1
|
Mu F, Rusip G, Florenly F. Gut microbiota and autoimmune diseases: Insights from Mendelian randomization. FASEB Bioadv 2024; 6:467-476. [PMID: 39512840 PMCID: PMC11539032 DOI: 10.1096/fba.2024-00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 11/15/2024] Open
Abstract
In recent years, the scientific community has shown interest in the role of gut microbiota in the development of autoimmune diseases (AID). Although observational studies have revealed significant associations between gut microbiota and AID like rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis, these connections do not necessarily imply causality. Mendelian randomization (MR) approach has been extensively employed to investigate the causal relationship. Relevant MR study findings indicate that a reduction in beneficial microbial populations, particularly Bifidobacterium and Lactobacillus, and an increase in potential pathogenic microbes, is correlated with an elevated AID risk. Given the innovative potential of MR in unraveling the etiopathogenesis of AIDs, this article offers an overview of this methodological approach and its recent applications in AID research.
Collapse
Affiliation(s)
- Fangxiang Mu
- University Prima IndonesiaMedanSumatera UtaraIndonesia
| | | | | |
Collapse
|
2
|
Novák J, Macháček T, Majer M, Kostelanská M, Skulinová K, Černý V, Kolářová L, Hrdý J, Horák P. Toxocara canis infection worsens the course of experimental autoimmune encephalomyelitis in mice. Parasitology 2022; 149:1720-1728. [PMID: 36050813 PMCID: PMC11010483 DOI: 10.1017/s0031182022001238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/22/2022] [Accepted: 08/21/2022] [Indexed: 12/14/2022]
Abstract
Toxocara canis, a gastrointestinal parasite of canids, is also highly prevalent in many paratenic hosts, such as mice and humans. As with many other helminths, the infection is associated with immunomodulatory effects, which could affect other inflammatory conditions including autoimmune and allergic diseases. Here, we investigated the effect of T. canis infection on the course of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Mice infected with 2 doses of 100 T. canis L3 larvae 5 weeks prior to EAE induction (the Tc+EAE group) showed higher EAE clinical scores and greater weight loss compared to the non-infected group with induced EAE (the EAE group). Elevated concentrations of all measured serum cytokines (IL-1α, IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-γ and TNF-α) were observed in the Tc+EAE group compared to the EAE group. In the CNS, the similar number of regulatory T cells (Tregs; CD4+FoxP3+Helios+) but their decreased proportion from total CD4+ cells was found in the Tc+EAE group compared to the EAE group. This could indicate that the group Tc+EAE harboured significantly more CD4+ T cells of non-Treg phenotype within the affected CNS. Altogether, our results demonstrate that infection of mice with T. canis worsens the course of subsequently induced EAE. Further studies are, therefore, urgently needed to reveal the underlying pathological mechanisms and to investigate possible risks for the human population, in which exposure to T. canis is frequent.
Collapse
Affiliation(s)
- Jan Novák
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 128 00, Praha 2, Czechia
| | - Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Praha 2, Czechia
| | - Martin Majer
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Praha 2, Czechia
| | - Marie Kostelanská
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 128 00, Praha 2, Czechia
| | - Kateřina Skulinová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 128 00, Praha 2, Czechia
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Praha 2, Czechia
| | - Viktor Černý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 128 00, Praha 2, Czechia
| | - Libuše Kolářová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 128 00, Praha 2, Czechia
- National Reference Laboratory for Tissue Helminthoses, General University Hospital in Prague, Studničkova 7, 128 00, Praha 2, Czechia
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 128 00, Praha 2, Czechia
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Praha 2, Czechia
| |
Collapse
|
3
|
Abstract
Inflammation is a biological process that dynamically alters the surrounding microenvironment, including participating immune cells. As a well-protected organ surrounded by specialized barriers and with immune privilege properties, the central nervous system (CNS) tightly regulates immune responses. Yet in neuroinflammatory conditions, pathogenic immunity can disrupt CNS structure and function. T cells in particular play a key role in promoting and restricting neuroinflammatory responses, while the inflamed CNS microenvironment can influence and reshape T cell function and identity. Still, the contraction of aberrant T cell responses within the CNS is not well understood. Using autoimmunity as a model, here we address the contribution of CD4 T helper (Th) cell subsets in promoting neuropathology and disease. To address the mechanisms antagonizing neuroinflammation, we focus on the control of the immune response by regulatory T cells (Tregs) and describe the counteracting processes that preserve their identity under inflammatory challenges. Finally, given the influence of the local microenvironment on immune regulation, we address how CNS-intrinsic signals reshape T cell function to mitigate abnormal immune T cell responses.
Collapse
Affiliation(s)
- Nail Benallegue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jorge I. Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
4
|
CD4+ Cytotoxic T Cells Involved in the Development of EBV-Associated Diseases. Pathogens 2022; 11:pathogens11080831. [PMID: 35894054 PMCID: PMC9330826 DOI: 10.3390/pathogens11080831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Activated cytotoxic CD4 T cells (HLA-DR+) play an important role in the control of EBV infection, especially in cells with latency I (EBNA-1). One of the evasion mechanisms of these latency cells is generated by gp42, which, via peripherally binding to the β1 domain of the β chain of MHC class II (HLA-DQ, -DR, and -DP) of the infected B lymphocyte, can block/alter the HLA class II/T-cell receptor (TCR) interaction, and confer an increased level of susceptibility towards the development of EBV-associated autoimmune diseases or cancer in genetically predisposed individuals (HLA-DRB1* and DQB1* alleles). The main developments predisposing the factors of these diseases are: EBV infection; HLA class II risk alleles; sex; and tissue that is infiltrated with EBV-latent cells, forming ectopic lymphoid structures. Therefore, there is a need to identify treatments for eliminating cells with EBV latency, because the current treatments (e.g., antivirals and rituximab) are ineffective.
Collapse
|
5
|
Bartalena L, Piantanida E, Gallo D, Ippolito S, Tanda ML. Management of Graves' hyperthyroidism: present and future. Expert Rev Endocrinol Metab 2022; 17:153-166. [PMID: 35287535 DOI: 10.1080/17446651.2022.2052044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Graves' disease (GD) is an autoimmune disorder due to loss of tolerance to the thyrotropin receptor (TSHR) and ultimately caused by stimulatory TSHR antibodies (TSHR-Ab). GD may be associated with extrathyroidal manifestations, mainly Graves' orbitopathy. Treatment of GD relies on antithyroid drugs (ATDs), radioactive iodine (RAI), thyroidectomy. The major ATD limitation is the high recurrence rate after treatment. The major drawback of RAI and thyroidectomy is the inevitable development of permanent hypothyroidism. AREAS COVERED Original articles, clinical trials, systematic reviews, meta-analyses from 1980 to 2021 were searched using the following terms: Graves' disease, management of Graves' disease, antithyroid drugs, radioactive iodine, thyroidectomy, Graves' orbitopathy, thyroid-eye disease. EXPERT OPINION ATDs are the first-line treatment worldwide, are overall safe and usually given for 18-24 months, long-term treatment may decrease relapses. RAI is safe, although associated with a low risk of GO progression, particularly in smokers. Thyroidectomy requires skilled and high-volume surgeons. Patients play a central role in the choice of treatment within a shared decision-making process. Results from targeted therapies acting on different steps of the autoimmune process, including iscalimab, ATX-GD-59, rituximab, blocking TSHR-Ab, small molecules acting as antagonists of the TSHR, are preliminary or preclinical, but promising in medium-to-long perspective.
Collapse
Affiliation(s)
- Luigi Bartalena
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Eliana Piantanida
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Daniela Gallo
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Silvia Ippolito
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Maria Laura Tanda
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
6
|
Wraith DC. Adaptive T cell tuning in immune regulation and immunotherapy of autoimmune diseases. Immunol Lett 2022; 244:12-18. [DOI: 10.1016/j.imlet.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 11/26/2022]
|
7
|
Ghosh R, Mitra P, Kumar PVSNK, Goyal T, Sharma P. T helper cells in depression: central role of Th17 cells. Crit Rev Clin Lab Sci 2021; 59:19-39. [PMID: 34592888 DOI: 10.1080/10408363.2021.1965535] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Depression is one of the most common neuropsychiatric disorders in the world. While conventional pharmaceutical therapy targets monoaminergic pathway dysfunction, it has not been totally successful in terms of positive outcomes, remission, and preventing relapses. There is an increasing amount of evidence that neuroinflammation may play a significant part in the pathophysiology of depression. Among the key components of the neuroinflammatory pathways already known to be active are the T helper (Th) cells, especially Th17 cells. While various preclinical and clinical studies have reported increased levels of Th17 cells in both serum and brain tissue of laboratory model animals, contradictory results have argued against a pertinent role of Th17 cells in depression. Recent studies have also revealed a role for more pathogenic and inflammatory subsets of Th17 in depression, as well as IL-17A and Th17 cells in non-responsiveness to conventional antidepressant therapy. Despite recent advances, there is still a significant knowledge gap concerning the exact mechanism by which Th17 cells influence neuroinflammation in depression. This review first provides a short introduction to the major findings that led to the discovery of the role of Th cells in depression. The major subsets of Th cells known to be involved in neuroimmunology of depression, such as Th1, Th17, and T regulatory cells, are subsequently described, with an in-depth discussion on current knowledge about Th17 cells in depression.
Collapse
Affiliation(s)
- Raghumoy Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Prasenjit Mitra
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - P V S N Kiran Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Taru Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
8
|
Pfeil J, Simonetti M, Lauer U, von Thülen B, Durek P, Poulsen C, Pawlowska J, Kröger M, Krähmer R, Leenders F, Hoffmann U, Hamann A. Prevention of EAE by tolerogenic vaccination with PEGylated antigenic peptides. Ther Adv Chronic Dis 2021; 12:20406223211037830. [PMID: 34408824 PMCID: PMC8366199 DOI: 10.1177/20406223211037830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Therapeutic treatment options for chronic autoimmune disorders such as multiple sclerosis (MS) rely largely on the use of non-specific immunosuppressive drugs, which are not able to cure the disease. Presently, approaches to induce antigen-specific tolerance as a therapeutic approach; for example, by peptide-based tolerogenic 'inverse' vaccines have regained great interest. We have previously shown that coupling of peptides to carriers can enhance their capacity to induce regulatory T cells in vivo. METHOD In this present study, we investigated whether the tolerogenic potential of immunodominant myelin T-cell epitopes can be improved by conjugation to the synthetic carrier polyethylene glycol (PEG) in an experimental autoimmune encephalomyelitis (EAE) mouse model for chronic MS (MOG C57BL/6). RESULTS Preventive administration of the PEGylated antigenic peptide could strongly suppress the development of EAE, accompanied by reduced immune cell infiltration in the central nervous system (CNS). Depletion of regulatory T cells (Tregs) abrogated the protective effect indicating that Tregs play a crucial role in induction of antigen-specific tolerance in EAE. Treatment during the acute phase of disease was safe and did not induce immune activation. However, treatment at the peak of disease did not affect the disease course, suggesting that either induction of Tregs does not occur in the highly inflamed situation, or that the immune system is refractory to regulation in this condition. CONCLUSION PEGylation of antigenic peptides is an effective and feasible strategy to improve tolerogenic (Treg-inducing) peptide-based vaccines, but application for immunotherapy of overt disease might require modifications or combination therapies that simultaneously suppress effector mechanisms.
Collapse
Affiliation(s)
- Jennifer Pfeil
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz-Institute, Berlin, Germany
| | - Mario Simonetti
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Uta Lauer
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz-Institute, Berlin, Germany
| | | | - Pawel Durek
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz-Institute, Berlin, Germany
| | - Christina Poulsen
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz-Institute, Berlin, Germany
| | - Justyna Pawlowska
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz-Institute, Berlin, Germany
| | - Matthias Kröger
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz-Institute, Berlin, Germany
| | | | | | - Ute Hoffmann
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz-Institute, Berlin, Germany
| | - Alf Hamann
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum Berlin, Charitéplatz 1, Berlin 10117, Germany
| |
Collapse
|
9
|
Horellou P, de Chalus A, Giorgi L, Leroy C, Chrétien P, Hacein-Bey-Abina S, Bourgeois C, Mariette X, Serguera C, Le Grand R, Deiva K. Regulatory T Cells Increase After rh-MOG Stimulation in Non-Relapsing but Decrease in Relapsing MOG Antibody-Associated Disease at Onset in Children. Front Immunol 2021; 12:679770. [PMID: 34220827 PMCID: PMC8243969 DOI: 10.3389/fimmu.2021.679770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background Myelin oligodendrocytes glycoprotein (MOG) antibody-associated disease (MOGAD) represent 25% of pediatric acquired demyelinating syndrome (ADS); 40% of them may relapse, mimicking multiple sclerosis (MS), a recurrent and neurodegenerative ADS, which is MOG-Abs negative. Aims To identify MOG antigenic immunological response differences between MOGAD, MS and control patients, and between relapsing versus non-relapsing subgroups of MOGAD. Methods Three groups of patients were selected: MOGAD (n=12 among which 5 relapsing (MOGR) and 7 non-relapsing (MOGNR)), MS (n=10) and control patients (n=7). Peripheral blood mononuclear cells (PBMC) collected at the time of the first demyelinating event were cultured for 48 h with recombinant human (rh)-MOG protein (10 μg/ml) for a specific stimulation or without stimulation as a negative control. The T cells immunophenotypes were analyzed by flow cytometry. CD4+ T cells, T helper (Th) cells including Th1, Th2, and Th17 were analyzed by intracellular staining of cytokines. Regulatory T cells (Tregs, Foxp3+), CD45RA-Foxp3+ Tregs and subpopulation naive Tregs (CD45RA+Foxp3int), effector Tregs (CD45RA-Foxp3high) and non-suppressive Tregs (CD45RA-Foxp3int) proportions were determined. Results The mean onset age of each group, ranging from 9.9 to 13.8, and sex ratio, were similar between MOGR, MOGNR, MS and control patients as analyzed by one-way ANOVA and Chi-square test. When comparing unstimulated to rh-MOG stimulated T cells, a significant increase in the proportion of Th2 and Th17 cells was observed in MOGAD. Increase of Th17 cells was significant in MOGNR (means: 0.63 ± 0.15 vs. 1.36 ± 0.43; Wilcoxon-test p = 0.03) but not in MOGR. CD4+ Tregs were significantly increased in MOGNR (means: 3.51 ± 0.7 vs. 4.59 ± 1.33; Wilcoxon-test p = 0.046) while they decreased in MOGR. CD45RA-Foxp3+ Tregs were significantly decreased in MOGR (means: 2.37 ± 0.23 vs. 1.99 ± 0.17; paired t-test p = 0.021), but not in MOGNR. MOGR showed the highest ratio of effector Tregs/non suppressive-Tregs, which was significantly higher than in MOGNR. Conclusions Our findings suggest that CD4+ Th2 and Th17 cells are involved in the pathophysiology of MOGAD in children. The opposite response of Tregs to rh-MOG in MOGNR, where CD4+ Tregs increased, and in MOGR, where CD45RA-Foxp3+ Tregs decreased, suggests a probable loss of tolerance toward MOG autoantigen in MOGR which may explain relapses in this recurrent pediatric autoimmune disease.
Collapse
Affiliation(s)
- Philippe Horellou
- Université Paris-Saclay, CEA, INSERM UMR 1184, Le Kremlin Bicêtre, France
| | - Aliénor de Chalus
- Université Paris-Saclay, CEA, INSERM UMR 1184, Le Kremlin Bicêtre, France.,Assistance Publique-Hôpitaux de Paris, Paris-Saclay University Hospitals, Bicêtre Hospital, Pediatric Neurology Department, Le Kremlin Bicêtre, France
| | - Laetitia Giorgi
- Université Paris-Saclay, CEA, INSERM UMR 1184, Le Kremlin Bicêtre, France.,Assistance Publique-Hôpitaux de Paris, Paris-Saclay University Hospitals, Bicêtre Hospital, Pediatric Neurology Department, Le Kremlin Bicêtre, France
| | - Carole Leroy
- Université Paris-Saclay, CEA, INSERM UMR 1184, Le Kremlin Bicêtre, France.,Assistance Publique-Hôpitaux de Paris, Paris-Saclay University Hospitals, Bicêtre Hospital, Pediatric Neurology Department, Le Kremlin Bicêtre, France
| | - Pascale Chrétien
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France.,Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Salima Hacein-Bey-Abina
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France.,Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | | | - Xavier Mariette
- Université Paris-Saclay, CEA, INSERM UMR 1184, Le Kremlin Bicêtre, France.,Department of Rheumatology, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin-Bicêtre, France
| | - Ché Serguera
- Institut du Cerveau (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| | - Roger Le Grand
- Université Paris-Saclay, CEA, INSERM UMR 1184, Le Kremlin Bicêtre, France
| | - Kumaran Deiva
- Université Paris-Saclay, CEA, INSERM UMR 1184, Le Kremlin Bicêtre, France.,Assistance Publique-Hôpitaux de Paris, Paris-Saclay University Hospitals, Bicêtre Hospital, Pediatric Neurology Department, Le Kremlin Bicêtre, France.,National Referral Center for Rare Inflammatory and Auto-Immune Brain and Spinal Diseases (MIRCEM), Pediatric Neurology Department, Hôpital Bicêtre, AP-HP, Le Kremlin Bicêtre, France
| |
Collapse
|
10
|
Richardson N, Wraith DC. Advancement of antigen-specific immunotherapy: knowledge transfer between allergy and autoimmunity. IMMUNOTHERAPY ADVANCES 2021; 1:ltab009. [PMID: 35919740 PMCID: PMC9327121 DOI: 10.1093/immadv/ltab009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/28/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
Targeted restoration of immunological tolerance to self-antigens or innocuous environmental allergens represents the ultimate aim of treatment options in autoimmune and allergic disease. Antigen-specific immunotherapy (ASI) is the only intervention that has proven disease-modifying efficacy as evidenced by induction of long-term remission in a number of allergic conditions. Mounting evidence is now indicating that specific targeting of pathogenic T cells in autoinflammatory and autoimmune settings enables effective restoration of immune homeostasis between effector and regulatory cells and alters the immunological course of disease. Here, we discuss the key lessons learned during the development of antigen-specific immunotherapies and how these can be applied to inform future interventions. Armed with this knowledge and current high-throughput technology to track immune cell phenotype and function, it may no longer be a matter of ‘if’ but ‘when’ this ultimate aim of targeted tolerance restoration is realised.
Collapse
Affiliation(s)
- Naomi Richardson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - David Cameron Wraith
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
11
|
Streeter HB, Wraith DC. Manipulating antigen presentation for antigen-specific immunotherapy of autoimmune diseases. Curr Opin Immunol 2021; 70:75-81. [PMID: 33878516 PMCID: PMC8376632 DOI: 10.1016/j.coi.2021.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/14/2022]
Abstract
Specific immunotherapy is the ‘holy grail’ for treatment of autoimmunity. Antigens are delivered by either direct or indirect presentation mechanisms. Liver APC and steady state DC mediate distinct forms of immune regulation. Tr1 cell induction involves epigenetic modification of tolerance associated genes. Trials reveal that antigen-specific immunotherapy can control autoimmune diseases.
Current treatments for autoimmune diseases do not address the immune pathology underlying their initiation and progression and too often rely on non-specific immunosuppressive drugs for control of symptoms. Antigen-specific immunotherapy aims to induce tolerance selectively among the cells causing the disease while leaving the rest of the adaptive immune system capable of protecting against infectious diseases and cancers. Here we describe how novel approaches for antigen-specific immunotherapy are designed to manipulate antigen presentation and promote tolerance to specific self-antigens. This analysis points to liver antigen presenting cells, targeted by carrier particles, and steady-state dendritic cells, to which antigen-processing independent T-cell epitopes (apitopes) bind directly, as the principal targets for antigen-specific immunotherapy. Delivery of antigens to these cells holds great promise for effective control of this rapidly expanding group of diseases.
Collapse
Affiliation(s)
- Heather B Streeter
- Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT, United Kingdom
| | - David C Wraith
- Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
12
|
Krienke C, Kolb L, Diken E, Streuber M, Kirchhoff S, Bukur T, Akilli-Öztürk Ö, Kranz LM, Berger H, Petschenka J, Diken M, Kreiter S, Yogev N, Waisman A, Karikó K, Türeci Ö, Sahin U. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science 2021; 371:145-153. [PMID: 33414215 DOI: 10.1126/science.aay3638] [Citation(s) in RCA: 283] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 04/27/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
The ability to control autoreactive T cells without inducing systemic immune suppression is the major goal for treatment of autoimmune diseases. The key challenge is the safe and efficient delivery of pharmaceutically well-defined antigens in a noninflammatory context. Here, we show that systemic delivery of nanoparticle-formulated 1 methylpseudouridine-modified messenger RNA (m1Ψ mRNA) coding for disease-related autoantigens results in antigen presentation on splenic CD11c+ antigen-presenting cells in the absence of costimulatory signals. In several mouse models of multiple sclerosis, the disease is suppressed by treatment with such m1Ψ mRNA. The treatment effect is associated with a reduction of effector T cells and the development of regulatory T cell (Treg cell) populations. Notably, these Treg cells execute strong bystander immunosuppression and thus improve disease induced by cognate and noncognate autoantigens.
Collapse
Affiliation(s)
- Christina Krienke
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Freiligrathstr. 12, Mainz 55131, Germany
- Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University, Langenbeckstr. 1, Mainz 55131, Germany
| | - Laura Kolb
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Freiligrathstr. 12, Mainz 55131, Germany
| | - Elif Diken
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Freiligrathstr. 12, Mainz 55131, Germany
| | - Michael Streuber
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Freiligrathstr. 12, Mainz 55131, Germany
| | - Sarah Kirchhoff
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Freiligrathstr. 12, Mainz 55131, Germany
| | - Thomas Bukur
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Freiligrathstr. 12, Mainz 55131, Germany
| | - Özlem Akilli-Öztürk
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Freiligrathstr. 12, Mainz 55131, Germany
| | - Lena M Kranz
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
| | - Hendrik Berger
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
| | - Jutta Petschenka
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Freiligrathstr. 12, Mainz 55131, Germany
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397 Biberach an der Riss, Germany
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Freiligrathstr. 12, Mainz 55131, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
| | - Sebastian Kreiter
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Freiligrathstr. 12, Mainz 55131, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
| | - Nir Yogev
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University, Mainz 55131, Germany
- Clinic and Polyclinic for Dermatology and Venereology, University Hospital Cologne, Kerpenerstr. 62, Cologne 50937, Germany
| | - Ari Waisman
- Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University, Langenbeckstr. 1, Mainz 55131, Germany
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University, Mainz 55131, Germany
| | - Katalin Karikó
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
| | - Özlem Türeci
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
- CI3 - Cluster for Individualized Immunointervention e.V., Hölderlinstraße 8, 55131 Mainz, Germany
| | - Ugur Sahin
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Freiligrathstr. 12, Mainz 55131, Germany.
- Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University, Langenbeckstr. 1, Mainz 55131, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, An der Goldgrube 12, Mainz 55131, Germany
| |
Collapse
|
13
|
Lane LC, Cheetham TD, Perros P, Pearce SHS. New Therapeutic Horizons for Graves' Hyperthyroidism. Endocr Rev 2020; 41:5897403. [PMID: 32845332 PMCID: PMC7567404 DOI: 10.1210/endrev/bnaa022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/20/2020] [Indexed: 11/19/2022]
Abstract
Graves' hyperthyroidism is characterized by the presence of autoantibodies that stimulate the thyroid-stimulating hormone receptor (TSHR), resulting in uncontrolled secretion of excessive thyroid hormone. Conventional treatments, including antithyroid medication, radioiodine, or surgery have remained largely unchanged for the past 70 years and either lack efficacy for many patients, or result in lifelong thyroid hormone replacement therapy, in the case of the latter 2 options. The demand for new therapeutic options, combined with greater insight into basic immunobiology, has led to the emergence of novel approaches to treat Graves' hyperthyroidism. The current therapies under investigation include biologics, small molecules, and peptide immunomodulation. There is a growing focus on TSHR-specific treatment modalities, which carry the advantage of eliciting a specific, targeted approach, with the aim of avoiding disruption of the functioning immune system. These therapies present a new opportunity to supersede the inadequate treatments currently available for some Graves' patients, offering hope of successful restoration of euthyroidism without the need for ongoing therapy. Several of these therapeutic options have the potential to translate into clinical practice in the near future. This review provides a comprehensive summary of the recent advances and various stages of development of the novel therapeutic approaches to treat Graves' hyperthyroidism.
Collapse
Affiliation(s)
- Laura C Lane
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK.,Endocrine unit, Royal Victoria Infirmary, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK.,Department of Paediatric Endocrinology, The Great North Children's Hospital, Newcastle-upon-Tyne, UK
| | - Tim D Cheetham
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK.,Department of Paediatric Endocrinology, The Great North Children's Hospital, Newcastle-upon-Tyne, UK
| | - Petros Perros
- Endocrine unit, Royal Victoria Infirmary, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Simon H S Pearce
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK.,Endocrine unit, Royal Victoria Infirmary, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| |
Collapse
|
14
|
Tabatabaei-Panah PS, Moravvej H, Alirajab M, Etaaty A, Geranmayeh M, Hosseine F, Khansari A, Mahdian M, Mirhashemi M, Parvizi S, Sakhaie F, Ludwig RJ, Akbarzadeh R. Association between TH2 Cytokine Gene Polymorphisms and Risk of Bullous Pemphigoid. Immunol Invest 2020; 51:343-356. [PMID: 33047635 DOI: 10.1080/08820139.2020.1832113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: T-helper 2 (Th2)-associated cytokines are involved in the pathogenesis of bullous pemphigoid (BP), an autoimmune skin disease. Increased expression of Th2 cytokines such as interleukin-4 (IL-4), IL-5, IL-6, IL-10, and IL-13 have been observed in serum, skin biopsies and/or blister fluid. This study aimed to uncover a possible association between Th2 cytokine genetic variations and susceptibility to BP.Methods: In a cohort study, blood samples of BP patients and controls were obtained and variations in IL-4 (rs2243250 and rs2070874), IL-4R (rs1805010), IL-5 (rs2069812), IL-6 (rs1800795), IL-10 (rs1800896, rs1800871, and rs1800872), and IL-13 (rs1800925 and rs20541) were genotyped by PCR-RFLP assays. Furthermore, quantitative expression levels of IL-13 gene were evaluated by real-time RT-PCR analysis.Results: Among the studied variations, a significantly higher frequency of the C-allele was observed in IL-13 gene variation (rs1800925) in the healthy individuals than BP patients. This may indicate a protective effect of C-allele on predisposition to BP. Considering individuals carrying polymorphic genotypes compared to wild genotype, the minor G-allele of IL-4R rs1805010 and A-allele of IL-13 rs20541 had a promotive and protective effect, respectively, on predisposing to the development of BP. No significant difference in IL-13 mRNA expression was detected between BP patients and healthy individuals.Conclusions: Our results indicate that IL-13 rs1800925 variation may be a protective genetic marker for the development of BP. Given this preventive effect against BP, therapeutic strategies could potentially be developed interfering with the functions of IL-13 cytokine, which seems to be integral in the pathogenesis of eosinophilic inflammatory disorders, such as BP.
Collapse
Affiliation(s)
| | - Hamideh Moravvej
- Skin Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Alirajab
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Etaaty
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Geranmayeh
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Farzaneh Hosseine
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Atousa Khansari
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohadeseh Mahdian
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Mirhashemi
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Samira Parvizi
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Sakhaie
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Reza Akbarzadeh
- Skin Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Institute of Anatomy, University of Lübeck, Lübeck, Germany
| |
Collapse
|
15
|
Pfeil J, Simonetti M, Lauer U, Volkmer R, von Thülen B, Durek P, Krähmer R, Leenders F, Hamann A, Hoffmann U. Tolerogenic Immunomodulation by PEGylated Antigenic Peptides. Front Immunol 2020; 11:529035. [PMID: 33162973 PMCID: PMC7581722 DOI: 10.3389/fimmu.2020.529035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/22/2020] [Indexed: 01/29/2023] Open
Abstract
Current treatments for autoimmune disorders rely on non-specific immunomodulatory and global immunosuppressive drugs, which show a variable degree of efficiency and are often accompanied by side effects. In contrast, strategies aiming at inducing antigen-specific tolerance promise an exclusive specificity of the immunomodulation. However, although successful in experimental models, peptide-based tolerogenic "inverse" vaccines have largely failed to show efficacy in clinical trials. Recent studies showed that repetitive T cell epitopes, coupling of peptides to autologous cells, or peptides coupled to nanoparticles can improve the tolerogenic efficacy of peptides, suggesting that size and biophysical properties of antigen constructs affect the induction of tolerance. As these materials bear hurdles with respect to preparation or regulatory aspects, we wondered whether conjugation of peptides to the well-established and clinically proven synthetic material polyethylene glycol (PEG) might also work. We here coupled the T cell epitope OVA323-339 to polyethylene glycols of different size and structure and tested the impact of these nano-sized constructs on regulatory (Treg) and effector T cells in the DO11.10 adoptive transfer mouse model. Systemic vaccination with PEGylated peptides resulted in highly increased frequencies of Foxp3+ Tregs and reduced frequencies of antigen-specific T cells producing pro-inflammatory TNF compared to vaccination with the native peptide. PEGylation was found to extend the bioavailability of the model peptide. Both tolerogenicity and bioavailability were dependent on PEG size and structure. In conclusion, PEGylation of antigenic peptides is an effective and feasible strategy to improve Treg-inducing, peptide-based vaccines with potential use for the treatment of autoimmune diseases, allergies, and transplant rejection.
Collapse
Affiliation(s)
- Jennifer Pfeil
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz Institute (DRFZ), Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Mario Simonetti
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Uta Lauer
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz Institute (DRFZ), Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Rudolf Volkmer
- Institute for Medical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | | | - Pawel Durek
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz Institute (DRFZ), Berlin, Germany
| | | | | | - Alf Hamann
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz Institute (DRFZ), Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Ute Hoffmann
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz Institute (DRFZ), Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
16
|
Richardson N, Ng STH, Wraith DC. Antigen-Specific Immunotherapy for Treatment of Autoimmune Liver Diseases. Front Immunol 2020; 11:1586. [PMID: 32793226 PMCID: PMC7385233 DOI: 10.3389/fimmu.2020.01586] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
The liver is a critical organ in controlling immune tolerance. In particular, it is now clear that targeting antigens for presentation by antigen presenting cells in the liver can induce immune tolerance to either autoantigens from the liver itself or tissues outside of the liver. Here we review immune mechanisms active within the liver that contribute both to the control of infectious diseases and tolerance to self-antigens. Despite its extraordinary capacity for tolerance induction, the liver remains a target organ for autoimmune diseases. In this review, we compare and contrast known autoimmune diseases of the liver. Currently patients tend to receive strong immunosuppressive treatments and, in many cases, these treatments are associated with deleterious side effects, including a significantly higher risk of infection and associated health complications. We propose that, in future, antigen-specific immunotherapies are adopted for treatment of liver autoimmune diseases in order to avoid such adverse effects. We describe various therapeutic approaches that either are in or close to the clinic, highlight their mechanism of action and assess their suitability for treatment of autoimmune liver diseases.
Collapse
Affiliation(s)
| | | | - David C. Wraith
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
17
|
Chen T, Guo J, Cai Z, Li B, Sun L, Shen Y, Wang S, Wang Z, Wang Z, Wang Y, Zhou H, Cai Z, Ye Z. Th9 Cell Differentiation and Its Dual Effects in Tumor Development. Front Immunol 2020; 11:1026. [PMID: 32508847 PMCID: PMC7251969 DOI: 10.3389/fimmu.2020.01026] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
With the improved understanding of the molecular pathogenesis and characteristics of cancers, the critical role of the immune system in preventing tumor development has been widely accepted. The understanding of the relationship between the immune system and cancer progression is constantly evolving, from the cancer immunosurveillance hypothesis to immunoediting theory and the delicate balance in the tumor microenvironment. Currently, immunotherapy is regarded as a promising strategy against cancers. Although adoptive cell therapy (ACT) has shown some exciting results regarding the rejection of tumors, the effect is not always satisfactory. Cellular therapy with CD4+ T cells remains to be further explored since the current ACT is mainly focused on CD8+ cytotoxic T lymphocytes (CTLs). Recently, Th9 cells, a subgroup of CD4+ T helper cells characterized by the secretion of IL-9 and IL-10, have been reported to be effective in the elimination of solid tumors and to exhibit superior antitumor properties to Th1 and Th17 cells. In this review, we summarize the most recent advances in the understanding of Th9 cell differentiation and the dual role, both anti-tumor and pro-tumor effects, of Th9 cells in tumor progression.
Collapse
Affiliation(s)
- Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Jufeng Guo
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenhai Cai
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Binghao Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Lingling Sun
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Yingying Shen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zenan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Yucheng Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhijian Cai
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Qiu K, He Q, Chen X, Liu H, Deng S, Lu W. Pregnancy-Related Immune Changes and Demyelinating Diseases of the Central Nervous System. Front Neurol 2019; 10:1070. [PMID: 31649614 PMCID: PMC6794637 DOI: 10.3389/fneur.2019.01070] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/23/2019] [Indexed: 12/31/2022] Open
Abstract
Demyelinating diseases of the central nervous system comprise a heterogeneous group of autoimmune disorders characterized by myelin loss with relative sparing of axons occurring on a background of inflammation. Some of the most common demyelinating diseases are multiple sclerosis, acute disseminated encephalomyelitis, and neuromyelitis optica spectrum disorders. Besides showing clinical, radiological, and histopathological features that complicate their diagnosis, demyelinating diseases often involve different immunological processes that produce distinct inflammatory patterns. Evidence of demyelination diseases derives mostly from animal studies of experimental autoimmune encephalomyelitis (EAE), a model that relies on direct antibody–antigen interactions induced by encephalitogenic T cells. Pregnancy is characterized by non-self-recognition, immunomodulatory changes and an altered Th1/Th2 balance, generally considered a Th2-type immunological state that protects the mother from infections. During pregnancy, the immune response of patients with autoimmune disease complicated with pregnancy is different. Immune tolerance in pregnancy may affect the course of some diseases, which may reach remission or be exacerbated. In this review, we summarize current knowledge on the immune status during pregnancy and discuss the relationship between pregnancy-related immune changes and demyelinating diseases of the central nervous system.
Collapse
Affiliation(s)
- Ke Qiu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiang He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiqian Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Pearce SH, Dayan C, Wraith DC, Barrell K, Olive N, Jansson L, Walker-Smith T, Carnegie C, Martin KF, Boelaert K, Gilbert J, Higham CE, Muller I, Murray RD, Perros P, Razvi S, Vaidya B, Wernig F, Kahaly GJ. Antigen-Specific Immunotherapy with Thyrotropin Receptor Peptides in Graves' Hyperthyroidism: A Phase I Study. Thyroid 2019; 29:1003-1011. [PMID: 31194638 PMCID: PMC6648194 DOI: 10.1089/thy.2019.0036] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Graves' disease is one of the most common autoimmune conditions, but treatment remains imperfect. This study explores the first-in-human use of antigen-specific immunotherapy with a combination of two thyrotropin receptor (TSHR) peptides (termed ATX-GD-59) in Graves' hyperthyroidism. Methods: Twelve participants (11 female) with previously untreated mild to moderate Graves' hyperthyroidism were enrolled in a Phase I open label trial to receive 10 doses of ATX-GD-59 administered intradermally over an 18-week period. Adverse events, tolerability, changes in serum free thyroid hormones, and TSHR autoantibodies were measured. Results: Ten subjects received all 10 doses of ATX-GD-59, five (50%) of whom had free triiodothyronine within the reference interval by the 18-week visit. Two further subjects had improved free thyroid hormones by the end of the study (7/10 responders), whereas three subjects showed worsening thyrotoxicosis during the study. Serum TSHR autoantibody concentrations reduced during the study and correlated with changes in free thyroid hormones (r = 0.85, p = 0.002 for TSHR autoantibody vs. free triiodothyronine). Mild injection-site swelling and pain were the most common adverse events. Conclusions: These preliminary data suggest that ATX-GD-59 is a safe and well-tolerated treatment. The improvement in free thyroid hormones in 70% of subjects receiving the medication suggests potential efficacy as a novel treatment for Graves' hyperthyroidism.
Collapse
Affiliation(s)
- Simon H.S. Pearce
- Institute for Genetic Medicine, Newcastle University, and Newcastle Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom
| | - Colin Dayan
- Thyroid Research Group, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - David C. Wraith
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham United Kingdom
- Apitope Technology (Bristol) Ltd., Chepstow, United Kingdom
- Apitope International NV, Diepenbeek, Belgium
| | - Kevin Barrell
- Apitope Technology (Bristol) Ltd., Chepstow, United Kingdom
| | - Natalie Olive
- Apitope Technology (Bristol) Ltd., Chepstow, United Kingdom
| | | | | | | | | | - Kristien Boelaert
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham United Kingdom
| | - Jackie Gilbert
- Department of Endocrinology, King's College Hospital, London, United Kingdom
| | - Claire E. Higham
- Department of Endocrinology, Christie Hospital NHS Foundation Trust, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ilaria Muller
- Thyroid Research Group, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Robert D. Murray
- Department of Endocrinology, St. James's University Hospital, Leeds, United Kingdom
| | - Petros Perros
- Endocrine Unit, Newcastle Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom
| | - Salman Razvi
- Institute for Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bijay Vaidya
- Macleod Diabetes & Endocrine Centre, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| | - Florian Wernig
- Department of Endocrinology, Imperial College, London, United Kingdom
| | - George J. Kahaly
- Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
20
|
Type 2 Inflammatory Responses in Autoimmune Demyelination of the Central Nervous System: Recent Advances. J Immunol Res 2019; 2019:4204512. [PMID: 31205957 PMCID: PMC6530110 DOI: 10.1155/2019/4204512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/17/2019] [Indexed: 12/28/2022] Open
Abstract
Type 2 immunity has long been confined to a restricted spectrum of responses, mostly including allergic reactions to innocuous environmental triggers. However, growing evidence suggests that cells and mediators typically associated with type 2 inflammation are involved in several physiopathological conditions, such as defense against toxic substances, anticancer immunity, and autoimmune diseases. In neuromyelitis optica, an autoimmune demyelinating disorder of the spinal cord and optic nerve, eosinophils extensively infiltrate lesions in the central nervous system (CNS) and promote tissue pathology in experimental models of this disease. Next-generation sequencing of CD4+ T cells isolated from a specific subtype of multiple sclerosis plaque has uncovered an unexpectedly Th2 profile of these cells. Even mast cells and other allergic mediators have been implicated in the modulation and/or effector mechanisms of autoimmune reactions against the CNS. In this review article, the most recent developments showing the involvement of type 2 inflammatory components in CNS autoimmunity are summarised and possible lines of further investigation are discussed.
Collapse
|
21
|
D'Amico E, Zanghì A, Gastaldi M, Patti F, Zappia M, Franciotta D. Placing CD20-targeted B cell depletion in multiple sclerosis therapeutic scenario: Present and future perspectives. Autoimmun Rev 2019; 18:665-672. [PMID: 31059839 DOI: 10.1016/j.autrev.2019.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/18/2019] [Indexed: 12/26/2022]
Abstract
Multiple sclerosis (MS) is an acquired demyelinating disease of the central nervous system (CNS) that traditionally has been considered to be mediated primarily by T cells. Increasing evidence, however, suggests the fundamental role of B cells in the pathogenesis and development of the disease. Recently, anti-CD20 B cell-based therapies have demonstrated impressive and somewhat surprising results in MS, showing profound anti-inflammatory effects with a favorable risk-benefit ratio. Moreover, for the first time in the MS therapeutic scenario, the anti-CD20 monoclonal antibody ocrelizumab has been granted for the treatment of the primary progressive form of the disease. In this review, we provide a brief overview about anti-CD20 B cell-based therapies in MS, in the perspective of their influence on the future management of the disease, and of their possible positioning in a new wider therapeutic scenario.
Collapse
Affiliation(s)
| | - Aurora Zanghì
- Department G.F.Ingrassia, University of Catania, Italy
| | - Matteo Gastaldi
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Mario Zappia
- Department G.F.Ingrassia, University of Catania, Italy
| | - Diego Franciotta
- Neuroimmunology Laboratory, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
22
|
The Diversity of Encephalitogenic CD4+ T Cells in Multiple Sclerosis and Its Animal Models. J Clin Med 2019; 8:jcm8010120. [PMID: 30669462 PMCID: PMC6352150 DOI: 10.3390/jcm8010120] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 02/06/2023] Open
Abstract
Autoreactive CD4+ T cells, which target antigens in central nervous system (CNS) myelin, are widely believed to play a critical role in the pathogenesis of multiple sclerosis (MS) in concert with other immune effectors. This theory is supported by data from animal model experiments, genome-wide association studies, and immune profiles of individuals with MS. Furthermore, disease modifying agents that target lymphocytes significantly reduce the rate of MS clinical exacerbations. However, the properties of myelin-reactive CD4+ T cells that are critical for their pathogenic activities are not understood completely. This article reviews the literature on encephalitogenic CD4+ T cells, with an emphasis on T-helper (Th) lineage and cytokine production. An increased understanding of the spectrum of encephalitogenic T cells and how they differ from protective subsets is necessary for the development of the next generation of more effective and safer immunomodulatory therapies customized for individuals with MS and related disorders.
Collapse
|
23
|
Li J, Qiu D, Liu Y, Xiong J, Wang Y, Yang X, Fu X, Zheng L, Luo G, Xing M, Wu Y. Cytomembrane Infused Polymer Accelerating Delivery of Myelin Antigen Peptide to Treat Experimental Autoimmune Encephalomyelitis. ACS NANO 2018; 12:11579-11590. [PMID: 30265798 DOI: 10.1021/acsnano.8b06575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While there has been extensive development of soluble epitope-specific peptides to induce immune tolerance for the treatment of autoimmune diseases, the clinical efficacy of soluble-peptides-based immunotherapy was still uncertain. Recent strategies to develop antigen carriers coupled with peptides have shown promising results in preclinical animal models. Here we developed functional amphiphilic hyperbranched (HB) polymers with different grafting degrees of hydrophobic chains as antigen myelin antigen oligodendrocyte glycoprotein (MOG) peptide carriers and evaluated their ability to induce immune tolerance. We show that these polymers could efficiently deliver antigen peptide, and the uptake amount by bone marrow dendritic cells (BMDCs) was correlated with the hydrophobicity of polymers. We observe that these polymers have a higher ability to activate BMDCs and a higher efficacy to induce antigen-specific T cell apoptosis than soluble peptides, irrespective of hydrophobicity. We show that intravenous injection of polymer-conjugated MOG peptide, but not soluble peptide, markedly treats the clinical symptoms of experimental autoimmune encephalomyelitis in mice. Together, these results demonstrate the potential for using amphiphilic HB polymers as antigen carriers to deliver peptides for pathogenic autoreactive T cell deletion/tolerance strategies to treat autoimmune disorders.
Collapse
Affiliation(s)
- Jian Li
- Institute of Immunology, PLA , Third Military Medical University (Army Medical University) , Chongqing 400038 , China
| | - Ding Qiu
- Institute of Immunology, PLA , Third Military Medical University (Army Medical University) , Chongqing 400038 , China
| | - Yuqing Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital , Third Military Medical University (Army Medical University) , Chongqing , 400038 , China
- Department of Mechanical Engineering , University of Manitoba , Winnipeg , MB R3T 2N2 , Canada
| | - Jian Xiong
- Institute of Immunology, PLA , Third Military Medical University (Army Medical University) , Chongqing 400038 , China
| | - Ying Wang
- Department of Mechanical Engineering , University of Manitoba , Winnipeg , MB R3T 2N2 , Canada
| | - Xia Yang
- Institute of Immunology, PLA , Third Military Medical University (Army Medical University) , Chongqing 400038 , China
| | - Xiaolan Fu
- Institute of Immunology, PLA , Third Military Medical University (Army Medical University) , Chongqing 400038 , China
| | - Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Gaoxing Luo
- Department of Mechanical Engineering , University of Manitoba , Winnipeg , MB R3T 2N2 , Canada
| | - Malcolm Xing
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital , Third Military Medical University (Army Medical University) , Chongqing , 400038 , China
- Department of Mechanical Engineering , University of Manitoba , Winnipeg , MB R3T 2N2 , Canada
| | - Yuzhang Wu
- Institute of Immunology, PLA , Third Military Medical University (Army Medical University) , Chongqing 400038 , China
| |
Collapse
|
24
|
Jansson L, Vrolix K, Jahraus A, Martin KF, Wraith DC. Immunotherapy With Apitopes Blocks the Immune Response to TSH Receptor in HLA-DR Transgenic Mice. Endocrinology 2018; 159:3446-3457. [PMID: 30099489 DOI: 10.1210/en.2018-00306] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022]
Abstract
We have combined major histocompatibility complex-binding assays with immunization and tolerance induction experiments in HLA-DR3 transgenic mice to design apitopes (antigen-processing independent epitopes) derived from thyrotropin receptor (TSHR) for treatment of patients with Graves' disease (GD). A challenge model was created by using an adenovirus-expressing part of the extracellular domain of the thyrotropin receptor (TSHR289). This model was used to test whether current drug treatments for GD would have an impact on effective antigen-specific immunotherapy using the apitope approach. Furthermore, selected peptides were assessed for their antigenicity using peripheral blood mononuclear cell samples from patients with GD. A mixture of two immunodominant apitopes was sufficient to suppress both the T-cell and antibody response to TSHR when administered in soluble form to HLA-DR transgenic mice. Tolerance induction was not disrupted by current drug treatments. These results demonstrate that antigen-specific immunotherapy with apitopes from TSHR is a suitable approach for treatment of GD.
Collapse
Affiliation(s)
| | | | | | - Keith F Martin
- Apitope Technology (Bristol) Ltd., Chepstow, United Kingdom
| | - David C Wraith
- Apitope International NV, Diepenbeek, Belgium
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
25
|
Dacoba TG, Olivera A, Torres D, Crecente-Campo J, Alonso MJ. Modulating the immune system through nanotechnology. Semin Immunol 2017; 34:78-102. [PMID: 29032891 PMCID: PMC5774666 DOI: 10.1016/j.smim.2017.09.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
Nowadays, nanotechnology-based modulation of the immune system is presented as a cutting-edge strategy, which may lead to significant improvements in the treatment of severe diseases. In particular, efforts have been focused on the development of nanotechnology-based vaccines, which could be used for immunization or generation of tolerance. In this review, we highlight how different immune responses can be elicited by tuning nanosystems properties. In addition, we discuss specific formulation approaches designed for the development of anti-infectious and anti-autoimmune vaccines, as well as those intended to prevent the formation of antibodies against biologicals.
Collapse
Affiliation(s)
- Tamara G Dacoba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Ana Olivera
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Dolores Torres
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| |
Collapse
|
26
|
Maggi P, Sati P, Massacesi L. Magnetic resonance imaging of experimental autoimmune encephalomyelitis in the common marmoset. J Neuroimmunol 2016; 304:86-92. [PMID: 27743612 DOI: 10.1016/j.jneuroim.2016.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/28/2016] [Indexed: 12/26/2022]
Abstract
Magnetic resonance imaging (MRI) is an invaluable tool for the diagnosis and monitoring of patients with multiple sclerosis (MS) as well as for the study of the disease pathophysiology. Because of its strong clinical, radiological and histopathological similarities with the human disease, experimental autoimmune encephalomyelitis (EAE) in the common marmoset has been studied more intensively over the past several years. Here, we review the current knowledge on MRI in the marmoset EAE, and we outline the physiopathological significance and translational values of these studies with respect to MS. Accumulating evidences suggest that the application of conventional, as well as non-conventional, MRI techniques in the marmoset EAE is a promising approach to elucidate the pathological processes underlying the development of inflammatory demyelinated lesions in the central nervous system, potentially improving the identification and development of new therapeutics.
Collapse
Affiliation(s)
- Pietro Maggi
- Department of Neurology, Hôpital Erasme-Université libre de Bruxelles, Belgium
| | - Pascal Sati
- Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Luca Massacesi
- Department of Neurosciences, Drug Research, and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
27
|
Steinman L, Bar-Or A, Behne JM, Benitez-Ribas D, Chin PS, Clare-Salzler M, Healey D, Kim JI, Kranz DM, Lutterotti A, Martin R, Schippling S, Villoslada P, Wei CH, Weiner HL, Zamvil SS, Yeaman MR, Smith TJ. Restoring immune tolerance in neuromyelitis optica: Part I. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 3:e276. [PMID: 27648463 PMCID: PMC5015539 DOI: 10.1212/nxi.0000000000000276] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/15/2016] [Indexed: 02/06/2023]
Abstract
Neuromyelitis optica (NMO) and spectrum disorder (NMO/SD) represent a vexing process and its clinical variants appear to have at their pathogenic core the loss of immune tolerance to the aquaporin-4 water channel protein. This process results in a characteristic pattern of astrocyte dysfunction, loss, and demyelination that predominantly affects the spinal cord and optic nerves. Although several empirical therapies are currently used in the treatment of NMO/SD, none has been proven effective in prospective, adequately powered, randomized trials. Furthermore, most of the current therapies subject patients to long-term immunologic suppression that can cause serious infections and development of cancers. The following is the first of a 2-part description of several key immune mechanisms in NMO/SD that might be amenable to therapeutic restoration of immune tolerance. It is intended to provide a roadmap for how potential immune tolerance restorative techniques might be applied to patients with NMO/SD. This initial installment provides a background rationale underlying attempts at immune tolerization. It provides specific examples of innovative approaches that have emerged recently as a consequence of technical advances. In several autoimmune diseases, these strategies have been reduced to practice. Therefore, in theory, the identification of aquaporin-4 as the dominant autoantigen makes NMO/SD an ideal candidate for the development of tolerizing therapies or cures for this increasingly recognized disease.
Collapse
Affiliation(s)
- Larry Steinman
- Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto, CA; Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Forest Landing Court (H.L.W.), Rockville, MD; Ann Romney Center for Neurologic Diseases (S.S.Z.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (H.L.W.), University of California, San Francisco School of Medicine; Department of Medicine (S.S.Z.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism and Endocrine Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (T.J.S.)
| | - Amit Bar-Or
- Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto, CA; Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Forest Landing Court (H.L.W.), Rockville, MD; Ann Romney Center for Neurologic Diseases (S.S.Z.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (H.L.W.), University of California, San Francisco School of Medicine; Department of Medicine (S.S.Z.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism and Endocrine Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (T.J.S.)
| | - Jacinta M Behne
- Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto, CA; Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Forest Landing Court (H.L.W.), Rockville, MD; Ann Romney Center for Neurologic Diseases (S.S.Z.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (H.L.W.), University of California, San Francisco School of Medicine; Department of Medicine (S.S.Z.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism and Endocrine Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (T.J.S.)
| | - Daniel Benitez-Ribas
- Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto, CA; Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Forest Landing Court (H.L.W.), Rockville, MD; Ann Romney Center for Neurologic Diseases (S.S.Z.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (H.L.W.), University of California, San Francisco School of Medicine; Department of Medicine (S.S.Z.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism and Endocrine Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (T.J.S.)
| | - Peter S Chin
- Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto, CA; Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Forest Landing Court (H.L.W.), Rockville, MD; Ann Romney Center for Neurologic Diseases (S.S.Z.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (H.L.W.), University of California, San Francisco School of Medicine; Department of Medicine (S.S.Z.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism and Endocrine Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (T.J.S.)
| | - Michael Clare-Salzler
- Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto, CA; Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Forest Landing Court (H.L.W.), Rockville, MD; Ann Romney Center for Neurologic Diseases (S.S.Z.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (H.L.W.), University of California, San Francisco School of Medicine; Department of Medicine (S.S.Z.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism and Endocrine Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (T.J.S.)
| | - Donald Healey
- Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto, CA; Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Forest Landing Court (H.L.W.), Rockville, MD; Ann Romney Center for Neurologic Diseases (S.S.Z.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (H.L.W.), University of California, San Francisco School of Medicine; Department of Medicine (S.S.Z.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism and Endocrine Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (T.J.S.)
| | - James I Kim
- Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto, CA; Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Forest Landing Court (H.L.W.), Rockville, MD; Ann Romney Center for Neurologic Diseases (S.S.Z.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (H.L.W.), University of California, San Francisco School of Medicine; Department of Medicine (S.S.Z.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism and Endocrine Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (T.J.S.)
| | - David M Kranz
- Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto, CA; Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Forest Landing Court (H.L.W.), Rockville, MD; Ann Romney Center for Neurologic Diseases (S.S.Z.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (H.L.W.), University of California, San Francisco School of Medicine; Department of Medicine (S.S.Z.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism and Endocrine Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (T.J.S.)
| | - Andreas Lutterotti
- Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto, CA; Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Forest Landing Court (H.L.W.), Rockville, MD; Ann Romney Center for Neurologic Diseases (S.S.Z.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (H.L.W.), University of California, San Francisco School of Medicine; Department of Medicine (S.S.Z.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism and Endocrine Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (T.J.S.)
| | - Roland Martin
- Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto, CA; Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Forest Landing Court (H.L.W.), Rockville, MD; Ann Romney Center for Neurologic Diseases (S.S.Z.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (H.L.W.), University of California, San Francisco School of Medicine; Department of Medicine (S.S.Z.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism and Endocrine Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (T.J.S.)
| | - Sven Schippling
- Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto, CA; Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Forest Landing Court (H.L.W.), Rockville, MD; Ann Romney Center for Neurologic Diseases (S.S.Z.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (H.L.W.), University of California, San Francisco School of Medicine; Department of Medicine (S.S.Z.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism and Endocrine Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (T.J.S.)
| | - Pablo Villoslada
- Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto, CA; Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Forest Landing Court (H.L.W.), Rockville, MD; Ann Romney Center for Neurologic Diseases (S.S.Z.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (H.L.W.), University of California, San Francisco School of Medicine; Department of Medicine (S.S.Z.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism and Endocrine Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (T.J.S.)
| | - Cheng-Hong Wei
- Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto, CA; Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Forest Landing Court (H.L.W.), Rockville, MD; Ann Romney Center for Neurologic Diseases (S.S.Z.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (H.L.W.), University of California, San Francisco School of Medicine; Department of Medicine (S.S.Z.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism and Endocrine Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (T.J.S.)
| | - Howard L Weiner
- Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto, CA; Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Forest Landing Court (H.L.W.), Rockville, MD; Ann Romney Center for Neurologic Diseases (S.S.Z.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (H.L.W.), University of California, San Francisco School of Medicine; Department of Medicine (S.S.Z.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism and Endocrine Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (T.J.S.)
| | - Scott S Zamvil
- Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto, CA; Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Forest Landing Court (H.L.W.), Rockville, MD; Ann Romney Center for Neurologic Diseases (S.S.Z.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (H.L.W.), University of California, San Francisco School of Medicine; Department of Medicine (S.S.Z.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism and Endocrine Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (T.J.S.)
| | - Michael R Yeaman
- Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto, CA; Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Forest Landing Court (H.L.W.), Rockville, MD; Ann Romney Center for Neurologic Diseases (S.S.Z.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (H.L.W.), University of California, San Francisco School of Medicine; Department of Medicine (S.S.Z.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism and Endocrine Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (T.J.S.)
| | - Terry J Smith
- Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto, CA; Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Forest Landing Court (H.L.W.), Rockville, MD; Ann Romney Center for Neurologic Diseases (S.S.Z.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (H.L.W.), University of California, San Francisco School of Medicine; Department of Medicine (S.S.Z.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism and Endocrine Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (T.J.S.)
| |
Collapse
|
28
|
Abstract
The migration of an autoreactive CD4 T lymphocyte across the blood-brain barrier (BBB) represents a crucial step in the pathogenesis of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalitis (EAE). For a naive, autoreactive T lym phocyte to enter the CNS, it must first be activated by antigen presented by an anti gen-presenting cell in peripheral lymphoid tissue. Effector lymphocytes home to activated endothelium in the CNS and other tissues through the binding of the integrins very late antigen 4 (VLA-4) and leukocyte function antigen 1 (LFA-1) to vascular cell adhesion molecule (VCAM-1) and intercellular cell adhesion molecule (lCAM-1), respectmely. Al though VLA-4 and LFA-1 clearly mediate T cell recruitment in a region of established inflammation, the mechanisms of early lymphocyte entry prior to endothelial activation remain unclear. Here, it is hypothesized that initiation of an inflammatory focus in CNS autoimmune disease is mediated by a novel cell adhesion pathway that is VLA-4-inde pendent and permits autoreactive lymphocytes to randomly "blunder" into the brain. An understanding of these mechanisms is crucial to the development of antigen-nonspecific therapies for MS. NEUROSCIENTIST 3:207-210, 1997
Collapse
|
29
|
Abstract
The undesired destruction of healthy cells, either endogenous or transplanted, by the immune system results in the loss of tissue function or limits strategies to restore tissue function. Current therapies typically involve nonspecific immunosuppression that may prevent the appropriate response to an antigen, thereby decreasing humoral immunity and increasing the risks of patient susceptibility to opportunistic infections, viral reactivation, and neoplasia. The induction of antigen-specific immunological tolerance to block undesired immune responses to self- or allogeneic antigens, while maintaining the integrity of the remaining immune system, has the potential to transform the current treatment of autoimmune disease and serve as a key enabling technology for therapies based on cell transplantation.
Collapse
Affiliation(s)
- Xunrong Luo
- Department of Medicine, Division of Nephrology and Hypertension.,Comprehensive Cancer Center, and
| | - Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; ,
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109;
| |
Collapse
|
30
|
The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets. Lancet Neurol 2015; 15:198-209. [PMID: 26724103 DOI: 10.1016/s1474-4422(15)00334-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Identification of the target antigens of pathogenic antibodies and T cells is of fundamental importance for understanding the pathogenesis of multiple sclerosis, and for the development of personalised treatments for the disease. Myelin-specific CD4+ T cells emerged long ago as a key player in animal models of multiple sclerosis. Taking a forward-translational approach, autoreactive CD4+ T cells have been studied extensively in patients with multiple sclerosis, and there is evidence, but as yet no direct proof, that autoreactive CD4+ T cells are a key player in the pathogenesis of the disorder. Several therapies that selectively target myelin-specific CD4+ T cells have been investigated in clinical trials up to phase 3. So far, however, none of these (mostly underpowered) therapeutic trials have provided definitive evidence of clinical efficacy. One major obstacle to personalised, highly selective immunotherapy is the absence of standardised and reliable assays to assess antigen-specific human T-cell responses. Such assays would be essential for stratification of patients with multiple sclerosis according to their individual target antigens.
Collapse
|
31
|
Schultz-Darken N, Braun KM, Emborg ME. Neurobehavioral development of common marmoset monkeys. Dev Psychobiol 2015; 58:141-58. [PMID: 26502294 DOI: 10.1002/dev.21360] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/07/2015] [Indexed: 11/06/2022]
Abstract
Common marmoset (Callithrix jacchus) monkeys are a resource for biomedical research and their use is predicted to increase due to the suitability of this species for transgenic approaches. Identification of abnormal neurodevelopment due to genetic modification relies upon the comparison with validated patterns of normal behavior defined by unbiased methods. As scientists unfamiliar with nonhuman primate development are interested to apply genomic editing techniques in marmosets, it would be beneficial to the field that the investigators use validated methods of postnatal evaluation that are age and species appropriate. This review aims to analyze current available data on marmoset physical and behavioral postnatal development, describe the methods used and discuss next steps to better understand and evaluate marmoset normal and abnormal postnatal neurodevelopment.
Collapse
Affiliation(s)
- Nancy Schultz-Darken
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI
| | - Katarina M Braun
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI.,Medical Scientist Training Program, University of Wisconsin, Madison, WI
| | - Marina E Emborg
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI.,Medical Scientist Training Program, University of Wisconsin, Madison, WI.,Department of Medical Physics, University of Wisconsin, Madison, WI
| |
Collapse
|
32
|
Tolerance induction using nanoparticles bearing HY peptides in bone marrow transplantation. Biomaterials 2015; 76:1-10. [PMID: 26513216 DOI: 10.1016/j.biomaterials.2015.10.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/13/2015] [Accepted: 10/18/2015] [Indexed: 11/24/2022]
Abstract
Allogeneic cell therapies have either proven effective or have great potential in numerous applications, though the required systemic, life-long immunosuppression presents significant health risks. Inducing tolerance to allogeneic cells offers the potential to reduce or eliminate chronic immunosuppression. Herein, we investigated antigen-loaded nanoparticles for their ability to promote transplant tolerance in the minor histocompatibility antigen sex-mismatched C57BL/6 model of bone marrow transplantation. In this model, the peptide antigens Dby and Uty mediate rejection of male bone marrow transplants by female CD4+ and CD8+ T cells, respectively, and we investigated the action of nanoparticles on these T cell subsets. Antigens were coupled to or encapsulated within poly(lactide-co-glycolide) (PLG) nanoparticles with an approximate diameter of 500 nm. Delivery of the CD4-encoded Dby epitope either coupled to or encapsulated within PLG particles prevented transplant rejection, promoted donor-host chimerism, and suppressed proliferative and IFN-γ responses in tolerized recipients. Nanoparticles modified with the Uty peptide did not induce tolerance. The dosing regimen was investigated with Dby coupled particles, and a single dose delivered the day after bone marrow transplant was sufficient for tolerance induction. The engraftment of cells was significantly affected by PD-1/PDL-1 costimluation, as blockade of PD-1 reduced engraftment by ∼50%. In contrast, blockade of regulatory T cells did not impact the level of chimerism. The delivery of antigen on PLG nanoparticles promoted long-term engraftment of bone marrow in a model with a minor antigen mismatch in the absence of immunosuppression, and this represents a promising platform for developing a translatable, donor-specific tolerance strategy.
Collapse
|
33
|
Planas R, Metz I, Ortiz Y, Vilarrasa N, Jelčić I, Salinas-Riester G, Heesen C, Brück W, Martin R, Sospedra M. Central role of Th2/Tc2 lymphocytes in pattern II multiple sclerosis lesions. Ann Clin Transl Neurol 2015; 2:875-93. [PMID: 26401510 PMCID: PMC4574806 DOI: 10.1002/acn3.218] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/26/2015] [Accepted: 05/05/2015] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Multiple sclerosis (MS) is a disease of the central nervous system with marked heterogeneity in several aspects including pathological processes. Based on infiltrating immune cells, deposition of humoral factors and loss of oligodendrocytes and/or myelin proteins, four lesion patterns have been described. Pattern II is characterized by antibody and complement deposition in addition to T-cell infiltration. MS is considered a T-cell-mediated disease, but until now the study of pathogenic T cells has encountered major challenges, most importantly the limited access of brain-infiltrating T cells. Our objective was to identify, isolate, and characterize brain-infiltrating clonally expanded T cells in pattern II MS lesions. METHODS We used next-generation sequencing to identify clonally expanded T cells in demyelinating pattern II brain autopsy lesions, subsequently isolated these as T-cell clones from autologous cerebrospinal fluid and functionally characterized them. RESULTS We identified clonally expanded CD8(+) but also CD4(+) T cells in demyelinating pattern II lesions and for the first time were able to isolate these as live T-cell clones. The functional characterization shows that T cells releasing Th2 cytokines and able to provide B cell help dominate the T-cell infiltrate in pattern II brain lesions. INTERPRETATION Our data provide the first functional evidence for a putative role of Th2/Tc2 cells in pattern II MS supporting the existence of this pathogenic phenotype and questioning the protective role that is generally ascribed to Th2 cells. Our observations are important to consider for future treatments of pattern II MS patients.
Collapse
Affiliation(s)
- Raquel Planas
- Neuroimmunology and MS Research (nims), Department of Neurology, University ZurichFrauenklinikstrasse 26, 8091, Zürich, Switzerland
| | - Imke Metz
- Institute of Neuropathology, University Medical Center GöttingenGöttingen, Germany
| | - Yaneth Ortiz
- Neuroimmunology and MS Research (nims), Department of Neurology, University ZurichFrauenklinikstrasse 26, 8091, Zürich, Switzerland
| | - Nuria Vilarrasa
- Neuroimmunology and MS Research (nims), Department of Neurology, University ZurichFrauenklinikstrasse 26, 8091, Zürich, Switzerland
| | - Ilijas Jelčić
- Neuroimmunology and MS Research (nims), Department of Neurology, University ZurichFrauenklinikstrasse 26, 8091, Zürich, Switzerland
| | - Gabriela Salinas-Riester
- Department of Developmental Biochemistry, DNA Microarray and Deep-Sequencing Facility, Faculty of Medicine, University Medical Center GöttingenGöttingen, Germany
| | - Christoph Heesen
- Institute for Neuroimmunology and Clinical MS Research (inims), Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-EppendorfFalkenried 94, 20251, Hamburg, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center GöttingenGöttingen, Germany
| | - Roland Martin
- Neuroimmunology and MS Research (nims), Department of Neurology, University ZurichFrauenklinikstrasse 26, 8091, Zürich, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and MS Research (nims), Department of Neurology, University ZurichFrauenklinikstrasse 26, 8091, Zürich, Switzerland
| |
Collapse
|
34
|
Bing SJ, Ha D, Ahn G, Cho J, Kim A, Park SK, Yu HS, Jee Y. Galectin isolated from parasite inhibits remission of experimental autoimmune encephalomyelitis by up-regulating autoantibody. Clin Exp Immunol 2015; 180:419-31. [PMID: 25619397 DOI: 10.1111/cei.12594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/10/2015] [Accepted: 01/19/2015] [Indexed: 11/27/2022] Open
Abstract
Recently, parasite infections or parasite-derived products have been suggested as a therapeutic strategy with suppression of immunopathology, which involves the induction of regulatory T cells or/and T helper type 2 (Th2) responses. In a recent study, researchers reported that constructed recombinant galectin (rTl-gal) isolated from an adult worm of the gastrointestinal nematode parasite Toxascaris leonina attenuated clinical symptoms of inflammatory bowel disease in mice treated with dextran sulphate sodium. Noting the role of rTl-gal in inflammatory disease, we attempted to investigate the effect of the parasite via its rTl-gal on neuronal autoimmune disease using experimental autoimmune encephalomyelitis (EAE), a mouse inflammatory and demyelinating autoimmune disease model of human multiple sclerosis. In this model, rTl-gal-treated experimental autoimmune encephalomyelitis (EAE) mice failed to recover after the peak of the disease, leading to persistent central nervous system (CNS) damage, such as demyelination, gliosis and axonal damage. Further, rTl-gal-treated EAE mice markedly increased the number of CD45R/B220(+) B cells in both infiltrated inflammation and the periphery, along with the increased production of autoantibody [anti-myelin oligodendrocyte glycoprotein (MOG)35-55 ] in serum at chronic stage. Upon antigen restimulation, rTl-gal treatment affected the release of overall cytokines, especially interferon (IFN)-γ and tumour necrosis factor (TNF)-α. Our results suggest that galectin isolated from a gastrointestinal parasite can deliver a harmful effect to EAE contrary to its beneficial effect on inflammatory bowel disease.
Collapse
Affiliation(s)
- S J Bing
- Department of Veterinary Medicine and Institute for nuclear science & technology, Jeju National University, Jeju, South Korea
| | - D Ha
- Department of Veterinary Medicine and Institute for nuclear science & technology, Jeju National University, Jeju, South Korea
| | - G Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, South Korea
| | - J Cho
- Department of Veterinary Medicine and Institute for nuclear science & technology, Jeju National University, Jeju, South Korea
| | - A Kim
- Department of Advanced Convergence Technology & Science, Jeju National University, Jeju, South Korea
| | - S K Park
- Department of Parasitology, School of Medicine, Pusan National University, Yangsan, South Korea
| | - H S Yu
- Department of Parasitology, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Y Jee
- Department of Veterinary Medicine and Institute for nuclear science & technology, Jeju National University, Jeju, South Korea.,Department of Advanced Convergence Technology & Science, Jeju National University, Jeju, South Korea
| |
Collapse
|
35
|
Blocking stroke-induced immunodeficiency increases CNS antigen-specific autoreactivity but does not worsen functional outcome after experimental stroke. J Neurosci 2015; 35:7777-94. [PMID: 25995466 DOI: 10.1523/jneurosci.1532-14.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Stroke-induced immunodepression (SIDS) is an essential cause of poststroke infections. Pharmacological inhibition of SIDS appears promising in preventing life-threatening infections in stroke patients. However, SIDS might represent an adaptive mechanism preventing autoreactive immune responses after stroke. To address this, we used myelin oligodendrocyte glycoprotein (MOG) T-cell receptor transgenic (2D2) mice where >80% of peripheral CD4(+) T cells express a functional receptor for MOG. We investigated in a murine model of middle cerebral artery occlusion the effect of blocking SIDS by inhibiting body's main stress axes, the sympathetic nervous system (SNS) with propranolol and the hypothalamic-pituitary-adrenal axis (HPA) with mifepristone. Blockade of both stress axes robustly reduced infarct volumes, decreased infection rate, and increased long-term survival of 2D2 and C57BL/6J wild-type mice. Despite these protective effects, blockade of SIDS increased CNS antigen-specific Type1 T helper cell (Th1) responses in the brains of 2D2 mice 14 d after middle cerebral artery occlusion. One month after experimental stroke, 2D2 mice developed signs of polyradiculitis, which were diminished by SIDS blockade. Adoptive transfer of CD4(+) T cells, isolated from 2D2 mice, into lymphocyte-deficient Rag-1KO mice did not reveal differences between SIDS blockade and vehicle treatment in functional long-term outcome after stroke. In conclusion, inhibiting SIDS by pharmacological blockade of body's stress axes increases autoreactive CNS antigen-specific T-cell responses in the brain but does not worsen functional long-term outcome after experimental stroke, even in a mouse model where CNS antigen-specific autoreactive T-cell responses are boosted.
Collapse
|
36
|
Gupta S, Pfeil J, Kumar S, Poulsen C, Lauer U, Hamann A, Hoffmann U, Haag R. Tolerogenic modulation of the immune response by oligoglycerol- and polyglycerol-peptide conjugates. Bioconjug Chem 2015; 26:669-79. [PMID: 25757018 DOI: 10.1021/bc500608f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peptide-based therapy is a promising strategy for antigen-specific immunosuppression to treat or even heal autoimmune diseases with significantly reduced adverse effects compared to conventional therapies. However, there has been no major success due to the drawbacks of native peptides, i.e., limited bioavailability. Considering the importance and limitations of peptide-based therapies for treatment of autoimmune diseases, we designed and constructed oligoglycerol (OG)- and polyglycerol (PG)-based peptide conjugates. They were evaluated for their biological activity (in vitro and in vivo), bioavailability, and tolerogenic potential. Among the OG- and PG-peptide constructs, PG-peptide constructs exhibited an extended bioavailability compared to OG-peptide constructs and unconjugated peptide. Interestingly, size, structure, and linker chemistry played a critical role for the tolerogenic capacity of the constructs. The PG-peptide construct bound via an ester linkage was the most tolerogenic conjugate, while the PG-peptide construct bound via an amide induced stronger proliferation, but also higher TNF production and lower frequencies of Foxp3(+) regulatory T-cells. Therefore, we conclude that PG-peptide conjugates bound via an ester linkage are not only promising candidates for tolerogenic vaccination, but also open a new avenue toward the application of peptides for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Shilpi Gupta
- †Organic and Macromolecular Chemistry, Department of Chemistry and Biochemistry, Free University Berlin, Takustrasse 3, 14195 Berlin, Germany.,‡Department of Chemistry, Hindu College, Sonepat-131001, Haryana, India
| | - Jennifer Pfeil
- §Deutsches Rheuma-Forschungszentrum and Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sumit Kumar
- †Organic and Macromolecular Chemistry, Department of Chemistry and Biochemistry, Free University Berlin, Takustrasse 3, 14195 Berlin, Germany.,∥Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat-131039, Haryana, India
| | - Christina Poulsen
- §Deutsches Rheuma-Forschungszentrum and Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Uta Lauer
- §Deutsches Rheuma-Forschungszentrum and Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Alf Hamann
- §Deutsches Rheuma-Forschungszentrum and Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ute Hoffmann
- §Deutsches Rheuma-Forschungszentrum and Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Rainer Haag
- †Organic and Macromolecular Chemistry, Department of Chemistry and Biochemistry, Free University Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
37
|
Serra P, Santamaria P. Nanoparticle-based autoimmune disease therapy. Clin Immunol 2015; 160:3-13. [PMID: 25704658 DOI: 10.1016/j.clim.2015.02.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 01/10/2023]
Abstract
The goal of immunotherapy against autoimmunity is to block pathogenic inflammation without impairing immunity against infections and tumours. Regulatory T-cells (Tregs) play a central role in maintaining immune homeostasis, and autoimmune inflammation is frequently associated with decreased numbers and/or function of these T-cells. Therapies harnessing Tregs to treat autoimmune inflammation remain under-developed with caveats ranging from the lack of antigenic and disease specificity to the potential phenotypic and functional instability of in vitro-expanded Treg cells in vivo. Here, we review nanotechnology-based approaches designed to promote immune tolerance through various mechanisms, ranging from systemic or local suppression of antigen-presenting cells and deletion of antigen-specific T-cells, to the systemic expansion of antigen- and disease-specific Treg cells in vivo.
Collapse
Affiliation(s)
- Pau Serra
- Institut D'Investigacions Biomediques August Pi i Sunyer, Barcelona 08036, Spain.
| | - Pere Santamaria
- Institut D'Investigacions Biomediques August Pi i Sunyer, Barcelona 08036, Spain; Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cummings School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
38
|
Abstract
Autoimmune B cells play a major role in mediating tissue damage in multiple sclerosis (MS). In MS, B cells are believed to cross the blood-brain barrier and undergo stimulation, antigen-driven affinity maturation and clonal expansion within the supportive CNS environment. These highly restricted populations of clonally expanded B cells and plasma cells can be detected in MS lesions, in cerebrospinal fluid, and also in peripheral blood. In phase II trials in relapsing MS, monoclonal antibodies that target circulating CD20-positive B lymphocytes dramatically reduced disease activity. These beneficial effects occurred within weeks of treatment, indicating that a direct effect on B cells--and likely not on putative autoantibodies--was responsible. The discovery that depletion of B cells has an impact on MS biology enabled a paradigm shift in understanding how the inflammatory phase of MS develops, and will hopefully lead to development of increasingly selective therapies against culprit B cells and related humoral immune system pathways. More broadly, these studies illustrate how lessons learned from the bedside have unique power to inform translational research. They highlight the essential role of clinician scientists, currently endangered, who navigate the rocky and often unpredictable terrain between the worlds of clinical medicine and biomedical research.
Collapse
Affiliation(s)
- Stephen L Hauser
- Department of Neurology, University of California, San Francisco, USA
| |
Collapse
|
39
|
Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 2014; 74:5-17. [PMID: 25458968 DOI: 10.1016/j.cyto.2014.09.011] [Citation(s) in RCA: 781] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
Abstract
CD4(+) T helper (Th) cells are critical for proper immune cell homeostasis and host defense, but are also major contributors to pathology of autoimmune and inflammatory diseases. Since the discovery of the Th1/Th2 dichotomy, many additional Th subsets were discovered, each with a unique cytokine profile, functional properties, and presumed role in autoimmune tissue pathology. This includes Th1, Th2, Th17, Th22, Th9, and Treg cells which are characterized by specific cytokine profiles. Cytokines produced by these Th subsets play a critical role in immune cell differentiation, effector subset commitment, and in directing the effector response. Cytokines are often categorized into proinflammatory and anti-inflammatory cytokines and linked to Th subsets expressing them. This article reviews the different Th subsets in terms of cytokine profiles, how these cytokines influence and shape the immune response, and their relative roles in promoting pathology in autoimmune and inflammatory diseases. Furthermore, we will discuss whether Th cell pathogenicity can be defined solely based on their cytokine profiles and whether rigid definition of a Th cell subset by its cytokine profile is helpful.
Collapse
Affiliation(s)
- Itay Raphael
- Department of Biology, University of Texas at San Antonio, TX 78249, United States
| | - Saisha Nalawade
- Department of Biology, University of Texas at San Antonio, TX 78249, United States
| | - Todd N Eagar
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, TX 77030, United States
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, TX 78249, United States.
| |
Collapse
|
40
|
Jones TB. Lymphocytes and autoimmunity after spinal cord injury. Exp Neurol 2014; 258:78-90. [PMID: 25017889 DOI: 10.1016/j.expneurol.2014.03.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 12/23/2022]
Abstract
Over the past 15 years an immense amount of data has accumulated regarding the infiltration and activation of lymphocytes in the traumatized spinal cord. Although the impact of the intraspinal accumulation of lymphocytes is still unclear, modulation of the adaptive immune response via active and passive vaccination is being evaluated for its preclinical efficacy in improving the outcome for spinal-injured individuals. The complexity of the interaction between the nervous and the immune systems is highlighted in the contradictions that appear in response to these modulations. Current evidence regarding augmentation and inhibition of the adaptive immune response to spinal cord injury is reviewed with an aim toward reconciling conflicting data and providing consensus issues that may be exploited in future therapies. Opportunities such an approach may provide are highlighted as well as the obstacles that must be overcome before such approaches can be translated into clinical trials.
Collapse
Affiliation(s)
- T Bucky Jones
- Department of Anatomy, Arizona College of Medicine, Midwestern University, Glendale, AZ, USA.
| |
Collapse
|
41
|
Stüve O, Cravens PD, Eagar TN. DNA-based vaccines: the future of multiple sclerosis therapy? Expert Rev Neurother 2014; 8:351-60. [DOI: 10.1586/14737175.8.3.351] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Antigen-specific gene therapy after immunisation reduces the severity of collagen-induced arthritis. Clin Dev Immunol 2013; 2013:345092. [PMID: 24371448 PMCID: PMC3858880 DOI: 10.1155/2013/345092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 10/25/2013] [Indexed: 12/02/2022]
Abstract
Reestablishment of tolerance induction in rheumatoid arthritis (RA) would be an optimal treatment with few, if any, side effects. However, to develop such a treatment further insights in the immunological mechanisms governing tolerance are needed. We have developed a model of antigen-specific tolerance in collagen type II (CII) induced arthritis (CIA) using lentivirus-based gene therapy. The immunodominant epitope of CII was inserted into a lentivirus vector to achieve expression on the MHC class II molecule and the lentiviral particles were subsequently intravenously injected at different time points during CIA. Injection of lentiviral particles in early phases of CIA, that is, at day 7 or day 26 after CII immunisation, partially prevented development of arthritis, decreased the serum levels of CII-specific IgG antibodies, and enhanced the suppressive function of CII-specific T regulatory cells. When lentiviral particles were injected during manifest arthritis, that is, at day 31 after CII immunisation, the severity of arthritis progression was ameliorated, the levels of CII-specific IgG antibodies decreased and the proportion of T regulatory cells increased. Thus, antigen-specific gene therapy is effective when administered throughout the inflammatory course of arthritis and offers a good model for investigation of the basic mechanisms during tolerance in CIA.
Collapse
|
43
|
Possible involvement of TLRs and hemichannels in stress-induced CNS dysfunction via mastocytes, and glia activation. Mediators Inflamm 2013; 2013:893521. [PMID: 23935250 PMCID: PMC3713603 DOI: 10.1155/2013/893521] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/16/2013] [Accepted: 06/11/2013] [Indexed: 12/13/2022] Open
Abstract
In the central nervous system (CNS), mastocytes and glial cells (microglia, astrocytes and oligodendrocytes) function as sensors of neuroinflammatory conditions, responding to stress triggers or becoming sensitized to subsequent proinflammatory challenges. The corticotropin-releasing hormone and glucocorticoids are critical players in stress-induced mastocyte degranulation and potentiation of glial inflammatory responses, respectively. Mastocytes and glial cells express different toll-like receptor (TLR) family members, and their activation via proinflammatory molecules can increase the expression of connexin hemichannels and pannexin channels in glial cells. These membrane pores are oligohexamers of the corresponding protein subunits located in the cell surface. They allow ATP release and Ca2+ influx, which are two important elements of inflammation. Consequently, activated microglia and astrocytes release ATP and glutamate, affecting myelinization, neuronal development, and survival. Binding of ligands to TLRs induces a cascade of intracellular events leading to activation of several transcription factors that regulate the expression of many genes involved in inflammation. During pregnancy, the previous responses promoted by viral infections and other proinflammatory conditions are common and might predispose the offspring to develop psychiatric disorders and neurological diseases. Such disorders could eventually be potentiated by stress and might be part of the etiopathogenesis of CNS dysfunctions including autism spectrum disorders and schizophrenia.
Collapse
|
44
|
Flytzani S, Stridh P, Guerreiro-Cacais AO, Marta M, Hedreul MT, Jagodic M, Olsson T. Anti-MOG antibodies are under polygenic regulation with the most significant control coming from the C-type lectin-like gene locus. Genes Immun 2013; 14:409-19. [DOI: 10.1038/gene.2013.33] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/07/2013] [Accepted: 05/07/2013] [Indexed: 01/29/2023]
|
45
|
Zonneveld-Huijssoon E, Albani S, Prakken BJ, van Wijk F. Heat shock protein bystander antigens for peptide immunotherapy in autoimmune disease. Clin Exp Immunol 2013. [PMID: 23199319 DOI: 10.1111/j.1365-2249.2012.04627.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mucosal administration of an antigen eliciting bystander suppression at the site of inflammation results in effective antigen-specific immunotherapy for autoimmune diseases. Heat shock proteins are bystander antigens that are effective in peptide-specific immunotherapy in both experimental and human autoimmune disease. The efficacy of preventive peptide immunotherapy is increased by enhancing peptide-specific immune responses with proinflammatory agents. Combining peptide-specific immunotherapy with general suppression of inflammation may improve its therapeutic effect.
Collapse
Affiliation(s)
- E Zonneveld-Huijssoon
- Department of Pediatric Immunology, Centre for Cellular and Molecular Intervention, University Medical Centre Utrecht, Utrecht, the Netherlands
| | | | | | | |
Collapse
|
46
|
Abstract
Vaccination is the administration of antigenic material to stimulate the immune system to develop adaptive immunity to a disease. As the most successful prophylactic in medical history, there is now an emerging interest as to whether vaccination can be applied in autoimmune and inflammatory conditions. These are diseases of failed immune regulation; vaccination in this context aims to exploit the power of antigenic material to stimulate immune homeostasis in the form of active, adaptive, regulatory immune responses. Type 1 diabetes is an autoimmune disease that could benefit from the therapeutic potential of vaccination. The major conditions necessary to make prophylaxis feasible are in place; the self antigens are known, the failure of existing immune regulation has been demonstrated, early studies of vaccine approaches have proved safe, and the preclinical prodrome of the disease can be easily detected by simple blood tests. Challenges for future implementation include finding the best mode of delivery and the best blend of adjunctive therapies that create the favorable conditions required for a vaccine to be effective.
Collapse
Affiliation(s)
- Mark Peakman
- Department of Immunobiology, King's College London and National Institute for Health Research Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT UK
| |
Collapse
|
47
|
Abstract
Immunity and inflammation are key elements of the pathobiology of stroke, a devastating illness second only to cardiac ischemia as a cause of death worldwide. The immune system participates in the brain damage produced by ischemia, and the damaged brain, in turn, exerts an immunosuppressive effect that promotes fatal infections that threaten the survival of people after stroke. Inflammatory signaling is involved in all stages of the ischemic cascade, from the early damaging events triggered by arterial occlusion to the late regenerative processes underlying post-ischemic tissue repair. Recent developments have revealed that stroke engages both innate and adaptive immunity. But adaptive immunity triggered by newly exposed brain antigens does not have an impact on the acute phase of the damage. Nevertheless, modulation of adaptive immunity exerts a remarkable protective effect on the ischemic brain and offers the prospect of new stroke therapies. As immunomodulation is not devoid of deleterious side effects, a better understanding of the reciprocal interaction between the immune system and the ischemic brain is essential to harness the full therapeutic potential of the immunology of stroke.
Collapse
Affiliation(s)
- Costantino Iadecola
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, New York, USA.
| | | |
Collapse
|
48
|
Savos AV, Gee JM, Zierath D, Becker KJ. α-MSH: a potential neuroprotective and immunomodulatory agent for the treatment of stroke. J Cereb Blood Flow Metab 2011; 31:606-13. [PMID: 20700130 PMCID: PMC3049515 DOI: 10.1038/jcbfm.2010.130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alpha-melanocyte-stimulating hormone (MSH) is a neuropeptide with profound immunomodulatory properties; we evaluated the effects of α-MSH on stroke outcome and its ability to modulate the postischemic immune response. In Lewis rats subjected to 3 hours of middle cerebral artery occlusion (MCAO), plasma concentrations of α-MSH rapidly decreased and returned to baseline over the course of days. Exogenous administration of α-MSH (100 or 500 μg/kg) improved 24 hour outcome in animals subjected to 2 hours MCAO; α-MSH 500 μg/kg also decreased infarct volume at this time point. Both doses of α-MSH were ineffective in improving outcome or decreasing infarct volume in animals subjected to 3 hours MCAO. The splenocyte response to phytohemagglutin in animals treated with α-MSH was attenuated at 24 hours after MCAO. At 1 month after MCAO, treatment with α-MSH 500 μg/kg at the time of stoke was associated with a decrease in TH1 response to myelin basic protein (MBP) in animals subjected to 2 hours MCAO, although treatment was not associated with improved outcome at this time point. Given the early benefits of α-MSH treatment and its effect on immunologic outcome, further studies to evaluate the utility of α-MSH for the treatment of cerebral ischemia are warranted.
Collapse
Affiliation(s)
- Anna V Savos
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| | | | | | | |
Collapse
|
49
|
Andersson M, Khademi M, Wallström E, Olsson T. Cytokine profile in interferon-β treated multiple sclerosis patients: reduction of interleukin-10 mRNA expressing cells in peripheral blood. Eur J Neurol 2011. [DOI: 10.1111/j.1468-1331.1997.tb00407.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Jones JL, Coles AJ. New treatment strategies in multiple sclerosis. Exp Neurol 2010; 225:34-9. [PMID: 20547155 DOI: 10.1016/j.expneurol.2010.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 05/27/2010] [Accepted: 06/07/2010] [Indexed: 02/02/2023]
Abstract
Multiple sclerosis is the most common, non-traumatic, disabling neurological disease of young adults, affecting an estimated two million people worldwide. At onset multiple sclerosis can be categorised clinically into relapsing remitting MS (RRMS - 85-90% of patients) or primary progressive MS (PPMS). Relapses typically present sub-acutely over hours to days with neurological symptoms persisting for days to weeks before they gradually dissipate. At first full recovery is the norm, later patients accumulate deficits and ultimately most convert to a secondary progressive phase (SPMS), characterised by deficits that increase in the absence of further relapses. The clinical picture reflects the complex interplay of focal inflammation, demyelination and axonal degeneration occurring within the central nervous system. Since the introduction of a genuine disease-modifying drug, interferon-beta1b in 1993, there has been a growing interest from academia and pharmaceutical companies alike in multiple sclerosis therapy. In part this effort has focused on investigating the "window of therapeutic opportunity" within the natural history of the disease: it is becoming increasingly clear that immunotherapies are not useful in the secondary phase of the disease but may offer long-term benefit if given early in the relapsing-remitting phase. In part, attention is being paid to the details of dosing and administration of the various licensed therapies, but there is also a significant research effort to explore new ways to treat the disease. In this review, we first sketch the landscape of novel therapies in multiple sclerosis and then discuss in detail approaches which are likely to emerge over the next few years.
Collapse
Affiliation(s)
- Joanne L Jones
- Dept. of Clinical Neurosciences, Box 165 Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| | | |
Collapse
|