1
|
Chiang SY, Peng CH, Lin JW, Kuo JW, Lin YW, Lin CH, Chen CY. Amino-Acid-Engineered Bionanozyme Selectivity for Colorimetric Detection of Human Serum Albumin. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20693-20704. [PMID: 40022657 DOI: 10.1021/acsami.4c22270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Nanozymes are emerging nanomaterials owing to their superior stability and enzyme-mimicking catalytic functions. However, unlike natural enzymes with inherent amino-acid-based recognition motifs for target interactions, manipulating nanozyme selectivity toward specific targets remains a major challenge. In this study, we introduce the de novo strategy using the supramolecular assembly of l-tryptophan (l-Trp) as the recognition amino acid with copper (Cu) ions for creating a human serum albumin (HSA)-responsive bionanozyme. This amino-acid-engineered bionanozyme enables selective colorimetric detection of HSA, a critical urinary biomarker for kidney diseases, overcoming the challenge that HSA is neither a typical substrate nor an inhibitor for most nanozymes. Kinetic studies and competitive tests reveal that HSA subdomain IIIA binding to l-Trp sites limits the electron-transfer-induced structural changes of l-Trp-Cu chelate rings, resulting in noncompetitive inhibition. This inhibition effect is significantly stronger than that observed for canonical amino acids, common proteins, and urinary interference species. Colorimetric monitoring of bionanozyme activity enables sensitive HSA detection with a detection limit of 1.3 nM and a quantification range of 2 nM to 10 μM. This approach is exceptionally more sensitive and offers a broader detection range compared to conventional colorimetric and fluorescent methods, suitable for diagnostics across various clinical stages of disease. This innovative rational strategy to designing and manipulating selective nanozyme-target interactions not only addresses the limitations of nanozymes but also expands their precise applications in complex biological systems.
Collapse
Affiliation(s)
- Siang-Yun Chiang
- Department of Chemistry, National Changhua University of Education, Changhua City 50007, Taiwan
| | - Chun-Hsiang Peng
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Jhe-Wei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Jia-Wei Kuo
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yang-Wei Lin
- Department of Chemistry, National Changhua University of Education, Changhua City 50007, Taiwan
| | - Chia-Her Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chong-You Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
2
|
Xu R, Huang J, Kuhn AJ, Gellman SH. Effects of D-Amino Acid Replacements on the Conformational Stability of Miniproteins. Chembiochem 2025; 26:e202500085. [PMID: 39948034 PMCID: PMC12002103 DOI: 10.1002/cbic.202500085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
For many proteins, proper function requires adoption of a specific tertiary structure. This study explores the effects of L-to-D amino acid substitutions on tertiary structure stability for two well-known miniproteins, a single-site variant of the chicken villin headpiece subdomain (VHP) and the human Pin1 WW domain (WW). For VHP, which features an α-helix-rich tertiary structure, substitutions led to significant destabilization, as detected by variable temperature circular dichroism (CD) measurements. For WW, which has a β-sheet-rich tertiary structure, most single L-to-D changes seemed to cause complete unfolding at room temperature, according to CD measurements. These findings suggest that amino acid residue configuration changes at a single site will often prove to be deleterious in terms of tertiary structure stability, and in some cases dramatically destabilizing.
Collapse
Affiliation(s)
- Ruiwen Xu
- Department of ChemistryUniversity of Wisconsin-Madison, MadisonWisconsin53706USA
| | - Jiawen Huang
- Department of ChemistryUniversity of Wisconsin-Madison, MadisonWisconsin53706USA
| | - Ariel J. Kuhn
- Department of ChemistryUniversity of Wisconsin-Madison, MadisonWisconsin53706USA
| | - Samuel H. Gellman
- Department of ChemistryUniversity of Wisconsin-Madison, MadisonWisconsin53706USA
| |
Collapse
|
3
|
Ju X, Qi K, Wang Y, Zhang L, Wang Y, Wang M, Wang J, Zhang J, Lu JR, Xu H, Zhao Y. How Do Glycine-Induced Bent Structures Influence Hierarchical Nanostructuring and Suprastructural Handedness in Short Peptide Assembly? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413602. [PMID: 40001322 PMCID: PMC12005805 DOI: 10.1002/advs.202413602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/24/2025] [Indexed: 02/27/2025]
Abstract
Despite the multiple roles of flexible and achiral Gly in regulating protein architectures and functions, its high flexibility is seldom exploited as a structural modulator in the design of self-assembling peptides. By using minimalistic peptide sequences, the effects of Gly insertions are investigated on the molecular conformation and the supramolecular morphology, focusing on Gly-induced bent structures and their impact on self-assembled nanostructures and handedness. Different backbone bending degrees are generated by varying Gly position, which in turn resulted in distinct hydrogen bonding modes and residue shifting upon dimerization, eventually leading to β-sheets and nanofibrils with opposite handedness. The bent structures are revealed to be primarily caused by van der Waals interactions between either the side chains themselves or the side chain and the local backbone around the inserted Gly, in sharp contrast to canonical β-turns stabilized by intrastrand hydrogen bonding. Hence, changing the side chain orientations of adjacent residues by chiral substitution can destabilize the bent structures, leading to wide ribbons with suprastructural chiral racemization. This study not only helps understand the versatile roles of Gly in protein architectures but also serves as a paradigm for tuning peptide supramolecular nanostructures and handedness via Gly insertion.
Collapse
Affiliation(s)
- Xinfeng Ju
- Department of Biological and Energy Chemical EngineeringChina University of Petroleum (East China)66 Changjiang West RoadQingdao266580China
| | - Kai Qi
- Department of Biological and Energy Chemical EngineeringChina University of Petroleum (East China)66 Changjiang West RoadQingdao266580China
| | - Yan Wang
- Department of Biological and Energy Chemical EngineeringChina University of Petroleum (East China)66 Changjiang West RoadQingdao266580China
| | - Limin Zhang
- Department of Biological and Energy Chemical EngineeringChina University of Petroleum (East China)66 Changjiang West RoadQingdao266580China
| | - Yingyu Wang
- Biological Physics GroupDepartment of Physics and AstronomyThe University of ManchesterManchesterM13 9PLUK
| | - Muhan Wang
- Department of Civil EngineeringQingdao University of TechnologyQingdao266033China
| | - Jiqian Wang
- Department of Biological and Energy Chemical EngineeringChina University of Petroleum (East China)66 Changjiang West RoadQingdao266580China
| | - Jun Zhang
- School of Material Science and EngineeringChina University of Petroleum (East China)66 Changjiang West RoadQingdao266580China
| | - Jian R. Lu
- Biological Physics GroupDepartment of Physics and AstronomyThe University of ManchesterManchesterM13 9PLUK
| | - Hai Xu
- Department of Biological and Energy Chemical EngineeringChina University of Petroleum (East China)66 Changjiang West RoadQingdao266580China
| | - Yurong Zhao
- Department of Biological and Energy Chemical EngineeringChina University of Petroleum (East China)66 Changjiang West RoadQingdao266580China
| |
Collapse
|
4
|
Bobolowski H, Fiedler E, Haupts U, Lilie H, Weininger U. A functional helix shuffled variant of the B domain of Staphylococcus aureus. Protein Sci 2025; 34:e70012. [PMID: 39840789 PMCID: PMC11751873 DOI: 10.1002/pro.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025]
Abstract
The B domain of protein A is a biotechnologically important three-helix bundle protein. It binds the Fc fragment of antibodies with helix 1/2 and the Fab region with helix 2/3. Here we designed a helix shuffled variant by changing the connectivity of the helices, in order to redesign the helix bundle, yielding altered helix-loop-helix properties. The new loops that generate the new connectivity were created in several protein libraries, and Fc binding variants were selected for a detailed biochemical characterization. We were able to create variants with Fc binding affinity at the same level as the wild type B but with significantly reduced thermal stability. The NMR structure proved that the overall three-dimensional structure was maintained not only in the helix shuffled variant but also points to some potential local differences to wild-type B, which could be the reason for the reduced thermal stability. Therefore, protein A is an example of an optimized structure being more important for stability than for function. Using the helix shuffled variant as a ligand on an affinity column facilitates a robust and straightforward purification of antibodies, but allows for a milder elution at less extreme pH. Therefore, the helix shuffled variant is a suitable ligand to purify more pH-sensitive antibodies.
Collapse
Affiliation(s)
| | | | | | - Hauke Lilie
- Department of Biotechnology and BiochemistryMartin‐Luther‐University Halle‐WittenbergHalleGermany
| | - Ulrich Weininger
- Institute of Physics, BiophysicsMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| |
Collapse
|
5
|
Arad E, Levi T, Yosefi G, Kass I, Cohen‐Erez I, Azoulay Z, Bitton R, Jelinek R, Rapaport H. A Matter of Charge: Electrostatically Tuned Coassembly of Amphiphilic Peptides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404324. [PMID: 39155426 PMCID: PMC11579972 DOI: 10.1002/smll.202404324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Coassembly of peptide biomaterials offers a compelling avenue to broaden the spectrum of hierarchically ordered supramolecular nanoscale structures that may be relevant for biomedical and biotechnological applications. In this work coassemblies of amphiphilic and oppositely charged, anionic and cationic, β-sheet peptides are studied, which may give rise to a diverse range of coassembled forms. Mixtures of the peptides show significantly lower critical coassembly concentration (CCC) values compared to those of the individual pure peptides. Intriguingly, the highest formation of coassembled fibrils is found to require excess of the cationic peptide whereas equimolar mixtures of the peptides exhibited the maximum folding into β-sheet structures. Mixtures of the peptides coassembled sequentially from solutions at concentrations surpassing each peptide's intrinsic critical assembly concentration (CAC), are also found to require a higher portion of the cationic peptide to stabilize hydrogels. This study illuminates a systematic investigation of oppositely charged β-sheet peptides over a range of concentrations, in solutions and in hydrogels. The results may be relevant to the fundamental understanding of such intricate charge-driven assembly systems and to the formulation of peptide-based nanostructures with diverse functionalities.
Collapse
Affiliation(s)
- Elad Arad
- Ilse Katz Institute (IKI) for Nanoscale Science and TechnologyBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
- Department of ChemistryBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
- Present address:
Department of Chemical EngineeringColumbia University in the City of New YorkNew YorkNY10027USA
| | - Topaz Levi
- Avram and Stella Goldstein‐Goren Department of Biotechnology EngineeringBen Gurion University of the NegevBeer Sheva8410501Israel
| | - Gal Yosefi
- Department of Chemical EngineeringBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
| | - Itamar Kass
- Ilse Katz Institute (IKI) for Nanoscale Science and TechnologyBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
| | - Ifat Cohen‐Erez
- Avram and Stella Goldstein‐Goren Department of Biotechnology EngineeringBen Gurion University of the NegevBeer Sheva8410501Israel
| | - Ziv Azoulay
- Avram and Stella Goldstein‐Goren Department of Biotechnology EngineeringBen Gurion University of the NegevBeer Sheva8410501Israel
| | - Ronit Bitton
- Ilse Katz Institute (IKI) for Nanoscale Science and TechnologyBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
- Department of Chemical EngineeringBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
| | - Raz Jelinek
- Ilse Katz Institute (IKI) for Nanoscale Science and TechnologyBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
- Department of ChemistryBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
| | - Hanna Rapaport
- Ilse Katz Institute (IKI) for Nanoscale Science and TechnologyBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
- Avram and Stella Goldstein‐Goren Department of Biotechnology EngineeringBen Gurion University of the NegevBeer Sheva8410501Israel
| |
Collapse
|
6
|
Madzharova F, Chatterley AS, Roeters SJ, Weidner T. Probing Backbone Coupling within Hydrated Proteins with Two-Color 2D Infrared Spectroscopy. J Phys Chem Lett 2024:4933-4939. [PMID: 38686860 DOI: 10.1021/acs.jpclett.4c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The vibrational coupling between protein backbone modes and the role of water interactions are important topics in biomolecular spectroscopy. Our work reports the first study of the coupling between amide I and amide A modes within peptides and proteins with secondary structure and water contacts. We use two-color two-dimensional infrared (2D IR) spectroscopy and observe cross peaks between amide I and amide A modes. In experiments with peptides with different secondary structures and side chains, we observe that the spectra are sensitive to secondary structure. Water interactions affect the cross peaks, which may be useful as probes for the accessibility of protein sites to hydration water. Moving to two-color 2D IR spectra of proteins, the data demonstrate that the cross peaks integrate the sensitivities of both amide I and amide A spectra and that a two-color detection scheme may be a promising tool for probing secondary structures in proteins.
Collapse
Affiliation(s)
- Fani Madzharova
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Adam S Chatterley
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Steven J Roeters
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Marshall LR, Korendovych IV. Screening of oxidative behavior in catalytic amyloid assemblies. Methods Enzymol 2024; 697:15-33. [PMID: 38816121 DOI: 10.1016/bs.mie.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Once considered a thermodynamic minimum of the protein fold or as simply by-products of a misfolding process, amyloids are increasingly showing remarkable potential for promoting enzyme-like catalysis. Recent studies have demonstrated a diverse range of catalytic behaviors that amyloids can promote way beyond the hydrolytic behaviors originally reported. We and others have demonstrated the strong propensity of catalytic amyloids to facilitate redox reactions both in the presence and in the absence of metal cofactors. Here, we present a detailed protocol for measuring the oxidative ability of supramolecular peptide assemblies.
Collapse
Affiliation(s)
- Liam R Marshall
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States.
| | - Ivan V Korendovych
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| |
Collapse
|
8
|
Tiwari OS, Gazit E. Characterization of amyloid-like metal-amino acid assemblies with remarkable catalytic activity. Methods Enzymol 2024; 697:181-209. [PMID: 38816123 DOI: 10.1016/bs.mie.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
While enzymes are potentially useful in various applications, their limited operational stability and production costs have led to an extensive search for stable catalytic agents that will retain the efficiency, specificity, and environmental-friendliness of natural enzymes. Despite extensive efforts, there is still an unmet need for improved enzyme mimics and novel concepts to discover and optimize such agents. Inspired by the catalytic activity of amyloids and the formation of amyloid-like assemblies by metabolites, our group pioneered the development of novel metabolite-metal co-assemblies (bio-nanozymes) that produce nanomaterials mimicking the catalytic function of common metalloenzymes that are being used for various technological applications. In addition to their notable activity, bio-nanozymes are remarkably safe as they are purely composed of amino acids and minerals that are harmless to the environment. The bio-nanozymes exhibit high efficiency and exceptional robustness, even under extreme conditions of temperature, pH, and salinity that are impractical for enzymes. Our group has recently also demonstrated the formation of ordered amino acid co-assemblies showing selective and preferential interactions comparable to the organization of residues in folded proteins. The identified bio-nanozymes can be used in various applications including environmental remediation, synthesis of new materials, and green energy.
Collapse
Affiliation(s)
- Om Shanker Tiwari
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
9
|
Arad E, Pedersen KB, Malka O, Mambram Kunnath S, Golan N, Aibinder P, Schiøtt B, Rapaport H, Landau M, Jelinek R. Staphylococcus aureus functional amyloids catalyze degradation of β-lactam antibiotics. Nat Commun 2023; 14:8198. [PMID: 38081813 PMCID: PMC10713593 DOI: 10.1038/s41467-023-43624-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Antibiotic resistance of bacteria is considered one of the most alarming developments in modern medicine. While varied pathways for bacteria acquiring antibiotic resistance have been identified, there still are open questions concerning the mechanisms underlying resistance. Here, we show that alpha phenol-soluble modulins (PSMαs), functional bacterial amyloids secreted by Staphylococcus aureus, catalyze hydrolysis of β-lactams, a prominent class of antibiotic compounds. Specifically, we show that PSMα2 and, particularly, PSMα3 catalyze hydrolysis of the amide-like bond of the four membered β-lactam ring of nitrocefin, an antibiotic β-lactam surrogate. Examination of the catalytic activities of several PSMα3 variants allowed mapping of the active sites on the amyloid fibrils' surface, specifically underscoring the key roles of the cross-α fibril organization, and the combined electrostatic and nucleophilic functions of the lysine arrays. Molecular dynamics simulations further illuminate the structural features of β-lactam association upon the fibril surface. Complementary experimental data underscore the generality of the functional amyloid-mediated catalytic phenomenon, demonstrating hydrolysis of clinically employed β-lactams by PSMα3 fibrils, and illustrating antibiotic degradation in actual S. aureus biofilms and live bacteria environments. Overall, this study unveils functional amyloids as catalytic agents inducing degradation of β-lactam antibiotics, underlying possible antibiotic resistance mechanisms associated with bacterial biofilms.
Collapse
Affiliation(s)
- Elad Arad
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Kasper B Pedersen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Orit Malka
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Sisira Mambram Kunnath
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Nimrod Golan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Polina Aibinder
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Hanna Rapaport
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- Centre for Structural Systems Biology (CSSB), and European Molecular Biology Laboratory (EMBL), Hamburg, 22607, Germany
| | - Raz Jelinek
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel.
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel.
| |
Collapse
|
10
|
Golbek TW, Weidner T. Peptide Orientation Strongly Affected by the Nanoparticle Size as Revealed by Sum Frequency Scattering Spectroscopy. J Phys Chem Lett 2023; 14:9819-9823. [PMID: 37889607 DOI: 10.1021/acs.jpclett.3c01751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
The orientation of proteins at interfaces has a profound effect on the function of proteins. For nanoparticles (NPs) in a biological environment, protein orientation determines the toxicity, function, and identity of the NP. Thus, understanding how proteins orientate at NP surfaces is a critical parameter in controlling NP biochemistry. While planar surfaces are often used to model NP interfaces for protein orientation studies, it has been shown recently that proteins can orient very differently on NP surfaces. This study uses sum frequency scattering vibrational spectroscopy of the model helical leucine-lysine (LK) peptide on NPs of different sizes to determine the cause for the orientation effects. The data show that, for low dielectric constant materials, the orientation of the helical LK peptide is a function of the coulombic forces between peptides across different particle volumes. This finding strongly suggests that flat model systems are only of limited use for determining protein orientation at NP interfaces and that charge interactions should be considered when designing medical NPs or assessing NP biocompatibility.
Collapse
Affiliation(s)
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
11
|
Tagami S. Why we are made of proteins and nucleic acids: Structural biology views on extraterrestrial life. Biophys Physicobiol 2023; 20:e200026. [PMID: 38496239 PMCID: PMC10941967 DOI: 10.2142/biophysico.bppb-v20.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/29/2023] [Indexed: 03/19/2024] Open
Abstract
Is it a miracle that life exists on the Earth, or is it a common phenomenon in the universe? If extraterrestrial organisms exist, what are they like? To answer these questions, we must understand what kinds of molecules could evolve into life, or in other words, what properties are generally required to perform biological functions and store genetic information. This review summarizes recent findings on simple ancestral proteins, outlines the basic knowledge in textbooks, and discusses the generally required properties for biological molecules from structural biology viewpoints (e.g., restriction of shapes, and types of intra- and intermolecular interactions), leading to the conclusion that proteins and nucleic acids are at least one of the simplest (and perhaps very common) forms of catalytic and genetic biopolymers in the universe. This review article is an extended version of the Japanese article, On the Origin of Life: Coevolution between RNA and Peptide, published in SEIBUTSU BUTSURI Vol. 61, p. 232-235 (2021).
Collapse
Affiliation(s)
- Shunsuke Tagami
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
12
|
Gainza P, Wehrle S, Van Hall-Beauvais A, Marchand A, Scheck A, Harteveld Z, Buckley S, Ni D, Tan S, Sverrisson F, Goverde C, Turelli P, Raclot C, Teslenko A, Pacesa M, Rosset S, Georgeon S, Marsden J, Petruzzella A, Liu K, Xu Z, Chai Y, Han P, Gao GF, Oricchio E, Fierz B, Trono D, Stahlberg H, Bronstein M, Correia BE. De novo design of protein interactions with learned surface fingerprints. Nature 2023; 617:176-184. [PMID: 37100904 PMCID: PMC10131520 DOI: 10.1038/s41586-023-05993-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 03/21/2023] [Indexed: 04/28/2023]
Abstract
Physical interactions between proteins are essential for most biological processes governing life1. However, the molecular determinants of such interactions have been challenging to understand, even as genomic, proteomic and structural data increase. This knowledge gap has been a major obstacle for the comprehensive understanding of cellular protein-protein interaction networks and for the de novo design of protein binders that are crucial for synthetic biology and translational applications2-9. Here we use a geometric deep-learning framework operating on protein surfaces that generates fingerprints to describe geometric and chemical features that are critical to drive protein-protein interactions10. We hypothesized that these fingerprints capture the key aspects of molecular recognition that represent a new paradigm in the computational design of novel protein interactions. As a proof of principle, we computationally designed several de novo protein binders to engage four protein targets: SARS-CoV-2 spike, PD-1, PD-L1 and CTLA-4. Several designs were experimentally optimized, whereas others were generated purely in silico, reaching nanomolar affinity with structural and mutational characterization showing highly accurate predictions. Overall, our surface-centric approach captures the physical and chemical determinants of molecular recognition, enabling an approach for the de novo design of protein interactions and, more broadly, of artificial proteins with function.
Collapse
Affiliation(s)
- Pablo Gainza
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Monte Rosa Therapeutics, Basel, Switzerland
| | - Sarah Wehrle
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Alexandra Van Hall-Beauvais
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Anthony Marchand
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Andreas Scheck
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Zander Harteveld
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Stephen Buckley
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Dongchun Ni
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Science, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Shuguang Tan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Freyr Sverrisson
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Casper Goverde
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Priscilla Turelli
- Laboratory of Virology and Genetics, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Charlène Raclot
- Laboratory of Virology and Genetics, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexandra Teslenko
- Laboratory of Biophysical Chemistry of Macromolecules, School of Basic Sciences, Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Martin Pacesa
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Stéphane Rosset
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sandrine Georgeon
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jane Marsden
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Aaron Petruzzella
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zepeng Xu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Pu Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Elisa Oricchio
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules, School of Basic Sciences, Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Didier Trono
- Laboratory of Virology and Genetics, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, Institute of Physics, School of Basic Science, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - Bruno E Correia
- Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
13
|
Golbek TW, Strunge K, Chatterley AS, Weidner T. Peptide Orientation at Emulsion Nanointerfaces Dramatically Different from Flat Surfaces. J Phys Chem Lett 2022; 13:10858-10862. [PMID: 36383054 DOI: 10.1021/acs.jpclett.2c02870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The adsorption of protein to nanoparticles plays an important role in toxicity, food science, pharmaceutics, and biomaterial science. Understanding how proteins bind to nanophase surfaces is instrumental for understanding and, ultimately, controlling nanoparticle (NP) biochemistry. Techniques probing the adsorption of proteins at NP interfaces exist; however, these methods have been unable to determine the orientation and folding of proteins at these interfaces. For the first time, we probe in situ with sum frequency scattering vibrational spectroscopy the orientation of model leucine-lysine (LK) peptides adsorbed to NPs. The results show that both α-helical and β-strand LK peptides bind the particles in an upright orientation, in contrast to the flat orientation of LKs binding to planar surfaces. The different binding geometry is explained by Coulombic forces between peptides across the particle volume.
Collapse
Affiliation(s)
- Thaddeus W Golbek
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Kris Strunge
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Adam S Chatterley
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
14
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Catalytic Peptides: the Challenge between Simplicity and Functionality. Isr J Chem 2022. [DOI: 10.1002/ijch.202200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Chatterley AS, Golbek TW, Weidner T. Measuring Protein Conformation at Aqueous Interfaces with 2D Infrared Spectroscopy of Emulsions. J Phys Chem Lett 2022; 13:7191-7196. [PMID: 35905449 DOI: 10.1021/acs.jpclett.2c01324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Determining the secondary and tertiary structures of proteins at aqueous interfaces is crucial for understanding their function, but measuring these structures selectively at the interface is challenging. Here we demonstrate that two-dimensional infrared (2D-IR) spectroscopy of protein stabilized emulsions offers a new route to measuring interfacial protein structure with high levels of detail. We prepared hexadecane/water oil-in-water emulsions stabilized by model LK peptides that are known to fold into either α-helix or β-sheet conformations at hydrophobic interfaces and measured 2D-IR spectra in a transmission geometry. We saw clear spectral signatures of the peptides folding at the interface, with no detectable residue from remaining bulk peptides. Using 2D spectroscopy gives us access to correlation and dynamics data, which enables structural assignment in cases where linear spectroscopy fails. Using the emulsions allows one to study interfacial spectra with standard transmission geometry spectrometers, bringing the richness of 2D-IR to the interface with no additional optical complexity.
Collapse
Affiliation(s)
| | | | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
17
|
Makam P, Yamijala SSRKC, Bhadram VS, Shimon LJW, Wong BM, Gazit E. Single amino acid bionanozyme for environmental remediation. Nat Commun 2022; 13:1505. [PMID: 35314678 PMCID: PMC8938493 DOI: 10.1038/s41467-022-28942-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/21/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractEnzymes are extremely complex catalytic structures with immense biological and technological importance. Nevertheless, their widespread environmental implementation faces several challenges, including high production costs, low operational stability, and intricate recovery and reusability. Therefore, the de novo design of minimalistic biomolecular nanomaterials that can efficiently mimic the biocatalytic function (bionanozymes) and overcome the limitations of natural enzymes is a critical goal in biomolecular engineering. Here, we report an exceptionally simple yet highly active and robust single amino acid bionanozyme that can catalyze the rapid oxidation of environmentally toxic phenolic contaminates and serves as an ultrasensitive tool to detect biologically important neurotransmitters similar to the laccase enzyme. While inspired by the laccase catalytic site, the substantially simpler copper-coordinated bionanozyme is ∼5400 times more cost-effective, four orders more efficient, and 36 times more sensitive compared to the natural protein. Furthermore, the designed mimic is stable under extreme conditions (pH, ionic strength, temperature, storage time), markedly reusable for several cycles, and displays broad substrate specificity. These findings hold great promise in developing efficient bionanozymes for analytical chemistry, environmental protection, and biotechnology.
Collapse
|
18
|
Orr AA, Chen Y, Gazit E, Tamamis P. Computational and Experimental Protocols to Study Cyclo-dihistidine Self- and Co-assembly: Minimalistic Bio-assemblies with Enhanced Fluorescence and Drug Encapsulation Properties. Methods Mol Biol 2022; 2405:179-203. [PMID: 35298815 DOI: 10.1007/978-1-0716-1855-4_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Our published studies on the self- and co-assembly of cyclo-HH peptides demonstrated their capacity to coordinate with Zn(II), their enhanced photoluminescence and their ability to self-encapsulate epirubicin, a chemotherapy drug. Here, we provide a detailed description of computational and experimental methodology for the study of cyclo-HH self- and co-assembling mechanisms, photoluminescence, and drug encapsulation properties. We outline the experimental protocols, which involve fluorescence spectroscopy, transmission electron microscopy, and atomic force microscopy protocols, as well as the computational protocols, which involve structural and energetic analysis of the assembled nanostructures. We suggest that the computational and experimental methods presented here can be generalizable, and thus can be applied in the investigation of self- and co-assembly systems involving other short peptides, encapsulating compounds and binding to ions, beyond the particular ones presented here.
Collapse
Affiliation(s)
- Asuka A Orr
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Yu Chen
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
19
|
Kratochvil HT, Newberry RW, Mensa B, Mravic M, DeGrado WF. Spiers Memorial Lecture: Analysis and de novo design of membrane-interactive peptides. Faraday Discuss 2021; 232:9-48. [PMID: 34693965 PMCID: PMC8979563 DOI: 10.1039/d1fd00061f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Membrane-peptide interactions play critical roles in many cellular and organismic functions, including protection from infection, remodeling of membranes, signaling, and ion transport. Peptides interact with membranes in a variety of ways: some associate with membrane surfaces in either intrinsically disordered conformations or well-defined secondary structures. Peptides with sufficient hydrophobicity can also insert vertically as transmembrane monomers, and many associate further into membrane-spanning helical bundles. Indeed, some peptides progress through each of these stages in the process of forming oligomeric bundles. In each case, the structure of the peptide and the membrane represent a delicate balance between peptide-membrane and peptide-peptide interactions. We will review this literature from the perspective of several biologically important systems, including antimicrobial peptides and their mimics, α-synuclein, receptor tyrosine kinases, and ion channels. We also discuss the use of de novo design to construct models to test our understanding of the underlying principles and to provide useful leads for pharmaceutical intervention of diseases.
Collapse
Affiliation(s)
- Huong T Kratochvil
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Robert W Newberry
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Bruk Mensa
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Marco Mravic
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
20
|
Hoinkis N, Lutz H, Lu H, Golbek TW, Bregnhøj M, Jakob G, Bonn M, Weidner T. Assembly of iron oxide nanosheets at the air-water interface by leucine-histidine peptides. RSC Adv 2021; 11:27965-27968. [PMID: 35480727 PMCID: PMC9038006 DOI: 10.1039/d1ra04733g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/06/2021] [Indexed: 11/21/2022] Open
Abstract
The fabrication of inorganic nanomaterials is important for a wide range of disciplines. While many purely inorganic synthetic routes have enabled a manifold of nanostructures under well-controlled conditions, organisms have the ability to synthesize structures under ambient conditions. For example, magnetotactic bacteria, can synthesize tiny 'compass needles' of magnetite (Fe3O4). Here, we demonstrate the bio-inspired synthesis of extended, self-supporting, nanometer-thin sheets of iron oxide at the water-air interface through self-assembly using small histidine-rich peptides.
Collapse
Affiliation(s)
- Nina Hoinkis
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Helmut Lutz
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Hao Lu
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Thaddeus W Golbek
- Department of Chemistry, Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Mikkel Bregnhøj
- Department of Chemistry, Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Gerhard Jakob
- University of Mainz, Institute of Physics Staudinger Weg 7 55128 Mainz Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Tobias Weidner
- Department of Chemistry, Aarhus University Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
21
|
Chen Y, Yang Y, Orr AA, Makam P, Redko B, Haimov E, Wang Y, Shimon LJW, Rencus‐Lazar S, Ju M, Tamamis P, Dong H, Gazit E. Self‐Assembled Peptide Nano‐Superstructure towards Enzyme Mimicking Hydrolysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yu Chen
- The Shmunis School of Biomedicine and Cancer Research Tel Aviv University Israel
| | - Yuqin Yang
- Kuang Yaming Honors School & Institute for Brain Sciences Nanjing University China
| | - Asuka A. Orr
- Artie McFerrin Department of Chemical Engineering Texas A&M University College Station TX USA
| | - Pandeeswar Makam
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi UP-221005 India
| | - Boris Redko
- BLAVATNIK CENTER for Drug Discovery Tel Aviv University Israel
| | - Elvira Haimov
- BLAVATNIK CENTER for Drug Discovery Tel Aviv University Israel
| | - Yannan Wang
- National & Local Joint Engineering Research Center on Biomass Resource Utilization Nankai University China
| | - Linda J. W. Shimon
- Department of Chemical Research Support Weizmann Institute of Science Rehovot Israel
| | - Sigal Rencus‐Lazar
- The Shmunis School of Biomedicine and Cancer Research Tel Aviv University Israel
| | - Meiting Ju
- National & Local Joint Engineering Research Center on Biomass Resource Utilization Nankai University China
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering Texas A&M University College Station TX USA
| | - Hao Dong
- Kuang Yaming Honors School & Institute for Brain Sciences Nanjing University China
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research Tel Aviv University Israel
- Department of Materials Science and Engineering Tel Aviv University Israel
| |
Collapse
|
22
|
Woolfson DN. A Brief History of De Novo Protein Design: Minimal, Rational, and Computational. J Mol Biol 2021; 433:167160. [PMID: 34298061 DOI: 10.1016/j.jmb.2021.167160] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022]
Abstract
Protein design has come of age, but how will it mature? In the 1980s and the 1990s, the primary motivation for de novo protein design was to test our understanding of the informational aspect of the protein-folding problem; i.e., how does protein sequence determine protein structure and function? This necessitated minimal and rational design approaches whereby the placement of each residue in a design was reasoned using chemical principles and/or biochemical knowledge. At that time, though with some notable exceptions, the use of computers to aid design was not widespread. Over the past two decades, the tables have turned and computational protein design is firmly established. Here, I illustrate this progress through a timeline of de novo protein structures that have been solved to atomic resolution and deposited in the Protein Data Bank. From this, it is clear that the impact of rational and computational design has been considerable: More-complex and more-sophisticated designs are being targeted with many being resolved to atomic resolution. Furthermore, our ability to generate and manipulate synthetic proteins has advanced to a point where they are providing realistic alternatives to natural protein functions for applications both in vitro and in cells. Also, and increasingly, computational protein design is becoming accessible to non-specialists. This all begs the questions: Is there still a place for minimal and rational design approaches? And, what challenges lie ahead for the burgeoning field of de novo protein design as a whole?
Collapse
Affiliation(s)
- Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK; Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
23
|
Mariz BDP, Carvalho S, Batalha IL, Pina AS. Artificial enzymes bringing together computational design and directed evolution. Org Biomol Chem 2021; 19:1915-1925. [PMID: 33443278 DOI: 10.1039/d0ob02143a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enzymes are proteins that catalyse chemical reactions and, as such, have been widely used to facilitate a variety of natural and industrial processes, dating back to ancient times. In fact, the global enzymes market is projected to reach $10.5 billion in 2024. The development of computational and DNA editing tools boosted the creation of artificial enzymes (de novo enzymes) - synthetic or organic molecules created to present abiological catalytic functions. These novel catalysts seek to expand the catalytic power offered by nature through new functions and properties. In this manuscript, we discuss the advantages of combining computational design with directed evolution for the development of artificial enzymes and how this strategy allows to fill in the gaps that these methods present individually by providing key insights about the sequence-function relationship. We also review examples, and respective strategies, where this approach has enabled the creation of artificial enzymes with promising catalytic activity. Such key enabling technologies are opening new windows of opportunity in a variety of industries, including pharmaceutical, chemical, biofuels, and food, contributing towards a more sustainable development.
Collapse
Affiliation(s)
- Beatriz de Pina Mariz
- UCIBIO, Chemistry Department, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Sara Carvalho
- UCIBIO, Chemistry Department, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Iris L Batalha
- Nanoscience Centre, Department of Engineering, University of Cambridge, 11 J.J. Thomson Avenue, Cambridge, CB3 0FF, UK
| | - Ana Sofia Pina
- UCIBIO, Chemistry Department, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| |
Collapse
|
24
|
Chen Y, Yang Y, Orr AA, Makam P, Redko B, Haimov E, Wang Y, Shimon LJW, Rencus-Lazar S, Ju M, Tamamis P, Dong H, Gazit E. Self-Assembled Peptide Nano-Superstructure towards Enzyme Mimicking Hydrolysis. Angew Chem Int Ed Engl 2021; 60:17164-17170. [PMID: 34014019 DOI: 10.1002/anie.202105830] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 12/15/2022]
Abstract
The structural arrangement of amino acid residues in native enzymes underlies their remarkable catalytic properties, thus providing a notable point of reference for designing potent yet simple biomimetic catalysts. Herein, we describe a minimalistic approach to construct a dipeptide-based nano-superstructure with enzyme-like activity. The self-assembled biocatalyst comprises one peptide as a single building block, readily synthesized from histidine. Through coordination with zinc ion, the peptide self-assembly procedure allows the formation of supramolecular β-sheet ordered nanocrystals, which can be used as basic units to further construct higher-order superstructure. As a result, remarkable hydrolysis activity and enduring stability are demonstrated. Our work exemplifies the use of a bioinspired supramolecular assembly approach to develop next-generation biocatalysts for biotechnological applications.
Collapse
Affiliation(s)
- Yu Chen
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Israel
| | - Yuqin Yang
- Kuang Yaming Honors School & Institute for Brain Sciences, Nanjing University, China
| | - Asuka A Orr
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Pandeeswar Makam
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP-221005, India
| | - Boris Redko
- BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Israel
| | - Elvira Haimov
- BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Israel
| | - Yannan Wang
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, Nankai University, China
| | - Linda J W Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Sigal Rencus-Lazar
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Israel
| | - Meiting Ju
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, Nankai University, China
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Hao Dong
- Kuang Yaming Honors School & Institute for Brain Sciences, Nanjing University, China
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Israel.,Department of Materials Science and Engineering, Tel Aviv University, Israel
| |
Collapse
|
25
|
Li X, Li J, Hao S, Han A, Yang Y, Fang G, Liu J, Wang S. Enzyme mimics based membrane reactor for di(2-ethylhexyl) phthalate degradation. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123873. [PMID: 33264945 DOI: 10.1016/j.jhazmat.2020.123873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 06/12/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), the most abundantly used plasticizer, was considered to be a hazardous chemical that was difficult to be degraded naturally. In this study, inspired by the "catalytic triad'' in serine proteases, an enzyme mimic material was developed by combining the proteases's active sites of serine, histidine and aspartate (S-H-D) with the self-assembling sequence of LKLKLKL and the aromatic group of fluorenylmethyloxycarbonyl (Fmoc). By mixing the monomer of peptides containing separate S, H and D residues with a ratio of 2:1:1, the enzyme mimics were found to co- assemble into nanofibers (Co-HSD) and showed the highest activity towards DEHP degradation because of the synergistic effects of active sites, orderly secondary structure and stable molecular conformation. To further improve ability and applicability, the high active mimetic enzyme was immobilized onto regenerated cellulose (RC) membranes for DEHP degradation in a continuous recycling mode. The RC membranes were first functionalized by the NaIO4 oxidation method to form aldehyde groups and then conjugated with the enzyme mimics via Schiff-base reaction. As a biocatalytic membrane, this membrane could not only effectively degrade DEHP, but also showed good stability, thus establishing a promising biomaterial for large scale biodegradation of DEHP in water decontamination and liquid food depollution.
Collapse
Affiliation(s)
- Xia Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jianpeng Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Sijia Hao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Ailing Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Yayu Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, PR China; Research Center of Food Science and Human Health, School of Medicine, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
26
|
Maltseva D, Gudbrandsdottir R, Kizilsavas G, Horinek D, Gonella G. Location and Conformation of the LKα14 Peptide in Water/Ethanol Mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:469-477. [PMID: 33356282 PMCID: PMC7871320 DOI: 10.1021/acs.langmuir.0c03132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/14/2020] [Indexed: 06/12/2023]
Abstract
It is widely recognized that solvation is one of the major factors determining structure and functionality of proteins and long peptides, however it is a formidable challenge to address it both experimentally and computationally. For this reason, simple peptides are used to study fundamental aspects of solvation. It is well established that alcohols can change the peptide conformation and tuning of the alcohol content in solution can dramatically affect folding and, as a consequence, the function of the peptide. In this work, we focus on the leucine and lysine based LKα14 peptide designed to adopt an α-helical conformation at an apolar-polar interface. We investigate LKα14 peptide's bulk and interfacial behavior in water/ethanol mixtures combining a suite of experimental techniques (namely, circular dichroism and nuclear magnetic resonance spectroscopy for the bulk solution, surface pressure measurements and vibrational sum frequency generation spectroscopy for the air-solution interface) with molecular dynamics simulations. We observe that ethanol highly affects both the peptide location and conformation. At low ethanol content LKα14 lacks a clear secondary structure in bulk and shows a clear preference to reside at the air-solution interface. When the ethanol content in solution increases, the peptide's interfacial affinity is markedly reduced and the peptide approaches a stable α-helical conformation in bulk facilitated by the amphiphilic nature of the ethanol molecules.
Collapse
Affiliation(s)
- Daria Maltseva
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Gönül Kizilsavas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Dominik Horinek
- Institute
for Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Grazia Gonella
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
27
|
Shigedomi K, Osada S, Jelokhani-Niaraki M, Kodama H. Systematic Design and Validation of Ion Channel Stabilization of Amphipathic α-Helical Peptides Incorporating Tryptophan Residues. ACS OMEGA 2021; 6:723-732. [PMID: 33553860 PMCID: PMC7853622 DOI: 10.1021/acsomega.0c05254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/17/2020] [Indexed: 05/27/2023]
Abstract
Aromatic interactions such as π-π interaction and cation-π interaction are present in membrane proteins and play important roles in both structure and function. To systematically investigate the effect of aromatic residues on the structural stability and ion permeability of peptide-formed ion channels, we designed several peptides with one or two tryptophan (Trp) residues incorporated at different positions in amphipathic α-helical peptides. Circular dichroism (CD) studies revealed the preferable position of Trp residues for self-association in these designed peptides. Systematically designed di-substituted peptides with two Trps at each helix termini demonstrated intermolecular Trp-Trp interactions caused by aggregation. In the presence of liposomes, Trp on the hydrophilic face of the peptide enhanced interaction with the lipid membrane to increase the amphipathic α-helical contents. Appropriate incorporation and positioning of Trp enabled peptides to form more stable channels and had notable effects with Trp di-substituted peptides. The ion channel forming capability of a series of these peptides showed that the cation-π interactions between Trp and Lys residues in adjacent transmembrane helices contribute to remarkable stabilization of the channel structure.
Collapse
Affiliation(s)
- Keita Shigedomi
- Department
of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Satoshi Osada
- Department
of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Masoud Jelokhani-Niaraki
- Department
of Chemistry and Biochemistry, Wilfrid Laurier
University, Waterloo, Ontario N2L3C5, Canada
| | - Hiroaki Kodama
- Department
of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
28
|
Protein Sensing Device with Multi-Recognition Ability Composed of Self-Organized Glycopeptide Bundle. Int J Mol Sci 2020; 22:ijms22010366. [PMID: 33396442 PMCID: PMC7795492 DOI: 10.3390/ijms22010366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 01/09/2023] Open
Abstract
We designed and synthesized amphiphilic glycopeptides with glucose or galactose at the C-terminals. We observed the protein-induced structural changes of the amphiphilic glycopeptide assembly in the lipid bilayer membrane using transmission electron microscopy (TEM) and Fourier transform infrared reflection-absorption spectra (FTIR-RAS) measurements. The glycopeptides re-arranged to form a bundle that acted as an ion channel due to the interaction among the target protein and the terminal sugar groups of the glycopeptides. The bundle in the lipid bilayer membrane was fixed on a gold-deposited quartz crystal microbalance (QCM) electrode by the membrane fusion method. The protein-induced re-arrangement of the terminal sugar groups formed a binding site that acted as a receptor, and the re-binding of the target protein to the binding site induced the closing of the channel. We monitored the detection of target proteins by the changes of the electrochemical properties of the membrane. The response current of the membrane induced by the target protein recognition was expressed by an equivalent circuit consisting of resistors and capacitors when a triangular voltage was applied. We used peanut lectin (PNA) and concanavalin A (ConA) as target proteins. The sensing membrane induced by PNA shows the specific response to PNA, and the ConA-induced membrane responded selectively to ConA. Furthermore, PNA-induced sensing membranes showed relatively low recognition ability for lectin from Ricinus Agglutinin (RCA120) and mushroom lectin (ABA), which have galactose binding sites. The protein-induced self-organization formed the spatial arrangement of the sugar chains specific to the binding site of the target protein. These findings demonstrate the possibility of fabricating a sensing device with multi-recognition ability that can recognize proteins even if the structure is unknown, by the protein-induced self-organization process.
Collapse
|
29
|
|
30
|
Sutherland GA, Polak D, Swainsbury DJK, Wang S, Spano FC, Auman DB, Bossanyi DG, Pidgeon JP, Hitchcock A, Musser AJ, Anthony JE, Dutton PL, Clark J, Hunter CN. A Thermostable Protein Matrix for Spectroscopic Analysis of Organic Semiconductors. J Am Chem Soc 2020; 142:13898-13907. [PMID: 32672948 DOI: 10.1021/jacs.0c05477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Advances in protein design and engineering have yielded peptide assemblies with enhanced and non-native functionalities. Here, various molecular organic semiconductors (OSCs), with known excitonic up- and down-conversion properties, are attached to a de novo-designed protein, conferring entirely novel functions on the peptide scaffolds. The protein-OSC complexes form similarly sized, stable, water-soluble nanoparticles that are robust to cryogenic freezing and processing into the solid-state. The peptide matrix enables the formation of protein-OSC-trehalose glasses that fix the proteins in their folded states under oxygen-limited conditions. The encapsulation dramatically enhances the stability of protein-OSC complexes to photodamage, increasing the lifetime of the chromophores from several hours to more than 10 weeks under constant illumination. Comparison of the photophysical properties of astaxanthin aggregates in mixed-solvent systems and proteins shows that the peptide environment does not alter the underlying electronic processes of the incorporated materials, exemplified here by singlet exciton fission followed by separation into weakly bound, localized triplets. This adaptable protein-based approach lays the foundation for spectroscopic assessment of a broad range of molecular OSCs in aqueous solutions and the solid-state, circumventing the laborious procedure of identifying the experimental conditions necessary for aggregate generation or film formation. The non-native protein functions also raise the prospect of future biocompatible devices where peptide assemblies could complex with native and non-native systems to generate novel functional materials.
Collapse
Affiliation(s)
- George A Sutherland
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - Daniel Polak
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - Shuangqing Wang
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - Frank C Spano
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Dirk B Auman
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David G Bossanyi
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - James P Pidgeon
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - Andrew J Musser
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - John E Anthony
- Department of Chemistry, University of Kentucky, Kentucky 40511, United States
| | - P Leslie Dutton
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jenny Clark
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| |
Collapse
|
31
|
Designing minimalist membrane proteins. Biochem Soc Trans 2020; 47:1233-1245. [PMID: 31671181 PMCID: PMC6824673 DOI: 10.1042/bst20190170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
The construction of artificial membrane proteins from first principles is of fundamental interest and holds considerable promise for new biotechnologies. This review considers the potential advantages of adopting a strictly minimalist approach to the process of membrane protein design. As well as the practical benefits of miniaturisation and simplicity for understanding sequence-structure-function relationships, minimalism should also support the abstract conceptualisation of membrane proteins as modular components for synthetic biology. These ideas are illustrated with selected examples that focus upon α-helical membrane proteins, and which demonstrate how such minimalist membrane proteins might be integrated into living biosystems.
Collapse
|
32
|
Abstract
Proteins are molecular machines whose function depends on their ability to achieve complex folds with precisely defined structural and dynamic properties. The rational design of proteins from first-principles, or de novo, was once considered to be impossible, but today proteins with a variety of folds and functions have been realized. We review the evolution of the field from its earliest days, placing particular emphasis on how this endeavor has illuminated our understanding of the principles underlying the folding and function of natural proteins, and is informing the design of macromolecules with unprecedented structures and properties. An initial set of milestones in de novo protein design focused on the construction of sequences that folded in water and membranes to adopt folded conformations. The first proteins were designed from first-principles using very simple physical models. As computers became more powerful, the use of the rotamer approximation allowed one to discover amino acid sequences that stabilize the desired fold. As the crystallographic database of protein structures expanded in subsequent years, it became possible to construct proteins by assembling short backbone fragments that frequently recur in Nature. The second set of milestones in de novo design involves the discovery of complex functions. Proteins have been designed to bind a variety of metals, porphyrins, and other cofactors. The design of proteins that catalyze hydrolysis and oxygen-dependent reactions has progressed significantly. However, de novo design of catalysts for energetically demanding reactions, or even proteins that bind with high affinity and specificity to highly functionalized complex polar molecules remains an importnant challenge that is now being achieved. Finally, the protein design contributed significantly to our understanding of membrane protein folding and transport of ions across membranes. The area of membrane protein design, or more generally of biomimetic polymers that function in mixed or non-aqueous environments, is now becoming increasingly possible.
Collapse
|
33
|
Hosseinpour S, Roeters SJ, Bonn M, Peukert W, Woutersen S, Weidner T. Structure and Dynamics of Interfacial Peptides and Proteins from Vibrational Sum-Frequency Generation Spectroscopy. Chem Rev 2020; 120:3420-3465. [DOI: 10.1021/acs.chemrev.9b00410] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saman Hosseinpour
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | | | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Sander Woutersen
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 EP Amsterdam, The Netherlands
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
34
|
Makam P, Yamijala SSRKC, Tao K, Shimon LJW, Eisenberg DS, Sawaya MR, Wong BM, Gazit E. Non-proteinaceous hydrolase comprised of a phenylalanine metallo-supramolecular amyloid-like structure. Nat Catal 2019; 2:977-985. [PMID: 31742246 PMCID: PMC6861134 DOI: 10.1038/s41929-019-0348-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Enzymatic activity is crucial for various technological applications, yet the complex structures and limited stability of enzymes often hinder their use. Hence, de novo design of robust biocatalysts that are much simpler than their natural counterparts and possess enhanced catalytic activity has long been a goal in biotechnology. Here, we present evidence for the ability of a single amino acid to self-assemble into a potent and stable catalytic structural entity. Spontaneously, phenylalanine (F) molecules coordinate with zinc ions to form a robust, layered, supramolecular amyloid-like ordered architecture (F-Zn(ii)) and exhibit remarkable carbonic anhydrase-like catalytic activity. Notably, amongst the reported artificial biomolecular hydrolases, F-Zn(ii) displays the lowest molecular mass and highest catalytic efficiency, in addition to reusability, thermal stability, substrate specificity, stereoselectivity and rapid catalytic CO2 hydration ability. Thus, this report provides a rational path towards future de novo design of minimalistic biocatalysts for biotechnological and industrial applications.
Collapse
Affiliation(s)
- Pandeeswar Makam
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | - Kai Tao
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Linda J. W. Shimon
- Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - David S. Eisenberg
- Department of Biological Chemistry and Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, UCLA–DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael R. Sawaya
- Department of Biological Chemistry and Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, UCLA–DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA, USA
| | - Bryan M. Wong
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
- Department of Physics and Astronomy, and Materials Science and Engineering Program, University of California, Riverside, CA, USA
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
35
|
Yoon JH, Kulesha AV, Lengyel-Zhand Z, Volkov AN, Rempillo JJ, D'Souza A, Costeas C, Chester C, Caselle ER, Makhlynets OV. Uno Ferro, a de novo Designed Protein, Binds Transition Metals with High Affinity and Stabilizes Semiquinone Radical Anion. Chemistry 2019; 25:15252-15256. [PMID: 31509280 DOI: 10.1002/chem.201904020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Indexed: 11/07/2022]
Abstract
Metalloenzymes often utilize radicals in order to facilitate chemical reactions. Recently, DeGrado and co-workers have discovered that model proteins can efficiently stabilize semiquinone radical anion produced by oxidation of 3,5-di-tert-butylcatechol (DTBC) in the presence of two zinc ions. Here, we show that the number and the nature of metal ions have relatively minor effect on semiquinone stabilization in model proteins, with a single metal ion being sufficient for radical stabilization. The radical is stabilized by both metal ion, hydrophobic sequestration, and interactions with the hydrophilic residues in the protein interior resulting in a remarkable, nearly 500 mV change in the redox potential of the SQ. - /catechol couple compared to bulk aqueous solution. Moreover, we have created 4G-UFsc, a single metal ion-binding protein with pm affinity for zinc that is higher than any other reported model systems and is on par with many natural zinc-containing proteins. We expect that the robust and easy-to-modify DFsc/UFsc family of proteins will become a versatile tool for mechanistic model studies of metalloenzymes.
Collapse
Affiliation(s)
- Jennifer H Yoon
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Alona V Kulesha
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Zsofia Lengyel-Zhand
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Alexander N Volkov
- VIB Centre for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Pleinlaan 2, Brussels, 1050, Belgium.,Jean Jeener NMR Centre, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Joel J Rempillo
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Areetha D'Souza
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Christos Costeas
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Cara Chester
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Elizabeth R Caselle
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Olga V Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| |
Collapse
|
36
|
Marshall LR, Zozulia O, Lengyel-Zhand Z, Korendovych IV. Minimalist de novo Design of Protein Catalysts. ACS Catal 2019; 9:9265-9275. [PMID: 34094654 PMCID: PMC8174531 DOI: 10.1021/acscatal.9b02509] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The field of protein design has grown enormously in the past few decades. In this review we discuss the minimalist approach to design of artificial enzymes, in which protein sequences are created with the minimum number of elements for folding and function. This method relies on identifying starting points in catalytically inert scaffolds for active site installation. The progress of the field from the original helical assemblies of the 1980s to the more complex structures of the present day is discussed, highlighting the variety of catalytic reactions which have been achieved using these methods. We outline the strengths and weaknesses of the minimalist approaches, describe representative design cases and put it in the general context of the de novo design of proteins.
Collapse
Affiliation(s)
- Liam R. Marshall
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Oleksii Zozulia
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Zsofia Lengyel-Zhand
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Ivan V. Korendovych
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| |
Collapse
|
37
|
Rhys GG, Wood CW, Beesley JL, Zaccai NR, Burton AJ, Brady RL, Thomson AR, Woolfson DN. Navigating the Structural Landscape of De Novo α-Helical Bundles. J Am Chem Soc 2019; 141:8787-8797. [PMID: 31066556 DOI: 10.1021/jacs.8b13354] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The association of amphipathic α helices in water leads to α-helical-bundle protein structures. However, the driving force for this-the hydrophobic effect-is not specific and does not define the number or the orientation of helices in the associated state. Rather, this is achieved through deeper sequence-to-structure relationships, which are increasingly being discerned. For example, for one structurally extreme but nevertheless ubiquitous class of bundle-the α-helical coiled coils-relationships have been established that discriminate between all-parallel dimers, trimers, and tetramers. Association states above this are known, as are antiparallel and mixed arrangements of the helices. However, these alternative states are less well understood. Here, we describe a synthetic-peptide system that switches between parallel hexamers and various up-down-up-down tetramers in response to single-amino-acid changes and solution conditions. The main accessible states of each peptide variant are characterized fully in solution and, in most cases, to high resolution with X-ray crystal structures. Analysis and inspection of these structures helps rationalize the different states formed. This navigation of the structural landscape of α-helical coiled coils above the dimers and trimers that dominate in nature has allowed us to design rationally a well-defined and hyperstable antiparallel coiled-coil tetramer (apCC-Tet). This robust de novo protein provides another scaffold for further structural and functional designs in protein engineering and synthetic biology.
Collapse
Affiliation(s)
- Guto G Rhys
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
| | - Christopher W Wood
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
| | - Joseph L Beesley
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
| | - Nathan R Zaccai
- School of Biochemistry , University of Bristol , Medical Sciences Building, University Walk , Bristol BS8 1TD , United Kingdom
| | - Antony J Burton
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
- Frick Chemistry Laboratory , Princeton University , Princeton , New Jersey 08544 , United States
| | - R Leo Brady
- School of Biochemistry , University of Bristol , Medical Sciences Building, University Walk , Bristol BS8 1TD , United Kingdom
| | - Andrew R Thomson
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
- School of Chemistry , University of Glasgow , Glasgow G12 8QQ , United Kingdom
| | - Derek N Woolfson
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , United Kingdom
- School of Biochemistry , University of Bristol , Medical Sciences Building, University Walk , Bristol BS8 1TD , United Kingdom
- BrisSynBio , University of Bristol , Life Sciences Building, Tyndall Avenue , Bristol BS8 1TQ , United Kingdom
| |
Collapse
|
38
|
Caselle EA, Yoon JH, Bhattacharya S, Rempillo JJ, Lengyel Z, D’Souza A, Moroz YS, Tolbert PL, Volkov AN, Forconi M, Castañeda CA, Makhlynets OV, Korendovych IV. Kemp Eliminases of the AlleyCat Family Possess High Substrate Promiscuity. ChemCatChem 2019; 11:1425-1430. [PMID: 31788134 PMCID: PMC6884320 DOI: 10.1002/cctc.201801994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 10/21/2023]
Abstract
Minimalist enzymes designed to catalyze model reactions provide useful starting points for creating catalysts for practically important chemical transformations. We have shown that Kemp eliminases of the AlleyCat family facilitate conversion of leflunomide (an immunosupressor pro-drug) to its active form teriflunomide with outstanding rate enhancement (nearly four orders of magnitude) and catalytic proficiency (more than seven orders of magnitude) without any additional optimization. This remarkable activity is achieved by properly positioning the substrate in close proximity to the catalytic glutamate with very high pKa.
Collapse
Affiliation(s)
- Elizabeth A. Caselle
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Jennifer H. Yoon
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Sagar Bhattacharya
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Joel J.L. Rempillo
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Zsófia Lengyel
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Areetha D’Souza
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Yurii S. Moroz
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrska St., Kyiv 01601, Ukraine
| | - Patricia L. Tolbert
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Alexander N. Volkov
- VIB Centre for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Pleinlaan 2, Brussels 1050, Belgium
- Jean Jeener NMR Cetre, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels 1050, Belgium
| | - Marcello Forconi
- Department of Chemistry and Biochemistry, College of Charleston, 66 George St. Charleston, SC 29424, USA
| | - Carlos A. Castañeda
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Olga V. Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Ivan V. Korendovych
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| |
Collapse
|
39
|
Li X, Li J, Zhu J, Hao S, Fang G, Liu J, Wang S. Degradation of phthalic acid esters (PAEs) by an enzyme mimic and its application in the degradation of intracellular DEHP. Chem Commun (Camb) 2019; 55:13458-13461. [DOI: 10.1039/c9cc06794a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An enzyme mimic inspired by serine proteases was developed for the degradation of PAEs and applied in the hydrolysis of intracellular DEHP.
Collapse
Affiliation(s)
- Xia Li
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Jianpeng Li
- School of Food Science and Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Ji’nan
- P. R. China
| | - Junxiang Zhu
- College of Food Science and Engineering
- Qingdao Agricultural University
- Qingdao
- P. R. China
| | - Sijia Hao
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
- Research Center of Food Science and Human Health
| |
Collapse
|
40
|
Studer S, Hansen DA, Pianowski ZL, Mittl PRE, Debon A, Guffy SL, Der BS, Kuhlman B, Hilvert D. Evolution of a highly active and enantiospecific metalloenzyme from short peptides. Science 2018; 362:1285-1288. [DOI: 10.1126/science.aau3744] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/31/2018] [Indexed: 12/22/2022]
Abstract
Primordial sequence signatures in modern proteins imply ancestral origins tracing back to simple peptides. Although short peptides seldom adopt unique folds, metal ions might have templated their assembly into higher-order structures in early evolution and imparted useful chemical reactivity. Recapitulating such a biogenetic scenario, we have combined design and laboratory evolution to transform a zinc-binding peptide into a globular enzyme capable of accelerating ester cleavage with exacting enantiospecificity and high catalytic efficiency (kcat/KM~ 106M−1s−1). The simultaneous optimization of structure and function in a naïve peptide scaffold not only illustrates a plausible enzyme evolutionary pathway from the distant past to the present but also proffers exciting future opportunities for enzyme design and engineering.
Collapse
|
41
|
Haider MJ, Zhang HV, Sinha N, Fagan JA, Kiick KL, Saven JG, Pochan DJ. Self-assembly and soluble aggregate behavior of computationally designed coiled-coil peptide bundles. SOFT MATTER 2018; 14:5488-5496. [PMID: 29923575 PMCID: PMC6355460 DOI: 10.1039/c8sm00435h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Coiled-coil peptides have proven useful in a range of materials applications ranging from the formation of well-defined fibrils to responsive hydrogels. The ability to design from first principles their oligomerization and subsequent higher order assembly offers their expanded use in producing new materials. Toward these ends, homo-tetrameric, antiparallel, coiled-coil, peptide bundles have been designed computationally, synthesized via solid-phase methods, and their solution behavior characterized. Two different bundle-forming peptides were designed and examined. Within the targeted coiled coil structure, both bundles contained the same hydrophobic core residues. However, different exterior residues on the two different designs yielded sequences with different distributions of charged residues and two different expected isoelectric points of pI 4.4 and pI 10.5. Both coiled-coil bundles were extremely stable with respect to temperature (Tm > 80 C) and remained soluble in solution even at high (millimolar) peptide concentrations. The coiled-coil tetramer was confirmed to be the dominant species in solution by analytical sedimentation studies and by small-angle neutron scattering, where the scattering form factor is well represented by a cylinder model with the dimensions of the targeted coiled coil. At high concentrations (5-15 mM), evidence of interbundle structure was observed via neutron scattering. At these concentrations, the synthetic bundles form soluble aggregates, and interbundle distances can be determined via a structure factor fit to scattering data. The data support the successful design of robust coiled-coil bundles. Despite their different sequences, each sequence forms loosely associated but soluble aggregates of the bundles, suggesting similar dissociated states for each. The behavior of the dispersed bundles is similar to that observed for natural proteins.
Collapse
Affiliation(s)
- Michael J. Haider
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA. ,
| | - Huixi Violet Zhang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Nairiti Sinha
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA. ,
| | - Jeffrey A. Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA. ,
| | - Jeffery G. Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Darrin J. Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA. ,
| |
Collapse
|
42
|
Joh NH, Grigoryan G, Wu Y, DeGrado WF. Design of self-assembling transmembrane helical bundles to elucidate principles required for membrane protein folding and ion transport. Philos Trans R Soc Lond B Biol Sci 2018. [PMID: 28630154 DOI: 10.1098/rstb.2016.0214] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ion transporters and channels are able to identify and act on specific substrates among myriads of ions and molecules critical to cellular processes, such as homeostasis, cell signalling, nutrient influx and drug efflux. Recently, we designed Rocker, a minimalist model for Zn2+/H+ co-transport. The success of this effort suggests that de novo membrane protein design has now come of age so as to serve a key approach towards probing the determinants of membrane protein folding, assembly and function. Here, we review general principles that can be used to design membrane proteins, with particular reference to helical assemblies with transport function. We also provide new functional and NMR data that probe the dynamic mechanism of conduction through Rocker.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Nathan H Joh
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA.,Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Yibing Wu
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
43
|
Sutherland GA, Grayson KJ, Adams NBP, Mermans DMJ, Jones AS, Robertson AJ, Auman DB, Brindley AA, Sterpone F, Tuffery P, Derreumaux P, Dutton PL, Robinson C, Hitchcock A, Hunter CN. Probing the quality control mechanism of the Escherichia coli twin-arginine translocase with folding variants of a de novo-designed heme protein. J Biol Chem 2018; 293:6672-6681. [PMID: 29559557 PMCID: PMC5936819 DOI: 10.1074/jbc.ra117.000880] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/15/2018] [Indexed: 11/08/2022] Open
Abstract
Protein transport across the cytoplasmic membrane of bacterial cells is mediated by either the general secretion (Sec) system or the twin-arginine translocase (Tat). The Tat machinery exports folded and cofactor-containing proteins from the cytoplasm to the periplasm by using the transmembrane proton motive force as a source of energy. The Tat apparatus apparently senses the folded state of its protein substrates, a quality-control mechanism that prevents premature export of nascent unfolded or misfolded polypeptides, but its mechanistic basis has not yet been determined. Here, we investigated the innate ability of the model Escherichia coli Tat system to recognize and translocate de novo–designed protein substrates with experimentally determined differences in the extent of folding. Water-soluble, four-helix bundle maquette proteins were engineered to bind two, one, or no heme b cofactors, resulting in a concomitant reduction in the extent of their folding, assessed with temperature-dependent CD spectroscopy and one-dimensional 1H NMR spectroscopy. Fusion of the archetypal N-terminal Tat signal peptide of the E. coli trimethylamine-N-oxide (TMAO) reductase (TorA) to the N terminus of the protein maquettes was sufficient for the Tat system to recognize them as substrates. The clear correlation between the level of Tat-dependent export and the degree of heme b–induced folding of the maquette protein suggested that the membrane-bound Tat machinery can sense the extent of folding and conformational flexibility of its substrates. We propose that these artificial proteins are ideal substrates for future investigations of the Tat system's quality-control mechanism.
Collapse
Affiliation(s)
- George A Sutherland
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Katie J Grayson
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Nathan B P Adams
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Daphne M J Mermans
- the School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Alexander S Jones
- the School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Angus J Robertson
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Dirk B Auman
- the Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Amanda A Brindley
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Fabio Sterpone
- the Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 75005 Paris, France, and
| | - Pierre Tuffery
- INSERM U973, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Philippe Derreumaux
- the Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 75005 Paris, France, and
| | - P Leslie Dutton
- the Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Colin Robinson
- the School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Andrew Hitchcock
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - C Neil Hunter
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom,
| |
Collapse
|
44
|
Stevens J. Virtually going green: The role of quantum computational chemistry in reducing pollution and toxicity in chemistry. PHYSICAL SCIENCES REVIEWS 2017. [DOI: 10.1515/psr-2017-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractContinuing advances in computational chemistry has permitted quantum mechanical calculation to assist in research in green chemistry and to contribute to the greening of chemical practice. Presented here are recent examples illustrating the contribution of computational quantum chemistry to green chemistry, including the possibility of using computation as a green alternative to experiments, but also illustrating contributions to greener catalysis and the search for greener solvents. Examples of applications of computation to ambitious projects for green synthetic chemistry using carbon dioxide are also presented.
Collapse
|
45
|
Ren Y, Fu H, Baumgartner R, Zhang Y, Cheng J, Lin Y. Folding Cooperativity of Synthetic Polypeptides with or without "Tertiary" Interactions. ACS Macro Lett 2017; 6:733-737. [PMID: 35650853 DOI: 10.1021/acsmacrolett.7b00324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Model-based studies on helix-coil transition and folding cooperativity of synthetic polypeptides have contributed to the understanding of protein folding and stability and to the development of polypeptide-based functional materials. Polypeptide-containing macromolecules with complex architectures, however, remain a challenge in the model-based analysis. Herein, a modified Schellman-Zimm-Bragg model has been utilized to quantitatively analyze the folding cooperativity of polypeptide-containing macromolecules. While the helix-coil transition of homopolypeptides (e.g., poly(ε-benzyloxycarbonyl-l-lysine) (PZLL)) can be described by the classic model, the folding of grafted polypeptide chains in the comb macromolecules (e.g., polynorbornene-g-poly(ε-benzyloxycarbonyl-l-lysine) (PN-g-PZLL)) cannot be accurately predicted by the existing theories, due to the side-chain interactions between grafted polypeptides in the comb macromolecules. Incorporating nonlocal interaction explicability into the statistical mechanics treatment is found to be instructive to account for the possible "tertiary" interactions of polypeptides in the macromolecules with complex architectures.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Chemistry and ‡Polymer Program, Institute of Material Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemistry and ⊥Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Hailin Fu
- Department of Chemistry and ‡Polymer Program, Institute of Material Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemistry and ⊥Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ryan Baumgartner
- Department of Chemistry and ‡Polymer Program, Institute of Material Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemistry and ⊥Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yanfeng Zhang
- Department of Chemistry and ‡Polymer Program, Institute of Material Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemistry and ⊥Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jianjun Cheng
- Department of Chemistry and ‡Polymer Program, Institute of Material Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemistry and ⊥Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yao Lin
- Department of Chemistry and ‡Polymer Program, Institute of Material Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemistry and ⊥Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
46
|
Ren Y, Baumgartner R, Fu H, van der Schoot P, Cheng J, Lin Y. Revisiting the Helical Cooperativity of Synthetic Polypeptides in Solution. Biomacromolecules 2017; 18:2324-2332. [PMID: 28715182 DOI: 10.1021/acs.biomac.7b00534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using synthetic polypeptides as a model system, the theories of helix-coil transition were developed into one of the most beautiful and fruitful subjects in macromolecular science. The classic models proposed by Schellman and Zimm-Bragg more than 50 years ago, differ in the assumption on whether the configuration of multiple helical sequences separated by random coil sections is allowed in a longer polypeptide chain. Zimm also calculated the critical chain lengths that facilitate such interrupted helices in different solvent conditions. The experimental validation of Zimm's prediction, however, was not carefully examined at that time. Herein, we synthesize a series of homopolypeptide samples with different lengths, to systematically examine their helix-coil transition and folding cooperativity in solution. We find that for longer chains, polypeptides do exist as interrupted helices with scattered coil sections even in helicogenic solvent conditions, as predicted in the Zimm-Bragg model. The critical chain lengths that facilitate such interrupted helices, however, are substantially smaller than Zimm's original estimation. The inaccuracy is in part due to an approximation that Zimm made in simplifying the calculation. But more importantly, we find there exist intramolecular interactions between different structural segments in the longer polypeptides, which are not considered in the classic helix-coil theories. As such, even the Zimm-Bragg model in its exact form cannot fully describe the transition behavior and folding cooperativity of longer polypeptides. The results suggest that long "all-helix" chains may be much less prevalent in solution than previously imagined, and a revised theory is required to accurately account for the helix-coil transition of the longer chains with potential "non-local" intramolecular interactions.
Collapse
Affiliation(s)
| | | | | | - Paul van der Schoot
- Department of Applied Physics, Eindhoven University of Technology , 5600 MB Eindhoven, The Netherlands
| | | | | |
Collapse
|
47
|
Schmüser L, Roeters S, Lutz H, Woutersen S, Bonn M, Weidner T. Determination of Absolute Orientation of Protein α-Helices at Interfaces Using Phase-Resolved Sum Frequency Generation Spectroscopy. J Phys Chem Lett 2017; 8:3101-3105. [PMID: 28605589 DOI: 10.1021/acs.jpclett.7b01059] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding the structure of proteins at surfaces is key in fields such as biomaterials research, biosensor design, membrane biophysics, and drug design. A particularly important factor is the orientation of proteins when bound to a particular surface. The orientation of the active site of enzymes or protein sensors and the availability of binding pockets within membrane proteins are important design parameters for engineers developing new sensors, surfaces, and drugs. Recently developed methods to probe protein orientation, including immunoessays and mass spectrometry, either lack structural resolution or require harsh experimental conditions. We here report a new method to track the absolute orientation of interfacial proteins using phase-resolved sum frequency generation spectroscopy in combination with molecular dynamics simulations and theoretical spectral calculations. As a model system we have determined the orientation of a helical lysine-leucine peptide at the air-water interface. The data show that the absolute orientation of the helix can be reliably determined even for orientations almost parallel to the surface.
Collapse
Affiliation(s)
- Lars Schmüser
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research , 55128 Mainz, Germany
| | - Steven Roeters
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam , 1098 EP Amsterdam, The Netherlands
| | - Helmut Lutz
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research , 55128 Mainz, Germany
| | - Sander Woutersen
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam , 1098 EP Amsterdam, The Netherlands
| | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research , 55128 Mainz, Germany
| | - Tobias Weidner
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research , 55128 Mainz, Germany
- Department of Chemistry, Aarhus University , 8000 Aarhus C, Denmark
| |
Collapse
|
48
|
Ferreira HE, Drobny GP. Solid state deuterium NMR study of LKα14 peptide aggregation in biosilica. Biointerphases 2017; 12:02D418. [PMID: 28655279 PMCID: PMC5552403 DOI: 10.1116/1.4986907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/26/2017] [Accepted: 06/07/2017] [Indexed: 11/17/2022] Open
Abstract
In nature, organisms including diatoms, radiolaria, and marine sponges use proteins, long chain polyamines, and other organic molecules to regulate the assembly of complex silica-based structures. Here, the authors investigate structural features of small peptides, designed to mimic the silicifying activities of larger proteins found in natural systems. LKα14 (Ac-LKKLLKLLKKLLKL-C), an amphiphilic lysine/leucine repeat peptide with an α-helical secondary structure at polar/apolar interfaces, coprecipitates with silica to form nanospheres. Previous 13C magic angle spinning studies suggest that the tetrameric peptide bundles that LKα14 is known to form in solution may persist in the silica-complexed form, and may also function as catalysts and templates for silica formation. To further investigate LKα14 aggregation in silica, deuterium solid-state nuclear magnetic resonance (2H ssNMR) was used to establish how leucine side-chain dynamics differ in solid LKα14 peptides isolated from aqueous solution, from phosphate-buffered solution, and in the silica-precipitated states. Modeling the 2H ssNMR line shapes probed the mechanisms of peptide preaggregation and silica coprecipitation. The resulting NMR data indicates that the peptide bundles in silica preserve the hydrophobic interior that they display in the hydrated solid state. However, NMR data also indicate free motion of the leucine residues in silica, a condition that may result from structural deformation of the aggregates arising from interactions between the surface lysine side chains and the surrounding silica matrix.
Collapse
Affiliation(s)
- Helen E Ferreira
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195
| | - Gary P Drobny
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195
| |
Collapse
|
49
|
He X, Zhang F, Zhang L, Zhang Q, Fang G, Liu J, Wang S, Zhang S. Probing the structure-activity relationship of a novel artificial cellobiose hydrolase. J Mater Chem B 2017; 5:5225-5233. [PMID: 32264107 DOI: 10.1039/c7tb01426k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The remarkable catalytic properties of enzymes contribute to their unique 3D structures and arrangement of amino acid residues, which provide a blueprint for the design of artificial enzymes. Here, a series of peptide catalysts (PCs) that mimic the unique orientation and function of β-glycosyl hydrolases were designed. Transmission electron microscopy (TEM), fluorescence analysis, circular dichroism spectroscopy, X-ray diffraction and computational modeling were used to investigate and compare the relationship of the fibrinous structure of PCs with its glycoside hydrolysis activity. These results indicated that the catalytic activity of PCs was not only related to their amyloid-like structures, but it can also be influenced by the site, species, molecular arrangement and steric hindrance of the amino acid sequence. What's more, this is the first report on peptide-inspired catalysts that mimic the natural cellobiose hydrolases. All this provided insights into the potential use of peptide nanoenzymes in the generation of efficient artificial enzymes.
Collapse
Affiliation(s)
- Xingxing He
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Hiebler K, Lengyel Z, Castañeda CA, Makhlynets OV. Functional tuning of the catalytic residue p
K
a
in a
de novo
designed esterase. Proteins 2017; 85:1656-1665. [DOI: 10.1002/prot.25321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/20/2017] [Accepted: 05/17/2017] [Indexed: 11/05/2022]
Affiliation(s)
| | - Zsófia Lengyel
- Department of ChemistrySyracuse UniversitySyracuse New York13244
| | - Carlos A. Castañeda
- Department of ChemistrySyracuse UniversitySyracuse New York13244
- Department of BiologySyracuse UniversitySyracuse New York13244
| | | |
Collapse
|