+ permeation, membrane depolarization) also opened the cytoplasmic gate. Reciprocally, opening of the lower gate reduced the electric work to open the SF via voltage driven ion binding. Therefore, it appears that the SF is so rigidly locked into the TALK-2 protein structure that changes in ion occupancy can pry open a distant lower gate and, vice versa, opening of the lower gate concurrently promote SF gate opening. This concept might extent to other K+ channels that contain two gates (e.g., voltage-gated K+ channels) for which such a positive gate coupling has been suggested, but so far not directly demonstrated.
Collapse
Affiliation(s)
- Lea C Neelsen
- Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Elena B Riel
- Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Susanne Rinné
- Institute of Physiology and Pathophysiology, Philipps-University of Marburg, Marburg, Germany
| | | | - Björn C Jürs
- Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
- MSH Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Mauricio Bedoya
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
- Laboratorio de Bioinformática y Química Computacional (LBQC), Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Jan P Langer
- Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Bisher Eymsh
- Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Aytug K Kiper
- Institute of Physiology and Pathophysiology, Philipps-University of Marburg, Marburg, Germany
| | - Sönke Cordeiro
- Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Philipps-University of Marburg, Marburg, Germany.
| | - Thomas Baukrowitz
- Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany.
| | - Marcus Schewe
- Institute of Physiology, Christian-Albrechts University of Kiel, Kiel, Germany.
| |
Collapse
|
17
|
Deal PE, Lee H, Mondal A, Lolicato M, Mendonça PRFD, Black H, Jang S, El-Hilali X, Bryant C, Isacoff EY, Renslo AR, Minor DL. Development of covalent chemogenetic K 2P channel activators. Cell Chem Biol 2024; 31:1305-1323.e9. [PMID: 39029456 PMCID: PMC11433823 DOI: 10.1016/j.chembiol.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/19/2024] [Accepted: 06/19/2024] [Indexed: 07/21/2024]
Abstract
K2P potassium channels regulate excitability by affecting cellular resting membrane potential in the brain, cardiovascular system, immune cells, and sensory organs. Despite their important roles in anesthesia, arrhythmia, pain, hypertension, sleep, and migraine, the ability to control K2P function remains limited. Here, we describe a chemogenetic strategy termed CATKLAMP (covalent activation of TREK family K+ channels to clamp membrane potential) that leverages the discovery of a K2P modulator pocket site that reacts with electrophile-bearing derivatives of a TREK subfamily small-molecule activator, ML335, to activate the channel irreversibly. We show that CATKLAMP can be used to probe fundamental aspects of K2P function, as a switch to silence neuronal firing, and is applicable to all TREK subfamily members. Together, our findings exemplify a means to alter K2P channel activity that should facilitate molecular and systems level studies of K2P function and enable the search for new K2P modulators.
Collapse
Affiliation(s)
- Parker E Deal
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 93858-2330, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 93858-2330, USA
| | - Haerim Lee
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 93858-2330, USA
| | - Abhisek Mondal
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 93858-2330, USA
| | - Marco Lolicato
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 93858-2330, USA
| | | | - Holly Black
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Seil Jang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 93858-2330, USA
| | - Xochina El-Hilali
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 93858-2330, USA
| | - Clifford Bryant
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 93858-2330, USA
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Weill Neurohub, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 93858-2330, USA.
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 93858-2330, USA; Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA; Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 93858-2330, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 93858-2330, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 93858-2330, USA.
| |
Collapse
|
18
|
Stover L, Zhu Y, Schrecke S, Laganowsky A. TREK2 Lipid Binding Preferences Revealed by Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1516-1522. [PMID: 38843438 PMCID: PMC11228984 DOI: 10.1021/jasms.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
TREK2, a two-pore domain potassium channel, is recognized for its regulation by various stimuli, including lipids. While previous members of the TREK subfamily, TREK1 and TRAAK, have been investigated to elucidate their lipid affinity and selectivity, TREK2 has not been similarly studied in this regard. Our findings indicate that while TRAAK and TREK2 exhibit similarities in terms of electrostatics and share an overall structural resemblance, there are notable distinctions in their interaction with lipids. Specifically, SAPI(4,5)P2,1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-(1'-myo-inositol-4',5'-bisphosphate) exhibits a strong affinity for TREK2, surpassing that of dOPI(4,5)P2,1,2-dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol-4',5'-bisphosphate), which differs in its acyl chains. TREK2 displays lipid binding preferences not only for the headgroup of lipids but also toward the acyl chains. Functional studies draw a correlation for lipid binding affinity and activity of the channel. These findings provide important insight into elucidating the molecular prerequisites for specific lipid binding to TREK2 important for function.
Collapse
Affiliation(s)
- Lauren Stover
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yun Zhu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Samantha Schrecke
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
19
|
Bechard E, Arel E, Bride J, Louradour J, Bussy X, Elloumi A, Vigor C, Soule P, Oger C, Galano JM, Durand T, Le Guennec JY, Moha-Ou-Maati H, Demion M. Activation of hTREK-1 by polyunsaturated fatty acids involves direct interaction. Sci Rep 2024; 14:15244. [PMID: 38956407 PMCID: PMC11220079 DOI: 10.1038/s41598-024-66192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/28/2024] [Indexed: 07/04/2024] Open
Abstract
TREK-1 is a mechanosensitive channel activated by polyunsaturated fatty acids (PUFAs). Its activation is supposed to be linked to changes in membrane tension following PUFAs insertion. Here, we compared the effect of 11 fatty acids and ML402 on TREK-1 channel activation using the whole cell and the inside-out configurations of the patch-clamp technique. Firstly, TREK-1 activation by PUFAs is variable and related to the variable constitutive activity of TREK-1. We observed no correlation between TREK-1 activation and acyl chain length or number of double bonds suggesting that the bilayer-couple hypothesis cannot explain by itself the activation of TREK-1 by PUFAs. The membrane fluidity measurement is not modified by PUFAs at 10 µM. The spectral shift analysis in TREK-1-enriched microsomes indicates a KD,TREK1 at 44 µM of C22:6 n-3. PUFAs display the same activation and reversible kinetics than the direct activator ML402 and activate TREK-1 in both whole-cell and inside-out configurations of patch-clamp suggesting that the binding site of PUFAs is accessible from both sides of the membrane, as for ML402. Finally, we proposed a two steps mechanism: first, insertion into the membrane, with no fluidity or curvature modifications at 10 µM, and then interaction with TREK-1 channel to open it.
Collapse
Affiliation(s)
- Emilie Bechard
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, CHU Arnaud de Villeneuve, Bâtiment Craste de Paulet, 370 Avenue du Doyen Gaston Giraud, 34290, Montpellier Cedex 05, France
| | - Elodie Arel
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, CHU Arnaud de Villeneuve, Bâtiment Craste de Paulet, 370 Avenue du Doyen Gaston Giraud, 34290, Montpellier Cedex 05, France
| | - Jamie Bride
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, CHU Arnaud de Villeneuve, Bâtiment Craste de Paulet, 370 Avenue du Doyen Gaston Giraud, 34290, Montpellier Cedex 05, France
| | - Julien Louradour
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, CHU Arnaud de Villeneuve, Bâtiment Craste de Paulet, 370 Avenue du Doyen Gaston Giraud, 34290, Montpellier Cedex 05, France
| | - Xavier Bussy
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, CHU Arnaud de Villeneuve, Bâtiment Craste de Paulet, 370 Avenue du Doyen Gaston Giraud, 34290, Montpellier Cedex 05, France
| | - Anis Elloumi
- IBMM, Université de Montpellier, UMR CNRS 5247, ENSCM, Montpellier, France
| | - Claire Vigor
- IBMM, Université de Montpellier, UMR CNRS 5247, ENSCM, Montpellier, France
| | | | - Camille Oger
- IBMM, Université de Montpellier, UMR CNRS 5247, ENSCM, Montpellier, France
| | - Jean-Marie Galano
- IBMM, Université de Montpellier, UMR CNRS 5247, ENSCM, Montpellier, France
| | - Thierry Durand
- IBMM, Université de Montpellier, UMR CNRS 5247, ENSCM, Montpellier, France
| | - Jean-Yves Le Guennec
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, CHU Arnaud de Villeneuve, Bâtiment Craste de Paulet, 370 Avenue du Doyen Gaston Giraud, 34290, Montpellier Cedex 05, France
| | - Hamid Moha-Ou-Maati
- IGF, Université de Montpellier, UMR CNRS 5203, Inserm 1191, Montpellier, France
- INM, Inserm U1298, Montpellier, France
| | - Marie Demion
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, CHU Arnaud de Villeneuve, Bâtiment Craste de Paulet, 370 Avenue du Doyen Gaston Giraud, 34290, Montpellier Cedex 05, France.
| |
Collapse
|
20
|
Roy-Chowdhury S, Jang S, Abderemane-Ali F, Naughton F, Grabe M, Minor DL. Structure of the human K 2P13.1(THIK-1) channel reveals a novel hydrophilic pore restriction and lipid cofactor site. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600491. [PMID: 38979306 PMCID: PMC11230452 DOI: 10.1101/2024.06.26.600491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The halothane-inhibited K2P leak potassium channel K2P13.1 (THIK-1)1-3 is found in diverse cells1,4 including neurons1,5 and microglia6-8 where it affects surveillance6, synaptic pruning7, phagocytosis7, and inflammasome-mediated interleukin-1β release6,8,9. As with many K2Ps1,5,10-14 and other voltage-gated ion channel (VGIC) superfamily members3,15,16, polyunsaturated fatty acid (PUFA) lipids modulate K2P13.1 (THIK-1)1,5,14,17 via a poorly understood mechanism. Here, we present cryo-electronmicroscopy (cryo-EM) structures of human K2P13.1 (THIK-1) and mutants in lipid nanodiscs and detergent. These reveal that, unlike other K2Ps13,18-24, K2P13.1 (THIK-1) has a two-chamber aqueous inner cavity obstructed by a M4 transmembrane helix tyrosine (Tyr273, the flow restrictor). This hydrophilic barrier can be opened by an activatory mutation, S136P25, at natural break in the M2 transmembrane helix and by intrinsic channel dynamics. The structures also reveal a buried lipid in the P1/M4 intersubunit interface at a location, the PUFA site, that coincides with the TREK subfamily K2P modulator pocket for small molecule agonists18,26,27. This overlap, together with the effects of mutation on K2P13.1 (THIK-1) PUFA responses, indicates that the PUFA site lipids are K2P13.1 (THIK-1) cofactors. Comparison with the PUFA-responsive VGIC Kv7.1 (KCNQ1)28-31 reveals a shared role for the equivalent pore domain intersubunit interface in lipid modulation, providing a framework for dissecting the effects of PUFAs on the VGIC superfamily. Our findings reveal the unique architecture underlying K2P13.1 (THIK-1) function, highlight the importance of the P1/M4 interface in control of K2Ps by both natural and synthetic agents, and should aid development of THIK subfamily modulators for diseases such as neuroinflammation6,32 and autism6.
Collapse
Affiliation(s)
- Shatabdi Roy-Chowdhury
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
| | - Seil Jang
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
| | - Fayal Abderemane-Ali
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
| | - Fiona Naughton
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
| | - Michael Grabe
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California 93858-2330 USA
| | - Daniel L. Minor
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
- Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, California 93858-2330 USA
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, California 93858-2330 USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California 93858-2330 USA
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
21
|
Türkaydin B, Schewe M, Riel EB, Schulz F, Biedermann J, Baukrowitz T, Sun H. Atomistic mechanism of coupling between cytosolic sensor domain and selectivity filter in TREK K2P channels. Nat Commun 2024; 15:4628. [PMID: 38821927 PMCID: PMC11143257 DOI: 10.1038/s41467-024-48823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/15/2024] [Indexed: 06/02/2024] Open
Abstract
The two-pore domain potassium (K2P) channels TREK-1 and TREK-2 link neuronal excitability to a variety of stimuli including mechanical force, lipids, temperature and phosphorylation. This regulation involves the C-terminus as a polymodal stimulus sensor and the selectivity filter (SF) as channel gate. Using crystallographic up- and down-state structures of TREK-2 as a template for full atomistic molecular dynamics (MD) simulations, we reveal that the SF in down-state undergoes inactivation via conformational changes, while the up-state structure maintains a stable and conductive SF. This suggests an atomistic mechanism for the low channel activity previously assigned to the down state, but not evident from the crystal structure. Furthermore, experimentally by using (de-)phosphorylation mimics and chemically attaching lipid tethers to the proximal C-terminus (pCt), we confirm the hypothesis that moving the pCt towards the membrane induces the up-state. Based on MD simulations, we propose two gating pathways by which movement of the pCt controls the stability (i.e., conductivity) of the filter gate. Together, these findings provide atomistic insights into the SF gating mechanism and the physiological regulation of TREK channels by phosphorylation.
Collapse
Affiliation(s)
- Berke Türkaydin
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Insitute of Chemistry, Technical University of Berlin, Berlin, Germany
| | - Marcus Schewe
- Institute of Physiology, Kiel University, Kiel, Germany.
| | - Elena Barbara Riel
- Institute of Physiology, Kiel University, Kiel, Germany
- Department of Anesthesiology, Weill Cornell Medical College, New York, USA
| | | | - Johann Biedermann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | | | - Han Sun
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
- Insitute of Chemistry, Technical University of Berlin, Berlin, Germany.
| |
Collapse
|
22
|
Lewis AH, Cronin ME, Grandl J. Piezo1 ion channels are capable of conformational signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596257. [PMID: 38854150 PMCID: PMC11160644 DOI: 10.1101/2024.05.28.596257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Piezo1 is a mechanically activated ion channel that senses forces with short latency and high sensitivity. Piezos undergo large conformational changes, induce far-reaching deformation onto the membrane, and modulate the function of two-pore potassium (K2P) channels. Taken together, this led us to hypothesize that Piezos may be able to signal their conformational state to other nearby proteins. Here, we use chemical control to acutely restrict Piezo1 conformational flexibility and show that Piezo1 conformational changes, but not ion permeation through it, are required for modulating the K2P channel TREK1. Super-resolution imaging and stochastic simulations further reveal that both channels do not co-localize, which implies that modulation is not mediated through direct binding interactions; however, at high Piezo1 densities, most TREK1 channels are within the predicted Piezo1 membrane footprint, suggesting the footprint may underlie conformational signaling. We speculate that physiological roles originally attributed to Piezo1 ionotropic function could, alternatively, involve conformational signaling.
Collapse
Affiliation(s)
- Amanda H. Lewis
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Marie E. Cronin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
23
|
Rödström KEJ, Cloake A, Sörmann J, Baronina A, Smith KHM, Pike ACW, Ang J, Proks P, Schewe M, Holland-Kaye I, Bushell SR, Elliott J, Pardon E, Baukrowitz T, Owens RJ, Newstead S, Steyaert J, Carpenter EP, Tucker SJ. Extracellular modulation of TREK-2 activity with nanobodies provides insight into the mechanisms of K2P channel regulation. Nat Commun 2024; 15:4173. [PMID: 38755204 PMCID: PMC11099193 DOI: 10.1038/s41467-024-48536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Potassium channels of the Two-Pore Domain (K2P) subfamily, KCNK1-KCNK18, play crucial roles in controlling the electrical activity of many different cell types and represent attractive therapeutic targets. However, the identification of highly selective small molecule drugs against these channels has been challenging due to the high degree of structural and functional conservation that exists not only between K2P channels, but across the whole K+ channel superfamily. To address the issue of selectivity, here we generate camelid antibody fragments (nanobodies) against the TREK-2 (KCNK10) K2P K+ channel and identify selective binders including several that directly modulate channel activity. X-ray crystallography and CryoEM data of these nanobodies in complex with TREK-2 also reveal insights into their mechanisms of activation and inhibition via binding to the extracellular loops and Cap domain, as well as their suitability for immunodetection. These structures facilitate design of a biparatropic inhibitory nanobody with markedly improved sensitivity. Together, these results provide important insights into TREK channel gating and provide an alternative, more selective approach to modulation of K2P channel activity via their extracellular domains.
Collapse
Affiliation(s)
- Karin E J Rödström
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Alexander Cloake
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - Janina Sörmann
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Agnese Baronina
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Kathryn H M Smith
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Ashley C W Pike
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Jackie Ang
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Peter Proks
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Marcus Schewe
- Institute of Physiology, Medical Faculty, Kiel University, Kiel, Germany
| | | | - Simon R Bushell
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Jenna Elliott
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Thomas Baukrowitz
- Institute of Physiology, Medical Faculty, Kiel University, Kiel, Germany
| | - Raymond J Owens
- The Rosalind Franklin Institute, Harwell Campus, Didcot, UK
- Division of Structural Biology, University of Oxford, Oxford, UK
| | - Simon Newstead
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Elisabeth P Carpenter
- Centre for Medicines Discovery, University of Oxford, Oxford, UK.
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK.
| | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK.
| |
Collapse
|
24
|
Frank HM, Walujkar S, Walsh RM, Laursen WJ, Theobald DL, Garrity PA, Gaudet R. Structural basis of ligand specificity and channel activation in an insect gustatory receptor. Cell Rep 2024; 43:114035. [PMID: 38573859 PMCID: PMC11100771 DOI: 10.1016/j.celrep.2024.114035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
Gustatory receptors (GRs) are critical for insect chemosensation and are potential targets for controlling pests and disease vectors, making their structural investigation a vital step toward such applications. We present structures of Bombyx mori Gr9 (BmGr9), a fructose-gated cation channel, in agonist-free and fructose-bound states. BmGr9 forms a tetramer similar to distantly related insect odorant receptors (ORs). Upon fructose binding, BmGr9's channel gate opens through helix S7b movements. In contrast to ORs, BmGr9's ligand-binding pocket, shaped by a kinked helix S4 and a shorter extracellular S3-S4 loop, is larger and solvent accessible in both agonist-free and fructose-bound states. Also, unlike ORs, fructose binding by BmGr9 involves helix S5 and a pocket lined with aromatic and polar residues. Structure-based sequence alignments reveal distinct patterns of ligand-binding pocket residue conservation in GR subfamilies associated with different ligand classes. These data provide insight into the molecular basis of GR ligand specificity and function.
Collapse
Affiliation(s)
- Heather M Frank
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Sanket Walujkar
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Richard M Walsh
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Willem J Laursen
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | | | - Paul A Garrity
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA.
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
25
|
Lin H, Li J, Zhang Q, Yang H, Chen S. C-type inactivation and proton modulation mechanisms of the TASK3 channel. Proc Natl Acad Sci U S A 2024; 121:e2320345121. [PMID: 38630723 PMCID: PMC11046659 DOI: 10.1073/pnas.2320345121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
The TWIK-related acid-sensitive K+ channel 3 (TASK3) belongs to the two-pore domain (K2P) potassium channel family, which regulates cell excitability by mediating a constitutive "leak" potassium efflux in the nervous system. Extracellular acidification inhibits TASK3 channel, but the molecular mechanism by which channel inactivation is coupled to pH decrease remains unclear. Here, we report the cryo-electron microscopy structures of human TASK3 at neutral and acidic pH. Structural comparison revealed selectivity filter (SF) rearrangements upon acidification, characteristic of C-type inactivation, but with a unique structural basis. The extracellular mouth of the SF was prominently dilated and simultaneously blocked by a hydrophobic gate. His98 protonation shifted the conformational equilibrium between the conductive and C-type inactivated SF toward the latter by engaging a cation-π interaction with Trp78, consistent with molecular dynamics simulations and electrophysiological experiments. Our work illustrated how TASK3 is gated in response to extracellular pH change and implies how physiological stimuli might directly modulate the C-type gating of K2P channels.
Collapse
Affiliation(s)
- Huajian Lin
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai200125, China
| | - Junnan Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai200241, China
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai200241, China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai200241, China
| | - Shanshuang Chen
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai200125, China
- Department of Otolaryngology-Head and Neck Surgery, Ninth People’s Hospital, Shanghai200011, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai200125, China
| |
Collapse
|
26
|
Sorum B, Docter T, Panico V, Rietmeijer RA, Brohawn SG. Tension activation of mechanosensitive two-pore domain K+ channels TRAAK, TREK-1, and TREK-2. Nat Commun 2024; 15:3142. [PMID: 38605031 PMCID: PMC11009253 DOI: 10.1038/s41467-024-47208-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
TRAAK, TREK-1, and TREK-2 are mechanosensitive two-pore domain K+ (K2P) channels that contribute to action potential propagation, sensory transduction, and muscle contraction. While structural and functional studies have led to models that explain their mechanosensitivity, we lack a quantitative understanding of channel activation by membrane tension. Here, we define the tension response of mechanosensitive K2Ps using patch-clamp recording and imaging. All are low-threshold mechanosensitive channels (T10%/50% 0.6-2.7 / 4.4-6.4 mN/m) with distinct response profiles. TRAAK is most sensitive, TREK-1 intermediate, and TREK-2 least sensitive. TRAAK and TREK-1 are activated broadly over a range encompassing nearly all physiologically relevant tensions. TREK-2, in contrast, activates over a narrower range like mechanosensitive channels Piezo1, MscS, and MscL. We further show that low-frequency, low-intensity focused ultrasound increases membrane tension to activate TRAAK and MscS. This work provides insight into tension gating of mechanosensitive K2Ps relevant to understanding their physiological roles and potential applications for ultrasonic neuromodulation.
Collapse
Affiliation(s)
- Ben Sorum
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
| | - Trevor Docter
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
| | - Vincent Panico
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
| | - Robert A Rietmeijer
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
| | - Stephen G Brohawn
- Department of Molecular & Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA.
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
27
|
Mӓnnikkӧ R, Kullmann DM. Structure-function and pharmacologic aspects of ion channels relevant to neurologic channelopathies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 203:1-23. [PMID: 39174242 DOI: 10.1016/b978-0-323-90820-7.00009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Ion channels are membrane proteins that allow the passage of ions across the membrane. They characteristically contain a pore where the selectivity of certain ion species is determined and gates that open and close the pore are found. The pore is often connected to additional domains or subunits that regulate its function. Channels are grouped into families based on their selectivity for specific ions and the stimuli that control channel opening and closing, such as voltage or ligands. Ion channels are fundamental to the electrical properties of excitable tissues. Dysfunction of channels can lead to abnormal electrical signaling of neurons and muscle cells, accompanied by clinical manifestations, known as channelopathies. Many naturally occurring toxins target ion channels and affect excitable cells where the channels are expressed. Furthermore, ion channels, as membrane proteins and key regulators of a number of physiologic functions, are an important target for drugs in clinical use. In this chapter, we give a general overview of the classification, genetics and structure-function features of the main ion channel families, and address some pharmacologic aspects relevant to neurologic channelopathies.
Collapse
Affiliation(s)
- Roope Mӓnnikkӧ
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
28
|
Fan C, Flood E, Sukomon N, Agarwal S, Allen TW, Nimigean CM. Calcium-gated potassium channel blockade via membrane-facing fenestrations. Nat Chem Biol 2024; 20:52-61. [PMID: 37653172 PMCID: PMC10847966 DOI: 10.1038/s41589-023-01406-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
Quaternary ammonium blockers were previously shown to bind in the pore to block both open and closed conformations of large-conductance calcium-activated potassium (BK and MthK) channels. Because blocker entry was assumed through the intracellular entryway (bundle crossing), closed-pore access suggested that the gate was not at the bundle crossing. Structures of closed MthK, a Methanobacterium thermoautotrophicum homolog of BK channels, revealed a tightly constricted intracellular gate, leading us to investigate the membrane-facing fenestrations as alternative pathways for blocker access directly from the membrane. Atomistic free energy simulations showed that intracellular blockers indeed access the pore through the fenestrations, and a mutant channel with narrower fenestrations displayed no closed-state TPeA block at concentrations that blocked the wild-type channel. Apo BK channels display similar fenestrations, suggesting that blockers may use them as access paths into closed channels. Thus, membrane fenestrations represent a non-canonical pathway for selective targeting of specific channel conformations, opening novel ways to selectively drug BK channels.
Collapse
Affiliation(s)
- Chen Fan
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Emelie Flood
- School of Science, RMIT University, Melbourne, Victoria, Australia
- Schrödinger, Inc., New York, NY, USA
| | - Nattakan Sukomon
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Shubhangi Agarwal
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Toby W Allen
- School of Science, RMIT University, Melbourne, Victoria, Australia.
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
29
|
Frank HM, Walujkar S, Walsh RM, Laursen WJ, Theobald DL, Garrity PA, Gaudet R. Structure of an insect gustatory receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572336. [PMID: 38187590 PMCID: PMC10769236 DOI: 10.1101/2023.12.19.572336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Gustatory Receptors (GRs) are critical for insect chemosensation and are potential targets for controlling pests and disease vectors. However, GR structures have not been experimentally determined. We present structures of Bombyx mori Gr9 (BmGr9), a fructose-gated cation channel, in agonist-free and fructose-bound states. BmGr9 forms a tetramer similar to distantly related insect Olfactory Receptors (ORs). Upon fructose binding, BmGr9's ion channel gate opens through helix S7b movements. In contrast to ORs, BmGR9's ligand-binding pocket, shaped by a kinked helix S4 and a shorter extracellular S3-S4 loop, is larger and solvent accessible in both agonist-free and fructose-bound states. Also unlike ORs, fructose binding by BmGr9 involves helix S5 and a binding pocket lined with aromatic and polar residues. Structure-based sequence alignments reveal distinct patterns of ligand-binding pocket residue conservation in GR subfamilies associated with distinct ligand classes. These data provide insight into the molecular basis of GR ligand specificity and function.
Collapse
Affiliation(s)
- Heather M. Frank
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
- These authors contributed equally
| | - Sanket Walujkar
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
- These authors contributed equally
| | - Richard M. Walsh
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- These authors contributed equally
| | - Willem J. Laursen
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | | | - Paul A. Garrity
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
- Lead contact
| |
Collapse
|
30
|
Coppola T, Daziano G, Legroux I, Béraud-Dufour S, Blondeau N, Lebrun P. Unlocking Therapeutic Synergy: Tailoring Drugs for Comorbidities such as Depression and Diabetes through Identical Molecular Targets in Different Cell Types. Cells 2023; 12:2768. [PMID: 38067196 PMCID: PMC10706795 DOI: 10.3390/cells12232768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Research in the field of pharmacology aims to generate new treatments for pathologies. Nowadays, there are an increased number of chronic disorders that severely and durably handicap many patients. Among the most widespread pathologies, obesity, which is often associated with diabetes, is constantly increasing in incidence, and in parallel, neurodegenerative and mood disorders are increasingly affecting many people. For years, these pathologies have been so frequently observed in the population in a concomitant way that they are considered as comorbidities. In fact, common mechanisms are certainly at work in the etiology of these pathologies. The main purpose of this review is to show the value of anticipating the effect of baseline treatment of a condition on its comorbidity in order to obtain concomitant positive actions. One of the implications would be that by understanding and targeting shared molecular mechanisms underlying these conditions, it may be possible to tailor drugs that address both simultaneously. To this end, we firstly remind readers of the close link existing between depression and diabetes and secondly address the potential benefit of the pleiotropic actions of two major active molecules used to treat central and peripheral disorders, first a serotonin reuptake inhibitor (Prozac ®) and then GLP-1R agonists. In the second part, by discussing the therapeutic potential of new experimental antidepressant molecules, we will support the concept that a better understanding of the intracellular signaling pathways targeted by pharmacological agents could lead to future synergistic treatments targeting solely positive effects for comorbidities.
Collapse
Affiliation(s)
- Thierry Coppola
- CNRS, IPMC, Université Côte d’Azur, Sophia Antipolis, F-06560 Valbonne, France; (G.D.); (I.L.); (S.B.-D.); (N.B.)
| | | | | | | | | | - Patricia Lebrun
- CNRS, IPMC, Université Côte d’Azur, Sophia Antipolis, F-06560 Valbonne, France; (G.D.); (I.L.); (S.B.-D.); (N.B.)
| |
Collapse
|
31
|
Zhi Y, Wu X, Chen Y, Chen X, Chen X, Luo H, Yi X, Lin X, Ma L, Chen Y, Cao Y, Li F, Zhou P. A novel TWIK2 channel inhibitor binds at the bottom of the selectivity filter and protects against LPS-induced experimental endotoxemia in vivo. Biochem Pharmacol 2023; 218:115894. [PMID: 37898389 DOI: 10.1016/j.bcp.2023.115894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
TWIK2 channel plays a critical role in NLRP3 inflammasome activation and mice deficient in TWIK2 channel are protected from sepsis and inflammatory lung injury. However, inhibitors of TWIK2 channel are currently in an early stage of development, and the molecular determinants underlying the chemical modulation of TWIK2 channel remain unexplored. In this study, we identified NPBA and the synthesized derivative NPBA-4 potently and selectively inhibited TWIK2 channel by using whole-cell patch clamp techniques. Furthermore, the mutation of the last residues of the selectivity filter in both P1 and P2 (i.e., T106A, T214A) of TWIK2 channel substantially abolished the effect of NPBA on TWIK2 channel. Our data suggest that NPBA blocked TWIK2 channel through binding at the bottom of the selectivity filter, which was also supported by molecular docking prediction. Moreover, we found that NPBA significantly suppressed NLRP3 inflammasome activation in macrophages and alleviated LPS-induced endotoxemia and organ injury in vivo. Notably, the protective effects of NPBA against LPS-induced endotoxemia were abolished in Kcnk6-/- mice. In summary, our study has uncovered a series of novel inhibitors of TWIK2 channel and revealed their distinct molecular determinants interacting TWIK2 channel. These findings provide new insights into the mechanisms of pharmacological action on TWIK2 channel and opportunities for the development of selective TWIK2 channel modulators to treat related inflammatory diseases.
Collapse
Affiliation(s)
- Yuanxing Zhi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Xiaoyan Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanshan Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xingyuan Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiangyu Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hui Luo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xin Yi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiuling Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liang Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yao Chen
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Ying Cao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengxian Li
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
32
|
Deal PE, Lee H, Mondal A, Lolicato M, de Mendonca PRF, Black H, El-Hilali X, Bryant C, Isacoff EY, Renslo AR, Minor DL. Development of covalent chemogenetic K 2P channel activators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.15.561774. [PMID: 37905049 PMCID: PMC10614804 DOI: 10.1101/2023.10.15.561774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
K2P potassium channels regulate excitability by affecting cellular resting membrane potential in the brain, cardiovascular system, immune cells, and sensory organs. Despite their important roles in anesthesia, arrhythmia, pain, hypertension, sleep, and migraine, the ability to control K2P function remains limited. Here, we describe a chemogenetic strategy termed CATKLAMP (Covalent Activation of TREK family K+ channels to cLAmp Membrane Potential) that leverages the discovery of a site in the K2P modulator pocket that reacts with electrophile-bearing derivatives of a TREK subfamily small molecule activator, ML335, to activate the channel irreversibly. We show that the CATKLAMP strategy can be used to probe fundamental aspects of K2P function, as a switch to silence neuronal firing, and is applicable to all TREK subfamily members. Together, our findings exemplify a new means to alter K2P channel activity that should facilitate studies both molecular and systems level studies of K2P function and enable the search for new K2P modulators.
Collapse
Affiliation(s)
- Parker E. Deal
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 93858-2330 USA
| | - Haerim Lee
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
| | - Abhisek Mondal
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
| | - Marco Lolicato
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
| | | | - Holly Black
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Xochina El-Hilali
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 93858-2330 USA
| | - Clifford Bryant
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 93858-2330 USA
| | - Ehud Y. Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, United States
- Weill Neurohub, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 93858-2330 USA
| | - Daniel L. Minor
- Cardiovascular Research Institute, University of California, San Francisco, California 93858-2330 USA
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, California 93858-2330 USA
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, California 93858-2330 USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California 93858-2330 USA
| |
Collapse
|
33
|
Wang J, Liu H, Sun Z, Zou X, Zhang Z, Wei X, Pan L, Stalin A, Zhao W, Chen Y. The Inhibitory Effect of Magnolol on the Human TWIK1 Channel Is Related to G229 and T225 Sites. Molecules 2023; 28:6815. [PMID: 37836658 PMCID: PMC10574557 DOI: 10.3390/molecules28196815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
TWIK1 (K2P1.1/KCNK1) belongs to the potassium channels of the two-pore domain. Its current is very small and difficult to measure. In this work, we used a 100 mM NH4+ extracellular solution to increase TWIK1 current in its stable cell line expressed in HEK293. Then, the inhibition of magnolol on TWIK1 was observed via a whole-cell patch clamp experiment, and it was found that magnolol had a significant inhibitory effect on TWIK1 (IC50 = 6.21 ± 0.13 μM). By molecular docking and alanine scanning mutagenesis, the IC50 of TWIK1 mutants G229A, T225A, I140A, L223A, and S224A was 20.77 ± 3.20, 21.81 ± 7.93, 10.22 ± 1.07, 9.55 ± 1.62, and 7.43 ± 3.20 μM, respectively. Thus, we conclude that the inhibition of the TWIK1 channel by magnolol is related to G229 and T225 on the P2- pore helix.
Collapse
Affiliation(s)
- Jintao Wang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (J.W.); (H.L.); (Z.S.); (X.Z.); (Z.Z.); (X.W.); (W.Z.)
| | - Huan Liu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (J.W.); (H.L.); (Z.S.); (X.Z.); (Z.Z.); (X.W.); (W.Z.)
| | - Zhuolin Sun
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (J.W.); (H.L.); (Z.S.); (X.Z.); (Z.Z.); (X.W.); (W.Z.)
| | - Xinyi Zou
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (J.W.); (H.L.); (Z.S.); (X.Z.); (Z.Z.); (X.W.); (W.Z.)
| | - Zixuan Zhang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (J.W.); (H.L.); (Z.S.); (X.Z.); (Z.Z.); (X.W.); (W.Z.)
| | - Xiaofeng Wei
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (J.W.); (H.L.); (Z.S.); (X.Z.); (Z.Z.); (X.W.); (W.Z.)
| | - Lanying Pan
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Wei Zhao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (J.W.); (H.L.); (Z.S.); (X.Z.); (Z.Z.); (X.W.); (W.Z.)
| | - Yuan Chen
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (J.W.); (H.L.); (Z.S.); (X.Z.); (Z.Z.); (X.W.); (W.Z.)
| |
Collapse
|
34
|
Lee EH, Park JE, Gotina L, Han YE, Viswanath ANI, Yoo S, Moon B, Hwang JY, Park WK, Cho Y, Song C, Min SJ, Hwang EM, Lee H, Pae AN, Roh EJ, Oh SJ. Novel potent blockers for TWIK-1/TREK-1 heterodimers as potential antidepressants. Biomed Pharmacother 2023; 165:115139. [PMID: 37454597 DOI: 10.1016/j.biopha.2023.115139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
TREK-1 (TWIK-related potassium channel-1) is a subunit of the two-pore domain potassium (K2p) channel and is widely expressed in the brain. TREK-1 knockout mice were shown to have antidepressant-like effects, providing evidence for the channel's potential as a therapeutic target. However, currently there is no good pharmacological inhibitor specifically targeting TREK-1 containing K2p channels that also displays similar antidepressant-like effects. Here, we sought to find selective and potent inhibitors for TREK-1 related dimers both in vitro and in vivo. We synthesized and evaluated 2-hydroxy-3-phenoxypropyl piperidine derivatives yielding a library from which many TREK-1 targeting candidates emerged. Among these, hydroxyl-phenyl- (2a), piperidino- (2g), and pyrrolidino- (2h) piperidinyl substituted compounds showed high potencies to TREK-1 homodimers with significant antidepressant-like effects in forced swim test and tail suspension test. Interestingly, these compounds were found to have high potencies to TWIK-1/TREK-1 heterodimers. Contrastingly, difluoropiperidinyl-4-fluorophenoxy (3e) and 4-hydroxyphenyl-piperidinyl-4-fluorophenoxy (3j) compounds had high potencies to TREK-1 homodimer but lower potency to TWIK-1/TREK-1 heterodimers without significant antidepressant-like effects. We observed positive correlation between inhibition potency to TWIK-1/TREK-1 and immobility time, and no correlation between inhibition potency to TREK-1 homodimer and immobility time. This was consistent with molecular docking simulations of selected compounds to TREK-1 homodimeric and TWIK-1/TREK-1 heterodimeric models. Existing antidepressant fluoxetine was also found to potently inhibit TWIK-1/TREK-1 heterodimers. Our study reveals novel potent TWIK-1/TREK-1 inhibitors 2a, 2g, and 2h as potential antidepressants and suggest that the TWIK-1/TREK-1 heterodimer could be a potential novel molecular therapeutic target for antidepressants.
Collapse
Affiliation(s)
- Elliot H Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Anesthesiology and Pain Medicine, SMG-SNU Boramae Medical Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jung-Eun Park
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea; Department of Chemistry, Sogang University, Baekbeomno 35, Mapo-gu, Seoul, Republic of Korea
| | - Lizaveta Gotina
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Young-Eun Han
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ambily Nath Indu Viswanath
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Seonguk Yoo
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Bongjin Moon
- Department of Chemistry, Sogang University, Baekbeomno 35, Mapo-gu, Seoul, Republic of Korea
| | - Jin-Young Hwang
- Department of Anesthesiology and Pain Medicine, SMG-SNU Boramae Medical Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Woo Kyu Park
- Rare Disease Therapeutic Technology Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yoonjeong Cho
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Chiman Song
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea; Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Sun-Joon Min
- Department of Chemical & Molecular Engineering/Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Eun Mi Hwang
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyunbeom Lee
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea
| | - Ae Nim Pae
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
35
|
Spencer KA, Woods CB, Worstman HM, Johnson SC, Ramirez JM, Morgan PG, Sedensky MM. TREK-1 and TREK-2 Knockout Mice Are Not Resistant to Halothane or Isoflurane. Anesthesiology 2023; 139:63-76. [PMID: 37027798 PMCID: PMC10247454 DOI: 10.1097/aln.0000000000004577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
BACKGROUND A variety of molecular targets for volatile anesthetics have been suggested, including the anesthetic-sensitive potassium leak channel, TREK-1. Knockout of TREK-1 is reported to render mice resistant to volatile anesthetics, making TREK-1 channels compelling targets for anesthetic action. Spinal cord slices from mice, either wild type or an anesthetic- hypersensitive mutant, Ndufs4, display an isoflurane-induced outward potassium leak that correlates with their minimum alveolar concentrations and is blocked by norfluoxetine. The hypothesis was that TREK-1 channels conveyed this current and contribute to the anesthetic hypersensitivity of Ndufs4. The results led to evaluation of a second TREK channel, TREK-2, in control of anesthetic sensitivity. METHODS The anesthetic sensitivities of mice carrying knockout alleles of Trek-1 and Trek-2, the double knockout Trek-1;Trek-2, and Ndufs4;Trek-1 were measured. Neurons from spinal cord slices from each mutant were patch clamped to characterize isoflurane-sensitive currents. Norfluoxetine was used to identify TREK-dependent currents. RESULTS The mean values for minimum alveolar concentrations (± SD) between wild type and two Trek-1 knockout alleles in mice (P values, Trek-1 compared to wild type) were compared. For wild type, minimum alveolar concentration of halothane was 1.30% (0.10), and minimum alveolar concentration of isoflurane was 1.40% (0.11); for Trek-1tm1Lex, minimum alveolar concentration of halothane was 1.27% (0.11; P = 0.387), and minimum alveolar concentration of isoflurane was 1.38% (0.09; P = 0.268); and for Trek-1tm1Lzd, minimum alveolar concentration of halothane was 1.27% (0.11; P = 0.482), and minimum alveolar concentration of isoflurane was 1.41% (0.12; P = 0.188). Neither allele was resistant for loss of righting reflex. The EC50 values of Ndufs4;Trek-1tm1Lex did not differ from Ndufs4 (for Ndufs4, EC50 of halothane, 0.65% [0.05]; EC50 of isoflurane, 0.63% [0.05]; and for Ndufs4;Trek-1tm1Lex, EC50 of halothane, 0.58% [0.07; P = 0.004]; and EC50 of isoflurane, 0.61% [0.06; P = 0.442]). Loss of TREK-2 did not alter anesthetic sensitivity in a wild-type or Trek-1 genetic background. Loss of TREK-1, TREK-2, or both did not alter the isoflurane-induced currents in wild-type cells but did cause them to be norfluoxetine insensitive. CONCLUSIONS Loss of TREK channels did not alter anesthetic sensitivity in mice, nor did it eliminate isoflurane-induced transmembrane currents. However, the isoflurane-induced currents are norfluoxetine-resistant in Trek mutants, indicating that other channels may function in this role when TREK channels are deleted. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Kira A Spencer
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle WA, 98105, USA
| | - Christian B Woods
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
| | - Hailey M Worstman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
| | - Simon C Johnson
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
- Applied Sciences, Translational Biosciences, Northumbria University, Ellison A521A, UK (current)
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, 98105, USA
| | - Philip G Morgan
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle WA, 98105, USA
| | - Margaret M Sedensky
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle WA, 98105, USA
| |
Collapse
|
36
|
Herrera-Pérez S, Lamas JA. TREK channels in Mechanotransduction: a Focus on the Cardiovascular System. Front Cardiovasc Med 2023; 10:1180242. [PMID: 37288256 PMCID: PMC10242076 DOI: 10.3389/fcvm.2023.1180242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/26/2023] [Indexed: 06/09/2023] Open
Abstract
Mechano-electric feedback is one of the most important subsystems operating in the cardiovascular system, but the underlying molecular mechanism remains rather unknown. Several proteins have been proposed to explain the molecular mechanism of mechano-transduction. Transient receptor potential (TRP) and Piezo channels appear to be the most important candidates to constitute the molecular mechanism behind of the inward current in response to a mechanical stimulus. However, the inhibitory/regulatory processes involving potassium channels that operate on the cardiac system are less well known. TWIK-Related potassium (TREK) channels have emerged as strong candidates due to their capacity for the regulation of the flow of potassium in response to mechanical stimuli. Current data strongly suggest that TREK channels play a role as mechano-transducers in different components of the cardiovascular system, not only at central (heart) but also at peripheral (vascular) level. In this context, this review summarizes and highlights the main existing evidence connecting this important subfamily of potassium channels with the cardiac mechano-transduction process, discussing molecular and biophysical aspects of such a connection.
Collapse
Affiliation(s)
- Salvador Herrera-Pérez
- Laboratory of Neuroscience, CINBIO, University of Vigo, Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), Vigo, Spain
| | - José Antonio Lamas
- Laboratory of Neuroscience, CINBIO, University of Vigo, Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), Vigo, Spain
| |
Collapse
|
37
|
Bardelang P, Murray EJ, Blower I, Zandomeneghi S, Goode A, Hussain R, Kumari D, Siligardi G, Inoue K, Luckett J, Doutch J, Emsley J, Chan WC, Hill P, Williams P, Bonev BB. Conformational analysis and interaction of the Staphylococcus aureus transmembrane peptidase AgrB with its AgrD propeptide substrate. Front Chem 2023; 11:1113885. [PMID: 37214482 PMCID: PMC10196373 DOI: 10.3389/fchem.2023.1113885] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Virulence gene expression in the human pathogen, S. aureus is regulated by the agr (accessory gene regulator) quorum sensing (QS) system which is conserved in diverse Gram-positive bacteria. The agr QS signal molecule is an autoinducing peptide (AIP) generated via the initial processing of the AgrD pro-peptide by the transmembrane peptidase AgrB. Since structural information for AgrB and AgrBD interactions are lacking, we used homology modelling and molecular dynamics (MD) annealing to characterise the conformations of AgrB and AgrD in model membranes and in solution. These revealed a six helical transmembrane domain (6TMD) topology for AgrB. In solution, AgrD behaves as a disordered peptide, which binds N-terminally to membranes in the absence and in the presence of AgrB. In silico, membrane complexes of AgrD and dimeric AgrB show non-equivalent AgrB monomers responsible for initial binding and for processing, respectively. By exploiting split luciferase assays in Staphylococcus aureus, we provide experimental evidence that AgrB interacts directly with itself and with AgrD. We confirmed the in vitro formation of an AgrBD complex and AIP production after Western blotting using either membranes from Escherichia coli expressing AgrB or with purified AgrB and T7-tagged AgrD. AgrB and AgrD formed stable complexes in detergent micelles revealed using synchrotron radiation CD (SRCD) and Landau analysis consistent with the enhanced thermal stability of AgrB in the presence of AgrD. Conformational alteration of AgrB following provision of AgrD was observed by small angle X-ray scattering from proteodetergent micelles. An atomistic description of AgrB and AgrD has been obtained together with confirmation of the AgrB 6TMD membrane topology and existence of AgrBD molecular complexes in vitro and in vivo.
Collapse
Affiliation(s)
- Philip Bardelang
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ewan J. Murray
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Isobel Blower
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Sara Zandomeneghi
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alice Goode
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Rohanah Hussain
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Divya Kumari
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Giuliano Siligardi
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Katsuaki Inoue
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Jeni Luckett
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - James Doutch
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, United Kingdom
| | - Jonas Emsley
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Weng C. Chan
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Philip Hill
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Paul Williams
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Boyan B. Bonev
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
38
|
Gu RX, de Groot BL. Central cavity dehydration as a gating mechanism of potassium channels. Nat Commun 2023; 14:2178. [PMID: 37069187 PMCID: PMC10110622 DOI: 10.1038/s41467-023-37531-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/21/2023] [Indexed: 04/19/2023] Open
Abstract
The hydrophobic gating model, in which ion permeation is inhibited by the hydrophobicity, rather than a physical occlusion of the nanopore, functions in various ion channels including potassium channels. Available research focused on the energy barriers for ion/water conduction due to the hydrophobicity, whereas how hydrophobic gating affects the function and structure of channels remains unclear. Here, we use potassium channels as examples and conduct molecular dynamics simulations to investigate this problem. Our simulations find channel activities (ion currents) highly correlated with cavity hydration level, implying insufficient hydration as a barrier for ion permeation. Enforced cavity dehydration successfully induces conformational transitions between known channel states, further implying cavity dewetting as a key step in the gating procedure of potassium channels utilizing different activation mechanisms. Our work reveals how the cavity dewetting is coupled to structural changes of potassium channels and how it affects channel activity. The conclusion may also apply to other ion channels.
Collapse
Affiliation(s)
- Ruo-Xu Gu
- School of Life Sciences and Biotechnology, Shanghai Jia Tong University, 800 Dongchuan Road, 200240, Shanghai, China
- Department of Theoretical and Computational Biophysics, Max-Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Bert L de Groot
- Department of Theoretical and Computational Biophysics, Max-Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
39
|
Ullrich J, Ohlhoff C, Dondapati SK, Zemella A, Kubick S. Evaluation of the Ion Channel Assembly in a Eukaryotic Cell-Free System Focusing on Two-Pore Domain Potassium Channels K 2P. Int J Mol Sci 2023; 24:6299. [PMID: 37047271 PMCID: PMC10094441 DOI: 10.3390/ijms24076299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Oligomeric ion channels are abundant in nature. However, the recombinant expression in cell culture-based systems remains tedious and challenging due to negative side effects, limiting the understanding of their role in health and disease. Accordingly, in this work, we demonstrate the cell-free synthesis (CFS) as an alternative platform to study the assembly of two-pore domain potassium channels (K2P) within endogenous endoplasmic reticulum-derived microsomes. Exploiting the open nature of CFS, we investigate the cotranslational translocation of TREK-2 into the microsomes and suggest a cotranslational assembly with typical single-channel behavior in planar lipid-bilayer electrophysiology. The heteromeric assembly of K2P channels is a contentious matter, accordingly we prove the successful assembly of TREK-2 with TWIK-1 using a biomolecular fluorescence complementation assay, Western blot analysis and autoradiography. The results demonstrate that TREK-2 homodimer assembly is the initial step, followed by heterodimer formation with the nascent TWIK-1, providing evidence of the intergroup heterodimerization of TREK-2 and TWIK-1 in eukaryotic CFS. Since K2P channels are involved in various pathophysiological conditions, including pain and nociception, CFS paves the way for in-depth functional studies and related pharmacological interventions. This study highlights the versatility of the eukaryotic CFS platform for investigating ion channel assembly in a native-like environment.
Collapse
Affiliation(s)
- Jessica Ullrich
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Carsten Ohlhoff
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
40
|
Tolbatov I, Marrone A, Shepard W, Chiaverini L, Upadhyay Kahaly M, La Mendola D, Marzo T, Ciccone L. Inorganic Drugs as a Tool for Protein Structure Solving and Studies on Conformational Changes. Chemistry 2023; 29:e202202937. [PMID: 36477932 DOI: 10.1002/chem.202202937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
Inorganic drugs are capable of tight interactions with proteins through coordination towards aminoacidic residues, and this feature is recognized as a key aspect for their pharmacological action. However, the "protein metalation process" is exploitable for solving the phase problem and structural resolution. In fact, the use of inorganic drugs bearing specific metal centers and ligands capable to drive the binding towards the desired portions of the protein target could represent a very intriguing and fruitful strategy. In this context, a theoretical approach may further contribute to solve protein structures and their refinement. Here, we delineate the main features of a reliable experimental-theoretical integrated approach, based on the use of metallodrugs, for protein structure solving.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007, Tarragona, Spain
| | - Alessandro Marrone
- Department of Pharmacy, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - William Shepard
- Department PROXIMA2 A, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| | - Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | | | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Department PROXIMA2 A, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| |
Collapse
|
41
|
Nguyen NH, Brodsky JL. The cellular pathways that maintain the quality control and transport of diverse potassium channels. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194908. [PMID: 36638864 PMCID: PMC9908860 DOI: 10.1016/j.bbagrm.2023.194908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Potassium channels are multi-subunit transmembrane proteins that permit the selective passage of potassium and play fundamental roles in physiological processes, such as action potentials in the nervous system and organismal salt and water homeostasis, which is mediated by the kidney. Like all ion channels, newly translated potassium channels enter the endoplasmic reticulum (ER) and undergo the error-prone process of acquiring post-translational modifications, folding into their native conformations, assembling with other subunits, and trafficking through the secretory pathway to reach their final destinations, most commonly the plasma membrane. Disruptions in these processes can result in detrimental consequences, including various human diseases. Thus, multiple quality control checkpoints evolved to guide potassium channels through the secretory pathway and clear potentially toxic, aggregation-prone misfolded species. We will summarize current knowledge on the mechanisms underlying potassium channel quality control in the secretory pathway, highlight diseases associated with channel misfolding, and suggest potential therapeutic routes.
Collapse
Affiliation(s)
- Nga H Nguyen
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
42
|
Schmidpeter PAM, Petroff JT, Khajoueinejad L, Wague A, Frankfater C, Cheng WWL, Nimigean CM, Riegelhaupt PM. Membrane phospholipids control gating of the mechanosensitive potassium leak channel TREK1. Nat Commun 2023; 14:1077. [PMID: 36841877 PMCID: PMC9968290 DOI: 10.1038/s41467-023-36765-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/15/2023] [Indexed: 02/27/2023] Open
Abstract
Tandem pore domain (K2P) potassium channels modulate resting membrane potentials and shape cellular excitability. For the mechanosensitive subfamily of K2Ps, the composition of phospholipids within the bilayer strongly influences channel activity. To examine the molecular details of K2P lipid modulation, we solved cryo-EM structures of the TREK1 K2P channel bound to either the anionic lipid phosphatidic acid (PA) or the zwitterionic lipid phosphatidylethanolamine (PE). At the extracellular face of TREK1, a PA lipid inserts its hydrocarbon tail into a pocket behind the selectivity filter, causing a structural rearrangement that recapitulates mutations and pharmacology known to activate TREK1. At the cytoplasmic face, PA and PE lipids compete to modulate the conformation of the TREK1 TM4 gating helix. Our findings demonstrate two distinct pathways by which anionic lipids enhance TREK1 activity and provide a framework for a model that integrates lipid gating with the effects of other mechanosensitive K2P modulators.
Collapse
Affiliation(s)
| | - John T Petroff
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Leila Khajoueinejad
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Aboubacar Wague
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Cheryl Frankfater
- Department of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Wayland W L Cheng
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, USA
| | - Paul M Riegelhaupt
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
43
|
Kim SE, Chung EDS, Vasileva EA, Mishchenko NP, Fedoreyev SA, Stonik VA, Kim HK, Nam JH, Kim SJ. Multiple Effects of Echinochrome A on Selected Ion Channels Implicated in Skin Physiology. Mar Drugs 2023; 21:78. [PMID: 36827119 PMCID: PMC9963876 DOI: 10.3390/md21020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Echinochrome A (Ech A), a naphthoquinoid pigment from sea urchins, is known to have anti-inflammatory and analgesic effects that have been suggested to be mediated by antioxidant activity and intracellular signaling modulation. In addition to these mechanisms, the ion channels in keratinocytes, immune cells, and nociceptive neurons may be the target for the pharmacological effects. Here, using the patch clamp technique, we investigated the effects of Ech A on the Ca2+-permeable TRPV3, TRPV1 and Orai1 channels and the two-pore domain K+ (K2P) channels (TREK/TRAAK, TASK-1, and TRESK) overexpressed in HEK 293 cells. Ech A inhibited both the TRPV3 and Orai1 currents, with IC50 levels of 2.1 and 2.4 μM, respectively. The capsaicin-activated TRPV1 current was slightly augmented by Ech A. Ech A alone did not change the amplitude of the TREK-2 current (ITREK2), but pretreatments with Ech A markedly facilitated ITREK2 activation by 2-APB, arachidonic acid (AA), and acidic extracellular pH (pHe). Similar facilitation effects of Ech A on TREK-1 and TRAAK were observed when they were stimulated with 2-APB and AA, respectively. On the contrary, Ech A did not affect the TRESK and TASK-1 currents. Interestingly, the ITREK2 maximally activated by the combined application of 2-APB and Ech A was not inhibited by norfluoxetine but was still completely inhibited by ruthenium red. The selective loss of sensitivity to norfluoxetine suggested an altered molecular conformation of TREK-2 by Ech A. We conclude that the Ech A-induced inhibition of the Ca2+-permeable cation channels and the facilitation of the TREK/TRAAK K2P channels may underlie the analgesic and anti-inflammatory effects of Ech A.
Collapse
Affiliation(s)
- Sung Eun Kim
- Department of Physiology, and Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Elina Da Sol Chung
- Department of Physiology, and Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Elena A. Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Natalia P. Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Sergey A. Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Hyoung Kyu Kim
- Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Department of Health Sciences and Technology, Graduate School, Inje University, Busan 47392, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang-si 10326, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, and Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
44
|
Matamoros M, Ng XW, Brettmann JB, Piston DW, Nichols CG. Conformational plasticity of NaK2K and TREK2 potassium channel selectivity filters. Nat Commun 2023; 14:89. [PMID: 36609575 PMCID: PMC9822992 DOI: 10.1038/s41467-022-35756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023] Open
Abstract
The K+ channel selectivity filter (SF) is defined by TxGYG amino acid sequences that generate four identical K+ binding sites (S1-S4). Only two sites (S3, S4) are present in the non-selective bacterial NaK channel, but a four-site K+-selective SF is obtained by mutating the wild-type TVGDGN SF sequence to a canonical K+ channel TVGYGD sequence (NaK2K mutant). Using single molecule FRET (smFRET), we show that the SF of NaK2K, but not of non-selective NaK, is ion-dependent, with the constricted SF configuration stabilized in high K+ conditions. Patch-clamp electrophysiology and non-canonical fluorescent amino acid incorporation show that NaK2K selectivity is reduced by crosslinking to limit SF conformational movement. Finally, the eukaryotic K+ channel TREK2 SF exhibits essentially identical smFRET-reported ion-dependent conformations as in prokaryotic K+ channels. Our results establish the generality of K+-induced SF conformational stability across the K+ channel superfamily, and introduce an approach to study manipulation of channel selectivity.
Collapse
Affiliation(s)
- Marcos Matamoros
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xue Wen Ng
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua B Brettmann
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Millipore-Sigma Inc., St. Louis, MO, USA
| | - David W Piston
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Colin G Nichols
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
45
|
Kurauskas V, Tonelli M, Henzler-Wildman K. Full opening of helix bundle crossing does not lead to NaK channel activation. J Gen Physiol 2022; 154:213659. [PMID: 36326620 PMCID: PMC9640265 DOI: 10.1085/jgp.202213196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/11/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
A critical part of ion channel function is the ability to open and close in response to stimuli and thus conduct ions in a regulated fashion. While x-ray diffraction studies of ion channels suggested a general steric gating mechanism located at the helix bundle crossing (HBC), recent functional studies on several channels indicate that the helix bundle crossing is wide-open even in functionally nonconductive channels. Two NaK channel variants were crystallized in very different open and closed conformations, which served as important models of the HBC gating hypothesis. However, neither of these NaK variants is conductive in liposomes unless phenylalanine 92 is mutated to alanine (F92A). Here, we use NMR to probe distances at near-atomic resolution of the two NaK variants in lipid bicelles. We demonstrate that in contrast to the crystal structures, both NaK variants are in a fully open conformation, akin to Ca2+-bound MthK channel structure where the HBC is widely open. While we were not able to determine what a conductive NaK structure is like, our further inquiry into the gating mechanism suggests that the selectivity filter and pore helix are coupled to the M2 helix below and undergo changes in the structure when F92 is mutated. Overall, our data show that NaK exhibits coupling between the selectivity filter and HBC, similar to K+ channels, and has a more complex gating mechanism than previously thought, where the full opening of HBC does not lead to channel activation.
Collapse
Affiliation(s)
- Vilius Kurauskas
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, University of Wisconsin—Madison, Madison, WI
| | - Katherine Henzler-Wildman
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI
- National Magnetic Resonance Facility at Madison, University of Wisconsin—Madison, Madison, WI
- Correspondence to Katherine Henzler-Wildman:
| |
Collapse
|
46
|
Fan X, Lu Y, Du G, Liu J. Advances in the Understanding of Two-Pore Domain TASK Potassium Channels and Their Potential as Therapeutic Targets. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238296. [PMID: 36500386 PMCID: PMC9736439 DOI: 10.3390/molecules27238296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
TWIK-related acid-sensitive K+ (TASK) channels, including TASK-1, TASK-3, and TASK-5, are important members of the two-pore domain potassium (K2P) channel family. TASK-5 is not functionally expressed in the recombinant system. TASK channels are very sensitive to changes in extracellular pH and are active during all membrane potential periods. They are similar to other K2P channels in that they can create and use background-leaked potassium currents to stabilize resting membrane conductance and repolarize the action potential of excitable cells. TASK channels are expressed in both the nervous system and peripheral tissues, including excitable and non-excitable cells, and are widely engaged in pathophysiological phenomena, such as respiratory stimulation, pulmonary hypertension, arrhythmia, aldosterone secretion, cancers, anesthesia, neurological disorders, glucose homeostasis, and visual sensitivity. Therefore, they are important targets for innovative drug development. In this review, we emphasized the recent advances in our understanding of the biophysical properties, gating profiles, and biological roles of TASK channels. Given the different localization ranges and biologically relevant functions of TASK-1 and TASK-3 channels, the development of compounds that selectively target TASK-1 and TASK-3 channels is also summarized based on data reported in the literature.
Collapse
Affiliation(s)
- Xueming Fan
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Yongzhi Lu
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510700, China
| | - Guizhi Du
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (G.D.); (J.L.)
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (G.D.); (J.L.)
| |
Collapse
|
47
|
Arévalo B, Bedoya M, Kiper AK, Vergara F, Ramírez D, Mazola Y, Bustos D, Zúñiga R, Cikutovic R, Cayo A, Rinné S, Ramirez-Apan MT, Sepúlveda FV, Cerda O, López-Collazo E, Decher N, Zúñiga L, Gutierrez M, González W. Selective TASK-1 Inhibitor with a Defined Structure–Activity Relationship Reduces Cancer Cell Proliferation and Viability. J Med Chem 2022; 65:15014-15027. [DOI: 10.1021/acs.jmedchem.1c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Bárbara Arévalo
- Centro de Estudios en Alimentos Procesados−CEAP, Conicyt, Programa Regional R19A10001, Gore Maule, 3460000 Talca, Chile
| | - Mauricio Bedoya
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, 3460000 Talca, Chile
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, 3480094 Talca, Chile
| | - Aytug K. Kiper
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstraße 1-2, 35037 Marburg, Germany
| | - Fernando Vergara
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 1 Poniente No. 1141, 3460000 Talca, Chile
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, 4030000 Concepción, Chile
| | - Yuliet Mazola
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 1 Poniente No. 1141, 3460000 Talca, Chile
| | - Daniel Bustos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, 3460000 Talca, Chile
- Laboratorio de Bioinformática y Química Computacional (LBQC), Escuela de Química y Farmacia, Facultad de Medicina, Universidad Católica del Maule, 3460000 Talca, Chile
| | - Rafael Zúñiga
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Casilla, 3460000 Talca, Chile
- Instituto de Investigación Interdisciplinaria, Vicerrectoría Académica, Universidad de Talca, 3460000 Talca, Chile
| | - Rocio Cikutovic
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Casilla, 3460000 Talca, Chile
| | - Angel Cayo
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Casilla, 3460000 Talca, Chile
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstraße 1-2, 35037 Marburg, Germany
| | - M. Teresa Ramirez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Coyoacán, 04510 México, DF, México
| | - Francisco V. Sepúlveda
- Centro de Estudios Científicos (CECs), 5110466 Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 5110466 Valdivia, Chile
| | - Oscar Cerda
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile
| | - Eduardo López-Collazo
- The Innate Immune Response Group and Tumor Immunology Laboratory, IdiPAZ, La Paz University Hospital, 8046 Madrid, Spain
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstraße 1-2, 35037 Marburg, Germany
- Marburg Center for Mind, Brain and Behavior−MCMBB, Philipps-University Marburg, 35037 Marburg, Germany
| | - Leandro Zúñiga
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Casilla, 3460000 Talca, Chile
| | - Margarita Gutierrez
- Laboratorio de Síntesis y Actividad Biológica, Instituto de Química de Recursos Naturales, Universidad de Talca, 1 poniente No. 1141, 3460000 Talca, Chile
| | - Wendy González
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 1 Poniente No. 1141, 3460000 Talca, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, 1 Poniente No. 1141, 3460000 Talca, Chile
| |
Collapse
|
48
|
Morstein J, Capecchi A, Hinnah K, Park B, Petit-Jacques J, Van Lehn RC, Reymond JL, Trauner D. Medium-Chain Lipid Conjugation Facilitates Cell-Permeability and Bioactivity. J Am Chem Soc 2022; 144:18532-18544. [PMID: 36178375 DOI: 10.1021/jacs.2c07833] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The majority of bioactive molecules act on membrane proteins or intracellular targets and therefore needs to partition into or cross biological membranes. Natural products often exhibit lipid modifications to facilitate critical molecule-membrane interactions, and in many cases their bioactivity is markedly reduced upon removal of a lipid group. However, despite its importance in nature, lipid-conjugation of small molecules is not commonly used in chemical biology and medicinal chemistry, and the effect of such conjugation has not been systematically studied. To understand the composition of lipids found in natural products, we carried out a chemoinformatic characterization of the "natural product lipidome". According to this analysis, lipidated natural products predominantly contain saturated medium-chain lipids (MCLs), which are significantly shorter than the long-chain lipids (LCLs) found in membranes and lipidated proteins. To study the usefulness of such modifications in probe design, we systematically explored the effect of lipid conjugation on five different small molecule chemotypes and find that permeability, cellular retention, subcellular localization, and bioactivity can be significantly modulated depending on the type of lipid tail used. We demonstrate that MCL conjugation can render molecules cell-permeable and modulate their bioactivity. With all explored chemotypes, MCL-conjugates consistently exhibited superior uptake or bioactivity compared to LCL-conjugates and either comparable or superior uptake or bioactivity to short-chain lipid (SCL)-conjugates. Together, our findings suggest that conjugation of small molecules with MCLs could be a powerful strategy for the design of probes and drugs.
Collapse
Affiliation(s)
- Johannes Morstein
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, California 94158, United States
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Alice Capecchi
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Konstantin Hinnah
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - ByungUk Park
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jerome Petit-Jacques
- Ion Lab, NYU School of Medicine, 435 East 30th Street, New York, New York 10016, United States
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
49
|
Benarroch E. What Is the Role of 2-Pore Domain Potassium Channels (K2P) in Pain? Neurology 2022; 99:516-521. [PMID: 36123135 DOI: 10.1212/wnl.0000000000201197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/15/2022] Open
|
50
|
Herrera-Pérez S, Rueda-Ruzafa L, Campos-Ríos A, Fernández-Fernández D, Lamas J. Antiarrhythmic calcium channel blocker verapamil inhibits trek currents in sympathetic neurons. Front Pharmacol 2022; 13:997188. [PMID: 36188584 PMCID: PMC9522527 DOI: 10.3389/fphar.2022.997188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Background and Purpose: Verapamil, a drug widely used in certain cardiac pathologies, exert its therapeutic effect mainly through the blockade of cardiac L-type calcium channels. However, we also know that both voltage-dependent and certain potassium channels are blocked by verapamil. Because sympathetic neurons of the superior cervical ganglion (SCG) are known to express a good variety of potassium currents, and to finely tune cardiac activity, we speculated that the effect of verapamil on these SCG potassium channels could explain part of the therapeutic action of this drug. To address this question, we decided to study, the effects of verapamil on three different potassium currents observed in SCG neurons: delayed rectifier, A-type and TREK (a subfamily of K2P channels) currents. We also investigated the effect of verapamil on the electrical behavior of sympathetic SCG neurons. Experimental Approach: We employed the Patch-Clamp technique to mouse SCG neurons in culture. Key Results: We found that verapamil depolarizes of the resting membrane potential of SCG neurons. Moreover, we demonstrated that this drug also inhibits A-type potassium currents. Finally, and most importantly, we revealed that the current driven through TREK channels is also inhibited in the presence of verapamil. Conclusion and Implications: We have shown that verapamil causes a clear alteration of excitability in sympathetic nerve cells. This fact undoubtedly leads to an alteration of the sympathetic-parasympathetic balance which may affect cardiac function. Therefore, we propose that these possible peripheral alterations in the autonomic system should be taken into consideration in the prescription of this drug.
Collapse
Affiliation(s)
- S. Herrera-Pérez
- Laboratory of Neuroscience, CINBIO, University of Vigo, Vigo, Spain
- Grupo de Neurofisiología Experimental y Circuitos Neuronales, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- *Correspondence: S. Herrera-Pérez, ; J. A. Lamas,
| | - L. Rueda-Ruzafa
- Laboratory of Neuroscience, CINBIO, University of Vigo, Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), Vigo, Spain
| | - A. Campos-Ríos
- Laboratory of Neuroscience, CINBIO, University of Vigo, Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), Vigo, Spain
| | | | - J.A. Lamas
- Laboratory of Neuroscience, CINBIO, University of Vigo, Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), Vigo, Spain
- *Correspondence: S. Herrera-Pérez, ; J. A. Lamas,
| |
Collapse
|