1
|
Bleyer A, Barnes B, Stuyt E, Voth EA, Finn K. Cannabis and the overdose crisis among US adolescents. Am J Addict 2025; 34:327-333. [PMID: 39563651 DOI: 10.1111/ajad.13669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/04/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Since 2019, the drug overdose death rate among adolescents 14-18 years of age in the United States more than doubled. That cannabis legalization may have contributed to this tragedy is investigated by comparing the death rate in jurisdictions that have legalized medicinal or both medicinal and recreational use with those that have not. METHODS Unintentional drug overdose death data for each state and District of Columbia (jurisdictions) were obtained from CDC WONDER and separately evaluated according to the jurisdiction legalization implementation of cannabis: recreational legalization, medicinal legalization but not recreational legalization, and nonlegalization. RESULTS After a decade of similar and decreasing overdose death rates, jurisdictions that implemented cannabis legalization had a statistically significant greater increase in overdose deaths than nonlegalizing states. Those that implemented recreational legalization had the greatest increase, in which the rate was 88%, 479%, and 115% greater in 2019, 2020, and 2021, respectively, than in nonlegalizing jurisdictions. The overdose death rate versus cannabis legalization correlations are apparent in both females and males and in White, Black, and Hispanic individuals, and a statistically significant greater rate increases between recreational cannabis legalization implementation and nonlegalization. CONCLUSION AND SCIENTIFIC SIGNIFICANCE Legalization of cannabis is associated with overdose deaths in American adolescents, especially recreational legalization, and regardless of sex or White-Black-Hispanic race/ethnicity. Cause and effect relationships of these previously unreported correlations, if verified, merit investigation of biologic and psychosocial mechanisms, interventions, and prevention strategies.
Collapse
Affiliation(s)
- Archie Bleyer
- Department of Radiation Medicine and Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
- Department of Pediatrics, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Brian Barnes
- Palliative Care and Hospice Operations, St. Charles Healthcare System, Bend, Oregon, USA
| | - Elizabeth Stuyt
- International Academy on the Science and Impact of Cannabis-IASIC, Topeka, Kansas, USA
| | - Eric A Voth
- International Academy on the Science and Impact of Cannabis-IASIC, Salida, Colorado, USA
| | - Kenneth Finn
- International Academy on the Science and Impact of Cannabis-IASIC; Volunteer Faculty Member, University of Colorado Medical School, Colorado Springs, Colorado, USA
| |
Collapse
|
2
|
Hubbard E, Derdeyn P, Galinato VM, Wu A, Bartas K, Mahler SV, Beier KT. Neural basis of adolescent THC-induced potentiation of opioid responses later in life. Neuropsychopharmacology 2025; 50:818-827. [PMID: 39658631 PMCID: PMC11914220 DOI: 10.1038/s41386-024-02033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024]
Abstract
Use of one addictive drug typically influences the behavioral response to other drugs, either administered at the same time or a subsequent time point. The nature of the drugs being used, as well as the timing and dosing, also influence how these drugs interact. Here, we tested the effects of adolescent THC exposure on the development of morphine-induced behavioral adaptations following repeated morphine exposure during adulthood. We found that adolescent THC administration paradoxically prevented the development of anxiety-related behaviors that emerge during a forced abstinence period following morphine administration but facilitated reinstatement of morphine CPP. Following forced abstinence, we then mapped the whole-brain response to a moderate dose of morphine and found that adolescent THC administration led to an overall increase in brain-wide neuronal activity and increased the functional connectivity between frontal cortical regions and the ventral tegmental area. Last, we show using rabies virus-based circuit mapping that adolescent THC exposure triggers a long-lasting elevation in connectivity from the frontal cortex regions onto ventral tegmental dopamine cells. Our study adds to the rich literature on the interaction between drugs, including THC and opioids, and provides potential neural substates by which adolescent THC exposure influences responses to morphine later in life.
Collapse
Affiliation(s)
- Elizabeth Hubbard
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Pieter Derdeyn
- Program in Mathematical, Computational, and Systems Biology, University of California, Irvine, CA, USA
| | | | - Andrew Wu
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Katrina Bartas
- Program in Mathematical, Computational, and Systems Biology, University of California, Irvine, CA, USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA.
| |
Collapse
|
3
|
Kumar U. Cannabinoids: Role in Neurological Diseases and Psychiatric Disorders. Int J Mol Sci 2024; 26:152. [PMID: 39796008 PMCID: PMC11720483 DOI: 10.3390/ijms26010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
An impact of legalization and decriminalization of marijuana is the gradual increase in the use of cannabis for recreational purposes, which poses a potential threat to society and healthcare systems worldwide. However, the discovery of receptor subtypes, endogenous endocannabinoids, and enzymes involved in synthesis and degradation, as well as pharmacological characterization of receptors, has led to exploration of the use of cannabis in multiple peripheral and central pathological conditions. The role of cannabis in the modulation of crucial events involving perturbed physiological functions and disease progression, including apoptosis, inflammation, oxidative stress, perturbed mitochondrial function, and the impaired immune system, indicates medicinal values. These events are involved in most neurological diseases and prompt the gradual progression of the disease. At present, several synthetic agonists and antagonists, in addition to more than 70 phytocannabinoids, are available with distinct efficacy as a therapeutic alternative in different pathological conditions. The present review aims to describe the use of cannabis in neurological diseases and psychiatric disorders.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
4
|
Le Foll B, Tang VM, Rueda S, Trick LV, Boileau I. Cannabis use disorder: from neurobiology to treatment. J Clin Invest 2024; 134:e172887. [PMID: 39403927 PMCID: PMC11473150 DOI: 10.1172/jci172887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Cannabis has been legalized for medical and recreational purposes in multiple countries. A large number of people are using cannabis and some will develop cannabis use disorder (CUD). There is a growing recognition that CUD requires specific interventions. This Review will cover this topic from a variety of perspectives, with a particular emphasis on neurobiological findings and innovative treatment approaches that are being pursued. We will first describe the epidemiology and burden of disease of CUD, including risk factors associated with CUD (both in terms of general risk and genetic risk variants). Neurobiological alterations identified in brain imaging studies will be presented. Several psychosocial interventions that are useful for the management of CUD, including motivational enhancement therapy, behavioral and cognitive therapy, and contingency management, will be covered. Although no pharmacological interventions are yet approved for CUD, we present the most promising pharmacological interventions being tested.
Collapse
Affiliation(s)
- Bernard Le Foll
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Sciences
- Department of Psychiatry, and
- Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Victor M. Tang
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Sciences
- Department of Psychiatry, and
| | - Sergio Rueda
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Sciences
- Department of Psychiatry, and
| | - Leanne V. Trick
- Department of Psychology, Durham University, Durham, United Kingdom
| | - Isabelle Boileau
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Sciences
- Department of Psychiatry, and
- Brain Health Imaging Centre, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Basso V, Döbrössy MD, Thompson LH, Kirik D, Fuller HR, Gates MA. State of the Art in Sub-Phenotyping Midbrain Dopamine Neurons. BIOLOGY 2024; 13:690. [PMID: 39336117 PMCID: PMC11428604 DOI: 10.3390/biology13090690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Dopaminergic neurons in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNpc) comprise around 75% of all dopaminergic neurons in the human brain. While both groups of dopaminergic neurons are in close proximity in the midbrain and partially overlap, development, function, and impairments in these two classes of neurons are highly diverse. The molecular and cellular mechanisms underlying these differences are not yet fully understood, but research over the past decade has highlighted the need to differentiate between these two classes of dopaminergic neurons during their development and in the mature brain. This differentiation is crucial not only for understanding fundamental circuitry formation in the brain but also for developing therapies targeted to specific dopaminergic neuron classes without affecting others. In this review, we summarize the state of the art in our understanding of the differences between the dopaminergic neurons of the VTA and the SNpc, such as anatomy, structure, morphology, output and input, electrophysiology, development, and disorders, and discuss the current technologies and methods available for studying these two classes of dopaminergic neurons, highlighting their advantages, limitations, and the necessary improvements required to achieve more-precise therapeutic interventions.
Collapse
Affiliation(s)
- Valentina Basso
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Máté D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Lachlan H Thompson
- Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (B.R.A.I.N.S) Unit, Department of Experimental Medical Science, Lund University, BMC D11, 22184 Lund, Sweden
| | - Heidi R Fuller
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Monte A Gates
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
| |
Collapse
|
6
|
Xu Y, Lin Y, Yu M, Zhou K. The nucleus accumbens in reward and aversion processing: insights and implications. Front Behav Neurosci 2024; 18:1420028. [PMID: 39184934 PMCID: PMC11341389 DOI: 10.3389/fnbeh.2024.1420028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions. This review aims to provide comprehensive and up-to-date insights on the role of the NAc in motivated behavior regulation and highlights areas that demand further in-depth analysis. It synthesizes the latest findings on how distinct NAc neuronal populations and pathways contribute to the processing of opposite valences. The review examines how a range of neuromodulators, especially monoamines, influence the NAc's control over various motivational states. Furthermore, it delves into the complex underlying mechanisms of psychiatric disorders such as addiction and depression and evaluates prospective interventions to restore NAc functionality.
Collapse
Affiliation(s)
| | | | | | - Kuikui Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
7
|
Galaj E, Bi GH, Xi ZX. β-caryophyllene inhibits heroin self-administration, but does not alter opioid-induced antinociception in rodents. Neuropharmacology 2024; 252:109947. [PMID: 38631564 DOI: 10.1016/j.neuropharm.2024.109947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
A growing body of research indicates that β-caryophyllene (BCP), a constituent present in a large number of plants, possesses significant therapeutic properties against CNS disorders, including alcohol and psychostimulant use disorders. However, it is unknown whether BCP has similar therapeutic potential for opioid use disorders. In this study, we found that systemic administration of BCP dose-dependently reduced heroin self-administration in rats under an FR2 schedule of reinforcement and partially blocked heroin-enhanced brain stimulation reward in DAT-cre mice, maintained by optical stimulation of midbrain dopamine neurons at high frequencies. Acute administration of BCP failed to block heroin conditioned place preference (CPP) in male mice, but attenuated heroin-induced CPP in females. Furthermore, repeated dosing with BCP for 5 days facilitated the extinction of CPP in female but not male mice. In the hot plate assay, pretreatment with the same doses of BCP failed to enhance or prolong opioid antinociception. Lastly, in a substitution test, BCP replacement for heroin failed to maintain intravenous BCP self-administration, suggesting that BCP itself has no reinforcing properties. These findings suggest that BCP may have certain therapeutic effects against opioid use disorders with fewer unwanted side-effects by itself.
Collapse
Affiliation(s)
- Ewa Galaj
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA.
| | - Guo-Hua Bi
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
8
|
Bakewell B, Johnson M, Lee M, Tchernogorova E, Taysom J, Zhong Q. Drug-induced musical hallucination. Front Pharmacol 2024; 15:1401237. [PMID: 38841376 PMCID: PMC11150696 DOI: 10.3389/fphar.2024.1401237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Musical hallucination is a rare perceptual phenomenon wherein individuals hear music in the absence of external auditory stimuli. This phenomenon occurs across diverse medical conditions and can be triggered by some drugs. The underlying mechanism of drug-induced hallucination is unknown. This study explores drug-induced musical hallucination through a literature review, aiming to investigate its pathophysiology and potential treatment modalities. A literature search was conducted until January 2024 using databases PubMed, WorldCat, Google Scholar, and DOAJ, with keywords "drugs induced musical hallucination" or "drugs" combined with "musical hallucination." The search yielded 24 articles which met inclusion criteria, encompassing 27 cases. The average patient age was 58.3 years, with 67.9% females. Prevalent conditions among cases included hearing impairments, psychiatric disorders, cancers, and neurodegenerative conditions. Common trigger drugs comprised antidepressants, opioids, anti-Parkinson drugs, ketamine, and voriconazole. Musical hallucination descriptions varied widely, and 6 patients reported concurrent visual hallucinations. The onset of symptoms ranged from 75 min to 240 days. Treatment strategies included termination of trigger drugs, dosage reduction, alteration of administration routes or formula, switching to similar drugs, or addition of antidepressants, sedatives, or atypical antipsychotic medications. Musical hallucinations completely disappeared in 24/27 (88.9%) patients but continued in 3/27 (11.1%) patients. The current study concludes that drug-induced musical hallucination may arise from altering neurotransmitter/receptor balance and intricate interactions between trigger drugs and underlying conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Qing Zhong
- Rocky Vista University College of Osteopathic Medicine, Ivins, UT, United States
| |
Collapse
|
9
|
Baddenhausen S, Lutz B, Hofmann C. Cannabinoid type-1 receptor signaling in dopaminergic Engrailed-1 expressing neurons modulates motivation and depressive-like behavior. Front Mol Neurosci 2024; 17:1379889. [PMID: 38660383 PMCID: PMC11042029 DOI: 10.3389/fnmol.2024.1379889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
The endocannabinoid system comprises highly versatile signaling functions within the nervous system. It is reported to modulate the release of several neurotransmitters, consequently affecting the activity of neuronal circuits. Investigations have highlighted its roles in numerous processes, including appetite-stimulating characteristics, particularly for palatable food. Moreover, endocannabinoids are shown to fine-tune dopamine-signaled processes governing motivated behavior. Specifically, it has been demonstrated that excitatory and inhibitory inputs controlled by the cannabinoid type 1 receptor (CB1) regulate dopaminergic neurons in the mesocorticolimbic pathway. In the present study, we show that mesencephalic dopaminergic (mesDA) neurons in the ventral tegmental area (VTA) express CB1, and we investigated the consequences of specific deletion of CB1 in cells expressing the transcription factor Engrailed-1 (En1). To this end, we validated a new genetic mouse line EN1-CB1-KO, which displays a CB1 knockout in mesDA neurons beginning from their differentiation, as a tool to elucidate the functional contribution of CB1 in mesDA neurons. We revealed that EN1-CB1-KO mice display a significantly increased immobility time and shortened latency to the first immobility in the forced swim test of adult mice. Moreover, the maximal effort exerted to obtain access to chocolate-flavored pellets was significantly reduced under a progressive ratio schedule. In contrast, these mice do not differ in motor skills, anhedonia- or anxiety-like behavior compared to wild-type littermates. Taken together, these findings suggest a depressive-like or despair behavior in an inevitable situation and a lack of motivation to seek palatable food in EN1-CB1-KO mice, leading us to propose that CB1 plays an important role in the physiological functions of mesDA neurons. In particular, our data suggest that CB1 directly modifies the mesocorticolimbic pathway implicated in depressive-like/despair behavior and motivation. In contrast, the nigrostriatal pathway controlling voluntary movement seems to be unaffected.
Collapse
Affiliation(s)
- Sarah Baddenhausen
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Clementine Hofmann
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
10
|
Bleyer A, Barnes B, Finn K. United States marijuana legalization and opioid mortality trends before and during the first year of the COVID-19 pandemic. J Opioid Manag 2024; 20:119-132. [PMID: 38700393 DOI: 10.5055/jom.0829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
BACKGROUND To determine if marijuana legalization was associated with reduced opioid mortality. STUDY DESIGN The United States (US) opioid mortality trend during the 2010-2019 decade was compared in states and District of Columbia (jurisdictions) that had implemented marijuana legalization with states that had not. Acceleration of opioid mortality during 2020, the first year of the coronavirus disease 2019 (COVID-19) pandemic, was also compared in recreational and medicinal-only legalizing jurisdictions. METHODS Joinpoint methodology was applied to the Centers for Disease Control and Prevention WONDER data. Trends in legalizing jurisdictions were cumulative aggregates. RESULTS The overall opioid and fentanyl death rates and the percentage of opioid deaths due to fentanyl increased more during 2010-2019 in jurisdictions that legalized marijuana than in those that did not (pairwise comparison p = 0.007, 0.05, and 0.006, respectively). By 2019, the all-opioid and fentanyl death rates were 44 and 50 percent greater in the legalizing than in the nonlegalizing jurisdictions, respectively. When the COVID-19 pandemic hit in 2020, jurisdictions that implemented recreational marijuana legalization before 2019 had significantly greater increases in both overall opioid and fentanyl death rates than jurisdictions with medicinal-only legalization. For all-opioids, the mean (95 percent confidence interval) 2019-to-2020 increases were 46.5 percent (36.6, 56.3 percent) and 29.1 percent (20.2, 37.9 percent), respectively (p = 0.02). For fentanyl, they were 115.6 percent (80.2, 151.6 percent) and 55.4 percent (31.6, 79.2 percent), respectively (p = 0.01). CONCLUSIONS During the past decade, marijuana legalization in the US was associated at the jurisdiction level with a greater acceleration in opioid death rate. An even greater increase in opioid mortality occurred in recreational-legalizing jurisdictions with the onset of the COVID-19 pandemic. Marijuana legalization is correlated with worsening of the US opioid epidemic.
Collapse
Affiliation(s)
- Archie Bleyer
- Oregon Health and Science University, Portland, Oregon; University of Texas McGovern Medical School, Houston, Texas. ORCID: https://orcid.org/0000-0001-7738-5146
| | - Brian Barnes
- St. Charles Healthcare System, Bend, Oregon; PhD Candidate, Integral and Transpersonal Psychology, California Institute of Integral Studies, San Francisco, California
| | - Kenneth Finn
- Springs Rehabilitation, Colorado Springs, Colorado
| |
Collapse
|
11
|
Moore CF, Davis CM, Sempio C, Klawitter J, Christians U, Weerts EM. Δ 9-Tetrahydrocannabinol Vapor Exposure Produces Conditioned Place Preference in Male and Female Rats. Cannabis Cannabinoid Res 2024; 9:111-120. [PMID: 36179013 PMCID: PMC10874829 DOI: 10.1089/can.2022.0175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The use of place conditioning procedures and drug vapor exposure models can increase our understanding of the rewarding and aversive effects of vaped cannabis products. Currently there are limited data on the conditioned rewarding effects of vaporized Δ9-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis in rats, and no studies to date examining sex differences. Methods: Male and female Sprague-Dawley rats (N=96; 12 per sex/group) underwent place conditioning sessions immediately after exposure to THC or vehicle (propylene glycol [PG]) vapor. Locomotor activity was measured by beam breaks during conditioning sessions. THC vapor-conditioned rats received one of three THC vapor exposure amounts (low: 5 puffs of 100 mg/mL THC, medium: 5 puffs of 200 mg/mL THC, or high: 10 puffs of 200 mg/mL THC) and matched vehicle vapor (PG) exposure on alternate days for 16 daily sessions. A "no THC" control group of vehicle-conditioned rats received only PG vapor exposure each day. After the 8th and 16th conditioning sessions, untreated rats were tested for conditioned place preference (CPP) or aversion (CPA). Next, extinction tests and a THC vapor-primed reinstatement test were conducted. Results: THC vapor produced CPP and locomotor effects in an exposure dependent manner, and some sex differences were observed. Low THC vapor exposure did not produce CPP in males or females. Medium THC vapor exposure produced CPP in males, but not females. High THC vapor exposure produced CPP in both males and females. Medium and high THC vapor exposure amounts produced hyperactivity in female rats, but not male rats. CPP was more resistant to extinction in females than males. THC vapor reexposure (i.e., drug-prime) after extinction did not result in reinstatement of CPP for either sex. Conclusion: This study demonstrates conditioned rewarding effects of THC vapor in both male and female rats and provides evidence for sex differences in amounts of THC vapor that produce CPP and in time to extinction. CPA was not observed at any of the THC vapor exposure amounts tested. These data provide a foundation for future exploration of the conditioned effects of cannabis constituents and extracts using vapor exposure models.
Collapse
Affiliation(s)
- Catherine F. Moore
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Catherine M. Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Cristina Sempio
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jost Klawitter
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Uwe Christians
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elise M. Weerts
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Miller G, Pareek O, Penman SL, Thanos PK. The Effects of Nicotine and Cannabinoids on Cytokines. Curr Pharm Des 2024; 30:2468-2484. [PMID: 38859790 DOI: 10.2174/0113816128293077240529111824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND The usage of nicotine and cannabinoids has rapidly grown in popularity, leading to increased research into how they can affect people's health, both positively and negatively. Nicotine, Cannabidiol (CBD), and Δ9-tetrahydrocannabinol (THC) have been shown to have significant effects on cytokine function and inflammatory response. OBJECTIVE This study aimed to review and summarize the current literature on the effects of nicotine and cannabinoids on cytokines, including interleukins, TNF, IFN, and TGF-β. METHODS Literature search was conducted on Medline/PubMed electronic databases utilizing the search terms "nicotine" OR "cannabis" OR "cannabinoids" AND "cytokine" AND "inflammation" AND "stress" AND "immune" from 11/1973 to 02/2024. RESULTS THC and CBD usage have been associated with conflicting impacts on immune response, and observed to both exacerbate and inhibit inflammation. Nicotine has been shown to be generally proinflammatory with regards to cytokines. These responses have been reported to have significant effects on bodily response to inflammation-related diseases. Nicotine usage is associated with worsened outcomes for some conditions, like chronic pain, but improved outcomes for others, like arthritis. The impacts of cannabinoid usage tend to be more positive, exerting anti-inflammatory effects across a wide range of diseases. Given the widespread usage of these substances, it is important to understand the nature of their consequences on immune functions and the underlying mechanisms by which they act. CONCLUSION This review has covered how cannabinoids and nicotine affect inflammation directly and how these effects can be attributed to the treatment of inflammatory diseases. In summary, the existing research studying the effects of cannabinoids and nicotine supports the major relationship between nicotine and cannabis use and inflammatory diseases.
Collapse
Affiliation(s)
- Grace Miller
- Department of Pharmacology Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14068, United States
| | - Ojas Pareek
- Department of Pharmacology Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14068, United States
| | - Samantha L Penman
- Department of Pharmacology Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14068, United States
| | - Panayotis K Thanos
- Department of Pharmacology Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14068, United States
| |
Collapse
|
13
|
Oh H, Du J, Karcher NR, van der Ven E, DeVylder JE, Smith L, Koyanagi A. The separate and joint effects of recent interpersonal abuse and cannabis use on psychotic experiences: findings from students in higher education in the United States. Soc Psychiatry Psychiatr Epidemiol 2024; 59:77-85. [PMID: 37093229 PMCID: PMC10799783 DOI: 10.1007/s00127-023-02483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Various forms of interpersonal abuse (e.g., physical, emotional, sexual) and cannabis use across the lifespan have both been known to increase odds of psychotic experiences; however, there have been few studies examining their separate and joint effects in the United States. METHODS We analyzed data from the Healthy Minds Study (2020-2021) and used multivariable logistic regression and interaction contrast ratios to assess separate and joint effects of interpersonal abuse (past 12 months) and cannabis use (past 30 days) on psychotic experiences (past 12 months). RESULTS Students who only used cannabis had significantly greater odds of psychotic experiences (aOR: 1.70; 95% CI 1.58-1.82), as well as those who only experienced interpersonal abuse (aOR: 2.40; 95% CI 2.25-2.56). However, those who reported both cannabis use and interpersonal abuse had the greatest odds, exceeding the sum of these individual effects (the combined effect aOR: 3.46; 95% CI 3.19-3.76). CONCLUSIONS Recent interpersonal abuse and recent cannabis use both separately and jointly increase odds of having recent psychotic experiences. Future research should continue to examine the potential interactive and additive impact of multiple known exposures to better inform primary and secondary prevention efforts.
Collapse
Affiliation(s)
- Hans Oh
- Suzanne Dworak Peck School of Social Work, University of Southern California, Los Angeles, USA.
| | - Jinyu Du
- Southern Methodist University, Dallas, USA
| | - Nicole R Karcher
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, USA
| | - Els van der Ven
- Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Lee Smith
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, ISCIII, Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
14
|
Pearl-Dowler L, Posa L, Lopez-Canul M, Teggin A, Gobbi G. Anti-allodynic and medullary modulatory effects of a single dose of delta-9-tetrahydrocannabinol (THC) in neuropathic rats tolerant to morphine. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110805. [PMID: 37257771 DOI: 10.1016/j.pnpbp.2023.110805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Neuropathic pain (NP) is often treated with opioids, the prolonged use of which causes tolerance to their analgesic effect and can potentially cause death by overdose. The phytocannabinoid delta-9-tetrahydrocannabinol (THC) may be an effective alternative analgesic to treat NP in morphine-tolerant subjects. Male Wistar rats developed NP after spared nerve injury, and were then treated with increasing doses of THC (1, 1.5, 2, 2.5, and 5 mg/kg, intraperitoneally), which reduced mechanical allodynia at the dose of 2.5 and 5 mg/kg. Another group of NP rats were treated with morphine (5 mg/kg, twice daily for 7 days, subcutaneously), until tolerance developed, and on day 8 received a single dose of THC (2.5 mg/kg), which significantly reduced mechanical allodynia. To evaluate the modulation of THC in the descending pain pathway, in vivo electrophysiological recordings of pronociceptive ON cells and antinociceptive OFF cells in the rostroventral medulla (RVM) were recorded after intra-PAG microinjection of THC (10 μg/μl). NP rats with morphine tolerance, compared to the control one, showed a tonic reduction of the spontaneous firing rate of ON cells by 44%, but the THC was able to further decrease it (a hallmark of many analgesic drugs acting at supraspinal level). On the other hand, the firing rate, of the antinociceptive OFF cells was increased after morphine tolerance by 133%, but the THC failed to further activate it. Altogether, these findings indicate that a single dose of THC produces antiallodynic effect in individuals with NP who are tolerant to morphine, acting mostly on the ON cells of the descending pain pathways, but not on OFF cells.
Collapse
Affiliation(s)
- Leora Pearl-Dowler
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Luca Posa
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Martha Lopez-Canul
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Alexandra Teggin
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada.
| |
Collapse
|
15
|
McGovern DJ, Polter AM, Prévost ED, Ly A, McNulty CJ, Rubinstein B, Root DH. Ventral tegmental area glutamate neurons establish a mu-opioid receptor gated circuit to mesolimbic dopamine neurons and regulate opioid-seeking behavior. Neuropsychopharmacology 2023; 48:1889-1900. [PMID: 37407648 PMCID: PMC10584944 DOI: 10.1038/s41386-023-01637-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
A two-neuron model of ventral tegmental area (VTA) opioid function classically involves VTA GABA neuron regulation of VTA dopamine neurons via a mu-opioid receptor dependent inhibitory circuit. However, this model predates the discovery of a third major type of neuron in the VTA: glutamatergic neurons. We found that about one-quarter of VTA neurons expressing the mu-opioid receptor are glutamate neurons without molecular markers of GABA co-release. Glutamate-Mu opioid receptor neurons are largely distributed in the anterior VTA. The majority of remaining VTA mu-opioid receptor neurons are GABAergic neurons that are mostly within the posterior VTA and do not express molecular markers of glutamate co-release. Optogenetic stimulation of VTA glutamate neurons resulted in excitatory currents recorded from VTA dopamine neurons that were reduced by presynaptic activation of the mu-opioid receptor ex vivo, establishing a local mu-opioid receptor dependent excitatory circuit from VTA glutamate neurons to VTA dopamine neurons. This VTA glutamate to VTA dopamine pathway regulated dopamine release to the nucleus accumbens through mu-opioid receptor activity in vivo. Behaviorally, VTA glutamate calcium-related neuronal activity increased following oral oxycodone consumption during self-administration and response-contingent oxycodone-associated cues during abstinent reinstatement of drug-seeking behavior. Further, chemogenetic inhibition of VTA glutamate neurons reduced abstinent oral oxycodone-seeking behavior in male but not female mice. These results establish 1) a three-neuron model of VTA opioid function involving a mu-opioid receptor gated VTA glutamate neuron pathway to VTA dopamine neurons that controls dopamine release within the nucleus accumbens, and 2) that VTA glutamate neurons participate in opioid-seeking behavior.
Collapse
Affiliation(s)
- Dillon J McGovern
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO, 80301, USA
| | - Abigail M Polter
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, 20052, USA
| | - Emily D Prévost
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO, 80301, USA
| | - Annie Ly
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO, 80301, USA
| | - Connor J McNulty
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO, 80301, USA
| | - Bodhi Rubinstein
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO, 80301, USA
| | - David H Root
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO, 80301, USA.
| |
Collapse
|
16
|
Ferré S, Köfalvi A, Ciruela F, Justinova Z, Pistis M. Targeting corticostriatal transmission for the treatment of cannabinoid use disorder. Trends Pharmacol Sci 2023; 44:495-506. [PMID: 37331914 PMCID: PMC10524660 DOI: 10.1016/j.tips.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023]
Abstract
It is generally assumed that the rewarding effects of cannabinoids are mediated by cannabinoid CB1 receptors (CB1Rs) the activation of which disinhibits dopaminergic neurons in the ventral tegmental area (VTA). However, this mechanism cannot fully explain novel results indicating that dopaminergic neurons also mediate the aversive effects of cannabinoids in rodents, and previous results showing that preferentially presynaptic adenosine A2A receptor (A2AR) antagonists counteract self-administration of Δ-9-tetrahydrocannabinol (THC) in nonhuman primates (NHPs). Based on recent experiments in rodents and imaging studies in humans, we propose that the activation of frontal corticostriatal glutamatergic transmission constitutes an additional and necessary mechanism. Here, we review evidence supporting the involvement of cortical astrocytic CB1Rs in the activation of corticostriatal neurons and that A2AR receptor heteromers localized in striatal glutamatergic terminals mediate the counteracting effects of the presynaptic A2AR antagonists, constituting potential targets for the treatment of cannabinoid use disorder (CUD).
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Attila Köfalvi
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Neuroscience Program, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Spain
| | - Zuzana Justinova
- Division of Pharmacology, Physiology, and Biological Chemistry (PPBC), National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Marco Pistis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy
| |
Collapse
|
17
|
Ibancovichi JA, Chávez-Monteagudo JR, Sánchez-Aparicio P, De Paz-Campos MA. Repeated Administration of the Cannabinoid WIN Alters the Isoflurane-Sparing Effect of Morphine and Dexmedetomidine. Vet Sci 2023; 10:vetsci10050310. [PMID: 37235393 DOI: 10.3390/vetsci10050310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The impacts of morphine and dexmedetomidine on the MAC of isoflurane were studied in rats constantly medicated with the cannabinoid WIN 55,212-2. METHODS Prior to the administration of morphine, the MAC was measured in both untreated rats (MAC (ISO)) and those treated with a cannabinoid (MAC (ISO + CANN)). The effects of morphine (MAC (ISO + MOR)) and dexmedetomidine (MAC (ISO + DEX)) on untreated rats and rats treated for 21 days with the cannabinoids (MAC (ISO + CANN + MOR)) and (MAC (ISO + CANN + DEX) were also studied. RESULTS MAC (ISO) was 1.32 ± 0.06, and MAC (ISO + CANN) was 1.69 ± 0.09. MAC (ISO + MOR) was 0.97 ± 0.02 (26% less than MAC (ISO)). MAC (ISO + CANN + MOR) was 1.55 ± 0.08 (8% less than MAC (ISO + CANN)), MAC (ISO + DEX) was 0.68 ± 0.10 (48% less than MAC (ISO)), and MAC (ISO + CANN + DEX) was 0.67 ± 0.08 (60% less than MAC (ISO + CANN)). CONCLUSIONS Medication with a cannabinoid for 21 days augmented the MAC of isoflurane. The sparing effect of morphine on isoflurane is lower in rats constantly medicated with a cannabinoid. The sparing effect of dexmedetomidine on the minimum alveolar concentration of isoflurane is greater in rats repeatedly medicated with a cannabinoid.
Collapse
Affiliation(s)
- José Antonio Ibancovichi
- Departamento de Anestesiología y Analgesia, Facultad de Medicina Veterinaria, Universidad Autónoma del Estado de México, UAEM, Toluca 50000, Mexico
| | - Julio Raúl Chávez-Monteagudo
- Departamento de Ciencias Pecuarias, Facultad de Estudios Superiores Cuautitlán, Hospital de Pequeñas Especies, Universidad Nacional Autónoma de México, UNAM, Cuautitlán Izcalli 54740, Mexico
| | - Pedro Sánchez-Aparicio
- Departamento de Farmacología, Facultad de Medicina Veterinaria, Universidad Autónoma del Estado de México, UAEM, Toluca 50000, Mexico
| | - Marco Antonio De Paz-Campos
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Hospital de Pequeñas Especies, Universidad Nacional Autónoma de México, UNAM, Cuautitlán Izcalli 54740, Mexico
| |
Collapse
|
18
|
Gasparyan A, Navarrete F, Navarro D, Manzanares J. Cannabidiol regulates behavioral and brain alterations induced by spontaneous alcohol withdrawal. Neuropharmacology 2023; 233:109549. [PMID: 37085012 DOI: 10.1016/j.neuropharm.2023.109549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
The main goal of this study was to evaluate if the administration of cannabidiol (CBD) regulates behavioral and gene expression alterations induced by spontaneous alcohol withdrawal (SAW) in mice. Increasing doses of ethanol were administered to C57BL/6J male mice for 15 days (2.5, 3 and 3.5 g/kg/12 h, p. o.), and SAW was studied at 6, 12, 24, and 72 h after the last ethanol administration. The efficacy of acute CBD (10, 20, and 40 mg/kg, i. p.) to regulate behavioral changes induced by SAW was explored at 6 h. Gene expression analyses of cannabinoid receptors 1 (Cnr1) and 2 (Cnr2), mu-opioid receptor (Opmr1), and proopiomelanocortin (Pomc) in the nucleus accumbens (NAcc), and Pomc and tyrosine hydroxylase (Th) in the ventral tegmental area (VTA), were carried out by real time-PCR. Pearson correlation was used to identify potential associations between the gene expression data and the anxiety-like behaviors. Biostatistical studies suggest associations between gene expression data and the anxiogenic behaviors in mice exposed to the SAW model and treated with VEH and 40 mg/kg of CBD. Mice exposed to the SAW model showed significant somatic withdrawal signs, anxiety-like behaviors, and remarkable changes in the gene expression of all brain targets at 6 h. CBD dose-dependently normalized the behavioral, somatic withdrawal signs and anxiety-like behaviors and modulated gene expression changes in the NAcc, but not in the VTA. The results of this study suggest that CBD may regulate specific alcohol withdrawal-associated alterations. However, further studies are required to explore the possible mechanisms involved.
Collapse
Affiliation(s)
- Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Alicante, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Alicante, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Alicante, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Alicante, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|
19
|
Hersey M, Bacon AK, Bailey LG, Lee MR, Chen AY, Leggio L, Tanda G. Oxytocin receptors mediate oxytocin potentiation of methylphenidate-induced stimulation of accumbens dopamine in rats. J Neurochem 2023; 164:613-623. [PMID: 36420597 PMCID: PMC10766115 DOI: 10.1111/jnc.15730] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022]
Abstract
While the illicit use and misuse of stimulants like cocaine and methylphenidate (MP) has increased, there remains no FDA-approved treatments for psychostimulant use disorders (PSUD). Oxytocin (OT) has shown promise as a potential pharmacotherapy for PSUD. Dopamine (DA) neurotransmission plays a significant role in PSUD. We have recently shown that OT blunts the reinforcing effects of MP but, surprisingly, enhanced MP-induced stimulation of DA levels. Such effects have been suggested as a result of activation of OT receptors or, alternatively, could be mediated by direct actions of OT on MP blockade of the DA transporter. Here, we employed fast scan cyclic voltammetry (FSCV) to investigate the effects of systemic OT on MP-induced changes in the dynamics of DA, phasic release and uptake, in the nucleus accumbens shell (NAS) of Sprague-Dawley rats. We also tested the systemic effects of an antagonist of OT receptors, atosiban, to counteract the OT enhancement of dopaminergic effects of MP under microdialysis procedures in the NAS in rats. Administration of OT alone (2 mg/kg; i.p.) did not significantly modify evoked NAS DA dynamics measured by FSCV, and when administered 10 min before MP (0.1, 0.3, 1.0 mg/kg; i.v.), OT did not potentiate MP-induced increases in phasic DA release and did not alter DA clearance rate, suggesting no direct interactions of OT with the MP-induced blockade of DA uptake. Also, OT alone did not elicit significant changes in tonic, extracellular NAS DA levels measured by microdialysis. However, consistent with previous studies, we observed that OT pretreatments (2 mg/kg; i.p.) potentiated MP-induced (0.1, 0.3, 1.0 mg/kg; i.v.) efflux of extracellular NAS DA levels. This effect was abolished when rats were pretreated with atosiban (2 mg/kg; i.p.), suggesting that OT receptors mediate this OT action. Overall, our results suggest that OT receptors mediated OT potentiation of MP-induced stimulation of extracellular NAS DA levels, likely driven by modulation of DA receptor signaling pathways, without affecting MP blockade of DAT.
Collapse
Affiliation(s)
| | | | | | - Mary R. Lee
- Veterans Affairs Medical Center, Washington, DC
| | - Andy Y. Chen
- Medication Development Program, NIDA IRP, Baltimore, MD
| | - Lorenzo Leggio
- Medication Development Program, NIDA IRP, Baltimore, MD
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, NIDA/NIAAA IRP, Baltimore, MD
| | | |
Collapse
|
20
|
Plaza-Briceño W, Velásquez VB, Silva-Olivares F, Ceballo K, Céspedes R, Jorquera G, Cruz G, Martínez-Pinto J, Bonansco C, Sotomayor-Zárate R. Chronic Exposure to High Fat Diet Affects the Synaptic Transmission That Regulates the Dopamine Release in the Nucleus Accumbens of Adolescent Male Rats. Int J Mol Sci 2023; 24:ijms24054703. [PMID: 36902133 PMCID: PMC10003643 DOI: 10.3390/ijms24054703] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 03/05/2023] Open
Abstract
Obesity is a pandemic caused by many factors, including a chronic excess in hypercaloric and high-palatable food intake. In addition, the global prevalence of obesity has increased in all age categories, such as children, adolescents, and adults. However, at the neurobiological level, how neural circuits regulate the hedonic consumption of food intake and how the reward circuit is modified under hypercaloric diet consumption are still being unraveled. We aimed to determine the molecular and functional changes of dopaminergic and glutamatergic modulation of nucleus accumbens (NAcc) in male rats exposed to chronic consumption of a high-fat diet (HFD). Male Sprague-Dawley rats were fed a chow diet or HFD from postnatal day (PND) 21 to 62, increasing obesity markers. In addition, in HFD rats, the frequency but not amplitude of the spontaneous excitatory postsynaptic current is increased in NAcc medium spiny neurons (MSNs). Moreover, only MSNs expressing dopamine (DA) receptor type 2 (D2) increase the amplitude and glutamate release in response to amphetamine, downregulating the indirect pathway. Furthermore, NAcc gene expression of inflammasome components is increased by chronic exposure to HFD. At the neurochemical level, DOPAC content and tonic dopamine (DA) release are reduced in NAcc, while phasic DA release is increased in HFD-fed rats. In conclusion, our model of childhood and adolescent obesity functionally affects the NAcc, a brain nucleus involved in the hedonic control of feeding, which might trigger addictive-like behaviors for obesogenic foods and, through positive feedback, maintain the obese phenotype.
Collapse
Affiliation(s)
- Wladimir Plaza-Briceño
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Victoria B. Velásquez
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Francisco Silva-Olivares
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Viña del Mar 2520000, Chile
| | - Karina Ceballo
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Ricardo Céspedes
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Gonzalo Jorquera
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Jonathan Martínez-Pinto
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Correspondence: (C.B.); (R.S.-Z.)
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Correspondence: (C.B.); (R.S.-Z.)
| |
Collapse
|
21
|
Marinho EAV, Oliveira-Lima AJ, Reis HS, Santos-Baldaia R, Wuo-Silva R, Hollais AW, Yokoyama TS, Frussa-Filho R, Berro LF. Context-dependent effects of the CB1 receptor antagonist rimonabant on morphine-induced behavioral sensitization in female mice. Front Pharmacol 2023; 14:1100527. [PMID: 36814501 PMCID: PMC9939462 DOI: 10.3389/fphar.2023.1100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction: The endocannabinoid system has been implicated in the neurobiology of opioid use disorder. While the CB1 receptor antagonist rimonabant has been shown to block some of the behavioral effects of opioids, studies suggest that the treatment environment (i.e., receiving treatment in the drug-associated environment, and/or novelty) can influence its effects. In the present study, we investigated the role of the treatment environment in the effects of rimonabant on the expression of morphine-induced behavioral sensitization. Methods: Adult female Swiss mice were submitted to a behavioral sensitization protocol, during which they received morphine (20 mg/kg, i.p.) in the open-field apparatus, and were subsequently treated with vehicle or rimonabant (1 or 10 mg/kg, i.p.) either in the open-field, in the home-cage or in an activity box (novel environment). The expression of conditioned locomotion (increased locomotor activity in the open-field apparatus in the absence of morphine) and of morphine-induced behavioral sensitization (increased locomotor activity in animals sensitized to morphine) was evaluated during asubsequent saline and morphine challenge, respectively. Results: Animals treated with morphine expressed behavioral sensitization, showing a significant increase in locomotor activity over time. Animals sensitized to morphine and treated with vehicle in the home-cage expressed conditioned locomotion, an effect that was blocked by home-cage treatment with rimonabant. During a saline challenge, only animals sensitized to morphine and treated with saline in the home-cage expressed morphine-induced conditioned locomotion. All morphine-treated animals that received saline during the treatment phase (control groups) expressed behavioral sensitization during the morphine challenge. Treatment with rimonabant in the open-field and in the activity box, but not in the home-cage, blocked the expression of morphine-induced behavioral sensitization. Discussion: Our findings suggest that CB1 receptor antagonism can modulate conditioned responses to morphine even when administered in the home-cage. However, exposure to the drug-associated environment or to a novel environment is necessary for the expression of rimonabant's effects on morphine-induced behavioral sensitization during a morphine challenge.
Collapse
Affiliation(s)
- Eduardo A. V. Marinho
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil,Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Alexandre Justo Oliveira-Lima
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil,Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Henrique S. Reis
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| | - Renan Santos-Baldaia
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Raphael Wuo-Silva
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Andre W. Hollais
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Thais S. Yokoyama
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Roberto Frussa-Filho
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Lais F. Berro
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil,Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, SP, Brazil,Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States,*Correspondence: Lais F. Berro,
| |
Collapse
|
22
|
Cannabinoid CB1 Receptors Are Expressed in a Subset of Dopamine Neurons and Underlie Cannabinoid-Induced Aversion, Hypoactivity, and Anxiolytic Effects in Mice. J Neurosci 2023; 43:373-385. [PMID: 36517243 PMCID: PMC9864584 DOI: 10.1523/jneurosci.1493-22.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/12/2022] [Accepted: 11/12/2022] [Indexed: 12/23/2022] Open
Abstract
Cannabinoids modulate dopamine (DA) transmission and DA-related behavior, which has been thought to be mediated initially by activation of cannabinoid CB1 receptors (CB1Rs) on GABA neurons. However, there is no behavioral evidence supporting it. In contrast, here we report that CB1Rs are also expressed in a subset of DA neurons and functionally underlie cannabinoid action in male and female mice. RNAscope in situ hybridization (ISH) assays demonstrated CB1 mRNA in tyrosine hydroxylase (TH)-positive DA neurons in the ventral tegmental area (VTA) and glutamate decarboxylase 1 (GAD1)-positive GABA neurons. The CB1R-expressing DA neurons were located mainly in the middle portion of the VTA with the number of CB1-TH colocalization progressively decreasing from the medial to the lateral VTA. Triple-staining assays indicated CB1R mRNA colocalization with both TH and vesicular glutamate transporter 2 (VgluT2, a glutamate neuronal marker) in the medial VTA close to the midline of the brain. Optogenetic activation of this population of DA neurons was rewarding as assessed by optical intracranial self-stimulation. Δ9-tetrahydrocannabinol (Δ9-THC) or ACEA (a selective CB1R agonist) dose-dependently inhibited optical intracranial self-stimulation in DAT-Cre control mice, but not in conditional knockout mice with the CB1R gene absent in DA neurons. In addition, deletion of CB1Rs from DA neurons attenuated Δ9-THC-induced reduction in DA release in the NAc, locomotion, and anxiety. Together, these findings indicate that CB1Rs are expressed in a subset of DA neurons that corelease DA and glutamate, and functionally underlie cannabinoid modulation of DA release and DA-related behavior.SIGNIFICANCE STATEMENT Cannabinoids produce a series of psychoactive effects, such as aversion, anxiety, and locomotor inhibition in rodents. However, the cellular and receptor mechanisms underlying these actions are not fully understood. Here we report that CB1 receptors are expressed not only in GABA neurons but also in a subset of dopamine neurons, which are located mainly in the medial VTA close to the midline of the midbrain and corelease dopamine and glutamate. Optogenetic activation of these dopamine neurons is rewarding, which is dose-dependently inhibited by cannabinoids. Selective deletion of CB1 receptor from dopamine neurons blocked cannabinoid-induced aversion, hypoactivity, and anxiolytic effects. These findings demonstrate that dopaminergic CB1 receptors play an important role in mediating cannabinoid action.
Collapse
|
23
|
Scheyer A, Yasmin F, Naskar S, Patel S. Endocannabinoids at the synapse and beyond: implications for neuropsychiatric disease pathophysiology and treatment. Neuropsychopharmacology 2023; 48:37-53. [PMID: 36100658 PMCID: PMC9700791 DOI: 10.1038/s41386-022-01438-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022]
Abstract
Endocannabinoids (eCBs) are lipid neuromodulators that suppress neurotransmitter release, reduce postsynaptic excitability, activate astrocyte signaling, and control cellular respiration. Here, we describe canonical and emerging eCB signaling modes and aim to link adaptations in these signaling systems to pathological states. Adaptations in eCB signaling systems have been identified in a variety of biobehavioral and physiological process relevant to neuropsychiatric disease states including stress-related disorders, epilepsy, developmental disorders, obesity, and substance use disorders. These insights have enhanced our understanding of the pathophysiology of neurological and psychiatric disorders and are contributing to the ongoing development of eCB-targeting therapeutics. We suggest future studies aimed at illuminating how adaptations in canonical as well as emerging cellular and synaptic modes of eCB signaling contribute to disease pathophysiology or resilience could further advance these novel treatment approaches.
Collapse
Affiliation(s)
| | - Farhana Yasmin
- Northwestern Center for Psychiatric Neuroscience, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Saptarnab Naskar
- Northwestern Center for Psychiatric Neuroscience, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Chicago, IL, USA.
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
24
|
Sundar V, Ramasamy T, Doke M, Samikkannu T. Psychostimulants influence oxidative stress and redox signatures: the role of DNA methylation. Redox Rep 2022; 27:53-59. [PMID: 35227168 PMCID: PMC8890556 DOI: 10.1080/13510002.2022.2043224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Objective: Psychostimulant use induces oxidative stress and alters redox imbalance, influencing epigenetic signatures in the central nervous system (CNS). Among the various epigenetic changes, DNA methylation is directly linked to oxidative stress metabolism via critical redox intermediates such as NAD+, S-adenosylmethionine (SAM), and 2-oxoglutarate. Fluctuations in these intermediates directly influence epigenetic signatures, which leads to detectable alterations in gene expression and protein modification. This review focuses on recent advances in the impact of psychostimulant use on redox-imbalance-induced DNA methylation to develop novel epigenetics-based early interventions. Methods: This review is based on collective research data obtained from the PubMed, Science Direct, and Medline databases. The keywords used in the electronic search in these databases were redox, substance use disorder, psychostimulants, DNA methylation, and neurological diseases. Results: Instability in DNA methylation levels and redox expression effects are reported in various behavioral models stimulated by psychostimulants and opioids, indicating the widespread involvement of epigenetic changes in DNA methylation signatures in neurological disorders. Discussion: This review summarizes the need for more studies and experimental evaluations of DNA-methylation-based strategies that may help to understand the association between psychostimulant use and oxidative stress or redox-linked metabolic recalibration influencing neuronal impairments.
Collapse
Affiliation(s)
- Vaishnavi Sundar
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, Texas, USA
| | - Tamizhselvi Ramasamy
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, Texas, USA
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mayur Doke
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, Texas, USA
| | - Thangavel Samikkannu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, Texas, USA
| |
Collapse
|
25
|
Francis T, Wolter M, Leri F. The effects of passive and active administration of heroin, and associated conditioned stimuli, on consolidation of object memory. Sci Rep 2022; 12:20351. [PMID: 36437288 PMCID: PMC9701675 DOI: 10.1038/s41598-022-24585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2022] Open
Abstract
Mode of administration (i.e., active vs passive) could influence the modulatory action that drugs of abuse exert on memory consolidation. Similarly, drug conditioned stimuli modulate memory consolidation and, therefore, acquisition and extinction of this conditioned response could also be influenced by mode of drug administration. Exploring these questions in male Sprague-Dawley rats, Study 1 assessed memory modulation by post-training 0, 0.3 and 1 mg/kg heroin injected subcutaneously in operant chambers (i.e., drug conditioned context). Study 2 asked a similar question but in rats trained to self-administer 0.05 mg/kg/infusion heroin intravenously, as well as in rats that received identical amounts of intravenous heroin but passively, using a yoked design. The period of heroin exposure was followed by repeated drug-free confinement in the conditioned context, and by sessions during which responses on the active lever had no scheduled consequences. Study 2 also included a cue-induced reinstatement session during which lever responses reactivated a light cue previously paired with intravenous heroin infusions. The post-training effects of injected/self-administered/yoked heroin, extinction and reinstatement sessions on memory consolidation were tested using the object location memory task. It was found that post-sample heroin enhanced memory in injected and yoked, but not self-administering, rats. However, post-sample exposure to the heroin cues (i.e., context or/and light cue) modulated memory equally in all groups. Taken together, these data support the conclusion that mode of administration impacts the cognitive consequences of exposure to drugs but not of environmental stimuli linked to their reinforcing effects.
Collapse
Affiliation(s)
- Travis Francis
- grid.34429.380000 0004 1936 8198Department of Psychology and Neuroscience Specialization, University of Guelph, 50 Stone Road East, Guelph, ON N1G 1Y4 Canada
| | - Michael Wolter
- grid.34429.380000 0004 1936 8198Department of Psychology and Neuroscience Specialization, University of Guelph, 50 Stone Road East, Guelph, ON N1G 1Y4 Canada
| | - Francesco Leri
- grid.34429.380000 0004 1936 8198Department of Psychology and Neuroscience Specialization, University of Guelph, 50 Stone Road East, Guelph, ON N1G 1Y4 Canada
| |
Collapse
|
26
|
AlKhelb D, Kirunda A, Ho TC, Makriyannis A, Desai RI. Effects of the cannabinoid CB 1-receptor neutral antagonist AM4113 and antagonist/inverse agonist rimonabant on fentanyl discrimination in male rats. Drug Alcohol Depend 2022; 240:109646. [PMID: 36191533 DOI: 10.1016/j.drugalcdep.2022.109646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/22/2022] [Accepted: 09/23/2022] [Indexed: 01/06/2023]
Abstract
Evidence suggests the existence of a functional interaction between endogenous cannabinoid (CB) and opioid systems. Thus, targeting CB1 receptors might be a viable approach to develop new medications for opioid use disorders (OUD). The present studies were undertaken to evaluate the effects of the neutral CB1 antagonist AM4113 and the CB1 antagonist/inverse agonist rimonabant in male rats trained to discriminate 0.032 mg/kg fentanyl from saline under a 10-response fixed-ratio (FR-10) schedule of food reinforcement. Results show that the µ-opioid agonists (fentanyl, oxycodone, and morphine) substituted fully and dose-dependently for fentanyl, whereas pretreatment with the µ-opioid antagonist naltrexone antagonized fentanyl's discriminative-stimulus effects. In interaction studies, AM4113 (0.32 or 1.0 mg/kg) was more effective in blocking fentanyl discrimination at 10-fold lower doses that did not modify rates of food-maintained responding, whereas rimonabant (1.0-10 mg/kg) produced some attenuation of fentanyl's discriminative-stimulus effects at the highest dose tested which also significantly decreased response rates. These results extend our recent work showing that AM4113 can effectively block the behavioral effects of heroin without producing rimonabant-like adverse effects. Taken together, these data suggests that CB1 neutral antagonists effectively block the behavioral effects of structurally distinct morphinan (heroin) and phenylpiperidine-based (fentanyl) opioids and may provide a novel therapeutic option for the treatment of OUD.
Collapse
Affiliation(s)
- Dalal AlKhelb
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA; Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12371, Saudi Arabia
| | - Andre Kirunda
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Thanh C Ho
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | | | - Rajeev I Desai
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA; Department of Psychiatry, Behavioral Biology Program, Integrative Neurochemistry Laboratory, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Neutral CB1 Receptor Antagonists as Pharmacotherapies for Substance Use Disorders: Rationale, Evidence, and Challenge. Cells 2022; 11:cells11203262. [PMID: 36291128 PMCID: PMC9600259 DOI: 10.3390/cells11203262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cannabinoid receptor 1 (CB1R) has been one of the major targets in medication development for treating substance use disorders (SUDs). Early studies indicated that rimonabant, a selective CB1R antagonist with an inverse agonist profile, was highly promising as a therapeutic for SUDs. However, its adverse side effects, such as depression and suicidality, led to its withdrawal from clinical trials worldwide in 2008. Consequently, much research interest shifted to developing neutral CB1R antagonists based on the recognition that rimonabant’s side effects may be related to its inverse agonist profile. In this article, we first review rimonabant’s research background as a potential pharmacotherapy for SUDs. Then, we discuss the possible mechanisms underlying its therapeutic anti-addictive effects versus its adverse effects. Lastly, we discuss the rationale for developing neutral CB1R antagonists as potential treatments for SUDs, the supporting evidence in recent research, and the challenges of this strategy. We conclude that developing neutral CB1R antagonists without inverse agonist profile may represent attractive strategies for the treatment of SUDs.
Collapse
|
28
|
Ong CB, Puri S, Lebowitz J, Chiu YF, Della Valle AG, Sideris A, Chalmers BP. Preoperative cannabis use does not increase opioid utilization following primary total hip arthroplasty in a propensity matched analysis. Arch Orthop Trauma Surg 2022; 143:3629-3635. [PMID: 36129515 DOI: 10.1007/s00402-022-04619-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE The recreational and medical use of cannabis is being legalized worldwide. Its use has been linked to an increased risk of developing opioid use disorders. As opioids continue to be prescribed after total hip arthroplasty (THA), the influence that preoperative cannabis use may have on postoperative opioid consumption remains unknown. The purpose of this study was to assess the relationship between preoperative cannabis use and opioid utilization following primary THA. METHODS We identified all patients over the age of 18 who underwent unilateral, primary THA for a diagnosis of osteoarthritis at a single institution from February 2019 to April 2021. Our cohort was grouped into current cannabis users (within 6 months of surgery) and those who reported never using cannabis. One hundred and fifty-six current users were propensity score matched 1:6 with 936 never users based on age, sex, BMI, history of chronic pain, smoking status, history of anxiety/depression, ASA classification and type of anesthesia. Outcomes included inpatient and postdischarge opioid use in morphine milligram equivalents. RESULTS Total inpatient opioid utilization, opioids refilled, and total opioids used within 90 postoperative days were similar between the groups. CONCLUSION In propensity score matched analyses, preoperative cannabis use was not independently associated with an increase in inpatient or outpatient, 90-days opioid consumption following elective THA.
Collapse
Affiliation(s)
- Christian B Ong
- Department of Orthopaedic Surgery, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Simarjeet Puri
- Department of Orthopaedic Surgery, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Juliana Lebowitz
- Department of Orthopaedic Surgery, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Yu-Fen Chiu
- Department of Biostatistics, Hospital for Special Surgery, New York, NY, USA
| | | | - Alexandra Sideris
- Department of Orthopaedic Surgery, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Brian P Chalmers
- Department of Orthopaedic Surgery, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA.
| |
Collapse
|
29
|
Hasbi A, Madras BK, George SR. Daily THC and withdrawal increase dopamine D1-D2 receptor heteromer to mediate anhedonia and anxiogenic-like behavior through a dynorphin and kappa opioid receptor mechanism. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022. [PMID: 37519471 PMCID: PMC10382712 DOI: 10.1016/j.bpsgos.2022.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Background Frequent cannabis use is associated with a higher risk of developing cannabis use disorder and other adverse consequences. However, rodent models studying the underlying mechanisms of the reinforcing and withdrawal effects of the primary constituent of cannabis, Δ9-tetrahydrocannabinol (THC), have been limited. Methods This study investigated the effects of daily THC (1 mg/kg, intraperitoneal, 9 days) and spontaneous withdrawal (7 days) on hedonic and aversion-like behaviors in male rats. In parallel, underlying neuroadaptive changes in dopaminergic, opioidergic, and cannabinoid signaling in the nucleus accumbens were evaluated, along with a candidate peptide designed to reverse altered signaling. Results Chronic THC administration induced anhedonic- and anxiogenic-like behaviors not attributable to altered locomotor activity. These effects persisted after drug cessation. In the nucleus accumbens, THC treatment and withdrawal catalyzed increased cannabinoid CB1 receptor activity without modifying receptor expression. Dopamine D1-D2 receptor heteromer expression rose steeply with THC, accompanied by increased calcium-linked signaling, activation of BDNF/TrkB (brain-derived neurotrophic factor/tropomyosin receptor kinase B) pathway, dynorphin expression, and kappa opioid receptor signaling. Disruption of the D1-D2 heteromer by an interfering peptide during withdrawal reversed the anxiogenic-like and anhedonic-like behaviors as well as the neurochemical changes. Conclusions Chronic THC increases nucleus accumbens dopamine D1-D2 receptor heteromer expression and function, which results in increased dynorphin expression and kappa opioid receptor activation. These changes plausibly reduce dopamine release to trigger anxiogenic- and anhedonic-like behaviors after daily THC administration that persist for at least 7 days after drug cessation. These findings conceivably provide a therapeutic strategy to alleviate negative symptoms associated with cannabis use and withdrawal.
Collapse
|
30
|
De Deurwaerdère P, Casarrubea M, Cassar D, Radic M, Puginier E, Chagraoui A, Crescimanno G, Crunelli V, Di Giovanni G. Cannabinoid 1/2 Receptor Activation Induces Strain-Dependent Behavioral and Neurochemical Changes in Genetic Absence Epilepsy Rats From Strasbourg and Non-epileptic Control Rats. Front Cell Neurosci 2022; 16:886033. [PMID: 35677756 PMCID: PMC9169225 DOI: 10.3389/fncel.2022.886033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Childhood absence epilepsy (CAE) is characterized by absence seizures, which are episodes of lack of consciousness accompanied by electrographic spike-wave discharges. About 60% of children and adolescents with absence seizures are affected by major neuropsychological comorbidities, including anxiety. Endocannabinoids and monoamines are likely involved in the pathophysiology of these CAE psychiatric comorbidities. Here, we show that the synthetic cannabinoid receptor type 1/2 (CB1/2R) agonist WIN 55,212-2 (2 mg/kg) has a strain-dependent effect on anxiety-like and motor behavior when assess in the hole board test and cerebral monoaminergic levels in Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and their non-epileptic control (NEC) rat strain. Using quantitative and Temporal pattern (T-pattern) analyses, we found that WIN 55,212-2 did not affect the emotional status of GAERS, but it was anxiolytic in NEC. Conversely, WIN 55,212-2 had a sedative effect in GAERS but was ineffective in NEC. Moreover, vehicle-treated GAERS more motivated to explore by implementing more complex and articulated strategies. These behavioral changes correlate with the reduction of 5-HT in the hippocampus and substantia nigra (SN) and noradrenaline (NA) in the entopeduncular nucleus (EPN) in vehicle-treated GAERS compared to NEC rats, which could contribute to their low anxiety status and hypermotility, respectively. On the other hand, the increased level of NA in the EPN and 5-HT in the SN is consistent with an activation of the basal ganglia output-mediated motor suppression observed in WIN 55,212-2-treated GAERS rats. These data support the view of a strain-dependent alteration of the endocannabinoid system in absence epilepsy by adding evidence of a lower emotional responsiveness and a basal ganglia hypersensitivity to cannabinoids in GAERS compared to NEC rats.
Collapse
Affiliation(s)
| | - Maurizio Casarrubea
- Laboratory of Behavioral Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Human Physiology Section “Giuseppe Pagano”, University of Palermo, Palermo, Italy
- *Correspondence: Maurizio Casarrubea,
| | - Daniel Cassar
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Manuela Radic
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Emilie Puginier
- Centre National de la Recherche Scientifique, UMR 5287, Bordeaux Cedex, France
| | - Abdeslam Chagraoui
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
- Normandie Université, UNIROUEN, INSERM, U1239, CHU Rouen, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Rouen, France
- Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Giuseppe Crescimanno
- Laboratory of Behavioral Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Human Physiology Section “Giuseppe Pagano”, University of Palermo, Palermo, Italy
| | - Vincenzo Crunelli
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Giuseppe Di Giovanni,
| |
Collapse
|
31
|
Gunasekera B, Diederen K, Bhattacharyya S. Cannabinoids, reward processing, and psychosis. Psychopharmacology (Berl) 2022; 239:1157-1177. [PMID: 33644820 PMCID: PMC9110536 DOI: 10.1007/s00213-021-05801-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Evidence suggests that an overlap exists between the neurobiology of psychotic disorders and the effects of cannabinoids on neurocognitive and neurochemical substrates involved in reward processing. AIMS We investigate whether the psychotomimetic effects of delta-9-tetrahydrocannabinol (THC) and the antipsychotic potential of cannabidiol (CBD) are underpinned by their effects on the reward system and dopamine. METHODS This narrative review focuses on the overlap between altered dopamine signalling and reward processing induced by cannabinoids, pre-clinically and in humans. A systematic search was conducted of acute cannabinoid drug-challenge studies using neuroimaging in healthy subjects and those with psychosis RESULTS: There is evidence of increased striatal presynaptic dopamine synthesis and release in psychosis, as well as abnormal engagement of the striatum during reward processing. Although, acute THC challenges have elicited a modest effect on striatal dopamine, cannabis users generally indicate impaired presynaptic dopaminergic function. Functional MRI studies have identified that a single dose of THC may modulate regions involved in reward and salience processing such as the striatum, midbrain, insular, and anterior cingulate, with some effects correlating with the severity of THC-induced psychotic symptoms. CBD may modulate brain regions involved in reward/salience processing in an opposite direction to that of THC. CONCLUSIONS There is evidence to suggest modulation of reward processing and its neural substrates by THC and CBD. Whether such effects underlie the psychotomimetic/antipsychotic effects of these cannabinoids remains unclear. Future research should address these unanswered questions to understand the relationship between endocannabinoid dysfunction, reward processing abnormalities, and psychosis.
Collapse
Affiliation(s)
- Brandon Gunasekera
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK
| | - Kelly Diederen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, Box P067, London, SE5 8AF, UK.
| |
Collapse
|
32
|
United States marijuana legalization and opioid mortality epidemic during 2010–2020 and pandemic implications. J Natl Med Assoc 2022; 114:412-425. [DOI: 10.1016/j.jnma.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022]
|
33
|
Ivanov I, Bjork JM, Blair J, Newcorn JH. Sensitization-based risk for substance abuse in vulnerable individuals with ADHD: Review and re-examination of evidence. Neurosci Biobehav Rev 2022; 135:104575. [PMID: 35151770 PMCID: PMC9893468 DOI: 10.1016/j.neubiorev.2022.104575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023]
Abstract
Evidence of sensitization following stimulants administration in humans is just emerging, which prevents reaching more definitive conclusions in favor or against a purported protective role of stimulant treatments for ADHD for the development of substance use disorders. Existing evidence from both animal and human research suggest that stimulants produce neurophysiological changes in the brain reward system, some of which could be persistent. This could be relevant in choosing optimal treatments for young patients with ADHD who have additional clinical risk factors for substance abuse (e.g. conduct disorder (CD) and/or familial addictions). Here we stipulate that, while the majority of youth with ADHD greatly benefit from treatments with stimulants, there might be a subpopulation of individuals whose neurobiological profiles may confer risk for heightened vulnerability to the effects of stimulants on the responsiveness of the brain reward system. We propose that focused human research is needed to elucidate the unknown effects of prolonged stimulant exposure on the neurophysiology of the brain reward system in young patients with ADHD.
Collapse
Affiliation(s)
- Iliyan Ivanov
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | | | - James Blair
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | | |
Collapse
|
34
|
Chavez-Monteagudo JR, Ibancovichi JA, Sanchez-Aparicio P, Recillas-Morales S, Osorio-Avalos J, De Paz-Campos MA. Minimum Alveolar Concentration of Isoflurane in Rats Chronically Treated with the Synthetic Cannabinoid WIN 55,212-2. Animals (Basel) 2022; 12:ani12070853. [PMID: 35405842 PMCID: PMC8997027 DOI: 10.3390/ani12070853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary The minimum alveolar concentration of isoflurane (inhaled anesthetic required to prevent movement in 50% of subjects exposed to a supramaximal noxious stimulus) was determined in 24 male rats chronically treated with the synthetic cannabinoid WIN 55,212-2 to evaluate the interaction of isoflurane with chronically administered cannabinoid agonist. The minimum alveolar concentration was determined in one group without treatment, in rats treated for 21 days with WIN 55,212-2, and another group 8 days after stopping treatment for 21 days with cannabinoid. We believe it is necessary to study the effects of chronic consumption of these substances on the requirements of inhalation anesthetics in patients that will be submitted to general anesthesia. The administration for 21 days of WIN 55,212-2 increases the minimum alveolar concentration of isoflurane in rats; this effect does not disappear after 8 days of discontinuing treatment with the synthetic cannabinoid. Abstract The minimum alveolar concentration MAC of isoflurane was measured in rats chronically treated with WIN 55,212-2. Methods: The MAC of isoflurane was determined in 24 male rats from expiratory samples at time of tail clamping under the following conditions: without treatment MAC(ISO), in rats treated for 21 days with WIN 55,212-2 MAC(ISO + WIN55), and in rats 8 days after stopping treatment with WIN 55,212-2 (MACISO + WIN55 + 8D). Results: The MAC(ISO) was 1.32 ± 0.06. In the MAC(ISO + WIN55) group, the MAC increased to 1.69 ± 0.09 (28%, p-value ≤ (0.0001). Eight days after stopping treatment with WIN55, the MAC did not decrease significantly, 1.67 ± 0.07 (26%, p-value ≤ 0.0001). Conclusions: The administration of WIN 55,212-2 for 21 days increases the MAC of isoflurane in rats. This effect does not disappear 8 days after discontinuation of treatment with the synthetic cannabinoid.
Collapse
Affiliation(s)
- Julio Raul Chavez-Monteagudo
- Department of Veterinary Anesthesia and Analgesia, Facultad de Estudios Superiores Cuautitlán, Hospital de Pequeñas Especies, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 54740, Mexico;
| | - José Antonio Ibancovichi
- Department of Veterinary Anesthesia and Analgesia, Faculty of Veterinary Medicine, Universidad Autónoma del Estado de México, Toluca 50000, Mexico
- Correspondence: or ; Tel.: +52-722-6222544
| | - Pedro Sanchez-Aparicio
- Department of Pharmacology, Faculty of Veterinary Medicine, Universidad Autónoma del Estado de México, Toluca 50000, Mexico; (P.S.-A.); (S.R.-M.)
| | - Sergio Recillas-Morales
- Department of Pharmacology, Faculty of Veterinary Medicine, Universidad Autónoma del Estado de México, Toluca 50000, Mexico; (P.S.-A.); (S.R.-M.)
| | - Jorge Osorio-Avalos
- Department of Biostatistics, Faculty of Veterinary Medicine, Universidad Autónoma del Estado de México, Toluca 50000, Mexico;
| | - Marco Antonio De Paz-Campos
- Department of Pharmacology, Facultad de Estudios Superiores Cuautitlán, Hospital de Pequeñas Especies, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 54740, Mexico;
| |
Collapse
|
35
|
Abstract
PURPOSE A growing body of evidence has implicated the endocannabinoid (eCB) system in the acute, chronic, and withdrawal effects of alcohol/ethanol on synaptic function. These eCB-mediated synaptic effects may contribute to the development of alcohol use disorder (AUD). Alcohol exposure causes neurobiological alterations similar to those elicited by chronic cannabinoid (CB) exposure. Like alcohol, cannabinoids alter many central processes, such as cognition, locomotion, synaptic transmission, and neurotransmitter release. There is a strong need to elucidate the effects of ethanol on the eCB system in different brain regions to understand the role of eCB signaling in AUD. SEARCH METHODS For the scope of this review, preclinical studies were identified through queries of the PubMed database. SEARCH RESULTS This search yielded 459 articles. Clinical studies and papers irrelevant to the topic of this review were excluded. DISCUSSION AND CONCLUSIONS The endocannabinoid system includes, but is not limited to, cannabinoid receptors 1 (CB1), among the most abundantly expressed neuronal receptors in the brain; cannabinoid receptors 2 (CB2); and endogenously formed CB1 ligands, including arachidonoylethanolamide (AEA; anandamide), and 2-arachidonoylglycerol (2-AG). The development of specific CB1 agonists, such as WIN 55,212-2 (WIN), and antagonists, such as SR 141716A (rimonabant), provide powerful pharmacological tools for eCB research. Alcohol exposure has brain region-specific effects on the eCB system, including altering the synthesis of endocannabinoids (e.g., AEA, 2-AG), the synthesis of their precursors, and the density and coupling efficacy of CB1. These alcohol-induced alterations of the eCB system have subsequent effects on synaptic function including neuronal excitability and postsynaptic conductance. This review will provide a comprehensive evaluation of the current literature on the synaptic interactions of alcohol exposure and eCB signaling systems, with an emphasis on molecular and physiological synaptic effects of alcohol on the eCB system. A limited volume of studies has focused on the underlying interactions of alcohol and the eCB system at the synaptic level in the brain. Thus, the data on synaptic interactions are sparse, and future research addressing these interactions is much needed.
Collapse
Affiliation(s)
- Sarah A Wolfe
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California
| | - Valentina Vozella
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California
| | - Marisa Roberto
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California
| |
Collapse
|
36
|
Hempel B, Xi ZX. Receptor mechanisms underlying the CNS effects of cannabinoids: CB 1 receptor and beyond. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 93:275-333. [PMID: 35341569 PMCID: PMC10709991 DOI: 10.1016/bs.apha.2021.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Cannabis legalization continues to progress in many US states and other countries. Δ9-tetrahydrocannabinol (Δ9-THC) is the major psychoactive constituent in cannabis underlying both its abuse potential and the majority of therapeutic applications. However, the neural mechanisms underlying cannabis action are not fully understood. In this chapter, we first review recent progress in cannabinoid receptor research, and then examine the acute CNS effects of Δ9-THC or other cannabinoids (WIN55212-2) with a focus on their receptor mechanisms. In experimental animals, Δ9-THC or WIN55212-2 produces classical pharmacological effects (analgesia, catalepsy, hypothermia, hypolocomotion), biphasic changes in affect (reward vs. aversion, anxiety vs. anxiety relief), and cognitive deficits (spatial learning and memory, short-term memory). Accumulating evidence indicates that activation of CB1Rs underlies the majority of Δ9-THC or WIN55121-2's pharmacological and behavioral effects. Unexpectedly, glutamatergic CB1Rs preferentially underlie cannabis action relative to GABAergic CB1Rs. Functional roles for CB1Rs expressed on astrocytes and mitochondria have also been uncovered. In addition, Δ9-THC or WIN55212-2 is an agonist at CB2R, GPR55 and PPARγ receptors and recent studies implicate these receptors in a number of their CNS effects. Other receptors (such as serotonin, opioid, and adenosine receptors) also modulate Δ9-THC's actions and their contributions are detailed. This chapter describes the neural mechanisms underlying cannabis action, which may lead to new discoveries in cannabis-based medication development for the treatment of cannabis use disorder and other human diseases.
Collapse
Affiliation(s)
- Briana Hempel
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, United States.
| |
Collapse
|
37
|
Sivils A, Wang JQ, Chu XP. Striatonigrostriatal Spirals in Addiction. Front Neural Circuits 2021; 15:803501. [PMID: 34955762 PMCID: PMC8703003 DOI: 10.3389/fncir.2021.803501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
A biological reward system is integral to all animal life and humans are no exception. For millennia individuals have investigated this system and its influences on human behavior. In the modern day, with the US facing an ongoing epidemic of substance use without an effective treatment, these investigations are of paramount importance. It is well known that basal ganglia contribute to rewards and are involved in learning, approach behavior, economic choices, and positive emotions. This review aims to elucidate the physiological role of striatonigrostriatal (SNS) spirals, as part of basal ganglia circuits, in this reward system and their pathophysiological role in perpetuating addiction. Additionally, the main functions of neurotransmitters such as dopamine and glutamate and their receptors in SNS circuits will be summarized. With this information, the claim that SNS spirals are crucial intermediaries in the shift from goal-directed behavior to habitual behavior will be supported, making this circuit a viable target for potential therapeutic intervention in those with substance use disorders.
Collapse
Affiliation(s)
| | | | - Xiang-Ping Chu
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
38
|
Abstract
Addictive drugs are habit-forming. Addiction is a learned behavior; repeated exposure to addictive drugs can stamp in learning. Dopamine-depleted or dopamine-deleted animals have only unlearned reflexes; they lack learned seeking and learned avoidance. Burst-firing of dopamine neurons enables learning-long-term potentiation (LTP)-of search and avoidance responses. It sets the stage for learning that occurs between glutamatergic sensory inputs and GABAergic motor-related outputs of the striatum; this learning establishes the ability to search and avoid. Independent of burst-firing, the rate of single-spiking-or "pacemaker firing"-of dopaminergic neurons mediates motivational arousal. Motivational arousal increases during need states and its level determines the responsiveness of the animal to established predictive stimuli. Addictive drugs, while usually not serving as an external stimulus, have varying abilities to activate the dopamine system; the comparative abilities of different addictive drugs to facilitate LTP is something that might be studied in the future.
Collapse
Affiliation(s)
- Roy A Wise
- Intramural Research Program, National Institute on Drug Abuse, 250 Mason Lord Drive, Baltimore, MD, USA.
- Behavior Genetics Laboratory, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, USA.
| | - Chloe J Jordan
- Division of Alcohol, Drugs and Addiction, Department of Psychiatry, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| |
Collapse
|
39
|
McRae-Clark AL, Gray KM, Baker NL, Sherman BJ, Squeglia L, Sahlem GL, Wagner A, Tomko R. Varenicline as a treatment for cannabis use disorder: A placebo-controlled pilot trial. Drug Alcohol Depend 2021; 229:109111. [PMID: 34655945 PMCID: PMC8665036 DOI: 10.1016/j.drugalcdep.2021.109111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND An efficacious pharmacotherapy for cannabis use disorder (CUD) has yet to be established. This study preliminarily evaluated the safety and efficacy of varenicline for CUD in a proof-of-concept clinical trial. METHODS Participants in this 6-week randomized, placebo-controlled pilot trial received either varenicline (n = 35) or placebo (n = 37), added to a brief motivational enhancement therapy intervention. Outcomes included cannabis withdrawal, cannabis abstinence, urine cannabinoid levels, percent cannabis use days, and cannabis sessions per day. RESULTS Both treatment groups noted significant decreases in self-reported cannabis withdrawal, percentage of days used, and use sessions per day during treatment compared to baseline. While this pilot trial was not powered to detect statistically significant between-group differences, participants randomized to varenicline evidenced numerically greater rates of self-reported abstinence at the final study visit [Week 6 intent-to-treat (ITT): Varenicline: 17.1% vs. Placebo: 5.4%; RR = 3.2 (95% CI: 0.7,14.7)]. End-of-treatment urine creatinine corrected cannabinoid levels were numerically lower in the varenicline group and higher in the placebo group compared to baseline [Change from baseline: Varenicline -1.7 ng/mg (95% CI: -4.1,0.8) vs. Placebo: 1.9 ng/mg (95% CI: -0.4,4.3); Δ = 3.5 (95% CI: 0.1,6.9)]. Adverse events related to study treatment did not reveal new safety signals. CONCLUSIONS Findings support the feasibility of conducting clinical trials of varenicline as a candidate pharmacotherapy for CUD, and indicate that a full-scale efficacy trial, powered based on effect sizes and variability yielded in this study, is warranted.
Collapse
Affiliation(s)
- Aimee L. McRae-Clark
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC,Ralph H. Johnson VA Medical Center, Charleston, SC
| | - Kevin M. Gray
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC
| | - Nathaniel L. Baker
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Brian J. Sherman
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC
| | - Lindsay Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC
| | | | - Amanda Wagner
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC
| | - Rachel Tomko
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
40
|
Castillo Díaz F, Caffino L, Fumagalli F. Bidirectional role of dopamine in learning and memory-active forgetting. Neurosci Biobehav Rev 2021; 131:953-963. [PMID: 34655655 DOI: 10.1016/j.neubiorev.2021.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Dopaminergic neurons projecting from the Substantia Nigra to the Striatum play a critical role in motor functions while dopaminergic neurons originating in the Ventral Tegmental Area (VTA) and projecting to the Nucleus Accumbens, Hippocampus and other cortical structures regulate rewarding learning. While VTA mainly consists of dopaminergic neurons, excitatory (glutamate) and inhibitory (GABA) VTA-neurons have also been described: these neurons may also modulate and contribute to shape the final dopaminergic response, which is critical for memory formation. However, given the large amount of information that is handled daily by our brain, it is essential that irrelevant information be deleted. Recently, apart from the well-established role of dopamine (DA) in learning, it has been shown that DA plays a critical role in the intrinsic active forgetting mechanisms that control storage information, contributing to the deletion of a consolidated memory. These new insights may be instrumental to identify therapies for those disorders that involve memory alterations.
Collapse
Affiliation(s)
- Fernando Castillo Díaz
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
41
|
Cheron J, Kerchove d'Exaerde AD. Drug addiction: from bench to bedside. Transl Psychiatry 2021; 11:424. [PMID: 34385417 PMCID: PMC8361217 DOI: 10.1038/s41398-021-01542-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Drug addiction is responsible for millions of deaths per year around the world. Still, its management as a chronic disease is shadowed by misconceptions from the general public. Indeed, drug consumers are often labelled as "weak", "immoral" or "depraved". Consequently, drug addiction is often perceived as an individual problem and not societal. In technical terms, drug addiction is defined as a chronic, relapsing disease resulting from sustained effects of drugs on the brain. Through a better characterisation of the cerebral circuits involved, and the long-term modifications of the brain induced by addictive drugs administrations, first, we might be able to change the way the general public see the patient who is suffering from drug addiction, and second, we might be able to find new treatments to normalise the altered brain homeostasis. In this review, we synthetise the contribution of fundamental research to the understanding drug addiction and its contribution to potential novel therapeutics. Mostly based on drug-induced modifications of synaptic plasticity and epigenetic mechanisms (and their behavioural correlates) and after demonstration of their reversibility, we tried to highlight promising therapeutics. We also underline the specific temporal dynamics and psychosocial aspects of this complex psychiatric disease adding parameters to be considered in clinical trials and paving the way to test new therapeutic venues.
Collapse
Affiliation(s)
- Julian Cheron
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, B-1070, Belgium
| | - Alban de Kerchove d'Exaerde
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, B-1070, Belgium.
| |
Collapse
|
42
|
Roberts BZ, Minassian A, Halberstadt AL, He YV, Chatha M, Geyer MA, Grant I, Young JW. HIV Transgenic Rats Demonstrate Impaired Sensorimotor Gating But Are Insensitive to Cannabinoid (Δ9-Tetrahydrocannabinol)-Induced Deficits. Int J Neuropsychopharmacol 2021; 24:894-906. [PMID: 34338765 PMCID: PMC8598295 DOI: 10.1093/ijnp/pyab053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/24/2021] [Accepted: 07/30/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND HIV-associated neurocognitive disorder (HAND) is commonly observed in persons living with HIV (PWH) and is characterized by cognitive deficits implicating disruptions of fronto-striatal neurocircuitry. Such circuitry is also susceptible to alteration by cannabis and other drugs of abuse. PWH use cannabis at much higher rates than the general population, thus prioritizing the characterization of any interactions between HIV and cannabinoids on cognitively relevant systems. Prepulse inhibition (PPI) of the startle response, the process by which the motor response to a startling stimulus is attenuated by perception of a preceding non-startling stimulus, is an operational assay of fronto-striatal circuit integrity that is translatable across species. PPI is reduced in PWH. The HIV transgenic (HIVtg) rat model of HIV infection mimics numerous aspects of HAND, although to date the PPI deficit observed in PWH has yet to be fully recreated in animals. METHODS PPI was measured in male and female HIVtg rats and wild-type controls following acute, nonconcurrent treatment with the primary constituents of cannabis: Δ 9-tetrahydrocannabinol (THC; 1 and 3 mg/kg, s.c.) and cannabidiol (1, 10, and 30 mg/kg, i.p.). RESULTS HIVtg rats exhibited a significant PPI deficit relative to wild-type controls. THC reduced PPI in controls but not HIVtg rats. Cannabidiol exerted only minor, genotype-independent effects on PPI. CONCLUSIONS HIVtg rats exhibit a relative insensitivity to the deleterious effects of THC on the fronto-striatal function reflected by PPI, which may partially explain the higher rates of cannabis use among PWH.
Collapse
Affiliation(s)
- Benjamin Z Roberts
- Department of Psychiatry, University of California, San Diego, California, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California, San Diego, California, USA,VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, San Diego, California, USA
| | - Adam L Halberstadt
- Department of Psychiatry, University of California, San Diego, California, USA,VISN-22 Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, California, USA
| | - Yinong V He
- Department of Psychiatry, University of California, San Diego, California, USA
| | - Muhammad Chatha
- Department of Psychiatry, University of California, San Diego, California, USA
| | - Mark A Geyer
- Department of Psychiatry, University of California, San Diego, California, USA,VISN-22 Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, California, USA
| | - Igor Grant
- Department of Psychiatry, University of California, San Diego, California, USA
| | - Jared W Young
- Department of Psychiatry, University of California, San Diego, California, USA,VISN-22 Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, California, USA,Correspondence: Jared W. Young, PhD, Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA ()
| |
Collapse
|
43
|
Elgueta-Reyes M, Martínez-Pinto J, Renard GM, Sotomayor-Zárate R. Neonatal programming with sex hormones: Effect on expression of dopamine D 1 receptor and neurotransmitters release in nucleus accumbens in adult male and female rats. Eur J Pharmacol 2021; 902:174118. [PMID: 33905702 DOI: 10.1016/j.ejphar.2021.174118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022]
Abstract
Steroid sex hormones produce physiological effects in reproductive and non-reproductive tissues, such as the brain. In the brain, sex hormones receptors are expressed in cortical, limbic and midbrain areas modulating memory, arousal, fear and motivation between other behaviors. One neurotransmitters system regulated by sex hormones is dopamine (DA), where during adulthood, sex hormones promote neurophysiological and behavioral effects on DA systems such as tuberoinfundibular (prolactin secretion), nigrostriatal (motor circuit regulation) and mesocorticolimbic (driving of motivated behavior). However, the long-term effects induced by neonatal exposure to sex hormones on DA release induced by D1 receptor activation and its expression in nucleus accumbens (NAcc) have not been fully studied. To answer this question, neurochemical, cellular and molecular techniques were used. The data show sex differences in NAcc DA extracellular levels induced by D1 receptor activation and protein content of this receptor in male and female control rats. In addition, neonatal programming with a single dose of TP increases the NAcc protein content of D1 receptors of adult male and female rats. Our results show new evidence related with sex differences that could explain the dependence to drug of abuse in males and females, which may be associated with increased reinforcing effects of drugs of abuse.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/administration & dosage
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Aging
- Animals
- Animals, Newborn
- Dopamine/metabolism
- Dopamine Agonists/administration & dosage
- Dopamine Agonists/pharmacology
- Estradiol/administration & dosage
- Estradiol/pharmacology
- Female
- Glutamic Acid/metabolism
- Gonadal Steroid Hormones/administration & dosage
- Gonadal Steroid Hormones/pharmacology
- Injections
- Male
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Sex Factors
- Testosterone Propionate/administration & dosage
- Testosterone Propionate/pharmacology
- Time
- gamma-Aminobutyric Acid/metabolism
- Rats
Collapse
Affiliation(s)
- Maximiliano Elgueta-Reyes
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad de Santiago de Chile (USACH), Facultad de Ciencias Médicas, Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Santiago, Chile.
| | - Jonathan Martínez-Pinto
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| | - Georgina M Renard
- Universidad de Santiago de Chile (USACH), Facultad de Ciencias Médicas, Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Santiago, Chile.
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
44
|
Chronic Red Bull Consumption during Adolescence: Effect on Mesocortical and Mesolimbic Dopamine Transmission and Cardiovascular System in Adult Rats. Pharmaceuticals (Basel) 2021; 14:ph14070609. [PMID: 34202876 PMCID: PMC8308486 DOI: 10.3390/ph14070609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
Energy drinks are very popular nonalcoholic beverages among adolescents and young adults for their stimulant effects. Our study aimed to investigate the effect of repeated intraoral Red Bull (RB) infusion on dopamine transmission in the nucleus accumbens shell and core and in the medial prefrontal cortex and on cardiac contractility in adult rats exposed to chronic RB consumption. Rats were subjected to 4 weeks of RB voluntary consumption from adolescence to adulthood. Monitoring of in vivo dopamine was carried out by brain microdialysis. In vitro cardiac contractility was studied on biomechanical properties of isolated left-ventricular papillary muscle. The main finding of the study was that, in treated animals, RB increased shell dopamine via a nonadaptive mechanism, a pattern similar to that of drugs of abuse. No changes in isometric and isotonic mechanical parameters were associated with chronic RB consumption. However, a prolonged time to peak tension and half-time of relaxation and a slower peak rate of tension fall were observed in RB-treated rats. It is likely that RB treatment affects left-ventricular papillary muscle contraction. The neurochemical results here obtained can explain the addictive properties of RB, while the cardiovascular investigation findings suggest a hidden papillary contractility impairment.
Collapse
|
45
|
Oleson EB, Hamilton LR, Gomez DM. Cannabinoid Modulation of Dopamine Release During Motivation, Periodic Reinforcement, Exploratory Behavior, Habit Formation, and Attention. Front Synaptic Neurosci 2021; 13:660218. [PMID: 34177546 PMCID: PMC8222827 DOI: 10.3389/fnsyn.2021.660218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Motivational and attentional processes energize action sequences to facilitate evolutionary competition and promote behavioral fitness. Decades of neuropharmacology, electrophysiology and electrochemistry research indicate that the mesocorticolimbic DA pathway modulates both motivation and attention. More recently, it was realized that mesocorticolimbic DA function is tightly regulated by the brain's endocannabinoid system and greatly influenced by exogenous cannabinoids-which have been harnessed by humanity for medicinal, ritualistic, and recreational uses for 12,000 years. Exogenous cannabinoids, like the primary psychoactive component of cannabis, delta-9-tetrahydrocannabinol, produce their effects by acting at binding sites for naturally occurring endocannabinoids. The brain's endocannabinoid system consists of two G-protein coupled receptors, endogenous lipid ligands for these receptor targets, and several synthetic and metabolic enzymes involved in their production and degradation. Emerging evidence indicates that the endocannabinoid 2-arachidonoylglycerol is necessary to observe concurrent increases in DA release and motivated behavior. And the historical pharmacology literature indicates a role for cannabinoid signaling in both motivational and attentional processes. While both types of behaviors have been scrutinized under manipulation by either DA or cannabinoid agents, there is considerably less insight into prospective interactions between these two important signaling systems. This review attempts to summate the relevance of cannabinoid modulation of DA release during operant tasks designed to investigate either motivational or attentional control of behavior. We first describe how cannabinoids influence DA release and goal-directed action under a variety of reinforcement contingencies. Then we consider the role that endocannabinoids might play in switching an animal's motivation from a goal-directed action to the search for an alternative outcome, in addition to the formation of long-term habits. Finally, dissociable features of attentional behavior using both the 5-choice serial reaction time task and the attentional set-shifting task are discussed along with their distinct influences by DA and cannabinoids. We end with discussing potential targets for further research regarding DA-cannabinoid interactions within key substrates involved in motivation and attention.
Collapse
Affiliation(s)
- Erik B. Oleson
- Department of Psychology, University of Colorado Denver, Denver, CO, United States
| | - Lindsey R. Hamilton
- Department of Psychology, University of Colorado Denver, Denver, CO, United States
| | - Devan M. Gomez
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
46
|
Gunasekera B, Davies C, Martin-Santos R, Bhattacharyya S. The Yin and Yang of Cannabis: A Systematic Review of Human Neuroimaging Evidence of the Differential Effects of Δ 9-Tetrahydrocannabinol and Cannabidiol. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:636-645. [PMID: 33414100 DOI: 10.1016/j.bpsc.2020.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/14/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022]
Abstract
Cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) have been the most investigated cannabinoids at the human and preclinical levels, although the neurobiological mechanisms underlying their effects remain unclear. Human experimental evidence complemented by observational studies suggests that THC may have psychotogenic effects while CBD may have antipsychotic effects. However, whether their effects on brain function are consistent with their opposing behavioral effects remains unclear. To address this, here we synthesize neuroimaging evidence investigating the acute effects of THC and CBD on human brain function using a range of neuroimaging techniques, with an aim to identify the key brain substrates where THC and CBD have opposing effects. After a systematic search, a review of the available studies indicated marked heterogeneity. However, an overall pattern of opposite effect profiles of the two cannabinoids was evident with some degree of consistency, primarily attributed to the head-to-head challenge studies of THC and CBD. While head-to-head comparisons are relatively few, collectively the evidence suggests that opposite effects of THC and CBD may be present in the striatum, parahippocampus, anterior cingulate/medial prefrontal cortex, and amygdala, with opposite effects less consistently identified in other regions. Broadly, THC seems to increase brain activation and blood flow, whereas CBD seems to decrease brain activation and blood flow. Given the sparse evidence, there is a particular need to understand the mechanisms underlying their opposite behavioral effects because it may not only offer insights into the underlying pathophysiological mechanisms of psychotic disorders but also suggest potentially novel targets and biomarkers for drug discovery.
Collapse
Affiliation(s)
- Brandon Gunasekera
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Rocio Martin-Santos
- Department of Medicine, Institute of Neuroscience, University of Barcelona, Spain
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
47
|
Kesner AJ, Lovinger DM. Cannabis use, abuse, and withdrawal: Cannabinergic mechanisms, clinical, and preclinical findings. J Neurochem 2021; 157:1674-1696. [PMID: 33891706 PMCID: PMC9291571 DOI: 10.1111/jnc.15369] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022]
Abstract
Cannabis sativa is the most widely used illicit drug in the world. Its main psychoactive component is delta-9-tetrahydrocannabinol (THC), one of over 100 phytocannabinoid compounds produced by the cannabis plant. THC is the primary compound that drives cannabis abuse potential and is also used and prescribed medically for therapeutic qualities. Despite its therapeutic potential, a significant subpopulation of frequent cannabis or THC users will develop a drug use syndrome termed cannabis use disorder. Individuals suffering from cannabis use disorder exhibit many of the hallmarks of classical addictions including cravings, tolerance, and withdrawal symptoms. Currently, there are no efficacious treatments for cannabis use disorder or withdrawal symptoms. This makes both clinical and preclinical research on the neurobiological mechanisms of these syndromes ever more pertinent. Indeed, basic research using animal models has provided valuable evidence of the neural molecular and cellular actions of cannabis that mediate its behavioral effects. One of the main components being central action on the cannabinoid type-one receptor and downstream intracellular signaling related to the endogenous cannabinoid system. Back-translational studies have provided insight linking preclinical basic and behavioral biology research to better understand symptoms observed at the clinical level. This narrative review aims to summarize major research elucidating the molecular, cellular, and behavioral manifestations of cannabis/THC use that play a role in cannabis use disorder and withdrawal.
Collapse
Affiliation(s)
- Andrew J. Kesner
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and AlcoholismCenter on Compulsive BehaviorsNational Institutes of HealthBethesdaMDUSA
| | - David M. Lovinger
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and AlcoholismCenter on Compulsive BehaviorsNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
48
|
Hersey M, Bacon AK, Bailey LG, Coggiano MA, Newman AH, Leggio L, Tanda G. Psychostimulant Use Disorder, an Unmet Therapeutic Goal: Can Modafinil Narrow the Gap? Front Neurosci 2021; 15:656475. [PMID: 34121988 PMCID: PMC8187604 DOI: 10.3389/fnins.2021.656475] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
The number of individuals affected by psychostimulant use disorder (PSUD) has increased rapidly over the last few decades resulting in economic, emotional, and physical burdens on our society. Further compounding this issue is the current lack of clinically approved medications to treat this disorder. The dopamine transporter (DAT) is a common target of psychostimulant actions related to their use and dependence, and the recent availability of atypical DAT inhibitors as a potential therapeutic option has garnered popularity in this research field. Modafinil (MOD), which is approved for clinical use for the treatment of narcolepsy and sleep disorders, blocks DAT just like commonly abused psychostimulants. However, preclinical and clinical studies have shown that it lacks the addictive properties (in both behavioral and neurochemical studies) associated with other abused DAT inhibitors. Clinical availability of MOD has facilitated its off-label use for several psychiatric disorders related to alteration of brain dopamine (DA) systems, including PSUD. In this review, we highlight clinical and preclinical research on MOD and its R-enantiomer, R-MOD, as potential medications for PSUD. Given the complexity of PSUD, we have also reported the effects of MOD on psychostimulant-induced appearance of several symptoms that could intensify the severity of the disease (i.e., sleep disorders and impairment of cognitive functions), besides the potential therapeutic effects of MOD on PSUD.
Collapse
Affiliation(s)
- Melinda Hersey
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Amanda K. Bacon
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Lydia G. Bailey
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Mark A. Coggiano
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Amy H. Newman
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Lorenzo Leggio
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
- Clinical Psychoneuroendo- crinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
- National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, MD, United States
| | - Gianluigi Tanda
- Medication Development Program, Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
49
|
Reddon H, Milloy MJ, Wood E, Nosova E, Kerr T, DeBeck K. High-intensity cannabis use and hospitalization: a prospective cohort study of street-involved youth in Vancouver, Canada. Harm Reduct J 2021; 18:53. [PMID: 34001159 PMCID: PMC8130127 DOI: 10.1186/s12954-021-00501-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is concern that cannabis use negatively affects vulnerable groups such as youth; however, the relationship between cannabis use and health care utilization has not been well characterized in this population. We longitudinally evaluated the association between daily cannabis use and hospitalization among a prospective cohort of street-involved youth. METHODS Data were collected from the At-Risk Youth Study (ARYS) in Vancouver, Canada, from September 2005 to May 2015. Participants were interviewed semi-annually and multivariable generalized estimating equation (GEE) logistic regression was used to examine the relationship between daily cannabis use and hospitalization. RESULTS A total of 1216 participants (31.2% female) were included in this analysis, and 373 (30.7%) individuals reported hospitalization at some point during the study period. In a multivariable GEE analysis, daily cannabis use was not significantly associated with hospitalization (Adjusted Odds Ratio [AOR] = 1.17, 95% Confidence interval [CI] = 0.84, 1.65). We did observe a significant interaction between daily cannabis use and sex (AOR = 0.51, 95% CI = 0.34, 0.77), whereby cannabis use was associated with a decreased odds of hospitalization among males (AOR = 0.60, 95% CI = 0.47, 0.78), yet was not significantly associated with hospitalization among females (AOR = 1.19, 95% CI = 0.84, 1.67). CONCLUSIONS The finding that daily cannabis use was not associated with hospitalization among street-involved youth is encouraging given the high rates of cannabis use in this population and the expansion of cannabis legalization and regulation. Future studies, however, are warranted to monitor possible changes in the consequences of cannabis use as cannabis legalization and regulation increase internationally.
Collapse
Affiliation(s)
- Hudson Reddon
- BC Centre on Substance Use, University of British Columbia, 400-1045 Howe St, Vancouver, BC, V6Z 2A9, Canada
- CIHR Canadian HIV Trials Network, 588-1081 Burrard Street, Vancouver, BC, V6B 3E6, Canada
| | - M-J Milloy
- BC Centre on Substance Use, University of British Columbia, 400-1045 Howe St, Vancouver, BC, V6Z 2A9, Canada
- Department of Medicine, University of British Columbia, St. Paul's Hospital, 608-1081 Burrard Street, ,Vancouver, BC, V6Z 1Y6, Canada
| | - Evan Wood
- BC Centre on Substance Use, University of British Columbia, 400-1045 Howe St, Vancouver, BC, V6Z 2A9, Canada
- Department of Medicine, University of British Columbia, St. Paul's Hospital, 608-1081 Burrard Street, ,Vancouver, BC, V6Z 1Y6, Canada
| | - Ekaterina Nosova
- BC Centre on Substance Use, University of British Columbia, 400-1045 Howe St, Vancouver, BC, V6Z 2A9, Canada
| | - Thomas Kerr
- BC Centre on Substance Use, University of British Columbia, 400-1045 Howe St, Vancouver, BC, V6Z 2A9, Canada
- Department of Medicine, University of British Columbia, St. Paul's Hospital, 608-1081 Burrard Street, ,Vancouver, BC, V6Z 1Y6, Canada
| | - Kora DeBeck
- BC Centre on Substance Use, University of British Columbia, 400-1045 Howe St, Vancouver, BC, V6Z 2A9, Canada.
- School of Public Policy, SFU Harbour Centre, Simon Fraser University, 515 West Hastings Street, Vancouver, BC, V6B 5K3, Canada.
| |
Collapse
|
50
|
Safakish R, Ko G, Salimpour V, Hendin B, Sohanpal I, Loheswaran G, Yoon SYR. Medical Cannabis for the Management of Pain and Quality of Life in Chronic Pain Patients: A Prospective Observational Study. PAIN MEDICINE 2021; 21:3073-3086. [PMID: 32556203 DOI: 10.1093/pm/pnaa163] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To evaluate the short-term and long-term effects of plant-based medical cannabis in a chronic pain population over the course of one year. DESIGN A longitudinal, prospective, 12-month observational study. SETTING Patients were recruited and treated at a clinic specializing in medical cannabis care from October 2015 to March 2019. SUBJECTS A total of 751 chronic pain patients initiating medical cannabis treatment. METHODS Study participants completed the Brief Pain Inventory and the 12-item Short Form Survey (SF-12), as well as surveys on opioid medication use and adverse events, at baseline and once a month for 12 months. RESULTS Medical cannabis treatment was associated with improvements in pain severity and interference (P < 0.001) observed at one month and maintained over the 12-month observation period. Significant improvements were also observed in the SF-12 physical and mental health domains (P < 0.002) starting at three months. Significant decreases in headaches, fatigue, anxiety, and nausea were observed after initiation of treatment (P ≤ 0.002). In patients who reported opioid medication use at baseline, there were significant reductions in oral morphine equivalent doses (P < 0.0001), while correlates of pain were significantly improved by the end of the study observation period. CONCLUSIONS Taken together, the findings of this study add to the cumulative evidence in support of plant-based medical cannabis as a safe and effective treatment option and potential opioid medication substitute or augmentation therapy for the management of symptoms and quality of life in chronic pain patients.
Collapse
Affiliation(s)
| | - Gordon Ko
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | | | - Bryan Hendin
- Apollo Applied Research, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|