1
|
Su Z, Zong Z, Deng J, Huang J, Liu G, Wei B, Cui L, Li G, Zhong H, Lin S. Lipid Metabolism in Cartilage Development, Degeneration, and Regeneration. Nutrients 2022; 14:3984. [PMID: 36235637 PMCID: PMC9570753 DOI: 10.3390/nu14193984] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Lipids affect cartilage growth, injury, and regeneration in diverse ways. Diet and metabolism have become increasingly important as the prevalence of obesity has risen. Proper lipid supplementation in the diet contributes to the preservation of cartilage function, whereas excessive lipid buildup is detrimental to cartilage. Lipid metabolic pathways can generate proinflammatory substances that are crucial to the development and management of osteoarthritis (OA). Lipid metabolism is a complicated metabolic process involving several regulatory systems, and lipid metabolites influence different features of cartilage. In this review, we examine the current knowledge about cartilage growth, degeneration, and regeneration processes, as well as the most recent research on the significance of lipids and their metabolism in cartilage, including the extracellular matrix and chondrocytes. An in-depth examination of the involvement of lipid metabolism in cartilage metabolism will provide insight into cartilage metabolism and lead to the development of new treatment techniques for metabolic cartilage damage.
Collapse
Affiliation(s)
- Zhanpeng Su
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Zhixian Zong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Jinxia Deng
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Jianping Huang
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Guihua Liu
- Institute of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou 516001, China
| | - Bo Wei
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Liao Cui
- Department of Pharmacology, Marine Biomedical Research Institute, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical Unversity, Zhanjiang 524023, China
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Huan Zhong
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
| | - Sien Lin
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524013, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
2
|
Nanoscopic Spatial Association between Ras and Phosphatidylserine on the Cell Membrane Studied with Multicolor Super Resolution Microscopy. Biomolecules 2022; 12:biom12081033. [PMID: 35892343 PMCID: PMC9332490 DOI: 10.3390/biom12081033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/02/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Recent work suggests that Ras small GTPases interact with the anionic lipid phosphatidylserine (PS) in an isoform-specific manner, with direct implications for their biological functions. Studies on PS-Ras associations in cells, however, have relied on immuno-EM imaging of membrane sheets. To study their spatial relationships in intact cells, we have combined the use of Lact-C2-GFP, a biosensor for PS, with multicolor super resolution imaging based on DNA-PAINT. At ~20 nm spatial resolution, the resulting super resolution images clearly show the nonuniform molecular distribution of PS on the cell membrane and its co-enrichment with caveolae, as well as with unidentified membrane structures. Two-color imaging followed by spatial analysis shows that KRas-G12D and HRas-G12V both co-enrich with PS in model U2OS cells, confirming previous observations, yet exhibit clear differences in their association patterns. Whereas HRas-G12V is almost always co-enriched with PS, KRas-G12D is strongly co-enriched with PS in about half of the cells, with the other half exhibiting a more moderate association. In addition, perturbations to the actin cytoskeleton differentially impact PS association with the two Ras isoforms. These results suggest that PS-Ras association is context-dependent and demonstrate the utility of multiplexed super resolution imaging in defining the complex interplay between Ras and the membrane.
Collapse
|
3
|
Kobayashi E, Kondo S, Dochi H, Moriyama-Kita M, Hirai N, Komori T, Ueno T, Nakanishi Y, Hatano M, Endo K, Sugimoto H, Wakisaka N, Yoshizaki T. Protein Farnesylation on Nasopharyngeal Carcinoma, Molecular Background and Its Potential as a Therapeutic Target. Cancers (Basel) 2022; 14:cancers14122826. [PMID: 35740492 PMCID: PMC9220992 DOI: 10.3390/cancers14122826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Nasopharyngeal carcinoma is distinguished from other head and neck carcinomas by the association of its carcinogenesis with the Epstein–Barr virus. It is highly metastatic, and a novel therapeutic modality for metastatic nasopharyngeal carcinoma is keenly awaited. Protein farnesylation is a C-terminal lipid modification of proteins and was initially investigated as a key process in activating the RAS oncoprotein through its association with the cellular membrane structure. Since then, more and more evidence has accumulated to indicate that proteins other than RAS are also farnesylated and have significant roles in carcinogenesis. This review delineates molecular pathogenesis through protein farnesylation in the context of nasopharyngeal carcinoma and discusses the potential of farnesylation as a therapeutic target. Abstract Nasopharyngeal carcinoma (NPC) is one of the Epstein–Barr virus (EBV)-associated malignancies. NPC is highly metastatic compared to other head and neck carcinomas, and evidence has shown that the metastatic features of NPC are involved in EBV infection. The prognosis of advanced cases, especially those with distant metastasis, is still poor despite advancements in molecular research and its application to clinical settings. Thus, further advancement in basic and clinical research that may lead to novel therapeutic modalities is needed. Farnesylation is a lipid modification in the C-terminus of proteins. It enables proteins to attach to the lipid bilayer structure of cellular membranes. Farnesylation was initially identified as a key process of membrane association and activation of the RAS oncoprotein. Farnesylation is thus expected to be an ideal therapeutic target in anti-RAS therapy. Additionally, more and more molecular evidence has been reported, showing that proteins other than RAS are also farnesylated and have significant roles in cancer progression. However, although several clinical trials have been conducted in cancers with high rates of ras gene mutation, such as pancreatic carcinomas, the results were less favorable than anticipated. In contrast, favorable outcomes were reported in the results of a phase II trial on head and neck carcinoma. In this review, we provide an overview of the molecular pathogenesis of NPC in terms of the process of farnesylation and discuss the potential of anti-farnesylation therapy in the treatment of NPC.
Collapse
|
4
|
Ahearn IM, Court HR, Siddiqui F, Abankwa D, Philips MR. NRAS is unique among RAS proteins in requiring ICMT for trafficking to the plasma membrane. Life Sci Alliance 2021; 4:4/5/e202000972. [PMID: 33579760 PMCID: PMC7893820 DOI: 10.26508/lsa.202000972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/17/2022] Open
Abstract
Among the RAS isoforms, NRAS uniquely requires carboxyl methylation by ICMT for delivery to the plasma membrane because of having only a single palmitoylation as a second targeting signal. Isoprenylcysteine carboxyl methyltransferase (ICMT) is the third of three enzymes that sequentially modify the C-terminus of CaaX proteins, including RAS. Although all four RAS proteins are substrates for ICMT, each traffics to membranes differently by virtue of their hypervariable regions that are differentially palmitoylated. We found that among RAS proteins, NRAS was unique in requiring ICMT for delivery to the PM, a consequence of having only a single palmitoylation site as its secondary affinity module. Although not absolutely required for palmitoylation, acylation was diminished in the absence of ICMT. Photoactivation and FRAP of GFP-NRAS revealed increase flux at the Golgi, independent of palmitoylation, in the absence of ICMT. Association of NRAS with the prenyl-protein chaperone PDE6δ also required ICMT and promoted anterograde trafficking from the Golgi. We conclude that carboxyl methylation of NRAS is required for efficient palmitoylation, PDE6δ binding, and homeostatic flux through the Golgi, processes that direct delivery to the plasma membrane.
Collapse
Affiliation(s)
- Ian M Ahearn
- The Ronald O Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY, USA .,The Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA.,Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, NY, USA
| | - Helen R Court
- The Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Farid Siddiqui
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Daniel Abankwa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Mark R Philips
- The Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| |
Collapse
|
5
|
Abstract
Ras is the best-studied member of the superfamily of small GTPases because of its role in cancer. Ras proteins transmit signals for proliferation, differentiation and survival. Three RAS genes encode 4 isoforms. All Ras isoforms have long been considered membrane bound, a localization required for function. Our recent study revealed that N-Ras differs from all other isoforms in being largely cytosolic even following modification with a prenyl lipid. Endogenous, cytosolic N-Ras chromatographed in both high and low molecular weight pools, a pattern that required prenylation, suggesting prenyl-dependent interaction with other proteins. VPS35, a coat protein of the retromer, was shown to interact with prenylated N-Ras in the cytosol. Silencing VPS35 results in partial N-Ras mislocalization on vesicular and tubulovesicular structures, reduced GTP-loading of Ras proteins, and inhibited proliferation and MAPK signaling in an oncogenic N-Ras-driven tumor cell line. Our data revealed a novel regulator of N-Ras trafficking and signaling.
Collapse
Affiliation(s)
- Mo Zhou
- a Perlmutter Cancer Center, New York University School of Medicine , New York , NY , USA
| | - Mark R Philips
- a Perlmutter Cancer Center, New York University School of Medicine , New York , NY , USA
| |
Collapse
|
6
|
Thole JM, Perroud PF, Quatrano RS, Running MP. Prenylation is required for polar cell elongation, cell adhesion, and differentiation in Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:441-451. [PMID: 24634995 DOI: 10.1111/tpj.12484] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/16/2014] [Accepted: 02/12/2014] [Indexed: 06/03/2023]
Abstract
Protein prenylation is required for a variety of growth and developmental processes in flowering plants. Here we report the consequences of loss of function of all known prenylation subunits in the moss Physcomitrella patens. As in Arabidopsis, protein farnesyltransferase and protein geranylgeranyltransferase type I are not required for viability. However, protein geranylgeranyltransferase type I activity is required for cell adhesion, polar cell elongation, and cell differentiation. Loss of protein geranylgeranyltransferase activity results in colonies of round, single-celled organisms that resemble unicellular algae. The loss of protein farnesylation is not as severe but also results in polar cell elongation and differentiation defects. The complete loss of Rab geranylgeranyltransferase activity appears to be lethal in P. patens. Labeling with antibodies to cell wall components support the lack of polarity establishment and the undifferentiated state of geranylgeranyltransferase type I mutant plants. Our results show that prenylated proteins play key roles in P. patens development and differentiation processes.
Collapse
Affiliation(s)
- Julie M Thole
- Donald Danforth Plant Science Center, 975 N Warson Road, Saint Louis, MO, 63132, USA
| | | | | | | |
Collapse
|
7
|
Running MP. The role of lipid post-translational modification in plant developmental processes. FRONTIERS IN PLANT SCIENCE 2014; 5:50. [PMID: 24600462 PMCID: PMC3927097 DOI: 10.3389/fpls.2014.00050] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/01/2014] [Indexed: 05/06/2023]
Abstract
Most eukaryotic proteins are post-translationally modified, and modification has profound effects on protein function. One key modification is the attachment of a lipid group to certain amino acids; this typically facilitates subcellular targeting (association with a membrane) and protein-protein interactions (by virtue of the large hydrophobic moiety). Most widely recognized are lipid modifications of proteins involved in developmental signaling, but proteins with structural roles are also lipid-modified. The three known types of intracellular protein lipid modifications are S-acylation, N-myristoylation, and prenylation. In plants, genetic analysis of the enzymes involved, along with molecular analysis of select target proteins, has recently shed light on the roles of lipid modification in key developmental processes, such as meristem function, flower development, polar cell elongation, cell differentiation, and hormone responses. In addition, while lipid post-translational mechanisms are generally conserved among eukaryotes, plants differ in the nature and function of target proteins, the effects of lipid modification on target proteins, and the roles of lipid modification in developmental processes.
Collapse
Affiliation(s)
- Mark P. Running
- *Correspondence: Mark P. Running, Department of Biology, University of Louisville, Louisville, KY 40292, USA e-mail:
| |
Collapse
|
8
|
Antimisiaris MF, Running MP. Turning moss into algae: prenylation targets in Physcomitrella patens. PLANT SIGNALING & BEHAVIOR 2014; 9:e29314. [PMID: 25763501 PMCID: PMC4203643 DOI: 10.4161/psb.29314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 06/04/2023]
Abstract
Prenylation is a series of lipid posttranslational modifications that are involved in several key aspects of plant development. We recently knocked out every prenylation subunit in Physcomitrella patens. Like in Arabidopsis, knockout of protein farnesyltransferase and protein geranylgeranyltransferase in P. patens does not result in lethality; however, effects on development are extensive. In particular, the knockout of protein geranylgeranyltransferase results in small unicellular plants that resemble algae. Here we perform an analysis of predicted geranylgeranyltransferase target proteins in P. patens, and draw attention to those most likely to play a role in the knockout phenotype.
Collapse
|
9
|
Biogenesis of the Saccharomyces cerevisiae pheromone a-factor, from yeast mating to human disease. Microbiol Mol Biol Rev 2013; 76:626-51. [PMID: 22933563 DOI: 10.1128/mmbr.00010-12] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The mating pheromone a-factor secreted by Saccharomyces cerevisiae is a farnesylated and carboxylmethylated peptide and is unusually hydrophobic compared to other extracellular signaling molecules. Mature a-factor is derived from a precursor with a C-terminal CAAX motif that directs a series of posttranslational reactions, including prenylation, endoproteolysis, and carboxylmethylation. Historically, a-factor has served as a valuable model for the discovery and functional analysis of CAAX-processing enzymes. In this review, we discuss the three modules comprising the a-factor biogenesis pathway: (i) the C-terminal CAAX-processing steps carried out by Ram1/Ram2, Ste24 or Rce1, and Ste14; (ii) two sequential N-terminal cleavage steps, mediated by Ste24 and Axl1; and (iii) export by a nonclassical mechanism, mediated by the ATP binding cassette (ABC) transporter Ste6. The small size and hydrophobicity of a-factor present both challenges and advantages for biochemical analysis, as discussed here. The enzymes involved in a-factor biogenesis are conserved from yeasts to mammals. Notably, studies of the zinc metalloprotease Ste24 in S. cerevisiae led to the discovery of its mammalian homolog ZMPSTE24, which cleaves the prenylated C-terminal tail of the nuclear scaffold protein lamin A. Mutations that alter ZMPSTE24 processing of lamin A in humans cause the premature-aging disease progeria and related progeroid disorders. Intriguingly, recent evidence suggests that the entire a-factor pathway, including all three biogenesis modules, may be used to produce a prenylated, secreted signaling molecule involved in germ cell migration in Drosophila. Thus, additional prenylated signaling molecules resembling a-factor, with as-yet-unknown roles in metazoan biology, may await discovery.
Collapse
|
10
|
Abstract
INTRODUCTION Lonafarnib is a non-peptidomimetic inhibitor of farnesyl transferase, an enzyme responsible for the post-translational lipid modification of a wide variety of cellular proteins that are involved in the pathogenic pathways of various diseases including cancer and progeria. Although extensive clinical research indicates limited activity of lonafarnib in solid tumors, there is recent interest in combinations of farnesyl transferase inhibitors with imatinib or bortezomib in hematological malignancies and to investigate the role of lonafarnib in progeria. AREAS COVERED This review examines the in vitro and in vivo pharmacology of lonafarnib and the available clinical data for lonafarnib monotherapy and combination therapy in the treatment of solid and hematological malignancies as well as progeria, using studies identified from the PubMed database supplemented by computerized search of relevant abstracts from major cancer and hematology conferences. EXPERT OPINION There is no evidence to support the use of lonafarnib in solid tumors. There is ongoing interest to explore lonafarnib for progeria and to investigate other farnesyl transferase inhibitors for chronic and acute leukemias.
Collapse
Affiliation(s)
- Nan Soon Wong
- National Cancer Centre Singapore, Department of Medical Oncology, Singapore
| | | |
Collapse
|
11
|
Brown MS, Goldstein JL. Scientific side trips: six excursions from the beaten path. J Biol Chem 2012; 287:22418-35. [PMID: 22584575 DOI: 10.1074/jbc.x112.381681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Michael S Brown
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | |
Collapse
|
12
|
Wong NS, Meadows KL, Rosen LS, Adjei AA, Kaufmann SH, Morse MA, Petros WP, Zhu Y, Statkevich P, Cutler DL, Meyers ML, Hurwitz HI. A phase I multicenter study of continuous oral administration of lonafarnib (SCH 66336) and intravenous gemcitabine in patients with advanced cancer. Cancer Invest 2012; 29:617-25. [PMID: 22011284 DOI: 10.3109/07357907.2011.621912] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We conducted a phase I study to assess safety, pharmacokinetics, pharmacodynamics, and activity of lonafarnib plus gemcitabine. Subjects received oral lonafarnib twice daily and gemcitabine on days 1, 8, and 15 every 28 days; multiple dose levels were explored. Lonafarnib had no apparent effect on gemcitabine PK. Mean lonafarnib half-life ranged from 4 to 7 hr; median T(max) values ranged from 4 to 8 hr. Two patients had partial response; seven patients had stable disease at least 6 months. Oral lonafarnib at 150 mg a.m./100 mg p.m. plus gemcitabine at 1,000 mg/m(2) is the maximum tolerated dose with acceptable safety and tolerability.
Collapse
Affiliation(s)
- Nan Soon Wong
- Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Posttranslational Modifications of Plasma Membrane Proteins and Their Implications for Plant Growth and Development. THE PLANT PLASMA MEMBRANE 2011. [DOI: 10.1007/978-3-642-13431-9_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Włostowski M, Czarnocka S, Maciejewski P. Efficient S-alkylation of cysteine in the presence of 1,1,3,3-tetramethylguanidine. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.08.097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Fecher LA, Amaravadi RK, Schuchter LM, Flaherty KT. Drug targeting of oncogenic pathways in melanoma. Hematol Oncol Clin North Am 2009; 23:599-618, x. [PMID: 19464605 DOI: 10.1016/j.hoc.2009.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Melanoma continues to be one of the most aggressive and morbid malignancies once metastatic. Overall survival for advanced unresectable melanoma has not changed over the past several decades. However, the presence of some long-term survivors of metastatic melanoma highlights the heterogeneity of this disease and the potential for improved outcomes. Current research is uncovering the molecular and genetic scaffolding of normal and aberrant cell function. The known oncogenic pathways in melanoma and the attempts to develop therapy for them are discussed. The targeting of certain cellular processes, downstream of the common genetic alterations, for which the issues of target and drug validation are somewhat distinct, are also highlighted.
Collapse
Affiliation(s)
- Leslie A Fecher
- Department of Medicine, Division of Hematology and Oncology, Abramson Cancer Center, University of Pennsylvania, 3400 Spruce Street, 16 Penn Tower, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
16
|
Normanno N, Tejpar S, Morgillo F, De Luca A, Van Cutsem E, Ciardiello F. Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nat Rev Clin Oncol 2009; 6:519-27. [PMID: 19636327 DOI: 10.1038/nrclinonc.2009.111] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
EGFR regulates cancer-cell proliferation, apoptosis and tumor-induced neoangiogenesis, and has been validated as a relevant therapeutic target in several human cancers, including metastatic colorectal cancer (mCRC). The anti-EGFR monoclonal antibodies cetuximab and panitumumab are available for the treatment of patients with mCRC. Although EGFR is expressed in approximately 85% of patients with mCRC, the clinical efficacy of treatment with anti-EGFR antibodies is limited to a subset of patients. A series of potential biomarkers that could be useful in predicting response to EGFR inhibitors has been investigated. In patients with mCRC, activating mutations within KRAS can predict resistance to anti-EGFR monoclonal antibodies. Activating mutations in KRAS, which could result in EGFR-independent intracellular signal transduction activation, are found in approximately 35-40% of patients with mCRC. These mutations are almost exclusively detected in codons 12 and 13 of exon 2. KRAS mutations have been significantly associated with lack of response to cetuximab or panitumumab therapy in patients with mCRC, which suggests that EGFR-independent, constitutive activation of the RAS signaling pathway could impair response to anti-EGFR drugs. We summarize the experimental and clinical evidence supporting the use of KRAS testing for the optimal selection of patients with mCRC to be treated with anti-EGFR monoclonal antibodies.
Collapse
Affiliation(s)
- Nicola Normanno
- Cell Biology and Biotherapy Unit, INT-Fondazione Pascale, Naples, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Extensive research on the Ras proteins and their functions in cell physiology over the past 30 years has led to numerous insights that have revealed the involvement of Ras not only in tumorigenesis but also in many developmental disorders. Despite great strides in our understanding of the molecular and cellular mechanisms of action of the Ras proteins, the expanding roster of their downstream effectors and the complexity of the signalling cascades that they regulate indicate that much remains to be learnt.
Collapse
Affiliation(s)
- Antoine E. Karnoub
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Robert A. Weinberg
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
18
|
Falsetti SC, Wang DA, Peng H, Carrico D, Cox AD, Der CJ, Hamilton AD, Sebti SM. Geranylgeranyltransferase I inhibitors target RalB to inhibit anchorage-dependent growth and induce apoptosis and RalA to inhibit anchorage-independent growth. Mol Cell Biol 2007; 27:8003-14. [PMID: 17875936 PMCID: PMC2169159 DOI: 10.1128/mcb.00057-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 03/05/2007] [Accepted: 09/04/2007] [Indexed: 01/30/2023] Open
Abstract
Geranylgeranyltransferase I inhibitors (GGTIs) are presently undergoing advanced preclinical studies and have been shown to disrupt oncogenic and tumor survival pathways, to inhibit anchorage-dependent and -independent growth, and to induce apoptosis. However, the geranylgeranylated proteins that are targeted by GGTIs to induce these effects are not known. Here we provide evidence that the Ras-like small GTPases RalA and RalB are exclusively geranylgeranylated and that inhibition of their geranylgeranylation mediates, at least in part, the effects of GGTIs on anchorage-dependent and -independent growth and tumor apoptosis. To this end, we have created the corresponding carboxyl-terminal mutants that are exclusively farnesylated and verified that they retain the subcellular localization and signaling activities of the wild-type geranylgeranylated proteins and that Ral GTPases do not undergo alternative prenylation in response to GGTI treatment. By expressing farnesylated, GGTI-resistant RalA and RalB in Cos7 cells and human pancreatic MiaPaCa2 cancer cells followed by GGTI-2417 treatment, we demonstrated that farnesylated RalB, but not RalA, confers resistance to the proapoptotic and anti-anchorage-dependent growth effects of GGTI-2417. Conversely, farnesylated RalA but not RalB expression renders MiaPaCa2 cells less sensitive to inhibition of anchorage-independent growth. Furthermore, farnesylated RalB, but not RalA, inhibits the ability of GGTI-2417 to suppress survivin and induce p27(Kip1) protein levels. We conclude that RalA and RalB are important, functionally distinct targets for GGTI-mediated tumor apoptosis and growth inhibition.
Collapse
Affiliation(s)
- Samuel C Falsetti
- Drug Discovery Program, The H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Souza CM, Pichler H. Lipid requirements for endocytosis in yeast. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:442-54. [PMID: 16997624 DOI: 10.1016/j.bbalip.2006.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 08/10/2006] [Accepted: 08/10/2006] [Indexed: 01/19/2023]
Abstract
Endocytosis is, besides secretion, the most prominent membrane transport pathway in eukaryotic cells. In membrane transport, defined areas of the donor membranes engulf solutes of the compartment they are bordering and bud off with the aid of coat proteins to form vesicles. These transport vehicles are guided along cytoskeletal paths, often matured and, finally, fuse to the acceptor membrane they are targeted to. Lipids and proteins are equally important components in membrane transport pathways. Not only are they the structural units of membranes and vesicles, but both classes of molecules also participate actively in membrane transport processes. Whereas proteins form the cytoskeleton and vesicle coats, confer signals and constitute attachment points for membrane-membrane interaction, lipids modulate the flexibility of bilayers, carry protein recognition sites and confer signals themselves. Over the last decade it has been realized that all classes of bilayer lipids, glycerophospholipids, sphingolipids and sterols, actively contribute to functional membrane transport, in particular to endocytosis. Thus, abnormal bilayer lipid metabolism leads to endocytic defects of different severity. Interestingly, there seems to be a great deal of interdependence and interaction among lipid classes. It will be a challenge to characterize this plenitude of interactions and find out about their impact on cellular processes.
Collapse
|
20
|
Rusiñol AE, Sinensky MS. Farnesylated lamins, progeroid syndromes and farnesyl transferase inhibitors. J Cell Sci 2006; 119:3265-72. [PMID: 16899817 DOI: 10.1242/jcs.03156] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three mammalian nuclear lamin proteins, lamin B1, lamin B2 and the lamin A precursor, prelamin A, undergo canonical farnesylation and processing at CAAX motifs. In the case of prelamin A, there is an additional farnesylation-dependent endoproteolysis, which is defective in two congenital diseases: Hutchinson-Gilford progeria (HGPS) and restrictive dermopathy (RD). These two diseases arise respectively from defects in the prelamin A substrate and the enzyme (ZmpSte24) that processes it. Recent work has shed light on the roles of the lamin proteins and the enzymes involved in their farnesylation-dependent maturation. Other experimental work, including mouse model studies, have examined the possibility that farnesyl transferase inhibitors can represent effective treatment for HGPS. However, there are concerns about their use for this purpose given the potential for alternative prenylation pathways.
Collapse
Affiliation(s)
- Antonio E Rusiñol
- Department of Biochemistry and Molecular Biology, Box 70581, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37164-0581, USA
| | | |
Collapse
|
21
|
Lavy M, Yalovsky S. Association of Arabidopsis type-II ROPs with the plasma membrane requires a conserved C-terminal sequence motif and a proximal polybasic domain. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:934-47. [PMID: 16805728 DOI: 10.1111/j.1365-313x.2006.02749.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant ROPs (or RACs) are soluble Ras-related small GTPases that are attached to cell membranes by virtue of the post-translational lipid modifications of prenylation and S-acylation. ROPs (RACs) are subdivided into two major subgroups called type-I and type-II. Whereas type-I ROPs terminate with a conserved CaaL box and undergo prenylation, type-II ROPs undergo S-acylation on two or three C-terminal cysteines. In the present work we determined the sequence requirement for association of Arabidopsis type-II ROPs with the plasma membrane. We identified a conserved sequence motif, designated the GC-CG box, in which the modified cysteines are flanked by glycines. The GC-CG box cysteines are separated by five to six mostly non-polar residues. Deletion of this sequence or the introduction of mutations that change its nature disrupted the association of ROPs with the membrane. Mutations that changed the GC-CG box glycines to alanines also interfered with membrane association. Deletion of a polybasic domain proximal to the GC-CG box disrupted the plasma membrane association of AtROP10. A green fluorescent protein fusion protein containing the C-terminal 25 residues of AtROP10, including its polybasic domain and GC-CG box, was primarily associated with the plasma membrane but a similar fusion protein lacking the polybasic domain was exclusively localized in the soluble fraction. These data provide evidence for the minimal sequence required for plasma membrane association of type-II ROPs in Arabidopsis and other plant species.
Collapse
Affiliation(s)
- Meirav Lavy
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
22
|
Fröhling S, Scholl C, Gilliland DG, Levine RL. Genetics of Myeloid Malignancies: Pathogenetic and Clinical Implications. J Clin Oncol 2005; 23:6285-95. [PMID: 16155011 DOI: 10.1200/jco.2005.05.010] [Citation(s) in RCA: 248] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myeloid malignancies are clonal disorders that are characterized by acquired somatic mutation in hematopoietic progenitors. Recent advances in our understanding of the genetic basis of myeloid malignancies have provided important insights into the pathogenesis of acute myeloid leukemia (AML) and myeloproliferative diseases (MPD) and have led to the development of novel therapeutic approaches. In this review, we describe our current state of understanding of the genetic basis of AML and MPD, with a specific focus on pathogenetic and therapeutic significance. Specific examples discussed include RAS mutations, KIT mutations, FLT3 mutations, and core binding factor rearrangements in AML, and JAK2 mutations in polycythemia vera, essential thrombocytosis, and chronic idiopathic myelofibrosis.
Collapse
Affiliation(s)
- Stefan Fröhling
- Brigham and Women's Hospital, Division of Hematology, Karp Family Research Building, 5th Floor, 1 Blackfan Cir, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
23
|
Running MP, Lavy M, Sternberg H, Galichet A, Gruissem W, Hake S, Ori N, Yalovsky S. Enlarged meristems and delayed growth in plp mutants result from lack of CaaX prenyltransferases. Proc Natl Acad Sci U S A 2004; 101:7815-20. [PMID: 15128936 PMCID: PMC419689 DOI: 10.1073/pnas.0402385101] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Indexed: 11/18/2022] Open
Abstract
Meristems require a myriad of intercellular signaling pathways for coordination of cell division within and between functional zones and clonal cell layers. This control of cell division ensures a constant availability of stem cells throughout the life span of the meristem while limiting overproliferation of meristematic cells and maintaining the meristem structure. We have undertaken a genetic screen to identify additional components of meristem signaling pathways. We identified pluripetala (plp) mutants based on their dramatically larger meristems and increased floral organ number. PLURIPETALA encodes the alpha-subunit shared between protein farnesyltransferase and protein geranylgeranyltransferase-I. plp mutants also have altered abscisic acid responses and overall much slower growth rate. plp is epistatic to mutations in the beta-subunit of farnesyltransferase and shows a synergistic interaction with clavata3 mutants. plp mutants lead to insights into the mechanism of meristem homeostasis and provide a unique in vivo system for studying the functional role of prenylation in eukaryotes.
Collapse
Affiliation(s)
- Mark P Running
- U.S. Department of Agriculture-Agricultural Research Service Plant Gene Expression Center, Albany, CA 94710, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
From the pioneering work with acute transforming retroviruses to the current post-genomic era, RAS genes have always been at the leading edge of signal transduction and molecular oncology. Yet, a complete understanding of RAS function and dysfunction - mainly in human cancer - is still to come. The knowledge that has accumulated since their discovery 30 years ago has, however, been remarkable, and should pave the way for not only solving the outstanding issues regarding RAS biology, but also for developing efficacious drugs that could have a significant impact on cancer treatment.
Collapse
Affiliation(s)
- Marcos Malumbres
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| | | |
Collapse
|
25
|
Caldelari D, Sternberg H, Rodríguez-Concepción M, Gruissem W, Yalovsky S. Efficient prenylation by a plant geranylgeranyltransferase-I requires a functional CaaL box motif and a proximal polybasic domain. PLANT PHYSIOLOGY 2001; 126:1416-29. [PMID: 11500541 PMCID: PMC117142 DOI: 10.1104/pp.126.4.1416] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2000] [Revised: 03/13/2001] [Accepted: 05/02/2001] [Indexed: 05/18/2023]
Abstract
Geranylgeranyltransferase-I (GGT-I) is a heterodimeric enzyme that shares a common alpha-subunit with farnesyltransferase (FTase) and has a distinct beta-subunit. GGT-I preferentially modifies proteins, which terminate in a CaaL box sequence motif. Cloning of Arabidopsis GGT-I beta-subunit (AtGGT-IB) was achieved by a yeast (Saccharomyces cerevisiae) two-hybrid screen, using the tomato (Lycopersicon esculentum) FTase alpha-subunit (FTA) as bait. Sequence and structure analysis revealed that the core active site of GGT-I and FTase are very similar. AtGGT-IA/FTA and AtGGT-IB were co-expressed in baculovirus-infected insect cells to obtain recombinant protein that was used for biochemical and molecular analysis. The recombinant AtGGT-I prenylated efficiently CaaL box fusion proteins in which the a(2) position was occupied by an aliphatic residue, whereas charged or polar residues at the same position greatly reduced the efficiency of prenylation. A polybasic domain proximal to the CaaL box motif induced a 5-fold increase in the maximal reaction rate, and increased the affinity of the enzyme to the protein substrate by an order of magnitude. GGT-I retained high activity in a temperature range between 24 degrees C and 42 degrees C, and showed increased activity rate at relatively basic pH values of 7.9 and 8.5. Reverse transcriptase-polymerase chain reaction, protein immuno-blots, and transient expression assays of green fluorescent protein fusion proteins show that GGT-IB is ubiquitously expressed in a number of tissues, and that expression levels and protein activity were not changed in mutant plants lacking FTase beta-subunit.
Collapse
Affiliation(s)
- D Caldelari
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA
| | | | | | | | | |
Collapse
|
26
|
Hirschman JE, Jenness DD. Dual lipid modification of the yeast ggamma subunit Ste18p determines membrane localization of Gbetagamma. Mol Cell Biol 1999; 19:7705-11. [PMID: 10523659 PMCID: PMC84814 DOI: 10.1128/mcb.19.11.7705] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pheromone response in the yeast Saccharomyces cerevisiae is mediated by a heterotrimeric G protein. The Gbetagamma subunit (a complex of Ste4p and Ste18p) is associated with both internal and plasma membranes, and a portion is not stably associated with either membrane fraction. Like Ras, Ste18p contains a farnesyl-directing CaaX box motif (C-terminal residues 107 to 110) and a cysteine residue (Cys 106) that is a potential site for palmitoylation. Mutant Ste18p containing serine at position 106 (mutation ste18-C106S) migrated more rapidly than wild-type Ste18p during sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The electrophoretic mobility of wild-type Ste18p (but not the mutant Ste18p) was sensitive to hydroxylamine treatment, consistent with palmitoyl modification at Cys 106. Furthermore, immunoprecipitation of the Gbetagamma complex from cells cultured in the presence of [(3)H]palmitic acid resulted in two radioactive species on nonreducing SDS-PAGE gels, with molecular weights corresponding to Ggamma and Gbetagamma. Substitution of serine for either Cys 107 or Cys 106 resulted in the failure of Gbetagamma to associate with membranes. The Cys 107 substitution also resulted in reduced steady-state accumulation of Ste18p, suggesting that the stability of Ste18p requires modification at Cys 107. All of the mutant forms of Ste18p formed complexes with Ste4p, as assessed by coimmunoprecipitation. We conclude that tight membrane attachment of the wild-type Gbetagamma depends on palmitoylation at Cys 106 and prenylation at Cys 107 of Ste18p.
Collapse
Affiliation(s)
- J E Hirschman
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0122, USA
| | | |
Collapse
|
27
|
Comprehensive evaluation of isoprenoid biosynthesis regulation in Saccharomyces cerevisiae utilizing the Genome Reporter Matrix™. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32120-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
Schmidt WK, Tam A, Fujimura-Kamada K, Michaelis S. Endoplasmic reticulum membrane localization of Rce1p and Ste24p, yeast proteases involved in carboxyl-terminal CAAX protein processing and amino-terminal a-factor cleavage. Proc Natl Acad Sci U S A 1998; 95:11175-80. [PMID: 9736709 PMCID: PMC21615 DOI: 10.1073/pnas.95.19.11175] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/1998] [Accepted: 07/17/1998] [Indexed: 11/18/2022] Open
Abstract
Proteins terminating in the CAAX motif, for example Ras and the yeast a-factor mating pheromone, are prenylated, trimmed of their last three amino acids, and carboxyl-methylated. The enzymes that mediate these activities, collectively referred to as CAAX processing components, have been identified genetically in Saccharomyces cerevisiae. Whereas the Ram1p/Ram2p prenyltransferase is a cytosolic soluble enzyme, sequence analysis predicts that the other CAAX processing components, the Rce1p and Ste24p proteases and the Ste14p methyltransferase, contain multiple membrane spans. To determine the intracellular site(s) at which CAAX processing occurs, we have examined the localization of the CAAX proteases Rce1p and Ste24p by subcellular fractionation and indirect immunofluorescence. We find that both of these proteases are associated with the endoplasmic reticulum (ER) membrane. In addition to having a role in CAAX processing, the Ste24p protease catalyzes the first of two cleavage steps that remove the amino-terminal extension from the a-factor precursor, suggesting that the first amino-terminal processing step of a-factor maturation also occurs at the ER membrane. The ER localization of Ste24p is consistent with the presence of a carboxyl-terminal dilysine ER retrieval motif, although we find that mutation of this motif does not result in mislocalization of Ste24p. Because the ER is not the ultimate destination for a-factor or most CAAX proteins, our results imply that a mechanism must exist for the intracellular routing of CAAX proteins from the ER membrane to other cellular sites.
Collapse
Affiliation(s)
- W K Schmidt
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
29
|
Tam A, Nouvet FJ, Fujimura-Kamada K, Slunt H, Sisodia SS, Michaelis S. Dual roles for Ste24p in yeast a-factor maturation: NH2-terminal proteolysis and COOH-terminal CAAX processing. J Cell Biol 1998; 142:635-49. [PMID: 9700155 PMCID: PMC2148179 DOI: 10.1083/jcb.142.3.635] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/1998] [Revised: 07/10/1998] [Indexed: 02/08/2023] Open
Abstract
Maturation of the Saccharomyces cerevisiae a-factor precursor involves COOH-terminal CAAX processing (prenylation, AAX tripeptide proteolysis, and carboxyl methylation) followed by cleavage of an NH2-terminal extension (two sequential proteolytic processing steps). The aim of this study is to clarify the precise role of Ste24p, a membrane-spanning zinc metalloprotease, in the proteolytic processing of the a-factor precursor. We demonstrated previously that Ste24p is necessary for the first NH2-terminal processing step by analysis of radiolabeled a-factor intermediates in vivo (Fujimura-Kamada, K., F.J. Nouvet, and S. Michaelis. 1997. J. Cell Biol. 136:271-285). In contrast, using an in vitro protease assay, others showed that Ste24p (Afc1p) and another gene product, Rce1p, share partial overlapping function as COOH-terminal CAAX proteases (Boyartchuk, V.L., M.N. Ashby, and J. Rine. 1997. Science. 275:1796-1800). Here we resolve these apparently conflicting results and provide compelling in vivo evidence that Ste24p indeed functions at two steps of a-factor maturation using two methods. First, direct analysis of a-factor biosynthetic intermediates in the double mutant (ste24Delta rce1Delta) reveals a previously undetected species (P0*) that fails to be COOH terminally processed, consistent with redundant roles for Ste24p and Rce1p in COOH-terminal CAAX processing. Whereas a-factor maturation appears relatively normal in the rce1Delta single mutant, the ste24Delta single mutant accumulates an intermediate that is correctly COOH terminally processed but is defective in cleavage of the NH2-terminal extension, demonstrating that Ste24p is also involved in NH2-terminal processing. Together, these data indicate dual roles for Ste24p and a single role for Rce1p in a-factor processing. Second, by using a novel set of ubiquitin-a-factor fusions to separate the NH2- and COOH-terminal processing events of a-factor maturation, we provide independent evidence for the dual roles of Ste24p. We also report here the isolation of the human (Hs) Ste24p homologue, representing the first human CAAX protease to be cloned. We show that Hs Ste24p complements the mating defect of the yeast double mutant (ste24Delta rce1Delta) strain, implying that like yeast Ste24p, Hs Ste24p can mediate multiple types of proteolytic events.
Collapse
Affiliation(s)
- A Tam
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
30
|
Gelb MH, Scholten JD, Sebolt-Leopold JS. Protein prenylation: from discovery to prospects for cancer treatment. Curr Opin Chem Biol 1998; 2:40-8. [PMID: 9667914 DOI: 10.1016/s1367-5931(98)80034-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A specific set of proteins in eukaryotic cells contain covalently attached carboxy-terminal prenyl groups (15-carbon farnesyl and 20-carbon geranylgeranyl). Many of them are signaling proteins including Ras, heterotrimeric G proteins and Rab proteins. The protein prenyltransferases which attach prenyl groups to proteins have been well characterized, and an X-ray structure is available for protein farnesyltransferase. Inhibitors of protein farnesyltransferase are showing sufficient promise in preclinical trials as anti-cancer drugs to warrant widespread interest in the pharmaceutical industry.
Collapse
Affiliation(s)
- M H Gelb
- Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
31
|
Trueblood CE, Boyartchuk VL, Rine J. Substrate specificity determinants in the farnesyltransferase beta-subunit. Proc Natl Acad Sci U S A 1997; 94:10774-9. [PMID: 9380709 PMCID: PMC23482 DOI: 10.1073/pnas.94.20.10774] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Protein prenyltransferases catalyze the covalent attachment of isoprenoid lipids (farnesyl or geranylgeranyl) to a cysteine near the C terminus of their substrates. This study explored the specificity determinants for interactions between the farnesyltransferase of Saccharomyces cerevisiae and its protein substrates. A series of substitutions at amino acid 149 of the farnesyltransferase beta-subunit were tested in combination with a series of substitutions at the C-terminal amino acid of CaaX protein substrates Ras2p and a-factor. Efficient prenylation was observed when oppositely charged amino acids were present at amino acid 149 of the yeast farnesyltransferase beta-subunit and the C-terminal amino acid of the CaaX protein substrate, but not when like charges were present at these positions. This evidence for electrostatic interaction between amino acid 149 and the C-terminal amino acid of CaaX protein substrates leads to the prediction that the C-terminal amino acid of the protein substrate binds near amino acid 149 of the yeast farnesyltransferase beta-subunit.
Collapse
Affiliation(s)
- C E Trueblood
- Division of Genetics, Department of Molecular and Cell Biology, 401 Barker Hall, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
32
|
Omer CA, Kohl NE. CA1A2X-competitive inhibitors of farnesyltransferase as anti-cancer agents. Trends Pharmacol Sci 1997. [DOI: 10.1016/s0165-6147(97)90677-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Mathis JR, Poulter CD. Yeast protein farnesyltransferase: a pre-steady-state kinetic analysis. Biochemistry 1997; 36:6367-76. [PMID: 9174352 DOI: 10.1021/bi9629182] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Protein farnesyltransferase catalyzes alkylation of the cysteine in a carboxy-terminal CaaX motif where a is typically an aliphatic amino acid and X is alanine, methionine, serine, glutamine, or cysteine by a farnesyl residue. The modification enhances the lipophilicity of farnesylated proteins and promotes their association with membranes as part of their normal cellular function. Among the proteins modified by farnesyl residues is Ras, an important component in the signal transduction network for cell division that has been implicated in several forms of human cancer. In this paper, we describe isotope trapping, rapid quench, and single turnover experiments with the yeast enzyme using farnesyl diphosphate and the short peptide RTRCVIA as substrates. The kinetic constants for substrate binding, chemistry, and product release were determined from a fit of the differential equations describing the minimal catalytic mechanism to the kinetic data by numerical integration. Rate constants for chemistry and product release were 10.5 and 3.5 s(-1), respectively. The dissociation rate constant (33 s(-1)) for release of peptide from the ternary enzyme-substrate complex was three times larger than the rate constant for chemistry. The enthalpy of reaction, delta Hrxn = -17 +/- 1 kcal/mol for farnesylation of cysteine, was measured by microcalorimetry. Isotope trapping experiments revealed that the enzyme-farnesyl diphosphate complex was efficiently trapped by peptide but that the enzyme-peptide complex was not trapped by farnesyl diphosphate. These results are consistant with an ordered mechanism for formation of a catalytically competent ternary enzyme-farnesyl diphosphate-peptide complex.
Collapse
Affiliation(s)
- J R Mathis
- Department of Chemistry, University of Utah, Salt Lake City 84112, USA
| | | |
Collapse
|
34
|
Yalovsky S, Trueblood CE, Callan KL, Narita JO, Jenkins SM, Rine J, Gruissem W. Plant farnesyltransferase can restore yeast Ras signaling and mating. Mol Cell Biol 1997; 17:1986-94. [PMID: 9121446 PMCID: PMC232045 DOI: 10.1128/mcb.17.4.1986] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Farnesyltransferase (FTase) is a heterodimeric enzyme that modifies a group of proteins, including Ras, in mammals and yeasts. Plant FTase alpha and beta subunits were cloned from tomato and expressed in the yeast Saccharomyces cerevisiae to assess their functional conservation in farnesylating Ras and a-factor proteins, which are important for cell growth and mating. The tomato FTase beta subunit (LeFTB) alone was unable to complement the growth defect of ram1 delta mutant yeast strains in which the chromosomal FTase beta subunit gene was deleted, but coexpression of LeFTB with the plant alpha subunit gene (LeFTA) restored normal growth, Ras membrane association, and mating. LeFTB contains a novel 66-amino-acid sequence domain whose deletion reduces the efficiency of tomato FTase to restore normal growth to yeast ram1 delta strains. Coexpression of LeFTA and LeFTB in either yeast or insect cells yielded a functional enzyme that correctly farnesylated CaaX-motif-containing peptides. Despite their low degree of sequence homology, yeast and plant FTases shared similar in vivo and in vitro substrate specificities, demonstrating that this enzymatic modification of proteins with intermediates from the isoprenoid biosynthesis pathway is conserved in evolutionarily divergent eukaryotes.
Collapse
Affiliation(s)
- S Yalovsky
- Department of Plant and Microbial Biology, University of California, Berkeley 94720, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Prenylated proteins contain a covalently linked cholesterol intermediate near their carboxyl-termini. Maturation of most prenylated proteins involves proteolytic removal of the last three amino acids. Two genes in Saccharomyces cerevisiae, RCE1 and AFC1, were identified that appear to be responsible for this processing. The Afc1 protein is a zinc protease that participates in the processing of yeast a-factor mating pheromone. The Rce1 protein contributes to the processing of both Ras protein and a-factor. Deletion of both AFC1 and RCE1 resulted in the loss of proteolytic processing of prenylated proteins. Disruption of RCE1 led to defects in Ras localization and signaling and suppressed the activated phenotype associated with the allele RAS2val19.
Collapse
Affiliation(s)
- V L Boyartchuk
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
36
|
Imai Y, Davey J, Kawagishi-Kobayashi M, Yamamoto M. Genes encoding farnesyl cysteine carboxyl methyltransferase in Schizosaccharomyces pombe and Xenopus laevis. Mol Cell Biol 1997; 17:1543-51. [PMID: 9032282 PMCID: PMC231880 DOI: 10.1128/mcb.17.3.1543] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The mam4 mutation of Schizosaccharomyces pombe causes mating deficiency in h- cells but not in h+ cells. h- cells defective in mam4 do not secrete active mating pheromone M-factor. We cloned mam4 by complementation. The mam4 gene encodes a protein of 236 amino acids, with several potential membrane-spanning domains, which is 44% identical with farnesyl cysteine carboxyl methyltransferase encoded by STE14 and required for the modification of a-factor in Saccharomyces cerevisiae. Analysis of membrane fractions revealed that mam4 is responsible for the methyltransferase activity in S. pombe. Cells defective in mam4 produced farnesylated but unmethylated cysteine and small peptides but no intact M-factor. These observations strongly suggest that the mam4 gene product is farnesyl cysteine carboxyl methyltransferase that modifies M-factor. Furthermore, transcomplementation of S. pombe mam4 allowed us to isolate an apparent homolog of mam4 from Xenopus laevis (Xmam4). In addition to its sequence similarity to S. pombe mam4, the product of Xmam4 was shown to have a farnesyl cysteine carboxyl methyltransferase activity in S. pombe cells. The isolation of a vertebrate gene encoding farnesyl cysteine carboxyl methyltransferase opens the way to in-depth studies of the role of methylation in a large body of proteins, including Ras superfamily proteins.
Collapse
Affiliation(s)
- Y Imai
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Japan
| | | | | | | |
Collapse
|
37
|
Chen P, Sapperstein SK, Choi JD, Michaelis S. Biogenesis of the Saccharomyces cerevisiae mating pheromone a-factor. J Cell Biol 1997; 136:251-69. [PMID: 9015298 PMCID: PMC2134810 DOI: 10.1083/jcb.136.2.251] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/1996] [Revised: 11/06/1996] [Indexed: 02/03/2023] Open
Abstract
The Saccharomyces cerevisiae mating pheromone a-factor is a prenylated and carboxyl methylated extracellular peptide signaling molecule. Biogenesis of the a-factor precursor proceeds via a distinctive multistep pathway that involves COOH-terminal modification. NH2-terminal proteolysis, and a nonclassical export mechanism. In this study, we examine the formation and fate of a-factor biosynthetic intermediates to more precisely define the events that occur during a-factor biogenesis. We have identified four distinct a-factor biosynthetic intermediates (P0, P1, P2, and M) by metabolic labeling, immunoprecipitation, and SDS-PAGE. We determined the biochemical composition of each by defining their NH2-terminal amino acid and COOH-terminal modification status. Unexpectedly, we discovered that not one, but two NH2-terminal cleavage steps occur during the biogenesis of a-factor. In addition, we have shown that COOH-terminal prenylation is required for the NH2-terminal processing of a-factor and that all the prenylated a-factor intermediates (P1, P2, and M) are membrane bound, suggesting that many steps of a-factor biogenesis occur in association with membranes. We also observed that although the biogenesis of a-factor is a rapid process, it is inherently inefficient, perhaps reflecting the potential for regulation. Previous studies have identified gene products that participate in the COOH-terminal modification (Ram1p, Ram2p, Ste14p), NH2-terminal processing (Ste24p, Axl1p), and export (Ste6p) of a-factor. The intermediates defined in the present study are discussed in the context of these biogenesis components to formulate an overall model for the pathway of a-factor biogenesis.
Collapse
Affiliation(s)
- P Chen
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
38
|
Fujimura-Kamada K, Nouvet FJ, Michaelis S. A novel membrane-associated metalloprotease, Ste24p, is required for the first step of NH2-terminal processing of the yeast a-factor precursor. J Cell Biol 1997; 136:271-85. [PMID: 9015299 PMCID: PMC2134828 DOI: 10.1083/jcb.136.2.271] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/1996] [Revised: 11/08/1996] [Indexed: 02/03/2023] Open
Abstract
Many secreted bioactive signaling molecules, including the yeast mating pheromones a-factor and alpha-factor, are initially synthesized as precursors requiring multiple intracellular processing enzymes to generate their mature forms. To identify new gene products involved in the biogenesis of a-factor in Saccharomyces cerevisiae, we carried out a screen for MA Ta-specific, mating-defective mutants. We have identified a new mutant, ste24, in addition to previously known sterile mutants. During its biogenesis in a wild-type strain, the a-factor precursor undergoes a series of COOH-terminal CAAX modifications, two sequential NH2-terminal cleavage events, and export from the cell. Identification of the a-factor biosynthetic intermediate that accumulates in the ste24 mutant revealed that STE24 is required for the first NH2-terminal proteolytic processing event within the a-factor precursor, which takes place after COOH-terminal CAAX modification is complete. The STE24 gene product contains multiple predicted membrane spans, a zinc metalloprotease motif (HEXXH), and a COOH-terminal ER retrieval signal (KKXX). The HEXXH protease motif is critical for STE24 activity, since STE24 fails to function when conserved residues within this motif are mutated. The identification of Ste24p homologues in a diverse group of organisms, including Escherichia coli, Schizosaccharomyces pombe, Haemophilus influenzae, and Homo sapiens, indicates that Ste24p has been highly conserved throughout evolution. Ste24p and the proteins related to it define a new subfamily of proteins that are likely to function as intracellular, membrane-associated zinc metalloproteases.
Collapse
Affiliation(s)
- K Fujimura-Kamada
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
39
|
Liu L, Dudler T, Gelb MH. Purification of a protein palmitoyltransferase that acts on H-Ras protein and on a C-terminal N-Ras peptide. J Biol Chem 1996; 271:23269-76. [PMID: 8798525 DOI: 10.1074/jbc.271.38.23269] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mammalian H-Ras and N-Ras are GTP-binding proteins that must be post-translationally lipidated to function as molecular switches in signal transduction cascades controlling cell growth and differentiation. These proteins contain a C-terminal farnesyl-cysteine alpha-methyl ester and palmitoyl groups attached to nearby cysteines. Data is presented showing that rat liver microsomes contain an enzyme that transfers the palmitoyl group from palmitoyl-coenzyme A to cysteine residues of H-Ras protein and of a synthetic peptide having the structure of the C terminus of N-Ras. This protein palmitoyltransferase (PPT) was solubilized from membranes and purified 10,500-fold to apparent homogeneity with an overall yield of 10%. On an SDS gel, PPT appears as two proteins of molecular masses of approximately 30 and approximately 33 kDa. If the palmitoylation sites of the N-Ras peptide (the non-farnesylated cysteine) or H-Ras protein (cysteines 181 and 184) are changed to serine, palmitoylation by PPT does not occur. Non-farnesylated H-Ras produced in bacteria as well as in vitro farnesylated bacterial H-Ras are not substrates for PPT nor is the non-farnesylated, methylated N-Ras peptide. These results suggest, but do not prove, that farnesylation and possibly C-terminal methylation are prerequisites for Ras palmitoylation. PPT shows a large preference for palmitoyl-coenzyme A over myristoyl-coenzyme as the acyl donor. Values of Km for palmitoyl-CoA and H-Ras are 4.3 +/- 1.2 and 0.8 +/- 0.3 microM, respectively. PPT is the first protein palmitoyltransferase to be purified, and the availability of pure enzyme should contribute to our understanding of the function and regulation of Ras palmitoylation in cells.
Collapse
Affiliation(s)
- L Liu
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | | | | |
Collapse
|
40
|
Dudler T, Gelb MH. Palmitoylation of Ha-Ras facilitates membrane binding, activation of downstream effectors, and meiotic maturation in Xenopus oocytes. J Biol Chem 1996; 271:11541-7. [PMID: 8626715 DOI: 10.1074/jbc.271.19.11541] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Ras proteins serve as critical relays in signal transduction pathways that control growth and differentiation and must undergo posttranslational modifications before they become functional. While it is established that farnesylation is necessary for membrane binding and cellular functions of all Ras proteins, the significance of palmitoylation is unclear. We have studied the contribution of Ha-Ras palmitoylation for biological activity in Xenopus oocytes. In contrast to wild-type Ha-Ras, which binds to membranes and induces meiosis when microinjected into oocytes, a nonpalmitoylated but farnesylated and methylated mutant mislocalizes to the cytosol and fails to promote maturation. This lack of responsiveness correlates with the inability of the mutant to induce phosphorylation and activation of mitogen-activated protein kinase and maturation promoting factor, which are both strongly activated by wild-type Ha-Ras. Costimulation of oocytes with insulin increases their responsiveness to Ras and partially rescues the biological activity of the palmitoylation-resistant mutant. However, 25-50 times higher doses of mutant were required to elicit responses equivalent to wild-type Ha-Ras. These results suggest that palmitoylation and membrane association of Ha-Ras is necessary for efficient activation of the mitogen-activated protein kinase cascade in vivo and are consistent with a biochemical function for Ras as a membrane targeting signal for downstream effectors in this pathway.
Collapse
Affiliation(s)
- T Dudler
- Department of Chemistry, University of Washington, Seattle 98195-1700, USA
| | | |
Collapse
|
41
|
Byk G, Scherman D. Synthesis of novel (N-farnesyl) amino acids and their incorporation into peptides. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1996; 47:333-9. [PMID: 8791155 DOI: 10.1111/j.1399-3011.1996.tb01081.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
N-Alkylation, and particularly N-farnesylation, of bioactive peptides might be of wide interest: first, to increase peptide bioavailability by decreasing their elimination and by favouring their transport through biological membranes; second, to target peptides to cellular membranes; and third, to generate therapeutic double-substrate inhibitors of enzymes such as ras-farnesyltransferase. We report the synthesis of novel N-farnesyl amino acids [(N-Frn) amino acids]. We have synthesized (N-Frn)MetOCH3, (N-Frn)ValOBz and (N-Frn)PheOCH3 by alkylation of the corresponding natural amino acid esters. In order to demonstrate the feasibility of the introduction of (N-Frn) amino acids into peptides, we have synthesized representative dipeptide analogs: Cys-(N-Frn)ValOBz, Phe-(N-Frn)ValOBz, Lys-(N-Frn)ValOBz, Phe-(N-Frn)MetOCH3, Glu-(N-Frn)Me OCH3, Ser-(N-Frn)MetOCH3, Trp-(N-Frn)PheOCH3 and Pro-(N-Frn)PheOCH3. We also describe the synthesis of the model peptide Cys-Val-Phe-(N-Frn)MetOCH3, which is derived from the tetrapeptide CysValPheMet inhibitor of human p21ras-farnesyl transferase.
Collapse
Affiliation(s)
- G Byk
- UMR 133 CNRS/Rhône-Poulenc Rorer, Vitry-Alfortville Research Centre, Vitry-sur-Seine, France
| | | |
Collapse
|
42
|
MacNulty EE, Ryder NS. Characterization of prenyl protein transferase enzymes in a human keratinocyte cell line. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1289:41-50. [PMID: 8605230 DOI: 10.1016/0304-4165(95)00133-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Prenylation is a post-translational modification of proteins that involves the attachment of an isoprenoid group derived from mevalonic acid, either 15-carbon farnesyl or 20-carbon geranylgeranyl, to a specific carboxy-terminal domain of acceptor proteins. Three prenyl transferase enzymes have been identified so far. In this paper we report the presence of two prenyl transferases in the HaCaT human keratinocyte cell line. Chromatography of a cytosolic extract from these cells resolved a farnesyl protein transferase (FPT) and geranylgeranyl protein transferase-I (GGPT-I) whose activities were measured using a novel peptide-based assay. Both enzymes were inhibited dose dependently by zaragozic acids A and C. Zaragozic acid C was more active towards the FPT than GGPT-I while zaragozic acid A inhibited both enzymes with similar potency. Incubation of HaCaT cell homogenates with [3H] prenyl precursors resulted in the labelling of a number of proteins which was increased when the cells were pretreated with an inhibitor of hydroxymethylglutaryl CoA reductase. Given the role of prenylated proteins in proliferative and inflammatory processes, our finding that prenyl transferases capable of prenylating endogenous substrates are also present in keratinocytes suggests that these enzymes might provide novel therapeutic targets of dermatological importance.
Collapse
Affiliation(s)
- E E MacNulty
- Department of Dermatology, Sandoz Research Institute, Vienna, Austria
| | | |
Collapse
|
43
|
Caldwell GA, Naider F, Becker JM. Fungal lipopeptide mating pheromones: a model system for the study of protein prenylation. Microbiol Rev 1995; 59:406-22. [PMID: 7565412 PMCID: PMC239367 DOI: 10.1128/mr.59.3.406-422.1995] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In a variety of fungal species, mating between haploid cells is initiated by the action of peptide pheromones. The identification and characterization of several fungal pheromones has revealed that they have common structural features classifying them as lipopeptides. In the course of biosynthesis, these pheromones undergo a series of posttranslational processing events prior to export. One common modification is the attachment of an isoprenoid group to the C terminus of the pheromone precursor. Genetic and biochemical investigations of this biosynthetic pathway have led to the elucidation of genes and enzymes which are responsible for isoprenylation of other polypeptides including the nuclear lamins, several vesicular transport proteins, and the oncogene product Ras. The alpha-factor of Saccharomyces cerevisiae serves as a model for studying the biosynthesis, export, and bioactivity of lipopeptide pheromones. In addition to being isoprenylated with a farnesyl group, the alpha-factor is secreted by a novel peptide export pathway utilizing a yeast homolog of the mammalian multidrug resistance P-glycoprotein. The identification of putative lipopeptide-encoding loci within other fungi, including the human immunodeficiency virus-associated opportunistic pathogen Cryptococcus neoformans and the plant pathogen Ustilago maydis, has stimulated much interest in understanding possible roles for pheromones in fungal proliferation and pathogenicity. Knowledge of variations within the processing, export, and receptor-mediated signal transduction pathways associated with different fungal lipopeptide pheromones will continue to provide insights into similar mechanisms which exist in higher eukaryotes.
Collapse
Affiliation(s)
- G A Caldwell
- Department of Microbiology, University of Tennessee, Knoxville 37996-0845, USA
| | | | | |
Collapse
|
44
|
Koike-Takeshita A, Koyama T, Obata S, Ogura K. Molecular cloning and nucleotide sequences of the genes for two essential proteins constituting a novel enzyme system for heptaprenyl diphosphate synthesis. J Biol Chem 1995; 270:18396-400. [PMID: 7629164 DOI: 10.1074/jbc.270.31.18396] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The genes encoding two dissociable components essential for Bacillus stearothermophilus heptaprenyl diphosphate synthase (all-trans-hexparenyl-diphosphate:isopentenyl-diphosphate hexaprenyl-trans-transferase, EC 2.5.1.30) were cloned, and their nucleotide sequences were determined. Sequence analyses revealed the presence of three open reading frames within 2,350 base pairs, designated as ORF-1, ORF-2, and ORF-3 in order of nucleotide sequence, which encode proteins of 220, 234, and 323 amino acids, respectively. Deletion experiments have shown that expression of the enzymatic activity requires the presence of ORF-1 and ORF-3, but ORF-2 is not essential. As a result, this enzyme was proved genetically to consist of two different protein compounds with molecular masses of 25 kDa (Component I) and 36 kDa (Component II), encoded by two of the three tandem genes. The protein encoded by ORF-1 has no similarity to any protein so far registered. However, the protein encoded by ORF-3 shows a 32% similarity to the farnesyl diphosphate synthase of the same bacterium and has seven highly conserved regions that have been shown typical in prenyltransferases (Koyama, T., Obata, S., Osabe, M., Takeshita, A., Yokoyama, K., Uchida, M., Nishino, T., and Ogura, K. (1993) J. Biochem. (Tokyo) 113, 355-363).
Collapse
|
45
|
Nielsen O, Davey J. Pheromone communication in the fission yeast Schizosaccharomyces pombe. SEMINARS IN CELL BIOLOGY 1995; 6:95-104. [PMID: 7548848 DOI: 10.1016/1043-4682(95)90006-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Conjugation between two haploid yeast cells is generally controlled by the reciprocal action of diffusible mating pheromones, cells of each mating type releasing pheromones that induce mating-specific changes in cells of the opposite type. Recent studies into pheromone signalling in the fission yeast Schizosaccharomyces pombe have revealed significant parallels with processes in higher eukaryotes and could provide the opportunity for investigating communication in an organism that is amenable to both biochemical and genetic manipulation.
Collapse
Affiliation(s)
- O Nielsen
- Department of Genetics, Institute of Molecular Biology, University of Copenhagen, Denmark
| | | |
Collapse
|
46
|
Jung V, Chen L, Hofmann SL, Wigler M, Powers S. Mutations in the SHR5 gene of Saccharomyces cerevisiae suppress Ras function and block membrane attachment and palmitoylation of Ras proteins. Mol Cell Biol 1995; 15:1333-42. [PMID: 7532279 PMCID: PMC230357 DOI: 10.1128/mcb.15.3.1333] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have identified a gene, SHR5, in a screen for extragenic suppressors of the hyperactive RAS2Val-19 mutation in the budding yeast Saccharomyces cerevisiae. SHR5 was cloned, sequenced, and found to encode a 23-kDa protein not significantly homologous to other proteins in the current data bases. Genetic evidence arguing that Shr5 operates at the level of Ras is presented. We tested whether SHR5, like previously isolated suppressors of hyperactivated RAS2, acts by affecting the membrane attachment and/or posttranslational modification of Ras proteins. We found that less Ras protein is attached to the membrane in shr5 mutants than in wild-type cells and that the Ras proteins are markedly underpalmitoylated, suggesting that Shr5 is involved in palmitoylation of Ras proteins. However, shr5null mutants exhibit normal palmitoyltransferase activity measured in vitro. Further, shr5null mutations attenuate Ras function in cells containing mutant Ras2 proteins that are not palmitoylated or farnesylated. We conclude that SHR5 encodes a protein that participates in the membrane localization of Ras but also interacts in vivo with completely unprocessed and cytosolic Ras proteins.
Collapse
Affiliation(s)
- V Jung
- Cold Spring Harbor Laboratory, New York 11724
| | | | | | | | | |
Collapse
|
47
|
Abstract
We have described several quantitative and qualitative assays that have been utilized to learn the basic properties of RACE and amphibian and mammalian counterparts. Owing to powerful genetic tractability, high specific activity, and an apparently well-conserved substrate specificity, yeast is an attractive organism in which to study RACE. Efforts are currently in progress to characterize the functional role of the endoproteolytic processing step of many essential proteins.
Collapse
Affiliation(s)
- M N Ashby
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | |
Collapse
|
48
|
Mitsuzawa H, Tamanoi F. In vivo assays for farnesyltransferase inhibitors with Saccharomyces cerevisiae. Methods Enzymol 1995; 250:43-51. [PMID: 7651169 DOI: 10.1016/0076-6879(95)50061-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- H Mitsuzawa
- Department of Microbiology and Molecular Genetics, University of California at Los Angeles 90024, USA
| | | |
Collapse
|
49
|
Abstract
The ability of Ras proteins to initiate eukaryotic cell proliferation requires the post-translational attachment of a farnesyl group, an isoprenoid lipid moiety derived from mevalonate, to the carboxyl-terminus of the protein. This modification is essential for the subsequent processing and intracellular targeting of the Ras protein. Here we report that mevalonate is also required for the efficient synthesis of Ras proteins in Saccharomyces cerevisiae. Depletion of intracellular mevalonate resulted in decreased steady-state levels of Ras1p and Ras2p, an effect that was mediated at the level of mRNA accumulation. The sequences controlling the response of RAS2 mRNA level to mevalonate availability, mapped to the coding region of the RAS2 gene. Mevalonate starvation also had a significant effect on the expression of some, but not all, genes encoding prenylated proteins. The regulatory effect on RAS2 mRNA did not require a functional farnesyl transferase. These results uncover a novel regulatory role for mevalonate-derived products and expand the potential for inhibitors of mevalonate metabolism as anti-cancer agents.
Collapse
Affiliation(s)
- D Dimster-Denk
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
50
|
Siperstein MD. Cholesterol, cholesterogenesis and cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 369:155-66. [PMID: 7598003 DOI: 10.1007/978-1-4615-1957-7_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|