1
|
Kumari S, Nehra M, Jain S, Sheokand A, Dilbaghi N, Chaudhary GR, Kim KH, Kumar S. Luminescent Cu nanoclusters-encapsulated ZIF-8 as on-off-on fluorescent probe for efficient and selective quantification of E. coli. Mikrochim Acta 2025; 192:56. [PMID: 39775967 DOI: 10.1007/s00604-024-06905-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Rapid and accurate detection of Escherichia coli (E. coli) is critical for maintaining water quality, and protecting aquatic ecosystems and public health. This research focuses on the development of a Förster resonance energy transfer (FRET)-based "turn-on" fluorescent nanosensor for real time, sensitive detection of E. coli. Copper nanoclusters-encapsulated metal organic frameworks (CuNCs@ZIF-8) were sythesized as a fluorescent donor with excellent luminescence properties. Further, MnO2 nanospheres were synthesized as a receptor with good adsorption and quenching abilities. This novel nanoconjugate (CuNCs@ZIF-8@ MnO2) was employed for the construction of a sensitive, accurate, and rapid sensing platform against E. coli in water on the basis of p-benzoquinone/hydroquinone (p-BQ/HQ) redox pair formation. Fluorescence is quenched by energy transfer when MnO2 nanospheres are added to CuNCs@ZIF-8. Upon contact with E. coli, NADH-quinone reductase converts p-BQ to HQ, which reduces MnO2 to Mn2+, releasing the nanospheres and restoring fluorescence in the composite. Based on this FRET ON-OFF-ON fluorescent probe, E. coli can be detected across a broad concentration range (5 × 101 to 5 × 105 CFU/mL), with a detection limit as low as 8 CFU/mL within 50 min. The sensor's practicality was verified through the investigation of E. coli in real water samples, with recoveries in the range 94.3 to 106.5%. This approach offers an efficient method for on-site detection and quantification of E. coli in both environment and food safety domains.
Collapse
Affiliation(s)
- Sonam Kumari
- Department of Chemistry and Center of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Monika Nehra
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, India
| | - Shikha Jain
- Department of Bio-Nanotechnology, College of Biotechnology, CCS Haryana Agricultural University (CCSHAU), Hisar, Haryana, 125004, India
| | - Annu Sheokand
- Department of Physics, COBS & H., CCS Haryana Agricultural University, Hisar, 125004, India
| | - Neeraj Dilbaghi
- Department of Biotechnology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Ganga Ram Chaudhary
- Department of Chemistry and Center of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| | - Sandeep Kumar
- Department of Physics, Punjab Engineering College (Deemed to be University), Chandigarh, 160012, India.
| |
Collapse
|
2
|
Hall KM, Williams LG, Smith RD, Kuang EA, Ernst RK, Bojanowski CM, Wimley WC, Morici LA, Pursell ZF. Mutational signature analysis predicts bacterial hypermutation and multidrug resistance. Nat Commun 2025; 16:19. [PMID: 39746975 PMCID: PMC11695600 DOI: 10.1038/s41467-024-55206-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Bacteria of clinical importance, such as Pseudomonas aeruginosa, can become hypermutators upon loss of DNA mismatch repair (MMR) and are clinically correlated with high rates of multidrug resistance (MDR). Here, we demonstrate that hypermutated MMR-deficient P. aeruginosa has a unique mutational signature and rapidly acquires MDR upon repeated exposure to first-line or last-resort antibiotics. MDR acquisition was irrespective of drug class and instead arose through common resistance mechanisms shared between the initial and secondary drugs. Rational combinations of drugs having distinct resistance mechanisms prevented MDR acquisition in hypermutated MMR-deficient P. aeruginosa. Mutational signature analysis of P. aeruginosa across different human disease contexts identified appreciable quantities of MMR-deficient clinical isolates that were already MDR or prone to future MDR acquisition. Mutational signature analysis of patient samples is a promising diagnostic tool that may predict MDR and guide precision-based medical care.
Collapse
Affiliation(s)
- Kalen M Hall
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA, USA
- Informuta, Inc., San Diego, CA, USA
| | - Leonard G Williams
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA, USA
- Informuta, Inc., San Diego, CA, USA
- Bioinnovation Program, Tulane University, New Orleans, LA, USA
| | - Richard D Smith
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Erin A Kuang
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | | | - William C Wimley
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Lisa A Morici
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA, USA.
- Tulane Cancer Center, School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
3
|
Ferrare JT, Good BH. Evolution of evolvability in rapidly adapting populations. Nat Ecol Evol 2024; 8:2085-2096. [PMID: 39261599 PMCID: PMC12049861 DOI: 10.1038/s41559-024-02527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/29/2024] [Indexed: 09/13/2024]
Abstract
Mutations can alter the short-term fitness of an organism, as well as the rates and benefits of future mutations. While numerous examples of these evolvability modifiers have been observed in rapidly adapting microbial populations, existing theory struggles to predict when they will be favoured by natural selection. Here we develop a mathematical framework for predicting the fates of genetic variants that modify the rates and benefits of future mutations in linked genomic regions. We derive analytical expressions showing how the fixation probabilities of these variants depend on the size of the population and the diversity of competing mutations. We find that competition between linked mutations can dramatically enhance selection for modifiers that increase the benefits of future mutations, even when they impose a strong direct cost on fitness. However, we also find that modest direct benefits can be sufficient to drive evolutionary dead ends to fixation. Our results suggest that subtle differences in evolvability could play an important role in shaping the long-term success of genetic variants in rapidly evolving microbial populations.
Collapse
Affiliation(s)
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Marin J, Walewski V, Braun T, Dziri S, Magnan M, Denamur E, Carbonnelle E, Bridier-Nahmias A. Genomic evidence of Escherichia coli gut population diversity translocation in leukemia patients. mSphere 2024; 9:e0053024. [PMID: 39365076 PMCID: PMC11520291 DOI: 10.1128/msphere.00530-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Escherichia coli, a commensal species of the human gut, is an opportunistic pathogen that can reach extra-intestinal compartments, including the bloodstream and the bladder, among others. In non-immunosuppressed patients, purifying or neutral evolution of E. coli populations has been reported in the gut. Conversely, it has been suggested that when migrating to extra-intestinal compartments, E. coli genomes undergo diversifying selection as supported by strong evidence for adaptation. The level of genomic polymorphism and the size of the populations translocating from gut to extra-intestinal compartments is largely unknown. To gain insights into the pathophysiology of these translocations, we investigated the level of polymorphism and the evolutionary forces acting on the genomes of 77 E. coli isolated from various compartments in three immunosuppressed patients. Each patient had a unique strain, which was a mutator in one case. In all instances, we observed that translocation encompasses much of the genomic diversity present in the gut. The same signature of selection, whether purifying or diversifying, and as anticipated, neutral for mutator isolates, was observed in both the gut and bloodstream. Additionally, we found a limited number of non-specific mutations among compartments for non-mutator isolates. In all cases, urine isolates were dominated by neutral selection. These findings indicate that substantial proportions of populations are undergoing translocation and that they present a complex compartment-specific pattern of selection at the patient level.IMPORTANCEIt has been suggested that intra and extra-intestinal compartments differentially constrain the evolution of E. coli strains. Whether host particular conditions, such as immunosuppression, could affect the strain evolutionary trajectories remains understudied. We found that, in immunosuppressed patients, large fractions of E. coli gut populations are translocating with variable modifications of the signature of selection for commensal and pathogenic isolates according to the compartment and/or the patient. Such multiple site sampling should be performed in large cohorts of patients to gain a better understanding of E. coli extra-intestinal diseases.
Collapse
Affiliation(s)
- Julie Marin
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
| | - Violaine Walewski
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Thorsten Braun
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Samira Dziri
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Mélanie Magnan
- Université Paris Cité, INSERM, IAME, and APHP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France
| | - Erick Denamur
- Université Paris Cité, INSERM, IAME, and APHP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France
| | - Etienne Carbonnelle
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Antoine Bridier-Nahmias
- Université Paris Cité, INSERM, IAME, and APHP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France
| |
Collapse
|
5
|
Husain K, Sachdeva V, Ravasio R, Peruzzo M, Liu W, Good BH, Murugan A. Direct and indirect selection in a proofreading polymerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618309. [PMID: 39464107 PMCID: PMC11507774 DOI: 10.1101/2024.10.14.618309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The traits that affect evolvability are subject to indirect selection, as these traits affect the course of evolution over many generations rather than the direct replicative fitness of an individual. However, the evolution of evolvability-determining traits is often difficult to study because putative evolvability alleles often have confounding direct fitness effects of unknown origin and size. Here, we study theoretically and experimentally the evolution of mutation rates in proofreading polymerases with orthogonal control of direct and indirect selection. Mutagenic DNA polymerases enjoy a long-time fitness advantage by enhancing the rate of acquiring beneficial mutations. However, this is offset by a short-time fitness penalty, which we trace to a counterintuitive trade-off between mutation rates and activity in proofreading polymerases. Since these fitness effects act on different timescales, no one number characterizes the fitness of a mutator allele. We find unusual dynamic features in the resulting evolutionary dynamics, such as kinetic exclusion, selection by dynamic environments, and Rock-Paper-Scissors dynamics in the absence of ecology. Our work has implications for the evolution of mutation rates and more broadly, evolution in the context of an anti-correlation between mutation rates and short term fitness.
Collapse
Affiliation(s)
- Kabir Husain
- Department of Physics and Astronomy, University College London, United Kingdom
- Department of Physics, University of Chicago, Chicago, IL
| | | | | | | | - Wanqiang Liu
- Department of Physics, University of Chicago, Chicago, IL
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA
- Department of Biology, Stanford University, Stanford, CA
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA
| | - Arvind Murugan
- Department of Physics, University of Chicago, Chicago, IL
| |
Collapse
|
6
|
Shepherd MJ, Fu T, Harrington NE, Kottara A, Cagney K, Chalmers JD, Paterson S, Fothergill JL, Brockhurst MA. Ecological and evolutionary mechanisms driving within-patient emergence of antimicrobial resistance. Nat Rev Microbiol 2024; 22:650-665. [PMID: 38689039 DOI: 10.1038/s41579-024-01041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 05/02/2024]
Abstract
The ecological and evolutionary mechanisms of antimicrobial resistance (AMR) emergence within patients and how these vary across bacterial infections are poorly understood. Increasingly widespread use of pathogen genome sequencing in the clinic enables a deeper understanding of these processes. In this Review, we explore the clinical evidence to support four major mechanisms of within-patient AMR emergence in bacteria: spontaneous resistance mutations; in situ horizontal gene transfer of resistance genes; selection of pre-existing resistance; and immigration of resistant lineages. Within-patient AMR emergence occurs across a wide range of host niches and bacterial species, but the importance of each mechanism varies between bacterial species and infection sites within the body. We identify potential drivers of such differences and discuss how ecological and evolutionary analysis could be embedded within clinical trials of antimicrobials, which are powerful but underused tools for understanding why these mechanisms vary between pathogens, infections and individuals. Ultimately, improving understanding of how host niche, bacterial species and antibiotic mode of action combine to govern the ecological and evolutionary mechanism of AMR emergence in patients will enable more predictive and personalized diagnosis and antimicrobial therapies.
Collapse
Affiliation(s)
- Matthew J Shepherd
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| | - Taoran Fu
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Niamh E Harrington
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Anastasia Kottara
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Kendall Cagney
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Steve Paterson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Joanne L Fothergill
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Michael A Brockhurst
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
7
|
Gifford DR, Bhattacharyya A, Geim A, Marshall E, Krašovec R, Knight CG. Environmental and genetic influence on the rate and spectrum of spontaneous mutations in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001452. [PMID: 38687010 PMCID: PMC11084559 DOI: 10.1099/mic.0.001452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/19/2024] [Indexed: 05/02/2024]
Abstract
Spontaneous mutations are the ultimate source of novel genetic variation on which evolution operates. Although mutation rate is often discussed as a single parameter in evolution, it comprises multiple distinct types of changes at the level of DNA. Moreover, the rates of these distinct changes can be independently influenced by genomic background and environmental conditions. Using fluctuation tests, we characterized the spectrum of spontaneous mutations in Escherichia coli grown in low and high glucose environments. These conditions are known to affect the rate of spontaneous mutation in wild-type MG1655, but not in a ΔluxS deletant strain - a gene with roles in both quorum sensing and the recycling of methylation products used in E. coli's DNA repair process. We find an increase in AT>GC transitions in the low glucose environment, suggesting that processes relating to the production or repair of this mutation could drive the response of overall mutation rate to glucose concentration. Interestingly, this increase in AT>GC transitions is maintained by the glucose non-responsive ΔluxS deletant. Instead, an elevated rate of GC>TA transversions, more common in a high glucose environment, leads to a net non-responsiveness of overall mutation rate for this strain. Our results show how relatively subtle changes, such as the concentration of a carbon substrate or loss of a regulatory gene, can substantially influence the amount and nature of genetic variation available to selection.
Collapse
Affiliation(s)
- Danna R. Gifford
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Anish Bhattacharyya
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Alexandra Geim
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Pembroke College, University of Cambridge, Cambridge, UK
| | - Eleanor Marshall
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Rok Krašovec
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Christopher G. Knight
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Tuffaha MZ, Varakunan S, Castellano D, Gutenkunst RN, Wahl LM. Shifts in Mutation Bias Promote Mutators by Altering the Distribution of Fitness Effects. Am Nat 2023; 202:503-518. [PMID: 37792927 PMCID: PMC11288183 DOI: 10.1086/726010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractRecent experimental evidence demonstrates that shifts in mutational biases-for example, increases in transversion frequency-can change the distribution of fitness effects of mutations (DFE). In particular, reducing or reversing a prevailing bias can increase the probability that a de novo mutation is beneficial. It has also been shown that mutator bacteria are more likely to emerge if the beneficial mutations they generate have a larger effect size than observed in the wild type. Here, we connect these two results, demonstrating that mutator strains that reduce or reverse a prevailing bias have a positively shifted DFE, which in turn can dramatically increase their emergence probability. Since changes in mutation rate and bias are often coupled through the gain and loss of DNA repair enzymes, our results predict that the invasion of mutator strains will be facilitated by shifts in mutation bias that offer improved access to previously undersampled beneficial mutations.
Collapse
Affiliation(s)
| | | | - David Castellano
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Ryan N. Gutenkunst
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
9
|
Cai N, Chen J, Gao N, Ni X, Lei Y, Pu W, Wang L, Che B, Fan L, Zhou W, Feng J, Wang Y, Zheng P, Sun J. Engineering of the DNA replication and repair machinery to develop binary mutators for rapid genome evolution of Corynebacterium glutamicum. Nucleic Acids Res 2023; 51:8623-8642. [PMID: 37449409 PMCID: PMC10484736 DOI: 10.1093/nar/gkad602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Corynebacterium glutamicum is an important industrial workhorse for production of amino acids and chemicals. Although recently developed genome editing technologies have advanced the rational genetic engineering of C. glutamicum, continuous genome evolution based on genetic mutators is still unavailable. To address this issue, the DNA replication and repair machinery of C. glutamicum was targeted in this study. DnaQ, the homolog of ϵ subunit of DNA polymerase III responsible for proofreading in Escherichia coli, was proven irrelevant to DNA replication fidelity in C. glutamicum. However, the histidinol phosphatase (PHP) domain of DnaE1, the α subunit of DNA polymerase III, was characterized as the key proofreading element and certain variants with PHP mutations allowed elevated spontaneous mutagenesis. Repression of the NucS-mediated post-replicative mismatch repair pathway or overexpression of newly screened NucS variants also impaired the DNA replication fidelity. Simultaneous interference with the DNA replication and repair machinery generated a binary genetic mutator capable of increasing the mutation rate by up to 2352-fold. The mutators facilitated rapid evolutionary engineering of C. glutamicum to acquire stress tolerance and protein overproduction phenotypes. This study provides efficient tools for evolutionary engineering of C. glutamicum and could inspire the development of mutagenesis strategy for other microbial hosts.
Collapse
Affiliation(s)
- Ningyun Cai
- Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jiuzhou Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ning Gao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomeng Ni
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yu Lei
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wei Pu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Lixian Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Bin Che
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Liwen Fan
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wenjuan Zhou
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jinhui Feng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yu Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| | - Ping Zheng
- Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jibin Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
10
|
Lobinska G, Pilpel Y, Ram Y. Phenotype switching of the mutation rate facilitates adaptive evolution. Genetics 2023; 225:iyad111. [PMID: 37293818 PMCID: PMC10471227 DOI: 10.1093/genetics/iyad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/05/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
The mutation rate plays an important role in adaptive evolution. It can be modified by mutator and anti-mutator alleles. Recent empirical evidence hints that the mutation rate may vary among genetically identical individuals: evidence from bacteria suggests that the mutation rate can be affected by expression noise of a DNA repair protein and potentially also by translation errors in various proteins. Importantly, this non-genetic variation may be heritable via a transgenerational epigenetic mode of inheritance, giving rise to a mutator phenotype that is independent from mutator alleles. Here, we investigate mathematically how the rate of adaptive evolution is affected by the rate of mutation rate phenotype switching. We model an asexual population with two mutation rate phenotypes, non-mutator and mutator. An offspring may switch from its parental phenotype to the other phenotype. We find that switching rates that correspond to so-far empirically described non-genetic systems of inheritance of the mutation rate lead to higher rates of adaptation on both artificial and natural fitness landscapes. These switching rates can maintain within the same individuals both a mutator phenotype and intermediary mutations, a combination that facilitates adaptation. Moreover, non-genetic inheritance increases the proportion of mutators in the population, which in turn increases the probability of hitchhiking of the mutator phenotype with adaptive mutations. This in turns facilitates the acquisition of additional adaptive mutations. Our results rationalize recently observed noise in the expression of proteins that affect the mutation rate and suggest that non-genetic inheritance of this phenotype may facilitate evolutionary adaptive processes.
Collapse
Affiliation(s)
- Gabriela Lobinska
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoav Ram
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
11
|
Sane M, Diwan GD, Bhat BA, Wahl LM, Agashe D. Shifts in mutation spectra enhance access to beneficial mutations. Proc Natl Acad Sci U S A 2023; 120:e2207355120. [PMID: 37216547 PMCID: PMC10235995 DOI: 10.1073/pnas.2207355120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/27/2023] [Indexed: 05/24/2023] Open
Abstract
Biased mutation spectra are pervasive, with wide variation in the magnitude of mutational biases that influence genome evolution and adaptation. How do such diverse biases evolve? Our experiments show that changing the mutation spectrum allows populations to sample previously undersampled mutational space, including beneficial mutations. The resulting shift in the distribution of fitness effects is advantageous: Beneficial mutation supply and beneficial pleiotropy both increase, while deleterious load reduces. More broadly, simulations indicate that reducing or reversing the direction of a long-term bias is always selectively favored. Such changes in mutation bias can occur easily via altered function of DNA repair genes. A phylogenetic analysis shows that these genes are repeatedly gained and lost in bacterial lineages, leading to frequent bias shifts in opposite directions. Thus, shifts in mutation spectra may evolve under selection and can directly alter the outcome of adaptive evolution by facilitating access to beneficial mutations.
Collapse
Affiliation(s)
- Mrudula Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
| | - Gaurav D. Diwan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
- Bioquant, University of Heidelberg,69120Heidelberg, Germany
- Heidelberg University Biochemistry Center (BZH), 69120Heidelberg, Germany
| | - Bhoomika A. Bhat
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
- Undergraduate Programme, Indian Institute of Science, Bengaluru 560012, India
| | - Lindi M. Wahl
- Mathematics, Western University, London, ON, N6A 5B7, Canada
| | - Deepa Agashe
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
| |
Collapse
|
12
|
Dimitriu T, Souissi W, Morwool P, Darby A, Crickmore N, Raymond B. Selecting for infectivity across metapopulations can increase virulence in the social microbe
Bacillus thuringiensis. Evol Appl 2023; 16:705-720. [PMID: 36969139 PMCID: PMC10033855 DOI: 10.1111/eva.13529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Passage experiments that sequentially infect hosts with parasites have long been used to manipulate virulence. However, for many invertebrate pathogens, passage has been applied naively without a full theoretical understanding of how best to select for increased virulence and this has led to very mixed results. Understanding the evolution of virulence is complex because selection on parasites occurs across multiple spatial scales with potentially different conflicts operating on parasites with different life histories. For example, in social microbes, strong selection on replication rate within hosts can lead to cheating and loss of virulence, because investment in public goods virulence reduces replication rate. In this study, we tested how varying mutation supply and selection for infectivity or pathogen yield (population size in hosts) affected the evolution of virulence against resistant hosts in the specialist insect pathogen Bacillus thuringiensis, aiming to optimize methods for strain improvement against a difficult to kill insect target. We show that selection for infectivity using competition between subpopulations in a metapopulation prevents social cheating, acts to retain key virulence plasmids, and facilitates increased virulence. Increased virulence was associated with reduced efficiency of sporulation, and possible loss of function in putative regulatory genes but not with altered expression of the primary virulence factors. Selection in a metapopulation provides a broadly applicable tool for improving the efficacy of biocontrol agents. Moreover, a structured host population can facilitate artificial selection on infectivity, while selection on life-history traits such as faster replication or larger population sizes can reduce virulence in social microbes.
Collapse
Affiliation(s)
- Tatiana Dimitriu
- Centre for Ecology and Conservation University of Exeter Penryn UK
| | - Wided Souissi
- School of Life Sciences University of Sussex Brighton UK
| | - Peter Morwool
- Centre for Ecology and Conservation University of Exeter Penryn UK
| | - Alistair Darby
- Centre for Genomic Research, Institute of Integrative Biology University of Liverpool Liverpool UK
| | - Neil Crickmore
- School of Life Sciences University of Sussex Brighton UK
| | - Ben Raymond
- Centre for Ecology and Conservation University of Exeter Penryn UK
| |
Collapse
|
13
|
Environmental complexity is more important than mutation in driving the evolution of latent novel traits in E. coli. Nat Commun 2022; 13:5904. [PMID: 36202805 PMCID: PMC9537139 DOI: 10.1038/s41467-022-33634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Recent experiments show that adaptive Darwinian evolution in one environment can lead to the emergence of multiple new traits that provide no immediate benefit in this environment. Such latent non-adaptive traits, however, can become adaptive in future environments. We do not know whether mutation or environment-driven selection is more important for the emergence of such traits. To find out, we evolve multiple wild-type and mutator E. coli populations under two mutation rates in simple (single antibiotic) environments and in complex (multi-antibiotic) environments. We then assay the viability of evolved populations in dozens of new environments and show that all populations become viable in multiple new environments different from those they had evolved in. The number of these new environments increases with environmental complexity but not with the mutation rate. Genome sequencing demonstrates the reason: Different environments affect pleiotropic mutations differently. Our experiments show that the selection pressure provided by an environment can be more important for the evolution of novel traits than the mutational supply experienced by a wild-type and a mutator strain of E. coli. Novel traits without immediate fitness benefit evolve frequently but we don’t know whether mutation or environment-driven selection drives this evolution. Here, using experimental evolution of E. coli populations, the authors demonstrate the importance of selection in the evolution of latent novel traits.
Collapse
|
14
|
Wang D, Ning Q, Deng Z, Zhang M, You J. Role of environmental stresses in elevating resistance mutations in bacteria: Phenomena and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119603. [PMID: 35691443 DOI: 10.1016/j.envpol.2022.119603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Mutations are an important origin of antibiotic resistance in bacteria. While there is increasing evidence showing promoted resistance mutations by environmental stresses, no retrospective research has yet been conducted on this phenomenon and its mechanisms. Herein, we summarized the phenomena of stress-elevated resistance mutations in bacteria, generalized the regulatory mechanisms and discussed the environmental and human health implications. It is shown that both chemical pollutants, such as antibiotics and other pharmaceuticals, biocides, metals, nanoparticles and disinfection byproducts, and non-chemical stressors, such as ultraviolet radiation, electrical stimulation and starvation, are capable of elevating resistance mutations in bacteria. Notably, resistance mutations are more likely to occur under sublethal or subinhibitory levels of these stresses, suggesting a considerable environmental concern. Further, mechanisms for stress-induced mutations are summarized in several points, namely oxidative stress, SOS response, DNA replication and repair systems, RpoS regulon and biofilm formation, all of which are readily provoked by common environmental stresses. Given bacteria in the environment are confronted with a variety of unfavorable conditions, we propose that the stress-elevated resistance mutations are a universal phenomenon in the environment and represent a nonnegligible risk factor for ecosystems and human health. The present review identifies a need for taking into account the pollutants' ability to elevate resistance mutations when assessing their environmental and human health risks and highlights the necessity of including resistance mutations as a target to prevent antibiotic resistance evolution.
Collapse
Affiliation(s)
- Dali Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Qing Ning
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | | | - Meng Zhang
- Shenzhen Dapeng New District Center for Disease Control and Prevention, Shenzhen, 518000, China
| | - Jing You
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
15
|
Hall KM, Pursell ZF, Morici LA. The role of the Pseudomonas aeruginosa hypermutator phenotype on the shift from acute to chronic virulence during respiratory infection. Front Cell Infect Microbiol 2022; 12:943346. [PMID: 35937684 PMCID: PMC9355025 DOI: 10.3389/fcimb.2022.943346] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic respiratory infection (CRI) with Pseudomonas aeruginosa (Pa) presents many unique challenges that complicate treatment. One notable challenge is the hypermutator phenotype which is present in up to 60% of sampled CRI patient isolates. Hypermutation can be caused by deactivating mutations in DNA mismatch repair (MMR) genes including mutS, mutL, and uvrD. In vitro and in vivo studies have demonstrated hypermutator strains to be less virulent than wild-type Pa. However, patients colonized with hypermutators display poorer lung function and a higher incidence of treatment failure. Hypermutation and MMR-deficiency create increased genetic diversity and population heterogeneity due to elevated mutation rates. MMR-deficient strains demonstrate higher rates of mucoidy, a hallmark virulence determinant of Pa during CRI in cystic fibrosis patients. The mucoid phenotype results from simple sequence repeat mutations in the mucA gene made in the absence of functional MMR. Mutations in Pa are further increased in the absence of MMR, leading to microcolony biofilm formation, further lineage diversification, and population heterogeneity which enhance bacterial persistence and host immune evasion. Hypermutation facilitates the adaptation to the lung microenvironment, enabling survival among nutritional complexity and microaerobic or anaerobic conditions. Mutations in key acute-to-chronic virulence “switch” genes, such as retS, bfmS, and ampR, are also catalyzed by hypermutation. Consequently, strong positive selection for many loss-of-function pathoadaptive mutations is seen in hypermutators and enriched in genes such as lasR. This results in the characteristic loss of Pa acute infection virulence factors, including quorum sensing, flagellar motility, and type III secretion. Further study of the role of hypermutation on Pa chronic infection is needed to better inform treatment regimens against CRI with hypermutator strains.
Collapse
Affiliation(s)
- Kalen M. Hall
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Zachary F. Pursell
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Lisa A. Morici
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- *Correspondence: Lisa A. Morici,
| |
Collapse
|
16
|
Polymicrobial infections can select against Pseudomonas aeruginosa mutators because of quorum-sensing trade-offs. Nat Ecol Evol 2022; 6:979-988. [PMID: 35618819 DOI: 10.1038/s41559-022-01768-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/13/2022] [Indexed: 11/08/2022]
Abstract
Bacteria with increased mutation rates (mutators) are common in chronic infections and are associated with poorer clinical outcomes, especially in the case of Pseudomonas aeruginosa infecting cystic fibrosis (CF) patients. There is, however, considerable between-patient variation in both P. aeruginosa mutator frequency and the composition of co-infecting pathogen communities. We investigated whether community context might affect selection of mutators. Using an in vitro CF model community, we show that P. aeruginosa mutators were favoured in the absence of other species but not in their presence. This was because there were trade-offs between adaptation to the biotic and abiotic environments (for example, loss of quorum sensing and associated toxin production was beneficial in the latter but not the former in our in vitro model community) limiting the evolvability advantage of an elevated mutation rate. Consistent with a role of co-infecting pathogens selecting against P. aeruginosa mutators in vivo, we show that the mutation frequency of P. aeruginosa population was negatively correlated with the frequency and diversity of co-infecting bacteria in CF infections. Our results suggest that co-infecting taxa can select against P. aeruginosa mutators, which may have potentially beneficial clinical consequences.
Collapse
|
17
|
Lee S, Okoye CN, Biesbrock D, Harris EC, Miyasaki KF, Rilinger RG, Tso M, Hart KM. Natural and Synthetic Suppressor Mutations Defy Stability-Activity Tradeoffs. Biochemistry 2022; 61:398-407. [PMID: 35142509 PMCID: PMC8893143 DOI: 10.1021/acs.biochem.1c00805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thermodynamic stability represents one important constraint on protein evolution, but the molecular basis for how mutations that change stability impact fitness remains unclear. Here, we demonstrate that a prevalent global suppressor mutation in TEM β-lactamase, M182T, increases fitness by reducing proteolysis in vivo. We also show that a synthetic mutation, M182S, can act as a global suppressor and suggest that its absence from natural populations is due to genetic inaccessibility rather than fundamental differences in the protein's stability or activity.
Collapse
Affiliation(s)
- Sonya Lee
- Department
of Chemistry, Williams College, 880 Main Street, Williamstown, Massachusetts 01267, United States
| | - Cynthia N. Okoye
- Department
of Chemistry, Williams College, 880 Main Street, Williamstown, Massachusetts 01267, United States
| | - Devin Biesbrock
- Department
of Chemistry, Williams College, 880 Main Street, Williamstown, Massachusetts 01267, United States
| | - Emily C. Harris
- Department
of Chemistry, Williams College, 880 Main Street, Williamstown, Massachusetts 01267, United States
| | - Katelyn F. Miyasaki
- Department
of Biochemistry & Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Ryan G. Rilinger
- Department
of Chemistry, Williams College, 880 Main Street, Williamstown, Massachusetts 01267, United States
| | - Megalan Tso
- Department
of Chemistry, Williams College, 880 Main Street, Williamstown, Massachusetts 01267, United States
| | - Kathryn M. Hart
- Department
of Chemistry, Williams College, 880 Main Street, Williamstown, Massachusetts 01267, United States,
| |
Collapse
|
18
|
Mutators Enhance Adaptive Micro-Evolution in Pathogenic Microbes. Microorganisms 2022; 10:microorganisms10020442. [PMID: 35208897 PMCID: PMC8875331 DOI: 10.3390/microorganisms10020442] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Adaptation to the changing environmental conditions experienced within a host requires genetic diversity within a microbial population. Genetic diversity arises from mutations which occur due to DNA damage from exposure to exogenous environmental stresses or generated endogenously through respiration or DNA replication errors. As mutations can be deleterious, a delicate balance must be obtained between generating enough mutations for micro-evolution to occur while maintaining fitness and genomic integrity. Pathogenic microorganisms can actively modify their mutation rate to enhance adaptive micro-evolution by increasing expression of error-prone DNA polymerases or by mutating or decreasing expression of genes required for DNA repair. Strains which exhibit an elevated mutation rate are termed mutators. Mutators are found in varying prevalence in clinical populations where large-effect beneficial mutations enhance survival and are predominately caused by defects in the DNA mismatch repair (MMR) pathway. Mutators can facilitate the emergence of antibiotic resistance, allow phenotypic modifications to prevent recognition and destruction by the host immune system and enable switching to metabolic and cellular morphologies better able to survive in the given environment. This review will focus on recent advances in understanding the phenotypic and genotypic changes occurring in MMR mutators in both prokaryotic and eukaryotic pathogens.
Collapse
|
19
|
Vincent MS, Uphoff S. Cellular heterogeneity in DNA alkylation repair increases population genetic plasticity. Nucleic Acids Res 2021; 49:12320-12331. [PMID: 34850170 PMCID: PMC8643705 DOI: 10.1093/nar/gkab1143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
DNA repair mechanisms fulfil a dual role, as they are essential for cell survival and genome maintenance. Here, we studied how cells regulate the interplay between DNA repair and mutation. We focused on the adaptive response that increases the resistance of Escherichia coli cells to DNA alkylation damage. Combination of single-molecule imaging and microfluidic-based single-cell microscopy showed that noise in the gene activation timing of the master regulator Ada is accurately propagated to generate a distinct subpopulation of cells in which all proteins of the adaptive response are essentially absent. Whereas genetic deletion of these proteins causes extreme sensitivity to alkylation stress, a temporary lack of expression is tolerated and increases genetic plasticity of the whole population. We demonstrated this by monitoring the dynamics of nascent DNA mismatches during alkylation stress as well as the frequency of fixed mutations that are generated by the distinct subpopulations of the adaptive response. We propose that stochastic modulation of DNA repair capacity by the adaptive response creates a viable hypermutable subpopulation of cells that acts as a source of genetic diversity in a clonal population.
Collapse
Affiliation(s)
- Maxence S Vincent
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
20
|
Murray GGR, Balmer AJ, Herbert J, Hadjirin NF, Kemp CL, Matuszewska M, Bruchmann S, Hossain ASMM, Gottschalk M, Tucker AW, Miller E, Weinert LA. Mutation rate dynamics reflect ecological change in an emerging zoonotic pathogen. PLoS Genet 2021; 17:e1009864. [PMID: 34748531 PMCID: PMC8601623 DOI: 10.1371/journal.pgen.1009864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/18/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
Mutation rates vary both within and between bacterial species, and understanding what drives this variation is essential for understanding the evolutionary dynamics of bacterial populations. In this study, we investigate two factors that are predicted to influence the mutation rate: ecology and genome size. We conducted mutation accumulation experiments on eight strains of the emerging zoonotic pathogen Streptococcus suis. Natural variation within this species allows us to compare tonsil carriage and invasive disease isolates, from both more and less pathogenic populations, with a wide range of genome sizes. We find that invasive disease isolates have repeatedly evolved mutation rates that are higher than those of closely related carriage isolates, regardless of variation in genome size. Independent of this variation in overall rate, we also observe a stronger bias towards G/C to A/T mutations in isolates from more pathogenic populations, whose genomes tend to be smaller and more AT-rich. Our results suggest that ecology is a stronger correlate of mutation rate than genome size over these timescales, and that transitions to invasive disease are consistently accompanied by rapid increases in mutation rate. These results shed light on the impact that ecology can have on the adaptive potential of bacterial pathogens.
Collapse
Affiliation(s)
- Gemma G. R. Murray
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Andrew J. Balmer
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Josephine Herbert
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nazreen F. Hadjirin
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Caroline L. Kemp
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Marta Matuszewska
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sebastian Bruchmann
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Marcelo Gottschalk
- Département de Pathologie et Microbiologie, Université de Montréal, Montréal, Canada
| | - Alexander W. Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Eric Miller
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lucy A. Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
21
|
Decrulle AL, Frénoy A, Meiller-Legrand TA, Bernheim A, Lotton C, Gutierrez A, Lindner AB. Engineering gene overlaps to sustain genetic constructs in vivo. PLoS Comput Biol 2021; 17:e1009475. [PMID: 34624014 PMCID: PMC8528312 DOI: 10.1371/journal.pcbi.1009475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 10/20/2021] [Accepted: 09/23/2021] [Indexed: 11/20/2022] Open
Abstract
Evolution is often an obstacle to the engineering of stable biological systems due to the selection of mutations inactivating costly gene circuits. Gene overlaps induce important constraints on sequences and their evolution. We show that these constraints can be harnessed to increase the stability of costly genes by purging loss-of-function mutations. We combine computational and synthetic biology approaches to rationally design an overlapping reading frame expressing an essential gene within an existing gene to protect. Our algorithm succeeded in creating overlapping reading frames in 80% of E. coli genes. Experimentally, scoring mutations in both genes of such overlapping construct, we found that a significant fraction of mutations impacting the gene to protect have a deleterious effect on the essential gene. Such an overlap thus protects a costly gene from removal by natural selection by associating the benefit of this removal with a larger or even lethal cost. In our synthetic constructs, the overlap converts many of the possible mutants into evolutionary dead-ends, reducing the evolutionary potential of the system and thus increasing its stability over time. Genomes are translated by triplets of nucleotides on two different strands, allowing for six different reading frames. This permits the existence of gene overlaps, often observed in microbial genomes, where two different proteins are encoded on the same piece of DNA, but in different reading frames. Gene overlaps are classically considered an obstacle for both evolution and genetic engineering, as mutations in overlapping regions likely have pleitrotropic effects on several genes. In 2013, we identified specific evolutionary scenarios where the decrease in evolutionary potential caused by gene overlaps could instead be advantageous and selected for. In this work, we demonstrate the use of gene overlaps in another context where reducing evolutionary potential can be useful: preventing evolution from inactivating synthetic circuits. We show that gene overlaps can be engineered to increase the evolutionary stability of genes that are costly to their hosts, by entangling these costly genes with essential genes.
Collapse
Affiliation(s)
| | - Antoine Frénoy
- Université de Paris, INSERM U1001, Paris, France
- Université Grenoble Alpes, CNRS UMR5525, Grenoble, France
- * E-mail: (AF); (ABL)
| | | | | | | | | | - Ariel B. Lindner
- Université de Paris, INSERM U1001, Paris, France
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), Paris, France
- * E-mail: (AF); (ABL)
| |
Collapse
|
22
|
Control of Genome Stability by EndoMS/NucS-Mediated Non-Canonical Mismatch Repair. Cells 2021; 10:cells10061314. [PMID: 34070467 PMCID: PMC8228993 DOI: 10.3390/cells10061314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
The DNA repair endonuclease EndoMS/NucS is highly conserved in Archaea and Actinobacteria. This enzyme is able to recognize and cleave dsDNA carrying a mismatched base pair, and its activity is enhanced by the interaction with the sliding clamp of the replisome. Today, EndoMS/NucS has been established as the key protein of a non-canonical mismatch repair (MMR) pathway, acting specifically in the repair of transitions and being essential for maintaining genome stability. Despite having some particularities, such as its lower activity on transversions and the inability to correct indels, EndoMS/NucS meets the main hallmarks of a MMR. Its absence leads to a hypermutator phenotype, a transition-biased mutational spectrum and an increase in homeologous recombination. Interestingly, polymorphic EndoMS/NucS variants with a possible effect in mutation rate have been detected in clinical isolates of the relevant actinobacterial pathogen Mycobacterium tuberculosis. Considering that MMR defects are often associated with the emergence of resistant bacteria, the existence of EndoMS/NucS-defective mutators could have an important role in the acquisition of antibiotic resistance in M. tuberculosis. Therefore, a further understanding of the EndoMS/NucS-mediated non-canonical MMR pathway may reveal new strategies to predict and fight drug resistance. This review is focused on the recent progress in NucS, with special emphasis on its effect on genome stability and evolvability in Actinobacteria.
Collapse
|
23
|
Russo M, Sogari A, Bardelli A. Adaptive Evolution: How Bacteria and Cancer Cells Survive Stressful Conditions and Drug Treatment. Cancer Discov 2021; 11:1886-1895. [PMID: 33952585 DOI: 10.1158/2159-8290.cd-20-1588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer is characterized by loss of the regulatory mechanisms that preserve homeostasis in multicellular organisms, such as controlled proliferation, cell-cell adhesion, and tissue differentiation. The breakdown of multicellularity rules is accompanied by activation of "selfish," unicellular-like life features, which are linked to the increased adaptability to environmental changes displayed by cancer cells. Mechanisms of stress response, resembling those observed in unicellular organisms, are actively exploited by mammalian cancer cells to boost genetic diversity and increase chances of survival under unfavorable conditions, such as lack of oxygen/nutrients or exposure to drugs. Unicellular organisms under stressful conditions (e.g., antibiotic treatment) stop replicating or slowly divide and transiently increase their mutation rates to foster diversity, a process known as adaptive mutability. Analogously, tumor cells exposed to drugs enter a persister phenotype and can reduce DNA replication fidelity, which in turn fosters genetic diversity. The implications of adaptive evolution are of relevance to understand resistance to anticancer therapies.
Collapse
Affiliation(s)
- Mariangela Russo
- Department of Oncology, University of Torino, Candiolo 10060, Italy. Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Italy.
| | - Alberto Sogari
- Department of Oncology, University of Torino, Candiolo 10060, Italy. Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Italy
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo 10060, Italy. Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Italy.
| |
Collapse
|
24
|
Yamazaki T, Matsuo J. Mutation frequency of Escherichia coli isolated from river water: potential role in the development of antimicrobial resistance. Can J Microbiol 2021; 67:651-656. [PMID: 33756093 DOI: 10.1139/cjm-2020-0547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteria acquire genetic variations that help them to adapt to stressful environmental conditions, and these changes may be associated with the development of antimicrobial resistance. In this study, we investigated the mutation frequencies of 270 isolates of Escherichia coli from river water, which represents a relatively unstressful environment. As we predicted, mutation frequencies of the E. coli isolates ranged from <1 × 10-11 to 6.3 × 10-8 (median, 1.7 × 10-9), and a strong mutator (≥ 4 × 10-7) was not detected. To better understand the role of mutation frequency in the development of antimicrobial resistance, we assessed antimicrobial sensitivity after exposure of the E. coli isolates to subinhibitory concentrations of ciprofloxacin, as a surrogate for stress. We found that antimicrobial resistance increased in bacteria with a low mutation frequency after exposure, and the relative increase in antimicrobial resistance generally increased, depending on the mutation frequency. Thus, mutation frequency may contribute to the development of antimicrobial resistance of bacteria in natural environments.
Collapse
Affiliation(s)
- Tomohiro Yamazaki
- School of Medical Technology, Health Sciences University of Hokkaido, Ainosato 2-5, Kita-ku, Sapporo 002-8072, Japan.,School of Medical Technology, Health Sciences University of Hokkaido, Ainosato 2-5, Kita-ku, Sapporo 002-8072, Japan
| | - Junji Matsuo
- School of Medical Technology, Health Sciences University of Hokkaido, Ainosato 2-5, Kita-ku, Sapporo 002-8072, Japan.,School of Medical Technology, Health Sciences University of Hokkaido, Ainosato 2-5, Kita-ku, Sapporo 002-8072, Japan
| |
Collapse
|
25
|
Insertion-sequence-mediated mutations both promote and constrain evolvability during a long-term experiment with bacteria. Nat Commun 2021; 12:980. [PMID: 33579917 PMCID: PMC7881107 DOI: 10.1038/s41467-021-21210-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 01/08/2021] [Indexed: 01/26/2023] Open
Abstract
Insertion sequences (IS) are ubiquitous bacterial mobile genetic elements, and the mutations they cause can be deleterious, neutral, or beneficial. The long-term dynamics of IS elements and their effects on bacteria are poorly understood, including whether they are primarily genomic parasites or important drivers of adaptation by natural selection. Here, we investigate the dynamics of IS elements and their contribution to genomic evolution and fitness during a long-term experiment with Escherichia coli. IS elements account for ~35% of the mutations that reached high frequency through 50,000 generations in those populations that retained the ancestral point-mutation rate. In mutator populations, IS-mediated mutations are only half as frequent in absolute numbers. In one population, an exceptionally high ~8-fold increase in IS150 copy number is associated with the beneficial effects of early insertion mutations; however, this expansion later slowed down owing to reduced IS150 activity. This population also achieves the lowest fitness, suggesting that some avenues for further adaptation are precluded by the IS150-mediated mutations. More generally, across all populations, we find that higher IS activity becomes detrimental to adaptation over evolutionary time. Therefore, IS-mediated mutations can both promote and constrain evolvability. Insertion sequences (IS) are common mobile genetic elements in bacteria, but their effects on bacterial evolution are not well understood. Here, Consuegra and colleagues investigate the dynamics and fitness consequences of IS elements in E. coli over 50,000 generations.
Collapse
|
26
|
Abstract
Many nonsporulating bacterial species can survive for years within exhausted growth media in a state termed long-term stationary phase (LTSP). We have been carrying out evolutionary experiments aimed at elucidating the dynamics of genetic adaptation under LTSP. We showed that Escherichia coli adapts to prolonged resource exhaustion through the highly convergent acquisition of mutations. In the most striking example of such convergent adaptation, we observed that across all independently evolving LTSP populations, over 90% of E. coli cells carry mutations to one of three specific sites of the RNA polymerase core enzyme (RNAPC). These LTSP adaptations reduce the ability of the cells carrying them to grow once fresh resources are again provided. Here, we examine how LTSP populations recover from costs associated with their adaptation once resources are again provided to them. We demonstrate that due to the ability of LTSP populations to maintain high levels of standing genetic variation during adaptation, costly adaptations are very rapidly purged from the population once they are provided with fresh resources. We further demonstrate that recovery from costs acquired during adaptation under LTSP occurs more rapidly than would be possible if LTSP adaptations had fixed during the time populations spent under resource exhaustion. Finally, we previously reported that under LTSP, some clones develop a mutator phenotype, greatly increasing their mutation accumulation rates. Here, we show that the mechanisms by which populations recover from costs associated with fixed adaptations may depend on mutator status.IMPORTANCE Many bacterial species can survive for decades under starvation, following the exhaustion of external growth resources. We have previously shown that bacteria genetically adapt under these conditions in a manner that reduces their ability to grow once resources again become available. Here, we study how populations that have been subject to very prolonged resource exhaustion recover from costs associated with their adaptation. We demonstrate that rapid adaptations acquired under prolonged starvation tend to be highly transient, rapidly reducing in frequency once bacteria are no longer starved. Our results shed light on the longer-term consequences of bacterial survival under prolonged starvation. More generally, these results may also be applicable to understanding longer-term consequences of rapid adaptation to additional conditions as well.
Collapse
|
27
|
Sheng H, Huang J, Han Z, Liu M, Lü Z, Zhang Q, Zhang J, Yang J, Cui S, Yang B. Genes and Proteomes Associated With Increased Mutation Frequency and Multidrug Resistance of Naturally Occurring Mismatch Repair-Deficient Salmonella Hypermutators. Front Microbiol 2020; 11:770. [PMID: 32457709 PMCID: PMC7225559 DOI: 10.3389/fmicb.2020.00770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/31/2020] [Indexed: 11/23/2022] Open
Abstract
The emergence of antibiotic-resistant Salmonella through mutations led to mismatch repair (MMR) deficiency that represents a potential hazard to public health. Here, four representative MMR-deficient Salmonella hypermutator strains and Salmonella Typhimurium LT2 were used to comprehensively reveal the influence of MMR deficiency on antibiotic resistance among Salmonella. Our results indicated that the mutation frequency ranged from 3.39 × 10–4 to 5.46 × 10–2 in the hypermutator. Mutation sites in MutS, MutL, MutT, and UvrD of the four hypermutators were all located in the essential and core functional regions. Mutation frequency of the hypermutator was most highly correlated with the extent of mutation in MutS. Mutations in MMR genes (mutS, mutT, mutL, and uvrD) were correlated with increased mutation in antibiotic resistance genes, and the extent of antibiotic resistance was significantly correlated with the number of mutation sites in MutL and in ParC. The number of mutation sites in MMR genes and antibiotic resistance genes exhibited a significant positive correlation with the number of antibiotics resisted and with expression levels of mutS, mutT, and mutL. Compared to Salmonella Typhimurium LT2, a total of 137 differentially expressed and 110 specifically expressed proteins were identified in the four hypermutators. Functional enrichment analysis indicated that the proteins significantly overexpressed in the hypermutators primarily associated with translation and stress response. Interaction network analysis revealed that the ribosome pathway might be a critical factor for high mutation frequency and multidrug resistance in MMR-deficient Salmonella hypermutators. These results help elucidate the mutational dynamics that lead to hypermutation, antibiotic resistance, and activation of stress response pathways in Salmonella.
Collapse
Affiliation(s)
- Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jinling Huang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Zhaoyu Han
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Mi Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Zexun Lü
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Qian Zhang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jinlei Zhang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jun Yang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| |
Collapse
|
28
|
Ramiro RS, Durão P, Bank C, Gordo I. Low mutational load and high mutation rate variation in gut commensal bacteria. PLoS Biol 2020; 18:e3000617. [PMID: 32155146 PMCID: PMC7064181 DOI: 10.1371/journal.pbio.3000617] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Bacteria generally live in species-rich communities, such as the gut microbiota. Yet little is known about bacterial evolution in natural ecosystems. Here, we followed the long-term evolution of commensal Escherichia coli in the mouse gut. We observe the emergence of mutation rate polymorphism, ranging from wild-type levels to 1,000-fold higher. By combining experiments, whole-genome sequencing, and in silico simulations, we identify the molecular causes and explore the evolutionary conditions allowing these hypermutators to emerge and coexist within the microbiota. The hypermutator phenotype is caused by mutations in DNA polymerase III proofreading and catalytic subunits, which increase mutation rate by approximately 1,000-fold and stabilise hypermutator fitness, respectively. Strong mutation rate variation persists for >1,000 generations, with coexistence between lineages carrying 4 to >600 mutations. The in vivo molecular evolution pattern is consistent with fitness effects of deleterious mutations sd ≤ 10−4/generation, assuming a constant effect or exponentially distributed effects with a constant mean. Such effects are lower than typical in vitro estimates, leading to a low mutational load, an inference that is observed in in vivo and in vitro competitions. Despite large numbers of deleterious mutations, we identify multiple beneficial mutations that do not reach fixation over long periods of time. This indicates that the dynamics of beneficial mutations are not shaped by constant positive Darwinian selection but could be explained by other evolutionary mechanisms that maintain genetic diversity. Thus, microbial evolution in the gut is likely characterised by partial sweeps of beneficial mutations combined with hitchhiking of slightly deleterious mutations, which take a long time to be purged because they impose a low mutational load. The combination of these two processes could allow for the long-term maintenance of intraspecies genetic diversity, including mutation rate polymorphism. These results are consistent with the pattern of genetic polymorphism that is emerging from metagenomics studies of the human gut microbiota, suggesting that we have identified key evolutionary processes shaping the genetic composition of this community. Weak-effect deleterious mutations and negative frequency–dependent selection, acting on beneficial mutations, shape the dynamics of molecular evolution within the mouse gut microbiota.
Collapse
Affiliation(s)
- Ricardo S. Ramiro
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (RSR); (IG)
| | - Paulo Durão
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Claudia Bank
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (RSR); (IG)
| |
Collapse
|
29
|
Castañeda-García A, Martín-Blecua I, Cebrián-Sastre E, Chiner-Oms A, Torres-Puente M, Comas I, Blázquez J. Specificity and mutagenesis bias of the mycobacterial alternative mismatch repair analyzed by mutation accumulation studies. SCIENCE ADVANCES 2020; 6:eaay4453. [PMID: 32095527 PMCID: PMC7015689 DOI: 10.1126/sciadv.aay4453] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/25/2019] [Indexed: 05/09/2023]
Abstract
The postreplicative mismatch repair (MMR) is an almost ubiquitous DNA repair essential for maintaining genome stability. It has been suggested that Mycobacteria have an alternative MMR in which NucS, an endonuclease with no structural homology to the canonical MMR proteins (MutS/MutL), is the key factor. Here, we analyze the spontaneous mutations accumulated in a neutral manner over thousands of generations by Mycobacterium smegmatis and its MMR-deficient derivative (ΔnucS). The base pair substitution rates per genome per generation are 0.004 and 0.165 for wild type and ΔnucS, respectively. By comparing the activity of different bacterial MMR pathways, we demonstrate that both MutS/L- and NucS-based systems display similar specificity and mutagenesis bias, revealing a functional evolutionary convergence. However, NucS is not able to repair indels in vivo. Our results provide an unparalleled view of how this mycobacterial system works in vivo to maintain genome stability and how it may affect Mycobacterium evolution.
Collapse
Affiliation(s)
- A. Castañeda-García
- Centro Nacional de Biotecnología–CSIC, Madrid, Spain
- Corresponding author. (A.C.-G.); (J.B.)
| | | | | | - A. Chiner-Oms
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
| | | | - I. Comas
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
- CIBER in Epidemiology and Public Health
| | - J. Blázquez
- Centro Nacional de Biotecnología–CSIC, Madrid, Spain
- Corresponding author. (A.C.-G.); (J.B.)
| |
Collapse
|
30
|
Hobson CA, Bonacorsi S, Hocquet D, Baruchel A, Fahd M, Storme T, Tang R, Doit C, Tenaillon O, Birgy A. Impact of anticancer chemotherapy on the extension of beta-lactamase spectrum: an example with KPC-type carbapenemase activity towards ceftazidime-avibactam. Sci Rep 2020; 10:589. [PMID: 31953453 PMCID: PMC6969056 DOI: 10.1038/s41598-020-57505-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/19/2019] [Indexed: 01/05/2023] Open
Abstract
Through their action on DNA replication, anticancer chemotherapies could increase the basal mutation rate in bacteria and increase the risk of selecting antibiotic resistant mutants. We investigated the impact of several drugs on a beta-lactamase model using KPC-type carbapenemase-producing Enterobacteriaceae. We studied the impact of anticancer chemotherapies used in pediatric hematologic malignancies on 7 clinical isolates of Enterobacteriaceae producing KPC-type carbapenemases. We compared the mutation rates from cultures with/without chemotherapy on ceftazidime-avibactam, rifampicin and ceftazidime-avibactam combined with meropenem media. Mechanisms of ceftazidime-avibactam resistance were explored on a subset of mutants. After exposure to some cytotoxic molecules, the bacterial mutation rates leading to ceftazidime-avibactam and to rifampicin resistance increased up to 104-fold while we observed no emergence of resistant mutants (frequency of <10-10) on a meropenem combined with ceftazidime-avibactam media. Compared to the parental strains, an increased susceptibility to meropenem was observed in the ceftazidime-avibactam resistant mutants. The blaKPC genes of ceftazidime-avibactam mutants harbored either mutations, deletions or insertions, especially in the region encoding the Ω-loop of the KPC-type carbapenemase. Anticancer chemotherapy can increase the mutation rates of bacteria accelerating the extension of KPC-type carbapenemases towards ceftazidime-avibactam, one of the last resort antimicrobial chemotherapy.
Collapse
Affiliation(s)
| | - Stéphane Bonacorsi
- Université de Paris, IAME, INSERM, F-75018, Paris, France
- AP-HP, Hôpital Robert Debré, Service de Microbiologie, F-75019, Paris, France
| | - Didier Hocquet
- Hygiène Hospitalière, UMR CNRS 6249, Université de Bourgogne Franche-Comté, Besançon, France
| | - André Baruchel
- Service d'Immuno-Hématologie Pédiatrique, Hôpital Robert Debré, AP-HP, Paris, France
| | - Mony Fahd
- Service d'Immuno-Hématologie Pédiatrique, Hôpital Robert Debré, AP-HP, Paris, France
| | - Thomas Storme
- Pharmacie Hospitalière, Hôpital Robert Debré, AP-HP, Paris, France
| | - Raksamy Tang
- Pharmacie Hospitalière, Hôpital Robert Debré, AP-HP, Paris, France
| | - Catherine Doit
- Université de Paris, IAME, INSERM, F-75018, Paris, France
- AP-HP, Hôpital Robert Debré, Service de Microbiologie, F-75019, Paris, France
| | | | - André Birgy
- Université de Paris, IAME, INSERM, F-75018, Paris, France.
- AP-HP, Hôpital Robert Debré, Service de Microbiologie, F-75019, Paris, France.
| |
Collapse
|
31
|
Raynes Y, Weinreich D. Selection on mutators is not frequency-dependent. eLife 2019; 8:51177. [PMID: 31697233 PMCID: PMC6867826 DOI: 10.7554/elife.51177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/05/2019] [Indexed: 11/29/2022] Open
Abstract
The evolutionary fate of mutator mutations – genetic variants that raise the genome-wide mutation rate – in asexual populations is often described as being frequency (or number) dependent. Mutators can invade a population by hitchhiking with a sweeping beneficial mutation, but motivated by earlier experiments results, it has been repeatedly suggested that mutators must be sufficiently frequent to produce such a driver mutation before non-mutators do. Here, we use stochastic, agent-based simulations to show that neither the strength nor the sign of selection on mutators depend on their initial frequency, and while the overall probability of hitchhiking increases predictably with frequency, the per-capita probability of fixation remains unchanged.
Collapse
Affiliation(s)
- Yevgeniy Raynes
- Department of Ecology and Evolutionary Biology, Center for Computational Molecular Biology, Brown University, Providence, United States
| | - Daniel Weinreich
- Department of Ecology and Evolutionary Biology, Center for Computational Molecular Biology, Brown University, Providence, United States
| |
Collapse
|
32
|
Khil PP, Dulanto Chiang A, Ho J, Youn JH, Lemon JK, Gea-Banacloche J, Frank KM, Parta M, Bonomo RA, Dekker JP. Dynamic Emergence of Mismatch Repair Deficiency Facilitates Rapid Evolution of Ceftazidime-Avibactam Resistance in Pseudomonas aeruginosa Acute Infection. mBio 2019; 10:e01822-19. [PMID: 31530672 PMCID: PMC6751058 DOI: 10.1128/mbio.01822-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/22/2019] [Indexed: 01/09/2023] Open
Abstract
Strains of Pseudomonas aeruginosa with deficiencies in DNA mismatch repair have been studied in the context of chronic infection, where elevated mutational rates ("hypermutation") may facilitate the acquisition of antimicrobial resistance. Whether P. aeruginosa hypermutation can also play an adaptive role in the more dynamic context of acute infection remains unclear. In this work, we demonstrate that evolved mismatch repair deficiencies may be exploited by P. aeruginosa to facilitate rapid acquisition of antimicrobial resistance in acute infection, and we directly document rapid clonal succession by such a hypermutating lineage in a patient. Whole-genome sequencing (WGS) was performed on nine serially cultured blood and respiratory isolates from a patient in whom ceftazidime-avibactam (CZA) resistance emerged in vivo over the course of days. The CZA-resistant clone was differentiated by 14 mutations, including a gain-of-function G183D substitution in the PDC-5 chromosomal AmpC cephalosporinase conferring CZA resistance. This lineage also contained a substitution (R656H) at a conserved position in the ATPase domain of the MutS mismatch repair (MMR) protein, and elevated mutational rates were confirmed by mutational accumulation experiments with WGS of evolved lineages in conjunction with rifampin resistance assays. To test whether MMR-deficient hypermutation could facilitate rapid acquisition of CZA resistance, in vitro adaptive evolution experiments were performed with a mutS-deficient strain. These experiments demonstrated rapid hypermutation-facilitated acquisition of CZA resistance compared with the isogenic wild-type strain. Our results suggest a possibly underappreciated role for evolved MMR deficiency in facilitating rapid adaptive evolution of P. aeruginosa in the context of acute infection.IMPORTANCE Antimicrobial resistance in bacteria represents one of the most consequential problems in modern medicine, and its emergence and spread threaten to compromise central advances in the treatment of infectious diseases. Ceftazidime-avibactam (CZA) belongs to a new class of broad-spectrum beta-lactam/beta-lactamase inhibitor combinations designed to treat infections caused by multidrug-resistant bacteria. Understanding the emergence of resistance to this important new drug class is of critical importance. In this work, we demonstrate that evolved mismatch repair deficiency in P. aeruginosa, an important pathogen responsible for significant morbidity and mortality among hospitalized patients, may facilitate rapid acquisition of resistance to CZA in the context of acute infection. These findings are relevant for both diagnosis and treatment of antimicrobial resistance emerging in acute infection in the hypermutator background and additionally have implications for the emergence of more virulent phenotypes.
Collapse
Affiliation(s)
- Pavel P Khil
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Fredrick, Maryland, USA
| | - Augusto Dulanto Chiang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Fredrick, Maryland, USA
| | - Jonathan Ho
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jung-Ho Youn
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jamie K Lemon
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Juan Gea-Banacloche
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Karen M Frank
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark Parta
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Fredrick, Maryland, USA
| | - Robert A Bonomo
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Case Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - John P Dekker
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Fredrick, Maryland, USA
| |
Collapse
|
33
|
Galeota-Sprung B, Guindon B, Sniegowski P. The fitness cost of mismatch repair mutators in Saccharomyces cerevisiae: partitioning the mutational load. Heredity (Edinb) 2019; 124:50-61. [PMID: 31515531 DOI: 10.1038/s41437-019-0267-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 11/09/2022] Open
Abstract
Mutational load is the depression in a population's mean fitness that results from the continual influx of deleterious mutations. Here, we directly estimate the mutational load in a population of haploid Saccharomyces cerevisiae that are deficient for mismatch repair. We partition the load in haploids into two components. To estimate the load due to nonlethal mutations, we measure the competitive fitness of hundreds of randomly selected clones from both mismatch-repair-deficient and -proficient populations. Computation of the mean clone fitness for the mismatch-repair-deficient strain permits an estimation of the nonlethal load, and the histogram of fitness provides an interesting visualization of a loaded population. In a separate experiment, in order to estimate the load due to lethal mutations (i.e. the lethal mutation rate), we manipulate thousands of individual pairs of mother and daughter cells and track their fates. These two approaches yield point estimates for the two contributors to load, and the addition of these estimates is nearly equal to the separately measured short-term competitive fitness deficit for the mismatch-repair-deficient strain. This correspondence suggests that there is no need to invoke direct fitness effects to explain the fitness difference between mismatch-repair-deficient and -proficient strains. Assays in diploids are consistent with deleterious mutations in diploids tending towards recessivity. These results enhance our understanding of mutational load, a central population genetics concept, and we discuss their implications for the evolution of mutation rates.
Collapse
|
34
|
Kang M, Kim K, Choe D, Cho S, Kim SC, Palsson B, Cho BK. Inactivation of a Mismatch-Repair System Diversifies Genotypic Landscape of Escherichia coli During Adaptive Laboratory Evolution. Front Microbiol 2019; 10:1845. [PMID: 31474949 PMCID: PMC6706779 DOI: 10.3389/fmicb.2019.01845] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/26/2019] [Indexed: 01/09/2023] Open
Abstract
Adaptive laboratory evolution (ALE) is used to find causal mutations that underlie improved strain performance under the applied selection pressure. ALE studies have revealed that mutator populations tend to outcompete their non-mutator counterparts following the evolutionary trajectory. Among them, mutS-inactivated mutator cells, characterize d by a dysfunctional methyl-mismatch repair system, are frequently found in ALE experiments. Here, we examined mutS inactivation as an approach to facilitate ALE of Escherichia coli. The wild-type E. coli MG1655 and mutS knock-out derivative (ΔmutS) were evolved in parallel for 800 generations on lactate or glycerol minimal media in a serial-transfer experiment. Whole-genome re-sequencing of each lineage at 100-generation intervals revealed that (1) mutations emerge rapidly in the ΔmutS compared to in the wild-type strain; (2) mutations were more than fourfold higher in the ΔmutS strain at the end-point populations compared to the wild-type strain; and (3) a significant number of random mutations accumulated in the ΔmutS strains. We then measured the fitness of the end-point populations on an array of non-adaptive carbon sources. Interestingly, collateral fitness increases on non-adaptive carbon sources were more pronounced in the ΔmutS strains than the parental strain. Fitness measurement of single mutants revealed that the collateral fitness increase seen in the mutator lineages can be attributed to a pool of random mutations. Together, this study demonstrates that short-term mutator ALE extensively expands possible genotype space, resulting in versatile bacteria with elevated fitness levels across various carbon sources.
Collapse
Affiliation(s)
- Minjeong Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kangsan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Donghui Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Intelligent Synthetic Biology Center, Daejeon, South Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Intelligent Synthetic Biology Center, Daejeon, South Korea
| |
Collapse
|
35
|
Chevallereau A, Meaden S, van Houte S, Westra ER, Rollie C. The effect of bacterial mutation rate on the evolution of CRISPR-Cas adaptive immunity. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180094. [PMID: 30905293 PMCID: PMC6452272 DOI: 10.1098/rstb.2018.0094] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2018] [Indexed: 01/07/2023] Open
Abstract
CRISPR-Cas immune systems are present in around half of bacterial genomes. Given the specificity and adaptability of this immune mechanism, it is perhaps surprising that they are not more widespread. Recent insights into the requirement for specific host factors for the function of some CRISPR-Cas subtypes, as well as the negative epistasis between CRISPR-Cas and other host genes, have shed light on potential reasons for the partial distribution of this immune strategy in bacteria. In this study, we examined how mutations in the bacterial mismatch repair system, which are frequently observed in natural and clinical isolates and cause elevated host mutation rates, influence the evolution of CRISPR-Cas-mediated immunity. We found that hosts with a high mutation rate very rarely evolved CRISPR-based immunity to phage compared to wild-type hosts. We explored the reason for this effect and found that the higher frequency at which surface mutants pre-exist in the mutator host background causes them to rapidly become the dominant phenotype under phage infection. These findings suggest that natural variation in bacterial mutation rates may, therefore, influence the distribution of CRISPR-Cas adaptive immune systems. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
| | | | | | - Edze R. Westra
- ESI and CEC, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, UK
| | - Clare Rollie
- ESI and CEC, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, UK
| |
Collapse
|
36
|
Engelhardt D, Shakhnovich EI. Mutation rate variability as a driving force in adaptive evolution. Phys Rev E 2019; 99:022424. [PMID: 30934244 DOI: 10.1103/physreve.99.022424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 11/07/2022]
Abstract
Mutation rate is a key determinant of the pace as well as outcome of evolution, and variability in this rate has been shown in different scenarios to play a key role in evolutionary adaptation and resistance evolution under stress caused by selective pressure. Here we investigate the dynamics of resistance fixation in a bacterial population with variable mutation rates, and we show that evolutionary outcomes are most sensitive to mutation rate variations when the population is subject to environmental and demographic conditions that suppress the evolutionary advantage of high-fitness subpopulations. By directly mapping a biophysical fitness function to the system-level dynamics of the population, we show that both low and very high, but not intermediate, levels of stress in the form of an antibiotic result in a disproportionate effect of hypermutation on resistance fixation. We demonstrate how this behavior is directly tied to the extent of genetic hitchhiking in the system, the propagation of high-mutation rate cells through association with high-fitness mutations. Our results indicate a substantial role for mutation rate flexibility in the evolution of antibiotic resistance under conditions that present a weak advantage over wildtype to resistant cells.
Collapse
Affiliation(s)
- Dalit Engelhardt
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
37
|
Raynes Y, Sniegowski PD, Weinreich DM. Migration promotes mutator alleles in subdivided populations. Evolution 2019; 73:600-608. [PMID: 30632605 PMCID: PMC6680344 DOI: 10.1111/evo.13681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/18/2018] [Accepted: 01/01/2019] [Indexed: 11/29/2022]
Abstract
Mutator alleles that elevate the genomic mutation rate may invade nonrecombining populations by hitchhiking with beneficial mutations. Mutators have been repeatedly observed to take over adapting laboratory populations and have been found at high frequencies in both microbial pathogen and cancer populations in nature. Recently, we have shown that mutators are only favored by selection in sufficiently large populations and transition to being disfavored as population size decreases. This population size-dependent sign inversion in selective effect suggests that population structure may also be an important determinant of mutation rate evolution. Although large populations may favor mutators, subdividing such populations into sufficiently small subpopulations (demes) might effectively inhibit them. On the other hand, migration between small demes that otherwise inhibit hitchhiking may promote mutator fixation in the whole metapopulation. Here, we use stochastic, agent-based simulations and evolution experiments with the yeast Saccharomyces cerevisiae to show that mutators can, indeed, be favored by selection in subdivided metapopulations composed of small demes connected by sufficient migration. In fact, we show that population structure plays a previously unsuspected role in promoting mutator success in subdivided metapopulations when migration is rare.
Collapse
Affiliation(s)
- Yevgeniy Raynes
- Department of Ecology and Evolutionary Biology, Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, 02906
| | - Paul D Sniegowski
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Daniel M Weinreich
- Department of Ecology and Evolutionary Biology, Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, 02906
| |
Collapse
|
38
|
Torres-Silva CF, Repolês BM, Ornelas HO, Macedo AM, Franco GR, Junho Pena SD, Tahara EB, Machado CR. Assessment of genetic mutation frequency induced by oxidative stress in Trypanosoma cruzi. Genet Mol Biol 2018; 41:466-474. [PMID: 30088612 PMCID: PMC6082238 DOI: 10.1590/1678-4685-gmb-2017-0281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022] Open
Abstract
Trypanosoma cruzi is the etiological agent of Chagas disease, a public health challenge due to its morbidity and mortality rates, which affects around 6-7 million people worldwide. Symptoms, response to chemotherapy, and the course of Chagas disease are greatly influenced by T. cruzi's intra-specific variability. Thus, DNA mutations in this parasite possibly play a key role in the wide range of clinical manifestations and in drug sensitivity. Indeed, the environmental conditions of oxidative stress faced by T. cruzi during its life cycle can generate genetic mutations. However, the lack of an established experimental design to assess mutation rates in T. cruzi precludes the study of conditions and mechanisms that potentially produce genomic variability in this parasite. We developed an assay that employs a reporter gene that, once mutated in specific positions, convert G418-sensitive into G418-insenstitive T. cruzi. We were able to determine the frequency of DNA mutations in T. cruzi exposed and non-exposed to oxidative insults assessing the number of colony-forming units in solid selective media after plating a defined number of cells. We verified that T. cruzi's spontaneous mutation frequency was comparable to those found in other eukaryotes, and that exposure to hydrogen peroxide promoted a two-fold increase in T. cruzi's mutation frequency. We hypothesize that genetic mutations in T. cruzi can arise from oxidative insults faced by this parasite during its life cycle.
Collapse
Affiliation(s)
| | - Bruno Marçal Repolês
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Hugo Oliveira Ornelas
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andréa Mara Macedo
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Glória Regina Franco
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sérgio Danilo Junho Pena
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Erich Birelli Tahara
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
39
|
Zheng Q. A cautionary note on the mutation frequency in microbial research. Mutat Res 2018; 809:51-55. [PMID: 29705518 DOI: 10.1016/j.mrfmmm.2018.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 11/18/2022]
Abstract
The mutation frequency, also known as the mutant frequency, is an unnormalized quantity, and its normalized counterpart is the mutation rate. Due to historical reasons, the mutation frequency has been a predominant yardstick of microbial mutability in the field of mutator identification. While the mean mutation frequency is infamously erratic, replacing it with the median mutation frequency is not an effective remedy. By encouraging investigators to substitute mutation rates for mutation frequencies in microbial research, this paper directs attention to substantial open problems such as false positive control and massive nonmutant cell death.
Collapse
Affiliation(s)
- Qi Zheng
- Department of Epidemiology and Biostatistics, Texas A&M School of Public Health, 212 Adriance Lab Road, College Station, TX 77843, United States.
| |
Collapse
|
40
|
Rocha EPC. Neutral Theory, Microbial Practice: Challenges in Bacterial Population Genetics. Mol Biol Evol 2018; 35:1338-1347. [DOI: 10.1093/molbev/msy078] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France
- CNRS, UMR3525, Paris, France
| |
Collapse
|
41
|
Raynes Y, Wylie CS, Sniegowski PD, Weinreich DM. Sign of selection on mutation rate modifiers depends on population size. Proc Natl Acad Sci U S A 2018; 115:3422-3427. [PMID: 29531067 PMCID: PMC5879664 DOI: 10.1073/pnas.1715996115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The influence of population size (N) on natural selection acting on alleles that affect fitness has been understood for almost a century. As N declines, genetic drift overwhelms selection and alleles with direct fitness effects are rendered neutral. Often, however, alleles experience so-called indirect selection, meaning they affect not the fitness of an individual but the fitness distribution of its offspring. Some of the best-studied examples of indirect selection include alleles that modify aspects of the genetic system such as recombination and mutation rates. Here, we use analytics, simulations, and experimental populations of Saccharomyces cerevisiae to examine the influence of N on indirect selection acting on alleles that increase the genomic mutation rate (mutators). Mutators experience indirect selection via genomic associations with beneficial and deleterious mutations they generate. We show that, as N declines, indirect selection driven by linked beneficial mutations is overpowered by drift before drift can neutralize the cost of the deleterious load. As a result, mutators transition from being favored by indirect selection in large populations to being disfavored as N declines. This surprising phenomenon of sign inversion in selective effect demonstrates that indirect selection on mutators exhibits a profound and qualitatively distinct dependence on N.
Collapse
Affiliation(s)
- Yevgeniy Raynes
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912;
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912
| | - C Scott Wylie
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912
| | - Paul D Sniegowski
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Daniel M Weinreich
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912
| |
Collapse
|
42
|
The Odyssey of the Ancestral Escherich Strain through Culture Collections: an Example of Allopatric Diversification. mSphere 2018; 3:mSphere00553-17. [PMID: 29404421 PMCID: PMC5793043 DOI: 10.1128/msphere.00553-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/05/2018] [Indexed: 01/19/2023] Open
Abstract
More than a century ago, Theodor Escherich isolated the bacterium that was to become Escherichia coli, one of the most studied organisms. Not long after, the strain began an odyssey and landed in many laboratories across the world. As laboratory culture conditions could be responsible for major changes in bacterial strains, we conducted a genome analysis of isolates of this emblematic strain from different culture collections (England, France, the United States, Germany). Strikingly, many discrepancies between the isolates were observed, as revealed by multilocus sequence typing (MLST), the presence of virulence-associated genes, core genome MLST, and single nucleotide polymorphism/indel analyses. These differences are correlated with the phylogeographic history of the strain and were due to an unprecedented number of mutations in coding DNA repair functions such as mismatch repair (MutL) and oxidized guanine nucleotide pool cleaning (MutT), conferring a specific mutational spectrum and leading to a mutator phenotype. The mutator phenotype was probably acquired during subculturing and corresponded to second-order selection. Furthermore, all of the isolates exhibited hypersusceptibility to antibiotics due to mutations in efflux pump- and porin-encoding genes, as well as a specific mutation in the sigma factor-encoding gene rpoS. These defects reflect a self-preservation and nutritional competence tradeoff allowing survival under the starvation conditions imposed by storage. From a clinical point of view, dealing with such mutator strains can lead microbiologists to draw false conclusions about isolate relatedness and may impact therapeutic effectiveness. IMPORTANCE Mutator phenotypes have been described in laboratory-evolved bacteria, as well as in natural isolates. Several genes can be impacted, each of them being associated with a typical mutational spectrum. By studying one of the oldest strains available, the ancestral Escherich strain, we were able to identify its mutator status leading to tremendous genetic diversity among the isolates from various collections and allowing us to reconstruct the phylogeographic history of the strain. This mutator phenotype was probably acquired during the storage of the strain, promoting adaptation to a specific environment. Other mutations in rpoS and efflux pump- and porin-encoding genes highlight the acclimatization of the strain through self-preservation and nutritional competence regulation. This strain history can be viewed as unintentional experimental evolution in culture collections all over the word since 1885, mimicking the long-term experimental evolution of E. coli of Lenski et al. (O. Tenaillon, J. E. Barrick, N. Ribeck, D. E. Deatherage, J. L. Blanchard, A. Dasgupta, G. C. Wu, S. Wielgoss, S. Cruveiller, C. Médigue, D. Schneider, and R. E. Lenski, Nature 536:165-170, 2016, https://doi.org/10.1038/nature18959) that shares numerous molecular features.
Collapse
|
43
|
Junqueira ACM, Ratan A, Acerbi E, Drautz-Moses DI, Premkrishnan BNV, Costea PI, Linz B, Purbojati RW, Paulo DF, Gaultier NE, Subramanian P, Hasan NA, Colwell RR, Bork P, Azeredo-Espin AML, Bryant DA, Schuster SC. The microbiomes of blowflies and houseflies as bacterial transmission reservoirs. Sci Rep 2017; 7:16324. [PMID: 29176730 PMCID: PMC5701178 DOI: 10.1038/s41598-017-16353-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/10/2017] [Indexed: 12/25/2022] Open
Abstract
Blowflies and houseflies are mechanical vectors inhabiting synanthropic environments around the world. They feed and breed in fecal and decaying organic matter, but the microbiome they harbour and transport is largely uncharacterized. We sampled 116 individual houseflies and blowflies from varying habitats on three continents and subjected them to high-coverage, whole-genome shotgun sequencing. This allowed for genomic and metagenomic analyses of the host-associated microbiome at the species level. Both fly host species segregate based on principal coordinate analysis of their microbial communities, but they also show an overlapping core microbiome. Legs and wings displayed the largest microbial diversity and were shown to be an important route for microbial dispersion. The environmental sequencing approach presented here detected a stochastic distribution of human pathogens, such as Helicobacter pylori, thereby demonstrating the potential of flies as proxies for environmental and public health surveillance.
Collapse
Affiliation(s)
- Ana Carolina M Junqueira
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore.
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Aakrosh Ratan
- Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Enzo Acerbi
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Daniela I Drautz-Moses
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Balakrishnan N V Premkrishnan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Paul I Costea
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, 69117, Germany
| | - Bodo Linz
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, 30602, GA, USA
| | - Rikky W Purbojati
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Daniel F Paulo
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, 13083-875, Brazil
| | - Nicolas E Gaultier
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | | | - Nur A Hasan
- CosmosID Inc, Rockville, MD, 20850, USA
- Center for Bioinformatics and Computational Biology, University of Maryland. Institute for Computational Biology, University of Maryland College Park, College Park, MD, 20742, USA
| | - Rita R Colwell
- CosmosID Inc, Rockville, MD, 20850, USA
- Center for Bioinformatics and Computational Biology, University of Maryland. Institute for Computational Biology, University of Maryland College Park, College Park, MD, 20742, USA
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, 69117, Germany
| | - Ana Maria L Azeredo-Espin
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, 13083-875, Brazil
| | - Donald A Bryant
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Stephan C Schuster
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
44
|
Garcia A, Delorme T, Nasr P. Patient age as a factor of antibiotic resistance in methicillin-resistant Staphylococcus aureus. J Med Microbiol 2017; 66:1782-1789. [PMID: 29116037 DOI: 10.1099/jmm.0.000635] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of nosocomial infections. A thorough understanding of the epidemiology and distribution of MRSA allows the development of better preventive measures and helps to control or reduce the rate of infection among the general population. METHODOLOGY A retrospective survey was performed on 511 cases of MRSA infections from inpatient, outpatient and nursing home populations over a 12-month period. To study the relationships between two continuous quantitative variables (patient age vs resistance percentage), a simple linear regression was calculated for each antibiotic to predict the antibiotic resistance percentage with respect to patient age.Results/Key findings. The pattern of antibiotic resistance with respect to the age of patients depended on the antibiotic mode of action. Antibiotics that target DNA synthesis (i.e. fluoroquinolones) display a direct correlation with the age of patients, with higher rates of resistance among the older population, while antibiotics that target ribosomal functions (i.e. aminoglycosides) or cell wall synthesis (i.e. cephalosporin) do not display an age-dependent pattern and have a consistent degree of resistance across all age classes. CONCLUSION Antibiotics that target DNA synthesis result in a progressively higher number of resistant isolates among the older population. The results emphasize the importance of patient age on antibiotic selection as a preventive measure to reduce the rate of resistant infections in each susceptible population. This pattern suggests that physicians should take into consideration patient age as another factor in determining the best antibiotic regiment with the aim of curtailing the emergence of newer resistant phenotypes in the future.
Collapse
Affiliation(s)
- Alexander Garcia
- Clinical Laboratory Sciences, California State University Dominguez Hills, CA, USA
| | - Thierry Delorme
- Department of Biological Sciences, Kent State University, Ashtabula, OH, USA
| | - Payman Nasr
- Clinical Laboratory Sciences, California State University Dominguez Hills, CA, USA
| |
Collapse
|
45
|
Potential Dissemination of ARB and ARGs into Soil Through the Use of Treated Wastewater for Agricultural Irrigation: Is It a True Cause for Concern? ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-66260-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Weinert LA, Welch JJ. Why Might Bacterial Pathogens Have Small Genomes? Trends Ecol Evol 2017; 32:936-947. [PMID: 29054300 DOI: 10.1016/j.tree.2017.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/31/2022]
Abstract
Bacteria that cause serious disease often have smaller genomes, and fewer genes, than their nonpathogenic, or less pathogenic relatives. Here, we review evidence for the generality of this association, and summarise the various reasons why the association might hold. We focus on the population genetic processes that might lead to reductive genome evolution, and show how several of these could be connected to pathogenicity. We find some evidence for most of the processes having acted in bacterial pathogens, including several different modes of genome reduction acting in the same lineage. We argue that predictable processes of genome evolution might not reflect any common underlying process.
Collapse
Affiliation(s)
- Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | - John J Welch
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
47
|
Graves CJ, Weinreich DM. Variability in fitness effects can preclude selection of the fittest. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2017; 48:399-417. [PMID: 31572069 DOI: 10.1146/annurev-ecolsys-110316-022722] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evolutionary biologists often predict the outcome of natural selection on an allele by measuring its effects on lifetime survival and reproduction of individual carriers. However, alleles affecting traits like sex, evolvability, and cooperation can cause fitness effects that depend heavily on differences in the environmental, social, and genetic context of individuals carrying the allele. This variability makes it difficult to summarize the evolutionary fate of an allele based solely on its effects on any one individual. Attempts to average over this variability can sometimes salvage the concept of fitness. In other cases evolutionary outcomes can only be predicted by considering the entire genealogy of an allele, thus limiting the utility of individual fitness altogether. We describe a number of intriguing new evolutionary phenomena that have emerged in studies that explicitly model long-term lineage dynamics and discuss implications for the evolution of infectious diseases.
Collapse
Affiliation(s)
- Christopher J Graves
- Brown University, Department of Ecology and Evolutionary Biology and Center for Computational and Molecular Biology. Providence, RI, USA
| | - Daniel M Weinreich
- Brown University, Department of Ecology and Evolutionary Biology and Center for Computational and Molecular Biology. Providence, RI, USA
| |
Collapse
|
48
|
Accumulation of Deleterious Mutations During Bacterial Range Expansions. Genetics 2017; 207:669-684. [PMID: 28821588 PMCID: PMC5629331 DOI: 10.1534/genetics.117.300144] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/28/2017] [Indexed: 12/15/2022] Open
Abstract
Recent theory predicts that the fitness of pioneer populations can decline when species expand their range, due to high rates of genetic drift on wave fronts making selection less efficient at purging deleterious variants. To test these predictions, we studied the fate of mutator bacteria expanding their range for 1650 generations on agar plates. In agreement with theory, we find that growth abilities of strains with a high mutation rate (HMR lines) decreased significantly over time, unlike strains with a lower mutation rate (LMR lines) that present three to four times fewer mutations. Estimation of the distribution of fitness effect under a spatially explicit model reveals a mean negative effect for new mutations (-0.38%), but it suggests that both advantageous and deleterious mutations have accumulated during the experiment. Furthermore, the fitness of HMR lines measured in different environments has decreased relative to the ancestor strain, whereas that of LMR lines remained unchanged. Contrastingly, strains with a HMR evolving in a well-mixed environment accumulated less mutations than agar-evolved strains and showed an increased fitness relative to the ancestor. Our results suggest that spatially expanding species are affected by deleterious mutations, leading to a drastic impairment of their evolutionary potential.
Collapse
|
49
|
|
50
|
Ilmjärv T, Naanuri E, Kivisaar M. Contribution of increased mutagenesis to the evolution of pollutants-degrading indigenous bacteria. PLoS One 2017; 12:e0182484. [PMID: 28777807 PMCID: PMC5544203 DOI: 10.1371/journal.pone.0182484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 07/19/2017] [Indexed: 12/20/2022] Open
Abstract
Bacteria can rapidly evolve mechanisms allowing them to use toxic environmental pollutants as a carbon source. In the current study we examined whether the survival and evolution of indigenous bacteria with the capacity to degrade organic pollutants could be connected with increased mutation frequency. The presence of constitutive and transient mutators was monitored among 53 pollutants-degrading indigenous bacterial strains. Only two strains expressed a moderate mutator phenotype and six were hypomutators, which implies that constitutively increased mutability has not been prevalent in the evolution of pollutants degrading bacteria. At the same time, a large proportion of the studied indigenous strains exhibited UV-irradiation-induced mutagenesis, indicating that these strains possess error-prone DNA polymerases which could elevate mutation frequency transiently under the conditions of DNA damage. A closer inspection of two Pseudomonas fluorescens strains PC20 and PC24 revealed that they harbour genes for ImuC (DnaE2) and more than one copy of genes for Pol V. Our results also revealed that availability of other nutrients in addition to aromatic pollutants in the growth environment of bacteria affects mutagenic effects of aromatic compounds. These results also implied that mutagenicity might be affected by a factor of how long bacteria have evolved to use a particular pollutant as a carbon source.
Collapse
Affiliation(s)
- Tanel Ilmjärv
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Eve Naanuri
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|