1
|
Zhang Z, Wu C, Wang S, Tong Y, Huang J, Xue C, Cao T, Suzuki K. Long-Term Moderate Increase in Medium-Chain Fatty Acids Intake Enhances Muscle Metabolism and Function in Mice. Int J Mol Sci 2025; 26:4126. [PMID: 40362366 PMCID: PMC12071283 DOI: 10.3390/ijms26094126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/19/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Medium-chain fatty acids (MCFAs) refer to a mixture of fatty acids typically composed of 6 to 12 carbon atoms. The unique transport and rapid metabolism of MCFAs provide more clinical benefits than other substrates, such as long-chain fatty acids. Although many studies have shown that MCFAs may improve exercise capacity and muscle strength, applications have mainly been limited to low doses. This study explores the effects of high-dose MCFA intake on muscle strength and exercise endurance. Mice were fed high-fat diets containing 30, 35, and 40% (w/w) MCFAs for 12 weeks, and measurements of grip strength and submaximal endurance exercise capacity were conducted to evaluate muscle function. Results showed that compared to the 30% MCFAs group, the absolute grip strength in the 35 and 40% MCFAs groups significantly increased; in terms of endurance performance, the 35% MCFAs group showed a significant increase compared to the 40% MCFAs group. These results were mainly achieved by promoting muscle regeneration and differentiation and inhibiting the expression of the ubiquitin-proteasome pathway. This study demonstrates that moderately increasing MCFA intake can improve the effects of obesity-induced muscle atrophy. However, excessive intake may reduce the impact of improvement.
Collapse
Affiliation(s)
- Ziwei Zhang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Cong Wu
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Shuo Wang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Yishan Tong
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Jiapeng Huang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Chuwen Xue
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Tiehan Cao
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| |
Collapse
|
2
|
Huang Z, Hu L, Liu Z, Wang S. The Functions and Regulatory Mechanisms of Histone Modifications in Skeletal Muscle Development and Disease. Int J Mol Sci 2025; 26:3644. [PMID: 40332229 PMCID: PMC12027200 DOI: 10.3390/ijms26083644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/05/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Skeletal muscle development is a complex biological process regulated by many factors, such as transcription factors, signaling pathways, and epigenetic modifications. Histone modifications are important epigenetic regulatory factors involved in various biological processes, including skeletal muscle development, and play a crucial role in the pathogenesis of skeletal muscle diseases. Histone modification regulators affect the expression of many genes involved in skeletal muscle development and disease by adding or removing certain chemical modifications. In this review, we comprehensively summarize the functions and regulatory activities of the histone modification regulators involved in skeletal muscle development, regeneration, and disease.
Collapse
Affiliation(s)
- Zining Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan 430062, China; (Z.H.); (L.H.)
| | - Linqing Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan 430062, China; (Z.H.); (L.H.)
| | - Zhiwei Liu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Shanshan Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan 430062, China; (Z.H.); (L.H.)
| |
Collapse
|
3
|
Elashry MI, Schneider VC, Heimann M, Wenisch S, Arnhold S. CRISPR/Cas9-Targeted Myostatin Deletion Improves the Myogenic Differentiation Parameters for Muscle-Derived Stem Cells in Mice. J Dev Biol 2025; 13:5. [PMID: 39982358 PMCID: PMC11843916 DOI: 10.3390/jdb13010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/25/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Skeletal muscle plays a pivotal role in physical activity, protein storage and energy utilization. Skeletal muscle wasting due to immobilization, aging, muscular dystrophy and cancer cachexia has negative impacts on the quality of life. The deletion of myostatin, a growth and differentiation factor-8 (GDF-8) augments muscle mass through hyperplasia and hypertrophy of muscle fibers. The present study examines the impact of myostatin deletion using CRISPR/Cas9 editing on the myogenic differentiation (MD) of C2C12 muscle stem cells. A total of five myostatin loci were targeted using guided RNAs that had been previously cloned into a vector. The clones were transfected in C2C12 cells via electroporation. The cell viability and MD of myostatin-edited clones (Mstn-/-) were compared with C2C12 (Mstn+/+) using a series of assays, including MTT, sulforhodamine B, immunocytochemistry, morphometric analysis and RT-qPCR. The clones sequenced showed evidence of nucleotides deletion in Mstn-/- cells. Mstn-/- cells demonstrated a normal physiological performance and lack of cytotoxicity. Myostatin depletion promoted the myogenic commitment as evidenced by upregulated MyoD and myogenin expression. The number of MyoD-positive cells was increased in the differentiated Mstn-/- clones. The Mstn-/- editing upregulates both mTOR and MyH expression, as well as increasing the size of myotubes. The differentiation of Mstn-/- cells upregulates ActRIIb; in contrast, it downregulates decorin expression. The data provide evidence of successful CRISPR/Cas9-mediated myostatin deletion. In addition, targeting myostatin could be a beneficial therapeutic strategy to promote MD and to restore muscle loss. In conclusion, the data suggest that myostatin editing using CRISPR/Cas9 could be a potential therapeutic manipulation to improve the regenerative capacity of muscle stem cells before in vivo application.
Collapse
Affiliation(s)
- Mohamed I. Elashry
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany; (V.C.S.); (M.H.); (S.A.)
| | - Victoria C. Schneider
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany; (V.C.S.); (M.H.); (S.A.)
| | - Manuela Heimann
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany; (V.C.S.); (M.H.); (S.A.)
| | - Sabine Wenisch
- Clinic of Small Animals, Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany;
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany; (V.C.S.); (M.H.); (S.A.)
| |
Collapse
|
4
|
Khouri-Farah N, Winchester EW, Schilder BM, Robinson K, Curtis SW, Skene NG, Leslie-Clarkson EJ, Cotney J. Gene expression patterns of the developing human face at single cell resolution reveal cell type contributions to normal facial variation and disease risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.18.633396. [PMID: 39868299 PMCID: PMC11761091 DOI: 10.1101/2025.01.18.633396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Craniofacial development gives rise to the complex structures of the face and involves the interplay of diverse cell types. Despite its importance, our understanding of human-specific craniofacial developmental mechanisms and their genetic underpinnings remains limited. Here, we present a comprehensive single-nucleus RNA sequencing (snRNA-seq) atlas of human craniofacial development from craniofacial tissues of 24 embryos that span six key time points during the embryonic period (4-8 post-conception weeks). This resource resolves the transcriptional dynamics of seven major cell types and uncovers distinct major cell types, including muscle progenitors and cranial neural crest cells (CNCCs), as well as dozens of subtypes of ectoderm and mesenchyme. Comparative analyses reveal substantial conservation of major cell types, alongside human biased differences in gene expression programs. CNCCs, which play a crucial role in craniofacial morphogenesis, exhibit the lowest marker gene conservation, underscoring their evolutionary plasticity. Spatial transcriptomics further localizes cell populations, providing a detailed view of their developmental roles and anatomical context. We also link these developmental processes to genetic variation, identifying cell type-specific enrichments for common variants associated with facial morphology and rare variants linked to orofacial clefts. Intriguingly, Neanderthal-introgressed sequences are enriched near genes with biased expression in cartilage and specialized ectodermal subtypes, suggesting their contribution to modern human craniofacial features. This atlas offers unprecedented insights into the cellular and genetic mechanisms shaping the human face, highlighting conserved and distinctly human aspects of craniofacial biology. Our findings illuminate the developmental origins of craniofacial disorders, the genetic basis of facial variation, and the evolutionary legacy of ancient hominins. This work provides a foundational resource for exploring craniofacial biology, with implications for developmental genetics, evolutionary biology, and clinical research into congenital anomalies.
Collapse
Affiliation(s)
| | | | - Brian M Schilder
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0BZ, UK
- UK Dementia Research Institute at Imperial College London, London, W12 0BZ, UK
| | - Kelsey Robinson
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sarah W Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nathan G Skene
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0BZ, UK
- UK Dementia Research Institute at Imperial College London, London, W12 0BZ, UK
| | | | - Justin Cotney
- Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
5
|
Bridges JP, Vladar EK, Kurche JS, Krivoi A, Stancil IT, Dobrinskikh E, Hu Y, Sasse SK, Lee JS, Blumhagen RZ, Yang IV, Gerber AN, Peljto AL, Evans CM, Redente EF, Riches DW, Schwartz DA. Progressive lung fibrosis: reprogramming a genetically vulnerable bronchoalveolar epithelium. J Clin Invest 2025; 135:e183836. [PMID: 39744946 PMCID: PMC11684817 DOI: 10.1172/jci183836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is etiologically complex, with well-documented genetic and nongenetic origins. In this Review, we speculate that the development of IPF requires two hits: the first establishes a vulnerable bronchoalveolar epithelium, and the second triggers mechanisms that reprogram distal epithelia to initiate and perpetuate a profibrotic phenotype. While vulnerability of the bronchoalveolar epithelia is most often driven by common or rare genetic variants, subsequent injury of the bronchoalveolar epithelia results in persistent changes in cell biology that disrupt tissue homeostasis and activate fibroblasts. The dynamic biology of IPF can best be contextualized etiologically and temporally, including stages of vulnerability, early disease, and persistent and progressive lung fibrosis. These dimensions of IPF highlight critical mechanisms that adversely disrupt epithelial function, activate fibroblasts, and lead to lung remodeling. Together with better recognition of early disease, this conceptual approach should lead to the development of novel therapeutics directed at the etiologic and temporal drivers of lung fibrosis that will ultimately transform the care of patients with IPF from palliative to curative.
Collapse
Affiliation(s)
- James P. Bridges
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eszter K. Vladar
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jonathan S. Kurche
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Andrei Krivoi
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ian T. Stancil
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, School of Medicine, Stanford, California, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yan Hu
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sarah K. Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Joyce S. Lee
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachel Z. Blumhagen
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| | - Ivana V. Yang
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anthony N. Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Anna L. Peljto
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher M. Evans
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Elizabeth F. Redente
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - David W.H. Riches
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David A. Schwartz
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
6
|
Borowik AK, Murach KA, Miller BF. The expanding roles of myonuclei in adult skeletal muscle health and function. Biochem Soc Trans 2024; 52:1-14. [PMID: 39700019 DOI: 10.1042/bst20241637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Skeletal muscle cells (myofibers) require multiple nuclei to support a cytoplasmic volume that is larger than other mononuclear cell types. It is dogmatic that mammalian resident myonuclei rely on stem cells (specifically satellite cells) for adding new DNA to muscle fibers to facilitate cytoplasmic expansion that occurs during muscle growth. In this review, we discuss the relationship between cell size and supporting genetic material. We present evidence that myonuclei may undergo DNA synthesis as a strategy to increase genetic material in myofibers independent from satellite cells. We then describe the details of our experiments that demonstrated that mammalian myonuclei can replicate DNA in vivo. Finally, we present our findings in the context of expanding knowledge about myonuclear heterogeneity, myonuclear mobility and shape. We also address why myonuclear replication is potentially important and provide future directions for remaining unknowns. Myonuclear DNA replication, coupled with new discoveries about myonuclear transcription, morphology, and behavior in response to stress, may provide opportunities to leverage previously unappreciated skeletal muscle biological processes for therapeutic targets that support muscle mass, function, and plasticity.
Collapse
Affiliation(s)
- Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, U.S.A
| | - Kevin A Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, U.S.A
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, U.S.A
- Oklahoma City VA Medical Center, Oklahoma City, OK, U.S.A
| |
Collapse
|
7
|
Nicoletti C, Massenet J, Pintado-Urbanc AP, Connor LJ, Nicolau M, Sundar S, Xu M, Schmitt A, Zhang W, Fang Z, Chan TCI, Tapscott SJ, Cheung TH, Simon MD, Caputo L, Puri PL. E-box independent chromatin recruitment turns MYOD into a transcriptional repressor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627024. [PMID: 39677796 PMCID: PMC11643108 DOI: 10.1101/2024.12.05.627024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
MYOD is an E-box sequence-specific basic Helix-Loop-Helix (bHLH) transcriptional activator that, when expressed in non-muscle cells, induces nuclear reprogramming toward skeletal myogenesis by promoting chromatin accessibility at previously silent loci. Here, we report on the identification of a previously unrecognized property of MYOD as repressor of gene expression, via E-box-independent chromatin binding within accessible genomic elements, which invariably leads to reduced chromatin accessibility. MYOD-mediated repression requires the integrity of functional domains previously implicated in MYOD-mediated activation of gene expression. Repression of mitogen- and growth factor-responsive genes occurs through promoter binding and requires a highly conserved domain within the first helix. Repression of cell-of-origin/alternative lineage genes occurs via binding and decommissioning of distal regulatory elements, such as super-enhancers (SE), which requires the N-terminal activation domain as well as two chromatin-remodeling domains and leads to reduced strength of CTCF-mediated chromatin interactions. Surprisingly, MYOD-mediated chromatin compaction and repression of transcription do not associate with reduction of H3K27ac, the conventional histone mark of enhancer or promoter activation, but with reduced levels of the recently discovered histone H4 acetyl-methyl lysine modification (Kacme). These results extend MYOD biological properties beyond the current dogma that restricts MYOD function to a monotone transcriptional activator and reveal a previously unrecognized functional versatility arising from an alternative chromatin recruitment through E-box or non-E-box sequences. The E-box independent repression of gene expression by MYOD might provide a promiscuous mechanism to reduce chromatin accessibility and repress cell-of-origin/alternative lineage and growth factor/mitogen-responsive genes to safeguard the integrity of cell identity during muscle progenitor commitment toward the myogenic lineage.
Collapse
Affiliation(s)
- Chiara Nicoletti
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA
| | - Jimmy Massenet
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA
| | - Andreas P. Pintado-Urbanc
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT
| | - Leah J. Connor
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT
| | - Monica Nicolau
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA
| | - Swetha Sundar
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA
| | - Mingzhi Xu
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA
| | | | - Wenxin Zhang
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zesen Fang
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tsz Ching Indigo Chan
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | | | - Tom H. Cheung
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Daniel and Mayce Yu Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Matthew D. Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT
| | - Luca Caputo
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA
| | - Pier Lorenzo Puri
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA
| |
Collapse
|
8
|
Guo L, Huang W, Wen Q, Zhang S, Bordbar F, Xiao Z, Nie Q. The first embryonic landscape of G-quadruplexes related to myogenesis. BMC Biol 2024; 22:194. [PMID: 39256800 PMCID: PMC11389323 DOI: 10.1186/s12915-024-01993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND DNA G-quadruplexes (G4s) represent a distinctive class of non-canonical DNA secondary structures. Despite their recognition as potential therapeutic targets in some cancers, the developmental role of G4 structures remains enigmatic. Mammalian embryonic myogenesis studies are hindered by limitations, prompting the use of chicken embryo-derived myoblasts as a model to explore G4 dynamics. This study aims to reveal the embryonic G4s landscape and elucidate the underlying mechanisms for candidate G4s that influence embryonic myogenesis. RESULTS This investigation unveils a significant reduction in G4s abundance during myogenesis. G4s stabilizer pyridostatin impedes embryonic myogenesis, emphasizing the regulatory role of G4s in this process. G4 Cut&Tag sequencing and RNA-seq analyses identify potential G4s and DEGs influencing embryonic myogenesis. Integration of G4 and DEG candidates identifies 32 G4s located in promoter regions capable of modulating gene transcription. WGBS elucidates DNA methylation dynamics during embryonic myogenesis. Coordinating transcriptome data with DNA G4s and DNA methylation profiles constructs a G4-DMR-DEG network, revealing nine interaction pairs. Notably, the NFATC2 promoter region sequence is confirmed to form a G4 structure, reducing promoter mCpG content and upregulating NFATC2 transcriptional activity. CONCLUSIONS This comprehensive study unravels the first embryonic genomic G4s landscape, highlighting the regulatory role of NFATC2 G4 in orchestrating transcriptional activity through promoter DNA methylation during myogenesis.
Collapse
Affiliation(s)
- Lijin Guo
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
| | - Weiling Huang
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Qi Wen
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
| | - Siyu Zhang
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
| | - Farhad Bordbar
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
| | - Zhengzhong Xiao
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
| | - Qinghua Nie
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Nguyen NUN, Hsu CC, Ali SR, Wang HV. Actin-organizing protein palladin modulates C2C12 cell fate determination. Biochem Biophys Rep 2024; 39:101762. [PMID: 39026565 PMCID: PMC11255515 DOI: 10.1016/j.bbrep.2024.101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Background Cell confluency and serum deprivation promote the transition of C2C12 myoblasts into myocytes and subsequence fusion into myotubes. However, despite all myoblasts undergoing the same serum deprivation trigger, their responses vary: whether they become founder myocytes, remain proliferative, or evolve into fusion-competent myocytes remains unclear. We have previously shown that depletion of the scaffolding protein palladin in myoblasts inhibits cell migration and promotes premature muscle differentiation, pointing to its potential significance in muscle development and the necessity for a more in-depth examination of its function in cellular heterogeneity. Methods and results Here, we showed that the subcellular localization of palladin might contribute to founder-fate cell decision in the early differentiation process. Depleting palladin in C2C12 myoblasts depleted integrin-β3 plasma membrane localization of and focal adhesion formation at the early stage of myogenesis, decreased kindlin-2 and metavinculin expression during the myotube maturation process, leading to the inability of myocytes to fuse into preexisting mature myotubes. This aligns with previous findings where early differentiation into nascent myotubes occurred but compromised maturation. In contrast, wildtype C2C12 overexpressing the 140-kDa palladin isoform developed a polarized morphology with star-like structures toward other myoblasts. However, this behaviour was not observed in palladin-depleted cells, where the 140-kDa palladin overexpression could not recover cell migration capacity, suggesting other palladin isoforms are also needed to establish cell polarity. Conclusion Our study identifies a counter-intuitive role for palladin in regulating myoblast-to-myocyte cell fate decisions and impacting their ability to form mature multinucleated myotubes by influencing cell signalling pathways and cytoskeletal organization, necessary for skeletal muscle regeneration and repair studies.
Collapse
Affiliation(s)
- Ngoc Uyen Nhi Nguyen
- Department of Life Sciences, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Ching-Cheng Hsu
- Institute of Basic Medical Science, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Shah R. Ali
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, USA
| | - Hao-Ven Wang
- Department of Life Sciences, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
- University Center for Bioscience and Biotechnology, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
- Marine Biology and Cetacean Research Center, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
| |
Collapse
|
10
|
Belal SA, Lee J, Park J, Kang D, Shim K. The Effects of Oleic Acid and Palmitic Acid on Porcine Muscle Satellite Cells. Foods 2024; 13:2200. [PMID: 39063284 PMCID: PMC11276066 DOI: 10.3390/foods13142200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
We aimed to determine the effects of oleic acid (OA) and palmitic acid (PA), alone or in combination, on proliferation, differentiation, triacylglycerol (TAG) content, and gene expression in porcine muscle satellite cells (PMSCs). Results revealed that OA-alone- and PA + OA-treated PMSCs showed significantly increased viability than those in the control or PA-alone-treated groups. No significant effects on apoptosis were observed in all three treatments, whereas necrosis was significantly lower in OA-alone- and PA + OA-treated groups than in the control and PA-alone-treated groups. Myotube formation significantly increased in OA-alone and PA + OA-treated PMSCs than in the control and PA-alone-treated PMSCs. mRNA expression of the myogenesis-related genes MyoD1 and MyoG and of the adipogenesis-related genes PPARα, C/EBPα, PLIN1, FABP4, and FAS was significantly upregulated in OA-alone- and PA + OA-treated cells compared to control and PA-alone-treated cells, consistent with immunoblotting results for MyoD1 and MyoG. Supplementation of unsaturated fatty acid (OA) with/without saturated fatty acid (PA) significantly stimulated TAG accumulation in treated cells compared to the control and PA-alone-treated PMSCs. These results indicate that OA (alone and with PA) promotes proliferation by inhibiting necrosis and promoting myotube formation and TAG accumulation, likely upregulating myogenesis- and adipogenesis-related gene expression by modulating the effects of PA in PMSCs.
Collapse
Affiliation(s)
- Shah Ahmed Belal
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.A.B.); (D.K.)
- Department of Poultry Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Jeongeun Lee
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Jinryong Park
- Food Processing Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea;
| | - Darae Kang
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.A.B.); (D.K.)
| | - Kwanseob Shim
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.A.B.); (D.K.)
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| |
Collapse
|
11
|
Qin G, Liu Z, Yang J, Liao X, Zhao C, Ren J, Qu X. Targeting specific DNA G-quadruplexes with CRISPR-guided G-quadruplex-binding proteins and ligands. Nat Cell Biol 2024; 26:1212-1224. [PMID: 38961283 DOI: 10.1038/s41556-024-01448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Despite the demonstrated importance of DNA G-quadruplexes (G4s) in health and disease, technologies to readily manipulate specific G4 folding for functional analysis and therapeutic purposes are lacking. Here we employ G4-stabilizing protein/ligand in conjunction with CRISPR to selectively facilitate single or multiple targeted G4 folding within specific genomic loci. We demonstrate that fusion of nucleolin with a catalytically inactive Cas9 can specifically stabilize G4s in the promoter of oncogene MYC and muscle-associated gene Itga7 as well as telomere G4s, leading to cell proliferation arrest, inhibition of myoblast differentiation and cell senescence, respectively. Furthermore, CRISPR can confer intra-G4 selectivity to G4-binding compounds pyridodicarboxamide and pyridostatin. Compared with traditional G4 ligands, CRISPR-guided biotin-conjugated pyridodicarboxamide enables a more precise investigation into the biological functionality of de novo G4s. Our study provides insights that will enhance understanding of G4 functions and therapeutic interventions.
Collapse
Affiliation(s)
- Geng Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Jie Yang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Xiaofeng Liao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.
- University of Science and Technology of China, Hefei, P. R. China.
| |
Collapse
|
12
|
Lee SB, Woo TW, Baek DC, Son CG. A standardized herbal combination of Astragalus membranaceus and Paeonia japonica promotes skeletal muscle hypertrophy in a treadmill exercise mouse model. Front Nutr 2024; 11:1362550. [PMID: 38966418 PMCID: PMC11223055 DOI: 10.3389/fnut.2024.1362550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Background Maintaining a normal range of muscle mass and function is crucial not only for sustaining a healthy life but also for preventing various disorders. Numerous nutritional or natural resources are being explored for their potential muscle hypertrophic properties. Aim We aimed to evaluate the muscle hypertrophic effects of APX, a 1:1 mixture of Astragalus membranaceus and Paeonia japonica. In addition to the myotube differentiation cell assay, we utilized a weighted exercise-based animal model and evaluated changes in muscle hypertrophy using dual-energy X-ray absorptiometry (DXA) and histological analysis. Results The 8-week treadmill exercise led to notable decreases in body weight and fat mass but an increase in muscle mass compared to the control group. Administration of APX significantly accelerated muscle mass gain (p < 0.05) without altering body weight or fat mass compared to the exercise-only group. This muscle hypertrophic effect of APX was consistent with the histologic size of muscle fibers in the gastrocnemius (p > 0.05) and rectus femoris (p < 0.05), as well as the regulation of myogenic transcription factors (MyoD and myogenin), respectively. Furthermore, APX demonstrated a similar action to insulin-like growth factor 1, influencing the proliferation of C2C12 myoblast cells (p < 0.01) and their differentiation into myotubes (p < 0.05) compared to the control group. Conclusion The present study provides experimental evidence that APX has muscle hypertrophic effects, and its underlying mechanisms would involve the modulation of MyoD and myogenin.
Collapse
Affiliation(s)
| | | | | | - Chang-Gue Son
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
13
|
Yang G, Zhang J, Liu Y, Sun J, Ge L, Lu L, Long K, Li X, Xu D, Ma J. Acetate Alleviates Gut Microbiota Depletion-Induced Retardation of Skeletal Muscle Growth and Development in Young Mice. Int J Mol Sci 2024; 25:5129. [PMID: 38791168 PMCID: PMC11121558 DOI: 10.3390/ijms25105129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The normal growth and development of skeletal muscle is essential for the health of the body. The regulation of skeletal muscle by intestinal microorganisms and their metabolites has been continuously demonstrated. Acetate is the predominant short-chain fatty acids synthesized by gut microbiota through the fermentation of dietary fiber; however, the underlying molecular mechanisms governing the interaction between acetate and skeletal muscle during the rapid growth stage remains to be further elucidated. Herein, specific pathogen-free (SPF) mice, germ-free (GF) mice, and germ-free mice supplemented with sodium acetate (GS) were used to evaluate the effects of acetate on the skeletal muscle growth and development of young mice with gut microbiota deficiency. We found that the concentration of serum acetate, body mass gain, succinate dehydrogenase activity, and expression of the myogenesis maker gene of skeletal muscle in the GS group were higher than those in the GF group, following sodium acetate supplementation. Furthermore, the transcriptome analysis revealed that acetate activated the biological processes that regulate skeletal muscle growth and development in the GF group, which are otherwise inhibited due to a gut microbiota deficiency. The in vitro experiment showed that acetate up-regulated Gm16062 to promote skeletal muscle cell differentiation. Overall, our findings proved that acetate promotes skeletal muscle growth and development in young mice via increasing Gm16062 expression.
Collapse
Affiliation(s)
- Guitao Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (Y.L.); (L.L.); (K.L.); (X.L.)
| | - Jinwei Zhang
- Chongqing Academy of Animal Science, Chongqing 402460, China; (J.Z.); (J.S.); (L.G.); (D.X.)
| | - Yan Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (Y.L.); (L.L.); (K.L.); (X.L.)
| | - Jing Sun
- Chongqing Academy of Animal Science, Chongqing 402460, China; (J.Z.); (J.S.); (L.G.); (D.X.)
| | - Liangpeng Ge
- Chongqing Academy of Animal Science, Chongqing 402460, China; (J.Z.); (J.S.); (L.G.); (D.X.)
| | - Lu Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (Y.L.); (L.L.); (K.L.); (X.L.)
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (Y.L.); (L.L.); (K.L.); (X.L.)
| | - Xuewei Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (Y.L.); (L.L.); (K.L.); (X.L.)
| | - Dengfeng Xu
- Chongqing Academy of Animal Science, Chongqing 402460, China; (J.Z.); (J.S.); (L.G.); (D.X.)
| | - Jideng Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (G.Y.); (Y.L.); (L.L.); (K.L.); (X.L.)
| |
Collapse
|
14
|
Chandel AS, Keseroglu K, Özbudak EM. Oscillatory control of embryonic development. Development 2024; 151:dev202191. [PMID: 38727565 PMCID: PMC11128281 DOI: 10.1242/dev.202191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
Proper embryonic development depends on the timely progression of a genetic program. One of the key mechanisms for achieving precise control of developmental timing is to use gene expression oscillations. In this Review, we examine how gene expression oscillations encode temporal information during vertebrate embryonic development by discussing the gene expression oscillations occurring during somitogenesis, neurogenesis, myogenesis and pancreas development. These oscillations play important but varied physiological functions in different contexts. Oscillations control the period of somite formation during somitogenesis, whereas they regulate the proliferation-to-differentiation switch of stem cells and progenitor cells during neurogenesis, myogenesis and pancreas development. We describe the similarities and differences of the expression pattern in space (i.e. whether oscillations are synchronous or asynchronous across neighboring cells) and in time (i.e. different time scales) of mammalian Hes/zebrafish Her genes and their targets in different tissues. We further summarize experimental evidence for the functional role of their oscillations. Finally, we discuss the outstanding questions for future research.
Collapse
Affiliation(s)
- Angad Singh Chandel
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Systems Biology and Physiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Kemal Keseroglu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ertuğrul M. Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
15
|
Cheng C, Li W, Ye Y, Zhu Y, Tang M, Hu Z, Su H, Dang C, Wan J, Liu Z, Gong Y, Yao LH. Lactate induces C2C12 myoblasts differentiation by mediating ROS/p38 MAPK signalling pathway. Tissue Cell 2024; 87:102324. [PMID: 38354685 DOI: 10.1016/j.tice.2024.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Lactate serves not merely as an energy substrate for skeletal muscle but also regulates myogenic differentiation, leading to an elevation of reactive oxygen species (ROS) levels. The present study was focused on exploring the effects of lactate and ROS/p38 MAPK in promoting C2C12 myoblasts differentiation. Our results demonstrated that lactate increased C2C12 myoblasts differentiation at a range of physiological concentrations, accompanied by enhanced ROS contents. We used n-acetylcysteine (NAC, a ROS scavenger) pretreatment and found that it delayed lactate-induced C2C12 myoblast differentiation by upregulating Myf5 expression on days 5 and 7 and lowering MyoD and MyoG expression. The finding implies that lactate accompanies ROS-dependent manner to promote C2C12 myoblast differentiation. Additionally, lactate significantly increased p38 MAPK phosphorylation to promote C2C12 cell differentiation, but pretreatment with SB203580 (p38 MAPK inhibitor) reduced lactate-induced C2C12 myoblasts differentiation. whereas lactate pretreatment with NAC inhibited p38 MAPK phosphorylation in C2C12 cells, demonstrating that lactate mediated ROS and regulated the p38 MAPK signalling pathway to promote C2C12 cell differentiation. In conclusion, our results suggest that the promotion of C2C12 myoblasts differentiation by lactate is dependent on ROS and the p38 MAPK signalling pathway. These observations reveal a beneficial role for lactate in increasing myogenesis through ROS-sensitive mechanisms as well as providing new ideas regarding the positive impact of ROS in improving the function of skeletal muscle.
Collapse
Affiliation(s)
- Chunfang Cheng
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Wenxi Li
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Yuanqian Ye
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Yuanjie Zhu
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Mengyuan Tang
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Zhihong Hu
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Hu Su
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Caixia Dang
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Juan Wan
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Zhibin Liu
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Yanchun Gong
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China; School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China; School of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510631, PR China.
| | - Li-Hua Yao
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China; School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China.
| |
Collapse
|
16
|
Jiang H, Liu B, Lin J, Xue T, Han Y, Lu C, Zhou S, Gu Y, Xu F, Shen Y, Xu L, Sun H. MuSCs and IPCs: roles in skeletal muscle homeostasis, aging and injury. Cell Mol Life Sci 2024; 81:67. [PMID: 38289345 PMCID: PMC10828015 DOI: 10.1007/s00018-023-05096-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024]
Abstract
Skeletal muscle is a highly specialized tissue composed of myofibres that performs crucial functions in movement and metabolism. In response to external stimuli and injuries, a range of stem/progenitor cells, with muscle stem cells or satellite cells (MuSCs) being the predominant cell type, are rapidly activated to repair and regenerate skeletal muscle within weeks. Under normal conditions, MuSCs remain in a quiescent state, but become proliferative and differentiate into new myofibres in response to injury. In addition to MuSCs, some interstitial progenitor cells (IPCs) such as fibro-adipogenic progenitors (FAPs), pericytes, interstitial stem cells expressing PW1 and negative for Pax7 (PICs), muscle side population cells (SPCs), CD133-positive cells and Twist2-positive cells have been identified as playing direct or indirect roles in regenerating muscle tissue. Here, we highlight the heterogeneity, molecular markers, and functional properties of these interstitial progenitor cells, and explore the role of muscle stem/progenitor cells in skeletal muscle homeostasis, aging, and muscle-related diseases. This review provides critical insights for future stem cell therapies aimed at treating muscle-related diseases.
Collapse
Affiliation(s)
- Haiyan Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Junfei Lin
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Tong Xue
- Department of Paediatrics, Medical School of Nantong University, Nantong University, Nantong, 226001, People's Republic of China
| | - Yimin Han
- Department of Paediatrics, Medical School of Nantong University, Nantong University, Nantong, 226001, People's Republic of China
| | - Chunfeng Lu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, Jiangsu, People's Republic of China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Lingchi Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
17
|
Dobbins TW, Swanson RM, Dennis AA, Rivera JD, Dinh TTN, Lemley CO, Burnett DD. Melatonin supplementation to sows in mid to late gestation affects offspring circadian, myogenic, and growth factor transcript abundance in pre and postnatal skeletal muscle. J Anim Sci 2024; 102:skae377. [PMID: 39679952 DOI: 10.1093/jas/skae377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/15/2024] [Indexed: 12/17/2024] Open
Abstract
The neuroendocrine hormone melatonin is associated with circadian rhythms and has antioxidant and vasodilative properties. In cattle, melatonin rescues fetal growth during maternal nutrient restriction in a seasonally dependent manner, but melatonin research in swine is limited. The objective of this study was to evaluate the effects of dietary melatonin supplementation during mid to late gestation on circadian rhythm and muscle growth and development of the longissimus dorsi in utero and postnatally. Sows received 20 mg of dietary melatonin daily (MEL) or no melatonin supplement (CON). Experiment 1 supplemented sows from gestational age (dGA) 38 ± 1 to 99 ± 1, experiment 2 supplemented sows from 41 to 106 ± 1 dGA, and experiment 3 supplemented sows from 60 dGA to farrowing. At harvest, morphometric measurements of all fetuses were taken, while the small (SM), medium (MED), and large (LG) piglets from each litter were used for further analysis. Prenatal data were analyzed using the MIXED procedure of SAS, and postnatal data were analyzed using the GLIMMIX procedure. Fetal morphometrics were analyzed for fixed the effect of treatment, and transcript abundance was analyzed for treatment, time, and size. Postnatal parameters were analyzed for fixed effects of treatment, size, and production stage. In experiment 1, MEL increased (P = 0.016) Period 1 (PER1) transcript abundance in the evening (PM) compared to the morning (AM). In experiment 1, myogenin (MYOG) transcript abundance was increased (P = 0.033) in MEL fetuses in the AM compared to MEL in the PM. Myogenic factor 5 (MYF5) and paired box 7 (PAX7) were increased (P = 0.016) in the PM. Fetuses from MEL-treated sows had increased (P < 0.05) BW, curve crown-rump length, and head circumference in experiment 2. In experiment 2, MEL increased (P = 0.012) PER1 and Period 2 (PER2) transcript abundance in the PM. In experiment 2, myoblast differentiation 1 (MYOD) was increased (P = 0.016) in SM and MED fetuses, while MYF5 and PAX7 were increased (P = 0.019) in SM fetuses. Postnatal BW was increased (P = 0.025) in MED and LG MEL-treated offspring compared to CON. Insulin-like growth factor 1 (IGF1) was downregulated (P = 0.050) in MEL-treated offspring, while insulin-like growth factor 1 receptor (IGF1R) was upregulated (P = 0.009) in MEL offspring. These results indicate that maternal melatonin supplementation during gestation modulates fetal circadian regulatory genes and alters myogenic genes during growth.
Collapse
Affiliation(s)
- Thomas W Dobbins
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Rebecca M Swanson
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Amberly A Dennis
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - J Daniel Rivera
- Department of Animal Science, University of Arkansas System Division of Agriculture, Southwest Research and Extension Center, Hope, AR 71801, USA
| | - Thu T N Dinh
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Caleb O Lemley
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Derris D Burnett
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| |
Collapse
|
18
|
Wang S, Shi M, Zhang Y, Niu J, Li W, Yuan J, Cai C, Yang Y, Gao P, Guo X, Li B, Lu C, Cao G. Construction of LncRNA-Related ceRNA Networks in Longissimus Dorsi Muscle of Jinfen White Pigs at Different Developmental Stages. Curr Issues Mol Biol 2024; 46:340-354. [PMID: 38248324 PMCID: PMC10814722 DOI: 10.3390/cimb46010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
The development of skeletal muscle in pigs might determine the quality of pork. In recent years, long non-coding RNAs (lncRNAs) have been found to play an important role in skeletal muscle growth and development. In this study, we investigated the whole transcriptome of the longissimus dorsi muscle (LDM) of Jinfen White pigs at three developmental stages (1, 90, and 180 days) and performed a comprehensive analysis of lncRNAs, mRNAs, and micro-RNAs (miRNAs), aiming to find the key regulators and interaction networks in Jinfen White pigs. A total of 2638 differentially expressed mRNAs (DE mRNAs) and 982 differentially expressed lncRNAs (DE lncRNAs) were identified. Compared with JFW_1d, there were 497 up-regulated and 698 down-regulated DE mRNAs and 212 up-regulated and 286 down-regulated DE lncRNAs in JFW_90d, respectively. In JFW_180d, there were 613 up-regulated and 895 down-regulated DE mRNAs and 184 up-regulated and 131 down-regulated DE lncRNAs compared with JFW_1d. There were 615 up-regulated and 477 down-regulated DE mRNAs and 254 up-regulated and 355 down-regulated DE lncRNAs in JFW_180d compared with JFW_90d. Compared with mRNA, lncRNA has fewer exons, fewer ORFs, and a shorter length. We performed GO and KEGG pathway functional enrichment analysis for DE mRNAs and the potential target genes of DE lncRNAs. As a result, several pathways are involved in muscle growth and development, such as the PI3K-Akt, MAPK, hedgehog, and hippo signaling pathways. These are among the pathways through which mRNA and lncRNAs function. As part of this study, bioinformatic screening was used to identify miRNAs and DE lncRNAs that could act as ceRNAs. Finally, we constructed an lncRNA-miRNA-mRNA regulation network containing 26 mRNAs, 7 miRNAs, and 17 lncRNAs; qRT-PCR was used to verify the key genes in these networks. Among these, XLOC_022984/miR-127/ENAH and XLOC_016847/miR-486/NRF1 may function as key ceRNA networks. In this study, we obtained transcriptomic profiles from the LDM of Jinfen White pigs at three developmental stages and screened out lncRNA-miRNA-mRNA regulatory networks that may provide crucial information for the further exploration of the molecular mechanisms during skeletal muscle development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Chang Lu
- College of Animal Science, Shanxi Agricultural University, No. 1 Mingxian South Road, Taigu 030801, China; (S.W.); (M.S.); (Y.Z.); (J.N.); (W.L.); (J.Y.); (C.C.); (Y.Y.); (P.G.); (X.G.); (B.L.)
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, No. 1 Mingxian South Road, Taigu 030801, China; (S.W.); (M.S.); (Y.Z.); (J.N.); (W.L.); (J.Y.); (C.C.); (Y.Y.); (P.G.); (X.G.); (B.L.)
| |
Collapse
|
19
|
Huang K, Li Z, Zhong D, Yang Y, Yan X, Feng T, Wang X, Zhang L, Shen X, Chen M, Luo X, Cui K, Huang J, Rehman SU, Jiang Y, Shi D, Pauciullo A, Tang X, Liu Q, Li H. A Circular RNA Generated from Nebulin (NEB) Gene Splicing Promotes Skeletal Muscle Myogenesis in Cattle as Detected by a Multi-Omics Approach. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2300702. [PMID: 38036415 PMCID: PMC10797441 DOI: 10.1002/advs.202300702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/16/2023] [Indexed: 12/02/2023]
Abstract
Cattle and the draught force provided by its skeletal muscle have been integral to agro-ecosystems of agricultural civilization for millennia. However, relatively little is known about the cattle muscle functional genomics (including protein coding genes, non-coding RNA, etc.). Circular RNAs (circRNAs), as a new class of non-coding RNAs, can be effectively translated into detectable peptides, which enlightened us on the importance of circRNAs in cattle muscle physiology function. Here, RNA-seq, Ribosome profiling (Ribo-seq), and peptidome data are integrated from cattle skeletal muscle, and detected five encoded peptides from circRNAs. It is further identified and functionally characterize a 907-amino acids muscle-specific peptide that is named circNEB-peptide because derived by the splicing of Nebulin (NEB) gene. This peptide localizes to the nucleus and cytoplasm and directly interacts with SKP1 and TPM1, key factors regulating physiological activities of myoblasts, via ubiquitination and myoblast fusion, respectively. The circNEB-peptide is found to promote myoblasts proliferation and differentiation in vitro, and induce muscle regeneration in vivo. These findings suggest circNEB-peptide is an important regulator of skeletal muscle regeneration and underscore the possibility that more encoding polypeptides derived by RNAs currently annotated as non-coding exist.
Collapse
Affiliation(s)
- Kongwei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and EngineeringFoshan UniversityFoshan528225China
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Dandan Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Yufeng Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Xiuying Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Tong Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Xiaobo Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Liyin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Xinyue Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Xier Luo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and EngineeringFoshan UniversityFoshan528225China
| | - Kuiqing Cui
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and EngineeringFoshan UniversityFoshan528225China
| | - Jieping Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Saif Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityYangling712100China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Alfredo Pauciullo
- Department of Agricultural, Forest and Food SciencesUniversity of TorinoGrugliasco (TO)10095Italy
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition and Feeding,Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijing100193China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and EngineeringFoshan UniversityFoshan528225China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| |
Collapse
|
20
|
Careccia G, Mangiavini L, Cirillo F. Regulation of Satellite Cells Functions during Skeletal Muscle Regeneration: A Critical Step in Physiological and Pathological Conditions. Int J Mol Sci 2023; 25:512. [PMID: 38203683 PMCID: PMC10778731 DOI: 10.3390/ijms25010512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Skeletal muscle regeneration is a complex process involving the generation of new myofibers after trauma, competitive physical activity, or disease. In this context, adult skeletal muscle stem cells, also known as satellite cells (SCs), play a crucial role in regulating muscle tissue homeostasis and activating regeneration. Alterations in their number or function have been associated with various pathological conditions. The main factors involved in the dysregulation of SCs' activity are inflammation, oxidative stress, and fibrosis. This review critically summarizes the current knowledge on the role of SCs in skeletal muscle regeneration. It examines the changes in the activity of SCs in three of the most common and severe muscle disorders: sarcopenia, muscular dystrophy, and cancer cachexia. Understanding the molecular mechanisms involved in their dysregulations is essential for improving current treatments, such as exercise, and developing personalized approaches to reactivate SCs.
Collapse
Affiliation(s)
- Giorgia Careccia
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Laura Mangiavini
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Federica Cirillo
- IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
- Institute for Molecular and Translational Cardiology (IMTC), 20097 San Donato Milanese, Italy
| |
Collapse
|
21
|
Wu L, Shi M, Liang Y, Huang J, Xia W, Bian H, Zhuo Q, Zhao C. The profiles and clinical significance of extraocular muscle-expressed lncRNAs and mRNAs in oculomotor nerve palsy. Front Mol Neurosci 2023; 16:1293344. [PMID: 38173464 PMCID: PMC10761543 DOI: 10.3389/fnmol.2023.1293344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Oculomotor nerve palsy (ONP) arises from primary abnormalities in the central neural pathways that control the extraocular muscles (EOMs). Long non-coding RNAs (lncRNAs) have been found to be involved in the pathogenesis of various neuroparalytic diseases. However, little is known about the role of lncRNAs in ONP. Methods We collected medial rectus muscle tissue from ONP and constant exotropia (CXT) patients during strabismus surgeries for RNA sequencing analysis. Differentially expressed mRNAs and lncRNAs were revealed and included in the functional enrichment analysis. Co-expression analysis was conducted between these differentially expressed mRNAs and lncRNAs, followed by target gene prediction of differentially expressed lncRNAs. In addition, lncRNA-microRNA and lncRNA-transcription factor-mRNA interaction networks were constructed to further elaborate the pathological changes in medial rectus muscle of ONP. Furthermore, RT-qPCR was applied to further validate the expression levels of important lncRNAs and mRNAs, whose clinical significance was examined by receiver operating characteristic (ROC) curve analysis. Results A total of 618 differentially expressed lncRNAs and 322 differentially expressed mRNAs were identified. The up-regulated mRNAs were significantly related to cholinergic synaptic transmission (such as CHRM3 and CHRND) and the components and metabolism of extracellular matrix (such as CHI3L1 and COL19A1), while the down-regulated mRNAs were significantly correlated with the composition (such as MYH7 and MYL3) and contraction force (such as MYH7 and TNNT1) of muscle fibers. Co-expression analysis and target gene prediction revealed the strong correlation between MYH7 and NR_126491.1 as well as MYOD1 and ENST00000524479. Moreover, the differential expressions of lncRNAs (XR_001739409.1, NR_024160.1 and XR_001738373.1) and mRNAs (CDKN1A, MYOG, MYOD1, MYBPH, TMEM64, STATH, and MYL3) were validated by RT-qPCR. ROC curve analysis showed that lncRNAs (XR_001739409.1, NR_024160.1, and NR_002766.2) and mRNAs (CDKN1A, MYOG, MYOD1, MYBPH, TMEM64, and STATH) might be promising biomarkers of ONP. Conclusions These results may shed light on the molecular biology of EOMs of ONP, as well as the possible correlation of lncRNAs and mRNAs with clinical practice.
Collapse
Affiliation(s)
- Lianqun Wu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Mingsu Shi
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yu Liang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jiaqiu Huang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Weiyi Xia
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Hewei Bian
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Qiao Zhuo
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Chen Zhao
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
22
|
Dai W, Wu G, Liu K, Chen Q, Tao J, Liu H, Shen M. Lactate promotes myogenesis via activating H3K9 lactylation-dependent up-regulation of Neu2 expression. J Cachexia Sarcopenia Muscle 2023; 14:2851-2865. [PMID: 37919243 PMCID: PMC10751423 DOI: 10.1002/jcsm.13363] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Lactate, a glycolytic metabolite mainly produced in muscles, has been suggested to regulate myoblast differentiation, although the underlying mechanism remains elusive. Recently, lactate-mediated histone lactylation is identified as a novel epigenetic modification that promotes gene transcription. METHODS We used mouse C2C12 cell line and 2-month-old male mice as in vitro and in vivo models, respectively. These models were treated with lactate to explore the biological function and latent mechanism of lactate-derived histone lactylation on myogenic differentiation by quantitative real-time PCR, western blotting, immunofluorescence staining, chromatin immunoprecipitation, cleavage under targets and tagmentation assay and RNA sequencing. RESULTS Using immunofluorescence staining and western blotting, we proposed that lactylation might occur in the histones. Inhibition of lactate production or intake both impaired myoblast differentiation, accompanied by diminished lactylation in the histones. Using lactylation site-specific antibodies, we demonstrated that lactate preferentially increased H3K9 lactylation (H3K9la) during myoblast differentiation (CT VS 5, 10, 15, 20, 25 mM lactate treatment, P = 0.0012, P = 0.0007, and the rest of all P < 0.0001). Notably, inhibiting H3K9la using P300 antagonist could block lactate-induced myogenesis. Through combined omics analysis using cleavage under targets and tagmentation assay and RNA sequencing, we further identified Neu2 as a potential target gene of H3K9la. IGV software analysis (P = 0.0013) and chromatin immunoprecipitation-qPCR assay (H3K9la %Input, LA group = 9.0076, control group = 2.7184, IgG = 0.3209) confirmed that H3K9la is enriched in the promoter region of Neu2. Moreover, siRNAs or inhibitors against Neu2 both abrogated myoblast differentiation despite lactate treatment, suggesting that Neu2 is required for lactate-mediated myoblast differentiation. CONCLUSIONS Our findings provide novel understanding of histone lysine lactylation, suggesting its role in myogenesis, and as potential therapeutic targets for muscle diseases.
Collapse
Affiliation(s)
- Weilong Dai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Gang Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Ke Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Qianqian Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Jingli Tao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Ming Shen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
23
|
Ochi E, Barrington A, Wehling‐Henricks M, Avila M, Kuro‐o M, Tidball JG. Klotho regulates the myogenic response of muscle to mechanical loading and exercise. Exp Physiol 2023; 108:1531-1547. [PMID: 37864311 PMCID: PMC10841225 DOI: 10.1113/ep091263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/16/2023] [Indexed: 10/22/2023]
Abstract
NEW FINDINGS What is the central question of this study? Does the hormone Klotho affect the myogenic response of muscle cells to mechanical loading or exercise? What is the main finding and its importance? Klotho prevents direct, mechanical activation of genes that regulate muscle differentiation, including genes that encode the myogenic regulatory factor myogenin and proteins in the canonical Wnt signalling pathway. Similarly, elevated levels of klotho expression in vivo prevent the exercise-induced increase in myogenin-expressing cells and reduce exercise-induced activation of the Wnt pathway. These findings demonstrate a new mechanism through which the responses of muscle to the mechanical environment are regulated. ABSTRACT Muscle growth is influenced by changes in the mechanical environment that affect the expression of genes that regulate myogenesis. We tested whether the hormone Klotho could influence the response of muscle to mechanical loading. Applying mechanical loads to myoblasts in vitro increased RNA encoding transcription factors that are expressed in activated myoblasts (Myod) and in myogenic cells that have initiated terminal differentiation (Myog). However, application of Klotho to myoblasts prevented the loading-induced activation of Myog without affecting loading-induced activation of Myod. This indicates that elevated Klotho inhibits mechanically-induced differentiation of myogenic cells. Elevated Klotho also reduced the transcription of genes encoding proteins involved in the canonical Wnt pathway or their target genes (Wnt9a, Wnt10a, Ccnd1). Because the canonical Wnt pathway promotes differentiation of myogenic cells, these findings indicate that Klotho inhibits the differentiation of myogenic cells experiencing mechanical loading. We then tested whether these effects of Klotho occurred in muscles of mice experiencing high-intensity interval training (HIIT) by comparing wild-type mice and klotho transgenic mice. The expression of a klotho transgene combined with HIIT synergized to tremendously elevate numbers of Pax7+ satellite cells and activated MyoD+ cells. However, transgene expression prevented the increase in myogenin+ cells caused by HIIT in wild-type mice. Furthermore, transgene expression diminished the HIIT-induced activation of the canonical Wnt pathway in Pax7+ satellite cells. Collectively, these findings show that Klotho inhibits loading- or exercise-induced activation of muscle differentiation and indicate a new mechanism through which the responses of muscle to the mechanical environment are regulated.
Collapse
Affiliation(s)
- Eisuke Ochi
- Faculty of Bioscience and Applied ChemistryHosei UniversityTokyoJapan
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos AngelesCAUSA
| | - Alice Barrington
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos AngelesCAUSA
| | | | - Marcus Avila
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos AngelesCAUSA
| | - Makoto Kuro‐o
- Division of Anti‐Aging MedicineCenter for Molecular MedicineJichi Medical UniversityTochigiJapan
| | - James G. Tidball
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos AngelesCAUSA
- Molecular, Cellular & Integrative Physiology ProgramUniversity of CaliforniaLos AngelesCAUSA
- Department of BioengineeringUniversity of CaliforniaLos AngelesCAUSA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLAUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
24
|
Ardicli S, Dincel D, Samli H, Senturk N, Karalar B, Unlu S, Soyudal B, Kubad E, Balci F. Association of polymorphisms in lipid and energy metabolism-related genes with fattening performance in Simmental cattle. Anim Biotechnol 2023; 34:3428-3440. [PMID: 36459440 DOI: 10.1080/10495398.2022.2152557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Lipid and energy metabolism are major constituents of mammal growth and thus fattening performance of cattle. This study was designed to evaluate the effects of polymorphisms in lipid and energy metabolism-related genes including oxidized low-density lipoprotein receptor 1 (OLR1), lactoferrin (LTF), stearoyl-CoA desaturase (SCD), beta-lactoglobulin (LGB), thyroglobulin (TG), annexin A9 (ANXA9), myogenic factor 5 (MYF5), protein kinase AMP-activated non-catalytic subunit gamma 3 (PRKAG3), and pituitary-specific transcriptional factor 1 (PIT1), on fattening performance in Simmental cattle. A total of 72 purebred Simmental bulls with a similar initial age and weight were fattened on the same farm for 10 months. Association analysis was performed using linear mixed models. The OLR1 marker was significantly associated with the final weight (FW), hot carcass weight (HCW), chilled carcass weight (CCW), dressing percentage (DP), and total weight gain (TWG). SCD affected the FW, TWG, and average daily live weight gain (ADWG). The present results clearly demonstrated the significant impact of the TG marker on fattening performance. It was highly significantly associated with the FW, HCW, CCW, and TWG. The SCD × TG and the OLR1 × TG interactions had remarkable effects on the traits analyzed. The GACC and CCCC haplotypes of the SCD × TG and OLR1 × TG, respectively, were found to be powerful markers for fattening performance in Simmentals. Novel associations in this study may be useful for further genetic evaluations to improve beef cattle breeding.
Collapse
Affiliation(s)
- Sena Ardicli
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Deniz Dincel
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Hale Samli
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Nursen Senturk
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Beyza Karalar
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Bursa Uludag University, Bursa, Turkey
| | - Sıla Unlu
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yıldız Technical University, Istanbul, Turkey
| | | | - Evrim Kubad
- Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Faruk Balci
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
25
|
Stella R, Bonadio RS, Cagnin S, Andreotti R, Massimino ML, Bertoli A, Peggion C. Secreted Metabolome of ALS-Related hSOD1(G93A) Primary Cultures of Myocytes and Implications for Myogenesis. Cells 2023; 12:2751. [PMID: 38067180 PMCID: PMC10706027 DOI: 10.3390/cells12232751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuron (MN) disease associated with progressive muscle atrophy, paralysis, and eventually death. Growing evidence demonstrates that the pathological process leading to ALS is the result of multiple altered mechanisms occurring not only in MNs but also in other cell types inside and outside the central nervous system. In this context, the involvement of skeletal muscle has been the subject of a few studies on patients and ALS animal models. In this work, by using primary myocytes derived from the ALS transgenic hSOD1(G93A) mouse model, we observed that the myogenic capability of such cells was defective compared to cells derived from control mice expressing the nonpathogenic hSOD1(WT) isoform. The correct in vitro myogenesis of hSOD1(G93A) primary skeletal muscle cells was rescued by the addition of a conditioned medium from healthy hSOD1(WT) myocytes, suggesting the existence of an in trans activity of secreted factors. To define a dataset of molecules participating in such safeguard action, we conducted comparative metabolomic profiling of a culture medium collected from hSOD1(G93A) and hSOD1(WT) primary myocytes and report here an altered secretion of amino acids and lipid-based signaling molecules. These findings support the urgency of better understanding the role of the skeletal muscle secretome in the regulation of the myogenic program and mechanisms of ALS pathogenesis and progression.
Collapse
Affiliation(s)
- Roberto Stella
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | | | - Stefano Cagnin
- Department of Biology, University of Padova, 35131 Padova, Italy (S.C.)
- CIR-Myo Myology Center, University of Padova, 35131 Padova, Italy
| | - Roberta Andreotti
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy (A.B.)
| | - Maria Lina Massimino
- Neuroscience Institute, Consiglio Nazionale delle Ricerche, 35131 Padova, Italy;
| | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy (A.B.)
- Neuroscience Institute, Consiglio Nazionale delle Ricerche, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Caterina Peggion
- Department of Biology, University of Padova, 35131 Padova, Italy (S.C.)
| |
Collapse
|
26
|
Endo T. Postnatal skeletal muscle myogenesis governed by signal transduction networks: MAPKs and PI3K-Akt control multiple steps. Biochem Biophys Res Commun 2023; 682:223-243. [PMID: 37826946 DOI: 10.1016/j.bbrc.2023.09.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Skeletal muscle myogenesis represents one of the most intensively and extensively examined systems of cell differentiation, tissue formation, and regeneration. Muscle regeneration provides an in vivo model system of postnatal myogenesis. It comprises multiple steps including muscle stem cell (or satellite cell) quiescence, activation, migration, myogenic determination, myoblast proliferation, myocyte differentiation, myofiber maturation, and hypertrophy. A variety of extracellular signaling and subsequent intracellular signal transduction pathways or networks govern the individual steps of postnatal myogenesis. Among them, MAPK pathways (the ERK, JNK, p38 MAPK, and ERK5 pathways) and PI3K-Akt signaling regulate multiple steps of myogenesis. Ca2+, cytokine, and Wnt signaling also participate in several myogenesis steps. These signaling pathways often control cell cycle regulatory proteins or the muscle-specific MyoD family and the MEF2 family of transcription factors. This article comprehensively reviews molecular mechanisms of the individual steps of postnatal skeletal muscle myogenesis by focusing on signal transduction pathways or networks. Nevertheless, no or only a partial signaling molecules or pathways have been identified in some responses during myogenesis. The elucidation of these unidentified signaling molecules and pathways leads to an extensive understanding of the molecular mechanisms of myogenesis.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
27
|
Wang L, Wang J, Li Y, Dang S, Fan H, Xia S, Gan M, Tang T, Shao J, Jia X, Lai S. High expression of miR-30c-5p in satellite cells of high-fat diet-induced obese rabbits inhibited satellite cell proliferation and promoted differentiation. Gene 2023; 883:147656. [PMID: 37479097 DOI: 10.1016/j.gene.2023.147656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/28/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
It was revealed in our previous study that the expression of miR-30c-5p in the skeletal muscle of rabbits fed high-fat diet was highly expressed. In the present study, we further investigated the function of miR-30c-5p in proliferation and differentiation of skeletal muscle satellite cell (SMSC). The results obtained in the present study showed that the skeletal muscle fibers of the rabbits fed the standard normal diet (SND) were orderly, regular, and uniform after HE staining, however, the muscle fibers of the rabbits fed the high-fat diet (HFD) were generally atrophied, some were arranged disorderly, the intercellular space was enlarged, the nucleus was increased, and the morphology and position were abnormal. Compared with the SND group, it was observed that the weekly weight gain and fat percentage were relatively higher, and also the levels of the serum biochemical indexes such as glucose, cholesterol, and triglyceride increased significantly in the rabbits fed with HFD. In addition, the results after the transfection of miR-30c-5p mimic, mimic NC (negative control), miR-30c-5p inhibitor, and inhibitor NC into the SMSCs showed that the cell counting kit-8 (CCK-8) proliferation experiment suggested that the number of cells in the over expression group was significantly lower than that in the mimic NC group at 48, 72, 96 h of cell proliferation. At 48, 72, 120 h, the number of cells in the inhibitor group was significantly higher than that in the mimic NC group. The number of EdU positive cells decreased significantly in the over expression group compared with the mimic NC group, however, it increased significantly in the inhibitor group compared with the inhibitor NC group. Moreover, compared with the mimic NC group, the myotube area increased significantly in the miR-30c-5p mimic group, whereas it decreased significantly in the miR-30c-5p inhibitor group as compared with the inhibitor NC group. In addition, we found that trinucleotide repeat containing adaptor 6A (TNRC6A) was successfully validated as a target gene for miR-30c-5p. The expression of TNRC6A in the miR-30c-5p mimic group was significantly lower than that in the mimic NC group. It was further observed that the expression of TNRC6A increased significantly in the miR-30c-5p inhibitor group as compared to that in the inhibitor NC group. Taken together, the results obtained in this study showed that miR-30c-5p promotes the differentiation as well as inhibits the proliferation of rabbit skeletal muscle satellite cells, and TNRC6A is a target gene of miR-30c-5p.
Collapse
Affiliation(s)
- Li Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Yanhong Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shuzhang Dang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Huimei Fan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Siqi Xia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Mingchuan Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Tao Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jiahao Shao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
28
|
Bejarano DH, Martínez RA, Rocha JF. Genome-wide association study for growth traits in Blanco Orejinegro and Romosinuano cattle. Trop Anim Health Prod 2023; 55:358. [PMID: 37848724 PMCID: PMC10581918 DOI: 10.1007/s11250-023-03743-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 09/12/2023] [Indexed: 10/19/2023]
Abstract
Growth traits are economically important characteristics for the genetic improvement of local cattle breeds. Genome-wide association studies (GWAS) provide valuable information to enhance the understanding on the genetics of complex traits. The aim of this study was to perform a GWAS to identify genomic regions and genes associated to birth weight, weaning weight adjusted for 240 days, 16 months, and 24 months weight in Romosinuano (ROMO) and Blanco Orejinegro (BON) cattle. A single-step genomic-BLUP was implemented using 596 BON and 569 ROMO individuals that were genotyped with an Illumina BovineSNP50 BeadChip. There were 25 regions of interest identified on different chromosomes, with few of them simultaneously associated with two or more growth traits and some were common to both breeds. The gene mapping allowed to find 173 annotations on these regions, from which 49 represent potential candidate genes with known growth-related functions in cattle and other species. Among the regions that were associated with several growth traits, that at 24 - 27 MB of BTA14, has important candidate genes such as LYPLA1, XKR4, TMEM68 and PLAG1. Another region of interest at 0.40-0.77 Mb of BTA23 was identified in both breeds, containing KHDRBS2 as a potential candidate gene influencing body weight. Future studies targeting these regions could provide more knowledge to uncover the genetic architecture underlying growth traits in BON and ROMO cattle. The genomic regions and genes identified in this study could be used to improve the prediction of genetic merit for growth traits in these creole cattle breeds.
Collapse
Affiliation(s)
- Diego H Bejarano
- Corporación Colombiana de Investigación Agropecuaria -AGROSAVIA. Centro de Investigación Tibaitatá, Km. 14, Mosquera, Cundinamarca, Colombia
| | - Rodrigo A Martínez
- Corporación Colombiana de Investigación Agropecuaria -AGROSAVIA. Centro de Investigación Tibaitatá, Km. 14, Mosquera, Cundinamarca, Colombia
| | - Juan F Rocha
- Corporación Colombiana de Investigación Agropecuaria -AGROSAVIA. Centro de Investigación Tibaitatá, Km. 14, Mosquera, Cundinamarca, Colombia.
| |
Collapse
|
29
|
Long X, Chen W, Liu G, Hu W, Tan Q. Establishment and characterization of a skeletal myoblast cell line of grass carp (Ctenopharyngodon idellus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1043-1061. [PMID: 37782384 DOI: 10.1007/s10695-023-01246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Skeletal muscle myoblastic cell lines can provide a valuable new in vitro model for the exploration of the mechanisms that control skeletal muscle development and its associated molecular regulation. In this study, the skeletal muscle tissues of grass carp were digested with trypsin and collagenase I to obtain the primary myoblast cell culture. Myoblast cells were obtained by differential adherence purification and further analyzed by cryopreservation and resuscitation, chromosome analysis, immunohistochemistry, and immunofluorescence. A continuous grass carp myoblast cell line (named CIM) was established from grass carp (Ctenopharyngodon idellus) muscle and has been subcultured > 100 passages in a year and more. The CIM cells revived at 79.78-95.06% viability after 1-6 months of cryopreservation, and shared a population doubling time of 27.24 h. The number of modal chromosomes of CIM cells was 48, and the mitochondrial 12S rRNA sequence of the CIM cell line shared 99% identity with those of grass carp registered in GenBank. No microorganisms (bacteria, fungi, or mycoplasma) were detected during the whole study. The cell type of CIM cells was proven to be myoblast by immunohistochemistry of specific myogenic protein markers, including CD34, desmin, MyoD, and MyHC, as well as relative expression of key genes. And the myogenic rate and fusion index of this cell line after 10 days of induced differentiation were 8.96 ~ 9.42% and 3-24%, respectively. The telomerase activity and transfection efficiency of CIM cell line were 0.027 IU/mgprot and 23 ~ 24%, respectively. These results suggest that a myoblast cell line named CIM with normal biological function has been successfully established, which may provide a valuable tool for related in vitro studies.
Collapse
Affiliation(s)
- Xianmei Long
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Wangwang Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Guoqing Liu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Wenguang Hu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Qingsong Tan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
| |
Collapse
|
30
|
Yi C, Huang D, Yu H, Gu J, Liang H, Ren M. Enzymatically Hydrolyzed Poultry By-Product Supplementation, Instead of Fishmeal, Alone Improves the Quality of Largemouth Bass ( Micropterus salmoides) Back Muscle without Compromising Growth. Foods 2023; 12:3485. [PMID: 37761194 PMCID: PMC10529141 DOI: 10.3390/foods12183485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
This study was designed to investigate the effects of enzymatically hydrolyzed poultry by-products (EHPB) on the growth and muscle quality of largemouth bass. Different concentrations of EHPB (0.00, 3.10, 6.20, 9.30, and 12.40%) were added to replace fishmeal (0.00 (control), 8.89 (EHPB1), 17.78 (EHPB2), 26.67 (EHPB3), and 35.56% (EHPB4)), respectively, in dietary supplementation. The results revealed that the growth performance and muscle amino acid and fatty acid remained unaltered in EHPB1 (p > 0.05). EHPB1 showed significant reduction in muscle hardness, gumminess, chewiness, and muscle fiber count and exhibited a significant increase in muscle fiber volume. The decrease in muscle hardness, gumminess, and chewiness means that the muscle can have a more tender texture. The expression of protein metabolism-related genes reached the highest levels in EHPB1 and EHPB2 (p < 0.05). The mRNA levels of s6k and igf-1 in EHPB2 and EHPB1 were significantly lower than those in the control group. Compared to the control group, the expression of muscle production-associated genes paxbp-1 was higher in EHPB1, and myod-1, myf-5, and syndecan-4 were higher in EHPB2. The mRNA levels of muscle atrophy-related genes, in EHPB4 and EHPB2, were significantly lower than those in the control group. Therefore, the EHPB1 group plays a role in promoting the expression of genes related to muscle formation. In summary, replacing 8.89% of fishmeal with EHPB in feed has no effect on growth and may improve back muscle quality in largemouth bass.
Collapse
Affiliation(s)
- Changguo Yi
- Wuxi Fisheries College, Nanjing Agriculture University, Wuxi 214081, China (J.G.); (H.L.)
| | - Dongyu Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Heng Yu
- Wuxi Fisheries College, Nanjing Agriculture University, Wuxi 214081, China (J.G.); (H.L.)
| | - Jiaze Gu
- Wuxi Fisheries College, Nanjing Agriculture University, Wuxi 214081, China (J.G.); (H.L.)
| | - Hualiang Liang
- Wuxi Fisheries College, Nanjing Agriculture University, Wuxi 214081, China (J.G.); (H.L.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agriculture University, Wuxi 214081, China (J.G.); (H.L.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
31
|
Oprescu SN, Baumann N, Chen X, Sun Q, Zhao Y, Yue F, Wang H, Kuang S. Sox11 is enriched in myogenic progenitors but dispensable for development and regeneration of the skeletal muscle. Skelet Muscle 2023; 13:15. [PMID: 37705115 PMCID: PMC10498607 DOI: 10.1186/s13395-023-00324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
Transcription factors (TFs) play key roles in regulating differentiation and function of stem cells, including muscle satellite cells (MuSCs), a resident stem cell population responsible for postnatal regeneration of the skeletal muscle. Sox11 belongs to the Sry-related HMG-box (SOX) family of TFs that play diverse roles in stem cell behavior and tissue specification. Analysis of single-cell RNA-sequencing (scRNA-seq) datasets identify a specific enrichment of Sox11 mRNA in differentiating but not quiescent MuSCs. Consistent with the scRNA-seq data, Sox11 levels increase during differentiation of murine primary myoblasts in vitro. scRNA-seq data comparing muscle regeneration in young and old mice further demonstrate that Sox11 expression is reduced in aged MuSCs. Age-related decline of Sox11 expression is associated with reduced chromatin contacts within the topologically associating domains. Unexpectedly, Myod1Cre-driven deletion of Sox11 in embryonic myoblasts has no effects on muscle development and growth, resulting in apparently healthy muscles that regenerate normally. Pax7CreER- or Rosa26CreER- driven (MuSC-specific or global) deletion of Sox11 in adult mice similarly has no effects on MuSC differentiation or muscle regeneration. These results identify Sox11 as a novel myogenic differentiation marker with reduced expression in quiescent and aged MuSCs, but the specific function of Sox11 in myogenesis remains to be elucidated.
Collapse
Affiliation(s)
- Stephanie N Oprescu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Nick Baumann
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiyue Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Qiang Sun
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong, China
| | - Yu Zhao
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong, China
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Huating Wang
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong, China
| | - Shihuan Kuang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
32
|
Su Y, Gao X, Wang Y, Li X, Zhang W, Zhao J. Astragalus polysaccharide promotes sheep satellite cell differentiation by regulating miR-133a through the MAPK/ERK signaling pathway. Int J Biol Macromol 2023; 239:124351. [PMID: 37023880 DOI: 10.1016/j.ijbiomac.2023.124351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Astragalus polysaccharide (APS) possesses extensive biological activities, pharmacological effects, and anti-fatigue function. MiR-133a is a specifically expressed miRNA in skeletal muscle that participates in the regulation of myoblast proliferation and differentiation. However, little is known about the role of APS in the development of sheep skeletal muscle. In this study, we aimed to investigate the underlying mechanism of APS and miR-133a on the differentiation of sheep skeletal muscle satellite cells (SMSCs) and the regulatory relationship between APS and miR-133a. The results suggested that APS plays a positive regulatory role in the proliferation and differentiation of sheep SMSCs. Moreover, miR-133a significantly promotes SMSC differentiation and the activity of the MAPK/ERK signaling pathway. Importantly, we found that APS function requires the mediation of miR-133a in the differentiation of sheep SMSCs. Taken together, our results indicate that APS accelerates SMSC differentiation by regulating miR-133a via the MAPK/ERK signaling pathway in sheep.
Collapse
Affiliation(s)
- Yuan Su
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Xuyang Gao
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Yu Wang
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Xuying Li
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Weipeng Zhang
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Junxing Zhao
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
| |
Collapse
|
33
|
Bao BW, Kang Z, Zhang Y, Li K, Xu R, Guo MY. Selenium Deficiency Leads to Reduced Skeletal Muscle Cell Differentiation by Oxidative Stress in Mice. Biol Trace Elem Res 2023; 201:1878-1887. [PMID: 35576098 DOI: 10.1007/s12011-022-03288-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/09/2022] [Indexed: 11/02/2022]
Abstract
Selenium (Se) is one of the essential trace elements in animal organisms with good antioxidant and immune-enhancing abilities. In this study, we investigated the effect and mechanism of Se deficiency on skeletal muscle cell differentiation. A selenium-deficient skeletal muscle model was established. The skeletal muscle tissue and blood Se content were significantly reduced in the Se deficiency group. HE staining showed that the skeletal muscle tissue had a reduced myofiber area and nuclei and an increased myofascicular membrane with Se deficiency. The TUNEL test showed massive apoptosis of skeletal muscle cells in Se deficiency. With Se deficiency, reactive oxygen species (ROS) and malondialdehyde (MDA) increased, and the activities of glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and catalase (CAT) were inhibited. In in vitro experiments, microscopic observations showed that the low-Se group had reduced C2C12 cell fusion and a reduced number of differentiated myotubes. In addition, qPCR results showed that differentiation genes (Myog, Myod, Myh2, Myh3, and Myf5) were significantly reduced in the low Se group. Meanwhile, Western blot analysis showed that the levels of differentiation proteins (Myog, Myod, and Myhc) were significantly reduced in the low-Se group. This finding indicates that Se deficiency reduces the expression of skeletal muscle cell differentiation factors. All the above data suggest that Se deficiency can lead to oxidative stress in skeletal muscle, resulting in a reduction in the differentiation capacity of muscle cells.
Collapse
Affiliation(s)
- Bo-Wen Bao
- College of Veterinary Medicine, Northeastern Agricultural University, Harbin, 150000, People's Republic of China
| | - Zibo Kang
- Animal Disease Prevention and Control Center of Heilongjiang Province, Harbin, 150000, People's Republic of China
| | - Yu Zhang
- College of Veterinary Medicine, Northeastern Agricultural University, Harbin, 150000, People's Republic of China
| | - Kan Li
- College of Veterinary Medicine, Northeastern Agricultural University, Harbin, 150000, People's Republic of China
| | - Ran Xu
- College of Veterinary Medicine, Northeastern Agricultural University, Harbin, 150000, People's Republic of China
| | - Meng-Yao Guo
- College of Veterinary Medicine, Northeastern Agricultural University, Harbin, 150000, People's Republic of China.
| |
Collapse
|
34
|
Oprescu SN, Baumann N, Chen X, Sun Q, Zhao Y, Yue F, Wang H, Kuang S. Sox11 is enriched in myogenic progenitors but dispensable for development and regeneration of skeletal muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534956. [PMID: 37034612 PMCID: PMC10081271 DOI: 10.1101/2023.03.30.534956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Transcription factors (TFs) play key roles in regulating the differentiation and function of stem cells, including muscle satellite cells (MuSCs), a resident stem cell population responsible for postnatal regeneration of the skeletal muscle. Sox11 belongs to the Sry-related HMG-box (SOX) family of TFs that play diverse roles in stem cell behavior and tissue specification. Analysis of single-cell RNA-sequencing (scRNA-seq) datasets identify a specific enrichment of Sox11 mRNA in differentiating but not quiescent MuSCs. Consistent with the scRNA-seq data, Sox11 levels increase during differentiation of murine primary myoblasts in vitro. scRNA-seq data comparing muscle regeneration in young and old mice further demonstrate that Sox11 expression is reduced in aged MuSCs. Age-related decline of Sox11 expression is associated with reduced chromatin contacts within the topologically associated domains. Unexpectedly, Myod1 Cre -driven deletion of Sox11 in embryonic myoblasts has no effects on muscle development and growth, resulting in apparently healthy muscles that regenerate normally. Pax7 CreER or Rosa26 CreER driven (MuSC-specific or global) deletion of Sox11 in adult mice similarly has no effects on MuSC differentiation or muscle regeneration. These results identify Sox11 as a novel myogenic differentiation marker with reduced expression in quiescent and aged MuSCs, but the specific function of Sox11 in myogenesis remain to be elucidated.
Collapse
|
35
|
Wen F, Hou J, Ji X, Chu X, Liu X, Shi Z, Song Z. The Mef2c/AdipoR1 axis is responsible for myogenic differentiation and is regulated by resistin in skeletal muscles. Gene 2023; 857:147193. [PMID: 36641076 DOI: 10.1016/j.gene.2023.147193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/10/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Previous studies have shown that accumulated lipid and insulin resistance emerges in skeletal muscle after the onset of obesity and diabetes. We have previously shown that resistin significantly increases lipid contents in C2C12 cells. However, studies evaluating the effects of resistin on skeletal muscle cells and tissues are limited; despite that, an understanding of resistin action and function on lipid alteration in skeletal muscle tissues is critical for understanding obesity-related diseases. In this study, we document that resistin increases lipid deposition both in vitro and in vivo. Further, resistin promotes fiber type transformation, decreases enzyme activities, inhibits myogenic differentiation, and decreases muscle grip and excise endurance. In addition, adiponectin signaling is activated during myocyte differentiation, but it is inhibited at elevated resistin concentrations. Mechanistic investigation revealed that mef2c is responsible for adiponectin signaling pathway inhibition by inhibiting adipoR1 expression at the transcriptional level. In conclusion, this is the first study to document that resistin increases ectopic lipid deposition in skeletal muscles via a mef2c-adipoR1 signaling pathway, which reveals for the first time the presence of crosstalk between resistin and adiponectin in skeletal muscles.
Collapse
Affiliation(s)
- Fengyun Wen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China; The Kay Laboratory of High Quality Livestock and Poultry Germplasm Resources and Genetic Breeding of Luoyang, Luoyang 471003, Henan, PR China.
| | - Junjie Hou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| | - Xiang Ji
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| | - Xiaoran Chu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| | - Xiaoping Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| | - Zhuoyan Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| | - Zhen Song
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China; The Kay Laboratory of High Quality Livestock and Poultry Germplasm Resources and Genetic Breeding of Luoyang, Luoyang 471003, Henan, PR China
| |
Collapse
|
36
|
He Z, Wang X, Qi Y, Zhu C, Zhao Z, Zhang X, Liu X, Li S, Zhao F, Wang J, Shi B, Hu J. Long-stranded non-coding RNAs temporal-specific expression profiles reveal longissimus dorsi muscle development and intramuscular fat deposition in Tianzhu white yak. J Anim Sci 2023; 101:skad394. [PMID: 38029315 PMCID: PMC10760506 DOI: 10.1093/jas/skad394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023] Open
Abstract
The process of muscle development and intramuscular fat (IMF) deposition is quite complex and controlled by both mRNAs and ncRNAs. Long-stranded non-coding RNAs (LncRNAs) are involved in various biological processes in mammals while also playing a critical role in muscle development and fat deposition. In the present study, RNA-Seq was used to comprehensively study the expression of lncRNAs and mRNAs during muscle development and intramuscular fat deposition in postnatal Tianzhu white yaks at three stages, including 6 mo of age (calve, n = 6), 30 mo of age (young cattle, n = 6) and 54 mo of age (adult cattle, n = 6). The results indicated that a total of 2,101 lncRNAs and 20,855 mRNAs were screened across the three stages, of which the numbers of differential expression (DE) lncRNAs and DE mRNAs were 289 and 1,339, respectively, and DE lncRNAs were divided into eight different expression patterns based on expression trends. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that some DE mRNAs overlapped with target genes of lncRNAs, such as NEDD4L, SCN3B, AGT, HDAC4, DES, MYH14, KLF15 (muscle development), ACACB, PCK2, LIPE, PIK3R1, PNPLA2, and MGLL (intramuscular fat deposition). These DE mRNAs were significantly enriched in critical muscle development and IMF deposition-related pathways and GO terms, such as AMPK signaling pathway, PI3K-Akt signaling pathway, PPAR signaling pathway, etc. In addition, lncRNA-mRNA co-expression network analysis revealed that six lncRNAs (MSTRG.20152.2, MSTRG.20152.3, XR_001351700.1, MSTRG.8190.1, MSTRG.4827.1, and MSTRG.11486.1) may play a major role in Tianzhu white yak muscle development and lipidosis deposition. Therefore, this study enriches the database of yak lncRNAs and could help to further explore the functions and roles of lncRNAs in different stages of muscle development and intramuscular fat deposition in the Tianzhu white yak.
Collapse
Affiliation(s)
- Zhaohua He
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiangyan Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Youpeng Qi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Chune Zhu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaolan Zhang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
37
|
Liao H, Wang F, Lu K, Ma X, Yan J, Luo L, Sun Y, Liang X. Requirement for PINCH in skeletal myoblast differentiation. Cell Tissue Res 2023; 391:205-215. [PMID: 36385586 PMCID: PMC9839796 DOI: 10.1007/s00441-022-03701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022]
Abstract
PINCH, an adaptor of focal adhesion complex, plays essential roles in multiple cellular processes and organogenesis. Here, we ablated PINCH1 or both of PINCH1 and PINCH2 in skeletal muscle progenitors using MyoD-Cre. Double ablation of PINCH1 and PINCH2 resulted in early postnatal lethality with reduced size of skeletal muscles and detachment of diaphragm muscles from the body wall. PINCH mutant myofibers failed to undergo multinucleation and exhibited disrupted sarcomere structures. The mutant myoblasts in culture were able to adhere to newly formed myotubes but impeded in cell fusion and subsequent sarcomere genesis and cytoskeleton organization. Consistent with this, expression of integrin β1 and some cytoskeleton proteins and phosphorylation of ERK and AKT were significantly reduced in PINCH mutants. However, N-cadherin was correctly expressed at cell adhesion sites in PINCH mutant cells, suggesting that PINCH may play a direct role in myoblast fusion. Expression of MRF4, the most highly expressed myogenic factor at late stages of myogenesis, was abolished in PINCH mutants that could contribute to observed phenotypes. In addition, mice with PINCH1 being ablated in myogenic progenitors exhibited only mild centronuclear myopathic changes, suggesting a compensatory role of PINCH2 in myogenic differentiation. Our results revealed a critical role of PINCH proteins in myogenic differentiation.
Collapse
Affiliation(s)
- Huimin Liao
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Fei Wang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Ke Lu
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xiaolei Ma
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Jie Yan
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Lina Luo
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yunfu Sun
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| | - Xingqun Liang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
38
|
Ziermann JM. Overview of Head Muscles with Special Emphasis on Extraocular Muscle Development. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:57-80. [PMID: 37955771 DOI: 10.1007/978-3-031-38215-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The head is often considered the most complex part of the vertebrate body as many different cell types contribute to a huge variation of structures in a very limited space. Most of these cell types also interact with each other to ensure the proper development of skull, brain, muscles, nerves, connective tissue, and blood vessels. While there are general mechanisms that are true for muscle development all over the body, the head and postcranial muscle development differ from each other. In the head, specific gene regulatory networks underlie the differentiation in subgroups, which include extraocular muscles, muscles of mastication, muscles of facial expression, laryngeal and pharyngeal muscles, as well as cranial nerve innervated neck muscles. Here, I provide an overview of the difference between head and trunk muscle development. This is followed by a short excursion to the cardiopharyngeal field which gives rise to heart and head musculature and a summary of pharyngeal arch muscle development, including interactions between neural crest cells, mesodermal cells, and endodermal signals. Lastly, a more detailed description of the eye development, tissue interactions, and involved genes is provided.
Collapse
|
39
|
Borowik AK, Davidyan A, Peelor FF, Voloviceva E, Doidge SM, Bubak MP, Mobley CB, McCarthy JJ, Dupont-Versteegden EE, Miller BF. Skeletal Muscle Nuclei in Mice are not Post-mitotic. FUNCTION 2022; 4:zqac059. [PMID: 36569816 PMCID: PMC9772608 DOI: 10.1093/function/zqac059] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
The skeletal muscle research field generally accepts that nuclei in skeletal muscle fibers (ie, myonuclei) are post-mitotic and unable to proliferate. Because our deuterium oxide (D2O) labeling studies showed DNA synthesis in skeletal muscle tissue, we hypothesized that resident myonuclei can replicate in vivo. To test this hypothesis, we used a mouse model that temporally labeled myonuclei with GFP followed by D2O labeling during normal cage activity, functional overload, and with satellite cell ablation. During normal cage activity, we observed deuterium enrichment into myonuclear DNA in 7 out of 7 plantaris (PLA), 6 out of 6 tibialis anterior (TA), 5 out of 7 gastrocnemius (GAST), and 7 out of 7 quadriceps (QUAD). The average fractional synthesis rates (FSR) of DNA in myonuclei were: 0.0202 ± 0.0093 in PLA, 0.0239 ± 0.0040 in TA, 0.0076 ± 0. 0058 in GAST, and 0.0138 ± 0.0039 in QUAD, while there was no replication in myonuclei from EDL. These FSR values were largely reproduced in the overload and satellite cell ablation conditions, although there were higher synthesis rates in the overloaded PLA muscle. We further provided evidence that myonuclear replication is through endoreplication, which results in polyploidy. These novel findings contradict the dogma that skeletal muscle nuclei are post-mitotic and open potential avenues to harness the intrinsic replicative ability of myonuclei for muscle maintenance and growth.
Collapse
Affiliation(s)
- Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK 73104, USA
| | - Arik Davidyan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK 73104, USA
- Department of Biological Sciences, California State University Sacramento, 6000 J Street, Sacramento, CA, 95819, USA
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK 73104, USA
| | - Evelina Voloviceva
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK 73104, USA
| | - Stephen M Doidge
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK 73104, USA
| | - Matthew P Bubak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK 73104, USA
| | | | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40506, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40506, USA
| | - Esther E Dupont-Versteegden
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40506, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40506, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, 900 S Limestone, Lexington, KY 40536, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK 73104, USA
- Oklahoma City VA Medical Center, 921 NE 13th St, Oklahoma City, OK 73104, USA
| |
Collapse
|
40
|
Zou H, Huang C, Zhou L, Lu R, Zhang Y, Lin D. NMR-Based Metabolomic Analysis for the Effects of Trimethylamine N-Oxide Treatment on C2C12 Myoblasts under Oxidative Stress. Biomolecules 2022; 12:biom12091288. [PMID: 36139126 PMCID: PMC9496509 DOI: 10.3390/biom12091288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
The gut microbial metabolite trimethylamine N-oxide (TMAO) has received increased attention due to its close relationship with cardiovascular disease and type 2 diabetes. In previous studies, TMAO has shown both harmful and beneficial effects on various tissues, but the underlying molecular mechanisms remain to be clarified. Here, we explored the effects of TMAO treatment on H2O2-impaired C2C12 myoblasts, analyzed metabolic changes and identified significantly altered metabolic pathways through nuclear magnetic resonance-based (NMR-based) metabolomic profiling. The results exhibit that TMAO treatment partly alleviated the H2O2-induced oxidative stress damage of cells and protected C2C12 myoblasts by improving cell viability, increasing cellular total superoxide dismutase capacity, improving the protein expression of catalase, and reducing the level of malondialdehyde. We further showed that H2O2 treatment decreased levels of branched-chain amino acids (isoleucine, leucine and valine) and several amino acids including alanine, glycine, threonine, phenylalanine and histidine, and increased the level of phosphocholine related to cell membrane structure, while the TMAO treatment partially reversed the changing trends of these metabolite levels by improving the integrity of the cell membranes. This study indicates that the TMAO treatment may be a promising strategy to alleviate oxidative stress damage in skeletal muscle.
Collapse
Affiliation(s)
- Hong Zou
- School of Sport Science, Beijing Sport University, Beijing 100084, China
- Physical Education Department, Xiamen University, Xiamen 361005, China
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen 361021, China
| | - Lin Zhou
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education and Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Ruohan Lu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yimin Zhang
- School of Sport Science, Beijing Sport University, Beijing 100084, China
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China
- Correspondence: (Y.Z.); (D.L.); Tel.: +86-10-62989309 (Y.Z.); +86-592-2186078 (D.L.)
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Correspondence: (Y.Z.); (D.L.); Tel.: +86-10-62989309 (Y.Z.); +86-592-2186078 (D.L.)
| |
Collapse
|
41
|
Hu D, Dong Z, Li B, Lu F, Li Y. Mechanical Force Directs Proliferation and Differentiation of Stem Cells. TISSUE ENGINEERING PART B: REVIEWS 2022; 29:141-150. [PMID: 35979892 DOI: 10.1089/ten.teb.2022.0052] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stem cells have attracted much attention in the field of regeneration due to their unique ability to promote regeneration. Among the many approaches used to regulate directed proliferation and differentiation of stem cells, application of mechanical forces is safe, simple, and easy to implement, all of which are advantageous to practical applications. In this review, the mechanisms of mechanical regulation of stem cell proliferation and differentiation are summarized with emphasis on force transduction pathways from the extracellular matrix to the nucleus. Prospects for future clinical applications are also discussed. In conclusion, through specific signaling pathways, mechanical signals ultimately affect gene expression and thus guide cell fate. Mechanical factors can regulate proliferation and differentiation of stem cells through signaling pathways, a greater understanding of which will contribute to future research and applications of cell regeneration therapy. Impact statement Mechanical mechanics is vital for the regulation of cell fate; especially in the field of regenerative medicine, mechanical control has characteristics that are simple and comparable. Mechanically regulated pathways exist widely in cells and are distributed at various structural levels of cells. In this review, we categorized the mechanical regulatory pathways through the clue of the mechanical transmission. We tried to include some newly researched pathways, such as Piezo-related pathways, to show the recent vigorous development in this field.
Collapse
Affiliation(s)
- Delin Hu
- Southern Medical University Nanfang Hospital, Department of Plastic and Cosmetic Surgery, Guangzhou, Guangdong, China,
| | - Ziqing Dong
- Southern Medical University Nanfang Hospital, Department of Plastic and Cosmetic Surgery, Guangzhou, Guangdong, China,
| | - Bin Li
- Southern Medical University Nanfang Hospital, Department of Plastic and Cosmetic Surgery, Guangzhou, Guangdong, China,
| | - Feng Lu
- Southern Medical University Nanfang Hospital, Department of Plastic and Cosmetic Surgery, Guangzhou, Guangdong, China,
| | - Ye Li
- Southern Medical University Nanfang Hospital, Plastic and Cosmetic Surgery, guangzhou, Guangzhou, China, 510515,
| |
Collapse
|
42
|
Lei J, Dong Y, Hou Q, He Y, Lai Y, Liao C, Kawamura Y, Li J, Zhang B. Intestinal Microbiota Regulate Certain Meat Quality Parameters in Chicken. Front Nutr 2022; 9:747705. [PMID: 35548562 PMCID: PMC9085416 DOI: 10.3389/fnut.2022.747705] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Growing evidence of intestinal microbiota-muscle axis provides a possibility to improve meat quality of broilers through regulating intestinal microbiota. Water-holding capacity is a crucial factor to evaluate the meat quality. High quality of water-holding capacity is usually described as a low drip-losing rate. This study aimed to explore the relationship between intestinal microbiota and water-holding capacity of muscle in broilers. According to our results, two native breeds of broilers (the Arbor Acres broilers and the Beijing-You broilers) exhibited remarkable differences in microbiota composition. However, the regular of gut bacteria compositions gradually became similar when the two breeds of broiler were raised in a same feeding environment. Therefore, this similar regular of intestinal microbiota induced similar water-holding capacity of the muscle from the two breeds. In subsequent fecal microbiota transplantation (FMT) experiments, the intestinal microbiota community of the Arbor Acres broilers was remodeling by oral gavage of bacterial suspension that was derived from the Beijing-You broilers. Then, not only body weight and abdominal fat rate were increased, but also drip loss of muscle was decreased in the Arbor Acres broilers. Additionally, muscle fiber diameter of biceps femoris muscle and expression of MyoD1 were notably enlarged. Muscle fiber diameter and related genes were deemed as important elements for water-holding capacity of muscle. Simultaneously, we screened typical intestinal bacteria in both the two native breeds of broilers by 16S rDNA sequencing. Lachnoclostridium was the only bacteria genus associated with drip-losing rate, meat fiber diameter, body weight, and abdominal fat rate.
Collapse
Affiliation(s)
- Jiaqi Lei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuanyang Dong
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Qihang Hou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yang He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yujiao Lai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chaoyong Liao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | - Junyou Li
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, Japan
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
43
|
Xue J, Fang C, Mu R, Zhuo R, Xiao Y, Qing Y, Tang J, Fang R. Potential Mechanism and Effects of Different Selenium Sources and Different Effective Microorganism Supplementation Levels on Growth Performance, Meat Quality, and Muscle Fiber Characteristics of Three-Yellow Chickens. Front Nutr 2022; 9:869540. [PMID: 35495956 PMCID: PMC9051370 DOI: 10.3389/fnut.2022.869540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
A trial was conducted to investigate the effects of different Se sources, including sodium selenite (S-Se) and selenium yeast (Y-Se) and different effective microorganism (EM) addition levels on growth performance, meat quality, and muscle fiber characteristics of three-yellow chickens and its potential mechanism. A total of 400 birds were randomly distributed into 4 groups (S-Se, S-Se + EM, Y-Se, and Y-Se + EM groups) consisting of a 2 × 2 factorial arrangement. The main factors were the source of Se (ISe = inorganic Se: 0.2 mg/kg S-Se; OSe = organic Se: 0.2 mg/kg Y-Se) and the level of EM (HEMB = high EM: 0.5% EM; ZEMB = low EM: 0% EM). Each treatment had 5 replicates and each replicate consisted of 20 broiler chickens. The trial lasted for 70 days. The results showed that, in breast muscle, the broiler chickens fed OSe source decreased the pH24h, drip loss, shear force, perimeter, cross-sectional area, and diameter, but increased the a24h* and density compared with the broiler chickens fed ISe source (p < 0.05); broiler chickens supplied with HEMB level decreased the cross-sectional area and diameter, but increased the pH24h, a24h,* and density compared with the broiler chickens supplied with ZEMB level (p < 0.05). In thigh muscle, OSe source and HEMB level also could improve the meat quality and change muscle fiber characteristics of broiler chickens (p < 0.05). Meat quality was correlated with the muscle fiber characteristics (p < 0.05). OSe source and HEMB level could regulate the expression levels of muscle fiber-relative genes in the breast and thigh muscles (p < 0.05). In conclusion, OSe source and HEMB level could improve the meat quality of the breast and thigh muscles of three-yellow chickens by changing the muscle fiber characteristics, and they changed the muscle fiber characteristics by regulating the expression levels of muscle fiber-relative genes.
Collapse
Affiliation(s)
- Junjing Xue
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Chengkun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Rui Mu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Ruiwen Zhuo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Yuanyuan Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Yiqing Qing
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Jiaxi Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
- *Correspondence: Rejun Fang
| |
Collapse
|
44
|
m6A Methylases Regulate Myoblast Proliferation, Apoptosis and Differentiation. Animals (Basel) 2022; 12:ani12060773. [PMID: 35327170 PMCID: PMC8944832 DOI: 10.3390/ani12060773] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary N6-methyladenosine (m6A) is the most prevalent methylation modification in eukaryotic mRNA, and it plays an important role in regulating gene expression. Previous studies found that m6A methylation plays a role in mammalian skeletal muscle development. Skeletal muscle is an important factor that regulates livestock muscle quality and maintains metabolic homeostasis, and skeletal myogenesis is regulated by a series of transcription factors. However, the role of m6A in bovine skeletal myogenesis is unclear. In this study, we examined the expression patterns of the m6A methylase genes METTL3, METTL14, WTAP, FTO and ALKBH5 in bovine skeletal muscle tissue and during myogenesis in myoblasts. Furthermore, we used bovine skeletal muscle myoblasts as the object of study to discover the regulatory role of these genes in the process of skeletal myogenesis in vitro. Our findings indicate that these five m6A methylases have pronounced and diverse functions in regulating bovine skeletal myoblast proliferation, apoptosis and myogenic differentiation, which can contribute to further understanding the roles of m6A in skeletal muscle development. Abstract N6-methyladenosine (m6A) plays an important role in regulating gene expression. Previous studies found that m6A methylation affects skeletal muscle development. However, the effect of m6A methylases on bovine skeletal myogenesis is still unclear. Here, we found that the expression of m6A demethylases (FTO and ALKBH5) was significantly higher in the longissimus dorsi muscle of adult cattle than in newborn cattle. In contrast, the expression of m6A methyltransferases (METTL3, METTL14 and WTAP) was reduced. The mRNA expression of all five genes was found to be increased during the myogenesis of myoblasts in vitro. Knockdown of FTO or METTL3 promoted myoblast proliferation, inhibited myoblast apoptosis and suppressed myogenic differentiation, whereas ALKBH5 knockdown had the opposite effect. METTL14 knockdown enhanced myoblast proliferation and impaired myogenic differentiation. WTAP knockdown attenuated proliferation and contributed to apoptosis but did not affect differentiation. Furthermore, the functional domains of these five m6A methylases are conserved across species. Our results suggest that m6A methylases are involved in regulating skeletal muscle development and that there may be a complex network of m6A methylation regulating skeletal myogenesis.
Collapse
|
45
|
Pang K, Guo X, Jiang Y, Xu L, Ling L, Li Z. Case Report: Primary Intraosseous Poorly Differentiated Synovial Sarcoma of the Femur. Front Oncol 2022; 12:754131. [PMID: 35372059 PMCID: PMC8966429 DOI: 10.3389/fonc.2022.754131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/09/2022] [Indexed: 01/24/2023] Open
Abstract
Primary intraosseous poorly differentiated synovial sarcoma is exceedingly rare. Here, we present a case of primary intraosseous poorly differentiated synovial sarcoma from the proximal femur in a 16-year-old girl. The case was initially misdiagnosed, but the correct diagnosis of synovial sarcoma was eventually confirmed by fluorescence in situ hybridization and next-generation sequencing. We review the literature pertaining to synovial sarcoma and show that this case is the second molecularly proven intraosseous poorly differentiated synovial sarcoma in the literature. Recognition of intraosseous synovial sarcoma composed of small round cells is imperative in order to avoid misdiagnosis of the tumor as Ewing sarcoma and other small round-cell tumors, all of which have markedly different clinical management.
Collapse
Affiliation(s)
- Ke Pang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoning Guo
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Jiang
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lina Xu
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lin Ling
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China,*Correspondence: Lin Ling, ; Zhihong Li,
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, China,*Correspondence: Lin Ling, ; Zhihong Li,
| |
Collapse
|
46
|
Yang X, Wang J, Ma X, Du J, Mei C, Zan L. Transcriptome-wide N 6-Methyladenosine Methylome Profiling Reveals m 6A Regulation of Skeletal Myoblast Differentiation in Cattle ( Bos taurus). Front Cell Dev Biol 2021; 9:785380. [PMID: 34938736 PMCID: PMC8685427 DOI: 10.3389/fcell.2021.785380] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022] Open
Abstract
N 6 -methyladenosine (m6A) is the most prevalent methylation modification of eukaryotic mRNA, and it plays an important role in regulating gene expression. Previous studies have found that m6A methylation plays a role in mammalian skeletal muscle development. However, the effect of m6A on bovine skeletal myogenesis are still unclear. Here, we selected proliferating myoblasts (GM) and differentiated myotubes (on the 4th day of differentiation, DM) for m6A-seq and RNA-seq to explore the m6A methylation modification pattern during bovine skeletal myogenesis. m6A-seq analysis revealed that m6A methylation was an abundant modification of the mRNA in bovine myoblasts and myotubes. We scanned 5,691-8,094 m6A-modified transcripts, including 1,437 differentially methylated genes (DMGs). GO and KEGG analyses revealed that DMGs were primarily involved in transcriptional regulation and RNA metabolism, as well as insulin resistance and metabolic pathways related to muscle development. The combined analysis further identified 268 genes that had significant changes at both m6A and mRNA levels, suggesting that m6A modification may regulate myoblast differentiation by mediating the expression of these genes. Furthermore, we experimentally confirmed four genes related to myogenesis, including MYOZ2, TWIST1, KLF5 and MYOD1, with differential changes in both m6A and mRNA levels during bovine myoblast differentiation, indicating that they can be potential candidate targets for m6A regulation of skeletal myogenesis. Our results may provide new insight into molecular genetics and breeding of beef cattle, and provide a reference for investigating the mechanism of m6A regulating skeletal muscle development.
Collapse
Affiliation(s)
- Xinran Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xinhao Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiawei Du
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, China
| |
Collapse
|
47
|
AlSudais H, Wiper-Bergeron N. From quiescence to repair: C/EBPβ as a regulator of muscle stem cell function in health and disease. FEBS J 2021; 289:6518-6530. [PMID: 34854237 DOI: 10.1111/febs.16307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/21/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022]
Abstract
CCAAT/Enhancer Binding protein beta (C/EBPβ) is a transcriptional regulator involved in numerous physiological processes. Herein, we describe a role for C/EBPβ as a regulator of skeletal muscle stem cell function. In particular, C/EBPβ is expressed in muscle stem cells in healthy muscle where it inhibits myogenic differentiation. Downregulation of C/EBPβ expression at the protein and transcriptional level allows for differentiation. Persistence of C/EBPβ promotes stem cell self-renewal and C/EBPβ expression is required for mitotic quiescence in this cell population. As a critical regulator of skeletal muscle homeostasis, C/EBPβ expression is stimulated in pathological conditions such as cancer cachexia, which perturbs muscle regeneration and promotes myofiber atrophy in the context of systemic inflammation. C/EBPβ is also an important regulator of cytokine expression and immune response genes, a mechanism by which it can influence muscle stem cell function. In this viewpoint, we describe a role for C/EBPβ in muscle stem cells and propose a functional intersection between C/EBPβ and NF-kB action in the regulation of cancer cachexia.
Collapse
Affiliation(s)
- Hamood AlSudais
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Nadine Wiper-Bergeron
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada
| |
Collapse
|
48
|
Homodimeric and Heterodimeric Interactions among Vertebrate Basic Helix-Loop-Helix Transcription Factors. Int J Mol Sci 2021; 22:ijms222312855. [PMID: 34884664 PMCID: PMC8657788 DOI: 10.3390/ijms222312855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 01/01/2023] Open
Abstract
The basic helix–loop–helix transcription factor (bHLH TF) family is involved in tissue development, cell differentiation, and disease. These factors have transcriptionally positive, negative, and inactive functions by combining dimeric interactions among family members. The best known bHLH TFs are the E-protein homodimers and heterodimers with the tissue-specific TFs or ID proteins. These cooperative and dynamic interactions result in a complex transcriptional network that helps define the cell’s fate. Here, the reported dimeric interactions of 67 vertebrate bHLH TFs with other family members are summarized in tables, including specifications of the experimental techniques that defined the dimers. The compilation of these extensive data underscores homodimers of tissue-specific bHLH TFs as a central part of the bHLH regulatory network, with relevant positive and negative transcriptional regulatory roles. Furthermore, some sequence-specific TFs can also form transcriptionally inactive heterodimers with each other. The function, classification, and developmental role for all vertebrate bHLH TFs in four major classes are detailed.
Collapse
|
49
|
Rodriguez-Outeiriño L, Hernandez-Torres F, Ramírez-de Acuña F, Matías-Valiente L, Sanchez-Fernandez C, Franco D, Aranega AE. Muscle Satellite Cell Heterogeneity: Does Embryonic Origin Matter? Front Cell Dev Biol 2021; 9:750534. [PMID: 34722534 PMCID: PMC8554119 DOI: 10.3389/fcell.2021.750534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Muscle regeneration is an important homeostatic process of adult skeletal muscle that recapitulates many aspects of embryonic myogenesis. Satellite cells (SCs) are the main muscle stem cells responsible for skeletal muscle regeneration. SCs reside between the myofiber basal lamina and the sarcolemma of the muscle fiber in a quiescent state. However, in response to physiological stimuli or muscle trauma, activated SCs transiently re-enter the cell cycle to proliferate and subsequently exit the cell cycle to differentiate or self-renew. Recent evidence has stated that SCs display functional heterogeneity linked to regenerative capability with an undifferentiated subgroup that is more prone to self-renewal, as well as committed progenitor cells ready for myogenic differentiation. Several lineage tracing studies suggest that such SC heterogeneity could be associated with different embryonic origins. Although it has been established that SCs are derived from the central dermomyotome, how a small subpopulation of the SCs progeny maintain their stem cell identity while most progress through the myogenic program to construct myofibers is not well understood. In this review, we synthesize the works supporting the different developmental origins of SCs as the genesis of their functional heterogeneity.
Collapse
Affiliation(s)
- Lara Rodriguez-Outeiriño
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| | - Francisco Hernandez-Torres
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
| | - F. Ramírez-de Acuña
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| | - Lidia Matías-Valiente
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| | - Cristina Sanchez-Fernandez
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| | - Amelia Eva Aranega
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| |
Collapse
|
50
|
Johnson LL, Kueppers RB, Shen EY, Rudell JC, McLoon LK. Development of Nystagmus With the Absence of MYOD Expression in the Extraocular Muscles. Invest Ophthalmol Vis Sci 2021; 62:3. [PMID: 34617961 PMCID: PMC8504190 DOI: 10.1167/iovs.62.13.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/15/2021] [Indexed: 01/22/2023] Open
Abstract
Purpose Myoblast determination protein 1 (MYOD) is a critical myogenic regulatory factor in muscle development, differentiation, myofiber repair, and regeneration. As the extraocular muscles significantly remodel their myofibers throughout life compared with limb skeletal muscles, we hypothesized that the absence of MYOD would result in their abnormal structure and function. To assess structural and functional changes in the extraocular muscles in MyoD-/- mice, fiber size and number and optokinetic nystagmus reflex (OKN) responses were examined. Methods OKN was measured in MyoD-/- mice and littermate wild-type controls at 3, 6, and 12 months. The extraocular muscles were examined histologically for changes in mean myofiber cross-sectional area, total myofiber number, and nuclei immunostained for PAX7 and PITX2, markers of myogenic precursor cells. Results The MyoD-/- mice developed nystagmus, with both jerk and pendular waveforms, in the absence and in the presence of moving visual stimulation. At 12 months, there were significant losses in mean myofiber cross-sectional area and in total number of orbital layer fibers in all rectus muscles, as well as in global layer fibers in the superior and inferior rectus muscles. Haploinsufficient mice showed abnormal OKN responses. PITX2-positive cell entry into myofibers of the MyoD-/- mice was significantly reduced. Conclusions This study is the first demonstration of the development of nystagmus in the constitutive absence of expression of the muscle-specific transcription factor MYOD. We hypothesize that myofiber loss over time may alter anterograde and/or retrograde communication between the motor nerves and extraocular muscles that are critical for maintaining normalcy of extraocular muscle function.
Collapse
Affiliation(s)
- Laura L. Johnson
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, Minnesota, United States
| | - Rachel B. Kueppers
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Erin Y. Shen
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Jolene C. Rudell
- Department of Ophthalmology, University of California San Diego, San Diego, California, United States
| | - Linda K. McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota Medical School, Minneapolis, Minnesota, United States
- Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, Minnesota, United States
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| |
Collapse
|