1
|
Zatopek KM, Alpaslan E, Evans T, Sauguet L, Gardner A. Novel ribonucleotide discrimination in the RNA polymerase-like two-barrel catalytic core of Family D DNA polymerases. Nucleic Acids Res 2020; 48:12204-12218. [PMID: 33137176 PMCID: PMC7708050 DOI: 10.1093/nar/gkaa986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Family D DNA polymerase (PolD) is the essential replicative DNA polymerase for duplication of most archaeal genomes. PolD contains a unique two-barrel catalytic core absent from all other DNA polymerase families but found in RNA polymerases (RNAPs). While PolD has an ancestral RNA polymerase catalytic core, its active site has evolved the ability to discriminate against ribonucleotides. Until now, the mechanism evolved by PolD to prevent ribonucleotide incorporation was unknown. In all other DNA polymerase families, an active site steric gate residue prevents ribonucleotide incorporation. In this work, we identify two consensus active site acidic (a) and basic (b) motifs shared across the entire two-barrel nucleotide polymerase superfamily, and a nucleotide selectivity (s) motif specific to PolD versus RNAPs. A novel steric gate histidine residue (H931 in Thermococcus sp. 9°N PolD) in the PolD s-motif both prevents ribonucleotide incorporation and promotes efficient dNTP incorporation. Further, a PolD H931A steric gate mutant abolishes ribonucleotide discrimination and readily incorporates a variety of 2' modified nucleotides. Taken together, we construct the first putative nucleotide bound PolD active site model and provide structural and functional evidence for the emergence of DNA replication through the evolution of an ancestral RNAP two-barrel catalytic core.
Collapse
Affiliation(s)
| | - Ece Alpaslan
- New England Biolabs, 240 County Road Ipswich, MA 01938, USA
| | - Thomas C Evans
- New England Biolabs, 240 County Road Ipswich, MA 01938, USA
| | - Ludovic Sauguet
- Institut Pasteur, Unité de Dynamique Structurale des Macromolécules, 75015 Paris, France
| | | |
Collapse
|
2
|
Sauguet L. The Extended "Two-Barrel" Polymerases Superfamily: Structure, Function and Evolution. J Mol Biol 2019; 431:4167-4183. [PMID: 31103775 DOI: 10.1016/j.jmb.2019.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/14/2023]
Abstract
DNA and RNA polymerases (DNAP and RNAP) play central roles in genome replication, maintenance and repair, as well as in the expression of genes through their transcription. Multisubunit RNAPs carry out transcription and are represented, without exception, in all cellular life forms as well as in nucleo-cytoplasmic DNA viruses. Since their discovery, multisubunit RNAPs have been the focus of intense structural and functional studies revealing that they all share a well-conserved active-site region called the two-barrel catalytic core. The two-barrel core hosts the polymerase active site, which is located at the interface between two double-psi β-barrel domains that contribute distinct amino acid residues to the active site in an asymmetrical fashion. Recently, sequencing and structural studies have added a surprising variety of DNA and RNA to the two-barrel superfamily, including the archaeal replicative DNAP (PolD), which extends the family to DNA-dependent DNAPs involved in replication. While all these polymerases share a minimal core that must have been present in their common ancestor, the two-barrel polymerase superfamily now encompasses a remarkable diversity of enzymes, including DNA-dependent RNAPs, RNA-dependent RNAPs, and DNA-dependent DNAPs, which participate in critical biological processes such as DNA transcription, DNA replication, and gene silencing. The present review will discuss both common features and differences among the extended two-barrel polymerase superfamily, focusing on the newly discovered members. Comparing their structures provides insights into the molecular mechanisms evolved by the contemporary two-barrel polymerases to accomplish their different biological functions.
Collapse
Affiliation(s)
- Ludovic Sauguet
- Institut Pasteur, Unité de Dynamique Structurale des Macromolécules, 75015 Paris, France.
| |
Collapse
|
3
|
Zhang Y, Degen D, Ho MX, Sineva E, Ebright KY, Ebright YW, Mekler V, Vahedian-Movahed H, Feng Y, Yin R, Tuske S, Irschik H, Jansen R, Maffioli S, Donadio S, Arnold E, Ebright RH. GE23077 binds to the RNA polymerase 'i' and 'i+1' sites and prevents the binding of initiating nucleotides. eLife 2014; 3:e02450. [PMID: 24755292 PMCID: PMC3994528 DOI: 10.7554/elife.02450] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Using a combination of genetic, biochemical, and structural approaches, we show that the cyclic-peptide antibiotic GE23077 (GE) binds directly to the bacterial RNA polymerase (RNAP) active-center ‘i’ and ‘i+1’ nucleotide binding sites, preventing the binding of initiating nucleotides, and thereby preventing transcription initiation. The target-based resistance spectrum for GE is unusually small, reflecting the fact that the GE binding site on RNAP includes residues of the RNAP active center that cannot be substituted without loss of RNAP activity. The GE binding site on RNAP is different from the rifamycin binding site. Accordingly, GE and rifamycins do not exhibit cross-resistance, and GE and a rifamycin can bind simultaneously to RNAP. The GE binding site on RNAP is immediately adjacent to the rifamycin binding site. Accordingly, covalent linkage of GE to a rifamycin provides a bipartite inhibitor having very high potency and very low susceptibility to target-based resistance. DOI:http://dx.doi.org/10.7554/eLife.02450.001 As increasing numbers of bacteria become resistant to antibiotics, new drugs are needed to fight bacterial infections. To develop new antibacterial drugs, researchers need to understand how existing antibiotics work. There are many ways to kill bacteria, but one of the most effective is to target an enzyme called bacterial RNA polymerase. If bacterial RNA polymerase is prevented from working, bacteria cannot synthesize RNA and cannot survive. GE23077 (GE for short) is an antibiotic produced by bacteria found in soil. Although GE stops bacterial RNA polymerase from working, and thereby kills bacteria, it does not affect mammalian RNA polymerases, and so does not kill mammalian cells. Understanding how GE works could help with the development of new antibacterial drugs. Zhang et al. present results gathered from a range of techniques to show how GE inhibits bacterial RNA polymerase. These show that GE works by binding to a site on RNA polymerase that is different from the binding sites of previously characterized antibacterial drugs. The mechanism used to inhibit the RNA polymerase is also different. The newly identified binding site has several features that make it an unusually attractive target for development of antibacterial compounds. Bacteria can become resistant to an antibiotic if genetic mutations lead to changes in the site the antibiotic binds to. However, the site that GE binds to on RNA polymerase is essential for RNA polymerase to function and so cannot readily be changed without crippling the enzyme. Therefore, this type of antibiotic resistance is less likely to develop. In addition, the newly identified binding site for GE on RNA polymerase is located next to the binding site for a current antibacterial drug, rifampin. Zhang et al. therefore linked GE and rifampin to form a two-part (‘bipartite’) compound designed to bind simultaneously to the GE and the rifampin binding sites. This compound was able to inhibit drug-resistant RNA polymerases tens to thousands of times more potently than GE or rifampin alone. DOI:http://dx.doi.org/10.7554/eLife.02450.002
Collapse
Affiliation(s)
- Yu Zhang
- Waksman Institute, Rutgers University, Piscataway, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ruprich-Robert G, Thuriaux P. Non-canonical DNA transcription enzymes and the conservation of two-barrel RNA polymerases. Nucleic Acids Res 2010; 38:4559-69. [PMID: 20360047 PMCID: PMC2919709 DOI: 10.1093/nar/gkq201] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 03/09/2010] [Accepted: 03/09/2010] [Indexed: 11/23/2022] Open
Abstract
DNA transcription depends on multimeric RNA polymerases that are exceptionally conserved in all cellular organisms, with an active site region of >500 amino acids mainly harboured by their Rpb1 and Rpb2 subunits. Together with the distantly related eukaryotic RNA-dependent polymerases involved in gene silencing, they form a monophyletic family of ribonucleotide polymerases with a similarly organized active site region based on two double-Psi barrels. Recent viral and phage genome sequencing have added a surprising variety of putative nucleotide polymerases to this protein family. These proteins have highly divergent subunit composition and amino acid sequences, but always contain eight invariant amino acids forming a universally conserved catalytic site shared by all members of the two-barrel protein family. Moreover, the highly conserved 'funnel' and 'switch 2' components of the active site region are shared by all putative DNA-dependent RNA polymerases and may thus determine their capacity to transcribe double-stranded DNA templates.
Collapse
Affiliation(s)
| | - Pierre Thuriaux
- CEA, iBiTec-S, Service de Biologie Intégrative et Génétique Moléculaire, Gif-sur-Yvette Cedex, F-91191, France
| |
Collapse
|
5
|
Trinh V, Langelier MF, Archambault J, Coulombe B. Structural perspective on mutations affecting the function of multisubunit RNA polymerases. Microbiol Mol Biol Rev 2006; 70:12-36. [PMID: 16524917 PMCID: PMC1393249 DOI: 10.1128/mmbr.70.1.12-36.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
High-resolution crystallographic structures of multisubunit RNA polymerases (RNAPs) have increased our understanding of transcriptional mechanisms. Based on a thorough review of the literature, we have compiled the mutations affecting the function of multisubunit RNA polymerases, many of which having been generated and studied prior to the publication of the first high-resolution structure, and highlighted the positions of the altered amino acids in the structures of both the prokaryotic and eukaryotic enzymes. The observations support many previous hypotheses on the transcriptional process, including the implication of the bridge helix and the trigger loop in the processivity of RNAP, the importance of contacts between the RNAP jaw-lobe module and the downstream DNA in the establishment of a transcription bubble and selection of the transcription start site, the destabilizing effects of ppGpp on the open promoter complex, and the link between RNAP processivity and termination. This study also revealed novel, remarkable features of the RNA polymerase catalytic mechanisms that will require additional investigation, including the putative roles of fork loop 2 in the establishment of a transcription bubble, the trigger loop in start site selection, and the uncharacterized funnel domain in RNAP processivity.
Collapse
Affiliation(s)
- Vincent Trinh
- Gene Transcription Laboratory, Institut de Recherches Cliniques de Montréal, 110 Ave. des Pins Ouest, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
6
|
Kuznedelov K, Minakhin L, Severinov K. Preparation and characterization of recombinant Thermus aquaticus RNA polymerase. Methods Enzymol 2004; 370:94-108. [PMID: 14712637 DOI: 10.1016/s0076-6879(03)70009-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
7
|
Walter W, Kireeva ML, Studitsky VM, Kashlev M. Bacterial polymerase and yeast polymerase II use similar mechanisms for transcription through nucleosomes. J Biol Chem 2003; 278:36148-56. [PMID: 12851391 DOI: 10.1074/jbc.m305647200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that nucleosomes act as a strong barrier to yeast RNA polymerase II (Pol II) in vitro and that transcription through the nucleosome results in the loss of an H2A/H2B dimer. Here, we demonstrate that Escherichia coli RNA polymerase (RNAP), which never encounters chromatin in vivo, behaves similarly to Pol II in all aspects of transcription through the nucleosome in vitro. The nucleosome-specific pausing pattern of RNAP is comparable with that of Pol II. At physiological ionic strength or lower, the nucleosome blocks RNAP progression along the template, but this barrier can be relieved at higher ionic strength. Transcription through the nucleosome by RNAP results in the loss of an H2A/H2B dimer, and the histones that remain in the hexasome retain their original positions on the DNA. The results were similar for elongation complexes that were assembled from components (oligonucleotides and RNAP) and elongation complexes obtained by initiation from the promoter. The data suggest that eukaryotic Pol II and E. coli RNAP utilize very similar mechanisms for transcription through the nucleosome. Thus, bacterial RNAP can be used as a suitable model system to study general aspects of chromatin transcription by Pol II. Furthermore, the data argue that the general elongation properties of polymerases may determine the mechanism used for transcription through the nucleosome.
Collapse
Affiliation(s)
- Wendy Walter
- Department of Biochemistry and Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
8
|
Vo NV, Hsu LM, Kane CM, Chamberlin MJ. In vitro studies of transcript initiation by Escherichia coli RNA polymerase. 2. Formation and characterization of two distinct classes of initial transcribing complexes. Biochemistry 2003; 42:3787-97. [PMID: 12667070 DOI: 10.1021/bi0269613] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By following the kinetics of abortive and productive synthesis in single-round transcription assays, we confirm the existence of two general classes of initial transcribing complexes (ITCs), which we term "productive ITC" and "unproductive ITC". The productive ITCs are able to escape from the promoter rapidly to produce full-length transcripts, but only after carrying out an obligate series of abortive initiation steps. The unproductive ITCs were found to synthesize mostly abortive transcripts of 2-3 nucleotides and escape from the promoter extremely slowly, if at all. Formation of the unproductive ITC is not due to the inactive RNA polymerase. Instead, RNA polymerase molecules recovered from both the productive and unproductive ITC fractions were shown to carry out abortive and productive synthesis with both the partitioning tendency and transcription kinetics similar to those of the original enzyme. Our results suggest that early transcription complexes are partitioned into the productive and unproductive ITCs most likely during the formation of open promoter complexes. The extent of partitioning varies with individual promoter sequences and is dependent on the nature and concentration of the initiating nucleotide. Thus, multiple classes of ITCs can be formed during promoter binding and transcript initiation.
Collapse
Affiliation(s)
- Nam V Vo
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| | | | | | | |
Collapse
|
9
|
Abstract
Promoter escape is the last stage of transcription initiation when RNA polymerase, having initiated de novo phosphodiester bond synthesis, must begin to relinquish its hold on promoter DNA and advance to downstream regions (DSRs) of the template. In vitro, this process is marked by the release of high levels of abortive transcripts at most promoters, reflecting the high instability of initial transcribing complexes (ITCs) and indicative of the existence of barriers to the escape process. The high abortive initiation level is the result of the existence of unproductive ITCs that carry out repeated initiation and abortive release without escaping the promoter. The formation of unproductive ITCs is a widespread phenomenon, but it occurs to different extent on different promoters. Quantitative analysis of promoter mutations suggests that the extent and pattern of abortive initiation and promoter escape is determined by the sequence of promoter elements, both in the promoter recognition region (PRR) and the initial transcribed sequence (ITS). A general correlation has been found that the stronger the promoter DNA-polymerase interaction, the poorer the ability of RNA polymerase to escape the promoter. In gene regulation, promoter escape can be the rate-limiting step for transcription initiation. An increasing number of regulatory proteins are known to exert their control at this step. Examples are discussed with an emphasis on the diverse mechanisms involved. At the molecular level, the X-ray crystal structures of RNA polymerase and its various transcription complexes provide the framework for understanding the functional data on abortive initiation and promoter escape. Based on structural and biochemical evidence, a mechanism for abortive initiation and promoter escape is described.
Collapse
Affiliation(s)
- Lilian M Hsu
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA.
| |
Collapse
|
10
|
Abstract
Intrinsic transcription termination plays a crucial role in regulating gene expression in prokaryotes. After a short pause, the termination signal appears in RNA as a hairpin that destabilizes the elongation complex (EC). We demonstrate that negative and positive termination factors control the efficiency of termination primarily through a direct modulation of hairpin folding and, to a much lesser extent, by changing pausing at the point of termination. The mechanism controlling hairpin formation at the termination point relies on weak protein interactions with single-stranded RNA, which corresponds to the upstream portion of the hairpin. Escherichia coli NusA protein destabilizes these interactions and thus promotes hairpin folding and termination. Stabilization of these contacts by phage lambda N protein leads to antitermination.
Collapse
MESH Headings
- Bacteriophage lambda/genetics
- Escherichia coli/genetics
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/physiology
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Viral
- Half-Life
- Models, Genetic
- Nucleic Acid Conformation
- Peptide Elongation Factors/physiology
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transcription Factors/physiology
- Transcription, Genetic/physiology
- Transcriptional Elongation Factors
- Viral Regulatory and Accessory Proteins/physiology
Collapse
Affiliation(s)
- I Gusarov
- Department of Biochemistry, New York University Medical Center, New York, NY 10016, USA
| | | |
Collapse
|
11
|
Minakhin L, Nechaev S, Campbell EA, Severinov K. Recombinant Thermus aquaticus RNA polymerase, a new tool for structure-based analysis of transcription. J Bacteriol 2001; 183:71-6. [PMID: 11114902 PMCID: PMC94851 DOI: 10.1128/jb.183.1.71-76.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The three-dimensional structure of DNA-dependent RNA polymerase (RNAP) from thermophilic Thermus aquaticus has recently been determined at 3.3 A resolution. Currently, very little is known about T. aquaticus transcription and no genetic system to study T. aquaticus RNAP genes is available. To overcome these limitations, we cloned and overexpressed T. aquaticus RNAP genes in Escherichia coli. Overproduced T. aquaticus RNAP subunits assembled into functional RNAP in vitro and in vivo when coexpressed in E. coli. We used the recombinant T. aquaticus enzyme to demonstrate that transcription initiation, transcription termination, and transcription cleavage assays developed for E. coli RNAP can be adapted to study T. aquaticus transcription. However, T. aquaticus RNAP differs from the prototypical E. coli enzyme in several important ways: it terminates transcription less efficiently, has exceptionally high rate of intrinsic transcript cleavage, and is highly resistant to rifampin. Our results, together with the high-resolution structural information, should now allow a rational analysis of transcription mechanism by mutation.
Collapse
Affiliation(s)
- L Minakhin
- Waksman Institute for Microbiology and Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
12
|
Szilvay AM, Stern B, Blichenberg A, Helland DE. Structural and functional similarities between HIV-1 reverse transcriptase and the Escherichia coli RNA polymerase beta' subunit. FEBS Lett 2000; 484:43-7. [PMID: 11056219 DOI: 10.1016/s0014-5793(00)02113-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Four monoclonal antibodies (MAbs) recognizing HIV-1 reverse transcriptase (RT) were shown here to cross-react with the beta' subunit of Escherichia coli RNA polymerase (RNAP). The anti-RT MAbs bind to a peptide comprising residues 294-305 of the RT amino acid sequence. Computer analyses revealed sequence similarity between this peptide and two regions of the RNAP beta' subunit. MAb-binding studies using RT mutants suggested that the epitope is located to amino acids 652-663 of the beta' sequence. One of the MAbs which inhibited the polymerase activity of RT also mediated a dose dependent inhibition of the RNAP activity.
Collapse
Affiliation(s)
- A M Szilvay
- Department of Molecular Biology, University of Bergen, HIB, P.O. Box 7800, N-5020, Bergen, Norway.
| | | | | | | |
Collapse
|
13
|
Naryshkina T, Rogulja D, Golub L, Severinov K. Inter- and intrasubunit interactions during the formation of RNA polymerase assembly intermediate. J Biol Chem 2000; 275:31183-90. [PMID: 10906130 DOI: 10.1074/jbc.m003884200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used yeast two-hybrid and in vitro co-immobilization assays to study the interaction between the Escherichia coli RNA polymerase (RNAP) alpha and beta subunits during the formation of alpha(2)beta, a physiological RNAP assembly intermediate. We show that a 430-amino acid-long fragment containing beta conserved segments F, G, H, and a short part of segment I forms a minimal domain capable of specific interaction with alpha. The alpha-interacting domain is held together by protein-protein interactions between beta segments F and I. Residues in catalytically important beta segments H and I directly participate in alpha binding; substitutions of strictly conserved segment H Asp(1084) and segment I Gly(1215) abolish alpha(2)beta formation in vitro and are lethal in vivo. The importance of these beta amino acids in alpha binding is fully supported by the structural model of the Thermus aquaticus RNAP core enzyme. We also demonstrate that determinants of RNAP assembly are conserved, and that a homologue of beta Asp(1084) in A135, the beta-like subunit of yeast RNAP I, is responsible for interaction with AC40, the largest alpha-like subunit. However, the A135-AC40 interaction is weak compared with the E. coli alpha-beta interaction, and A135 mutation that abolishes the interaction is phenotypically silent. The results suggest that in eukaryotes additional RNAP subunits orchestrate the enzyme assembly by stabilizing weak, but specific interactions of core subunits.
Collapse
Affiliation(s)
- T Naryshkina
- Waksman Institute for Microbiology and the Department of Genetics, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
14
|
Nechaev S, Chlenov M, Severinov K. Dissection of two hallmarks of the open promoter complex by mutation in an RNA polymerase core subunit. J Biol Chem 2000; 275:25516-22. [PMID: 10811806 DOI: 10.1074/jbc.m002511200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deletion of 10 evolutionarily conserved amino acids from the beta subunit of Escherichia coli RNA polymerase leads to a mutant enzyme that is unable to efficiently hold onto DNA. Open promoter complexes formed by the mutant enzyme are in rapid equilibrium with closed complexes and, unlike the wild-type complexes, are highly sensitive to the DNA competitor heparin (Martin, E., Sagitov, V., Burova, E., Nikiforov, V., and Goldfarb, A. (1992) J. Biol. Chem. 267, 20175-20180). Here we show that despite this instability, the mutant enzyme forms partially open complexes at temperatures as low as 0 degrees C when the wild-type complex is fully closed. Thus, the two hallmarks of the open promoter complex, the stability toward a challenge with DNA competitors and the sensitivity toward low temperature, can be uncoupled by mutation and may be independent in the wild-type complex. We use the high resolution structure of Thermus aquaticus RNA polymerase core to build a functional model of promoter complex formation that accounts for the observed defects of the E. coli RNA polymerase mutants.
Collapse
Affiliation(s)
- S Nechaev
- Waksman Institute and Department of Genetics, Rutgers, The State University, Piscataway, NJ 08854, USA.
| | | | | |
Collapse
|
15
|
Tagami H, Aiba H. An inactive open complex mediated by an UP element at Escherichia coli promoters. Proc Natl Acad Sci U S A 1999; 96:7202-7. [PMID: 10377392 PMCID: PMC22052 DOI: 10.1073/pnas.96.13.7202] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A specific interaction between the alpha subunit of RNA polymerase and an A+T-rich upstream sequence (UP element) stimulates transcription at some promoters in Escherichia coli. We found that RNA polymerase formed a heparin-resistant nonproductive initiation complex at the malT promoter which has an A+T-rich upstream sequence that begins 9 bp upstream of the -35 region. Substitution of other sequences for the A+T-rich sequence eliminated both the formation of heparin-resistant complexes and alpha binding to the malT promoter. A 5-bp deletion between the A+T-rich sequence and the -35 region increased promoter activity. The UP element derived from the rrnB P1 promoter stimulated transcription of the malT core promoter when placed 4 bp upstream from the malT -35 region, but insertion of an additional 4 bp between the rrnB P1 UP element and the -35 element eliminated transcription activity without eliminating heparin-resistant complex formation. Similar UP element effects were observed in hybrids with the lac core promoter, even though the region around the transcription start site was melted in both productive and nonproductive complexes. We conclude that UP elements can mediate the formation of both productive and nonproductive open complexes, depending on their location with respect to the core promoter.
Collapse
Affiliation(s)
- H Tagami
- Department of Molecular Biology, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | | |
Collapse
|
16
|
Cromie KD, Ahmad K, Malik T, Buyukuslu N, Glass RE. Trans-dominant mutations in the 3'-terminal region of the rpoB gene define highly conserved, essential residues in the beta subunit of RNA polymerase: the GEME motif. Genes Cells 1999; 4:145-59. [PMID: 10320480 DOI: 10.1046/j.1365-2443.1999.00248.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The multimeric DNA-dependent RNA polymerases are widespread throughout nature. The RNA polymerase of Escherichia coli, which is the most well characterized, consists of a holoenzyme with subunit stoichiometry of alpha2betabeta'sigma. The beta subunit is conserved and has been implicated in all stages of transcription. The extreme C-terminus of the beta subunit, which includes two well-conserved sequence segments, contributes to the active centre and has been proposed to act in transcriptional termination. We describe a genetic system for further characterizing the role of the extreme C-terminus of the beta subunit of E. coli RNA polymerase. This involves random, PCR (Polymerase Chain Reaction)-mediated mutagenesis of the 3' region of rpoB encoding the C-terminal 116 amino acids of beta, followed by the isolation and characterization of trans-dominant-negative mutations. RESULTS Substitutions of conserved residues in this region were obtained that exhibited different degrees of growth inhibition in a host expressing the chromosomal-encoded wild-type form of the beta subunit. A number of different substitutions were isolated within the highly conserved sequence motif GEME (residues 1271-->1274 of the E. coli beta subunit). In addition, substitutions were obtained in the extreme C-terminal (surface-exposed) region of beta and at two residues previously proposed to be in the active site (H1237, K1242). The properties of the purified mutant holoenzymes, assessed by transcription assays in vitro, suggested a promoter blockading action. CONCLUSIONS We have identified an important, highly conserved motif in the beta subunit, GEME (residues 1271-->1274). The nature and effect of the amino acid substitutions at the Gly residue in GEME emphasize the importance of a small, uncharged residue at this position. The in vitro properties of the most extreme trans dominant-negative mutants altered in the GEME motif (and the mutant characteristics in vivo) were similar to those of certain previously identified active-site mutants, suggesting that the altered RNA polymerases were capable of promoter binding and RNA chain initiation but were deficient in the subsequent transcriptional stage.
Collapse
Affiliation(s)
- K D Cromie
- Institute of Genetics, Queen's Medical Centre, Clifton Boulevard, Nottingham NG7 2UH, UK
| | | | | | | | | |
Collapse
|
17
|
Polyakov A, Nikiforov V, Goldfarb A. Disruption of substrate binding site in E. coli RNA polymerase by lethal alanine substitutions in carboxy terminal domain of the beta subunit. FEBS Lett 1999; 444:189-94. [PMID: 10050757 DOI: 10.1016/s0014-5793(99)00060-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alanine substitution of four amino acids in two evolutionarily conserved motifs, PSRM and RFGEMIE, near the carboxy terminus of the beta subunit of E. coli RNA polymerase results in a dramatic loss of the enzyme's affinity to substrates with no apparent effect on the maximal rate of the enzymatic reaction or on binding to promoters. The magnitude and selectivity of the effect suggest that the mutations disrupt the substrate binding site of the active center.
Collapse
Affiliation(s)
- A Polyakov
- Public Health Research Institute, New York, NY 10016, USA
| | | | | |
Collapse
|
18
|
Lennon JC, Wind M, Saunders L, Hock MB, Reines D. Mutations in RNA polymerase II and elongation factor SII severely reduce mRNA levels in Saccharomyces cerevisiae. Mol Cell Biol 1998; 18:5771-9. [PMID: 9742094 PMCID: PMC109163 DOI: 10.1128/mcb.18.10.5771] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/1998] [Accepted: 07/02/1998] [Indexed: 11/20/2022] Open
Abstract
Elongation factor SII interacts with RNA polymerase II and enables it to transcribe through arrest sites in vitro. The set of genes dependent upon SII function in vivo and the effects on RNA levels of mutations in different components of the elongation machinery are poorly understood. Using yeast lacking SII and bearing a conditional allele of RPB2, the gene encoding the second largest subunit of RNA polymerase II, we describe a genetic interaction between SII and RPB2. An SII gene disruption or the rpb2-10 mutation, which yields an arrest-prone enzyme in vitro, confers sensitivity to 6-azauracil (6AU), a drug that depresses cellular nucleoside triphosphates. Cells with both mutations had reduced levels of total poly(A)+ RNA and specific mRNAs and displayed a synergistic level of drug hypersensitivity. In cells in which the SII gene was inactivated, rpb2-10 became dominant, as if template-associated mutant RNA polymerase II hindered the ability of wild-type polymerase to transcribe. Interestingly, while 6AU depressed RNA levels in both wild-type and mutant cells, wild-type cells reestablished normal RNA levels, whereas double-mutant cells could not. This work shows the importance of an optimally functioning elongation machinery for in vivo RNA synthesis and identifies an initial set of candidate genes with which SII-dependent transcription can be studied.
Collapse
Affiliation(s)
- J C Lennon
- Graduate Program in Genetics and Molecular Biology and Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
19
|
Trigwell S, Glass RE. Function in vivo of separate segments of the beta subunit of Escherichia coli RNA polymerase. Genes Cells 1998; 3:635-47. [PMID: 9893021 DOI: 10.1046/j.1365-2443.1998.00220.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Transcription of genetic material is catalysed by the enzyme DNA-dependent, RNA polymerase. The multimeric RNA polymerases consist of between 4 and 16 different subunits, of which the two largest, termed beta and beta', are conserved throughout nature. The beta subunit has been implicated in all of the stages of transcription that are catalysed by the complete enzyme. Several lines of evidence have suggested that the function of the beta subunit is not dependent upon the contiguity of the sequence blocks. In this report, a complementary immunological and genetic approach was adopted in order to investigate the individual regions of the beta subunit of RNA polymerase. To this end, the beta structural gene rpoB was separated into four near-equal, non-overlapping segments (as well as 'half' genes) on the basis of 'split' genes in nature, known functional organization and sequence conservation. These segments were used to prepare sequence-specific antibodies against the four individual regions, as well as being expressed in vivo from a tight, lac-controlled high-copy number vector. RESULTS Immunological probing of the holoenzyme in vitro suggested that the amino-terminal half of the beta polypeptide is buried within the enzyme complex. Of the four segments expressed in vivo, the extreme C-terminal segment was trans-dominant lethal (of the effect of large N-terminal amber fragments on cellular growth; Nene & Glass 1982) and this isolated region was shown to bind the translational elongation factor EF-Tu in vivo. CONCLUSIONS These in vivo and in vitro studies, in conjunction with recent in vitro work (Severinov et al. 1995), unambiguously demonstrate that individual regions of beta may adopt structurally and functionally competent forms, and underline the possibility of in vivo investigation of separate regions of this massive polypeptide chain. A model is presented for the role of EF-Tu in stringent control.
Collapse
Affiliation(s)
- S Trigwell
- Institute of Genetics, Queens Medical Centre, Clifton Boulevard, Nottingham NG7 2UH, UK
| | | |
Collapse
|
20
|
Rom WN, Yie TA, Tchou-Wong KM. Development of a suicide gene as a novel approach to killing Mycobacterium tuberculosis. Am J Respir Crit Care Med 1997; 156:1993-8. [PMID: 9412585 DOI: 10.1164/ajrccm.156.6.9611079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The increase in multidrug-resistant tuberculosis and high mortality among those co-infected with HIV-1 necessitates new therapeutic approaches directed at Mycobacterium tuberculosis. We hypothesized that a dominant-negative mutation in the DNA-dependent RNA polymerase gene would inhibit transcription of all genes by blocking access of the wild-type enzyme to promoters. An evolutionarily invariant lysine was substituted with arginine by site-directed mutagenesis in the rpoB gene. The dominant-negative rpoB gene product inhibited a transposon-derived kanamycin-resistance gene in both M. smegmatis and M. tuberculosis H37Rv, leading to growth inhibition of the mycobacteria on solid media containing kanamycin. The dominant-negative mutant rpoB gene is a potential suicide gene especially for the treatment of multidrug-resistant tuberculosis once a delivery strategy is also developed.
Collapse
Affiliation(s)
- W N Rom
- Department of Medicine, New York University Medical Center, New York City 10016, USA
| | | | | |
Collapse
|
21
|
Mustaev A, Kozlov M, Markovtsov V, Zaychikov E, Denissova L, Goldfarb A. Modular organization of the catalytic center of RNA polymerase. Proc Natl Acad Sci U S A 1997; 94:6641-5. [PMID: 9192618 PMCID: PMC21211 DOI: 10.1073/pnas.94.13.6641] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Fe2+ ion that specifically replaces Mg2+ in the active center of RNA polymerase generates reactive hydroxyl radicals that cause highly localized cleavage of polypeptide chains. Mapping of the cleavage sites revealed the overall architecture of the active center. Nine distinct sites, five in the beta subunit and four in the beta' subunit of Escherichia coli RNA polymerase, all at or near highly conserved sequence motifs, are brought together in the enzyme's ternary structure within the distance of approximately 1 nm from the active center Me2+. These sites are located in at least six different domains of the subunits, reflecting modular organization of the active center.
Collapse
Affiliation(s)
- A Mustaev
- Public Health Research Institute, 455 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
22
|
Severinov K, Mustaev A, Kukarin A, Muzzin O, Bass I, Darst SA, Goldfarb A. Structural modules of the large subunits of RNA polymerase. Introducing archaebacterial and chloroplast split sites in the beta and beta' subunits of Escherichia coli RNA polymerase. J Biol Chem 1996; 271:27969-74. [PMID: 8910400 DOI: 10.1074/jbc.271.44.27969] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The beta and beta' subunits of Escherichia coli DNA-dependent RNA polymerase are highly conserved throughout eubacterial and eukaryotic kingdoms. However, in some archaebacteria and chloroplasts, the corresponding sequences are "split" into smaller polypeptides that are encoded by separate genes. To test if such split sites can be accommodated into E. coli RNA polymerase, subunit fragments encoded by the segments of E. coli rpoB and rpoC genes corresponding to archaebacterial and chloroplast split subunits were individually overexpressed. The purified fragments, when mixed in vitro with complementing intact RNA polymerase subunits, yielded an active enzyme capable of catalyzing the phosphodiester bond formation. Thus, the large subunits of eubacteria and eukaryotes are composed of independent structural modules corresponding to the smaller subunits of archaebacteria and chloroplasts.
Collapse
Affiliation(s)
- K Severinov
- The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Heisler LM, Feng G, Jin DJ, Gross CA, Landick R. Amino acid substitutions in the two largest subunits of Escherichia coli RNA polymerase that suppress a defective Rho termination factor affect different parts of the transcription complex. J Biol Chem 1996; 271:14572-83. [PMID: 8662850 DOI: 10.1074/jbc.271.24.14572] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Among the earliest rpoBC mutations identified are three suppressors of the conditional lethal rho allele, rho201. These three mutations are of particular interest because, unlike rpoB8, they do not increase termination at all rho-dependent and rho-independent terminators. rpoB211 and rpoB212 both change Asn-1072 to His in conserved region H of rpoB (betaN1072H), whereas rpoC214 changes Arg-352 to Cys in conserved region C of rpoC (beta'R352C). Both substitutions significantly reduce the overall rate of transcript elongation in vitro relative to wild-type RNA polymerase; however, they probably slow elongation for different reasons. The nucleotide triphosphate concentrations required at the T7 A1 promoter for both abortive trinucleotide synthesis and for promoter escape are much greater for betaN1072H. In contrast, beta'R352C and two adjacent substitutions (beta'G351S and beta'S350F), but not betaN1072H, formed open complexes of greatly reduced stability. The sequence in this region of beta' modestly resembles a region of Escherichia coli DNA polymerase I that contacts the phosphate backbone of DNA in co-crystals. Core determinants affecting open complex formation do not reside exclusively in beta', however, since the Rifr mutation rpoB2 in beta also dramatically destabilized open complexes. We suggest that the principal defects of the two Rho-suppressing substitutions may differ, perhaps reflecting a greater role of beta region H in nucleoside triphosphate-binding and nucleotide addition and of beta' region C in contacts to the DNA strands that could be important for translocation. Although both probably suppress rho201 by slowing RNA chain elongation, these differences may lead to terminator specificity that depends on the rate-limiting step at different sites.
Collapse
Affiliation(s)
- L M Heisler
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
24
|
Jin DJ. A Mutant RNA Polymerase Reveals a Kinetic Mechanism for the Switch between Nonproductive Stuttering Synthesis and Productive Initiation during Promoter Clearance. J Biol Chem 1996. [DOI: 10.1016/s0021-9258(18)82602-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Tang H, Kim Y, Severinov K, Goldfarb A, Ebright RH. Escherichia coli RNA polymerase holoenzyme: rapid reconstitution from recombinant alpha, beta, beta', and sigma subunits. Methods Enzymol 1996; 273:130-4. [PMID: 8791605 DOI: 10.1016/s0076-6879(96)73012-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- H Tang
- Department of Chemistry and Waksman Institute, Rutgers University, New Brunswick, New Jersey 08855, USA
| | | | | | | | | |
Collapse
|
26
|
Sen R, Dasgupta D. Conformational changes of E. coli RNA polymerase during transcription initiation. Biophys Chem 1996; 57:269-78. [PMID: 8573680 DOI: 10.1016/0301-4622(95)00065-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Escherichia coli RNA polymerase-promoter complex undergoes a multistep process to initiate transcription. We have employed fluorescence spectroscopic approaches to detect the conformational states of the enzyme during this multistep process. A fluorescence assay based on the measurement of fluorescence of free and promoter-bound enzyme as a function of temperature within the range of 4 to 37 degrees C showed that, starting with initial 'closed complex', there are conformationally two distinct intermediate states of the polymerase till it attains the final form required for transcription initiation. The equilibrium from closed complex (RPc) to open complex (RPo) consists of at least the following two intermediate complexes: [formula: see text] Higher order structure of RNAP in each of these complexes was probed by means of measurement of accessibilities of the tryptophan fluorophores to the acrylamide. In the next part of the study, TbGTP, a fluorescent substrate, has been used to probe the state of active site in the enzyme for the complexes RPc, RPi1, RPi2 and RPo, respectively. From the comparison of changes in the parameters such as, fluorescence polarization anisotropy of TbGTP and its accessibility to the neutral quencher, acrylamide, in free and promoter-bound enzyme, we have further substantiated the first part of our results. Together these results suggest that formations of RPc and RPi1 do not involve radical conformational changes in the enzyme, while the enzyme undergoes major change in conformation in the steps RPil-->RPi2 and RPi2-->RPo. The strong tryptophan promoter cloned in plasmid pDR720 was chosen as a model promoter in these studies.
Collapse
Affiliation(s)
- R Sen
- Biophysics Division, Saha Institute of Nuclear Physics, Calcutta, India
| | | |
Collapse
|
27
|
Jin DJ, Zhou YN. Mutational analysis of structure-function relationship of RNA polymerase in Escherichia coli. Methods Enzymol 1996; 273:300-19. [PMID: 8791620 DOI: 10.1016/s0076-6879(96)73027-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- D J Jin
- Laboratory of Molecular Biology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
28
|
Boor KJ, Duncan ML, Price CW. Genetic and transcriptional organization of the region encoding the beta subunit of Bacillus subtilis RNA polymerase. J Biol Chem 1995; 270:20329-36. [PMID: 7657605 DOI: 10.1074/jbc.270.35.20329] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The gene encoding the beta subunit of Bacillus subtilis RNA polymerase was isolated from a lambda gt11 expression library using an antibody probe. Gene identity was confirmed by the similarity of its predicted product to the Escherichia coli beta subunit and by mapping an alteration conferring rifampicin resistance within the conserved rif coding region. Including the rif region, four colinear blocks of sequence similarity were shared between the B. subtilis and E. coli beta subunits. In E. coli, these conserved blocks are separated by three regions that either were not conserved or were entirely absent from the B. subtilis protein. The B. subtilis beta gene was part of a cluster with the order rplL (encoding ribosomal protein L7/L12), orf23 (encoding a 22,513-dalton protein that is apparently essential for growth), rpoB (beta), and rpoC (beta'). This organization differs from the corresponding region in E. coli by the inclusion of orf23. Experiments using promoter probe vectors and site-directed mutagenesis located a major rpoB promoter overlapping the 3'-coding region of orf23, 250 nucleotides upstream from the beta initiation codon. Thus, the B. subtilis rpoB region differs from its E. coli counterpart in both genetic and transcriptional organization.
Collapse
Affiliation(s)
- K J Boor
- Department of Food Science and Technology, University of California, Davis 95616, USA
| | | | | |
Collapse
|
29
|
Abstract
The DNA-dependent RNA polymerase (DdRP or RNAP) is an essential enzyme of transcription of replicating systems of prokaryotic and eukaryotic organisms as well as cytoplasmic DNA viruses. DdRPs are complex multisubunit enzymes consisting of 8-14 subunits, including two large subunits and several smaller polypeptides (small subunits). An extensive search between the amino acid sequences of the known largest subunit of DNA-dependent RNA polymerases (RPO1) of different organisms indicates that all these polypeptides possess a universal heptapeptide NADFDGD in domain D. All RPO1 harbor a second well-conserved hexapeptide RQP(TS)LH upstream (26-31 amino acids) of the universal motif. The genes encoding the largest subunit of DdRP of insect iridescent virus type 6 (IIV6), fish lymphocystis disease virus (LCDV), and molluscum contagiosum virus (MCV-1), all members of the group of cytoplasmic DNA viruses, were identified by PCR technology. With the exception of IIV6, all other viral RPO1 possess the two C-terminal conserved regions G and H. The lack of C-terminal repetitive heptapeptide (YSPTSPS), which is a common feature of the largest subunit of eukaryotic RNAPII, is an additional characteristic of RPO1 proteins of LCDV and of MCV-1. All viral RPO1 proteins were found to be lacking the amino acid N at a distinct position in domain F. This amino acid is known to be highly conserved in alpha-amanitin-sensitive eukaryotic RNA polymerases II. Comparison of the amino acid sequences of the RPO1 polypeptides of IIV6, LCDV, and MCV-1 with the corresponding prokaryotic, eukaryotic, and viral proteins revealed differences in amino acid similarity and phylogenetic relationships. IIV6 RPO1 possesses the closest similarity to the homologous subunit of eukaryotic RNAPII and lower but also significant similarity to that of eukaryotic RNAPI and RNAPIII, archaeal, eubacterial, and viral polymerases. The similarity between RPO1 of IIV6 and the cellular polymerase subunits is consistently higher than to the RPO1 of other cytoplasmic DNA viruses, for example, vaccinia and variola virus, African swine fever virus (ASFV), and MCV-1. The RPO1 of LCDV shows the highest similarity to the RPO1 of IIV6 and significant lower similarity to the eukaryotic polymerases II and III as well as to the archaebacteral subunit. However, it is still considerably more similar to the cellular polymerase subunits than to the homologous viral proteins. The RPO1 of IIV6 possesses more similarity to cellular polymerases than the complete RPO1 of LCDV, indicating that there is a substantial difference in the organization of the RPO1 genes between these members of two genera of the Iridoviridae family. Analysis of the MCV-1 RPO1 revealed high amino acid homologies to the corresponding polypeptides of vaccinia and variola virus. The viral RPO1 proteins, including vaccinia and variola virus, MCV-1, ASFV, IIV6, and LCDV, share the common feature of showing the highest similarity to the largest subunit of eukaryotic RNAPII than to that of RNAPI, RNAPIII, and RPO1 of archaebacterias, eubacterias, ASFV, IIV6, and LCDV. Evolution of the individual largest subunit of DdRPs was tentatively investigated by generating phylogenetic trees using multiple amino acid alignments. These indicate that the RPO1 proteins of IIV6 and LCDV might have evolved from the largest subunit of eukaryotic RNAPII after divergence from the homologous subunits of RNAPI and RNAPIII. In contrast, evolutionary development of the RPO1 of vaccinia and variola virus, MCV-1, and ASFV seems to be quite different, with their common ancestor diverging from cellular homologues before the separation of the three types of eukaryotic ploymerases and having probably diverged earlier from their common lineage with cellular proteins.
Collapse
Affiliation(s)
- K C Sonntag
- Institut für Medizinische Virologie, Universität Heidelberg, FRG
| | | |
Collapse
|
30
|
Tang H, Severinov K, Goldfarb A, Ebright RH. Rapid RNA polymerase genetics: one-day, no-column preparation of reconstituted recombinant Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A 1995; 92:4902-6. [PMID: 7761421 PMCID: PMC41815 DOI: 10.1073/pnas.92.11.4902] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We present a simple, rapid procedure for reconstitution of Escherichia coli RNA polymerase holoenzyme (RNAP) from individual recombinant alpha, beta, beta', and sigma 70 subunits. Hexahistidine-tagged recombinant alpha subunit purified by batch-mode metal-ion-affinity chromatography is incubated with crude recombinant beta, beta', and sigma 70 subunits from inclusion bodies, and the resulting reconstituted recombinant RNAP is purified by batch-mode metal-ion-affinity chromatography. RNAP prepared by this procedure is indistinguishable from RNAP prepared by conventional methods with respect to subunit stoichiometry, alpha-DNA interaction, catabolite gene activator protein (CAP)-independent transcription, and CAP-dependent transcription. Experiments with alpha (1-235), an alpha subunit C-terminal deletion mutant, establish that the procedure is suitable for biochemical screening of subunit lethal mutants.
Collapse
Affiliation(s)
- H Tang
- Department of Chemistry, Rutgers University, New Brunswick, NJ 08855, USA
| | | | | | | |
Collapse
|
31
|
Severinov K, Mustaev A, Severinova E, Bass I, Kashlev M, Landick R, Nikiforov V, Goldfarb A, Darst SA. Assembly of functional Escherichia coli RNA polymerase containing beta subunit fragments. Proc Natl Acad Sci U S A 1995; 92:4591-5. [PMID: 7753849 PMCID: PMC41990 DOI: 10.1073/pnas.92.10.4591] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Escherichia coli rpoB gene, which codes for the 1342-residue beta subunit of RNA polymerase (RNAP), contains two dispensable regions centered around codons 300 and 1000. To test whether these regions demarcate domains of the RNAP beta subunit, fragments encoded by segments of rpoB flanking the dispensable regions were individually overexpressed and purified. We show that these beta-subunit polypeptide fragments, when added with purified recombinant beta', sigma, and alpha subunits of RNAP, reconstitute a functional enzyme in vitro. These results demonstrate that the beta subunit is composed of at least three distinct domains and open another avenue for in vitro studies of RNAP assembly and structure.
Collapse
Affiliation(s)
- K Severinov
- Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Severinov K, Soushko M, Goldfarb A, Nikiforov V. RifR mutations in the beginning of the Escherichia coli rpoB gene. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:120-6. [PMID: 8052230 DOI: 10.1007/bf00283512] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In Escherichia coli, mutations conferring rifampicin (Rif) resistance map to the rpoB gene, which encodes the 1342-amino acid beta subunit of RNA polymerase. Almost all sequenced RifR mutations occur within the Rif region, encompassing rpoB codons 500-575. A strong RifR mutation lying outside the Rif region, which changed Val146 to Phe was previously reported, but was not recovered in subsequent studies. Here, we used site-directed mutagenesis followed by selection on Rif to search for RifR mutations in the evolutionarily conserved segment of rpoB around codon 146. Strong RifR mutations were obtained when Val146 was mutated, and several weak RifR mutations were also isolated near position 146. The results define a new, N-terminal cluster of RifR mutations, in addition to the classical central Rif region.
Collapse
Affiliation(s)
- K Severinov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow
| | | | | | | |
Collapse
|
33
|
A non-essential domain of Escherichia coli RNA polymerase required for the action of the termination factor Alc. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36782-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
34
|
Heisler LM, Suzuki H, Landick R, Gross CA. Four contiguous amino acids define the target for streptolydigin resistance in the beta subunit of Escherichia coli RNA polymerase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74401-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
35
|
Kashlev M, Nudler E, Goldfarb A, White T, Kutter E. Bacteriophage T4 Alc protein: A transcription termination factor sensing local modification of DNA. Cell 1993. [DOI: 10.1016/s0092-8674(05)80091-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Abstract
The transcription of nucleus-encoded genes in eukaryotes is performed by three distinct RNA polymerases termed I, II, and III, each of which is a complex enzyme composed of more than 10 subunits. The isolation of genes encoding subunits of eukaryotic RNA polymerases from a wide spectrum of organisms has confirmed previous biochemical and immunological data indicating that all three enzymes are closely related in structures that have been conserved in evolution. Each RNA polymerase is an enzyme complex composed of two large subunits that are homologous to the two largest subunits of prokaryotic RNA polymerases and are associated with smaller polypeptides, some of which are common to two or to all three eukaryotic enzymes. This remarkable conservation of structure most probably underlies a conservation of function and emphasizes the likelihood that information gained from the study of RNA polymerases from one organism will be applicable to others. The recent isolation of many mutations affecting the structure and/or function of eukaryotic and prokaryotic RNA polymerases now makes it feasible to begin integrating genetic and biochemical information from various species in order to develop a picture of these enzymes. The picture of eukaryotic RNA polymerases depicted in this article emphasizes the role(s) of different polypeptide regions in interaction with other subunits, cofactors, substrates, inhibitors, or accessory transcription factors, as well as the requirement for these interactions in transcription initiation, elongation, pausing, termination, and/or enzyme assembly. Most mutations described here have been isolated in eukaryotic organisms that have well-developed experimental genetic systems as well as amenable biochemistry, such as Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans. When relevant, mutations affecting regions of Escherichia coli RNA polymerase that are conserved among eukaryotes and prokaryotes are also presented. In addition to providing information about the structure and function of eukaryotic RNA polymerases, the study of mutations and of the pleiotropic phenotypes they imposed has underscored the central role played by these enzymes in many fundamental processes such as development and cellular differentiation.
Collapse
Affiliation(s)
- J Archambault
- Department of Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
37
|
Mustaev A, Kashlev M, Zaychikov E, Grachev M, Goldfarb A. Active center rearrangement in RNA polymerase initiation complex. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36495-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Kashlev M, Martin E, Polyakov A, Severinov K, Nikiforov V, Goldfarb A. Histidine-tagged RNA polymerase: dissection of the transcription cycle using immobilized enzyme. Gene 1993; 130:9-14. [PMID: 8344532 DOI: 10.1016/0378-1119(93)90340-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A stretch of six histidine residues (His6) has been genetically fused to the C terminus of the beta' polypeptide of Escherichia coli RNA polymerase. The His6-tagged beta' subunit assembles into RNA polymerase molecules which perform all vital in vivo functions and behave qualitatively normally in vitro. The His6 tag permits rapid purification of the enzyme directly from crude cell extracts or from an in vitro reconstitution reaction by adsorption to Ni(2+)-chelating agarose resin, followed by elution with imidazole. The enzyme bound to the matrix remains transcriptionally active. The immobilized enzyme can withstand repeated buffer changes without substantial activity loss and permits controlled stepwise 'walking' of the transcriptional complex along the DNA template, and isolation of defined intermediates in the transcription cycle. The immobilized RNA polymerase provides a powerful experimental system for structural and functional analysis of RNA polymerase and its interaction with regulatory factors.
Collapse
Affiliation(s)
- M Kashlev
- Public Health Research Institute, New York, NY 10016
| | | | | | | | | | | |
Collapse
|
39
|
Severinov K, Soushko M, Goldfarb A, Nikiforov V. Rifampicin region revisited. New rifampicin-resistant and streptolydigin-resistant mutants in the beta subunit of Escherichia coli RNA polymerase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82407-3] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
40
|
Sagitov V, Nikiforov V, Goldfarb A. Dominant lethal mutations near the 5' substrate binding site affect RNA polymerase propagation. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53981-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Wu F, Huang W, Sinclair R, Powers L. The structure of the zinc sites of Escherichia coli DNA-dependent RNA polymerase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)74077-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
42
|
Gross L, Chen WJ, McAllister WT. Characterization of bacteriophage T7 RNA polymerase by linker insertion mutagenesis. J Mol Biol 1992; 228:488-505. [PMID: 1453459 DOI: 10.1016/0022-2836(92)90837-a] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Thirty-four mutants of phage T7 RNA polymerase (RNAP) were generated by linker-insertion mutagenesis and characterized with respect to their ability to carry out various steps in the transcription cycle. A number of mutants with interesting biochemical properties were identified. These include: (1) Mutant RNAPs that are catalytically active but that bind weakly to a T7 promoter; one of these mutants is affected in a region of the RNAP that exhibits homology with the sigma subunit of Escherichia coli RNAP. Another is affected in a region that has been previously implicated in the discrimination of T7 versus T3 promoters (Joho, et al., 1990). (2) Mutant RNAPs that can bind to the promoter but are transcriptionally inactive; some of these RNAPs lack catalytic activity, others are catalytically active but are unable to initiate productive transcription at a T7 promoter. Among the latter class of mutants are enzymes that appear to be weakened in their ability to melt open (or to remain associated with) double-stranded DNA; these RNAPs make only abortive initiation products and are unable to proceed to the formation of a productive elongation complex. The mutations causing this phenotype affect regions of the RNAP that exhibit homology with the catalytic site of DNA polymerase I (Delarue et al., 1990). (3) A C-terminal insertion mutant with properties similar to a previously characterized "foot" mutant (Mookhtiar et al., 1991). This RNAP appears to be defective in the very early steps of transcription and may be unable to translocate and/or empty the active site. (4) A mutant that is transcriptionally active, but is unable to complement the growth of T7 gene 1- phage. This phenotype may result from disruption of a function of the RNAP that is distinct from its role in RNA synthesis.
Collapse
Affiliation(s)
- L Gross
- Morse Institute for Molecular Genetics, Department of Microbiology and Immunology State University of New York, Brooklyn 11203-2098
| | | | | |
Collapse
|
43
|
Genetic dissection of the transcription cycle. A mutant RNA polymerase that cannot hold onto a promoter. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)88683-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
44
|
Treich I, Carles C, Sentenac A, Riva M. Determination of lysine residues affinity labeled in the active site of yeast RNA polymerase II(B) by mutagenesis. Nucleic Acids Res 1992; 20:4721-5. [PMID: 1408783 PMCID: PMC334223 DOI: 10.1093/nar/20.18.4721] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In a previous study, yeast RNA polymerase II(B) was affinity labeled with two nucleotide derivatives (III and VIII) (1). In both cases, the labeled site was localized to the C-terminal part of the B150 subunit. The potential target lysyl residues of derivative III were mapped to the conserved domain H, between Asn946 and Met999. In the present work, we have mutagenized to arginine the five lysines present in domain H. Three lysines can be replaced, individually or simultaneously, without affecting cell growth, and each mutated enzyme can still be affinity labeled. Hence one or both of the other two lysyl residues, Lys979 and Lys987, is the target of the affinity reagent. These two lysines were each found to be essential for cell viability. Derivative VIII labeled another domain in addition to domain H. Supported by analogous results obtained for E. coli RNA polymerase using derivative VIII (2), we hypothesized that the second domain labeled by this derivative in the B150 subunit was domain I. Mutagenesis of the unique lysine present in domain I demonstrated that Lys 1102 was the target of derivative VIII. These results indicate that in both prokaryotic and eukaryotic RNA polymerases, domains H and I are in close proximity and participate to the active site.
Collapse
Affiliation(s)
- I Treich
- Service de Biochimie et Génétique Moléculaire, Centre d'Etudes de Saclay, Gif sur Yvette, France
| | | | | | | |
Collapse
|
45
|
Characterization and epitope mapping of monoclonal antibodies directed against the beta' subunit of the Escherichia coli RNA polymerase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)37169-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
Severinov K, Mustaev A, Kashlev M, Borukhov S, Nikiforov V, Goldfarb A. Dissection of the beta subunit in the Escherichia coli RNA polymerase into domains by proteolytic cleavage. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42348-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
47
|
Mustaev A, Kashlev M, Lee J, Polyakov A, Lebedev A, Zalenskaya K, Grachev M, Goldfarb A, Nikiforov V. Mapping of the priming substrate contacts in the active center of Escherichia coli RNA polymerase. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54373-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
|
49
|
Borukhov S, Severinov K, Kashlev M, Lebedev A, Bass I, Rowland G, Lim P, Glass R, Nikiforov V, Goldfarb A. Mapping of trypsin cleavage and antibody-binding sites and delineation of a dispensable domain in the beta subunit of Escherichia coli RNA polymerase. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54372-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
50
|
Rockwell P, Gottesman ME. An Escherichia coli rpoB mutation that inhibits transcription of catabolite-sensitive operons. J Mol Biol 1991; 222:189-96. [PMID: 1660071 DOI: 10.1016/0022-2836(91)90205-k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Escherichia coli rpoB636 mutant is defective in the transcription of lac and other catabolite-sensitive operons. The lac promoter variant, UV5, which is independent of cyclic AMP and the cyclic AMP receptor protein, CRP, was also defective in rpoB636 mutants. The activity of the lac UV5 promoter was restored to wild-type levels by deletion of cya (adenylate cyclase) or crp. Cyclic AMP and CRP apparently act as inhibitors of the rpoB636 RNA polymerase.
Collapse
Affiliation(s)
- P Rockwell
- Institute of Cancer Research, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | | |
Collapse
|