1
|
Comito D, Bentley GE. The distribution of gonadotropin-inhibitory hormone (GnIH) and its receptor in zebra finch (Taeniopygia guttata) spinal cord. Gen Comp Endocrinol 2025; 368:114733. [PMID: 40252850 DOI: 10.1016/j.ygcen.2025.114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 04/02/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a neuropeptide that typically acts in the hypothalamic-pituitary-gonadal (HPG) axis to regulate reproductive activity and sociosexual behaviors. GnIH is synthesized in the brain and in the gonads, where it can act via its cognate receptor. However, immunohistological evidence in songbirds also shows GnIH projections towards the brainstem. We propose that GnIH can act within the spinal cord and possibly on a variety of organs to induce rapid behavioral and physiological changes in response to environmental cues. Here we used immunohistochemistry (IHC) and PCR to document GnIH and its receptor in zebra finch (Taeniopygia guttata) spinal cord. We found immunoreactive GnIH throughout the length of the spine, predominantly in the central gray matter of the cervical region. mRNA for the GnIH precursor gene and receptor gene was also present throughout the length of the spinal cord. This is the first evidence of GnIH in the avian spinal cord. These results hint at a novel pathway for neuropeptide action in vertebrates.
Collapse
Affiliation(s)
- Devon Comito
- Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA.
| | - George E Bentley
- Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Schally AV, Theodoropoulos G, Sha W, Vidaurre I, Wangpaichitr M. A 50-year journey in the development of treatment for benign prostatic hyperplasia. NPJ AGING 2025; 11:41. [PMID: 40410203 PMCID: PMC12102307 DOI: 10.1038/s41514-025-00231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 04/29/2025] [Indexed: 05/25/2025]
Abstract
Recent research underscores the crucial role of hormone regulation in benign prostatic hyperplasia (BPH) and the therapeutic promise of growth hormone-releasing hormone (GH-RH) antagonists. BPH incidence in aging men doubled over three decades, driven by prostatic enlargement and lower urinary tract symptoms (LUTS). Aging-related changes in GH-RH and luteinizing hormone-releasing hormone (LH-RH) biology promote BPH through hormonal and inflammatory processes. Traditional therapies provide symptomatic relief but often fail to prevent progression. This review explores the 50-year extensive development of LH-RH and GH-RH peptide analogs from discovery to delivery and their potential in BPH treatment. In preclinical studies, GH-RH antagonists reduced prostate volume, improved LUTS, and modulated inflammation mediated by NF-κB and IGF-I. Clinical trials are needed to validate antagonist efficacy and safety. Given BPH's public health impact among the aged, and especially among aging Veterans, integrating GH-RH antagonists into management strategies may offer precision-based therapeutic advancements.
Collapse
Affiliation(s)
- Andrew V Schally
- Endocrine and Polypeptide Institute, Veterans Affairs Healthcare System, Miami, FL, USA
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, FL, USA
- South Florida VA Foundation for Research and Education, Veterans Affairs Healthcare System, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, Divisions of Oncology and Endocrinology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - George Theodoropoulos
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, FL, USA
- South Florida VA Foundation for Research and Education, Veterans Affairs Healthcare System, Miami, FL, USA
| | - Wei Sha
- Endocrine and Polypeptide Institute, Veterans Affairs Healthcare System, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Irving Vidaurre
- Endocrine and Polypeptide Institute, Veterans Affairs Healthcare System, Miami, FL, USA
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, FL, USA
| | - Medhi Wangpaichitr
- Endocrine and Polypeptide Institute, Veterans Affairs Healthcare System, Miami, FL, USA.
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, FL, USA.
- South Florida VA Foundation for Research and Education, Veterans Affairs Healthcare System, Miami, FL, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Surgery, Division of Thoracic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
3
|
Tripathi V, Bhardwaj SK, Kumar V. Neuropeptides and reproductive flexibility in songbirds: A mini review. J Neuroendocrinol 2025:e70030. [PMID: 40288996 DOI: 10.1111/jne.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025]
Abstract
Synchronization of physiological and behavioral activities associated with avian reproduction requires corresponding changes in the activity of the hypothalamus-pituitary-gonadal axis. This involves complex brain peptidergic pathways, which show spatial and temporal differences in their expression and distribution during the annual reproductive cycle. The well-studied pathways include gonadotropin-releasing and inhibiting hormones (GnRH, GnIH), neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART), vasoactive intestinal peptide (VIP) and other peptides like arginine vasotocin (VT), oxytocin (mesotocin), and spexin. Together, these peptides form a neurochemical framework for the integration of both internal and external (environmental) cues; this results in a neuroendocrine response. Conceivably, therefore, the neurochemical framework within which brain peptides possibly interact and perform reproductive regulatory roles might show species differences. Here, we aim to review briefly the roles of these neuropeptides in reproduction in both opportunistically and seasonally breeding birds. Much of the discussion will be based on our own research on the opportunistic breeding zebra finch and the seasonally breeding redheaded bunting, Indian weaverbird, and spotted munia. The summer breeding redheaded bunting and weaverbird are typical photosensitive long-day species, but they show qualitative differences in response to stimulatory photoperiods during the post-reproductive period of their annual cycle. Buntings exhibit absolute photorefractoriness, while weaverbirds exhibit relative photorefractoriness. The autumn breeding spotted munia, on the other hand, is an atypical photosensitive species. It responds to both short and long photoperiods and presumably lacks photorefractoriness.
Collapse
Affiliation(s)
- Vatsala Tripathi
- Department of Zoology, Dyal Singh College, University of Delhi, Delhi, India
- Department of Zoology, Chaudhary Charan Singh University, Meerut, India
| | | | - Vinod Kumar
- Department of Physiology, King George's Medical University, Lucknow, India
| |
Collapse
|
4
|
Umatani C. Neuromodulation in the fish brain for reproductive success. Gen Comp Endocrinol 2025; 363:114658. [PMID: 39701428 DOI: 10.1016/j.ygcen.2024.114658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/24/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
In most teleosts, appropriate sexual behaviors and sexual maturation are essential for reproductive success. Most fish display their unique behavioral patterns for mating. These behaviors are thought to be regulated in the brain by sex steroid hormones since sexual behaviors are displayed only by sexually mature fish. In addition, recent studies have reported that neuropeptides, which are peptides released from neurons and modulate neural activities via their specific receptors in the brain, also play a key role in regulating sexual behavior. On the other hand, not only sexual behavior but also feeding behavior is important for reproductive function since sexual maturation requires sufficient nutrition. Especially feeding-related peptides, a type of neuropeptides, are thought to modulate feeding behavior. Thus, it is conceivable that neuropeptides are crucial modulators in the brain for reproductive success. This review summarizes recent advances in the knowledge of the neuromodulatory systems involved in sexual and feeding behaviors by neuropeptides and gonadal hormones.
Collapse
Affiliation(s)
- Chie Umatani
- Division of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
5
|
Kumar P, Prem P, Raut A, Ahmad S, Singh S. Use of Relugolix for the Prevention of Impending Oliguria and Progressive Renal Failure in a Suspected Case of Prostate Carcinoma. Cureus 2025; 17:e77692. [PMID: 39974226 PMCID: PMC11836633 DOI: 10.7759/cureus.77692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2025] [Indexed: 02/21/2025] Open
Abstract
Androgen deprivation therapy for advanced prostate cancer has traditionally relied on luteinizing hormone-releasing hormone antagonists (LHRH). However, newer oral gonadotropin hormone-releasing hormone antagonists (GnRH) offer faster responses and fewer adverse effects. A 65-year-old male diabetic patient with a history of lower urinary tract symptoms and an indwelling Foley catheter for two weeks presented with respiratory difficulty, bilateral lower limb swelling, and decreased urine output. The investigation was suggestive of locally advanced prostate cancer with obstructive uropathy along with acute or chronic kidney disease. The patient was admitted to the ICU and stabilized. An urgent bedside prostate biopsy was performed. Relugolix 360 mg orally was given on the first day followed by 120 mg daily before histopathological confirmation due to impending oliguria and progressive kidney injury. Subsequent follow-up demonstrated clinical improvements, including reduced PSA and testosterone levels, confirming the efficacy of relugolix in managing advanced prostate cancer. Timely intervention and therapeutic adherence are crucial for optimal outcomes. Additionally, it highlights the preference for LHRH agonists in emergencies and the potential of oral GnRH antagonists like relugolix in prostate cancer management.
Collapse
Affiliation(s)
- Prem Kumar
- Urology, Ranchi Urology Centre, Ranchi, IND
| | | | | | | | - Smita Singh
- Obstetrics and Gynaecology/Urogynaecology, Ranchi Urology Centre, Ranchi, IND
| |
Collapse
|
6
|
Patel S, Saxena B, Mehta P, Niazi SK. GnRH Peptide Antagonist: Comparative Analysis of Chemistry and Formulation with Implications for Clinical Safety and Efficacy. Pharmaceuticals (Basel) 2024; 18:36. [PMID: 39861098 PMCID: PMC11768417 DOI: 10.3390/ph18010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
Overexpression of the gonadotropin-releasing hormone receptor (GnRH-R) plays a vital role in the advancement of reproductive malignancies such as ovarian, endometrial, and prostate cancer. Peptidomimetic GnRH antagonists are a substantial therapeutic development, providing fast and reversible suppression of gonadotropins by directly blocking GnRH-R. Unlike typical GnRH agonists, these antagonists prevent the early hormonal flare, have a faster onset of action, and have a lower risk of cardiovascular problems. These characteristics qualify GnRH antagonists as revolutionary therapy for diseases such as advanced prostate cancer, endometriosis, uterine fibroids, and in vitro fertilization procedures. Key GnRH peptide antagonists authorized by the regulatory agencies include Cetrorelix, Ganirelix, Abarelix, Degarelix, and Teverelix. Assisted reproductive technologies (ART) are dominated by Cetrorelix and Ganirelix, while Degarelix and Abarelix have shown significant promise in treating advanced prostate cancer. Teverelix appears as a next-generation GnRH antagonist with an ideal mix of efficacy and safety, showing promise in a variety of reproductive and hormone-dependent illnesses. This review investigates the pharmacological role of GnRH in reproductive physiology and its consequences in disease, emphasizing structural advances in third- and fourth-generation GnRH antagonists. All GnRH peptide-based antagonists were analyzed in detail for formulation strategy, pharmacokinetics, effectiveness, and safety. This review also emphasizes GnRH antagonists' clinical promise, providing insights into their evolution and the possibility for future research in developing safer, more effective treatments for complicated hormonal diseases.
Collapse
Affiliation(s)
- Shikha Patel
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India; (S.P.); (P.M.)
| | - Bhagawati Saxena
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Priti Mehta
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India; (S.P.); (P.M.)
| | | |
Collapse
|
7
|
Tan W, Tang Y, Liu F, Lu L, Liu A, Ye H. Evaluation of the Effect of Adipokinetic Hormone/Corazonin-Related Peptide (ACP) on Ovarian Development in the Mud Crab, Scylla paramamosain. Animals (Basel) 2024; 14:3706. [PMID: 39765610 PMCID: PMC11672810 DOI: 10.3390/ani14243706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
In this study, we identified Sp-ACP and its putative receptor from the mud crab S. paramamosain and explored its potential role in ovarian development. RT-PCR results suggested Sp-ACP was extensively expressed in nervous tissues, the ovary, the middle gut, and the Y-organ, while Sp-ACPR was highly expressed in the ovary. The expression level of Sp-ACP in the ovary, eyestalk, and cerebral ganglia gradually increased during ovarian development, whereas its receptor exhibited an opposite expression pattern in the ovary. Immunofluorescence revealed that ACP was specifically localized in the follicle cells of the ovary. In vitro experiments showed that the expression of vitellogenin receptor (Sp-VgR) in the ovary was significantly increased by 4 and 6 h incubation of Sp-ACP (10 nM). In addition, 12 h injection of Sp-ACP significantly induced the levels of Sp-Vg in the hepatopancreas and Sp-VgR in the ovary, and hemolymph 17β-estradiol titer. Finally, it demonstrated that prolonged injection of Sp-ACP significantly increased the level of Vg and VgR expression, hemolymph 17β-estradiol titer, GSI, and the oocyte diameter. In conclusion, our results suggested that ACP is involved in the regulation of ovarian development of S. paramamosain, likely by inducing hepatopancreas Sp-Vg expression through estradiol and promoting the uptake of Vg by oocytes.
Collapse
Affiliation(s)
| | | | | | | | - An Liu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; (W.T.); (Y.T.); (F.L.); (L.L.)
| | - Haihui Ye
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; (W.T.); (Y.T.); (F.L.); (L.L.)
| |
Collapse
|
8
|
Jászberényi M, Thurzó B, Jayakumar AR, Schally AV. The Aggravating Role of Failing Neuropeptide Networks in the Development of Sporadic Alzheimer's Disease. Int J Mol Sci 2024; 25:13086. [PMID: 39684795 DOI: 10.3390/ijms252313086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease imposes an increasing burden on aging Western societies. The disorder most frequently appears in its sporadic form, which can be caused by environmental and polygenic factors or monogenic conditions of incomplete penetrance. According to the authors, in the majority of cases, Alzheimer's disease represents an aggravated form of the natural aging of the central nervous system. It can be characterized by the decreased elimination of amyloid β1-42 and the concomitant accumulation of degradation-resistant amyloid plaques. In the present paper, the dysfunction of neuropeptide regulators, which contributes to the pathophysiologic acceleration of senile dementia, is reviewed. However, in the present review, exclusively those neuropeptides or neuropeptide families are scrutinized, and the authors' investigations into their physiologic and pathophysiologic activities have made significant contributions to the literature. Therefore, the pathophysiologic role of orexins, neuromedins, RFamides, corticotrope-releasing hormone family, growth hormone-releasing hormone, gonadotropin-releasing hormone, ghrelin, apelin, and natriuretic peptides are discussed in detail. Finally, the therapeutic potential of neuropeptide antagonists and agonists in the inhibition of disease progression is discussed here.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrew V Schally
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
9
|
Roos P, Anggasta C, Piersma AH, van Meer PJK, Theunissen PT. Evaluation of rat and rabbit embryofetal development studies with pharmaceuticals: the added value of a second species. Crit Rev Toxicol 2024; 54:619-633. [PMID: 39093553 DOI: 10.1080/10408444.2024.2374281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024]
Abstract
Embryofetal development (EFD) studies are performed to characterize risk of drugs in pregnant women and on embryofetal development. In line with the ICH S5(R3) guideline, these studies are generally conducted in one rodent and one non-rodent species, commonly rats and rabbits. However, the added value of conducting EFD studies in two species to risk assessment is debatable. In this study, rat and rabbit EFD studies were evaluated to analyze the added value of a second species. Information on rat and rabbit EFD studies conducted for human pharmaceuticals submitted for marketing authorization to the European Medicines Agency between 2004 and 2022 was collected from the database of the Dutch Medicines Evaluation Board, along with EFD studies conducted for known human teratogens. In total, 369 compounds were included in the database. For 55.6% of the compounds similar effects were observed in rat and rabbit EFD studies. Discordance was observed for 44.6% of compounds. Discordance could often be explained based on occurrence of maternal toxicity or the compound's mechanism of action. For other compounds, discordance was considered of limited clinical relevance due to high exposure margins or less concerning EFD toxicity. For 6.2%, discordance could not be explained and was considered clinically relevant. Furthermore, for specific therapeutic classes, concordance between rat and rabbit could vary. In conclusion, in many cases the added value of conducting EFD studies in two species is limited. These data could help identify scenarios in which (additional) EFD studies could be waived or create a weight-of-evidence model to determine the need for (additional) EFD studies.
Collapse
Affiliation(s)
- Puck Roos
- Dutch Medicines Evaluation Board, Utrecht, the Netherlands
| | | | - Aldert H Piersma
- Centre for Health Protection, Dutch Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Peter J K van Meer
- Dutch Medicines Evaluation Board, Utrecht, the Netherlands
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Peter T Theunissen
- Dutch Medicines Evaluation Board, Utrecht, the Netherlands
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
10
|
Li Q, Chao T, Wang Y, Xuan R, Guo Y, He P, Zhang L, Wang J. The Transcriptome Characterization of the Hypothalamus and the Identification of Key Genes during Sexual Maturation in Goats. Int J Mol Sci 2024; 25:10055. [PMID: 39337542 PMCID: PMC11432450 DOI: 10.3390/ijms251810055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Sexual maturation in goats is a dynamic process regulated precisely by the hypothalamic-pituitary-gonadal axis and is essential for reproduction. The hypothalamus plays a crucial role in this process and is the control center of the reproductive activity. It is significant to study the molecular mechanisms in the hypothalamus regulating sexual maturation in goats. We analyzed the serum hormone profiles and hypothalamic mRNA expression profiles of female goats during sexual development (1 day old (neonatal, D1, n = 5), 2 months old (prepuberty, M2, n = 5), 4 months old (sexual maturity, M4, n = 5), and 6 months old (breeding period, M6, n = 5)). The results indicated that from D1 to M6, serum hormone levels, including FSH, LH, progesterone, estradiol, IGF1, and leptin, exhibited an initial increase followed by a decline, peaking at M4. Furthermore, we identified a total of 508 differentially expressed genes in the hypothalamus, with a total of four distinct expression patterns. Nuclear receptor subfamily 1, group D, member 1 (NR1D1), glucagon-like peptide 1 receptor (GLP1R), and gonadotropin-releasing hormone 1 (GnRH-1) may contribute to hormone secretion, energy metabolism, and signal transduction during goat sexual maturation via circadian rhythm regulation, ECM receptor interactions, neuroactive ligand-receptor interactions, and Wnt signaling pathways. This investigation offers novel insights into the molecular mechanisms governing the hypothalamic regulation of goat sexual maturation.
Collapse
Affiliation(s)
- Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Yanyan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Yanfei Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Peipei He
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Lu Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| |
Collapse
|
11
|
Guseva EA, Emelianova MA, Sidorova VN, Tyulpakov AN, Dontsova OA, Sergiev PV. Diversity of Molecular Functions of RNA-Binding Ubiquitin Ligases from the MKRN Protein Family. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1558-1572. [PMID: 39418515 DOI: 10.1134/s0006297924090037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 10/19/2024]
Abstract
Makorin RING finger protein family includes four members (MKRN1, MKRN2, MKRN3, and MKRN4) that belong to E3 ubiquitin ligases and play a key role in various biological processes, such as cell survival, cell differentiation, and innate and adaptive immunity. MKRN1 contributes to the tumor growth suppression, energy metabolism, anti-pathogen defense, and apoptosis and has a broad variety of targets, including hTERT, APC, FADD, p21, and various viral proteins. MKRN2 regulates cell proliferation, inflammatory response; its targets are p65, PKM2, STAT1, and other proteins. MKRN3 is a master regulator of puberty timing; it controls the levels of gonadotropin-releasing hormone in the arcuate nucleus neurons. MKRN4 is the least studied member of the MKRN protein family, however, it is known to contribute to the T cell activation by ubiquitination of serine/threonine kinase MAP4K3. Proteins of the MKRN family are associated with the development of numerous diseases, for example, systemic lupus erythematosus, central precocious puberty, Prader-Willi syndrome, degenerative lumbar spinal stenosis, inflammation, and cancer. In this review, we discuss the functional roles of all members of the MKRN protein family and their involvement in the development of diseases.
Collapse
Affiliation(s)
- Ekaterina A Guseva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maria A Emelianova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vera N Sidorova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Petr V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
12
|
Grujić M, Živković Radojević M, Janković K, Milosavljević N. Andrew Victor Schally: Pioneering Neuroendocrinologist and Architect of Luteinizing Hormone-Releasing Hormone Analogs. Cureus 2024; 16:e69137. [PMID: 39398731 PMCID: PMC11467473 DOI: 10.7759/cureus.69137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Andrew Victor Schally is a pioneering figure in endocrinology and neuroendocrinology, whose work has fundamentally transformed the understanding and treatment of hormone-related disorders and cancer. His research, particularly in the isolation, characterization, and clinical application of hypothalamic hormones, has been instrumental in advancing medical science. Schally's early life, marked by the adversities of World War II, shaped his resilience and determination, driving him to pursue a career in medical research. His groundbreaking discovery of luteinizing hormone-releasing hormone (LHRH) and its analogs revolutionized the treatment of hormone-dependent cancers, especially advanced prostate cancer, by providing an effective alternative to surgical castration. Beyond LHRH, Schally's contributions to the development of somatostatin analogs have also had a significant impact on the management of acromegaly and neuroendocrine tumors. This article reviews Schally's life and work, emphasizing his contributions to endocrinology, particularly in the context of LHRH and its clinical applications. The review outlines his early life and education, his pioneering research on hypothalamic hormones, and the development of LHRH analogs that have become a cornerstone in the treatment of prostate cancer. Schally's ability to translate basic scientific discoveries into practical therapeutic strategies has earned him numerous accolades, including the Nobel Prize in Physiology or Medicine in 1977. His legacy continues to inspire and guide research in endocrinology and oncology, underscoring the lasting impact of his scientific achievements.
Collapse
Affiliation(s)
- Miloš Grujić
- Clinical Oncology, University of Kragujevac, Faculty of Medical Sciences, Kragujevac, SRB
| | | | - Katarina Janković
- Clinical Oncology, University of Kragujevac, Faculty of Medical Sciences, Kragujevac, SRB
| | - Neda Milosavljević
- Clinical Oncology, University of Kragujevac, Faculty of Medical Sciences, Kragujevac, SRB
| |
Collapse
|
13
|
Ding J, Wang H, He J, Jing C, Zhao H, Hu F. Elucidating the reproductive toxicity mechanisms in female zebrafish: A transcriptomic study of lifetime tris(2-chloroethyl) phosphate exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174831. [PMID: 39019278 DOI: 10.1016/j.scitotenv.2024.174831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/15/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Tris(2-chloroethyl) phosphate (TCEP), emerging as a predominant substitute for brominated flame retardants (BFRs), is now increasingly recognized as a prevalent contaminant in aquatic ecosystems. The extent of its reproductive toxicity in aquatic species, particularly in zebrafish (Danio rerio), remains insufficiently characterized. This study subjected zebrafish embryos to various concentrations of TCEP (0, 0.8, 4, 20, and 100 μg/L) over a period of 120 days, extending through sexual maturation, to assess its impact on female reproductive health. Notable reductions in body weight (0.59- and 0.76-fold) and length (0.71- and 0.77-fold) were observed at concentrations of 20 and 100 μg/L, with a concomitant decrease by 0.21- to 0.61-fold in the gonadal somatic index across all treatment groups. The reproductive output, as evidenced by egg production and hatchability, was adversely affected. Histopathological analysis suggested that TCEP exposure impedes ovarian development. Endocrine alterations were also evident, with testosterone and 11-ketotestosterone levels significantly diminished by 0.38- and 0.08-fold at the highest concentration tested, while 17β-estradiol was elevated by 0.09- to 0.14-fold in all exposed groups. Transcriptomic profiling illuminated numerous differentially expressed genes (DEGs) integral to reproductive processes, including hormone regulation, neuroactive ligand-receptor interactions, oocyte meiosis, and progesterone-mediated maturation pathways. Collectively, these findings indicate that lifelong exposure to TCEP disrupts ovarian development and maturation in female zebrafish, alters gene expression within the hypothalamic-pituitary-gonadal axis, and perturbs sex hormone synthesis, culminating in pronounced reproductive toxicity.
Collapse
Affiliation(s)
- Jieyu Ding
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou 350001, China
| | - Hongkai Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiabo He
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Jing
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haocheng Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengxiao Hu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou 350001, China.
| |
Collapse
|
14
|
Rosenfield RL. The Search for the Causes of Common Hyperandrogenism, 1965 to Circa 2015. Endocr Rev 2024; 45:553-592. [PMID: 38457123 DOI: 10.1210/endrev/bnae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/23/2023] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
From 1965 to 2015, immense strides were made into understanding the mechanisms underlying the common androgen excess disorders, premature adrenarche and polycystic ovary syndrome (PCOS). The author reviews the critical discoveries of this era from his perspective investigating these disorders, commencing with his early discoveries of the unique pattern of plasma androgens in premature adrenarche and the elevation of an index of the plasma free testosterone concentration in most hirsute women. The molecular genetic basis, though not the developmental biologic basis, for adrenarche is now known and 11-oxytestosterones shown to be major bioactive adrenal androgens. The evolution of the lines of research into the pathogenesis of PCOS is historically traced: research milestones are cited in the areas of neuroendocrinology, insulin resistance, hyperinsulinism, type 2 diabetes mellitus, folliculogenesis, androgen secretion, obesity, phenotyping, prenatal androgenization, epigenetics, and complex genetics. Large-scale genome-wide association studies led to the 2014 discovery of an unsuspected steroidogenic regulator DENND1A (differentially expressed in normal and neoplastic development). The splice variant DENND1A.V2 is constitutively overexpressed in PCOS theca cells in long-term culture and accounts for their PCOS-like phenotype. The genetics are complex, however: DENND1A intronic variant copy number is related to phenotype severity, and recent data indicate that rare variants in a DENND1A regulatory network and other genes are related to PCOS. Obesity exacerbates PCOS manifestations via insulin resistance and proinflammatory cytokine excess; excess adipose tissue also forms testosterone. Polycystic ovaries in 40 percent of apparently normal women lie on the PCOS functional spectrum. Much remains to be learned.
Collapse
Affiliation(s)
- Robert L Rosenfield
- Department of Pediatrics and Medicine, The University of Chicago, Chicago, IL 94109, USA
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
15
|
Hassanein EM, Szelényi Z, Szenci O. Gonadotropin-Releasing Hormone (GnRH) and Its Agonists in Bovine Reproduction I: Structure, Biosynthesis, Physiological Effects, and Its Role in Estrous Synchronization. Animals (Basel) 2024; 14:1473. [PMID: 38791690 PMCID: PMC11117390 DOI: 10.3390/ani14101473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
GnRH is essential for the regulation of mammalian reproductive processes. It regulates the production and release of pituitary gonadotropins, thereby influencing steroidogenesis and gametogenesis. While primarily produced in the hypothalamus, GnRH is also produced in peripheral organs, such as the gonads and placenta. GnRH analogs, including agonists and antagonists, have been synthesized for the reproductive management of animals and humans. This review focuses on the functions of hypothalamic GnRH in the reproductive processes of cattle. In addition to inducing the surge release of LH, the pulsatile secretion of GnRH stimulates the pituitary gland to release FSH and LH, thereby regulating gonadal function. Various GnRH-based products have been synthesized to increase their potency and efficacy in regulating reproductive functions. This review article describes the chemical structures of GnRH and its agonists. This discussion extends to the gene expression of GnRH in the hypothalamus, highlighting its pivotal role in regulating the reproductive process. Furthermore, GnRH is involved in regulating ovarian follicular development and luteal phase support, and estrus synchronization is involved. A comprehensive understanding of the role of GnRH and its analogs in the modulation of reproductive processes is essential for optimizing animal reproduction.
Collapse
Affiliation(s)
- Eman M. Hassanein
- Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine Budapest, H-2225 Üllő, Hungary; (E.M.H.); (Z.S.)
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Zoltán Szelényi
- Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine Budapest, H-2225 Üllő, Hungary; (E.M.H.); (Z.S.)
| | - Ottó Szenci
- Department of Obstetrics and Food Animal Medicine Clinic, University of Veterinary Medicine Budapest, H-2225 Üllő, Hungary; (E.M.H.); (Z.S.)
| |
Collapse
|
16
|
Moon S, Yun B, Lee M, Seok E, Ha J, Yang H. Gonadotropins Regulate the mRNA Expression of Gonadotropin-Releasing
Hormone and Its Receptors in the Mouse Ovary and Uterus. Dev Reprod 2024; 28:1-12. [PMID: 38654976 PMCID: PMC11034991 DOI: 10.12717/dr.2024.28.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 04/26/2024]
Abstract
Gonadotropin-releasing hormone (GnRH), a critical hormone produced in the hypothalamus, is essential for regulating reproductive processes. It has also been demonstrated the presence of GnRH and its receptors (GnRHR) in ovarian and uterine tissues, but little was known about the regulation mechanism of their expression in these organs and ovarian aging. Therefore, the aim of this study was to investigate the expression of GnRHR in the ovary and uterus of mice, particularly after high-dose gonadotropin treatments and in relation to aging. Quantitative real-time-PCR (qRT-PCR) revealed that pituitary gland had the highest GnRHR expression in both young and aged mice. In addition, liver expression was higher in young mice, whereas thymus expression was higher in aged mice. GnRHR mRNA was present in the ovaries of both young and aged mice but nearly undetectable in the uterus of aged mice. We next examined the expression of GnRHR in the ovary and uterus in response to high-dose administration of pregnant mare serum gonadotropin (PMSG). After PMSG administration, GnRH mRNA levels were significantly decreased in the ovary but increased in the uterus. The expression of GnRH mRNA in these organs showed opposite trends to that of GnRHR expression. These results suggest the involvement of GnRH in age-related reproductive decline and the potential effects of high-dose gonadotropin treatments on reproductive organ function.
Collapse
Affiliation(s)
- Soeun Moon
- Department of Bioenvironmental
Technology, College of Sciences Technology Convergence, Seoul Women’s
University, Seoul 01797, Korea
| | - Bokyeong Yun
- Department of Bioenvironmental
Technology, College of Sciences Technology Convergence, Seoul Women’s
University, Seoul 01797, Korea
| | - Minju Lee
- Department of Bioenvironmental
Technology, College of Sciences Technology Convergence, Seoul Women’s
University, Seoul 01797, Korea
| | - Eunji Seok
- Department of Biohealth Convergence,
College of Sciences Technology Convergence, Seoul Women’s
University, Seoul 01797, Korea
| | - Jinah Ha
- Department of Biohealth Convergence,
College of Sciences Technology Convergence, Seoul Women’s
University, Seoul 01797, Korea
| | - Hyunwon Yang
- Department of Biohealth Convergence,
College of Sciences Technology Convergence, Seoul Women’s
University, Seoul 01797, Korea
| |
Collapse
|
17
|
Wang R, Mi Y, Ni J, Wang Y, Ding L, Ran X, Sun Q, Tan SY, Koeffler HP, Feng N, Chen YQ. Identification of PRDX5 as A Target for The Treatment of Castration-Resistant Prostate Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304939. [PMID: 38115765 PMCID: PMC10916659 DOI: 10.1002/advs.202304939] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/28/2023] [Indexed: 12/21/2023]
Abstract
Treatment of castration-resistant prostate cancer (CRPC) is a long-standing clinical challenge. Traditionally, CRPC drugs work by either reducing dihydrotestosterone biosynthesis or blocking androgen receptor (AR) signaling. Here it is demonstrated that AR inhibitor treatment gives rise to a drug-tolerant persister (DTP) state. The thioredoxin/peroxiredoxin pathway is up-regulated in DTP cells. Peroxiredoxin 5 (PRDX5) promotes AR inhibitor resistance and CRPC development. Inhibition of PRDX5 suppresses DTP cell proliferation in culture, dampens CRPC development in animal models, and stabilizes PSA progression and metastatic lesions in patients. Therefore, the study provides a novel mechanism and potential target for the management of castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Rong Wang
- Jiangnan University Medical CenterJiangnan UniversityWuxi214002China
- Wuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Yuanyuan Mi
- Affiliated HospitalJiangnan UniversityWuxi214122China
| | - Jiang Ni
- Affiliated HospitalJiangnan UniversityWuxi214122China
| | - Yang Wang
- Jiangnan University Medical CenterJiangnan UniversityWuxi214002China
| | - Lingwen Ding
- Department of PathologyYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore117599Singapore
| | - Xuebin Ran
- Department of PathologyYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore117599Singapore
| | - Qiaoyang Sun
- Department of HematologySingapore General HospitalSingapore169608Singapore
| | - Soo Yong Tan
- Department of PathologyYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - H Phillip Koeffler
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore117599Singapore
- Division of Hematology/OncologyCedars‐Sinai Medical CenterUCLA School of MedicineLos AngelesCalifornia90048USA
| | - Ninghan Feng
- Jiangnan University Medical CenterJiangnan UniversityWuxi214002China
| | - Yong Q Chen
- Jiangnan University Medical CenterJiangnan UniversityWuxi214002China
- Wuxi School of MedicineJiangnan UniversityWuxi214122China
| |
Collapse
|
18
|
Amato E, Taroc EZM, Forni PE. Illuminating the terminal nerve: Uncovering the link between GnRH-1 neuron and olfactory development. J Comp Neurol 2024; 532:e25599. [PMID: 38488687 PMCID: PMC10958589 DOI: 10.1002/cne.25599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/18/2024]
Abstract
During embryonic development, the olfactory placode (OP) generates migratory neurons, including olfactory pioneer neurons, cells of the terminal nerve (TN), gonadotropin-releasing hormone-1 (GnRH-1) neurons, and other uncharacterized neurons. Pioneer neurons from the OP induce olfactory bulb (OB) morphogenesis. In mice, GnRH-1 neurons appear in the olfactory system around mid-gestation and migrate via the TN axons to different brain regions. The GnRH-1 neurons are crucial in controlling the hypothalamic-pituitary-gonadal axis. Kallmann syndrome is characterized by impaired olfactory system development, defective OBs, secretion of GnRH-1, and infertility. The precise mechanistic link between the olfactory system and GnRH-1 development remains unclear. Studies in humans and mice highlight the importance of the prokineticin-2/prokineticin-receptor-2 (Prokr2) signaling pathway in OB morphogenesis and GnRH-1 neuronal migration. Prokr2 loss-of-function mutations can cause Kallmann syndrome (KS), and hence the Prokr2 signaling pathway represents a unique model to decipher the olfactory/GnRH-1 connection. We discovered that Prokr2 is expressed in the TN neurons during the critical period of GnRH-1 neuron formation, migration, and induction of OB morphogenesis. Single-cell RNA sequencing identified that the TN is formed by neurons distinct from the olfactory neurons. The TN neurons express multiple genes associated with KS. Our study suggests that the aberrant development of pioneer/TN neurons might cause the KS spectrum.
Collapse
Affiliation(s)
- Enrico Amato
- Department of Biological Sciences, The Center for Neuroscience Research, The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Ed Zandro M. Taroc
- Department of Biological Sciences, The Center for Neuroscience Research, The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Paolo E. Forni
- Department of Biological Sciences, The Center for Neuroscience Research, The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
19
|
Meng F, Li J, Han X, Li L, Li T, Du X, Cao X, Liang Q, Huang A, Kong F, Zeng X, Bu G. TAC3 regulates GnRH/gonadotropin synthesis in female chickens. Theriogenology 2024; 215:302-311. [PMID: 38128223 DOI: 10.1016/j.theriogenology.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Neurokinin B (NKB), a peptide encoded by the tachykinin 3 (TAC3), is critical for reproduction in all studied species. However, its potential roles in birds are less clear. Using the female chicken (c-) as a model, we showed that cTAC3 is composed of five exons with a full-length cDNA of 787 bp, which was predicted to generate the mature NKB peptide containing 10 amino acids. Using cell-based luciferase reporter assays, we demonstrated that cNKB could effectively and specifically activate tachykinin receptor 3 (TACR3) in HEK293 cells, suggesting its physiological function is likely achieved via activating cTACR3 signaling. Notably, cTAC3 and cTACR3 were predominantly and abundantly expressed in the hypothalamus of hens and meanwhile the mRNA expression of cTAC3 was continuously increased during development, suggesting that NKB-TACR3 may emerge as important components of the neuroendocrine reproductive axis. In support, intraperitoneal injection of cNKB could significantly promote hypothalamic cGnRH-Ι, and pituitary cFSHβ and cLHβ expression in female chickens. Surprisingly, cTAC3 and cTACR3 were also expressed in the pituitary gland, and cNKB treatment significantly increased cLHβ and cFSHβ expression in cultured primary pituitary cells, suggesting cNKB can also act directly at the pituitary level to stimulate gonadotropin synthesis. Collectively, our results reveal that cNKB functionally regulate GnRH/gonadotropin synthesis in female chickens.
Collapse
Affiliation(s)
- Fengyan Meng
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China.
| | - Jinxuan Li
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xingfa Han
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Lingyang Li
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Tianyang Li
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xiaogang Du
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xiaohan Cao
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Qiuxia Liang
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Anqi Huang
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Fanli Kong
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xianyin Zeng
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Guixian Bu
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China.
| |
Collapse
|
20
|
Athar F, Karmani M, Templeman N. Metabolic hormones are integral regulators of female reproductive health and function. Biosci Rep 2024; 44:BSR20231916. [PMID: 38131197 PMCID: PMC10830447 DOI: 10.1042/bsr20231916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
The female reproductive system is strongly influenced by nutrition and energy balance. It is well known that food restriction or energy depletion can induce suppression of reproductive processes, while overnutrition is associated with reproductive dysfunction. However, the intricate mechanisms through which nutritional inputs and metabolic health are integrated into the coordination of reproduction are still being defined. In this review, we describe evidence for essential contributions by hormones that are responsive to food intake or fuel stores. Key metabolic hormones-including insulin, the incretins (glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1), growth hormone, ghrelin, leptin, and adiponectin-signal throughout the hypothalamic-pituitary-gonadal axis to support or suppress reproduction. We synthesize current knowledge on how these multifaceted hormones interact with the brain, pituitary, and ovaries to regulate functioning of the female reproductive system, incorporating in vitro and in vivo data from animal models and humans. Metabolic hormones are involved in orchestrating reproductive processes in healthy states, but some also play a significant role in the pathophysiology or treatment strategies of female reproductive disorders. Further understanding of the complex interrelationships between metabolic health and female reproductive function has important implications for improving women's health overall.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Muskan Karmani
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M. Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
21
|
Odetayo AF, Akhigbe RE, Bassey GE, Hamed MA, Olayaki LA. Impact of stress on male fertility: role of gonadotropin inhibitory hormone. Front Endocrinol (Lausanne) 2024; 14:1329564. [PMID: 38260147 PMCID: PMC10801237 DOI: 10.3389/fendo.2023.1329564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Studies have implicated oxidative stress-sensitive signaling in the pathogenesis of stress-induced male infertility. However, apart from oxidative stress, gonadotropin inhibitory hormone (GnIH) plays a major role. The present study provides a detailed review of the role of GnIH in stress-induced male infertility. Available evidence-based data revealed that GnIH enhances the release of corticosteroids by activating the hypothalamic-pituitary-adrenal axis. GnIH also mediates the inhibition of the conversion of thyroxine (T4) to triiodothyronine (T3) by suppressing the hypothalamic-pituitary-thyroidal axis. In addition, GnIH inhibits gonadotropin-releasing hormone (GnRH), thus suppressing the hypothalamic-pituitary-testicular axis, and by extension testosterone biosynthesis. More so, GnIH inhibits kisspeptin release. These events distort testicular histoarchitecture, impair testicular and adrenal steroidogenesis, lower spermatogenesis, and deteriorate sperm quality and function. In conclusion, GnIH, via multiple mechanisms, plays a key role in stress-induced male infertility. Suppression of GnIH under stressful conditions may thus be a beneficial prophylactic and/or therapeutic strategy.
Collapse
Affiliation(s)
- Adeyemi F. Odetayo
- Department of Physiology, Federal University of Health Sciences, Ila Orangun, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Roland E. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | - Moses A. Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Nigeria
- The Brainwill Laboratories and Biomedical Services, Osogbo, Nigeria
| | | |
Collapse
|
22
|
Piñon Gonzalez VM, Feng Y, Egertová M, Elphick MR. Neuropeptide expression and action in the reproductive system of the starfish Asterias rubens. J Comp Neurol 2024; 532:e25585. [PMID: 38289190 DOI: 10.1002/cne.25585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
Reproductive processes are regulated by a variety of neuropeptides in vertebrates and invertebrates. In starfish (phylum Echinodermata), relaxin-like gonad-stimulating peptide triggers oocyte maturation and spawning. However, little is known about other neuropeptides as potential regulators of reproduction in starfish. To address this issue, here, we used histology and immunohistochemistry to analyze the reproductive system of the starfish Asterias rubens at four stages of the seasonal reproductive cycle in male and female animals, investigating the expression of eight neuropeptides: the corticotropin-releasing hormone-type neuropeptide ArCRH, the calcitonin-type neuropeptide ArCT, the pedal peptide-type neuropeptides ArPPLN1b and ArPPLN2h, the vasopressin/ocytocin-type neuropeptide asterotocin, the gonadotropin-releasing hormone-type neuropeptide ArGnRH, and the somatostatin/allatostatin-C-type neuropeptides ArSS1 and ArSS2. The expression of five neuropeptides, ArCRH, ArCT, ArPPLN1b, ArPPLN2h, and asterotocin, was detected in the gonoducts and/or gonads. For example, extensive ArPPLN2h expression was revealed in the coelomic epithelial layer of the gonads throughout the seasonal reproductive cycle in both males and females. However, seasonal and/or sexual differences in the patterns of neuropeptide expression were also observed. Informed by these findings, the in vitro pharmacological effects of neuropeptides on gonad preparations from male and female starfish were investigated. This revealed that ArSS1 causes gonadal contraction and that ArPPLN2h causes gonadal relaxation, with both neuropeptides being more effective on ovaries than testes. Collectively, these findings indicate that multiple neuropeptide signaling systems are involved in the regulation of reproductive function in starfish, with some neuropeptides exerting excitatory or inhibitory effects on gonad contractility that may be physiologically relevant when gametes are expelled during spawning.
Collapse
Affiliation(s)
| | - Yuling Feng
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK
| | - Michaela Egertová
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK
| | - Maurice R Elphick
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
23
|
Chanson P, Mercado M. Controversies In Neuroendocrinology. Arch Med Res 2023; 54:102922. [PMID: 38040528 DOI: 10.1016/j.arcmed.2023.102922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Affiliation(s)
- Philippe Chanson
- Service d'Endocrinologie et des Maladies de la Reproduction and Centre de Référence des Maladies Rares de l'Hypophyse, Assistance Publique-Hôpitaux de Paris-Université Paris-Saclay, Le Kremlin-Bicêtre, France; Physiologie et Physiopathologie Endocriniennes, INSERM, Le Kremlin-Bicêtre, France
| | - Moises Mercado
- Endocrine Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| |
Collapse
|
24
|
Panda SP, Kesharwani A, Singh GD, Prasanth D, Vatchavai BR, Kumari PVK, Panda SK, Mallick SP. Impose of KNDy/GnRH neural circuit in PCOS, ageing, cancer and Alzheimer's disease: StAR actions in prevention of neuroendocrine dysfunction. Ageing Res Rev 2023; 92:102086. [PMID: 37821047 DOI: 10.1016/j.arr.2023.102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
The Kisspeptin1 (KISS1)/neurokinin B (NKB)/Dynorphin (Dyn) [KNDy] neurons in the hypothalamus regulate the reproduction stage in human beings and rodents. KNDy neurons co-expressed all KISS1, NKB, and Dyn peptides, and hence commonly regarded as KISS1 neurons. KNDy neurons contribute to the "GnRH pulse generator" and are implicated in the regulation of pulsatile GnRH release. The estradiol (E2)-estrogen receptor (ER) interactions over GnRH neurons in the hypothalamus cause nitric oxide (NO) discharge, in addition to presynaptic GABA and glutamate discharge from respective neurons. The released GABA and glutamate facilitate the activity of GnRH neurons via GABAA-R and AMPA/kainate-R. The KISS1 stimulates MAPK/ERK1/2 signaling and cause the release of Ca2+ from intracellular store, which contribute to neuroendocrine function, increase apoptosis and decrease cell proliferation and metastasis. The ageing in women deteriorates KISS1/KISS1R interaction in the hypothalamus which causes lower levels of GnRH. Because examining the human brain is so challenging, decades of clinical research have failed to find the causes of KNDy/GnRH dysfunction. The KISS1/KISS1R interactions in the brain have a neuroprotective effect against Alzheimer's disease (AD). These findings modulate the pathophysiological role of the KNDy/GnRH neural network in polycystic ovarian syndrome (PCOS) associated with ageing and, its protective role in cancer and AD. This review concludes with protecting effect of the steroid-derived acute regulatory enzyme (StAR) against neurotoxicity in the hippocampus, and hypothalamus, and these measures are fundamental for delaying ageing with PCOS. StAR could serve as novel diagnostic marker and therapeutic target for the most prevalent hormone-sensitive breast cancers (BCs).
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | | | - Dsnbk Prasanth
- KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhrapradesh, India
| | - Bhaskara Raju Vatchavai
- Sri Vasavi Institute of Pharmaceutical Sciences, Pedatadepalli, Tadepalligudem, Andhrapradesh, India
| | - P V Kamala Kumari
- Vignan Institute of Pharmaceutical Technology, Duvvada, Visakhapatnam, Andhrapradesh, India
| | | | | |
Collapse
|
25
|
Laoharatchatathanin T, Rieanrakwong D, Hatsugai Y, Terashima R, Yonezawa T, Kurusu S, Kawaminami M. Mast Cell Dynamics in the Ovary Are Governed by GnRH and Prolactin. Endocrinology 2023; 164:bqad144. [PMID: 37797313 DOI: 10.1210/endocr/bqad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/08/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Gonadotrophin releasing hormone (GnRH) facilitates the migration of mast cells (MCs) into the involuting mammary gland. As GnRH is also expressed in the ovary, we examined changes in ovarian MCs. MCs in the ovary were mainly in interstitial tissue and their number increased during the estrous cycle to produce 2 peaks, one at diestrus 2 (20:00 hours) and another at proestrus (17:00 hours). Laser microdissection demonstrated that GnRH mRNA is expressed throughout ovarian tissues (corpora lutea, follicles, and interstitial tissues). GnRH immunoreactivity was also ubiquitous, but MCs were the most strongly immunostained. Analysis of GnRH mRNA in the ovary showed it to fluctuate similarly to the variation in MC number during the estrous cycle, and MCs also expressed GnRH. Local administration of a GnRH agonist (GnRHa) into the hemilateral ovarian bursa increased MCs in the administered ovary. MC number and GnRH mRNA were significantly lowered in the pregnant ovary. Prolactin administration suppressed the normal peaks in MC number in the ovary at both diestrus and proestrus. By contrast, a dopamine agonist, administered when prolactin was elevated during pseudopregnancy, increased ovarian MC number. Furthermore, prolactin inhibited GnRHa-induced peritoneal MC migration in a Transwell assay. These data clearly demonstrate that ovarian MC number is regulated positively by local GnRH expression and negatively by prolactin. The suppressive effect of prolactin on GnRH and MCs would be part of its luteotrophic action.
Collapse
Affiliation(s)
- Titaree Laoharatchatathanin
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
- Clinic for Small Domestic Animals and Radiology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok 10530, Thailand
| | - Duangjai Rieanrakwong
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| | - Yoshinori Hatsugai
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| | - Ryota Terashima
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| | - Tomohiro Yonezawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Shiro Kurusu
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| | - Mitsumori Kawaminami
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Okayama University of Science, Imabari 794-8885, Japan
| |
Collapse
|
26
|
Amato E, Taroc EZM, Forni PE. Illuminating the Terminal Nerve: Uncovering the Link between GnRH-1 and Olfactory Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555770. [PMID: 37693459 PMCID: PMC10491181 DOI: 10.1101/2023.08.31.555770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
During embryonic development, the olfactory placode (OP) generates migratory neurons, including olfactory pioneer neurons, cells of the terminal nerve (TN), Gonadotropin-releasing hormone-1 (GnRH-1) neurons, and other uncharacterized neurons. Pioneer neurons from the olfactory placode induce olfactory bulb morphogenesis. In mice, GnRH-1 neurons appear in the olfactory system around mid-gestation and migrate via the terminal nerve axons to different brain regions. The GnRH-1 neurons are crucial in controlling the hypothalamic-pituitary-gonadal (HPG) axis. Kallmann syndrome is characterized by impaired olfactory system development, defective olfactory bulbs, defective secretion of GnRH-1, and infertility. The precise mechanistic link between the olfactory system and GnRH-1 development remains unclear. Studies in humans and mice highlight the importance of the Prokineticin-2/Prokineticin-Receptor-2 (Prokr2) signaling pathway in olfactory bulb morphogenesis and GnRH-1 neuronal migration. Prokr2 loss-of-function mutations can cause Kallmann syndrome, and hence the Prokr2 signaling pathway represents a unique model to decipher the olfactory/GnRH-1 connection. We discovered that Prokr2 is expressed in the TN neurons during the critical period of GnRH-1 neuron formation, migration, and induction of olfactory bulb morphogenesis. Single-cell RNA sequencing identified that the TN is formed by neurons that are distinct from the olfactory neurons. The TN neurons express multiple genes associated with KS. Our study suggests that the aberrant development of pioneer/TN neurons might cause the KS spectrum. Key Points 1) Pioneer or terminal nerve neurons play a crucial role in initiating the development of the olfactory bulbs. We found that the Prokineticin Receptor-2 gene, associated with Kallmann syndrome, is expressed by the olfactory pioneer/terminal nerve neurons.2) We genetically traced, isolated, and conducted Single-cell RNA sequencing on terminal nerve neurons of rodents. This analysis revealed a significant enrichment of gene expression related to Kallmann syndrome.3) Our study indicates that the investigation of Pioneer/terminal nerve neurons should be a pivotal focal point for comprehending developmental defects affecting olfactory and GnRH-1 systems.
Collapse
|
27
|
Chen K, Kostos L, Azad AA. Future directions in systemic treatment of metastatic hormone-sensitive prostate cancer. World J Urol 2023; 41:2021-2031. [PMID: 36029329 PMCID: PMC10415497 DOI: 10.1007/s00345-022-04135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/12/2022] [Indexed: 11/27/2022] Open
Abstract
The landscape of advanced prostate cancer treatment has evolved tremendously in past decades. The treatment paradigm has shifted from androgen deprivation therapy (ADT) alone to doublet combinations comprising ADT with docetaxel or an androgen receptor inhibitor, and now triplet therapy involving all 3 classes of agents. Robust clinical data has demonstrated survival benefits with this strategy of upfront treatment intensification. Subgroup analysis has alluded to the importance of tailoring treatment according to metastatic disease burden. However, defining the volume of disease is becoming increasingly controversial due to the advent of next generation molecular imaging. Several trials testing established agents in the castrate-resistant setting are now underway in metastatic hormone sensitive prostate cancer patients. As the treatment milieu is enriched earlier in the disease trajectory, future studies should elucidate biomarkers to further define specific patient populations who will benefit most from treatment intensification and/or de-escalation, with what agents and for what duration.
Collapse
Affiliation(s)
- Kenneth Chen
- Department of Urology, Singapore General Hospital, Singapore, Singapore
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Louise Kostos
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Arun A Azad
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| |
Collapse
|
28
|
Wiggenhorn AL, Abuzaid HZ, Coassolo L, Li VL, Tanzo JT, Wei W, Lyu X, Svensson KJ, Long JZ. A class of secreted mammalian peptides with potential to expand cell-cell communication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543503. [PMID: 37333131 PMCID: PMC10274650 DOI: 10.1101/2023.06.02.543503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Peptide hormones and neuropeptides are fundamental signaling molecules that control diverse aspects of mammalian homeostasis and physiology. Here we demonstrate the endogenous presence of a sequence diverse class of orphan, blood-borne peptides that we call "capped peptides." Capped peptides are fragments of secreted proteins and defined by the presence of two post-translational modifications - N-terminal pyroglutamylation and C-terminal amidation - which function as chemical "caps" of the intervening sequence. Capped peptides share many regulatory characteristics in common with that of other signaling peptides, including dynamic regulation in blood plasma by diverse environmental and physiologic stimuli. One capped peptide, CAP-TAC1, is a tachykinin neuropeptide-like molecule and a nanomolar agonist of multiple mammalian tachykinin receptors. A second capped peptide, CAP-GDF15, is a 12-mer peptide that reduces food intake and body weight. Capped peptides therefore define a largely unexplored class of circulating molecules with potential to regulate cell-cell communication in mammalian physiology.
Collapse
Affiliation(s)
- Amanda L. Wiggenhorn
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Hind Z. Abuzaid
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Laetitia Coassolo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Veronica L. Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Julia T. Tanzo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Xuchao Lyu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Katrin J. Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Jonathan Z. Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| |
Collapse
|
29
|
Weis KE, Thompson LM, Streifer M, Guardado I, Flaws JA, Gore AC, Raetzman LT. Pre- and postnatal developmental exposure to the polychlorinated biphenyl mixture aroclor 1221 alters female rat pituitary gonadotropins and estrogen receptor alpha levels. Reprod Toxicol 2023; 118:108388. [PMID: 37127253 PMCID: PMC10228234 DOI: 10.1016/j.reprotox.2023.108388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Polychlorinated-biphenyls (PCBs) are industrial compounds, which were widely used in manufacturing of electrical parts and transformers. Despite being banned in 1979 due to human health concerns, they persist in the environment. In humans and experimental model systems, PCBs elicit toxicity in part by acting as endocrine-disrupting chemicals (EDCs). Aroclor 1221 (A1221) is a weakly estrogenic PCB mixture known to alter reproductive function in rodents. EDCs can impact hormone signaling at any level of the hypothalamic-pituitary-gonadal (HPG) axis, and we investigated the effects of A1221 exposure during the prenatal and postnatal developmental periods on pituitary hormone and steroid receptor expression in female rats. Examining offspring at 3 ages, postnatal day 8 (P8), P32 and P60, we found that prenatal exposure to A1221 increased P8 neonate pituitary luteinizing hormone beta (Lhb) mRNA and LHβ gonadotrope cell number while decreasing LH serum hormone concentration. No changes in pituitary hormone or hormone receptor gene expression were observed peri-puberty at P32. In reproductively mature rats at P60, we found pituitary follicle stimulating hormone beta (Fshb) mRNA levels increased by prenatal A1221 exposure with no corresponding alterations in FSH hormone or FSHβ expressing cell number. Estrogen receptor alpha (ERα) mRNA and protein levels were also increased at P60, but only following postnatal A1221 dosing. Together, these data illustrate that exposure to the PCB A1221, during critical developmental windows, alters pituitary gonadotropin hormone subunits and ERα levels in offspring at different phases of maturation, potentially impacting reproductive function in concert with other components of the HPG axis.
Collapse
Affiliation(s)
- Karen E Weis
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, United States
| | - Lindsay M Thompson
- Division of Pharmacology and Toxicology, University of Texas at Austin, United States
| | - Madeline Streifer
- Division of Pharmacology and Toxicology, University of Texas at Austin, United States
| | - Isabella Guardado
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois College of Veterinary Medicine, United States
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, University of Texas at Austin, United States
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, United States.
| |
Collapse
|
30
|
Lambalk CB. The enigma of the gonadotropin-releasing hormone pulse frequency governing individual secretion of luteinizing hormone and follicle-stimulating hormone. F S Rep 2023; 4:27-32. [PMID: 37223768 PMCID: PMC10201305 DOI: 10.1016/j.xfre.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/23/2023] [Indexed: 05/25/2023] Open
Abstract
Luteinizing hormone and follicle-stimulating hormone are the two gonadotropic pituitary hormones stimulated by one hypothalamic gonadotropin-releasing hormone (GnRH) in a pulsatile way. Under several experimental conditions, it appears that a low pulse frequency promotes follicle-stimulating hormone secretion, pointing to an elegant mechanism by which, under governance of one stimulating hormone, the responses of two separate hormones can be individualized. Several experimental and fundamental studies have indicated the underlying mechanisms at the level of gene expression and post receptor events. In this article, an additional explanation is hypothetically put forward on the basis of dynamic and kinetic differences between both hormones in response to GnRH, with a key role of their difference in serum half-life combined with some GnRH-related desensitization features. Although experimentally demonstrated, under clinical conditions its effect remains obscure, likely because of overwhelming hormonal gonadal feedback.
Collapse
Affiliation(s)
- Cornelis B. Lambalk
- Cornelis B Lambalk, M.D., Ph.D., Department of Reproductive Medicine, Amsterdam University Medical Center, Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.
| |
Collapse
|
31
|
Garrido MP, Hernandez A, Vega M, Araya E, Romero C. Conventional and new proposals of GnRH therapy for ovarian, breast, and prostatic cancers. Front Endocrinol (Lausanne) 2023; 14:1143261. [PMID: 37056674 PMCID: PMC10086188 DOI: 10.3389/fendo.2023.1143261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
For many years, luteinizing hormone-releasing hormone or gonadotropin-releasing hormone (GnRH) analogs have been used to treat androgen or estrogen-dependent tumors. However, emerging evidence shows that the GnRH receptor (GnRH-R) is overexpressed in several cancer cells, including ovarian, endometrial, and prostate cancer cells, suggesting that GnRH analogs could exert direct antitumoral actions in tumoral tissues that express GnRH-R. Another recent approach based on this knowledge was the use of GnRH peptides for developing specific targeted therapies, improving the delivery and accumulation of drugs in tumoral cells, and decreasing most side effects of current treatments. In this review, we discuss the conventional uses of GnRH analogs, together with the recent advances in GnRH-based drug delivery for ovarian, breast, and prostatic cancer cells.
Collapse
Affiliation(s)
- Maritza P. Garrido
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago, Chile
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrea Hernandez
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Margarita Vega
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago, Chile
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Carmen Romero
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago, Chile
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
32
|
Zhang Y, Wang J, Ding L, Zheng Y, Wu C, Wang K, Xia W, Ge P. Development and validation of a novel risk model in newly diagnosed de novo bone metastatic prostate cancer (M1b): a retrospective study. PeerJ 2023; 11:e14615. [PMID: 36650836 PMCID: PMC9840864 DOI: 10.7717/peerj.14615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/01/2022] [Indexed: 01/15/2023] Open
Abstract
Background Previous studies suggested that bone metastasis has a significant effect on the time of progression to metastatic castration-resistant prostate cancer (CRPC) for newly diagnosed de novo bone metastatic hormone-sensitive prostate cancer (mHSPC). Nevertheless, the effect of different bone metastasis sites was not fully evaluated. This study aimed to develop and validate a novel bone metastatic risk model. Methods We enrolled 122 patients who were newly diagnosed with de novo bone metastatic prostate cancer following primary androgen deprivation based therapy at our institution from January 2008 to June 2021. The metastatic bone sites were classified into six sites: skull; cervical, thoracic, and lumbar vertebrae; chest (ribs and sternum); pelvis; upper limbs; and lower limbs. We calculated the bone metastatic score (BMS) for each site: 0 points were assigned for non-metastasis and 1 point was assigned for metastasis. The X-tile was adopted to acquire optimal cutoff points of BMS. We defined high-risk group (HRG) as BMS ≥ 3 and low-risk group (LRG) as BMS < 3. The new bone risk stratification was validated by calculating the area under the receiver operating characteristic curve (AUC). Subsequently, the relevant clinical prognostic variables were added to construct a predictive nomogram for predicting CRPC. Results The median patient age was 73 years. Most patients had Gleason score ≤8 (93 cases, 76.2%). The median follow-up duration was 11.5 months (range: 2-92 months). Eighty-six patients progressed to CRPC during the follow-up. The most common bone metastatic site was the pelvis (90.2%). The median BMS was 4. Seventy-six patients had HRG, while forty-six had LRG. The 1-, 2-, and 3-year AUCs for H/LRG were 0.620, 0.754, and 0.793, respectively. The HRG was associated with earlier time to CRPC. A nomogram based on four parameters (Gleason score, H/LRG, prostate-specific antigen [PSA] nadir, and time to PSA nadir) was developed to predict CRPC. Internal validation using bootstrapping demonstrated good accuracy for predicting the CRPC (C-index: 0.727). The calibration analysis demonstrated that the model performed well. Conclusion We established a novel H/LRG risk model for newly diagnosed de novo bone metastatic prostate cancer, which provided evidence to support clinical decision-making.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Urology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junqi Wang
- Department of Urology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Li Ding
- Department of Urology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuxin Zheng
- Department of Urology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chuang Wu
- Department of Urology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kun Wang
- Department of Urology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wentao Xia
- Department of Urology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peng Ge
- Department of Urology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
33
|
Gutierrez-Castellanos N, Husain BFA, Dias IC, Lima SQ. Neural and behavioral plasticity across the female reproductive cycle. Trends Endocrinol Metab 2022; 33:769-785. [PMID: 36253276 DOI: 10.1016/j.tem.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
Abstract
Sex is fundamental for the evolution and survival of most species. However, sex can also pose danger, because it increases the risk of predation and disease transmission, among others. Thus, in many species, cyclic fluctuations in the concentration of sex hormones coordinate sexual receptivity and attractiveness with female reproductive capacity, promoting copulation when fertilization is possible and preventing it otherwise. In recent decades, numerous studies have reported a wide variety of sex hormone-dependent plastic rearrangements across the entire brain, including areas relevant for female sexual behavior. By contrast, how sex hormone-induced plasticity alters the computations performed by such circuits, such that collectively they produce the appropriate periodic switches in female behavior, is mostly unknown. In this review, we highlight the myriad sex hormone-induced neuronal changes known so far, the full repertoire of behavioral changes across the reproductive cycle, and the few examples where the relationship between sex hormone-dependent plasticity, neural activity, and behavior has been established. We also discuss current challenges to causally link the actions of sex hormones to the modification of specific cellular pathways and behavior, focusing on rodents as a model system while drawing a comparison between rodents and humans wherever possible.
Collapse
Affiliation(s)
| | - Basma F A Husain
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Inês C Dias
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Susana Q Lima
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal.
| |
Collapse
|
34
|
Anapindi KDB, Romanova EV, Checco JW, Sweedler JV. Mass Spectrometry Approaches Empowering Neuropeptide Discovery and Therapeutics. Pharmacol Rev 2022; 74:662-679. [PMID: 35710134 PMCID: PMC9553102 DOI: 10.1124/pharmrev.121.000423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The discovery of insulin in the early 1900s ushered in the era of research related to peptides acting as hormones and neuromodulators, among other regulatory roles. These essential gene products are found in all organisms, from the most primitive to the most evolved, and carry important biologic information that coordinates complex physiology and behavior; their misregulation has been implicated in a variety of diseases. The evolutionary origins of at least 30 neuropeptide signaling systems have been traced to the common ancestor of protostomes and deuterostomes. With the use of relevant animal models and modern technologies, we can gain mechanistic insight into orthologous and paralogous endogenous peptides and translate that knowledge into medically relevant insights and new treatments. Groundbreaking advances in medicine and basic science influence how signaling peptides are defined today. The precise mechanistic pathways for over 100 endogenous peptides in mammals are now known and have laid the foundation for multiple drug development pipelines. Peptide biologics have become valuable drugs due to their unique specificity and biologic activity, lack of toxic metabolites, and minimal undesirable interactions. This review outlines modern technologies that enable neuropeptide discovery and characterization, and highlights lessons from nature made possible by neuropeptide research in relevant animal models that is being adopted by the pharmaceutical industry. We conclude with a brief overview of approaches/strategies for effective development of peptides as drugs. SIGNIFICANCE STATEMENT: Neuropeptides, an important class of cell-cell signaling molecules, are involved in maintaining a range of physiological functions. Since the discovery of insulin's activity, over 100 bioactive peptides and peptide analogs have been used as therapeutics. Because these are complex molecules not easily predicted from a genome and their activity can change with subtle chemical modifications, mass spectrometry (MS) has significantly empowered peptide discovery and characterization. This review highlights contributions of MS-based research towards the development of therapeutic peptides.
Collapse
Affiliation(s)
- Krishna D B Anapindi
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois (K.D.B.A., E.V.R., J.V.S.) and Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska (J.W.C.)
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois (K.D.B.A., E.V.R., J.V.S.) and Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska (J.W.C.)
| | - James W Checco
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois (K.D.B.A., E.V.R., J.V.S.) and Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska (J.W.C.)
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois (K.D.B.A., E.V.R., J.V.S.) and Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska (J.W.C.)
| |
Collapse
|
35
|
He Y, Xu W, Xiao YT, Huang H, Gu D, Ren S. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:198. [PMID: 35750683 PMCID: PMC9232569 DOI: 10.1038/s41392-022-01042-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) affects millions of men globally. Due to advances in understanding genomic landscapes and biological functions, the treatment of PCa continues to improve. Recently, various new classes of agents, which include next-generation androgen receptor (AR) signaling inhibitors (abiraterone, enzalutamide, apalutamide, and darolutamide), bone-targeting agents (radium-223 chloride, zoledronic acid), and poly(ADP-ribose) polymerase (PARP) inhibitors (olaparib, rucaparib, and talazoparib) have been developed to treat PCa. Agents targeting other signaling pathways, including cyclin-dependent kinase (CDK)4/6, Ak strain transforming (AKT), wingless-type protein (WNT), and epigenetic marks, have successively entered clinical trials. Furthermore, prostate-specific membrane antigen (PSMA) targeting agents such as 177Lu-PSMA-617 are promising theranostics that could improve both diagnostic accuracy and therapeutic efficacy. Advanced clinical studies with immune checkpoint inhibitors (ICIs) have shown limited benefits in PCa, whereas subgroups of PCa with mismatch repair (MMR) or CDK12 inactivation may benefit from ICIs treatment. In this review, we summarized the targeted agents of PCa in clinical trials and their underlying mechanisms, and further discussed their limitations and future directions.
Collapse
Affiliation(s)
- Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Weidong Xu
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China
| | - Yu-Tian Xiao
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.,Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Haojie Huang
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Di Gu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.
| |
Collapse
|
36
|
Yu S, Wang Z, Zhang L, Nie Y, Deng Y, Liu R, Diao J, Zhou Z. Possible changes in trade-off strategy in female lizards (Eremias argus) during hibernation following exposure to chlorantraniliprole: Impact on the HPG axis and the energy mobilization. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105059. [PMID: 35715026 DOI: 10.1016/j.pestbp.2022.105059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 06/15/2023]
Abstract
Hibernation is a short-term survival strategy for ectotherms to cope with cold weather and food shortages. The energy sources stored before hibernation are used not only in the winter, but also in preparation for reproduction. Reproductive physiology and behavior are primarily regulated by the hypothalamus-pituitary-gonad (HPG) axis. In this study, we examined endocrine hormone changes in the HPG axis of female lizards (Eremias argus) after chlorantraniliprole insecticide (CAP) exposure during hibernation. The levels of gonadotropin-releasing hormone, luteinizing hormone, follicle-stimulating hormone and progesterone were significantly decreased and the level of testosterone (T) was significantly increased after 135d experiment. This study verified the possible endocrine disrupting effects of CAP. More energy material consumption was observed in CAP treated group. Female E. argus preferred to invest energy to present survival when exposed to CAP, rather than to reserve material for following reproductive activity.
Collapse
Affiliation(s)
- Simin Yu
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zikang Wang
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Luyao Zhang
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Yufan Nie
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Yue Deng
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Rui Liu
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| |
Collapse
|
37
|
Seminara SB, Topaloglu AK. Review of human genetic and clinical studies directly relevant to GnRH signalling. J Neuroendocrinol 2022; 34:e13080. [PMID: 34970798 PMCID: PMC9299506 DOI: 10.1111/jne.13080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/28/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022]
Abstract
GnRH is the pivotal hormone in controlling the hypothalamic-pituitary gonadal (HPG) axis in humans and other mammalian species. GnRH function is influenced by a multitude of known and still unknown environmental and genetic factors. Molecular genetic studies on human families with hypogonadotropic hypogonadism over the past two decades have been instrumental in delineating the kisspeptin and neurokinin B signalling, which integrally modulates GnRH release from the hypothalamus. The identification of kisspeptin and neurokinin B ligand-receptor gene pair mutations in patients with absent puberty have paved the way to a greater understanding of the central regulation of the HPG cascade. In this article, we aim to review the literature on the genetic and clinical aspects of GnRH and its receptor, as well as the two ligand-receptor sets directly pertinent to the function of GnRH hormone signalling, kisspeptin/ kisspeptin receptor and NKB/NK3R.
Collapse
Affiliation(s)
- Stephanie B. Seminara
- Reproductive Endocrine Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - A. Kemal Topaloglu
- Division of Pediatric Endocrinology, Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
38
|
Zohar Y, Zmora N, Trudeau VL, Muñoz-Cueto JA, Golan M. A half century of fish gonadotropin-releasing hormones: Breaking paradigms. J Neuroendocrinol 2022; 34:e13069. [PMID: 34913529 DOI: 10.1111/jne.13069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
The field of fish gonadotropin-releasing hormones (GnRHs) is also celebrating its 50th anniversary this year. This review provides a chronological history of fish GnRH biology over the past five decades. It demonstrates how discoveries in fish regarding GnRH and GnRH receptor multiplicity, dynamic interactions between GnRH neurons, and additional neuroendocrine factors acting alongside GnRH, amongst others, have driven a paradigm shift in our understanding of GnRH systems and functions in vertebrates, including mammals. The role of technological innovations in enabling scientific discoveries is portrayed, as well as how fundamental research in fish GnRH led to translational outcomes in aquaculture. The interchange between fish and mammalian GnRH research is discussed, as is the value and utility of using fish models for advancing GnRH biology. Current challenges and future perspectives are presented, with the hope of expanding the dialogue and collaborations within the neuroendocrinology scientific community at large, capitalizing on diversifying model animals and the use of comparative strategies.
Collapse
Affiliation(s)
- Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences and University Institute of Marine Research (INMAR), University of Cádiz and European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain
| | - Matan Golan
- Institute of Animal Science, Agricultural Research Organization, Rishon Letziyon, Israel
| |
Collapse
|
39
|
Voliotis M, Plain Z, Li XF, McArdle CA, O’Byrne KT, Tsaneva‐Atanasova K. Mathematical models in GnRH research. J Neuroendocrinol 2022; 34:e13085. [PMID: 35080068 PMCID: PMC9285519 DOI: 10.1111/jne.13085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/18/2021] [Accepted: 12/16/2021] [Indexed: 12/05/2022]
Abstract
Mathematical modelling is an indispensable tool in modern biosciences, enabling quantitative analysis and integration of biological data, transparent formulation of our understanding of complex biological systems, and efficient experimental design based on model predictions. This review article provides an overview of the impact that mathematical models had on GnRH research. Indeed, over the last 20 years mathematical modelling has been used to describe and explore the physiology of the GnRH neuron, the mechanisms underlying GnRH pulsatile secretion, and GnRH signalling to the pituitary. Importantly, these models have contributed to GnRH research via novel hypotheses and predictions regarding the bursting behaviour of the GnRH neuron, the role of kisspeptin neurons in the emergence of pulsatile GnRH dynamics, and the decoding of GnRH signals by biochemical signalling networks. We envisage that with the advent of novel experimental technologies, mathematical modelling will have an even greater role to play in our endeavour to understand the complex spatiotemporal dynamics underlying the reproductive neuroendocrine system.
Collapse
Affiliation(s)
- Margaritis Voliotis
- Department of Mathematics and Living Systems InstituteCollege of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK
| | - Zoe Plain
- Department of Mathematics and Living Systems InstituteCollege of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK
| | - Xiao Feng Li
- Department of Women and Children’s HealthSchool of Life Course SciencesKing’s College LondonLondonUK
| | - Craig A. McArdle
- Laboratories for Integrative Neuroscience and EndocrinologySchool of Clinical SciencesUniversity of BristolBristolUK
| | - Kevin T. O’Byrne
- Department of Women and Children’s HealthSchool of Life Course SciencesKing’s College LondonLondonUK
| | - Krasimira Tsaneva‐Atanasova
- Department of Mathematics and Living Systems InstituteCollege of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK
| |
Collapse
|
40
|
Prevot V, Sharif A. The polygamous GnRH neuron: Astrocytic and tanycytic communication with a neuroendocrine neuronal population. J Neuroendocrinol 2022; 34:e13104. [PMID: 35233849 DOI: 10.1111/jne.13104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 11/28/2022]
Abstract
To ensure the survival of the species, hypothalamic neuroendocrine circuits controlling fertility, which converge onto neurons producing gonadotropin-releasing hormone (GnRH), must respond to fluctuating physiological conditions by undergoing rapid and reversible structural and functional changes. However, GnRH neurons do not act alone, but through reciprocal interactions with multiple hypothalamic cell populations, including several glial and endothelial cell types. For instance, it has long been known that in the hypothalamic median eminence, where GnRH axons terminate and release their neurohormone into the pituitary portal blood circulation, morphological plasticity displayed by distal processes of tanycytes modifies their relationship with adjacent neurons as well as the spatial properties of the neurohemal junction. These alterations not only regulate the capacity of GnRH neurons to release their neurohormone, but also the activation of discrete non-neuronal pathways that mediate feedback by peripheral hormones onto the hypothalamus. Additionally, a recent breakthrough has demonstrated that GnRH neurons themselves orchestrate the establishment of their neuroendocrine circuitry during postnatal development by recruiting an entourage of newborn astrocytes that escort them into adulthood and, via signalling through gliotransmitters such as prostaglandin E2, modulate their activity and GnRH release. Intriguingly, several environmental and behavioural toxins perturb these neuron-glia interactions and consequently, reproductive maturation and fertility. Deciphering the communication between GnRH neurons and other neural cell types constituting hypothalamic neuroendocrine circuits is thus critical both to understanding physiological processes such as puberty, oestrous cyclicity and aging, and to developing novel therapeutic strategies for dysfunctions of these processes, including the effects of endocrine disruptors.
Collapse
Affiliation(s)
- Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 Days for Health, Lille, France
| | - Ariane Sharif
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 Days for Health, Lille, France
| |
Collapse
|
41
|
Şişli HB, Hayal TB, Şenkal S, Kıratlı B, Sağraç D, Seçkin S, Özpolat M, Şahin F, Yılmaz B, Doğan A. Apelin Receptor Signaling Protects GT1-7 GnRH Neurons Against Oxidative Stress In Vitro. Cell Mol Neurobiol 2022; 42:753-775. [PMID: 32989586 PMCID: PMC11441187 DOI: 10.1007/s10571-020-00968-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022]
Abstract
Hypothalamic-pituitary-adrenal (HPA) axis regulates stress response in the body and abnormal increase in oxidative stress contributes to the various disease pathogenesis. Although hypothalamic distribution of Apelin receptor (APLNR) has been studied, the potential regulatory role in hormone releasing function of hypothalamus in response to stress is not well elucidated yet. To determine whether APLNR is involved in the protection of the hypothalamus against oxidative stress, gonadotropin-releasing hormone (GnRH) cells were used as an in vitro model system. GT1-7 mouse hypothalamic neuronal cell line was subjected to H2O2 and hypoxia induced oxidative stress under various circumstances including APLNR overexpression, knockdown and knockout. Overexpression and activation of APLNR in GnRH producing neurons caused an increase in cell proliferation under oxidative stress. In addition, blockage of APLNR function by siRNA reduced GnRH release. Activation of APLNR initiated AKT kinase pathway as a proliferative response against hypoxic culture conditions and blocked apoptosis. Although expression and activation of APLNR have not been related to GnRH neuron differentiation during development, positive contribution of activated APLNR signaling to GnRH release in mouse embryonic stem cell derived GnRH neurons was observed in the present study. Sustained overexpression and complete deletion of APLNR in mouse embryonic stem cell derived GnRH neurons reduced GnRH release in vitro. The present findings suggest that expression and activation of APLNR in GnRH releasing GT1-7 neurons might induce a protective mechanism against oxidative stress induced cell death and APLNR signaling may play a role in GnRH neurons.
Collapse
Affiliation(s)
- Hatice Burcu Şişli
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Taha Bartu Hayal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selinay Şenkal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Binnur Kıratlı
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Derya Sağraç
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selin Seçkin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Murat Özpolat
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Bayram Yılmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
42
|
Iwamoto H, Izumi K, Makino T, Mizokami A. Androgen Deprivation Therapy in High-Risk Localized and Locally Advanced Prostate Cancer. Cancers (Basel) 2022; 14:1803. [PMID: 35406575 PMCID: PMC8997146 DOI: 10.3390/cancers14071803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 01/22/2023] Open
Abstract
The recommended treatment for high-risk localized or locally advanced prostate cancer is radical prostatectomy plus extended pelvic lymph node dissection or radiation therapy plus long-term androgen deprivation therapy. However, some patients are treated with androgen deprivation therapy alone for various reasons. In this review, we will discuss the position, indications, complications, and future prospects of androgen deprivation therapy for high-risk localized and locally advanced prostate cancer.
Collapse
Affiliation(s)
- Hiroaki Iwamoto
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, 13-1 Takara-Machi, Kanazawa 920-8640, Ishikawa, Japan
| | - Kouji Izumi
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, 13-1 Takara-Machi, Kanazawa 920-8640, Ishikawa, Japan
| | - Tomoyuki Makino
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, 13-1 Takara-Machi, Kanazawa 920-8640, Ishikawa, Japan
- Department of Urology, Ishikawa Prefectural Central Hospital, Kanazawa 920-8530, Ishikawa, Japan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, 13-1 Takara-Machi, Kanazawa 920-8640, Ishikawa, Japan
| |
Collapse
|
43
|
Okarvi SM, Al-Jammaz I. Synthesis, Radiolabeling, and Preclinical Evaluation of 68Ga/ 177Lu-Labeled Leuprolide Peptide Analog for the Detection of Breast Cancer. Cancer Biother Radiopharm 2022; 37:372-383. [PMID: 35325547 DOI: 10.1089/cbr.2021.0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Objectives: The expansion of novel and potent tumor receptor binding peptides is a promising approach for the precise targeting of various cancer. Leuprolide is a 9-residue peptide analog of gonadotropin-releasing hormone and is extensively used in the treatment of sex hormone-dependent tumors, including prostate, breast, and ovarian cancer. This preclinical study was undertaken to prepare a new radiolabeled leuprolide peptide for the detection of breast carcinoma. Methods: A 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA)-coupled 9-amino acid leuprolide peptide was synthesized after typical 9-fluorenylmethyl-oxycarbonyl-based solid-phase peptide synthesis and radiolabeled with both 68Ga and 177Lu radionuclides for theranostic use. The systemic pharmacokinetics was done in healthy balb/c mice. The in vitro tumor cell binding affinity was determined on MCF7, T47D, and MDA-MB-231 breast cancer cell lines. In vivo tumor targeting and micro positron-emission tomography imaging was performed on nude mice with MCF7 breast tumor xenografts. Results: The leuprolide peptide was conveniently synthesized by solid-phase synthesis strategy and its identity and purity were validated by mass spectrometry and high-performance liquid chromatography. The peptide radiolabeled efficiently (˃94%) with both diagnostic (68Ga) and therapeutic (177Lu) radionuclides and displayed nanomolar binding potency to all three tested MCF7, T47D, and MDA-MB-231 cell lines. Fast and favorable pharmacokinetics was observed for 68Ga/177Lu-leuprolide in healthy Balb/c mice. In nude mice, 68Ga-leuprolide peptide exhibited rapid clearance from the blood circulation with low to moderate (up to 5% ID/g) uptake/retention by the major body organs. The accumulation in the estrogen receptor-positive MCF7 tumor was 2.24% ± 0.62% ID/g at 45 min p.i, with good tumor to blood and muscle uptake ratios. The radiolabeled peptide was excreted primarily through the renal pathway. Conclusion: The encouraging results of this initial study demonstrate that additional testing of this leuprolide peptide seems to be indicated because of its convincing potential to be a new agent for the management of breast carcinoma.
Collapse
Affiliation(s)
- Subhani M Okarvi
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ibrahim Al-Jammaz
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
44
|
Tsukamura H. Kobayashi Award 2019: The neuroendocrine regulation of the mammalian reproduction. Gen Comp Endocrinol 2022; 315:113755. [PMID: 33711315 DOI: 10.1016/j.ygcen.2021.113755] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 02/05/2023]
Abstract
Mammalian reproductive function is a complex system of many players orchestrated by the hypothalamus-pituitary-gonadal (HPG) axis. The hypothalamic gonadotropin-releasing hormone (GnRH) and the consequent pituitary gonadotropin release show two modes of secretory patterns, namely the surge and pulse modes. The surge mode is triggered by the positive feedback action of estrogen secreted from the mature ovarian follicle to induce ovulation in females of most mammalian species. The pulse mode of GnRH release is required for stimulating tonic gonadotropin secretion to drive folliculogenesis, spermatogenesis and steroidogenesis and is negatively fine-tuned by the sex steroids. Accumulating evidence suggests that hypothalamic kisspeptin neurons are the master regulator for animal reproduction to govern the HPG axis. Specifically, kisspeptin neurons located in the anterior hypothalamus, such as the anteroventral periventricular nucleus (AVPV) in rodents and preoptic nucleus (POA) in ruminants, primates and others, and the neurons located in the arcuate nucleus (ARC) in posterior hypothalamus in most mammals are considered to play a key role in generating the surge and pulse modes of GnRH release, respectively. The present article focuses on the role of AVPV (or POA) kisspeptin neurons as a center for GnRH surge generation and of the ARC kisspeptin neurons as a center for GnRH pulse generation to mediate estrogen positive and negative feedback mechanisms, respectively, and discusses how the estrogen epigenetically regulates kisspeptin gene expression in these two populations of neurons. This article also provides the mechanism how malnutrition and lactation suppress GnRH/gonadotropin pulses through an inhibition of the ARC kisspeptin neurons. Further, the article discusses the programming effect of estrogen on kisspeptin neurons in the developmental brain to uncover the mechanism underlying the sex difference in GnRH/gonadotropin release as well as an irreversible infertility induced by supra-physiological estrogen exposure in rodent models.
Collapse
Affiliation(s)
- Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
45
|
Ozawa H. Kisspeptin neurons as an integration center of reproductive regulation: Observation of reproductive function based on a new concept of reproductive regulatory nervous system. Reprod Med Biol 2021; 21:e12419. [PMID: 34934400 PMCID: PMC8656200 DOI: 10.1002/rmb2.12419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022] Open
Abstract
Background Regulation of the reproductive system has been explained by the actions and feedback of gonadotropin releasing hormone‐luteinizing hormone/follicle stimulating hormone (GnRH‐LH/FSH) ‐sex steroids; however, the discovery of kisspeptin neurons and a kisspeptin‐GnRH‐LH/FSH axis has prompted this regulation to be reviewed. Methods We investigated changes in kisspeptin neurons and associated changes in the hypothalamic‐pituitary‐gonadal (HPG) axis under various situations and experimental conditions using histochemical methods. Main findings (Results) Kisspeptin neurons play an important role in receiving and integrating information from internal and external environmental factors and communicating it to the conventional HPG axis. Conclusion The recently described Kisspeptin‐GnRH‐LH/FSH‐gonad system regulates reproductive function via mechanisms that until recently were not completely understood.
Collapse
Affiliation(s)
- Hitoshi Ozawa
- Department of Anatomy and Neurobiology Graduate School of Medicine Nippon Medical School Tokyo Japan
| |
Collapse
|
46
|
Estrogen Receptors as Molecular Targets of Endocrine Therapy for Glioblastoma. Int J Mol Sci 2021; 22:ijms222212404. [PMID: 34830286 PMCID: PMC8626012 DOI: 10.3390/ijms222212404] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Hormonal factors may participate in the development and progression of glioblastoma, the most aggressive primary tumor of the central nervous system. Many studies have been conducted on the possible involvement of estrogen receptors (ERs) in gliomas. Since there is a tendency for a reduced expression of ERs as the degree of malignancy of such tumors increases, it is important to understand the role of these receptors in the progression and treatment of this disease. ERs belong to the family of nuclear receptors, although they can also be in the plasmatic membrane, cytoplasm and mitochondria. They are classified as estrogen receptors alpha and beta (ER⍺ and ERβ), each with different isoforms that have a distinct function in the organism. ERs regulate multiple physiological and pathological processes through the activation of genomic and nongenomic pathways in the cell. Nevertheless, the role of each isoform in the development and progression of glioblastoma is not completely clear. Diverse in vitro and in vivo studies have shown encouraging results for endocrine therapy as a treatment for gliomas. At the same time, many questions have arisen concerning the nature of ERs as well as the mechanism of action of the proposed drugs. Hence, the aim of the current review is to describe the drugs that could possibly be utilized in endocrine therapy for the treatment of high-grade gliomas, analyze their interaction with ERs, and explore the involvement of these drugs and receptors in resistance to standard chemotherapy.
Collapse
|
47
|
Chandra K, Banerjee A, Das M. Epigenetic and transcriptional regulation of GnRH gene under altered metabolism and ageing. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00374-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
48
|
Phumsatitpong C, Wagenmaker ER, Moenter SM. Neuroendocrine interactions of the stress and reproductive axes. Front Neuroendocrinol 2021; 63:100928. [PMID: 34171353 PMCID: PMC8605987 DOI: 10.1016/j.yfrne.2021.100928] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 01/27/2023]
Abstract
Reproduction is controlled by a sequential regulation of the hypothalamo-pituitary-gonadal (HPG) axis. The HPG axis integrates multiple inputs to maintain proper reproductive functions. It has long been demonstrated that stress alters fertility. Nonetheless, the central mechanisms of how stress interacts with the reproductive system are not fully understood. One of the major pathways that is activated during the stress response is the hypothalamo-pituitary-adrenal (HPA) axis. In this review, we discuss several aspects of the interactions between these two neuroendocrine systems to offer insights to mechanisms of how the HPA and HPG axes interact. We have also included discussions of other systems, for example GABA-producing neurons, where they are informative to the overall picture of stress effects on reproduction.
Collapse
Affiliation(s)
- Chayarndorn Phumsatitpong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Elizabeth R Wagenmaker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
49
|
Faykoo-Martinez M, Kalinowski LM, Holmes MM. Neuroendocrine regulation of pubertal suppression in the naked mole-rat: What we know and what comes next. Mol Cell Endocrinol 2021; 534:111360. [PMID: 34116130 DOI: 10.1016/j.mce.2021.111360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/20/2021] [Accepted: 06/03/2021] [Indexed: 01/13/2023]
Abstract
Puberty is a key developmental milestone that marks an individual's maturation in several ways including, but not limited to, reproductive maturation, changes in behaviors and neural organization. The timing at which puberty occurs is variable both within individuals of the same species and between species. These variations can be aligned with ecological cues that delay or suppress puberty. Naked mole-rats are colony-living rodents where reproduction is restricted to a few animals; all other animals are pubertally-suppressed. Animals removed from suppressive colony cues can reproductively mature, presenting the unique opportunity to study adult-onset puberty. Recently, we found that RFRP-3 administration sustains pubertal delay in naked mole-rats removed from colony. In this review, we explore what is known about regulators that control puberty onset, the role of stress/social status in pubertal timing, the status of knowledge of pubertal suppression in naked mole-rats and what comes next.
Collapse
Affiliation(s)
| | | | - Melissa M Holmes
- Department of Cell and Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto Mississauga, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| |
Collapse
|
50
|
Ahmadifar E, Pourmohammadi Fallah H, Yousefi M, Dawood MAO, Hoseinifar SH, Adineh H, Yilmaz S, Paolucci M, Doan HV. The Gene Regulatory Roles of Herbal Extracts on the Growth, Immune System, and Reproduction of Fish. Animals (Basel) 2021; 11:ani11082167. [PMID: 34438625 PMCID: PMC8388479 DOI: 10.3390/ani11082167] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/03/2021] [Accepted: 07/10/2021] [Indexed: 12/22/2022] Open
Abstract
The crucial need for safe and healthy aquatic animals obligates researchers in aquaculture to investigate alternative and beneficial additives. Medicinal herbals and their extracts are compromised with diverse effects on the performances of aquatic animals. These compounds can affect growth performance and stimulate the immune system when used in fish diet. In addition, the use of medicinal herbs and their extracts can reduce oxidative stress induced by several stressors during fish culture. Correspondingly, aquatic animals could gain increased resistance against infectious pathogens and environmental stressors. Nevertheless, the exact mode of action where these additives can affect aquatic animals' performances is still not well documented. Understanding the mechanistic role of herbal supplements and their derivatives is a vital tool to develop further the strategies and application of these additives for feasible and sustainable aquaculture. Gene-related studies have clarified the detailed information on the herbal supplements' mode of action when administered orally in aquafeed. Several review articles have presented the potential roles of medicinal herbs on the performances of aquatic animals. However, this review article discusses the outputs of studies conducted on aquatic animals fed dietary, medicinal herbs, focusing on the gene expression related to growth and immune performances. Furthermore, a particular focus is directed to the expected influence of herbal supplements on the reproduction of aquatic animals.
Collapse
Affiliation(s)
- Ehsan Ahmadifar
- Department of Fisheries, Faculty of Natural Resources, University of Zabol, Zabol 98613-35856, Iran;
| | | | - Morteza Yousefi
- Department of Veterinary Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, 117198 Moscow, Russia;
| | - Mahmoud A. O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4918943464, Iran;
| | - Hossein Adineh
- Department of Fisheries, Faculty of Ariculture and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Golestan 4971799151, Iran;
| | - Sevdan Yilmaz
- Department of Aquaculture, Faculty of Marine Sciences and Technology, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey;
| | - Marina Paolucci
- Department of Science and Technologies, University of Sannio, 82100 Benevento, Italy;
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| |
Collapse
|