1
|
Chan N, Carlin S, Hirsh J. Anticoagulants: From chance discovery to structure-based design. Pharmacol Rev 2025; 77:100037. [PMID: 39892177 DOI: 10.1016/j.pharmr.2025.100037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 02/03/2025] Open
Abstract
Taking a historical perspective, we review the discovery, pharmacology, and clinical evaluation of the old and new anticoagulants that have been approved for clinical use. The drugs are discussed chronologically, starting in the 1880s, and progressing through to 2024. The innovations in technology used to develop novel anticoagulants came in fits and starts and reflected the advances in science and technology over these decades, whereas the shift from anecdote to evidence-based use of anticoagulants was delayed until the principles of epidemiology and biostatistics were introduced into clinical trial design and to the approval process. Hirudin, heparin, and vitamin K antagonists were discovered by chance, and were used clinically before their mechanism of action was elucidated and before their net clinical benefits were evaluated in randomized clinical trials. Subsequent anticoagulants were designed based on a better understanding of the structure and function of coagulation proteins, including antithrombin, thrombin, and factor Xa, and underwent more rigorous preclinical and clinical evaluation before regulatory approval. By simplifying oral anticoagulation, the direct oral anticoagulants have revolutionized anticoagulation care and have enhanced the uptake of anticoagulation, but bleeding has not been eliminated and there is a need for more effective and convenient anticoagulants for thrombosis triggered by the contact pathway of coagulation. The newly developed factor XIa and XIIa inhibitors have the potential to address these unmet clinical needs and are undergoing clinical evaluation for several indications. SIGNIFICANCE STATEMENT: Anticoagulant therapy is the cornerstone of treatment and prevention of thrombosis, which remains a leading cause of morbidity and mortality worldwide. Elucidation of the structure and function of coagulation enzymes, their cofactors, and inhibitors, coupled with advances in structure-based design led to the discovery of more convenient, safer, and more effective anticoagulants that have revolutionized the management of thrombotic disorders.
Collapse
Affiliation(s)
- Noel Chan
- Population Health Research Institute, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada; Division of Hematology and Thromboembolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | - Stephanie Carlin
- Division of Hematology and Thromboembolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jack Hirsh
- Division of Hematology and Thromboembolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Hubálek F, Cramer CN, Helleberg H, Johansson E, Nishimura E, Schluckebier G, Steensgaard DB, Sturis J, Kjeldsen TB. Enhanced disulphide bond stability contributes to the once-weekly profile of insulin icodec. Nat Commun 2024; 15:6124. [PMID: 39033137 PMCID: PMC11271312 DOI: 10.1038/s41467-024-50477-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Insulin icodec is a once-weekly insulin analogue that has a long half-life of approximately 7 days, making it suitable for once weekly dosing. The Insulin icodec molecule was developed based on the hypothesis that lowering insulin receptor affinity and introducing a strong albumin-binding moiety would result in a long insulin half-life, provided that non-receptor-mediated clearance is diminished. Here, we report an insulin clearance mechanism, resulting in the splitting of insulin molecules into its A-chain and B-chain by a thiol-disulphide exchange reaction. Even though the substitutions in insulin icodec significantly stabilise insulin against such degradation, some free B-chain is observed in plasma samples from minipigs and people with type 2 diabetes. In summary, we identify thiol-disulphide exchange reactions to be an important insulin clearance mechanism and find that stabilising insulin icodec towards this reaction significantly contributes to its long pharmacokinetic/pharmacodynamic profile.
Collapse
|
3
|
Chen Z, Wang R, Guo J, Wang X. The role and future prospects of artificial intelligence algorithms in peptide drug development. Biomed Pharmacother 2024; 175:116709. [PMID: 38713945 DOI: 10.1016/j.biopha.2024.116709] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024] Open
Abstract
Peptide medications have been more well-known in recent years due to their many benefits, including low side effects, high biological activity, specificity, effectiveness, and so on. Over 100 peptide medications have been introduced to the market to treat a variety of illnesses. Most of these peptide medications are developed on the basis of endogenous peptides or natural peptides, which frequently required expensive, time-consuming, and extensive tests to confirm. As artificial intelligence advances quickly, it is now possible to build machine learning or deep learning models that screen a large number of candidate sequences for therapeutic peptides. Therapeutic peptides, such as those with antibacterial or anticancer properties, have been developed by the application of artificial intelligence algorithms.The process of finding and developing peptide drugs is outlined in this review, along with a few related cases that were helped by AI and conventional methods. These resources will open up new avenues for peptide drug development and discovery, helping to meet the pressing needs of clinical patients for disease treatment. Although peptide drugs are a new class of biopharmaceuticals that distinguish them from chemical and small molecule drugs, their clinical purpose and value cannot be ignored. However, the traditional peptide drug research and development has a long development cycle and high investment, and the creation of peptide medications will be substantially hastened by the AI-assisted (AI+) mode, offering a new boost for combating diseases.
Collapse
Affiliation(s)
- Zhiheng Chen
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Ruoxi Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Junqi Guo
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Xiaogang Wang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
4
|
Liu C, Zhang K, Zhang S, Li X, Sun H, Ma L. Maggot Kinase and Natural Thrombolytic Proteins. ACS OMEGA 2024; 9:21768-21779. [PMID: 38799322 PMCID: PMC11112594 DOI: 10.1021/acsomega.4c01663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Thrombolytic enzymes constitute a class of proteases with antithrombotic functions. Derived from natural products and abundant in nature, certain thrombolytic enzymes, such as urokinase, earthworm kinase, and streptokinase, have been widely used in the clinical treatment of vascular embolic diseases. Fly maggots, characterized by their easy growth and low cost, are a traditional Chinese medicine recorded in the Compendium of Materia Medica. These maggots can also be used as raw material for the extraction and preparation of thrombolytic enzymes (maggot kinase). In this review, we assembled global research reports on natural thrombolytic enzymes through a literature search and reviewed the functions and structures of natural thrombolytic enzymes to provide a reference for natural thrombophilic drug screening and development.
Collapse
Affiliation(s)
- Can Liu
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Kaixin Zhang
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Shihao Zhang
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Xin Li
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Huiting Sun
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Lanqing Ma
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
- Beijing
Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, PR China
| |
Collapse
|
5
|
Yu H, Kumar S, Frederiksen JW, Kolyadko VN, Pitoc G, Layzer J, Yan A, Rempel R, Francis S, Krishnaswamy S, Sullenger BA. Aptameric hirudins as selective and reversible EXosite-ACTive site (EXACT) inhibitors. Nat Commun 2024; 15:3977. [PMID: 38730234 PMCID: PMC11087511 DOI: 10.1038/s41467-024-48211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Potent and selective inhibition of the structurally homologous proteases of coagulation poses challenges for drug development. Hematophagous organisms frequently accomplish this by fashioning peptide inhibitors combining exosite and active site binding motifs. Inspired by this biological strategy, we create several EXACT inhibitors targeting thrombin and factor Xa de novo by linking EXosite-binding aptamers with small molecule ACTive site inhibitors. The aptamer component within the EXACT inhibitor (1) synergizes with and enhances the potency of small-molecule active site inhibitors by many hundred-fold (2) can redirect an active site inhibitor's selectivity towards a different protease, and (3) enable efficient reversal of inhibition by an antidote that disrupts bivalent binding. One EXACT inhibitor, HD22-7A-DAB, demonstrates extraordinary anticoagulation activity, exhibiting great potential as a potent, rapid onset anticoagulant to support cardiovascular surgeries. Using this generalizable molecular engineering strategy, selective, potent, and rapidly reversible EXACT inhibitors can be created against many enzymes through simple oligonucleotide conjugation for numerous research and therapeutic applications.
Collapse
Affiliation(s)
- Haixiang Yu
- Department of Surgery, Duke University, Durham, NC, USA
| | - Shekhar Kumar
- Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Vladimir N Kolyadko
- Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - George Pitoc
- Department of Surgery, Duke University, Durham, NC, USA
| | | | - Amy Yan
- Department of Surgery, Duke University, Durham, NC, USA
| | - Rachel Rempel
- Department of Surgery, Duke University, Durham, NC, USA
| | - Samuel Francis
- Department of Emergency Medicine, Duke University Hospital, Durham, NC, USA
| | - Sriram Krishnaswamy
- Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Bruce A Sullenger
- Department of Surgery, Duke University, Durham, NC, USA.
- Departments of Pharmacology & Cancer Biology and Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
6
|
Chen TY, Shyur E, Ma TH, Wijeyewickrema L, Lin SW, Kao MR, Liang PH, Shie JJ, Chuang EY, Liou JP, Hsieh YSY. Effect of Sulfotyrosine and Negatively Charged Amino Acid of Leech-Derived Peptides on Binding and Inhibitory Activity Against Thrombin. Chembiochem 2024; 25:e202300744. [PMID: 38055188 DOI: 10.1002/cbic.202300744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023]
Abstract
Hirudins, natural sulfo(glyco)proteins, are clinical anticoagulants that directly inhibit thrombin, a key coagulation factor. Their potent thrombin inhibition primarily results from antagonistic interactions with both the catalytic and non-catalytic sites of thrombin. Hirudins often feature sulfate moieties on Tyr residues in their anionic C-terminus region, enabling strong interactions with thrombin exosite-I and effectively blocking its engagement with fibrinogen. Although sulfotyrosines have been identified in various hirudin variants, the precise relationship between sulfotyrosine and the number of negatively charged amino acids within the anionic-rich C-terminus peptide domain for the binding of thrombin has remained elusive. By using Fmoc-SPPS, hirudin dodecapeptides homologous to the C-terminus of hirudin variants from various leech species were successfully synthesized, and the effect of sulfotyrosine and the number of negatively charged amino acids on hirudin-thrombin interactions was investigated. Our findings did not reveal any synergistic effect between an increasing number of sulfotyrosines or negatively charged amino acids and their inhibitory activity on thrombin or fibrinolysis in the assays, despite a higher binding level toward thrombin in the sulfated dodecapeptide Hnip_Hirudin was observed in SPR analysis.
Collapse
Affiliation(s)
- Tzu-Yin Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Eileen Shyur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Tzu-Hsuan Ma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Lakshmi Wijeyewickrema
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, 3086, Melbourne, Australia
| | - Sheng-Wei Lin
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Mu-Rong Kao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Er-Yuan Chuang
- Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Yves S Y Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE10691, Sweden
| |
Collapse
|
7
|
Wu D, Prem A, Xiao J, Salsbury FR. Thrombin - A Molecular Dynamics Perspective. Mini Rev Med Chem 2024; 24:1112-1124. [PMID: 37605420 DOI: 10.2174/1389557523666230821102655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 08/23/2023]
Abstract
Thrombin is a crucial enzyme involved in blood coagulation, essential for maintaining circulatory system integrity and preventing excessive bleeding. However, thrombin is also implicated in pathological conditions such as thrombosis and cancer. Despite the application of various experimental techniques, including X-ray crystallography, NMR spectroscopy, and HDXMS, none of these methods can precisely detect thrombin's dynamics and conformational ensembles at high spatial and temporal resolution. Fortunately, molecular dynamics (MD) simulation, a computational technique that allows the investigation of molecular functions and dynamics in atomic detail, can be used to explore thrombin behavior. This review summarizes recent MD simulation studies on thrombin and its interactions with other biomolecules. Specifically, the 17 studies discussed here provide insights into thrombin's switch between 'slow' and 'fast' forms, active and inactive forms, the role of Na+ binding, the effects of light chain mutation, and thrombin's interactions with other biomolecules. The findings of these studies have significant implications for developing new therapies for thrombosis and cancer. By understanding thrombin's complex behavior, researchers can design more effective drugs and treatments that target thrombin.
Collapse
Affiliation(s)
- Dizhou Wu
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Athul Prem
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Jiajie Xiao
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
- Freenome, South San Francisco, CA, 94080, USA
| | - Freddie R Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
| |
Collapse
|
8
|
Balakrishnan N, Katkar R, Pham PV, Downey T, Kashyap P, Anastasiu DC, Ramasubramanian AK. Prospection of Peptide Inhibitors of Thrombin from Diverse Origins Using a Machine Learning Pipeline. Bioengineering (Basel) 2023; 10:1300. [PMID: 38002424 PMCID: PMC10669389 DOI: 10.3390/bioengineering10111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Thrombin is a key enzyme involved in the development and progression of many cardiovascular diseases. Direct thrombin inhibitors (DTIs), with their minimum off-target effects and immediacy of action, have greatly improved the treatment of these diseases. However, the risk of bleeding, pharmacokinetic issues, and thrombotic complications remain major concerns. In an effort to increase the effectiveness of the DTI discovery pipeline, we developed a two-stage machine learning pipeline to identify and rank peptide sequences based on their effective thrombin inhibitory potential. The positive dataset for our model consisted of thrombin inhibitor peptides and their binding affinities (KI) curated from published literature, and the negative dataset consisted of peptides with no known thrombin inhibitory or related activity. The first stage of the model identified thrombin inhibitory sequences with Matthew's Correlation Coefficient (MCC) of 83.6%. The second stage of the model, which covers an eight-order of magnitude range in KI values, predicted the binding affinity of new sequences with a log room mean square error (RMSE) of 1.114. These models also revealed physicochemical and structural characteristics that are hidden but unique to thrombin inhibitor peptides. Using the model, we classified more than 10 million peptides from diverse sources and identified unique short peptide sequences (<15 aa) of interest, based on their predicted KI. Based on the binding energies of the interaction of the peptide with thrombin, we identified a promising set of putative DTI candidates. The prediction pipeline is available on a web server.
Collapse
Affiliation(s)
- Nivedha Balakrishnan
- Department of Chemical and Materials Engineering, San José State University, San Jose, CA 95192, USA (P.K.)
| | - Rahul Katkar
- Department of Chemical and Materials Engineering, San José State University, San Jose, CA 95192, USA (P.K.)
| | - Peter V. Pham
- Department of Chemical and Materials Engineering, San José State University, San Jose, CA 95192, USA (P.K.)
| | - Taylor Downey
- Department of Computer Science and Engineering, Santa Clara University, Santa Clara, CA 95053, USA (D.C.A.)
| | - Prarthna Kashyap
- Department of Chemical and Materials Engineering, San José State University, San Jose, CA 95192, USA (P.K.)
| | - David C. Anastasiu
- Department of Computer Science and Engineering, Santa Clara University, Santa Clara, CA 95053, USA (D.C.A.)
| | - Anand K. Ramasubramanian
- Department of Chemical and Materials Engineering, San José State University, San Jose, CA 95192, USA (P.K.)
| |
Collapse
|
9
|
Maxwell JWC, Hawkins PME, Watson EE, Payne RJ. Exploiting Chemical Protein Synthesis to Study the Role of Tyrosine Sulfation on Anticoagulants from Hematophagous Organisms. Acc Chem Res 2023; 56:2688-2699. [PMID: 37708351 DOI: 10.1021/acs.accounts.3c00388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Tyrosine sulfation is a post-translational modification (PTM) that modulates function by mediating key protein-protein interactions. One of the early proteins shown to possess this PTM was hirudin, produced in the salivary glands of the medicinal leech Hirudo medicinalis, whereby tyrosine sulfation led to a ∼10-fold improvement in α-thrombin inhibitory activity. Outside of this pioneering discovery, the involvement of tyrosine sulfation in modulating the activity of salivary proteins from other hematophagous organisms was unknown. We hypothesized that the intrinsic instability of the tyrosine sulfate functionality, particularly under the acidic conditions used to isolate and analyze peptides and proteins, has led to poor detection during the isolation and/or expression of these molecules.Herein, we summarize our efforts to interrogate the functional role of tyrosine sulfation in the thrombin inhibitory and anticoagulant activity of salivary peptides and proteins from a range of different blood feeding organisms, including leeches, ticks, mosquitoes, and flies. Specifically, we have harnessed synthetic chemistry to efficiently generate homogeneously sulfated peptides and proteins for detailed structure-function studies both in vitro and in vivo.Our studies began with the leech protein hirudin P6 (from Hirudinaria manillensis), which is both sulfated on tyrosine and O-glycosylated at a nearby threonine residue. Synthetically, this was achieved through solid-phase peptide synthesis (SPPS) with a late-stage on-resin sulfation, followed by native chemical ligation and a folding step to generate six differentially modified variants of hirudin P6 to assess the functional interplay between O-glycosylation and tyrosine sulfation. A one-pot, kinetically controlled ligation of three peptide fragments was used to assemble homogeneously sulfoforms of madanin-1 and chimadanin from the tick Haemaphysalis longicornis. Dual tyrosine sulfation at two distinct sites was shown to increase the thrombin inhibitory activity by up to 3 orders of magnitude through a novel interaction with exosite II of thrombin. The diselenide-selenoester ligation developed by our lab provided us with a means to rapidly assemble a library of different sulfated tick anticoagulant proteins: the andersonins, hyalomins, madanin-like proteins, and hemeathrins, thus enabling the generation of key structure-activity data on this family of proteins. We have also confirmed the presence of tyrosine sulfation in the anticoagulant proteins of Anopheles mosquitoes (anophelins) and the Tsetse fly (TTI) via insect expression and mass spectrometric analysis. These molecules were subsequently synthesized and assessed for thrombin inhibitory and anticoagulant activity. Activity was significantly improved by the addition of tyrosine sulfate modifications and led to molecules with potent antithrombotic activity in an in vivo murine thrombosis model.The Account concludes with our most recent work on the design of trivalent hybrids that tandemly occupy the active site and both exosites (I and II) of α-thrombin, with a TTI-anophelin hybrid (Ki = 20 fM against α-thrombin) being one of the most potent protease inhibitors and anticoagulants ever generated. Taken together, this Account highlights the importance of the tyrosine sulfate post-translational modification within salivary proteins from blood feeding organisms for enhancing anticoagulant activity. This work lays the foundation for exploiting native or engineered variants as therapeutic leads for thrombotic disorders in the future.
Collapse
Affiliation(s)
- Joshua W C Maxwell
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Sydney, NSW 2006, Australia
| | - Paige M E Hawkins
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Sydney, NSW 2006, Australia
| | - Emma E Watson
- School of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
Li S, Zhang K, Ma Z, Zhang W, Song Z, Wang W, Han H. Biomimetic Nanoplatelets to Target Delivery Hirudin for Site-Specific Photothermal/Photodynamic Thrombolysis and Preventing Venous Thrombus Formation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203184. [PMID: 36344452 DOI: 10.1002/smll.202203184] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Due to the high recurrence rate and mortality of venous thrombosis, there is an urgent need for research on antithrombotic strategies. Because of the short half-life, poor targeting capabilities, bleeding complications, and neurotoxic effects of conventional pharmacological thrombolysis methods, it is essential to develop an alternative strategy to noninvasive thrombolysis and decrease the recurrence rate of venous thrombosis. A platelet-mimetic porphyrin-based covalent organic framework-engineered melanin nanoplatform, to target delivery of hirudin to the vein thrombus site for noninvasive thrombolysis and effective anticoagulation, is first proposed. Owing to the thrombus-hosting properties of platelet membranes, the nanoplatform can target the thrombus site and then activate hyperthermia and reactive oxygen species for thrombolysis under near-infrared light irradiation. The photothermal therapy/photodynamic therapy combo can substantially improve the effectiveness (85.7%) of thrombolysis and prevent secondary embolism of larger fragments. Afterward, the highly loaded (97%) and slow-release hirudin (14 days) are effective in preventing the recurrence of blood clots without the danger of thrombocytopenia. The described biomimetic nanostructures offer a promising option for improving the efficacy of thrombolytic therapy and reducing the risk of bleeding complications in thrombus associated diseases.
Collapse
Affiliation(s)
- Shuting Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Kai Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhaoyu Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Weiyun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhiyong Song
- State Key Laboratory of Agriculture Microbiology, College of Science, Huazhong Agricultural University Wuhan, Wuhan, Hubei, 430070, China
| | - Wenjing Wang
- State Key Laboratory of Agriculture Microbiology, College of Science, Huazhong Agricultural University Wuhan, Wuhan, Hubei, 430070, China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- State Key Laboratory of Agriculture Microbiology, College of Science, Huazhong Agricultural University Wuhan, Wuhan, Hubei, 430070, China
| |
Collapse
|
11
|
Zhang K, Ma Z, Li S, Zhang W, Foda MF, Zhao Y, Han H. Platelet-Covered Nanocarriers for Targeted Delivery of Hirudin to Eliminate Thrombotic Complication in Tumor Therapy. ACS NANO 2022; 16:18483-18496. [PMID: 36350264 DOI: 10.1021/acsnano.2c06666] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Most patients are at high risk of thrombosis during cancer treatment. However, the major discrepancy in the therapeutic mechanisms and microenvironment between tumors and thrombosis makes it challenging for a panacea to treat cancer while being able to eliminate the risk of thrombosis. Herein, we developed a biomimetic MnOx/Ag2S nanoflower platform with platelet membrane modification (MnOx@Ag2S@hirudin@platelet membrane: MAHP) for the long-term release of anticoagulant drugs to treat thrombosis together with tumor therapy. This MAHP platform could achieve the targeted delivery of hirudin to the thrombus site and perform the controlled release under the irradiation of near-infrared light, demonstrating effective removal of the thrombus. Moreover, MAHP could inhibit tumor progression and prolong the survival time of mice with thromboembolic complications.
Collapse
Affiliation(s)
- Kai Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Zhaoyu Ma
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Shuting Li
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Weiyun Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Mohamed Frahat Foda
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Heyou Han
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| |
Collapse
|
12
|
Yang Y, Liang M, Wang R, He C. Chemical protein synthesis elucidates key modulation mechanism of the tyrosine-O-sulfation in inducing strengthened inhibitory activity of hirudin. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Liu Z, Busscher BM, Storl-Desmond M, Xiao TS. Mechanisms of Gasdermin Recognition by Proteases. J Mol Biol 2022; 434:167274. [PMID: 34599940 PMCID: PMC8844061 DOI: 10.1016/j.jmb.2021.167274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Members of the gasdermin family contain positively charged N-terminal domains (NTDs) capable of binding phospholipids and assembling membrane pores, and C-terminal domains (CTDs) that bind the NTDs to prevent pore formation in the resting states. The flexible NTD-CTD linker regions of gasdermins are highly variable in length and sequences, which may be attributable to gasdermin recognition by diverse proteases. In addition, protease cleavage within the NTDs is known to inactivate several gasdermin family members. Recognition and cleavage of the gasdermin family members by different proteases share common and distinct features at the protease active sites, as well as exosites recently identified for the inflammatory caspases. Utilization of exosites may strengthen enzyme-substrate interaction, improve efficiency of proteolysis, and enhance substrate selectivity. It remains to be determined if the dual site recognition of gasdermin D (GSDMD) by the inflammatory caspases is employed by other GSDMD-targeting proteases, or is involved in proteolytic processing of other gasdermins. Biochemical and structural approaches will be instrumental in revealing how potential exosites in diverse proteases engage different gasdermin substrates. Different features of gasdermin sequence, structure, expression characteristics, and post-translational modifications may dictate distinct mechanisms of protease-dependent activation or inactivation. Such diverse mechanisms may underlie the divergent physiological and pathological functions of gasdermins, and furnish opportunities for therapeutic targeting of gasdermins in infectious diseases and inflammatory disorders.
Collapse
Affiliation(s)
| | | | | | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
14
|
Sun Y, Wang B, Pei J, Luo Y, Yuan N, Xiao Z, Wu H, Luo C, Wang J, Wei S, Pei Y, Fu S, Wang D. Molecular dynamic and pharmacological studies on protein-engineered hirudin variants of Hirudinaria manillensis and Hirudo medicinalis. Br J Pharmacol 2022; 179:3740-3753. [PMID: 35135035 DOI: 10.1111/bph.15816] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Hirudin variants are the most powerful thrombin inhibitors discovered to date, with a lower risk of bleeding than heparin. For anticoagulation, the C-termini of hirudins bind to the exocite I of thrombin. Anticoagulant effects of gene-recombinant hirudin are weaker than natural hirudin for the reason of lacking tyrosine-O-sulfation at C terminus. EXPERIMENTAL APPROACH The integrative pharmacological study applied molecular dynamic, molecular biological, and in vivo and in vitro experiments to elucidate the anticoagulant effects of protein-engineered hirudins. KEY RESULTS Molecular dynamic (MD) analysis showed that modifications of the C-termini of hirudin variant 1 of Hirudo medicinalis (HV1) and hirudin variant 2 of Hirudinaria manillensis (HM2) changed the binding energy of the C-termini to human thrombin. The study indicated Asp61 of HM2 that corresponds to sulfated Tyr63 of HV1 is critical for inhibiting thrombin activities, and the anticoagulant effects of HV1 and HM2 were improved when the amino acid residues adjacent to Asp61 were mutated to Asp, such as the prolongation of the activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT) of human blood, and decreased Ki and IC50 values. In the in vivo experiments, mutations at C-termini of HV1 and HM2 significantly changed APTT, PT and TT. CONCLUSION AND IMPLICATIONS The study indicated that the anticoagulant effects of gene-engineered HM2 are stronger than gene-engineered HV1, and HM2-E60D-I62D has the strongest effects and could be an antithrombotic medicine with better therapeutic effects.
Collapse
Affiliation(s)
- Yan Sun
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Baochun Wang
- The First Department of Gastrointestinal Surgery, Hainan General Hospital, Haikou, Hainan, China
| | - Jinli Pei
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China.,Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ying Luo
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Nan Yuan
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Zhengpan Xiao
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Hao Wu
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China.,Central Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Chenghui Luo
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Jiaxuan Wang
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Shuangshuang Wei
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Yechun Pei
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Shengmiao Fu
- Department of Medical Laboratory Science, Hainan General Hospital, Haikou, Hainan, China
| | - Dayong Wang
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China.,Key laboratory of Tropical Biological Resources of the Ministry of Education of China, Hainan University, Haikou, Hainan, China
| |
Collapse
|
15
|
Men Z, Lu X, He T, Wu M, Su T, Shen T. Microneedle patch-assisted transdermal administration of recombinant hirudin for the treatment of thrombotic diseases. Int J Pharm 2022; 612:121332. [PMID: 34902453 DOI: 10.1016/j.ijpharm.2021.121332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 12/20/2022]
Abstract
The painless microneedle patch (MNP), widely explored for transdermal drug delivery of macromolecules, can overcome the limitations of traditional administrations of protein and polypeptide anticoagulant drugs. We constructed a recombinant hirudin-loaded microneedle patch, suitable for patients with thrombotic diseases requiring long-term preventive medication. The recombinant hirudin-loaded dissoluble microneedle patch (RHDMNP) was created using a mold casting technique and polyvinylpyrrolidone and polyvinyl alcohol were used as the matrix material with a 1:1.2 ratio. We prepared bilayer RHDMNPs with pyramidal appearance and 0.37 N/needle strength. The intradermal dissolution height of the microneedle reached approximately 78.67% of the total height, and 68.12% of the drug was delivered into the skin. The 12-hour cumulative permeation of the MNP was 21.69 ± 3.90 μg/cm2. The MNP showed a Tmax of 1.5 h, Cmax of 144 ± 71 ng/mL, and area under curve (AUC) of 495 ± 66 ng/mL·min compared to Tmax of 0.5 h, Cmax of 249 ± 89 ng/mL, and AUC of 944 ± 65 ng/mL·min for the subcutaneous injection group. Both in vivo and in vitro experiments showed that the RHDMNP exerted effective anticoagulant effects, prevented the incidence of acute pulmonary embolism, and revealed the potential for venous thrombosis prevention.
Collapse
Affiliation(s)
- Zening Men
- Key Laboratory of Smart Drug Delivery, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaotong Lu
- Key Laboratory of Smart Drug Delivery, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Ting He
- Key Laboratory of Smart Drug Delivery, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Mengfang Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fudan University, Shanghai, China
| | - Tong Su
- Key Laboratory of Smart Drug Delivery, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Teng Shen
- Key Laboratory of Smart Drug Delivery, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Tyrosine-O-sulfation is a widespread affinity enhancer among thrombin interactors. Biochem Soc Trans 2022; 50:387-401. [PMID: 34994377 DOI: 10.1042/bst20210600] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022]
Abstract
Tyrosine-O-sulfation is a common post-translational modification (PTM) of proteins following the cellular secretory pathway. First described in human fibrinogen, tyrosine-O-sulfation has long been associated with the modulation of protein-protein interactions in several physiological processes. A number of relevant interactions for hemostasis are largely dictated by this PTM, many of which involving the serine proteinase thrombin (FIIa), a central player in the blood-clotting cascade. Tyrosine sulfation is not limited to endogenous FIIa ligands and has also been found in hirudin, a well-known and potent thrombin inhibitor from the medicinal leech, Hirudo medicinalis. The discovery of hirudin led to successful clinical application of analogs of leech-inspired molecules, but also unveiled several other natural thrombin-directed anticoagulant molecules, many of which undergo tyrosine-O-sulfation. The presence of this PTM has been shown to enhance the anticoagulant properties of these peptides from a range of blood-feeding organisms, including ticks, mosquitos and flies. Interestingly, some of these molecules display mechanisms of action that mimic those of thrombin's bona fide substrates.
Collapse
|
17
|
Tang H, Zhang P, Luo X. Recent Technologies for Genetic Code Expansion and their Implications on Synthetic Biology Applications. J Mol Biol 2021; 434:167382. [PMID: 34863778 DOI: 10.1016/j.jmb.2021.167382] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
Genetic code expansion (GCE) enables the site-specific incorporation of non-canonical amino acids as novel building blocks for the investigation and manipulation of proteins. The advancement of genetic code expansion has been benefited from the development of synthetic biology, while genetic code expansion also helps to create more synthetic biology tools. In this review, we summarize recent advances in genetic code expansion brought by synthetic biology progresses, including engineering of the translation machinery, genome-wide codon reassignment, and the biosynthesis of non-canonical amino acids. We highlight the emerging application of this technology in construction of new synthetic biology parts, circuits, chassis, and products.
Collapse
Affiliation(s)
- Hongting Tang
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pan Zhang
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
18
|
Koh CY, Shih N, Yip CYC, Li AWL, Chen W, Amran FS, Leong EJE, Iyer JK, Croft G, Mazlan MIB, Chee YL, Yap ES, Monroe DM, Hoffman M, Becker RC, de Kleijn DPV, Verma V, Gupta A, Chaudhary VK, Richards AM, Kini RM, Chan MY. Efficacy and safety of next-generation tick transcriptome-derived direct thrombin inhibitors. Nat Commun 2021; 12:6912. [PMID: 34824278 PMCID: PMC8617063 DOI: 10.1038/s41467-021-27275-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/28/2021] [Indexed: 01/18/2023] Open
Abstract
Despite their limitations, unfractionated heparin (UFH) and bivalirudin remain standard-of-care parenteral anticoagulants for percutaneous coronary intervention (PCI). We discovered novel direct thrombin inhibitors (DTIs) from tick salivary transcriptomes and optimised their pharmacologic activity. The most potent, ultravariegin, inhibits thrombin with a Ki of 4.0 pM, 445-fold better than bivalirudin. Unexpectedly, despite their greater antithrombotic effect, variegin/ultravariegin demonstrated less bleeding, achieving a 3-to-7-fold wider therapeutic index in rodent thrombosis and bleeding models. When used in combination with aspirin and ticagrelor in a porcine model, variegin/ultravariegin reduced stent thrombosis compared with antiplatelet therapy alone but achieved a 5-to-7-fold lower bleeding time than UFH/bivalirudin. Moreover, two antibodies screened from a naïve human antibody library effectively reversed the anticoagulant activity of ultravariegin, demonstrating proof-of-principle for antidote reversal. Variegin and ultravariegin are promising translational candidates for next-generation DTIs that may reduce peri-PCI bleeding in the presence of antiplatelet therapy.
Collapse
Affiliation(s)
- Cho Yeow Koh
- grid.4280.e0000 0001 2180 6431Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Norrapat Shih
- grid.4280.e0000 0001 2180 6431Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christina Y. C. Yip
- grid.412106.00000 0004 0621 9599Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Aaron Wei Liang Li
- grid.4280.e0000 0001 2180 6431Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Weiming Chen
- grid.4280.e0000 0001 2180 6431Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fathiah S. Amran
- grid.4280.e0000 0001 2180 6431Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Esther Jia En Leong
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Janaki Krishnamoorthy Iyer
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Grace Croft
- grid.4280.e0000 0001 2180 6431Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Muhammad Ibrahim Bin Mazlan
- grid.4280.e0000 0001 2180 6431Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yen-Lin Chee
- Department of Haematology, National Cancer Institute, Singapore, Singapore
| | - Eng-Soo Yap
- Department of Haematology, National Cancer Institute, Singapore, Singapore
| | - Dougald M. Monroe
- grid.10698.360000000122483208Division of Hematology/Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Maureane Hoffman
- grid.26009.3d0000 0004 1936 7961Department of Pathology, Duke University, Durham, NC USA
| | - Richard C. Becker
- grid.24827.3b0000 0001 2179 9593University of Cincinnati, Cincinnati, OH USA
| | - Dominique P. V. de Kleijn
- grid.4280.e0000 0001 2180 6431Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore ,grid.7692.a0000000090126352Department of Vascular Surgery, University Medical Center Utrecht & Netherlands heart Institute, Utrecht, The Netherlands
| | - Vaishali Verma
- grid.8195.50000 0001 2109 4999Centre for Innovation in Infectious Disease Research, Education, and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
| | - Amita Gupta
- grid.8195.50000 0001 2109 4999Centre for Innovation in Infectious Disease Research, Education, and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
| | - Vijay K. Chaudhary
- grid.8195.50000 0001 2109 4999Centre for Innovation in Infectious Disease Research, Education, and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
| | - A. Mark Richards
- grid.410759.e0000 0004 0451 6143Cardiovascular Research Institute, NUHS, Singapore, Singapore ,grid.29980.3a0000 0004 1936 7830Christchurch Heart Institute, University of Otago, Otago, New Zealand
| | - R. Manjunatha Kini
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Department of Pharmacology, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mark Y. Chan
- grid.4280.e0000 0001 2180 6431Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore ,grid.488497.e0000 0004 1799 3088Cardiac Department, National University Heart Centre, Singapore, Singapore
| |
Collapse
|
19
|
Exosite Binding in Thrombin: A Global Structural/Dynamic Overview of Complexes with Aptamers and Other Ligands. Int J Mol Sci 2021; 22:ijms221910803. [PMID: 34639143 PMCID: PMC8509272 DOI: 10.3390/ijms221910803] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Thrombin is the key enzyme of the entire hemostatic process since it is able to exert both procoagulant and anticoagulant functions; therefore, it represents an attractive target for the developments of biomolecules with therapeutic potential. Thrombin can perform its many functional activities because of its ability to recognize a wide variety of substrates, inhibitors, and cofactors. These molecules frequently are bound to positively charged regions on the surface of protein called exosites. In this review, we carried out extensive analyses of the structural determinants of thrombin partnerships by surveying literature data as well as the structural content of the Protein Data Bank (PDB). In particular, we used the information collected on functional, natural, and synthetic molecular ligands to define the anatomy of the exosites and to quantify the interface area between thrombin and exosite ligands. In this framework, we reviewed in detail the specificity of thrombin binding to aptamers, a class of compounds with intriguing pharmaceutical properties. Although these compounds anchor to protein using conservative patterns on its surface, the present analysis highlights some interesting peculiarities. Moreover, the impact of thrombin binding aptamers in the elucidation of the cross-talk between the two distant exosites is illustrated. Collectively, the data and the work here reviewed may provide insights into the design of novel thrombin inhibitors.
Collapse
|
20
|
Cheng S, Wang Y, Chen H, Liu H, Wang L, Battino M, Yao X, Zhu B, Du M. Anticoagulant Dodecapeptide Suppresses Thrombosis In Vivo by Inhibiting the Thrombin Exosite-I Binding Site. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10920-10931. [PMID: 34491753 DOI: 10.1021/acs.jafc.1c03414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thrombin is a crucial regulatory serine protease in hemostasis and thrombosis and has been a therapeutic target of thrombotic events. A novel oyster-derived thrombin inhibitory dodecapeptide (IEELEELEAER, P-2-CG) was identified and characterized. P-2-CG prolonged thrombin time from 9.6 s to 23.3 s at 5 mg/mL in vitro. P-2-CG bound to thrombin Exosite-I domain spontaneously. The occupied Exosite-I blocked fibrinogen binding, which prolonged fibrinogen clotting time to 28 s from 18.5 s. Molecule dynamics demonstrated the interaction of P-2-CG and thrombin Exosite-I involved in eight hydrogen bonds and lots of electrostatic forces. The residue Tyr76 at thrombin Exosite-I is one critical amino acid for fibrinogen binding. The Glu11 in P-2-CG was bound with Tyr76 through strong hydrogen bonds and hydrophobic action. P-2-CG also significantly reduced the mortality of mice that suffered an acute pulmonary embolism induced by thrombin and inhibited mice tail thrombosis induced by κ-carrageenan. The thrombin inhibitory efficiency in vitro and antithrombosis in vivo of P-2-CG provided insight for further applications to serve as an antithrombotic agent.
Collapse
Affiliation(s)
- Shuzhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Hui Chen
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Hanxiong Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Lishu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee 53226, United States
| | - Maurizio Battino
- Department of Analytical and Food Chemistry, Nutrition and Food Science Group, University of Vigo-Vigo Campus, Vigo 36310, Spain
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Beiwei Zhu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
21
|
Yang Z, Wan Y, E J, Luo Z, Guan S, Wang S, Zhang H. Structural basis of different surface-modified fullerene derivatives as novel thrombin inhibitors: insight into the inhibitory mechanism through molecular modelling studies. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1943028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Zhijie Yang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, People’s Republic of China
| | - Yongfeng Wan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, People’s Republic of China
| | - Jingwen E
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, People’s Republic of China
| | - Zhijian Luo
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, People’s Republic of China
| | - Shanshan Guan
- College of Biology and Food Engineering, Jilin Engineering Normal University, Changchun, People’s Republic of China
| | - Song Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, People’s Republic of China
| | - Hao Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
22
|
Kovach IM. Proton Bridging in Catalysis by and Inhibition of Serine Proteases of the Blood Cascade System. Life (Basel) 2021; 11:396. [PMID: 33925363 PMCID: PMC8146069 DOI: 10.3390/life11050396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022] Open
Abstract
Inquiries into the participation of short hydrogen bonds in stabilizing transition states and intermediate states in the thrombin, factor Xa, plasmin and activated protein C-catalyzed reactions revealed that specific binding of effectors at Sn, n = 1-4 and S'n, n = 1-3 and at remote exosites elicit complex patterns of hydrogen bonding and involve water networks. The methods employed that yielded these discoveries include; (1) kinetics, especially partial or full kinetic deuterium solvent isotope effects with short cognate substrates and also with the natural substrates, (2) kinetic and structural probes, particularly low-field high-resolution nuclear magnetic resonance (1H NMR), of mechanism-based inhibitors and substrate-mimic peptide inhibitors. Short hydrogen bonds form at the transition states of the catalytic reactions at the active site of the enzymes as they do with mechanism-based covalent inhibitors of thrombin. The emergence of short hydrogen bonds at the binding interface of effectors and thrombin at remote exosites has recently gained recognition. Herein, I describe our contribution, a confirmation of this discovery, by low-field 1H NMR. The principal conclusion of this review is that proton sharing at distances below the sum of van der Waals radii of the hydrogen and both donor and acceptor atoms contribute to the remarkable catalytic prowess of serine proteases of the blood clotting system and other enzymes that employ acid-base catalysis. Proton bridges also play a role in tight binding in proteins and at exosites, i.e., allosteric sites, of enzymes.
Collapse
Affiliation(s)
- Ildiko M Kovach
- Department of Chemistry, The Catholic University of America, Washington, DC 20064, USA
| |
Collapse
|
23
|
Abstract
Since the introduction of insulin almost a century ago, more than 80 peptide drugs have reached the market for a wide range of diseases, including diabetes, cancer, osteoporosis, multiple sclerosis, HIV infection and chronic pain. In this Perspective, we summarize key trends in peptide drug discovery and development, covering the early efforts focused on human hormones, elegant medicinal chemistry and rational design strategies, peptide drugs derived from nature, and major breakthroughs in molecular biology and peptide chemistry that continue to advance the field. We emphasize lessons from earlier approaches that are still relevant today as well as emerging strategies such as integrated venomics and peptide-display libraries that create new avenues for peptide drug discovery. We also discuss the pharmaceutical landscape in which peptide drugs could be particularly valuable and analyse the challenges that need to be addressed for them to reach their full potential.
Collapse
|
24
|
Yum JH, Ishizuka T, Fukumoto K, Hori D, Bao HL, Xu Y, Sugiyama H, Park S. Systematic Approach to DNA Aptamer Design Using Amino Acid-Nucleic Acid Hybrids (ANHs) Targeting Thrombin. ACS Biomater Sci Eng 2021; 7:1338-1343. [PMID: 33756075 DOI: 10.1021/acsbiomaterials.1c00060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemical modifications of innate DNA/RNA aptamers facilitate the improvement of their function. Herein, we report our modular strategy to manipulate a thrombin-binding DNA aptamer (TBA) to improve its anticoagulation activity and binding affinity. A set of amino acid conjugates, termed amino acid-nucleic acid hybrids or ANHs, was synthesized and incorporated into a TBA loop sequences. We found that substitutions with hydrophobic amino acids in the loop region possessed significantly enhanced antithrombin activity, up to 3-fold higher than the native TBA. We investigated the correlations between thrombin-binding affinity and the features of our amino-acid conjugates using experimental techniques including circular dichroism spectroscopy, surface plasmon resonance assay, and molecular modeling. The present study demonstrates a systematic approach to aptamer design based on amino-acid characteristics, allowing the development of advanced aptamers.
Collapse
Affiliation(s)
- Ji Hye Yum
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takumi Ishizuka
- Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Koyuki Fukumoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Daisuke Hori
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hong-Liang Bao
- Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yan Xu
- Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
25
|
Diselenide crosslinks for enhanced and simplified oxidative protein folding. Commun Chem 2021; 4:30. [PMID: 36697775 PMCID: PMC9814483 DOI: 10.1038/s42004-021-00463-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/29/2021] [Indexed: 01/28/2023] Open
Abstract
The in vitro oxidative folding of proteins has been studied for over sixty years, providing critical insight into protein folding mechanisms. Hirudin, the most potent natural inhibitor of thrombin, is a 65-residue protein with three disulfide bonds, and is viewed as a folding model for a wide range of disulfide-rich proteins. Hirudin's folding pathway is notorious for its highly heterogeneous intermediates and scrambled isomers, limiting its folding rate and yield in vitro. Aiming to overcome these limitations, we undertake systematic investigation of diselenide bridges at native and non-native positions and investigate their effect on hirudin's folding, structure and activity. Our studies demonstrate that, regardless of the specific positions of these substitutions, the diselenide crosslinks enhanced the folding rate and yield of the corresponding hirudin analogues, while reducing the complexity and heterogeneity of the process. Moreover, crystal structure analysis confirms that the diselenide substitutions maintained the overall three-dimensional structure of the protein and left its function virtually unchanged. The choice of hirudin as a study model has implications beyond its specific folding mechanism, demonstrating the high potential of diselenide substitutions in the design, preparation and characterization of disulfide-rich proteins.
Collapse
|
26
|
Agten SM, Watson EE, Ripoll‐Rozada J, Dowman LJ, Wu MCL, Alwis I, Jackson SP, Pereira PJB, Payne RJ. Potent Trivalent Inhibitors of Thrombin through Hybridization of Salivary Sulfopeptides from Hematophagous Arthropods. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stijn M. Agten
- School of Chemistry and ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Sydney Sydney NSW 2006 Australia
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM) Maastricht University Universiteitssingel 50 6229 ER Maastricht The Netherlands
| | - Emma E. Watson
- School of Chemistry and ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Sydney Sydney NSW 2006 Australia
| | - Jorge Ripoll‐Rozada
- IBMC—Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde Universidade do Porto 4200-135 Porto Portugal
| | - Luke J. Dowman
- School of Chemistry and ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Sydney Sydney NSW 2006 Australia
| | - Mike C. L. Wu
- Charles Perkins Centre The University of Sydney Sydney NSW 2006 Australia
- Heart Research Institute Sydney NSW 2042 Australia
| | - Imala Alwis
- Charles Perkins Centre The University of Sydney Sydney NSW 2006 Australia
- Heart Research Institute Sydney NSW 2042 Australia
| | - Shaun P. Jackson
- Charles Perkins Centre The University of Sydney Sydney NSW 2006 Australia
- Heart Research Institute Sydney NSW 2042 Australia
| | - Pedro José Barbosa Pereira
- IBMC—Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde Universidade do Porto 4200-135 Porto Portugal
| | - Richard J. Payne
- School of Chemistry and ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
27
|
Nakajima Y, Nogami K. The C-terminal acidic region in the A1 domain of factor VIII facilitates thrombin-catalyzed activation and cleavage at Arg 372. J Thromb Haemost 2021; 19:677-688. [PMID: 33369157 DOI: 10.1111/jth.15201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Factor VIII (FVIII) is activated by thrombin-catalyzed cleavage at three sites. Previous reports indicated that the A2 domain contained thrombin-interactive sites responsible for cleavage at Arg372 . We have also found that the A1 domain of FVIII bound to the anion-binding exosite I of thrombin. The present study focused, therefore, on thrombin interaction with A1 residues 337-372 containing clustered acidic and hirugen-like sequences. AIM To identify specific thrombin-interactive site(s) within the A1 acidic region of FVIII. METHODS AND RESULTS The synthetic peptide of residues 337-353 with sulfated Tyr346 (337-353S) significantly blocked thrombin-catalyzed FVIII activation and cleavage at Arg372 , while a corresponding peptide of residues 354-372 had no significant effect. Treatment with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide to cross-link thrombin and 340-350S suggested that the 344-349 clustered acidic region was involved in thrombin interaction. Alanine-substituted FVIII mutants, Y346A and D347A/D348A/D349A, depressed thrombin-catalyzed activation and cleavage at Arg372 , with peak activation at ~ 50% and cleavage rates of ~ 10% to 20% compared to wild type (WT). The peak level of thrombin-catalyzed activation and the cleavage rate at Arg372 using FVIII mutants with 337-346 residues substituted with hirugen-sequences (MKNNEEAEDY337-346GDFEEIPEEY) were ~ 1.5- and ~ 2.5-fold of WT, respectively. Surface plasmon resonance-based analysis demonstrated that the Kd for active-site modified thrombin interactions using Y346A and D347A/D348A/D349A mutants was ~ 3- to 6-fold higher than that of WT, and that the hirugen-hybrid mutant facilitated association kinetics ~ 1.8-fold of WT. CONCLUSION Residues 346-349 with sulfated Tyr provided a thrombin-interactive site responsible for activation and cleavage at Arg372 . A hirugen-hybrid A1 mutant showed more efficient thrombin-catalyzed cleavage at Arg372 .
Collapse
Affiliation(s)
- Yuto Nakajima
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
| | - Keiji Nogami
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
| |
Collapse
|
28
|
Agten SM, Watson EE, Ripoll-Rozada J, Dowman LJ, Wu MCL, Alwis I, Jackson SP, Pereira PJB, Payne RJ. Potent Trivalent Inhibitors of Thrombin through Hybridization of Salivary Sulfopeptides from Hematophagous Arthropods. Angew Chem Int Ed Engl 2021; 60:5348-5356. [PMID: 33345438 DOI: 10.1002/anie.202015127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Indexed: 12/20/2022]
Abstract
Blood feeding arthropods, such as leeches, ticks, flies and mosquitoes, provide a privileged source of peptidic anticoagulant molecules. These primarily operate through inhibition of the central coagulation protease thrombin by binding to the active site and either exosite I or exosite II. Herein, we describe the rational design of a novel class of trivalent thrombin inhibitors that simultaneously block both exosites as well as the active site. These engineered hybrids were synthesized using tandem diselenide-selenoester ligation (DSL) and native chemical ligation (NCL) reactions in one-pot. The most potent trivalent inhibitors possessed femtomolar inhibition constants against α-thrombin and were selective over related coagulation proteases. A lead hybrid inhibitor possessed potent anticoagulant activity, blockade of both thrombin generation and platelet aggregation in vitro and efficacy in a murine thrombosis model at 1 mg kg-1 . The rational engineering approach described here lays the foundation for the development of potent and selective inhibitors for a range of other enzymatic targets that possess multiple sites for the disruption of protein-protein interactions, in addition to an active site.
Collapse
Affiliation(s)
- Stijn M Agten
- School of Chemistry and ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, 2006, NSW, Australia
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Emma E Watson
- School of Chemistry and ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, 2006, NSW, Australia
| | - Jorge Ripoll-Rozada
- IBMC-Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Luke J Dowman
- School of Chemistry and ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, 2006, NSW, Australia
| | - Mike C L Wu
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Heart Research Institute, Sydney, NSW, 2042, Australia
| | - Imala Alwis
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Heart Research Institute, Sydney, NSW, 2042, Australia
| | - Shaun P Jackson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Heart Research Institute, Sydney, NSW, 2042, Australia
| | - Pedro José Barbosa Pereira
- IBMC-Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Richard J Payne
- School of Chemistry and ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, 2006, NSW, Australia
| |
Collapse
|
29
|
Nakajima Y, Minami H, Nogami K. Acidic Region Residues 1680-1684 in the A3 Domain of Factor VIII Contain a Thrombin-Interactive Site Responsible for Proteolytic Cleavage at Arg1689. Thromb Haemost 2021; 121:1274-1288. [PMID: 33592631 DOI: 10.1055/s-0041-1723996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Factor VIII (FVIII) is activated by thrombin-catalyzed cleavage at Arg372, Arg740, and Arg1689. Our previous studies suggested that thrombin interacted with the FVIII C2 domain specific for cleavage at Arg1689. An alternative report demonstrated, however, that a recombinant (r)FVIII mutant lacking the C2 domain retained >50% cofactor activity, indicating the presence of other thrombin-interactive site(s) associated with cleavage at Arg1689. We have focused, therefore, on the A3 acidic region of FVIII, similar to the hirugen sequence specific for thrombin interaction (54-65 residues). Two synthetic peptides, spanning residues 1659-1669 with sulfated Tyr1664 and residues 1675-1685 with sulfated Try1680, inhibited thrombin-catalyzed FVIII activation and cleavage at Arg1689. Treatment with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide to cross-link thrombin with either peptide showed possible contributions of both 1664-1666 and 1683-1684 residues for thrombin interaction. Thrombin-catalyzed activation and cleavage at Arg1689 in the alanine-substituted rFVIII mutants within 1663-1666 residues were similar to those of wild type (WT). Similar studies of 1680-1684 residues, however, demonstrated that activation and cleavage by thrombin of the FVIII mutant with Y1680A or D1683A/E1684A, in particular, were severely or moderately reduced to 20 to 30% or 60 to 70% of WT, respectively. Surface plasmon resonance-based analysis revealed that thrombin interacted with both Y1680A and D1683A/E1684A mutants with approximately sixfold weaker affinities of WT. Cleavage at Arg1689 in the isolated light-chain fragments from both mutants was similarly depressed, independently of the heavy-chain subunit. In conclusion, the 1680-1684 residues containing sulfated Tyr1680 in the A3 acidic region also contribute to a thrombin-interactive site responsible for FVIII activation through cleavage at Arg1689.
Collapse
Affiliation(s)
- Yuto Nakajima
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| | - Hiroaki Minami
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| | - Keiji Nogami
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
30
|
Tušar L, Usenik A, Turk B, Turk D. Mechanisms Applied by Protein Inhibitors to Inhibit Cysteine Proteases. Int J Mol Sci 2021; 22:997. [PMID: 33498210 PMCID: PMC7863939 DOI: 10.3390/ijms22030997] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023] Open
Abstract
Protein inhibitors of proteases are an important tool of nature to regulate and control proteolysis in living organisms under physiological and pathological conditions. In this review, we analyzed the mechanisms of inhibition of cysteine proteases on the basis of structural information and compiled kinetic data. The gathered structural data indicate that the protein fold is not a major obstacle for the evolution of a protease inhibitor. It appears that nature can convert almost any starting fold into an inhibitor of a protease. In addition, there appears to be no general rule governing the inhibitory mechanism. The structural data make it clear that the "lock and key" mechanism is a historical concept with limited validity. However, the analysis suggests that the shape of the active site cleft of proteases imposes some restraints. When the S1 binding site is shaped as a pocket buried in the structure of protease, inhibitors can apply substrate-like binding mechanisms. In contrast, when the S1 binding site is in part exposed to solvent, the substrate-like inhibition cannot be employed. It appears that all proteases, with the exception of papain-like proteases, belong to the first group of proteases. Finally, we show a number of examples and provide hints on how to engineer protein inhibitors.
Collapse
Affiliation(s)
- Livija Tušar
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Aleksandra Usenik
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Faculty of Chemistry, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
- Institute of Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Bol’shaya Pirogovskaya Ulitsa, 19c1, 119146 Moscow, Russia
| | - Dušan Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
31
|
Xu X, Huang X, Zhang Y, Shen S, Feng Z, Dong H, Zhang C, Mo R. Self-regulated hirudin delivery for anticoagulant therapy. SCIENCE ADVANCES 2020; 6:6/41/eabc0382. [PMID: 33036973 PMCID: PMC7546707 DOI: 10.1126/sciadv.abc0382] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/27/2020] [Indexed: 05/07/2023]
Abstract
Pathological coagulation, a disorder of blood clotting regulation, induces a number of cardiovascular diseases. A safe and efficient system for the delivery of anticoagulants to mimic the physiological negative feedback mechanism by responding to the coagulation signal changes holds the promise and potential for anticoagulant therapy. Here, we exploit a "closed-loop" controlled release strategy for the delivery of recombinant hirudin, an anticoagulant agent that uses a self-regulated nanoscale polymeric gel. The cross-linked nanogel network increases the stability and bioavailability of hirudin and reduces its clearance in vivo. Equipped with the clot-targeted ligand, the engineered nanogels promote the accumulation of hirudin in the fibrous clots and adaptively release the encapsulated hirudin upon the thrombin variation during the pathological proceeding of thrombus for potentiating anticoagulant activity and alleviating adverse effects. We show that this formulation efficiently prevents and inhibits the clot formation on the mouse models of pulmonary embolism and thrombosis.
Collapse
Affiliation(s)
- Xiao Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Xuechao Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Shiyang Shen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Zhizi Feng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - He Dong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Ran Mo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
32
|
Jackson CM, Esnouf P, Duewer DL. Thrombin: An Approach to Developing a Higher-Order Reference Material and Reference Measurement Procedure for Substance Identity, Amount, and Biological Activities. JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY 2020; 125:125021. [PMID: 39035347 PMCID: PMC10871826 DOI: 10.6028/jres.125.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 07/23/2024]
Abstract
Thrombin, the proteolytic enzyme that catalyzes the transformation of soluble fibrinogen to the polymerized fibrin clot, participates in multiple reactions in blood coagulation in addition to the clotting reaction. Although reference materials have existed for many years, structural characterization and measurement of biological activity have never been sufficient to permit claims of clear metrological traceability for the thrombin preparations. Our current state-of-the-art methods for protein characterization and determination of the catalytic properties of thrombin now make it practical to develop and characterize a metrologically acceptable reference material and reference measurement procedure for thrombin. Specifically, α-thrombin, the biologically produced protease formed during prothrombin activation, is readily available and has been extensively characterized. Dependences of thrombin proteolytic and peptide hydrolytic activities on a variety of substrates, pH, specific ions, and temperature are established, although variability remains for the kinetic parameters that describe thrombin enzymatic action. The roles of specific areas on the surface of the thrombin molecule (exosites) in substrate recognition and catalytic efficiency are described and characterized. It is opportune to develop reference materials of high metrological order and technical feasibility. In this article, we review the properties of α-thrombin important for its preparation and suggest an approach suitable for producing a reference material and a reference measurement procedure that is sensitive to thrombin’s catalytic competency on a variety of substrates.
Collapse
Affiliation(s)
| | | | - David L. Duewer
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
33
|
Liu Z, Wang C, Yang J, Chen Y, Zhou B, Abbott DW, Xiao TS. Caspase-1 Engages Full-Length Gasdermin D through Two Distinct Interfaces That Mediate Caspase Recruitment and Substrate Cleavage. Immunity 2020; 53:106-114.e5. [PMID: 32553275 PMCID: PMC7382298 DOI: 10.1016/j.immuni.2020.06.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022]
Abstract
The recognition and cleavage of gasdermin D (GSDMD) by inflammatory caspases-1, 4, 5, and 11 are essential steps in initiating pyroptosis after inflammasome activation. Previous work has identified cleavage site signatures in substrates such as GSDMD, but it is unclear whether these are the sole determinants for caspase engagement. Here we report the crystal structure of a complex between human caspase-1 and the full-length murine GSDMD. In addition to engagement of the GSDMD N- and C-domain linker by the caspase-1 active site, an anti-parallel β sheet at the caspase-1 L2 and L2' loops bound a hydrophobic pocket within the GSDMD C-terminal domain distal to its N-terminal domain. This "exosite" interface endows an additional function for the GSDMD C-terminal domain as a caspase-recruitment module besides its role in autoinhibition. Our study thus reveals dual-interface engagement of GSDMD by caspase-1, which may be applicable to other physiological substrates of caspases.
Collapse
Affiliation(s)
- Zhonghua Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chuanping Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jie Yang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd, TRY-21, La Jolla, CA 92037, USA
| | - Yinghua Chen
- Protein Expression Purification Crystallization and Molecular Biophysics Core, Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bowen Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Derek W Abbott
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
34
|
Li YR, Huang YN, Zhao B, Wu MF, Li TY, Zhang YL, Chen D, Yu M, Mo W. RGD-hirudin-based low molecular weight peptide prevents blood coagulation via subcutaneous injection. Acta Pharmacol Sin 2020; 41:753-762. [PMID: 31949293 PMCID: PMC7468311 DOI: 10.1038/s41401-019-0347-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/12/2019] [Indexed: 11/09/2022]
Abstract
Thromboembolic disease is a common cardio-cerebral vascular disease that threatens human life and health. Thrombin not only affects the exogenous coagulation pathway, but also the endogenous pathway. Thus, it becomes one of the most important targets of anticoagulant drugs. RGD-hirudin is an anticoagulant drug targeting thrombin, but it can only be administered intravenously. We designed a low molecular weight peptide based on RGD-hirudin that could prevent blood clots. We first used NMR to identify the key amino acid residues of RGD-hirudin that interacted with thrombin. Then, we designed a novel direct thrombin inhibitor peptide (DTIP) based on the structure and function of RGD-hirudin using homology modeling. Molecular docking showed that the targeting and binding of DTIP with thrombin were similar to those of RGD-hirudin, suggesting DTIP interacted directly with thrombin. The active amino acids of DTIP were identified by alanine scanning, and mutants were successfully constructed. In blood clotting time tests in vitro, we found that aPTT, PT, and TT in the rat plasma added with DTIP were greatly prolonged than in that added with the mutants. Subcutaneous injection of DTIP in rats also could significantly prolong the clotting time. Thrombelastography analysis revealed that DTIP significantly delayed blood coagulation. Bio-layer interferometry study showed that there were no significant differences between DTIP and the mutants in thrombin affinity constants, suggesting that it might bind to other sites of thrombin rather than to its active center. Our results demonstrate that DTIP with low molecular weight can prevent thrombosis via subcutaneous injection.
Collapse
|
35
|
Kong D, Movahedi M, Mahdavi-Amiri Y, Yeung W, Tiburcio T, Chen D, Hili R. Evolutionary Outcomes of Diversely Functionalized Aptamers Isolated from in Vitro Evolution. ACS Synth Biol 2020; 9:43-52. [PMID: 31774997 DOI: 10.1021/acssynbio.9b00222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Expanding the chemical diversity of aptamers remains an important thrust in the field in order to increase their functional potential. Previously, our group developed LOOPER, which enables the incorporation of up to 16 unique modifications throughout a ssDNA sequence, and applied it to the in vitro evolution of thrombin binders. As LOOPER-derived highly modified nucleic acids polymers are governed by two interrelated evolutionary variables, namely, functional modifications and sequence, the evolution of this polymer contrasts with that of canonical DNA. Herein we provide in-depth analysis of the evolution, including structure-activity relationships, mapping of evolutionary pressures on the library, and analysis of plausible evolutionary pathways that resulted in the first LOOPER-derived aptamer, TBL1. A detailed picture of how TBL1 interacts with thrombin and how it may mimic known peptide binders of thrombin is also proposed. Structural modeling and folding studies afford insights into how the aptamer displays critical modifications and also how modifications enhance the structural stability of the aptamer. A discussion of benefits and potential limitations of LOOPER during in vitro evolution is provided, which will serve to guide future evolutions of this highly modified class of aptamers.
Collapse
Affiliation(s)
- Dehui Kong
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Matina Movahedi
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Yasaman Mahdavi-Amiri
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Wayland Yeung
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| | - Tristan Tiburcio
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Dickson Chen
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Ryan Hili
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
36
|
Müller C, Lukas P, Böhmert M, Hildebrandt J. Hirudin or hirudin‐like factor ‐ that is the question: insights from the analyses of natural and synthetic HLF variants. FEBS Lett 2019; 594:841-850. [DOI: 10.1002/1873-3468.13683] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Christian Müller
- Animal Physiology and Biochemistry Zoological Institute and Museum University of Greifswald Germany
| | - Phil Lukas
- Animal Physiology and Biochemistry Zoological Institute and Museum University of Greifswald Germany
| | - Michel Böhmert
- Animal Physiology and Biochemistry Zoological Institute and Museum University of Greifswald Germany
| | - Jan‐Peter Hildebrandt
- Animal Physiology and Biochemistry Zoological Institute and Museum University of Greifswald Germany
| |
Collapse
|
37
|
Faraji H, Soltani F, Ramezani M, Sadeghnia HR, Nedaeinia R, Moghimi Benhangi H, Mashkani B. Designing a multifunctional staphylokinase variant (SAK-2RGD-TTI) with appropriate thrombolytic activity in vitro. Biotechnol Lett 2019; 42:103-114. [PMID: 31686286 DOI: 10.1007/s10529-019-02748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/18/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Thrombin, platelets, and plasmin are three key factors involved in hemostasis and thrombolysis. Thrombolytic therapy with clinically approved drugs is often followed by recurrent thrombosis caused by thrombin-induced platelet aggregation from the clot debris. In order to minimize these problems, new constructs were designed for the expression of recombinant staphylokinase (rSAK) and also a fusion protein composed of staphylokinase, 20 amino acids containing 2 RGD followed by tsetse thrombin Inhibitor (SAK-2RGD-TTI) in Pichia pastoris. RESULT Modeling the tertiary structure of SAK-2RGD-TTI showed that the linker containing RGD and TTI did not interfere with proper folding of SAK. In laboratory testing, the purified SAK-2RGD-TTI (420 μg/mL) dissolved an average of 45% of the blood clot. The activity of the SAK-2RGD-TTI was also confirmed in various tests including human plasminogen activation assay, fibrin clot lysis assay, well diffusion method, activated partial thromboplastin time and platelet rich clot lysis assay. CONCLUSION Our findings suggest that SAK-2RGD-TTI has improved therapeutic properties preventing reocclussion. It further confirms that it is practicable to assemble and produce a hybrid multifunctional protein that targets hemostatic process at various stages.
Collapse
Affiliation(s)
- Habibollah Faraji
- Department of Laboratory Sciences, Faculty of Para-medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Soltani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Nedaeinia
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Moghimi Benhangi
- Department of Toxicology, Islamic Azad University, Shahreza Branch, Shahreza, Isfahan, Iran
| | - Baratali Mashkani
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
38
|
Nedaeinia R, Faraji H, Javanmard SH, Ferns GA, Ghayour-Mobarhan M, Goli M, Mashkani B, Nedaeinia M, Haghighi MHH, Ranjbar M. Bacterial staphylokinase as a promising third-generation drug in the treatment for vascular occlusion. Mol Biol Rep 2019; 47:819-841. [PMID: 31677034 DOI: 10.1007/s11033-019-05167-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
Vascular occlusion is one of the major causes of mortality and morbidity. Blood vessel blockage can lead to thrombotic complications such as myocardial infarction, stroke, deep venous thrombosis, peripheral occlusive disease, and pulmonary embolism. Thrombolytic therapy currently aims to rectify this through the administration of recombinant tissue plasminogen activator. Research is underway to design an ideal thrombolytic drug with the lowest risk. Despite the potent clot lysis achievable using approved thrombolytic drugs such as alteplase, reteplase, streptokinase, tenecteplase, and some other fibrinolytic agents, there are some drawbacks, such as high production cost, systemic bleeding, intracranial hemorrhage, vessel re-occlusion by platelet-rich and retracted secondary clots, and non-fibrin specificity. In comparison, bacterial staphylokinase, is a new, small-size plasminogen activator, unlike bacterial streptokinase, it hinders the systemic degradation of fibrinogen and reduces the risk of severe hemorrhage. A fibrin-bound plasmin-staphylokinase complex shows high resistance to a2-antiplasmin-related inhibition. Staphylokinase has the potential to be considered as a promising thrombolytic agent with properties of cost-effective production and the least side effects.
Collapse
Affiliation(s)
- Reza Nedaeinia
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Habibollah Faraji
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran. .,Department of Laboratory Sciences, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Shaghayegh Haghjooye Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Science, Isfahan, Iran
| | - Gordon A Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Goli
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Baratali Mashkani
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mozhdeh Nedaeinia
- Young Researchers and Elite Club, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Mohammad Hossein Hayavi Haghighi
- Department of Health Information Management, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Maryam Ranjbar
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.,Deputy of Food and Drug, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
39
|
Cheng B, Liu F, Guo Q, Lu Y, Shi H, Ding A, Xu C. Identification and characterization of hirudin-HN, a new thrombin inhibitor, from the salivary glands of Hirudo nipponia. PeerJ 2019; 7:e7716. [PMID: 31592161 PMCID: PMC6776071 DOI: 10.7717/peerj.7716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/21/2019] [Indexed: 01/18/2023] Open
Abstract
Transcriptome sequencing data (6.5 Gb) of the salivary glands of the haematophagous leech Hirudo nipponia was obtained by using the BGIseq-500 platform. After identification and analysis, one transcript (Unigene5370) was annotated to hirudin HV3 from Hirudo medicinalis with an e-value of 1e-29 and was named hirudin-HN. This transcript was a new thrombin inhibitor gene belonging to the proteinase inhibitor I14 (hirudin) family. Hirudin-HN, with a 270-bp cDNA, encodes an 89-aa protein containing a 20-aa signal peptide. The mature hirudin-HN protein contains the typical structural characteristics of hirudin, e.g., three conserved disulfide bonds and the PKP and DFxxIP motifs. Proteins (Hir and M-Hir) were obtained via prokaryotic expression, and the mature hirudin-HN protein was shown to have anticoagulant activity and thrombin affinity by using the chromogenic substrate S2238 and surface plasmon resonance (SPR) interaction analysis, respectively. The N-terminal structure of the mature hirudin-HN protein was shown to be important for anticoagulant activity by comparing the activity and thrombin affinity of Hir and M-Hir. The abundances of Hirudin-HN mRNA and protein were higher in the salivary glands of starving animals than in those of feeding or fed leeches. These results provided a foundation for further study on the structure-function relationship of hirudin-HN with thrombin.
Collapse
Affiliation(s)
- Boxing Cheng
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, China.,School of Biological Sciences, Guizhou Education University, Gui Yang, China
| | - Fei Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yan Cheng, China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, China
| | - Yuxi Lu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, China
| | - Hongzhuan Shi
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, China
| | - Andong Ding
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, China
| | - Chengfeng Xu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
40
|
Chen H, Cheng S, Fan F, Tu M, Xu Z, Du M. Identification and molecular mechanism of antithrombotic peptides from oyster proteins released in simulated gastro-intestinal digestion. Food Funct 2019; 10:5426-5435. [PMID: 31402368 DOI: 10.1039/c9fo01433k] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, oyster (Crassostrea gigas) proteins were digested under in vitro gastrointestinal conditions to screen potential antithrombotic peptides. The sequences of the released peptides in the intestinal digestion phase were identified by ultra-performance liquid chromatography coupled to quadrupole time-of-flight MS (UPLC-Q-TOF-MS/MS). According to the antithrombotic activity analysis, the inhibitory ratio of oyster peptides showed an increasing trend, reaching up to 35.80% for a digestion period of 4 h. The APTT (activated partial thromboplastin time) and TT (thromboplastin time) were increased by oyster peptides for human serum in vitro. Oyster peptides showed a competitive inhibition effect on thrombin, based on Lineweaver-Burk plot analysis. Molecular docking between the antithrombotic peptides and thrombin (PDB: ) was conducted using Discovery Studio 2017. Potential inhibitors against thrombin and the mechanism of antithrombotic activity were predicted using the algorithm of CDOCKER. There are fourteen potential antithrombotic peptides, whose affinity with thrombin is higher than that of hirudin, as indicated by the "-CDOCKER energy" score (181.491). Peptide LSKEEIEEAKEV is similar in sequence to thrombin inhibitors. The binding sites of potential antithrombotic peptides against thrombin at the S1 pocket were compared with hirudin variant-2 (GDFEEIPEEYLQ). In addition, the peptides containing the RG/RGD sequence were identified, which can be hydrolyzed by thrombin as a substrate. Consequently, the oyster peptides released in simulated gastrointestinal digestion probably inhibit thrombin in two ways, not only as the inhibitor against the active site, but also as the substrate of thrombin. These results maybe be attributed to the potentially strong antithrombotic activity in the human digestive system.
Collapse
Affiliation(s)
- Hui Chen
- Department of Food Science and Engineering, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| | - Shuzhen Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Maolin Tu
- Department of Food Science and Engineering, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| | - Zhe Xu
- Department of Food Science and Engineering, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| | - Ming Du
- Department of Food Science and Engineering, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
41
|
Xue Q. Pathogen proteases and host protease inhibitors in molluscan infectious diseases. J Invertebr Pathol 2019; 166:107214. [PMID: 31348922 DOI: 10.1016/j.jip.2019.107214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/11/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
The development of infectious diseases represents an outcome of dynamic interactions between the disease-producing agent's pathogenicity and the host's self-defense mechanism. Proteases secreted by pathogenic microorganisms and protease inhibitors produced by host species play an important role in the process. This review aimed at summarizing major findings in research on pathogen proteases and host protease inhibitors that had been proposed to be related to the development of mollusk diseases. Metalloproteases and serine proteases respectively belonging to Family M4 and Family S8 of the MEROPS system are among the most studied proteases that may function as virulence factors in mollusk pathogens. On the other hand, a mollusk-specific family (Family I84) of novel serine protease inhibitors and homologues of the tissue inhibitor of metalloprotease have been studied for their potential in the molluscan host defense. In addition, research at the genomic and transcriptomic levels showed that more proteases of pathogens and protease inhibitor of hosts are likely involved in mollusk disease processes. Therefore, the pathological significance of interactions between pathogen proteases and host protease inhibitors in the development of molluscan infectious diseases deserves more research efforts.
Collapse
Affiliation(s)
- Qinggang Xue
- Zhejiang Key Lab of Aquatic Germplasm Resources, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
42
|
Rapid assembly and profiling of an anticoagulant sulfoprotein library. Proc Natl Acad Sci U S A 2019; 116:13873-13878. [PMID: 31221752 DOI: 10.1073/pnas.1905177116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hematophagous organisms produce a suite of salivary proteins which interact with the host's coagulation machinery to facilitate the acquisition and digestion of a bloodmeal. Many of these biomolecules inhibit the central blood-clotting serine proteinase thrombin that is also the target of several clinically approved anticoagulants. Here a bioinformatics approach is used to identify seven tick proteins with putative thrombin inhibitory activity that we predict to be posttranslationally sulfated at two conserved tyrosine residues. To corroborate the biological role of these molecules and investigate the effects of amino acid sequence and sulfation modifications on thrombin inhibition and anticoagulant activity, a library of 34 homogeneously sulfated protein variants were rapidly assembled using one-pot diselenide-selenoester ligation (DSL)-deselenization chemistry. Downstream functional characterization validated the thrombin-directed activity of all target molecules and revealed that posttranslational sulfation of specific tyrosine residues crucially modulates potency. Importantly, access to this homogeneously modified protein library not only enabled the determination of key structure-activity relationships and the identification of potent anticoagulant leads, but also revealed subtleties in the mechanism of thrombin inhibition, between and within the families, that would be impossible to predict from the amino acid sequence alone. The synthetic platform described here therefore serves as a highly valuable tool for the generation and thorough characterization of libraries of related peptide and/or protein molecules (with or without modifications) for the identification of lead candidates for medicinal chemistry programs.
Collapse
|
43
|
Hirudins of the Asian medicinal leech, Hirudinaria manillensis: same same, but different. Parasitol Res 2019; 118:2223-2233. [DOI: 10.1007/s00436-019-06365-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/24/2019] [Indexed: 12/22/2022]
|
44
|
Müller C, Lukas P, Lemke S, Hildebrandt JP. Hirudin and Decorsins of the North American Medicinal Leech Macrobdella decora: Gene Structure Reveals Homology to Hirudins and Hirudin-Like Factors of Eurasian Medicinal Leeches. J Parasitol 2019. [DOI: 10.1645/18-117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Christian Müller
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, 17489 Greifswald, Germany
| | - Phil Lukas
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, 17489 Greifswald, Germany
| | - Sarah Lemke
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, 17489 Greifswald, Germany
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, 17489 Greifswald, Germany
| |
Collapse
|
45
|
Shi P, Zhang L, Tian W, Li H, Wang Q, Yi H, Yin Y, Wang A, Ning P, Dong F, Wang J. Preparation and anticoagulant activity of functionalised silk fibroin. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
46
|
Faraji H, Ramezani M, Mashkani B, Sadeghnia HR, Benhangi HM, Hosseini Teshnizi S, Soltani F. Comparison of expression optimization of new derivative of staphylokinase (SAK-2RGD-TTI) with the rSAK. Biotechnol Prog 2019; 35:e2819. [PMID: 30972956 DOI: 10.1002/btpr.2819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 01/07/2019] [Accepted: 03/27/2019] [Indexed: 11/06/2022]
Abstract
Staphylokinase (SAK) is a promising thrombolytic agent for the treatment of patients suffering from blood-clotting disorders. To increase the potency of SAK and to minimize vessel reocclusion, a new construct bearing SAK motif fused to tsetse thrombin inhibitor (TTI) via a 20-amino acid linker with 2 RGD (2 × arginine-glycine-aspartic acid inhibiting platelet aggregation via attachment to integrin receptors of platelet) was codon optimized and expressed comparatively in Pichia pastoris GS115 as a Mut+ strain and KM71H as a Muts strain. Fusion protein was optimized in terms of best expression condition and fibrinolytic activity and compared with the rSAK. Expression level of the designed construct reached up to 175 mg/L of the culture medium after 72-hr stimulation with 2.5% methanol and remained steady for 3-4 days. The highest expression was obtained at the range of 2-3% methanol. The SAK-2RGD-TT (relative activity >82%) was more active at 25-37 °C than rSAK (relative activity of 93%). Further, it showed relative activity >80% at pH ranges of 7-9. Western blot analysis showed two bands of nearly 27 and 24 kDa at ratio of 5 to 3, respectively. The specific fibrinolytic activity of the SAK-2RGD-TTI was measured as 8,269 U/mg, and 19,616 U/mg for the nonpurified and purified proteins, respectively. Deglycosylation by using tunicamycin in culture medium resulted in higher fibrinolytic activity of SAK-2RGD-TTI (2.2 fold). Consequently, compared to the rSAK, at the same equimolar proportion, addition of RGD and TTI fragments could increase fibrinolytic activity. Also, P. pastoris can be considered as an efficient host for overexpression of the soluble SAK-2RGD-TTI with high activity without requiring a complicated purification procedure.
Collapse
Affiliation(s)
- Habibollah Faraji
- Department of Laboratory Sciences, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Baratali Mashkani
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid R Sadeghnia
- Neurocognitive Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of New Sciences and Technology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid M Benhangi
- Department of Toxicology, Islamic Azad University, Shahreza, Isfahan, Iran
| | - Saeed Hosseini Teshnizi
- Department of Biostatistics, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Fatemeh Soltani
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
47
|
Billur R, Sabo TM, Maurer MC. Thrombin Exosite Maturation and Ligand Binding at ABE II Help Stabilize PAR-Binding Competent Conformation at ABE I. Biochemistry 2019; 58:1048-1060. [PMID: 30672691 DOI: 10.1021/acs.biochem.8b00943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thrombin, derived from zymogen prothrombin (ProT), is a serine protease involved in procoagulation, anticoagulation, and platelet activation. Thrombin's actions are regulated through anion-binding exosites I and II (ABE I and ABE II) that undergo maturation during activation. Mature ABEs can utilize exosite-based communication to fulfill thrombin functions. However, the conformational basis behind such long-range communication and the resultant ligand binding affinities are not well understood. Protease activated receptors (PARs), involved in platelet activation and aggregation, are known to target thrombin ABE I. Unexpectedly, PAR3 (44-56) can already bind to pro-ABE I of ProT. Nuclear magnetic resonance (NMR) ligand-enzyme titrations were used to characterize how individual PAR1 (49-62) residues interact with pro-ABE I and mature ABE I. 1D proton line broadening studies demonstrated that binding affinities for native PAR1P (49-62, P54) and for the weak binding variant PAR1G (49-62, P54G) increased as ProT was converted to mature thrombin. 1H,15N-HSQC titrations revealed that PAR1G residues K51, E53, F55, D58, and E60 exhibited less affinity to pro-ABE I than comparable residues in PAR3G (44-56, P51G). Individual PAR1G residues then displayed tighter binding upon exosite maturation. Long-range communication between thrombin exosites was examined by saturating ABE II with phosphorylated GpIbα (269-282, 3Yp) and monitoring the binding of PAR1 and PAR3 peptides to ABE I. Individual PAR residues exhibited increased affinities in this dual-ligand environment supporting the presence of interexosite allostery. Exosite maturation and beneficial long-range allostery are proposed to help stabilize an ABE I conformation that can effectively bind PAR ligands.
Collapse
Affiliation(s)
- Ramya Billur
- Department of Chemistry , University of Louisville , Louisville , Kentucky 40292 , United States
| | - T Michael Sabo
- Department of Medicine, James Graham Brown Cancer Center , University of Louisville , Louisville , Kentucky 40202 , United States
| | - Muriel C Maurer
- Department of Chemistry , University of Louisville , Louisville , Kentucky 40292 , United States
| |
Collapse
|
48
|
Lira AL, Ferreira RS, Torquato RJS, Oliva MLV, Schuck P, Sousa AA. Allosteric inhibition of α-thrombin enzymatic activity with ultrasmall gold nanoparticles. NANOSCALE ADVANCES 2019; 1:378-388. [PMID: 30931428 PMCID: PMC6394888 DOI: 10.1039/c8na00081f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/21/2018] [Indexed: 05/20/2023]
Abstract
The catalytic activity of enzymes can be regulated by interactions with synthetic nanoparticles (NPs) in a number of ways. To date, however, the potential use of NPs as allosteric effectors has not been investigated in detail. Importantly, targeting allosteric (distal) sites on the enzyme surface could afford unique ways to modulate the activity, allowing for either enzyme activation, partial or full inhibition. Using p-mercaptobenzoic acid-coated ultrasmall gold NPs (AuMBA) and human α-thrombin as a model system, here we experimentally tested the hypothesis that enzyme activity could be regulated through ultrasmall NP interactions at allosteric sites. We show that AuMBA interacted selectively and reversibly around two positively charged regions of the thrombin surface (exosites 1 and 2) and away from the active site. NP complexation at the exosites transmitted long-range structural changes over to the active site, altering both substrate binding affinity and catalysis. Significantly, thrombin activity was partially reduced - but not completely inhibited - by interactions with AuMBA. These findings indicate that interactions of proteins with ultrasmall NPs may mimic a typical biomolecular complexation event, and suggest the prospect of using ultrasmall particles as synthetic receptors to allosterically regulate protein function.
Collapse
Affiliation(s)
- André L Lira
- Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil .
| | - Rodrigo S Ferreira
- Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil .
| | - Ricardo J S Torquato
- Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil .
| | - Maria Luiza V Oliva
- Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil .
| | - Peter Schuck
- National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health , Bethesda , MD , USA
| | - Alioscka A Sousa
- Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil .
| |
Collapse
|
49
|
Nastri F, Maglio O, Lombardi A. Vincenzo Pavone: Friend, mentor and inspiring scientist. Biopolymers 2018; 109:e23234. [PMID: 30394536 DOI: 10.1002/bip.23234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Flavia Nastri
- Department of Chemical Sciences, University of Napoli Federico II, Naples, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Napoli Federico II, Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, Naples, Italy
| |
Collapse
|
50
|
Ling Y, Fu XB, Li NB, Luo HQ. A Label-free Resonance Rayleigh Scattering Sensor for Detection of Thrombin Based on Aptamer Recognizing. ANAL SCI 2018; 34:881-886. [PMID: 30101881 DOI: 10.2116/analsci.17p498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The interaction between thrombin binding aptamer (TBA) and thrombin (TB) was studied by resonance Rayleigh scattering (RRS). In neutral medium, TBA is present in a balanced form between a G-quadruplex structure and a random coil structure, and the TBA can be induced by metal ions to form a G-quadruplex structure. Upon addition of thrombin, the G-quadruplex selectively bound to TB, which resulted in enhanced resonance Rayleigh scattering. The scattering intensities increased proportionally with the concentration of TB from 10 to 50 nM. The method had very high sensitivity and good selectivity, and the detection limit (3δ/s) was 1 nM. In this work, the spectral characteristics of RRS, the optimum conditions of the reaction, and influencing factors for the RRS intensities were investigated. Furthermore, the structure of the TBA-TB complex and the sensing mechanism were explored. The TB sensor was applied to a diluted human serum sample with satisfactory results, indicating the potential of this method to be applied to biological samples. A selective and simple RRS sensor for the detection of trace amounts of TB is proposed based on conformational change of TBA.
Collapse
Affiliation(s)
- Yu Ling
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University
| | - Xiao Bei Fu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University
| | - Nian Bing Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University
| | - Hong Qun Luo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University
| |
Collapse
|