1
|
Becker CC, Weber L, Zgliczynski B, Sullivan C, Sandin S, Muller E, Clark AS, Kido Soule MC, Longnecker K, Kujawinski EB, Apprill A. Microorganisms and dissolved metabolites distinguish Florida's Coral Reef habitats. PNAS NEXUS 2023; 2:pgad287. [PMID: 37719750 PMCID: PMC10504872 DOI: 10.1093/pnasnexus/pgad287] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023]
Abstract
As coral reef ecosystems experience unprecedented change, effective monitoring of reef features supports management, conservation, and intervention efforts. Omic techniques show promise in quantifying key components of reef ecosystems including dissolved metabolites and microorganisms that may serve as invisible sensors for reef ecosystem dynamics. Dissolved metabolites are released by reef organisms and transferred among microorganisms, acting as chemical currencies and contributing to nutrient cycling and signaling on reefs. Here, we applied four omic techniques (taxonomic microbiome via amplicon sequencing, functional microbiome via shotgun metagenomics, targeted metabolomics, and untargeted metabolomics) to waters overlying Florida's Coral Reef, as well as microbiome profiling on individual coral colonies from these reefs to understand how microbes and dissolved metabolites reflect biogeographical, benthic, and nutrient properties of this 500-km barrier reef. We show that the microbial and metabolite omic approaches each differentiated reef habitats based on geographic zone. Further, seawater microbiome profiling and targeted metabolomics were significantly related to more reef habitat characteristics, such as amount of hard and soft coral, compared to metagenomic sequencing and untargeted metabolomics. Across five coral species, microbiomes were also significantly related to reef zone, followed by species and disease status, suggesting that the geographic water circulation patterns in Florida also impact the microbiomes of reef builders. A combination of differential abundance and indicator species analyses revealed metabolite and microbial signatures of specific reef zones, which demonstrates the utility of these techniques to provide new insights into reef microbial and metabolite features that reflect broader ecosystem processes.
Collapse
Affiliation(s)
- Cynthia C Becker
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Biological Oceanography, Massachusetts Institute of Technology-Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science and Engineering,Cambridge, MA 02139, USA
| | - Laura Weber
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Brian Zgliczynski
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Chris Sullivan
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Stuart Sandin
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Erinn Muller
- Elizabeth Moore International Center for Coral Reef Research and Restoration, Mote Marine Laboratory, Summerland Key, FL 33042, USA
- Coral Health and Disease Program, Mote Marine Laboratory, Sarasota, FL 34236, USA
| | - Abigail S Clark
- Elizabeth Moore International Center for Coral Reef Research and Restoration, Mote Marine Laboratory, Summerland Key, FL 33042, USA
- Marine Science and Technology Department, The College of the Florida Keys, Key West, FL 33040, USA
| | - Melissa C Kido Soule
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Krista Longnecker
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Elizabeth B Kujawinski
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Amy Apprill
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
2
|
Zhang S, Song W, Nothias LF, Couvillion SP, Webster N, Thomas T. Comparative metabolomic analysis reveals shared and unique chemical interactions in sponge holobionts. MICROBIOME 2022; 10:22. [PMID: 35105377 PMCID: PMC8805237 DOI: 10.1186/s40168-021-01220-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sponges are ancient sessile metazoans, which form with their associated microbial symbionts a complex functional unit called a holobiont. Sponges are a rich source of chemical diversity; however, there is limited knowledge of which holobiont members produce certain metabolites and how they may contribute to chemical interactions. To address this issue, we applied non-targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) and gas chromatography mass spectrometry (GC-MS) to either whole sponge tissue or fractionated microbial cells from six different, co-occurring sponge species. RESULTS Several metabolites were commonly found or enriched in whole sponge tissue, supporting the notion that sponge cells produce them. These include 2-methylbutyryl-carnitine, hexanoyl-carnitine and various carbohydrates, which may be potential food sources for microorganisms, as well as the antagonistic compounds hymenialdisine and eicosatrienoic acid methyl ester. Metabolites that were mostly observed or enriched in microbial cells include the antioxidant didodecyl 3,3'-thiodipropionate, the antagonistic compounds docosatetraenoic acid, and immune-suppressor phenylethylamide. This suggests that these compounds are mainly produced by the microbial members in the sponge holobiont, and are potentially either involved in inter-microbial competitions or in defenses against intruding organisms. CONCLUSIONS This study shows how different chemical functionality is compartmentalized between sponge hosts and their microbial symbionts and provides new insights into how chemical interactions underpin the function of sponge holobionts. Video abstract.
Collapse
Affiliation(s)
- Shan Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052 Australia
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, 2052 Australia
| | - Weizhi Song
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, 2052 Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052 Australia
| | - Louis-Félix Nothias
- School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA USA
| | - Sneha P. Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA USA
| | - Nicole Webster
- Australian Institute of Marine Science, Townsville, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, 2052 Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052 Australia
| |
Collapse
|
3
|
Kudo Y, Hanifin CT, Yotsu-Yamashita M. Identification of Tricyclic Guanidino Compounds from the Tetrodotoxin-Bearing Newt Taricha granulosa. Org Lett 2021; 23:3513-3517. [PMID: 33830775 DOI: 10.1021/acs.orglett.1c00916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The biosynthesis of the potent neurotoxin tetrodotoxin (TTX, 1) is still unresolved. We used MS-guided screening and nuclear magnetic resonance analyses including long-range HSQMBC to characterize two novel skeletal tricyclic guanidino compounds, Tgr-288 (2a and 2b) and Tgr-210 (3), from the TTX-bearing newt, Taricha granulosa. The presence of these compounds in toxic newts is congruent with a previously proposed pathway for TTX biosynthesis in terrestrial organisms that includes a monoterpene precursor and the production of structurally diversified guanidino compounds.
Collapse
Affiliation(s)
- Yuta Kudo
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Charles T Hanifin
- Department of Biology, Utah State University, Uintah Basin Campus, 320 North Aggie Boulevard (2000 W.), Vernal, Utah 84078, United States
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
4
|
Kudo Y, Hanifin CT, Kotaki Y, Yotsu-Yamashita M. Structures of N-Hydroxy-Type Tetrodotoxin Analogues and Bicyclic Guanidinium Compounds Found in Toxic Newts. JOURNAL OF NATURAL PRODUCTS 2020; 83:2706-2717. [PMID: 32896120 DOI: 10.1021/acs.jnatprod.0c00623] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The biosynthesis of tetrodotoxin (TTX, 1), a potent neurotoxin widely distributed in marine and terrestrial metazoans, remains unresolved. A significant issue has been identifying intermediates and shunt products associated with the biosynthetic pathway of TTX. We investigated TTX biosynthesis by screening and identifying new TTX-related compounds from Cynops ensicauda popei and Taricha granulosa. Mass spectrometry (MS)-guided screening identified two new N-hydroxy TTX analogues in newts: 1-hydroxy-8-epiTTX (2) and 1-hydroxy-8-epi-5,11-dideoxyTTX (3, previously reported as 1-hydroxy-5,11-dideoxyTTX). We prepared a new analogue, 8-epi-5,11-dideoxyTTX (4), from 3 via N-OH reduction and confirmed the presence of 4 in T. granulosa using hydrophilic interaction liquid chromatography (HILIC)-LCMS. The presence of 8-epi-type TTX analogues in both Cynops and Taricha supports a branched biosynthetic pathway of terrestrial TTX, which produces 6- and 8-epimers. In addition, new bicyclic guanidinium compounds Tgr-238 (5) and Tgr-240 (6) were identified as putative shunt products of our proposed TTX biosynthesis pathway. A structural analysis of Cep-228A (7), another bicyclic compound, was performed using NMR. Based on the structures of 5-7 and their analogues, we propose a model of the shunt and metabolic pathways of the terrestrial TTX biosynthesis.
Collapse
Affiliation(s)
- Yuta Kudo
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Charles T Hanifin
- Department of Biology, Utah State University, Uintah Basin Campus, 320 N. Aggie Boulevard (2000 W.), Vernal, Utah 84078, United States
| | - Yuichi Kotaki
- Fukushima College, 1-1 Chigoike Miyashiro, Fukushima 960-0181, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
5
|
Bell JJ, McGrath E, Kandler NM, Marlow J, Beepat SS, Bachtiar R, Shaffer MR, Mortimer C, Micaroni V, Mobilia V, Rovellini A, Harris B, Farnham E, Strano F, Carballo JL. Interocean patterns in shallow water sponge assemblage structure and function. Biol Rev Camb Philos Soc 2020; 95:1720-1758. [PMID: 32812691 DOI: 10.1111/brv.12637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 01/04/2023]
Abstract
Sponges are a major component of benthic ecosystems across the world and fulfil a number of important functional roles. However, despite their importance, there have been few attempts to compare sponge assemblage structure and ecological functions across large spatial scales. In this review, we examine commonalities and differences between shallow water (<100 m) sponges at bioregional (15 bioregions) and macroregional (tropical, Mediterranean, temperate, and polar) scales, to provide a more comprehensive understanding of sponge ecology. Patterns of sponge abundance (based on density and area occupied) were highly variable, with an average benthic cover between ~1 and 30%. Sponges were generally found to occupy more space (percentage cover) in the Mediterranean and polar macroregions, compared to temperate and tropical macroregions, although sponge densities (sponges m-2 ) were highest in temperate bioregions. Mean species richness standardised by sampling area was similar across all bioregions, except for a few locations that supported very high small-scale biodiversity concentrations. Encrusting growth forms were generally the dominant sponge morphology, with the exception of the Tropical West Atlantic, where upright forms dominated. Annelids and Arthropods were the most commonly reported macrofauna associated with sponges across bioregions. With respect to reproduction, there were no patterns in gametic development (hermaphroditism versus gonochorism), although temperate, tropical, and polar macroregions had an increasingly higher percentage of viviparous species, respectively, with viviparity being the sole gamete development mechanism reported for polar sponges to date. Seasonal reproductive timing was the most common in all bioregions, but continuous timing was more common in the Mediterranean and tropical bioregions compared to polar and temperate bioregions. We found little variation across bioregions in larval size, and the dominant larval type across the globe was parenchymella. No pattens among bioregions were found in the limited information available for standardised respiration and pumping rates. Many organisms were found to predate sponges, with the abundance of sponge predators being higher in tropical systems. While there is some evidence to support a higher overall proportion of phototrophic species in the Tropical Austalian bioregion compared to the Western Atlantic, both also have large numbers of heterotrophic species. Sponges are important spatial competitors across all bioregions, most commonly being reported to interact with anthozoans and algae. Even though the available information was limited for many bioregions, our analyses demonstrate some differences in sponge traits and functions among bioregions, and among macroregions. However, we also identified similarities in sponge assemblage structure and function at global scales, likely reflecting a combination of regional- and local-scale biological and physical processes affecting sponge assemblages, along with common ancestry. Finally, we used our analyses to highlight geographic bias in past sponge research, and identify gaps in our understanding of sponge ecology globally. By so doing, we identified key areas for future research on sponge ecology. We hope that our study will help sponge researchers to consider bioregion-specific features of sponge assemblages and key sponge-mediated ecological processes from a global perspective.
Collapse
Affiliation(s)
- James J Bell
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Emily McGrath
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.,Cawthron Institute, 98 Halifax St E, The Wood, Nelson, 7010, New Zealand
| | - Nora M Kandler
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Joseph Marlow
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.,British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, U.K
| | - Sandeep S Beepat
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Ramadian Bachtiar
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Megan R Shaffer
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Charlotte Mortimer
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Valerio Micaroni
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Valeria Mobilia
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Alberto Rovellini
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Benjamin Harris
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Elizabeth Farnham
- Ministry of Primary Industries, PO Box 2526, Wellington, New Zealand
| | - Francesca Strano
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - José Luis Carballo
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM), Avenida Joel Montes Camarena, s/n. apartado postal 811, Mazatlán, 82000, Mexico
| |
Collapse
|
6
|
Guibert I, Bonnard I, Pochon X, Zubia M, Sidobre C, Lecellier G, Berteaux-Lecellier V. Differential effects of coral-giant clam assemblages on biofouling formation. Sci Rep 2019; 9:2675. [PMID: 30804382 PMCID: PMC6389951 DOI: 10.1038/s41598-019-39268-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/14/2019] [Indexed: 11/09/2022] Open
Abstract
To prevent the settlement and/or the growth of fouling organisms (i.e. bacteria, fungi or microalgae), benthic sessile species have developed various defense mechanisms among which the production of chemical molecules. While studies have mostly focused on the release of chemical compounds by single species, there exist limited data on multi-species assemblages. We used an integrative approach to explore the potential interactive effects of distinct assemblages of two corals species and one giant clam species on biofouling appearance and composition. Remarkably, we found distinct biofouling communities suggesting the importance of benthic sessile assemblages in biofouling control. Moreover, the assemblage of 3 species led to an inhibition of biofouling, likely through a complex of secondary metabolites. Our results highlight that through their different effect on their near environment, species assemblages might be of upmost importance for their survival and therefore, should now be taken into account for sustainable management of coral reefs.
Collapse
Affiliation(s)
- Isis Guibert
- Sorbonne Université, Collège Doctoral, F-75005, paris, France.
- USR3278 PSL CRIOBE CNRS-EPHE-UPVD, LabEx CORAIL, Papetoai, Moorea, French Polynesia.
- UMR250/9220 ENTROPIE IRD-CNRS-UR, LabEx CORAIL, Promenade Roger-Laroque, Noumea cedex, New Caledonia, France.
| | - Isabelle Bonnard
- USR3278 PSL CRIOBE CNRS-EPHE-UPVD, LabEx CORAIL, Université de Perpignan, 58 avenue Paul Alduy, 66860, Perpignan, France
| | - Xavier Pochon
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
- Institute of Marine Science, University of Auckland, Private Bag 349, Warkworth, 0941, New Zealand
| | - Mayalen Zubia
- University of French Polynesia, UMR-241 Ecosystèmes Insulaires Océaniens, BP 6570, 98702, Faa'a, Tahiti, French Polynesia
| | - Christine Sidobre
- USR3278 PSL CRIOBE CNRS-EPHE-UPVD, LabEx CORAIL, Papetoai, Moorea, French Polynesia
| | - Gaël Lecellier
- UMR250/9220 ENTROPIE IRD-CNRS-UR, LabEx CORAIL, Promenade Roger-Laroque, Noumea cedex, New Caledonia, France
- Université de Paris-Saclay, UVSQ, 45 avenue des Etats-Unis, Versailles Cedex, France
| | - Véronique Berteaux-Lecellier
- USR3278 PSL CRIOBE CNRS-EPHE-UPVD, LabEx CORAIL, Papetoai, Moorea, French Polynesia
- UMR250/9220 ENTROPIE IRD-CNRS-UR, LabEx CORAIL, Promenade Roger-Laroque, Noumea cedex, New Caledonia, France
| |
Collapse
|
7
|
Ochsenkühn MA, Schmitt-Kopplin P, Harir M, Amin SA. Coral metabolite gradients affect microbial community structures and act as a disease cue. Commun Biol 2018; 1:184. [PMID: 30417121 PMCID: PMC6218554 DOI: 10.1038/s42003-018-0189-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/09/2018] [Indexed: 11/09/2022] Open
Abstract
Corals are threatened worldwide due to prevalence of disease and bleaching. Recent studies suggest the ability of corals to resist disease is dependent on maintaining healthy microbiomes that span coral tissues and surfaces, the holobiont. Although our understanding of the role endosymbiotic microbes play in coral health has advanced, the role surface-associated microbes and their chemical signatures play in coral health is limited. Using minimally invasive water sampling, we show that the corals Acropora and Platygyra harbor unique bacteria and metabolites at their surface, distinctly different from surrounding seawater. The surface metabolites released by the holobiont create concentration gradients at 0–5 cm away from the coral surface. These molecules are identified as chemo-attractants, antibacterials, and infochemicals, suggesting they may structure coral surface-associated microbes. Further, we detect surface-associated metabolites characteristic of healthy or white syndrome disease infected corals, a finding which may aid in describing effects of diseases. Michael Ochsenkühn et al. look at the microbial and metabolic composition of coral surfaces and the surrounding seawater. They find that the metabolites found on the surface of the coral create a concentration gradient that influences the surrounding microbiome.
Collapse
Affiliation(s)
- Michael A Ochsenkühn
- Biology Division, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Centre Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,Lehrstuhl für Analytische Lebensmittelchemie, Technische Universität München, Alte Akademie 10, 85354, Freising, Germany
| | - Mourad Harir
- Research Unit Analytical BioGeoChemistry, Helmholtz Centre Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Shady A Amin
- Biology Division, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates. .,Chemistry Division, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates.
| |
Collapse
|
8
|
Kudo Y, Yasumoto T, Mebs D, Cho Y, Konoki K, Yotsu-Yamashita M. Cyclic Guanidine Compounds from Toxic Newts Support the Hypothesis that Tetrodotoxin is Derived from a Monoterpene. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602971] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuta Kudo
- Graduate School of Agricultural Science; Tohoku University; 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku Sendai, Miyagi 981-8555 Japan
| | - Takeshi Yasumoto
- Tama Laboratory, Japan Food Research Laboratories; 6-11-10 Nagayama, Tama-shi Tokyo 206-0025 Japan
| | - Dietrich Mebs
- Institute of Legal Medicine; University of Frankfurt; Kennedyallee 104 60596 Frankfurt Germany
| | - Yuko Cho
- Graduate School of Agricultural Science; Tohoku University; 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku Sendai, Miyagi 981-8555 Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science; Tohoku University; 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku Sendai, Miyagi 981-8555 Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science; Tohoku University; 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku Sendai, Miyagi 981-8555 Japan
| |
Collapse
|
9
|
Kudo Y, Yasumoto T, Mebs D, Cho Y, Konoki K, Yotsu-Yamashita M. Cyclic Guanidine Compounds from Toxic Newts Support the Hypothesis that Tetrodotoxin is Derived from a Monoterpene. Angew Chem Int Ed Engl 2016; 55:8728-31. [DOI: 10.1002/anie.201602971] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Yuta Kudo
- Graduate School of Agricultural Science; Tohoku University; 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku Sendai, Miyagi 981-8555 Japan
| | - Takeshi Yasumoto
- Tama Laboratory, Japan Food Research Laboratories; 6-11-10 Nagayama, Tama-shi Tokyo 206-0025 Japan
| | - Dietrich Mebs
- Institute of Legal Medicine; University of Frankfurt; Kennedyallee 104 60596 Frankfurt Germany
| | - Yuko Cho
- Graduate School of Agricultural Science; Tohoku University; 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku Sendai, Miyagi 981-8555 Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science; Tohoku University; 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku Sendai, Miyagi 981-8555 Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science; Tohoku University; 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku Sendai, Miyagi 981-8555 Japan
| |
Collapse
|
10
|
Singh A, Thakur NL. Significance of investigating allelopathic interactions of marine organisms in the discovery and development of cytotoxic compounds. Chem Biol Interact 2015; 243:135-47. [PMID: 26362501 DOI: 10.1016/j.cbi.2015.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 07/01/2015] [Accepted: 09/04/2015] [Indexed: 11/27/2022]
Abstract
Marine sessile organisms often inhabit rocky substrata, which are crowded by other sessile organisms. They acquire living space via growth interactions and/or by allelopathy. They are known to secrete toxic compounds having multiple roles. These compounds have been explored for their possible applications in cancer chemotherapy, because of their ability to kill rapidly dividing cells of competitor organisms. As compared to the therapeutic applications of these compounds, their possible ecological role in competition for space has received little attention. To select the potential candidate organisms for the isolation of lead cytotoxic molecules, it is important to understand their chemical ecology with special emphasis on their allelopathic interactions with their competitors. Knowledge of the ecological role of allelopathic compounds will contribute significantly to an understanding of their natural variability and help us to plan effective and sustainable wild harvests to obtain novel cytotoxic chemicals. This review highlights the significance of studying allelopathic interactions of marine invertebrates in the discovery of cytotoxic compounds, by selecting sponge as a model organism.
Collapse
Affiliation(s)
- Anshika Singh
- Academy of Scientific and Innovative Research (AcSIR), CSIR - National Institute of Oceanography, Dona Paula, Goa 403 004, India
| | - Narsinh L Thakur
- Academy of Scientific and Innovative Research (AcSIR), CSIR - National Institute of Oceanography, Dona Paula, Goa 403 004, India.
| |
Collapse
|
11
|
Loh TL, McMurray SE, Henkel TP, Vicente J, Pawlik JR. Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals. PeerJ 2015; 3:e901. [PMID: 25945305 PMCID: PMC4419544 DOI: 10.7717/peerj.901] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/31/2015] [Indexed: 11/20/2022] Open
Abstract
Consumer-mediated indirect effects at the community level are difficult to demonstrate empirically. Here, we show an explicit indirect effect of overfishing on competition between sponges and reef-building corals from surveys of 69 sites across the Caribbean. Leveraging the large-scale, long-term removal of sponge predators, we selected overfished sites where intensive methods, primarily fish-trapping, have been employed for decades or more, and compared them to sites in remote or marine protected areas (MPAs) with variable levels of enforcement. Sponge-eating fishes (angelfishes and parrotfishes) were counted at each site, and the benthos surveyed, with coral colonies scored for interaction with sponges. Overfished sites had >3 fold more overgrowth of corals by sponges, and mean coral contact with sponges was 25.6%, compared with 12.0% at less-fished sites. Greater contact with corals by sponges at overfished sites was mostly by sponge species palatable to sponge predators. Palatable species have faster rates of growth or reproduction than defended sponge species, which instead make metabolically expensive chemical defenses. These results validate the top-down conceptual model of sponge community ecology for Caribbean reefs, as well as provide an unambiguous justification for MPAs to protect threatened reef-building corals. An unanticipated outcome of the benthic survey component of this study was that overfished sites had lower mean macroalgal cover (23.1% vs. 38.1% for less-fished sites), a result that is contrary to prevailing assumptions about seaweed control by herbivorous fishes. Because we did not quantify herbivores for this study, we interpret this result with caution, but suggest that additional large-scale studies comparing intensively overfished and MPA sites are warranted to examine the relative impacts of herbivorous fishes and urchins on Caribbean reefs.
Collapse
Affiliation(s)
- Tse-Lynn Loh
- Department of Biology and Marine Biology and Center for Marine Science, University of North Carolina Wilmington , Wilmington, NC , USA
| | - Steven E McMurray
- Department of Biology and Marine Biology and Center for Marine Science, University of North Carolina Wilmington , Wilmington, NC , USA
| | - Timothy P Henkel
- Department of Biology, Valdosta State University , Valdosta, GA , USA
| | - Jan Vicente
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science , Baltimore, MD , USA
| | - Joseph R Pawlik
- Department of Biology and Marine Biology and Center for Marine Science, University of North Carolina Wilmington , Wilmington, NC , USA
| |
Collapse
|
12
|
Biggs BC. Harnessing natural recovery processes to improve restoration outcomes: an experimental assessment of sponge-mediated coral reef restoration. PLoS One 2013; 8:e64945. [PMID: 23750219 PMCID: PMC3672152 DOI: 10.1371/journal.pone.0064945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/21/2013] [Indexed: 11/19/2022] Open
Abstract
Background Restoration is increasingly implemented to reestablish habitat structure and function following physical anthropogenic disturbance, but scientific knowledge of effectiveness of methods lags behind demand for guidelines. On coral reefs, recovery is largely dependent on coral reestablishment, and substratum stability is critical to the survival of coral fragments and recruits. Concrete is often used to immobilize rubble, but its ecological performance has not been rigorously evaluated, and restoration has generally fallen short of returning degraded habitat to pre-disturbance conditions. Fragments of erect branching sponges mediate reef recovery by facilitating rubble consolidation, yet such natural processes have been largely overlooked in restoring reefs. Methods On two reefs in Curacao, four treatments - coral rubble alone, rubble seeded with sponge fragments, rubble bound by concrete, and concrete “rubble” bound by concrete - were monitored over four years to investigate rubble consolidation with and without sponges and the ecological performance of treatments in terms of the number and diversity of coral recruits. Species specific rates of sponge fragment attachment to rubble, donor sponge growth and tissue replacement, and fragment survival inside rubble piles were also investigated to evaluate sponge species performance and determine rates for sustainably harvesting tissue. Findings/Significance Rubble piles seeded with sponges retained height and shape to a significantly greater degree, lost fewer replicates to water motion, and were significantly more likely to be consolidated over time than rubble alone. Significantly more corals recruited to sponge-seeded rubble than to all other treatments. Coral diversity was also greatest for rubble with sponges and it was the only treatment to which framework building corals recruited. Differences in overall sponge species performance suggest species selection is important to consider. Employing organisms that jump start successional pathways and facilitate recovery can significantly improve restoration outcomes; however, best practices require techniques be tailored to each system.
Collapse
Affiliation(s)
- Brendan C Biggs
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA.
| |
Collapse
|
13
|
Pica D, Bertolino M, Calcinai B, Puce S, Bavestrello G. Boring and cryptic sponges in stylasterids (Cnidaria: Hydrozoa). ACTA ACUST UNITED AC 2012. [DOI: 10.1080/11250003.2011.632384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Chaves-Fonnegra A, Castellanos L, Zea S, Duque C, Rodríguez J, Jiménez C. Clionapyrrolidine A--a metabolite from the encrusting and excavating sponge Cliona tenuis that kills coral tissue upon contact. J Chem Ecol 2008; 34:1565-74. [PMID: 19023625 DOI: 10.1007/s10886-008-9565-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 10/27/2008] [Accepted: 11/03/2008] [Indexed: 11/29/2022]
Abstract
The Caribbean encrusting and excavating sponge Cliona tenuis successfully competes for space with reef corals by undermining, killing, and displacing live coral tissue at rates of up to 20 cm per year. The crude extract from this sponge, along with the more polar partitions, kills coral tissue and lowers the photosynthetic potential of coral zooxanthellae. We used a bioassay-guided fractionation of the extract to identify the compound(s) responsible. The crude extract, the aqueous partition, and compound 1, herein named clionapyrrolidine A [(-)-(5S)-2-imino-1-methylpyrrolidine-5-carboxylic acid], when incorporated into gels at close to natural volumetric concentrations, killed coral tissue when brought into forced contact with live coral for periods of 1-4 days. This is the first report of a pure chemical produced by a sponge that kills coral tissue upon direct contact. The results are consistent with the localized coral death that occurs when C. tenuis-colonized coral fragments are thrown forcibly against live coral during storms. However, healed C. tenuis fragments placed directly onto live coral were killed readily by coral defenses, and fragments placed in close proximity to coral did not have any effect on the adjacent coral tissue. Solutions of clionapyrrolidine A in sea water were only slightly toxic against live coral. Hence, the coral death naturally brought about by C. tenuis when undermining live coral does not occur through external release of allelochemicals; below-polyp mechanisms must be explored further. N-acetylhomoagmatine (2), originally isolated from Cliona celata from the Northeastern Atlantic, was also assayed for comparison purposes because of its structural similarity to siphonodictidine, a toxic compound produced by a coral excavating sponge of the genus Aka. The lack of activity of N-acetylhomoagmatine at close to natural concentrations seems to indicate that the guanidine moiety, which is also present in siphonodictidine, is not a sufficiently strong structural motif for activity against corals.
Collapse
Affiliation(s)
- Andia Chaves-Fonnegra
- Departamento de Biología y Centro de Estudios en Ciencias del Mar, Universidad Nacional de Colombia, Cerro Punta Betín, AA 10-16, Santa Marta, Colombia
| | | | | | | | | | | |
Collapse
|
15
|
A preliminary assessment of the invasiveness of the Indo-Pacific sponge Chalinula nematifera on coral communities from the tropical Eastern Pacific. Biol Invasions 2008. [DOI: 10.1007/s10530-008-9230-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Erpenbeck D, van Soest RWM. Status and perspective of sponge chemosystematics. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:2-19. [PMID: 16817029 DOI: 10.1007/s10126-005-6109-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 03/30/2006] [Indexed: 05/10/2023]
Abstract
In addition to their pharmaceutical applications, sponges are an important source of compounds that are used to elucidate classification patterns and phylogenetic relationships. Here we present a review and outlook on chemosystematics in sponges in seven sections: Secondary metabolites in sponges; Further applications of bioactive compound research in sponges; Sponge chemotaxonomy; Pitfalls of sponge chemotaxonomy; The chemotaxonomic suitability of sponge compounds; Potential synapomorphic markers in sponges; and The future of sponge chemotaxonomy.
Collapse
Affiliation(s)
- Dirk Erpenbeck
- Zoological Museum, IBED, University of Amsterdam, 1090GT Amsterdam, The Netherlands.
| | | |
Collapse
|
17
|
|
18
|
Schulz S, Steffensky M, Roisin Y. Identification and Synthesis of Elymniafuran, a New Monoterpene from the Butterfly Elymnias thryallis. European J Org Chem 2006. [DOI: 10.1002/jlac.199619960612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Liu Y, Zhang S, Abreu PJM. Heterocyclic terpenes: linear furano- and pyrroloterpenoids. Nat Prod Rep 2006; 23:630-51. [PMID: 16874393 DOI: 10.1039/b604586c] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Yonghong Liu
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510-301, China.
| | | | | |
Collapse
|
20
|
Ward-Paige CA, Risk MJ, Sherwood OA, Jaap WC. Clionid sponge surveys on the Florida Reef Tract suggest land-based nutrient inputs. MARINE POLLUTION BULLETIN 2005; 51:570-9. [PMID: 15946702 DOI: 10.1016/j.marpolbul.2005.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Bioerosion by Cliona delitrix and Cliona lampa was assessed at 43 sites along the Florida Reef Tract, USA, in the summer of 2001. Sponge abundances were estimated using rapid visual assessment. Tissue samples of sponges were taken for analysis of delta15N. Comparison samples were taken from Belize. Annual trends in sponge abundance were estimated from archived videos covering the period from 1996 to 2001. Sites with the greatest boring sponge size and cover were in the Backcountry and Lower Keys, where total nitrogen, ammonium, and delta15N levels were highest. The sites with the largest relative increase of C. delitrix and C. lampa over the 5 year period were in the Upper Keys, where the greatest relative decline in stony coral cover has occurred. Florida sponge delta15N values were 5.2(+/-0.1)%, suggesting the influence of human waste; in comparison, offshore Belize samples were 2.1(+/-0.1)%. These results suggest sewage contamination of the Florida Reef Tract, shifting the carbonate balance from construction to destruction.
Collapse
|
21
|
Jefford CW, Rossier JC, Boukouvalas J, Sledeski AW, Huang PZ. A concise synthesis of siphonodictidine. JOURNAL OF NATURAL PRODUCTS 2004; 67:1383-1386. [PMID: 15332858 DOI: 10.1021/np0400860] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Siphonodictidine (1) has been synthesized for the first time in a concise and regiocontrolled manner by using 2-(tert-butyldimethylsiloxy)-3-methylfuran (6) as the crucial building block. The silver trifluoroacetate-induced alkylation of 6 with omega-bromogeranyl acetate 7 gave the key gamma-lactone intermediate 8, which on subsequent reduction, conversion of the hydroxyl into the amino group, and amidination afforded siphonodictidine (1) in an overall yield of 25.7% from 6.
Collapse
Affiliation(s)
- Charles W Jefford
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | | | | | | | | |
Collapse
|
22
|
Pawlik JR, McFall G, Zea S. Does the odor from sponges of the genus Ircinia protect them from fish predators? J Chem Ecol 2002; 28:1103-15. [PMID: 12184391 DOI: 10.1023/a:1016221415028] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Caribbean sponges of the genus Ircinia contain high concentrations of linear furanosesterterpene tetronic acids (FTAs) and produce and exude low-molecular-weight volatile compounds (e.g., dimethyl sulfide, methyl isocyanide, methyl isothiocyanate) that give these sponges their characteristic unpleasant garlic odor. It has recently been suggested that FTAs are unlikely to function as antipredatory chemical defenses, and this function may instead be attributed to bioactive volatiles. We tested crude organic extracts and purified fractions isolated from Ircinia campana, I. felix, and I. strobilina at naturally occurring concentrations in laboratory and field feeding assays to determine their palatability to generalist fish predators. We also used a qualitative technique to test the crude volatile fraction from I. felix and I. strobilina and dimethylsulfide in laboratory feeding assays. Crude organic extracts of all three species deterred feeding of fishes in both aquarium and field experiments. Bioassay-directed fractionation resulted in the isolation of the FTA fraction as the sole active fraction of the nonvolatile crude extract for each species, and further assays of subfractions suggested that feeding deterrent activity is shared by the FTAs. FTAs deterred fish feeding in aquarium assays at concentrations as low as 0.5 mg/ml (fraction B, variabilin), while the natural concentrations of combined FTA fractions were > 5.0 mg/ml for all three species. In contrast, natural mixtures of volatiles transferred from sponge tissue to food pellets and pure dimethylsulfide incorporated into food pellets were readily eaten by fish in aquarium assays. Although FTAs may play other ecological roles in Ircinia spp., these compounds are effective as defenses against potential predatory fishes. Volatile compounds may serve other defensive functions (e.g., antimicrobial, antifouling) but do not appear to provide a defense against fish predators.
Collapse
Affiliation(s)
- Joseph R Pawlik
- Center for Marine Science Research, University of North Carolina at Wilmington 28403-3297, USA.
| | | | | |
Collapse
|
23
|
Schönberg CHL. Small-scale distribution of Great Barrier reef bioeroding sponges in shallow water. ACTA ACUST UNITED AC 2001. [DOI: 10.1080/00785236.2001.10409472] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Duque C, Bonilla A, Bautista E, Zea S. Exudation of low molecular weight compounds (thiobismethane, methyl isocyanide, and methyl isothiocyanate) as a possible chemical defense mechanism in the marine sponge Ircinia felix. BIOCHEM SYST ECOL 2001; 29:459-467. [PMID: 11274769 DOI: 10.1016/s0305-1978(00)00081-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The volatile constituents of the marine sponge Ircinia felix were obtained by dynamic headspace extraction and analyzed by HRGC, HRGC-MS and HRGC-Odor at sniffing port. Fifty-nine volatiles were identified for the first time in the odor of this sponge. Hydrocarbons (32.9%), alcohols (17.8%) and carbonyl compounds (16.0%) predominated in the sponge volatile profile, followed by esters (11.6%), halogen compounds (8.6%), ethers (7.7%), nitrogen and/or sulfur compounds (4.6%) and carboxylic acids (0.8%). Among the identified volatiles, thiobismethane (commonly known as dimethylsulfide), methyl isocyanide and methyl isothiocyanate were found to be responsible for the nauseating and toxic smell emitted by the sponge and for the antimicrobial activity detected in the volatile extract. Exudation experiments in aquarium and in situ conditions revealed that thiobismethane, methyl isocyanide and methyl isothiocyanate are continuously released by the sponge. Upon injury, the concentration of these volatiles increased strongly. Hence, these substances form a chemical protective barrier which may help these sponges avoid fouling, compete for space, prevent infection in the short term, and/or signal generalist predators regarding the existence of other toxic substances in the internal tissues.
Collapse
Affiliation(s)
- C Duque
- Departamento de Química, Universidad Nacional de Colombia, AA 14490, Bogotá, Colombia
| | | | | | | |
Collapse
|
25
|
Koh EG, Sweatman H. Chemical warfare among scleractinians: bioactive natural products from Tubastraea faulkneri Wells kill larvae of potential competitors. JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY 2000; 251:141-160. [PMID: 10960612 DOI: 10.1016/s0022-0981(00)00222-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Competition for space among scleractinians by overgrowth, overtopping, extracoelenteric digestion and the use of sweeper tentacles is well recognized, but another potential mode of competitive interaction, allelopathy, is largely uninvestigated. In this study, chemical extracts from Tubastraea faulkneri Wells were tested for deleterious effects on competent larvae of 11 other species of coral belonging to seven genera of four scleractinian families. Larvae exposed to extract concentrations from 10 to 500 µg ml(-1) consistently suffered higher mortality than larvae in solvent controls. Larvae of Platygyra daedalea (Ellis and Solander) and Oxypora lacera (Verrill) were the most sensitive, experiencing high mortality even at the lowest extract concentration. The toxic compounds from T. faulkneri did not kill any conspecific larvae. The estimated concentrations of active compounds within T. faulkneri tissues were 100-5000 times higher than the experimental concentrations. Pure compounds isolated from bioactive fractions of the extract were indole alkaloids identified as aplysinopsin, 6-bromoaplysinopsin, 6-bromo-2'-de-N-methylaplysinopsin and its dimer. The first three occur in other non-zooxanthellate corals in the same family as T. faulkneri, whereas the dimer is novel. These compounds could act as allelochemicals that prevent potential competitors from recruiting in the vicinity of T. faulkneri colonies and help to pre-empt interactions with competitively dominant species.
Collapse
Affiliation(s)
- EG Koh
- Department of Marine Biology, James Cook University, Queensland 4811, Townsville, Australia
| | | |
Collapse
|
26
|
Schönberg CHL. Bioeroding sponges common to the central Australian Great Barrier Reef: Descriptions of three new species, two new records, and additions to two previously described species. ACTA ACUST UNITED AC 2000. [DOI: 10.1007/bf03042965] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
|
28
|
|
29
|
Small-scale association measures in epibenthic communities as a clue for allelochemical interactions. Oecologia 1996; 108:351-360. [PMID: 28307849 DOI: 10.1007/bf00334661] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/1995] [Accepted: 04/16/1996] [Indexed: 10/24/2022]
Abstract
The small-scale associations in a rocky subtidal community in the northwestern Mediterranean were studied by a development of the continuous line transect method. This method allowed the overall measurement of non-randomness in interspecific contacts and the assignment of an association index to each species-pair, whose, significance was tested by Monte Carlo procedures. At the same time, the continuous recording allowed the study of the weakening of the interactions with increasing distances. Our purpose was to uncover evidence for allelochemical mechanisms of space occupation and maintenance. A strong non-randomness was found in the interspecific associations. This was mostly due to the interactions of the poecilosclerid sponge Crambe crambe (Schmidt) with its neighbours, especially its negative associations with other sponge species. The strength of the relationships fell drastically over the first few centimeters from the contact borders of the different species. The results pointed strongly to an allelochemical mechanism. The extracts of this sponge featured high bioactivity in laboratory assays, and field experiments demonstrated that the sponge can inhibit the growth of species in the community studied. Standard sampling techniques would have overlooked the spatial structure present in the data. The study emphasizes the need for both contact data and distance data in order to identify the underlying processes reliably. The line transect method provides both types of information easily and allows testing of models and identification of organisms likely to use chemical defenses in space competition. Its use as a preliminary step in studies of chemical ecology might help to detect presumptive allelochemical processes prior to experimental work on the potentially active species.
Collapse
|
30
|
Becerro MA, Turon X, Uriz MJ. Natural variation of toxicity in encrusting spongeCrambe crambe (Schmidt) in relation to size and environment. J Chem Ecol 1995; 21:1931-46. [DOI: 10.1007/bf02033853] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/1995] [Accepted: 07/22/1995] [Indexed: 10/25/2022]
|
31
|
Gomes de Souza Berlinck R. Some aspects of guanidine secondary metabolites. FORTSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE = PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS. PROGRES DANS LA CHIMIE DES SUBSTANCES ORGANIQUES NATURELLES 1995; 66:119-295. [PMID: 8847007 DOI: 10.1007/978-3-7091-9363-1_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
32
|
Abstract
In the marine environment sponges (Porifera) constitute one of the most interesting sources of bioactive natural products. The high frequency of bioactive components in these primitive filter-feeders is interpreted as chemical defence of sponges against environmental stress factors such as predation, overgrowth by fouling organisms or competition for space. The highest incidence of toxic or deterrent sponge metabolites is consequently found in habitats such as coral reefs that are characterized by intense competition and feeding pressure due, for example, to carnivorous fish. Further support for the adaptive significance of sponge constituents is derived from the observation that sponges which are growing exposed are usually more toxic than those growing unexposed. Whereas the chemical defence of sponges seems to be highly effective against most species of fish, a group of shell-less gastropods, the nudibranchs, has specialized on sponges. While feeding on sponges the nudibranchs sequester the effective chemical armoury of their prey, which is subsequently employed for their own protection. Some nudibranchs, however, have become independent of this interspecific flow of natural products and are able to accumulate defensive compounds through de novo synthesis.
Collapse
Affiliation(s)
- P Proksch
- Julius-von-Sachs-Institut für Biowissenschaften, Universität Würzburg, Germany
| |
Collapse
|
33
|
Polyclinal, a new sulfated polyhydroxy benzaldehyde from the marine ascidianPolyclinum planum. ACTA ACUST UNITED AC 1991. [DOI: 10.1007/bf01959956] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
|
35
|
Davis AR, Targett NM, McConnell OJ, Young CM. Epibiosis of Marine Algae and Benthic Invertebrates: Natural Products Chemistry and Other Mechanisms Inhibiting Settlement and Overgrowth. BIOORGANIC MARINE CHEMISTRY 1989. [DOI: 10.1007/978-3-642-74560-7_4] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
36
|
|
37
|
Bakus GJ, Targett NM, Schulte B. Chemical ecology of marine organisms: An overview. J Chem Ecol 1986; 12:951-87. [DOI: 10.1007/bf01638991] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/1985] [Accepted: 11/04/1985] [Indexed: 11/29/2022]
|
38
|
The potential of biotechnology for developed and developing countries. World J Microbiol Biotechnol 1986. [DOI: 10.1007/bf00937179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Krebs HC. Recent developments in the field of marine natural products with emphasis on biologically active compounds. FORTSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE = PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS. PROGRES DANS LA CHIMIE DES SUBSTANCES ORGANIQUES NATURELLES 1986; 49:151-363. [PMID: 2877925 DOI: 10.1007/978-3-7091-8846-0_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|