1
|
Cueny RR, McMillan SD, Keck JL. G-quadruplexes in bacteria: insights into the regulatory roles and interacting proteins of non-canonical nucleic acid structures. Crit Rev Biochem Mol Biol 2022; 57:539-561. [PMID: 36999585 PMCID: PMC10336854 DOI: 10.1080/10409238.2023.2181310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 04/01/2023]
Abstract
G-quadruplexes (G4s) are highly stable, non-canonical DNA or RNA structures that can form in guanine-rich stretches of nucleic acids. G4-forming sequences have been found in all domains of life, and proteins that bind and/or resolve G4s have been discovered in both bacterial and eukaryotic organisms. G4s regulate a variety of cellular processes through inhibitory or stimulatory roles that depend upon their positions within genomes or transcripts. These include potential roles as impediments to genome replication, transcription, and translation or, in other contexts, as activators of genome stability, transcription, and recombination. This duality suggests that G4 sequences can aid cellular processes but that their presence can also be problematic. Despite their documented importance in bacterial species, G4s remain understudied in bacteria relative to eukaryotes. In this review, we highlight the roles of bacterial G4s by discussing their prevalence in bacterial genomes, the proteins that bind and unwind G4s in bacteria, and the processes regulated by bacterial G4s. We identify limitations in our current understanding of the functions of G4s in bacteria and describe new avenues for studying these remarkable nucleic acid structures.
Collapse
Affiliation(s)
- Rachel R. Cueny
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Sarah D. McMillan
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
2
|
Sarkar S, Nambiar M. G-quadruplexes in the mitochondrial genome - a cause for instability. FEBS J 2021; 289:117-120. [PMID: 34405539 DOI: 10.1111/febs.16149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/28/2022]
Abstract
Accumulation of mutations such as deletions in mitochondrial DNA is associated with ageing, cancer and human genetic disorders. These deletions are often flanked by GC-skewed sequence motifs that can potentially fold into secondary non-B DNA conformations. G-quadruplexes are emerging as key initiators of mitochondrial genomic instability. In this issue, Dahal et al provide an in silico analysis of sequence motifs that can fold into altered DNA structures in mitochondrial genomic regions that contain frequent deletions. They show the formation of five G-quadruplexes near such frequent breakpoints using biochemical and biophysical approaches in vitro and more importantly inside mammalian cells. Comment on: https://doi.org/10.1111/febs.16113.
Collapse
Affiliation(s)
- Sneha Sarkar
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Mridula Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
3
|
Breslauer KJ. The shaping of a molecular linguist: How a career studying DNA energetics revealed the language of molecular communication. J Biol Chem 2021; 296:100522. [PMID: 34237886 PMCID: PMC8058554 DOI: 10.1016/j.jbc.2021.100522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 01/31/2023] Open
Abstract
My personal and professional journeys have been far from predictable based on my early childhood. Owing to a range of serendipitous influences, I miraculously transitioned from a rebellious, apathetic teenage street urchin who did poorly in school to a highly motivated, disciplined, and ambitious academic honors student. I was the proverbial “late bloomer.” Ultimately, I earned my PhD in biophysical chemistry at Yale, followed by a postdoc fellowship at Berkeley. These two meccas of thermodynamics, coupled with my deep fascination with biology, instilled in me a passion to pursue an academic career focused on mapping the energy landscapes of biological systems. I viewed differential energetics as the language of molecular communication that would dictate and control biological structures, as well as modulate the modes of action associated with biological functions. I wanted to be a “molecular linguist.” For the next 50 years, my group and I used a combination of spectroscopic and calorimetric techniques to characterize the energy profiles of the polymorphic conformational space of DNA molecules, their differential ligand-binding properties, and the energy landscapes associated with mutagenic DNA damage recognition, repair, and replication. As elaborated below, the resultant energy databases have enabled the development of quantitative molecular biology through the rational design of primers, probes, and arrays for diagnostic, therapeutic, and molecular-profiling protocols, which collectively have contributed to a myriad of biomedical assays. Such profiling is further justified by yielding unique energy-based insights that complement and expand elegant, structure-based understandings of biological processes.
Collapse
Affiliation(s)
- Kenneth J Breslauer
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA; The Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
| |
Collapse
|
4
|
Onel B, Wu G, Sun D, Lin C, Yang D. Electrophoretic Mobility Shift Assay and Dimethyl Sulfate Footprinting for Characterization of G-Quadruplexes and G-Quadruplex-Protein Complexes. Methods Mol Biol 2019; 2035:201-222. [PMID: 31444751 DOI: 10.1007/978-1-4939-9666-7_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA G-quadruplexes are globular nucleic acid secondary structures which occur throughout the human genome under physiological conditions. There is accumulating evidence supporting G-quadruplex involvement in a number of important aspects of genome functions, including transcription, replication, and genomic stability, and that protein and enzyme recognition of G-quadruplexes may represent a key event to regulate physiological or pathological pathways. Two important techniques to study G-quadruplexes and their protein interactions are the electrophoretic mobility shift assay (EMSA) and dimethyl sulfate (DMS) footprinting assay. EMSA, one of the most sensitive and robust methods for studying the DNA-protein interactions, can be used to determine the binding parameters and relative affinities of a protein for the G-quadruplex. DMS footprinting is a powerful assay for the initial characterization of G-quadruplexes, which can be used to deduce the guanine bases involved in the formation of G-tetrads under physiological salt conditions. DMS footprinting can also reveal important information in G-quadruplex-protein complexes on protein contacts and regional changes in DNA G-quadruplex upon protein binding. In this paper, we will provide a detailed protocol for the EMSA and DMS footprinting assays for characterization of G-quadruplexes and G-quadruplex-protein complexes. Expected outcomes and references to extensions of the method will be further discussed.
Collapse
Affiliation(s)
- Buket Onel
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Guanhui Wu
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Daekyu Sun
- University of Arizona, College of Pharmacy, Tucson, AZ, USA.,BIO5 Institute, Tucson, AZ, USA.,Arizona Cancer Center, Tucson, AZ, USA
| | - Clement Lin
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA. .,Purdue Center for Cancer Research, West Lafayette, IN, USA. .,Purdue Institute for Drug Discovery, West Lafayette, IN, USA.
| |
Collapse
|
5
|
Lightfoot HL, Hagen T, Cléry A, Allain FHT, Hall J. Control of the polyamine biosynthesis pathway by G 2-quadruplexes. eLife 2018; 7:e36362. [PMID: 30063205 PMCID: PMC6067879 DOI: 10.7554/elife.36362] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/13/2018] [Indexed: 12/16/2022] Open
Abstract
G-quadruplexes are naturally-occurring structures found in RNAs and DNAs. Regular RNA G-quadruplexes are highly stable due to stacked planar arrangements connected by short loops. However, reports of irregular quadruplex structures are increasing and recent genome-wide studies suggest that they influence gene expression. We have investigated a grouping of G2-motifs in the UTRs of eight genes involved in polyamine biosynthesis, and concluded that several likely form novel metastable RNA G-quadruplexes. We performed a comprehensive biophysical characterization of their properties, comparing them to a reference G-quadruplex. Using cellular assays, together with polyamine-depleting and quadruplex-stabilizing ligands, we discovered how some of these motifs regulate and sense polyamine levels, creating feedback loops during polyamine biosynthesis. Using high-resolution 1H-NMR spectroscopy, we demonstrated that a long-looped quadruplex in the AZIN1 mRNA co-exists in salt-dependent equilibria with a hairpin structure. This study expands the repertoire of regulatory G-quadruplexes and demonstrates how they act in unison to control metabolite homeostasis.
Collapse
Affiliation(s)
- Helen Louise Lightfoot
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical SciencesETH ZurichZurichSwitzerland
| | - Timo Hagen
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical SciencesETH ZurichZurichSwitzerland
| | - Antoine Cléry
- Department of Biology, Institute of Molecular Biology and BiophysicsETH ZurichZurichSwitzerland
- Biomolecular NMR spectroscopy platformETH ZurichZurichSwitzerland
| | | | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical SciencesETH ZurichZurichSwitzerland
| |
Collapse
|
6
|
Choi YJ, Gibala KS, Ayele T, Deventer KV, Resendiz MJE. Biophysical properties, thermal stability and functional impact of 8-oxo-7,8-dihydroguanine on oligonucleotides of RNA-a study of duplex, hairpins and the aptamer for preQ1 as models. Nucleic Acids Res 2017; 45:2099-2111. [PMID: 28426093 PMCID: PMC5389535 DOI: 10.1093/nar/gkw885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/22/2016] [Indexed: 01/12/2023] Open
Abstract
A better understanding of the effects that oxidative lesions have on RNA is of importance to understand their role in the development/progression of disease. 8-oxo-7,8-dihydroguanine was incorporated into RNA to understand its structural and functional impact on RNA:RNA and RNA:DNA duplexes, hairpins and pseudoknots. One to three modifications were incorporated into dodecamers of RNA [AAGAGGGAUGAC] resulting in thermal destabilization (ΔTm – 10°C per lesion). Hairpins with tetraloops c-UUCG*-g* (8-10), a-ACCG-g* (11-12), c-UUG*G*-g* (13-16) and c-ACG*G*-g* (17-20) were modified and used to determine thermal stabilities, concluding that: (i) modifying the stem leads to destabilization unless adenosine is the opposing basepair of 8-oxoGua; (ii) modification at the loop is position- and sequence-dependent and varies from slight stabilization to large destabilization, in some cases leading to formation of other secondary structures (hairpin→duplex). Functional effects were established using the aptamer for preQ1 as model. Modification at G5 disrupted the stem P1 and inhibited recognition of the target molecule 7-methylamino-7-deazaguanine (preQ1). Modifying G11 results in increased thermal stability, albeit with a Kd 4-fold larger than its canonical analog. These studies show the capability of 8-oxoG to affect structure and function of RNA, resulting in distinct outcomes as a function of number and position of the lesion.
Collapse
Affiliation(s)
- Yu J Choi
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| | - Krzysztof S Gibala
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| | - Tewoderos Ayele
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| | - Katherine V Deventer
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| | - Marino J E Resendiz
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| |
Collapse
|
7
|
Francis AJ, Resendiz MJE. Protocol for the Solid-phase Synthesis of Oligomers of RNA Containing a 2'-O-thiophenylmethyl Modification and Characterization via Circular Dichroism. J Vis Exp 2017. [PMID: 28784951 DOI: 10.3791/56189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Solid-phase synthesis has been used to obtain canonical and modified polymers of nucleic acids, specifically of DNA or RNA, which has made it a popular methodology for applications in various fields and for different research purposes. The procedure described herein focuses on the synthesis, purification, and characterization of dodecamers of RNA 5'-[CUA CGG AAU CAU]-3' containing zero, one, or two modifications located at the C2'-O-position. The probes are based on 2-thiophenylmethyl groups, incorporated into RNA nucleotides via standard organic synthesis and introduced into the corresponding oligonucleotides via their respective phosphoramidites. This report makes use of phosphoramidite chemistry via the four canonical nucleobases (Uridine (U), Cytosine (C), Guanosine (G), Adenosine (A)), as well as 2-thiophenylmethyl functionalized nucleotides modified at the 2'-O-position; however, the methodology is amenable for a large variety of modifications that have been developed over the years. The oligonucleotides were synthesized on a controlled-pore glass (CPG) support followed by cleavage from the resin and deprotection under standard conditions, i.e., a mixture of ammonia and methylamine (AMA) followed by hydrogen fluoride/triethylamine/N-methylpyrrolidinone. The corresponding oligonucleotides were purified via polyacrylamide electrophoresis (20% denaturing) followed by elution, desalting, and isolation via reversed-phase chromatography (Sep-pak, C18-column). Quantification and structural parameters were assessed via ultraviolet-visible (UV-vis) and circular dichroism (CD) photometric analysis, respectively. This report aims to serve as a resource and guide for beginner and expert researchers interested in embarking in this field. It is expected to serve as a work-in-progress as new technologies and methodologies are developed. The description of the methodologies and techniques within this document correspond to a DNA/RNA synthesizer (refurbished and purchased in 2013) that uses phosphoramidite chemistry.
Collapse
|
8
|
Abstract
Minima of the electric field and positions of K+ and Na+ (zero of the x-coordinate is the center of the cavity).
Collapse
Affiliation(s)
- Giovanni Villani
- Istituto di Chimica dei Composti OrganoMetallici
- ICCOM – UOS Pisa
- Area della Ricerca del CNR
- I-56124 Pisa
- Italy
| |
Collapse
|
9
|
Nasiri AH, Wurm JP, Immer C, Weickhmann AK, Wöhnert J. An intermolecular G-quadruplex as the basis for GTP recognition in the class V-GTP aptamer. RNA (NEW YORK, N.Y.) 2016; 22:1750-1759. [PMID: 27659052 PMCID: PMC5066627 DOI: 10.1261/rna.058909.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
Many naturally occurring or artificially created RNAs are capable of binding to guanine or guanine derivatives with high affinity and selectivity. They bind their ligands using very different recognition modes involving a diverse set of hydrogen bonding and stacking interactions. Apparently, the potential structural diversity for guanine, guanosine, and guanine nucleotide binding motifs is far from being fully explored. Szostak and coworkers have derived a large set of different GTP-binding aptamer families differing widely in sequence, secondary structure, and ligand specificity. The so-called class V-GTP aptamer from this set binds GTP with very high affinity and has a complex secondary structure. Here we use solution NMR spectroscopy to demonstrate that the class V aptamer binds GTP through the formation of an intermolecular two-layered G-quadruplex structure that directly incorporates the ligand and folds only upon ligand addition. Ligand binding and G-quadruplex formation depend strongly on the identity of monovalent cations present with a clear preference for potassium ions. GTP binding through direct insertion into an intermolecular G-quadruplex is a previously unobserved structural variation for ligand-binding RNA motifs and rationalizes the previously observed specificity pattern of the class V aptamer for GTP analogs.
Collapse
Affiliation(s)
- Amir H Nasiri
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Jan Philip Wurm
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Carina Immer
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Anna Katharina Weickhmann
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Jens Wöhnert
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
10
|
Man VH, Pan F, Sagui C, Roland C. Comparative melting and healing of B-DNA and Z-DNA by an infrared laser pulse. J Chem Phys 2016; 144:145101. [DOI: 10.1063/1.4945340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Viet Hoang Man
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Feng Pan
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| |
Collapse
|
11
|
Halder S, Krishnan Y. Design of ultrasensitive DNA-based fluorescent pH sensitive nanodevices. NANOSCALE 2015; 7:10008-10012. [PMID: 25990365 DOI: 10.1039/c5nr01158b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Here we tune the pH sensitivity of a DNA-based conformational switch, called the I-switch, to yield a set of fluorescent pH sensitive nanodevices with a collective, expanded pH sensing regime from 5.3 to 7.5. The expanded pH regime of this new family of I-switches originates from a dramatic improvement in the overall percentage signal change in response to pH of these nanodevices.
Collapse
Affiliation(s)
- Saheli Halder
- National Centre for Biological Sciences, TIFR, GKVK, Bellary Road, Bangalore 560 065, India
| | | |
Collapse
|
12
|
Maji B, Bhattacharya S. Advances in the molecular design of potential anticancer agents via targeting of human telomeric DNA. Chem Commun (Camb) 2014; 50:6422-38. [DOI: 10.1039/c4cc00611a] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Telomerase is an attractive drug target to develop new generation drugs against cancer.
Collapse
Affiliation(s)
- Basudeb Maji
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore-560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore-560012, India
- Chemical Biology Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
| |
Collapse
|
13
|
Mukundan VT, Do NQ, Phan AT. HIV-1 integrase inhibitor T30177 forms a stacked dimeric G-quadruplex structure containing bulges. Nucleic Acids Res 2011; 39:8984-91. [PMID: 21771859 PMCID: PMC3203613 DOI: 10.1093/nar/gkr540] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
T30177 is a G-rich oligonucleotide with the sequence (GTGGTGGGTGGGTGGGT) which inhibits the HIV-1 integrase activity at nanomolar concentrations. Here we show that this DNA sequence forms in K(+) solution a dimeric G-quadruplex structure comprising a total of six G-tetrad layers through the stacking of two propeller-type parallel-stranded G-quadruplex subunits at their 5'-end. All twelve guanines in the sequence participate in the G-tetrad formation, despite the interruption in the first G-tract by a thymine, which forms a bulge between two adjacent G-tetrads. In this work, we also propose a simple analytical approach to stoichiometry determination using concentration-dependent melting curves.
Collapse
Affiliation(s)
- Vineeth Thachappilly Mukundan
- School of Physical and Mathematical Sciences and School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | |
Collapse
|
14
|
Sun D, Hurley LH. Biochemical techniques for the characterization of G-quadruplex structures: EMSA, DMS footprinting, and DNA polymerase stop assay. Methods Mol Biol 2010; 608:65-79. [PMID: 20012416 DOI: 10.1007/978-1-59745-363-9_5] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The proximal promoter region of many human growth-related genes contains a polypurine/polypyrimidine tract that serves as multiple binding sites for Sp1 or other transcription factors. These tracts often contain a guanine-rich sequence consisting of four runs of three or more contiguous guanines separated by one or more bases, corresponding to a general motif known for the formation of an intramolecular G-quadruplex. Recent results provide strong evidence that specific G-quadruplex structures form naturally within these polypurine/polypyrimidine tracts in many human promoter regions, raising the possibility that the transcriptional control of these genes can be modulated by G-quadruplex-interactive agents. In this chapter, we describe three general biochemical methodologies, electrophoretic mobility shift assay (EMSA), dimethylsulfate (DMS) footprinting, and the DNA polymerase stop assay, which can be useful for initial characterization of G-quadruplex structures formed by G-rich sequences.
Collapse
Affiliation(s)
- Daekyu Sun
- Department of Pharmacology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
15
|
Guan Y, Reddy KR, Zhu Q, Li Y, Lee K, Weerasinghe P, Prchal J, Semenza GL, Jing N. G-rich oligonucleotides inhibit HIF-1alpha and HIF-2alpha and block tumor growth. Mol Ther 2009; 18:188-97. [PMID: 19755960 DOI: 10.1038/mt.2009.219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) plays crucial roles in tumor promotion by upregulating its target genes, which are involved in energy metabolism, angiogenesis, cell survival, invasion, metastasis, and drug resistance. The HIF-1alpha subunit, which is regulated by O2-dependent hydroxylation, ubiquitination, and degradation, has been identified as an important molecular target for cancer therapy. We have rationally designed G-rich oligodeoxynucleotides (ODNs) as inhibitors of HIF-1alpha for human cancer therapy. The lead compounds, JG243 and JG244, which form an intramolecular parallel G-quartet structure, selectively target HIF-1alpha and decreased levels of both HIF-1alpha and HIF-2alpha (IC50 < 2 micromol/l) and also inhibited the expression of HIF-1-regulated proteins [vascular endothelial growth factor (VEGF), Bcl-2, and Bcl-XL], but did not disrupt the expression of p300, Stat3, or p53. JG-ODNs induced proteasomal degradation of HIF-1alpha and HIF-2alpha that was dependent on the hydroxylase activity of prolyl-4-hydroxylase-2. JG243 and JG244 dramatically suppressed the growth of prostate, breast, and pancreatic tumor xenografts. Western blots from tumor tissues showed that JG-ODNs significantly decreased HIF-1alpha and HIF-2alpha levels and blocked the expression of VEGF. The JG-ODNs are novel anticancer agents that suppress tumor growth by inhibiting HIF-1.
Collapse
Affiliation(s)
- Yongli Guan
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Verma A, Halder K, Halder R, Yadav VK, Rawal P, Thakur RK, Mohd F, Sharma A, Chowdhury S. Genome-wide computational and expression analyses reveal G-quadruplex DNA motifs as conserved cis-regulatory elements in human and related species. J Med Chem 2008; 51:5641-9. [PMID: 18767830 DOI: 10.1021/jm800448a] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Using a combination of in silico and experimental approaches, we present evidence that the G-quadruplex (G4) motif (an alternative higher-order DNA conformation) has regulatory potential. Genome-wide analyses of 99980 human, chimpanzee, mouse, and rat promoters showed enrichment of sequence with potential to adopt G4 (potential G4 or PG4) motifs near transcription start sites (TSS; P < 0.0001), supporting earlier findings. Interestingly, we found >700 orthologously related promoters in human, mouse, and rat conserve PG4 motif(s). The corresponding genes have enriched (z score > 4.0) tissue-specific expression in 75 of 79 human tissues and are significantly overrepresented in signaling and regulation of cell-cycle (P < 10(-05)). This is supported by results from whole genome expression experiments in human HeLa S3 cells following treatment with TMPyP4 [5,10,15,20-tetra(N-methyl-4-pyridyl) porphine chloride], which is known to bind the G4 motif inside cells. Our results implicate G4-motif mediated regulation as a more general mode of transcription control than currently appreciated.
Collapse
Affiliation(s)
- Anjali Verma
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Srivastava S, Srivastava S, Singh S, Gupta VP, Gupta VD. STABILITY AND TRANSITION IN A DNA TETRAPLEX: A MODEL FOR TELOMERES. J MACROMOL SCI B 2007. [DOI: 10.1081/mb-100000050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shinoo Srivastava
- a Division of Biopolymers , Central Drug Research Institute , Lucknow, 226 001, India
| | - Seema Srivastava
- a Division of Biopolymers , Central Drug Research Institute , Lucknow, 226 001, India
| | - Shyam Singh
- a Division of Biopolymers , Central Drug Research Institute , Lucknow, 226 001, India
| | - Vijai Prakash Gupta
- a Division of Biopolymers , Central Drug Research Institute , Lucknow, 226 001, India
| | | |
Collapse
|
18
|
Alberti P, Bourdoncle A, Saccà B, Lacroix L, Mergny JL. DNA nanomachines and nanostructures involving quadruplexes. Org Biomol Chem 2006; 4:3383-91. [PMID: 17036128 DOI: 10.1039/b605739j] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA is an attractive component for molecular recognition, because of its self-assembly properties. Its three-dimensional structure can differ markedly from the classical double helix. For example, DNA or RNA strands carrying guanine or cytosine stretches associate into four-stranded structures called G-quadruplexes or i-DNA, respectively. Since 2002, several groups have described nanomachines that take advantage of this structural polymorphism. We first introduce the unusual structures that are involved in these devices (i.e., i-DNA and G-quadruplexes) and then describe the opening and closing steps that allow cycling. A quadruplex-duplex molecular machine is then presented in detail, together with the rules that govern its formation, its opening/closing kinetics and the various technical and physico-chemical parameters that play a role in the efficiency of this device. Finally, we review the few examples of nanostructures that involve quadruplexes.
Collapse
Affiliation(s)
- Patrizia Alberti
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle USM503, INSERM U565, CNRS UMR 5153, 43 rue Cuvier, 75231, Paris cedex 05, France.
| | | | | | | | | |
Collapse
|
19
|
Hunziker J, Roth HJ, Böhringer M, Giger A, Diederichsen U, Göbel M, Krishnan R, Jaun B, Leumann C, Eschenmoser A. Warum pentose-und nicht hexose-nucleinsäuren? Teil III. Oligo(2′,3′-dideoxy-β-D-glucopyranosyl) nucleotide (‘homo-DNS’): Paarungesigenschaften. Helv Chim Acta 2004. [DOI: 10.1002/hlca.19930760119] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Abstract
T(m) is defined as Temperature of melting or, more accurately, as temperature of midtransition. This term is often used for nucleic acids (DNA and RNA, oligonucleotides and polynucleotides). A thermal denaturation experiment determines the stability of the secondary structure of a DNA or RNA and aids in the choice of the sequences for antisense oligomers or PCR primers. Beyond a simple numerical value (the T(m)), a thermal denaturation experiment, in which the folded fraction of a structure is plotted vs. temperature, yields important thermodynamic information. We present the classic problems encountered during these experiments and try to demonstrate that a number of useful pieces of information can be extracted from these experimental curves.
Collapse
Affiliation(s)
- Jean-Louis Mergny
- Laboratoire de Biophysique, INSERM UR565, CNRS UMR 5153, Muséum National d'Histoire Naturelle, 75231 Paris, France.
| | | |
Collapse
|
21
|
Jin R, Wu G, Li Z, Mirkin CA, Schatz GC. What controls the melting properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 2003; 125:1643-54. [PMID: 12568626 DOI: 10.1021/ja021096v] [Citation(s) in RCA: 732] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a series of experiments and a theoretical model designed to systematically define and evaluate the relative importance of nanoparticle, oligonucleotide, and environmental variables that contribute to the observed sharp melting transitions associated with DNA-linked nanoparticle structures. These variables include the size of the nanoparticles, the surface density of the oligonucleotides on the nanoparticles, the dielectric constant of the surrounding medium, target concentration, and the position of the nanoparticles with respect to one another within the aggregate. The experimental data may be understood in terms of a thermodynamic model that attributes the sharp melting to a cooperative mechanism that results from two key factors: the presence of multiple DNA linkers between each pair of nanoparticles and a decrease in the melting temperature as DNA strands melt due to a concomitant reduction in local salt concentration. The cooperative melting effect, originating from short-range duplex-to-duplex interactions, is independent of DNA base sequences studied and should be universal for any type of nanostructured probe that is heavily functionalized with oligonucleotides. Understanding the fundamental origins of the melting properties of DNA-linked nanoparticle aggregates (or monolayers) is of paramount importance because these properties directly impact one's ability to formulate high sensitivity and selectivity DNA detection systems and construct materials from these novel nanoparticle materials.
Collapse
Affiliation(s)
- Rongchao Jin
- Department of Chemistry and Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
22
|
Ito H, Tanaka S, Miyasaka M. Circular dichroism spectra of DNA quadruplexes [d(G(5)T(5))](4) as formed with G(4) and T(4) tetrads and [d(G(5)T(5)). d(A(5)C(5))]2 as formed with Watson-Crick-like (G-C)(2) and (T-A)(2) tetrads. Biopolymers 2002; 65:61-80. [PMID: 12209457 DOI: 10.1002/bip.10162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We utilize electrophoresis and find that a thermally treated equimolar mixture of the oligonucleotide d(G(5)T(5)) and its complementary oligonucleotide d(A(5)C(5)) exhibits either two bands or a single band in one lane, depending on the conditions of the incubation solutions. The thermally treated d(G(5)T(5)) solution loaded in a different lane exhibits a single band of the parallel quadruplex [d(G(5)T(5))](4), which is composed of homocyclic hydrogen-bonded G(4) and T(4) tetrads previously proposed. For the thermally treated equimolar mixture of d(G(5)T(5)) and d(A(5)C(5)), the fast band is assigned to a Watson-Crick d(G(5)T(5)). d(A(5)C(5)) duplex, so that the slow band with the same low mobility as that of [d(G(5)T(5))](4) may be assigned to either [d(G(5)T(5))](4) itself or a [d(G(5)T(5)). d(A(5)C(5))](2) quadruplex. If the latter compound is true, this may be the antiparallel quadruplex composed of the heterocyclic hydrogen-bonded G-C-G-C and T-A-T-A tetrads proposed previously. After removing these three bands for the duplex and two kinds of hypothetical quadruplexes, we electrophoretically elute the corresponding compounds in the same electrophoresis buffer using an electroeluter. The eluted compounds are ascertained to be stable by electrophoresis. The circular dichroism (CD) and UV absorption spectra measured for the three isolated compounds are found to be clearly different. For the electrophoretic elution of the hypothetical [d(G(5)T(5))](4) quadruplex, the result of the molecularity of n = 4 obtained from the CD melting curve analysis provides further support for the formation of the parallel [d(G(5)T(5))](4) quadruplex already proposed. For the thermally treated equimolar mixture of d(G(5)T(5)) and d(C(5)A(5)), the fast band with a molecularity of n = 2 corresponds to the Watson-Crick duplex, d(G(5)T(5)). d(A(5)C(5)). The slow band with a molecularity of n = 4 indicates the antiparallel quadruplex [d(G(5)T(5)). d(A(5)C(5))](2), whose observed CD and UV spectra are different from those of [d(G(5)T(5))](4). By electrophoresis, after reannealing the eluted compound [d(G(5)T(5)). d(A(5)C(5))](2), a distinct photograph showing the band splitting of this quadruplex band into the lower duplex and upper quadruplex bands is not possible; but by a transilluminator, we occasionally observe this band splitting with the naked eye. The linear response polarizability tensor calculations for the thus determined structures of the [d(G(5)T(5))](4) quadruplex, the McGavin-like [d(G(5)T(5)). d(A(5)C(5))](2) quadruplex, and the Watson-Crick d(G(5)T(5)). d(A(5)C(5)) duplex are found to qualitatively predict the observed CD and UV spectra.
Collapse
Affiliation(s)
- Hirotoshi Ito
- Department of Applied Physics and Chemistry, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182, Japan.
| | | | | |
Collapse
|
23
|
Abstract
The dissociation and assembly of quadruplex DNA structures (and a few quadruplex RNAs) have been characterized at several levels of rigor, ranging from gross descriptions of factors that govern each process, to semiquantitative comparisons of the relative abilities of these factors to induce stabilization or destabilization, to quantitative studies of binding energies (thermodynamics), transformational rates (kinetics), and analysis of their transition-state energies and mechanisms. This survey classifies these factors, describes the trends and focuses on their interdependencies. Quadruplex assembly is induced most efficiently by added K(+) and elevating the strand concentration; however, Na(+), NH(4)(+), Sr(2+), and Pb(2+) are also very effective stabilizers. Quadruplex dissociation is typically accomplished by thermal denaturation, "melting"; however, when the quadruplex and monovalent cation concentrations are low enough, or the temperature is sufficiently high, several divalent cations, e.g., Ca(2+), Co(2+), Mn(2+), Zn(2+), Ni(2+) and Mg(2+) can induce dissociation. Stabilization also depends on the type of structure adopted by the strand (or strands) in question. Variants include intramolecular, two- and four-stranded quadruplexes. Other important variables include strand sequence, the size of intervening loops and pH, especially when cytosines are present, base methylation, and the replacement of backbone phosphates with phosphorothioates. Competitive equilibria can also modulate the formation of quadruplex DNAs. For example, reactions leading to Watson-Crick (WC) duplex and hairpin DNAs, triplex DNAs, and even other types of quadruplexes can compete with quadruplex association reactions for strands. Others include nonprotein catalysts, small molecules such as aromatic dyes, metalloporphyrins, and carbohydrates (osmolytes). Other nucleic acid strands have been found to drive quadruplex formation. To help reinforce the implications of each piece of information, each functional conclusion drawn from each cited piece of thermodynamic or kinetic data has been summarized briefly in a standardized table entry.
Collapse
Affiliation(s)
- C C Hardin
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA.
| | | | | |
Collapse
|
24
|
Haq I, Chowdhry BZ, Jenkins TC. Calorimetric techniques in the study of high-order DNA-drug interactions. Methods Enzymol 2001; 340:109-49. [PMID: 11494846 DOI: 10.1016/s0076-6879(01)40420-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- I Haq
- Krebs Institute for Biomolecular Science, Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | | | | |
Collapse
|
25
|
Prasad V, Hashim S, Mukhopadhyay A, Basu SK, Roy RP. Oligonucleotides tethered to a short polyguanylic acid stretch are targeted to macrophages: enhanced antiviral activity of a vesicular stomatitis virus-specific antisense oligonucleotide. Antimicrob Agents Chemother 1999; 43:2689-96. [PMID: 10543748 PMCID: PMC89544 DOI: 10.1128/aac.43.11.2689] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/1999] [Accepted: 08/26/1999] [Indexed: 11/20/2022] Open
Abstract
The poor membrane permeability of oligonucleotides is one of the major problems of antisense technology. Here we report the construction of designer oligonucleotides for targeted delivery to macrophages. The oligonucleotides tethered to a 10-mer poly(G) sequence at their 3' ends were recognized by scavenger receptors on macrophages and were taken up about 8- to 10-fold as efficiently as those oligonucleotides that either lacked a poly(G) tail or that contained a 10-mer poly(C) tail instead of the poly(G) tail. The enhanced uptake of poly(G) constructs was inhibited in the presence of poly(G) and other known ligands of the scavenger receptor. The bioefficacy of poly(G)-mediated targeting of antisense oligonucleotides (ANS) was demonstrated by using vesicular stomatitis virus (VSV) as a model system. The ability of ANS directed against the translation initiation site of N protein mRNA of VSV to inhibit virus replication was assessed. The ANS with the 10-mer poly(G) sequences (ANS-G) brought about significant inhibition of VSV replication in J774E cells (a murine monocyte/macrophage cell line) and Chinese hamster ovary (CHO) cell transfectants expressing scavenger receptors. The ANS lacking a 10-mer poly(G) stretch were ineffective. The inhibition of VSV replication due to ANS-G was completely abrogated in the presence of 10-mer poly(G), indicating that the antisense effect of the ANS-G molecule was a consequence of scavenger receptor-mediated enhanced uptake. Importantly, antisense molecules linked exclusively by natural phosphodiester bonds were as bioeffective as those synthesized with a mixed backbone of phosphodiester and phosphorothioate. Taken together, these results suggest that macrophage-directed designer ANS against infective agents may simply be obtained by adding a short stretch of guanylic acid sequence to the desired specific ANS during solid-phase synthesis. This nucleic acid-based strategy, which utilizes homogeneous preparation of ANS, may find applications in directed manipulation of macrophage metabolism for a variety of purposes as well as in therapy of a broad spectrum of macrophage-related disorders amenable to the antisense approach.
Collapse
Affiliation(s)
- V Prasad
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
26
|
Ferdous A, Watanabe H, Akaike T, Maruyama A. Comb-type copolymer: stabilization of triplex DNA and possible application in antigene strategy. J Pharm Sci 1998; 87:1400-5. [PMID: 9811497 DOI: 10.1021/js980066g] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
By employing a reductive amination reaction between the epsilon-amino groups of poly(L-lysine) (PLL) and the reductive ends of the hydrophilic dextran (Dex) side chain, we have prepared different comb-type copolymers which varied in the degree of grafting and the length of the hydrophilic Dex chains. The resulting copolymers, poly(L-lysine)-graft-dextran (PLL-g-Dex), were tested for their ability to stabilize triplex DNA in vitro under physiologically relevant conditions. Thermal denaturation (UV-Tm) and circular dichroism experiments revealed that the graft copolymer with the higher degree of grafting of long Dex chains significantly increased the thermal stability of triplex structure of poly(dA). 2poly(dT) by more than 50 degreesC without affecting the transition between triplex and single-stranded DNA or the native structure of DNA. Of importance is that when triplex formation involving a 30-mer target duplex from rat alpha1 (I) collagen promoter was analyzed by an in vitro electrophoretic mobility shift assay, the graft copolymer also remarkably diminished potassium inhibition of the purine motif triplex formation up to 200 mM as well as pH-dependence of the pyrimidine motif triplex formation. Moreover the triplex-stabilizing efficiency of the copolymer was significantly higher than that of other oligocations like spermine and spermidine. We suggest that a molecular design of comb-type copolymers consisting of various types of polycation backbones (e.g., PLL) grafted with different hydrophilic side chains (e.g., Dex) is a novel strategy to create efficient triplex stabilizers that will certainly shed light on possible in vivo application of the antigene strategy.
Collapse
Affiliation(s)
- A Ferdous
- Department of Biomolecular Engineering, Faculty of Bioscience and Biotechnology, Tokyo, Japan
| | | | | | | |
Collapse
|
27
|
Ferdous A, Watanabe H, Akaike T, Maruyama A. Poly(L-lysine)-graft-dextran copolymer: amazing effects on triplex stabilization under physiological pH and ionic conditions (in vitro). Nucleic Acids Res 1998; 26:3949-54. [PMID: 9705503 PMCID: PMC147801 DOI: 10.1093/nar/26.17.3949] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Triplex DNA formation involving unmodified triplex-forming oligonucleotides (TFOs) is very unstable under physiological conditions. Here, we report a novel strategy to stabilize both purine and pyrimidine motif triplex DNA within the rat alpha1 (I) collagen gene promoter under physiologically relevant conditions by a poly(L-lysine)- graft -dextran copolymer. Using an in vitro electrophoretic mobility shift assay, we show that the copolymer almost completely abrogates the inhibitory effects of physiological concentrations of monovalent cations, particularly potassium ion (K+), on purine motif triplex formation involving very low concentrations of an unmodified guanine-rich TFO. Of importance, pH dependency in pyrimidine motif triplex formation involving an unmodified cytosine-rich TFO is also significantly overcome by the copolymer. Finally, the triplex-stabilizing efficiency of the copolymer is remarkably higher than that of other oligocations, like spermine and spermidine. We suggest that the ability of the graft copolymer to stabilize triplex DNA under physiologically relevant pH and salt concentrations will be a cue for further progress in the antigene strategy.
Collapse
Affiliation(s)
- A Ferdous
- Department of Biomolecular Engineering, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
28
|
Shafer RH. Stability and structure of model DNA triplexes and quadruplexes and their interactions with small ligands. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 59:55-94. [PMID: 9427840 DOI: 10.1016/s0079-6603(08)61029-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review focuses on the structural and thermodynamic characterization of model DNA triplex and quadruplex structures, taking into account effects of stoichiometry and sequence. Methods such as gel electrophoresis, UV melting, and scanning calorimetry, and the results thereof, are described for determination of the thermodynamic stability of such systems. Three classes of triplexes are considered based on the composition of the third strand, while quadruplex systems are limited to those based on the guanine quartet. X-ray crystallography and high resolution NMR studies are also described for these two classes of unusual structures. Ligand binding to triplexes and quadruplexes is also reviewed, with emphasis on specific molecular recognition. The availability of three-dimensional structures for triplex and quadruplex species sets the stage for structure-based development of ligands capable of binding to them specifically. To this end, we consider the application of DOCK, a program for the discovery of small molecules that can recognize macromolecular structures, to the problem of recognizing folded quadruplex structures. Such studies may ultimately lead to pharmaceutically active compounds.
Collapse
Affiliation(s)
- R H Shafer
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco 94143, USA
| |
Collapse
|
29
|
Jing N, Gao X, Rando RF, Hogan ME. Potassium-induced loop conformational transition of a potent anti-HIV oligonucleotide. J Biomol Struct Dyn 1997; 15:573-85. [PMID: 9440003 DOI: 10.1080/07391102.1997.10508967] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Spectroscopic, thermal denaturation and kinetic studies have revealed that DNA oligonucleotides 5'-d(GGGTGGGTGGGTGGGT) (T30695) and 5'-d(GTGGTGGGTGGGTGGGT) (T30177) from extremely stable intramolecular G-tetrads via a two-step process that involves the binding of one K+ ion to a central pair of G-quartets and two additional K+ ions, presumably, to the loops (Jing et al., (1997) Biochemistry in press). In that these oligonucleotides are potent HIV-1 inhibitors and among the most active HIV-1 integrase inhibitors yet identified, we have sought to further characterize the K(+)-induced folding process for the purpose of rational chemical modification of these anti-HIV agents. Our NMR investigation demonstrates that in the presence of Li+ ions, T30695 forms an unimolecular tetrad fold, stabilized by a pair of syn-anti-syn-anti G-quartets comprising a central core. The NMR spectrum of T30695 as a function of K+ titration reveals a well-defined transition that saturates upon addition of three K+ ions per oligomer. During this process, the initial Li(+)-dependent G-quartet structure converts into a highly symmetrical, stable form (the NMR detected melting transition temperature is increased by approximately 20 degrees C). The conformation of the G-quartet core remains unchanged, while the loosely structured loop residues become organized in a fashion which is stabilized by K+ ion binding and by interactions with the core. To explain these data, we propose a model wherein K+ binding to the loops induces structural rearrangement, to yield a planar array of loop bases in proximity to the underlying G-quartets. By reference to closely related homologues, which lack activity as an HIV-1 or integrase inhibitor, the possibility is discussed that this ion-coordinated loop structure is crucial to the biological activity of T30695.
Collapse
Affiliation(s)
- N Jing
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
30
|
Nishikawa N, Kanda N, Oishi M, Kiyama R. Enrichment of oligo(dG).oligo(dC)-containing fragments from human genomic DNA by Mg 2+-dependent triplex affinity capture. Nucleic Acids Res 1997; 25:1701-8. [PMID: 9108150 PMCID: PMC146659 DOI: 10.1093/nar/25.9.1701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Oligo(dG).oligo(dC)- or short poly(dG).poly(dC)-containing fragments were enriched and cloned by means of Mg2+-dependent triplex affinity capture and subsequent cloning procedures. A library constructed after three cycles of enrichment showed that approximately 80% of the clones in the supercoiled form formed a complex with labeled oligonucleotide (dG)34. However, while the rest of the clones retained the ability to form a complex (type I clones), 90.9% failed to form a complex when they were linearized. This group of DNA was abundant in the genomic DNA, although it showed only approximately 3-fold enrichment by one cycle of affinity capture. This group was further classified into two species (types II and III) based on complex formation ability after phenol extraction. Type II clones retained the complex formation ability after treatment, while the human telomere [(TTAGGG)n] and telomere-like [(TGGAA)n] or [(TGGAG)n] sequences belonging to type III clones did not. Serial deletion experiments and the binding assays using oligonucleotides confirmed that the repetitive units containing T(G)nT ( n = 3-5) tracts or (G)n-motifs (n >/= 3) were the sites of complex formation for type II and III clones. On the other hand, type I clones contained poly(dG).poly(dC) tracts at least 10 nt long, and DNase I-footprinting analysis indicated that these tracts were the sites of complex formation.
Collapse
Affiliation(s)
- N Nishikawa
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | |
Collapse
|
31
|
Akiyama T, Hogan ME. Microscopic DNA flexibility analysis. Probing the base composition and ion dependence of minor groove compression with an artificial dna bending agent. J Biol Chem 1996; 271:29126-35. [PMID: 8910569 DOI: 10.1074/jbc.271.46.29126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have used an artificial DNA bending agent to monitor the local flexibility of the DNA helix as a function of Mg2+ cation concentration, sequence, and temperature. A DNA bending agent was constructed from a pair of triple helix-forming oligonucleotides connected by a flexible polymeric linker, which, when the linker is short enough, causes a bend in a minor groove region separating the two sites of triple helix formation. The unique aspect of this system is that, since the bent region is not in direct contact with the linker or the triple helix-forming oligonucleotides, the free energy reflecting the bendability of the minor helix groove can be estimated from a comparison of binding affinity between the bent and unbent triple helices. A binding competition experiment and association and dissociation kinetic assays executed at 37 degrees C in the presence of 10 mM Mg2+ have revealed an extremely small difference in binding affinity between bent (50 degrees ) and straight triple helices, suggesting that DNA flexibility with respect to minor groove compression is extremely high and virtually independent of the sequence of the distorted duplex. This unexpectedly small difference in binding affinity was detected over the temperature range from 25 to 65 degrees C, and over a Mg2+ concentration range from 0.3 to 10 mM. Thus, these findings provide evidence that DNA bendability for minor groove compression is inherently high and independent of DNA sequence, temperature, or a 30-fold variation of Mg2+ ion concentration.
Collapse
Affiliation(s)
- T Akiyama
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
32
|
Kuo LY, Cech TR. Conserved thermochemistry of guanosine nucleophile binding for structurally distinct group I ribozymes. Nucleic Acids Res 1996; 24:3722-7. [PMID: 8871550 PMCID: PMC146156 DOI: 10.1093/nar/24.19.3722] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We report thermodynamic values for binding of the guanosine nucleophile to the ribozyme derived from the Anabaena group I intron, and find that they are similar to those measured previously for the structurally distinct Tetrahymena ribozyme. The free energy of binding guanosine 5'-monophosphate (pG) at 30 degrees C is similar for the two ribozymes. The delta(H)degrees' and delta(S)degrees' for pG binding to the Anabaena ribozyme--RNA substrate complex (E x S) are 3.4 +/- 4 kcal/mol and 27 +/- 10 e.u., respectively. The negligible enthalpic contribution and positive entropy change were found previously for the Tetrahymena ribozyme, and are considered remarkable for a hydrogen-bonding interaction between a nucleotide and a nucleic acid. These thermodynamic values may reflect conformational changes or water release upon pG binding that are comparable for the two ribozymes. In addition, the apparent chemical steps of the two ribozyme reactions share similar activation energies and a positive deltaS++. It now appears that such thermochemical values for guanosine binding and activation may be intrinsic properties of the group I intron catalytic center.
Collapse
Affiliation(s)
- L Y Kuo
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder 80309-0215, USA
| | | |
Collapse
|
33
|
Dagle JM, Weeks DL. Positively charged oligonucleotides overcome potassium-mediated inhibition of triplex DNA formation. Nucleic Acids Res 1996; 24:2143-9. [PMID: 8668547 PMCID: PMC145908 DOI: 10.1093/nar/24.11.2143] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The formation of triplex DNA using unmodified, purine-rich oligonucleotides (ODNs) is inhibited by physiologic levels of potassium. Changing negative phosphodiester bonds in a triplex forming oligonucleotide (TFO) to neutral linkages causes a small increase in triplex formation. When phosphodiester bonds in a TFO are converted to positively-charged linkages the formation of triplex DNA increases dramatically. In the absence of KCl, a 17mer TFO containing 11 positively-charged linkages at a concentration of 0.2 microM converts essentially all of a 30 bp target duplex to a triplex. Less than 15% of the target duplex is shifted by 2 microMolar of the unmodified TFO. In 130 mM KCl, triplex formation is undetectable using the unmodified TFO, while triplex formation is nearly complete with 2 microM positively-charged TFO. With increasing potassium, TFOs containing a higher proportion of modified linkages show enhanced triplex formation compared with those less modified. In contrast with unmodified TFOs, triplex formation with more heavily modified TFOs can occur in the absence of divalent cations. We conclude that replacement of phosphodiester bonds with positively-charged phosphoramidate linkages results in more efficient triplex formation, suggesting that these compounds may prove useful for in vivo applications.
Collapse
Affiliation(s)
- J M Dagle
- Department of Pediatrics, The University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
34
|
Gottarelli G, Mezzina E, Spada GP, Carsughi F, Nicola GD, Mariani P, Sabatucci A, Bonazzi S. The Self-Recognition and Self-Assembly of Folic Acid Salts in Isotropic Water Solution. Helv Chim Acta 1996. [DOI: 10.1002/hlca.19960790123] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Walmsley JA, Wilson RM, Garza LA, West RT, Lytle TE, Heldt RC, Maguire MJ. The effect of monovalent cations on the self-association of cytidylyl-(3-5')-guanosine and guanylyl-(3'5')-cytidine in aqueous solution. J Biomol Struct Dyn 1995; 13:319-37. [PMID: 8579791 DOI: 10.1080/07391102.1995.10508843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The hydrogen-bonding, base stacking, and formation of extended aggregates has been investigated for salts of guanylyl-3'-5')-cytidine, GpC, and cytidylyl-(3'-5')- guanosine, CpG, in which the cation was Na+, K+, or tetramethylammonium (TMA+). Variable temperature studies were done at 2-70 degrees C on aqueous solutions at pD4 and 8 using 1H NMR and FTIR. At low temperatures it has been found that at pD 8 both GpC and CpG form Watson-Crick dimers which stack upon each other to form larger species. A slight cation effect is observed below 35 degrees C which has the order: TMA+ > Na+ > K+. This order suggests that the cations are interacting with the phosphate and interactions with the bases are unlikely. The 1H NMR spectrum for TMACpG at pD 4 has been assigned and exhibits chemical shift differences from those at pD 8 which are consistent with protonation of the N3 of the cytidine residue. Based on NMR line broadening, CpG at pD 4 has a greater degree of self-association at low temperature than it or GpC have at pD 8. A different type of hydrogen bonding and self-association occur in CpG at pD 4 compared to pD 8, but the structures are uncertain. Due to hemi-protonation of the cytidine N3, parallel G-G/C-C+ base paired dimers or G-tetrads may be forming.
Collapse
Affiliation(s)
- J A Walmsley
- Division of Earth and Physical Sciences, University of Texas at San Antonio 78249, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Mohanty D, Bansal M. Chain folding and A:T pairing in human telomeric DNA: a model-building and molecular dynamics study. Biophys J 1995; 69:1046-67. [PMID: 8519959 PMCID: PMC1236333 DOI: 10.1016/s0006-3495(95)79979-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The various types of chain folding and possible intraloop as well as interloop base pairing in human telomeric DNA containing d(TTAG3) repeats have been investigated by model-building, molecular mechanics, and molecular dynamics techniques. Model-building and molecular mechanics studies indicate that it is possible to build a variety of energetically favorable folded-back structures with the two TTA loops on same side and the 5' end thymines in the two loops forming TATA tetrads involving a number of different intraloop as well as interloop A:T pairing schemes. In these folded-back structures, although both intraloop and interloop Watson-Crick pairing is feasible, no structure is possible with interloop Hoogsteen pairing. MD studies of representative structures indicate that the guanine-tetraplex stem is very rigid and, while the loop regions are relatively much more flexible, most of the hydrogen bonds remain intact throughout the 350-ps in vacuo simulation. The various possible TTA loop structures, although they are energetically similar, have characteristic inter proton distances, which could give rise to unique cross-peaks in two-dimensional nuclear Overhauser effect spectroscopy (NOESY) experiments. These folded-back structures with A:T pairings in the loop region help in rationalizing the data from chemical probing and other biochemical studies on human telomeric DNA.
Collapse
Affiliation(s)
- D Mohanty
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
37
|
Vo T, Wang S, Kool ET. Targeting pyrimidine single strands by triplex formation: structural optimization of binding. Nucleic Acids Res 1995; 23:2937-44. [PMID: 7544889 PMCID: PMC307133 DOI: 10.1093/nar/23.15.2937] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Recent reports describe a new strategy for the binding of single-stranded pyrimidine sequences by triple helix formation. In this approach, a double-length purine-rich oligonucleotide binds a target strand, folding back to form an antiparallel pur.pur.pyr triple helix. We now describe a series of studies in which sequence and structural variations are made in such purine-rich ligands, in an effort to optimize binding properties. Comparison is made between the use of two separate strands and the use of single two-domain ligands; the latter are found to bind more tightly and to aggregate less in media containing Na+ or K+. Placement of mismatched bases in the target shows that sequence selectivity of binding is as high as that for Watson-Crick duplex formation. Variation of the lengths and sequences of loops bridging the binding domains demonstrates that dinucleotide loops composed of pyrimidines give the highest stability. Oligoethylene glycol-derived loop replacements are shown to give good binding affinity as well. The binding of an RNA target is shown to occur with the same affinity as the binding of DNA. In general, it is found that circular variants bind more tightly than do either separate strands or singly-linked ligands and unlike linear oligomers, the circular compounds do not aggregate to a large extent even in buffers containing 100 mM K+. Such structurally optimized ligands are useful in expanding the number of possible naturally-occurring sequences which can be targeted by triplex formation.
Collapse
Affiliation(s)
- T Vo
- Department of Chemistry, University of Rochester, NY 14627, USA
| | | | | |
Collapse
|
38
|
Pilch DS, Plum GE, Breslauer KJ. The thermodynamics of DNA structures that contain lesions or guanine tetrads. Curr Opin Struct Biol 1995; 5:334-42. [PMID: 7583632 DOI: 10.1016/0959-440x(95)80095-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It is becoming increasingly apparent that energetic as well as structural information is required to develop a complete appreciation of the critical interrelationships between structure, energetics, and biological function. Motivated by this recognition, we have reviewed in this article the current state of the thermodynamic databases associated with lesion-containing DNA duplexes and DNA quadruplexes, while highlighting important considerations concerning the methods used to obtain the requisite data.
Collapse
Affiliation(s)
- D S Pilch
- Department of Chemistry, Rutgers State University of New Jersey, Piscataway 08855-0939, USA
| | | | | |
Collapse
|
39
|
Miura T, Benevides JM, Thomas GJ. A phase diagram for sodium and potassium ion control of polymorphism in telomeric DNA. J Mol Biol 1995; 248:233-8. [PMID: 7739037 DOI: 10.1016/s0022-2836(95)80046-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Switching between antiparallel and parallel quadruplex structures of telomeric DNA under the control of intracellular Na+ and K+ has been implicated in the pairing of chromosomes during meiosis. Using Raman spectroscopy, we have determined the dependence of the interquadruplex equilibrium of the telomeric repeat of Oxytricha nova, upon solution concentrations of Na+ and K+. Both alkali cations facilitate the formation of an antiparallel foldback quadruplex at low concentration, and a parallel extended quadruplex at higher concentration. However, K+ is more effective than Na+ in inducing the parallel association. We propose a phase diagram relating d(T4G4)4 polymorphism to intracellular [Na+]/[K+] ratios. The phase diagram indicates that the interquadruplex equilibrium is highly sensitive to changes in the mole fraction of either cation when the total concentration falls within the interval 65 to 225 mM, a range which encompasses total of the Na+ and K+ concentrations occurring in a typical mammalian cell. These results support a role for the guanine-rich overhang of eukaryotic DNA in promoting chromosome association during meiotic synapsis.
Collapse
Affiliation(s)
- T Miura
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City 64110-2499, USA
| | | | | |
Collapse
|
40
|
Rao TS, Lewis AF, Hill TS, Revankar GR. Incorporation of 2′-Deoxy-9-deazaguanosine and 2′-Deoxy-7-deaza-6-thioguanosine into G-Rich Oligodeoxyribonucleotides. ACTA ACUST UNITED AC 1995. [DOI: 10.1080/15257779508014648] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Breslauer KJ. Extracting thermodynamic data from equilibrium melting curves for oligonucleotide order-disorder transitions. Methods Enzymol 1995; 259:221-42. [PMID: 8538456 DOI: 10.1016/0076-6879(95)59046-3] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- K J Breslauer
- Department of Chemistry, Rutgers University, Piscataway, New Jersey 08855, USA
| |
Collapse
|
42
|
Abstract
BACKGROUND Telomeres in eukaryotic organisms are protein-DNA complexes which are essential for the protection and replication of chromosomal termini. The telomeric DNA of Tetrahymena consists of T2G4 repeats, and models have been previously proposed for the intramolecular folded structure of the d(T2G4)4 sequence based on chemical footprinting and cross-linking data. A high-resolution solution structure of this sequence would allow comparison with the structures of related G-tetraplexes. RESULTS The solution structure of the Na(+)-stabilized d(T2G4)4 sequence has been determined using a combined NMR-molecular dynamics approach. The sequence folds intramolecularly into a right-handed G-tetraplex containing three stacked G-tetrads connected by linker segments consisting of a G-T-T-G lateral loop, a central T-T-G lateral loop and a T-T segment that spans the groove through a double chain reversal. The latter T-T connectivity aligns adjacent G-G-G segments in parallel and introduces a new G-tetraplex folding topology with unprecedented combinations of strand directionalities and groove widths, as well as guanine syn/anti distributions along individual strands and around individual G-tetrads. CONCLUSIONS The four repeat Tetrahymena and human G-tetraplexes, which differ by a single guanine for adenine substitution, exhibit strikingly different folding topologies. The observed structural polymorphism establishes that G-tetraplexes can adopt topologies which project distinctly different groove dimensions, G-tetrad base edges and linker segments for recognition by, and interactions with, other nucleic acids and proteins.
Collapse
Affiliation(s)
- Y Wang
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | | |
Collapse
|
43
|
Strahan GD, Shafer RH, Keniry MA. Structural properties of the [d(G3T4G3)]2 quadruplex: evidence for sequential syn-syn deoxyguanosines. Nucleic Acids Res 1994; 22:5447-55. [PMID: 7816637 PMCID: PMC332095 DOI: 10.1093/nar/22.24.5447] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two-dimensional 1H NMR studies on the dimeric hairpin quadruplex formed by d(G3T4G3) in the presence of either NaCl or KCl are presented. In the presence of either salt, the quadruplex structure is characterized by half the guanine nucleosides in the syn conformation about the glycosidic bond, the other half in the anti conformation, as reported for other similar sequences. However, 1H NOESY and 1H-31P heteronuclear correlation experiments demonstrate that the deoxyguanosines do not strictly alternate between syn and anti along individual strands. Thus we find the following sequences with regard to glycosidic bond conformation: 5'-G1SG2SG3AT4AT5A-T6AT7AG8SG9AG10A-3' and 5'-G11SG12AG13AT14AT1 5AT16AT17AG18SG19SG20A-3', where S and A denote syn and anti, respectively. This represents the first experimental evidence for a nucleic acid structure containing two sequential nucleosides in the syn conformation. The stacking interactions of the resulting quadruplex quartets and their component bases have been evaluated using unrestrained molecular dynamics calculations and energy component analysis. These calculations suggest that the sequential syn-syn/anti-anti and syn-anti quartet stacks are almost equal in energy, whereas the anti-syn stack, which is not present in our structure, is energetically less favorable by about 4 kcal/mol. Possible reasons for this energy difference and its implications for the stability of quadruplex structures are discussed.
Collapse
Affiliation(s)
- G D Strahan
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco 94143
| | | | | |
Collapse
|
44
|
Rohozinski J, Hancock JM, Keniry MA. Polycytosine regions contained in DNA hairpin loops interact via a four-stranded, parallel structure similar to the i-motif. Nucleic Acids Res 1994; 22:4653-9. [PMID: 7984414 PMCID: PMC308514 DOI: 10.1093/nar/22.22.4653] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Thermal denaturation profiles of an oligodeoxynucleotide that forms a hairpin structure with a cytidine-rich loop show an unexpected transition at 60 degrees C at pH 5.0 but not at pH 8.0. Analytical ultracentrifugation shows that this transition reflects dimer formation via the interaction of loops from two molecules to form a novel structure termed the h-dimer. The dependence of this structure on low pH implies the formation of cytosine-protonated cytosine base pairs. NMR spectroscopy, thermal denaturation and ultraviolet absorption spectral analysis suggest a similarity to the i-motif structure recently proposed for the interaction of deoxycytidine oligomers. The use of hairpin loops to form i-motif-like structures may prove useful in searches for cognate proteins and possibly in the production of antibodies.
Collapse
Affiliation(s)
- J Rohozinski
- Research School of Biological Sciences, Australian National University, Canberra
| | | | | |
Collapse
|
45
|
Mohanty D, Bansal M. Conformational polymorphism in telomeric structures: loop orientation and interloop pairing in d(G4TnG4). Biopolymers 1994; 34:1187-211. [PMID: 7948732 DOI: 10.1002/bip.360340908] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sequence repeats constituting the telomeric regions of chromosomes are known to adopt a variety of unusual structures, consisting of a G tetraplex stem and short stretches of thymines or thymines and adenines forming loops over the stem. Detailed model building and molecular mechanics studies have been carried out for these telomeric sequences to elucidate different types of loop orientations and possible conformations of thymines in the loop. The model building studies indicate that a minimum of two thymines have to be interspersed between guanine stretches to form folded-back structures with loops across adjacent strands in a G tetraplex (both over the small as well as large groove), while the minimum number of thymines required to build a loop across the diagonal strands in a G tetraplex is three. For two repeat sequences, these hairpins, resulting from different types of folding, can dimerize in three distinct ways--i.e., with loops across adjacent strands and on same side, with loops across adjacent strands and on opposite sides, and with loops across diagonal strands and on opposite sides--to form hairpin dimer structures. Energy minimization studies indicate that all possible hairpin dimers have very similar total energy values, though different structures are stabilized by different types of interactions. When the two loops are on the same side, in the hairpin dimer structures of d(G4TnG4), the thymines form favorably stacked tetrads in the loop region and there is interloop hydrogen bonding involving two hydrogen bonds for each thymine-thymine pair. Our molecular mechanics calculations on various folded-back as well as parallel tetraplex structures of these telomeric sequences provide a theoretical rationale for the experimentally observed feature that the presence of intervening thymine stretches stabilizes folded-back structures, while isolated stretches of guanines adopt a parallel tetraplex structure.
Collapse
Affiliation(s)
- D Mohanty
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore
| | | |
Collapse
|
46
|
|
47
|
Barceló F, Portugal J. Calorimetric and spectroscopic studies on the poly[d(GA).d(CT)] structural polymorphism induced by zinc. J Biomol Struct Dyn 1994; 12:203-16. [PMID: 7848568 DOI: 10.1080/07391102.1994.10508097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The interaction of zinc (II) with poly[d(GA).d(CT)] and salmon testes DNA has been investigated by Differential Scanning Calorimetry (DSC) and Circular Dichroism (CD). We have detected and energetically characterized the existence of two different structural forms in poly[d(GA).d(CT)] which behave differently during a DSC experiment. The overall melting of DNA shows two calorimetric transitions at different temperatures. Moreover, the presence of zinc, at an input ratio of ion to nucleotide (r) above two, renders a complex DSC profile which is characterized by a negative enthalpy transition. Besides, the low-temperature transition observed in the presence of zinc is practically reversible after re-cooling/re-heating cycles. Nevertheless, the high-temperature transition characterized by a negative delta H degree cal does not appear in re-heating experiments, and remains stable below 100 degrees C. A calorimetric negative enthalpy transition is also found using salmon DNA in the presence of zinc ions. It seems that the combination of a temperature effect and zinc binding might induce the production of a stable metal-DNA complex, which can also be detected by changes in some bands in the CD profiles. The experimental results show that the presence of DNA structures and binding processes involving a negative calorimetric enthalpy contribution might be more widespread than previously reckoned.
Collapse
Affiliation(s)
- F Barceló
- Departamento de Biología Fundamental y Ciencias de la Salud, Universitat de Les Illes Balears Palma de Mallorca, Spain
| | | |
Collapse
|
48
|
Rao TS, Durland RH, Revankar GR. Synthesis of oligonucleotides containing 7-(2-deoxy-β-d-erythro-pentofuranosyl)guanine and 8-amino-2′-deoxyguanosine. J Heterocycl Chem 1994. [DOI: 10.1002/jhet.5570310441] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Fry M, Loeb LA. The fragile X syndrome d(CGG)n nucleotide repeats form a stable tetrahelical structure. Proc Natl Acad Sci U S A 1994; 91:4950-4. [PMID: 8197163 PMCID: PMC43907 DOI: 10.1073/pnas.91.11.4950] [Citation(s) in RCA: 256] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The fragile X mental retardation syndrome is associated with the expansion of trinucleotide 5'-d(CGG)-3' repeats within the FMR1 gene and with hypermethylation of the cytosine residues of these repeats. The expansion and hypermethylation may account for the suppression of the transcription of the FMR1 gene and for the delay of its replication during the cell cycle. Here we show that d(CGG)n oligomers can form a stable Hoogsteen-bonded structure that exhibits properties consistent with those of tetraplex DNA. Oligomers, d(mCGG)n, (n = 4, 5, or 7), at pH 8.0 and in the presence of an alkali metal ion form stable species exhibiting a reduced electrophoretic mobility in nondenaturing polyacrylamide gels. These species are denatured by heating at 90 degrees C for 10 min. With a short d(mCGG)5 oligomer, the slowly migrating species is formed only when the cytosine residue is 5-methylated, whereas with the longer d(CGG)7 it is generated whether or not cytosine is 5-methylated. By contrast, complementary cytosine-rich oligomers do not form analogous complexes. The second-order association kinetics of the formation of the slowly migrating species of d(mCGG)5 suggests that it is an interstrand complex. Formation of intermediate-size complexes between d(mCGG)5 and d(mCGG)7 indicates that the stoichiometry of the slowly migrating structures is tetramolecular. Protection of the complex from methylation by dimethyl sulfate indicates the involvement of the N-7 positions of the guanine residues in Hoogsteen hydrogen bonding, a characteristic of quadruplex structures. If formed in vivo along the expanded and hypermethylated d(mCGG)n stretch, this tetraplex structure could suppress transcription and replication of the FMR1 gene in the fragile X syndrome cells.
Collapse
Affiliation(s)
- M Fry
- Unit of Biochemistry, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa
| | | |
Collapse
|
50
|
Wu-Pong S, Weiss TL, Hunt CA. Antisense c-myc oligonucleotide cellular uptake and activity. ANTISENSE RESEARCH AND DEVELOPMENT 1994; 4:155-63. [PMID: 7849486 DOI: 10.1089/ard.1994.4.155] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previously described cell membrane transport mechanisms are unable to account completely for oligodeoxynucleotide cellular uptake. These charged macromolecules enter cells by an incompletely defined mechanism and downregulate gene expression in either the cytoplasm or nucleus. Thus, the goal of this research was to study the mechanism of phosphodiester oligonucleotide cellular uptake in Rauscher Red 5-1.5 erythroleukemia cells. An antisense c-myc oligodeoxynucleotide (21 bases) demonstrated biological activity in these cells using two types of proliferation assays and Northern blot analysis, and was internalized as visualized by confocal laser microscopy. Oligonucleotide uptake appeared to be a complex process consisting of surface binding and internalization. Cellular internalization accounted for up to 40% of total uptake and was partially dependent on both a trypsin-sensitive component and cellular energy. Uptake in these cells was nonspecific and did not appear to be due to receptor-mediated endocytosis. Therefore, because oligonucleotide cellular uptake in other cell types apparently involves an endocytic mechanism, the primary mechanism of oligonucleotide internalization may be cell line dependent.
Collapse
Affiliation(s)
- S Wu-Pong
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143
| | | | | |
Collapse
|