1
|
Rodriguez R, Müller S, Colombeau L, Solier S, Sindikubwabo F, Cañeque T. Metal Ion Signaling in Biomedicine. Chem Rev 2025; 125:660-744. [PMID: 39746035 PMCID: PMC11758815 DOI: 10.1021/acs.chemrev.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases. Specifically, nongenetic chemical events orchestrate cell metabolism and transcriptional programs that govern functional cell identity. Thus, imbalances in cell signaling, which broadly defines the conversion of extracellular signals into intracellular biochemical changes, can also contribute to the acquisition of diseased cell states. Metal ions exhibit unique chemical properties that can be exploited by the cell. For instance, metal ions maintain the ionic balance within the cell, coordinate amino acid residues or nucleobases altering folding and function of biomolecules, or directly catalyze specific chemical reactions. Thus, metals are essential cell signaling effectors in normal physiology and disease. Deciphering metal ion signaling is a challenging endeavor that can illuminate pathways to be targeted for therapeutic intervention. Here, we review key cellular processes where metal ions play essential roles and describe how targeting metal ion signaling pathways has been instrumental to dissecting the biochemistry of the cell and how this has led to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sebastian Müller
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Ludovic Colombeau
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Stéphanie Solier
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Université
Paris-Saclay, UVSQ, 78180 Montigny-le-Bretonneux, France
| | | | - Tatiana Cañeque
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
2
|
Qi S, Zhao S, Lian Z. Unsynchronous conformational transitions induced by the asymmetric adsorption-response of an active diblock copolymer in an inert brush. SOFT MATTER 2023; 19:8423-8433. [PMID: 37877309 DOI: 10.1039/d3sm01040f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
To exploit the chemical asymmetry of diblock copolymer chains on the design of high-performance switch sensors, we propose an analytically tractable model system which contains an adsorption-responsive diblock copolymer in an otherwise inert brush, and study its phase transitions by using both analytical theory and self-consistent field calculations. The copolymer chain is chemically asymmetric in the sense that the two blocks assume different adsorption strengths, which is characterized by the defined adsorption ratio. We found that the conformation states, the number of stable phases, and transition types are mainly controlled by the length of each block and the adsorption ratio. In particular, when the length of the ungrafted block is longer than the brush chains, and the adsorption ratio is smaller than a critical value, the copolymer chain shows three thermodynamically stable states, and undergoes two unsynchronous transitions, where the two blocks respond to the adsorption in a different manner, when the adsorption changes from weak to sufficiently strong. For this kind of three-state transition, the transition point, transition barrier, and transition width are evaluated by using the self-consistent field method, and their scaling relationship with respect to the system parameters is extracted, which matches reasonably well with the predictions from the analytical theory. The self-consistent field calculations also indicate that the conformational transitions involved in the three-state transition process are sharp with a low energy barrier, and interestingly, barrier-free transitions are observed. Our finding shows that the three-state transitions not only specify a region where high performance unsynchronous switch sensors can be exploited, but may also provide a useful model understanding the unsynchronous biological processes.
Collapse
Affiliation(s)
- Shuanhu Qi
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Shuli Zhao
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China.
| | - Zengju Lian
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China.
| |
Collapse
|
3
|
Salloum D, Singh K, Davidson NR, Cao L, Kuo D, Sanghvi VR, Jiang M, Lafoz MT, Viale A, Ratsch G, Wendel HG. A Rapid Translational Immune Response Program in CD8 Memory T Lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1189-1199. [PMID: 36002234 PMCID: PMC9492650 DOI: 10.4049/jimmunol.2100537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 05/25/2022] [Indexed: 01/04/2023]
Abstract
The activation of memory T cells is a very rapid and concerted cellular response that requires coordination between cellular processes in different compartments and on different time scales. In this study, we use ribosome profiling and deep RNA sequencing to define the acute mRNA translation changes in CD8 memory T cells following initial activation events. We find that initial translation enables subsequent events of human and mouse T cell activation and expansion. Briefly, early events in the activation of Ag-experienced CD8 T cells are insensitive to transcriptional blockade with actinomycin D, and instead depend on the translation of pre-existing mRNAs and are blocked by cycloheximide. Ribosome profiling identifies ∼92 mRNAs that are recruited into ribosomes following CD8 T cell stimulation. These mRNAs typically have structured GC and pyrimidine-rich 5' untranslated regions and they encode key regulators of T cell activation and proliferation such as Notch1, Ifngr1, Il2rb, and serine metabolism enzymes Psat1 and Shmt2 (serine hydroxymethyltransferase 2), as well as translation factors eEF1a1 (eukaryotic elongation factor α1) and eEF2 (eukaryotic elongation factor 2). The increased production of receptors of IL-2 and IFN-γ precedes the activation of gene expression and augments cellular signals and T cell activation. Taken together, we identify an early RNA translation program that acts in a feed-forward manner to enable the rapid and dramatic process of CD8 memory T cell expansion and activation.
Collapse
Affiliation(s)
- Darin Salloum
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kamini Singh
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Albert Einstein Cancer Center, Bronx, NY
| | - Natalie R Davidson
- Department of Computer Science, ETH Zurich, Zurich, Switzerland.,Department of Biology, ETH Zurich, Zurich, Switzerland.,Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Linlin Cao
- Swiss Institute for Experimental Cancer Research, EPFL, Lausanne, Switzerland
| | - David Kuo
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY
| | - Viraj R Sanghvi
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami FL
| | - Man Jiang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Maria Tello Lafoz
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - Agnes Viale
- Integrated Genomics Operation, Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gunnar Ratsch
- Department of Computer Science, ETH Zurich, Zurich, Switzerland.,Department of Biology, ETH Zurich, Zurich, Switzerland.,Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY;
| |
Collapse
|
4
|
The generation and application of antigen-specific T cell therapies for cancer and viral-associated disease. Mol Ther 2022; 30:2130-2152. [PMID: 35149193 PMCID: PMC9171249 DOI: 10.1016/j.ymthe.2022.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/27/2021] [Accepted: 02/03/2022] [Indexed: 11/23/2022] Open
Abstract
Immunotherapy with antigen-specific T cells is a promising, targeted therapeutic option for patients with cancer as well as for immunocompromised patients with virus infections. In this review, we characterize and compare current manufacturing protocols for the generation of T cells specific to viral and non-viral tumor-associated antigens. Specifically, we discuss: (1) the different methodologies to expand virus-specific T cell and non-viral tumor-associated antigen-specific T cell products, (2) an overview of the immunological principles involved when developing such manufacturing protocols, and (3) proposed standardized methodologies for the generation of polyclonal, polyfunctional antigen-specific T cells irrespective of donor source. Ex vivo expanded cells have been safely administered to treat numerous patients with virus-associated malignancies, hematologic malignancies, and solid tumors. Hence, we have performed a comprehensive review of the clinical trial results evaluating the safety, feasibility, and efficacy of these products in the clinic. In summary, this review seeks to provide new insights regarding antigen-specific T cell technology to benefit a rapidly expanding T cell therapy field.
Collapse
|
5
|
Luck ME, Li X, Herrnreiter CJ, Choudhry MA. Ethanol Intoxication and Burn Injury Increases Intestinal Regulatory T Cell Population and Regulatory T Cell Suppressive Capability. Shock 2022; 57:230-237. [PMID: 34482318 PMCID: PMC8758514 DOI: 10.1097/shk.0000000000001853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ABSTRACT Traumatic injuries, such as burn, are often complicated by ethanol intoxication at the time of injury. This leads to a myriad of complications and post-burn pathologies exacerbated by aberrant immune responses. Recent findings suggest that immune cell dysfunction in the gastrointestinal system is particularly important in deleterious outcomes associated with burn injuries. In particular, intoxication at the time of burn injury leads to compromised intestinal T cell responses, which can diminish intestinal immunity and promote bacterial translocation, allowing for increased secondary infections in the injured host and associated sequelae, such as multiple organ failure and sepsis. Regulatory T cells (Treg) have been identified as important mediators of suppressing effector T cell function. Therefore, the goal of this study was to assess the effects of ethanol intoxication and burn injury on Treg populations in small intestinal immune organs. We also evaluated the suppressive capability of Tregs isolated from injured animals. Male C57BL/6 mice were gavaged with 2.9 g/kg ethanol before receiving a ∼12.5% total body surface area scald burn. One day after injury, we identified a significant increase in Tregs number in small intestine Peyer's patches (∼×1.5) and lamina propria (∼×2). Tregs-producing cytokine IL-10 were also increased in both tissues. Finally, Tregs isolated from ethanol and burn-injured mice were able to suppress proliferation of effector T cells to a greater degree than sham vehicle Tregs. This was accompanied by increased levels of IL-10 and decreased levels of pro-proliferative cytokine IL-2 in cultures containing ethanol + burn Tregs compared with sham Tregs. These findings suggest that Treg populations are increased in intestinal tissues 1 day following ethanol intoxication and burn injury. Tregs isolated from ethanol and burn-injured animals also exhibit a greater suppression of effector T cell proliferation, which may contribute to altered T cell responses following injury.
Collapse
Affiliation(s)
- Marisa E. Luck
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Integrative Cell Biology Program, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
| | - Xiaoling Li
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Department of Surgery, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
| | - Caroline J. Herrnreiter
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Department of Surgery, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Biochemistry and Molecular Biology Program, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
| | - Mashkoor A. Choudhry
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Department of Surgery, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Department of Microbiology and Immunology, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Integrative Cell Biology Program, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Biochemistry and Molecular Biology Program, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
| |
Collapse
|
6
|
Kim SG, Hong S, Lee H, Eum SH, Kim YS, Jin K, Han S, Yang CW, Park WY, Chung BH. Impact of delayed graft function on clinical outcomes in highly sensitized patients after deceased-donor kidney transplantation. KOREAN JOURNAL OF TRANSPLANTATION 2021; 35:149-160. [PMID: 35769252 PMCID: PMC9235446 DOI: 10.4285/kjt.21.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/18/2021] [Accepted: 09/18/2021] [Indexed: 11/24/2022] Open
Abstract
Background We investigated whether the development of delayed graft function (DGF) in pre-sensitized patients affects the clinical outcomes after deceased-donor kidney transplantation (DDKT). Methods The study included 709 kidney transplant recipients (KTRs) from three transplant centers. We divided KTRs into four subgroups (highly sensitized DGF, highly sensitized non-DGF, low-sensitized DGF, and low-sensitized non-DGF) according to panel reactive antibody level of 50%, or DGF development. We compared post-transplant clinical outcomes among the four subgroups. Results Incidence of biopsy-proven acute rejection (BPAR) was higher in two highly sensitized subgroups than in low-sensitized subgroups. It tended to be higher in highly sensitized DGF subgroups than in the highly sensitized non-DGF subgroups. In addition, the highly sensitized DGF subgroup showed the highest risk for BPAR (hazard ratio, 3.051; P=0.005) and independently predicted BPAR. Allograft function was lower in the two DGF subgroups than in the non-DGF subgroup until one month after transplantation, but thereafter it was similar. Death-censored graft loss rates and patient mortality tended to be low when DGF developed, but it did not reach statistical significance. Conclusions DGF development in highly sensitized patients increases the risk for BPAR in DDKT compared with patients without DGF, suggesting the need for strict monitoring and management of such cases.
Collapse
Affiliation(s)
- Seong Gyu Kim
- Division of Nephrology, Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Suyeon Hong
- Transplantation Research Center, Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hanbi Lee
- Transplantation Research Center, Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang Hun Eum
- Transplantation Research Center, Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Soo Kim
- Division of Nephrology, Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - Kyubok Jin
- Division of Nephrology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Seungyeop Han
- Division of Nephrology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Chul Woo Yang
- Transplantation Research Center, Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woo Yeong Park
- Division of Nephrology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Byung Ha Chung
- Transplantation Research Center, Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
7
|
Ras Isoforms from Lab Benches to Lives-What Are We Missing and How Far Are We? Int J Mol Sci 2021; 22:ijms22126508. [PMID: 34204435 PMCID: PMC8233758 DOI: 10.3390/ijms22126508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/21/2022] Open
Abstract
The central protein in the oncogenic circuitry is the Ras GTPase that has been under intense scrutiny for the last four decades. From its discovery as a viral oncogene and its non-oncogenic contribution to crucial cellular functioning, an elaborate genetic, structural, and functional map of Ras is being created for its therapeutic targeting. Despite decades of research, there still exist lacunae in our understanding of Ras. The complexity of the Ras functioning is further exemplified by the fact that the three canonical Ras genes encode for four protein isoforms (H-Ras, K-Ras4A, K-Ras4B, and N-Ras). Contrary to the initial assessment that the H-, K-, and N-Ras isoforms are functionally similar, emerging data are uncovering crucial differences between them. These Ras isoforms exhibit not only cell-type and context-dependent functions but also activator and effector specificities on activation by the same receptor. Preferential localization of H-, K-, and N-Ras in different microdomains of the plasma membrane and cellular organelles like Golgi, endoplasmic reticulum, mitochondria, and endosome adds a new dimension to isoform-specific signaling and diverse functions. Herein, we review isoform-specific properties of Ras GTPase and highlight the importance of considering these towards generating effective isoform-specific therapies in the future.
Collapse
|
8
|
Leitner J, Mahasongkram K, Schatzlmaier P, Pfisterer K, Leksa V, Pata S, Kasinrerk W, Stockinger H, Steinberger P. Differentiation and activation of human CD4 T cells is associated with a gradual loss of myelin and lymphocyte protein. Eur J Immunol 2021; 51:848-863. [PMID: 33345332 PMCID: PMC8248321 DOI: 10.1002/eji.202048603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 10/21/2020] [Accepted: 12/17/2020] [Indexed: 02/04/2023]
Abstract
Upon generation of monoclonal antibodies to the T cell antigen receptor/CD3 (TCR/CD3) complex, we isolated mAb MT3, whose reactivity correlates inversely with the production of IFN‐γ by human peripheral blood T lymphocytes. Using eukaryotic expression cloning, we identified the MT3 antigen as myelin‐and‐lymphocyte (MAL) protein. Flow cytometry analysis demonstrates high surface expression of MAL on all naïve CD4+ T cells whereas MAL expression is diminished on central memory‐ and almost lost on effector memory T cells. MAL– T cells proliferate strongly in response to stimulation with CD3/CD28 antibodies, corroborating that MAL+ T cells are naïve and MAL– T cells memory subtypes. Further, resting MAL– T cells harbor a larger pool of Ser59‐ and Tyr394‐ double phosphorylated lymphocyte‐specific kinase (Lck), which is rapidly increased upon in vitro restimulation. Previously, lack of MAL was reported to prevent transport of Lck, the key protein tyrosine kinase of TCR/CD3 signaling to the cell membrane, and to result in strongly impaired human T cell activation. Here, we show that knocking out MAL did not significantly affect Lck membrane localization and immune synapse recruitment, or transcriptional T cell activation. Collectively, our results indicate that loss of MAL is associated with activation‐induced differentiation of human T cells but not with impaired membrane localization of Lck or TCR signaling capacity.
Collapse
Affiliation(s)
- Judith Leitner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Kodchakorn Mahasongkram
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Philipp Schatzlmaier
- Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Karin Pfisterer
- Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Vladimir Leksa
- Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Supansa Pata
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Biomedical Technology Research Centre, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Biomedical Technology Research Centre, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Roychowdhury T, Chattopadhyay S. Chemical Decorations of "MARs" Residents in Orchestrating Eukaryotic Gene Regulation. Front Cell Dev Biol 2020; 8:602994. [PMID: 33409278 PMCID: PMC7779526 DOI: 10.3389/fcell.2020.602994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/19/2020] [Indexed: 01/19/2023] Open
Abstract
Genome organization plays a crucial role in gene regulation, orchestrating multiple cellular functions. A meshwork of proteins constituting a three-dimensional (3D) matrix helps in maintaining the genomic architecture. Sequences of DNA that are involved in tethering the chromatin to the matrix are called scaffold/matrix attachment regions (S/MARs), and the proteins that bind to these sequences and mediate tethering are termed S/MAR-binding proteins (S/MARBPs). The regulation of S/MARBPs is important for cellular functions and is altered under different conditions. Limited information is available presently to understand the structure–function relationship conclusively. Although all S/MARBPs bind to DNA, their context- and tissue-specific regulatory roles cannot be justified solely based on the available information on their structures. Conformational changes in a protein lead to changes in protein–protein interactions (PPIs) that essentially would regulate functional outcomes. A well-studied form of protein regulation is post-translational modification (PTM). It involves disulfide bond formation, cleavage of precursor proteins, and addition or removal of low-molecular-weight groups, leading to modifications like phosphorylation, methylation, SUMOylation, acetylation, PARylation, and ubiquitination. These chemical modifications lead to varied functional outcomes by mechanisms like modifying DNA–protein interactions and PPIs, altering protein function, stability, and crosstalk with other PTMs regulating subcellular localizations. S/MARBPs are reported to be regulated by PTMs, thereby contributing to gene regulation. In this review, we discuss the current understanding, scope, disease implications, and future perspectives of the diverse PTMs regulating functions of S/MARBPs.
Collapse
Affiliation(s)
- Tanaya Roychowdhury
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, India.,Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Samit Chattopadhyay
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, India.,Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
10
|
Wolf T, Jin W, Zoppi G, Vogel IA, Akhmedov M, Bleck CKE, Beltraminelli T, Rieckmann JC, Ramirez NJ, Benevento M, Notarbartolo S, Bumann D, Meissner F, Grimbacher B, Mann M, Lanzavecchia A, Sallusto F, Kwee I, Geiger R. Dynamics in protein translation sustaining T cell preparedness. Nat Immunol 2020; 21:927-937. [PMID: 32632289 PMCID: PMC7610365 DOI: 10.1038/s41590-020-0714-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/19/2020] [Indexed: 12/16/2022]
Abstract
In response to pathogenic threats, naive T cells rapidly transition from a quiescent to an activated state, yet the underlying mechanisms are incompletely understood. Using a pulsed SILAC approach, we investigated the dynamics of mRNA translation kinetics and protein turnover in human naive and activated T cells. Our datasets uncovered that transcription factors maintaining T cell quiescence had constitutively high turnover, which facilitated their depletion following activation. Furthermore, naive T cells maintained a surprisingly large number of idling ribosomes as well as 242 repressed mRNA species and a reservoir of glycolytic enzymes. These components were rapidly engaged following stimulation, promoting an immediate translational and glycolytic switch to ramp up the T cell activation program. Our data elucidate new insights into how T cells maintain a prepared state to mount a rapid immune response, and provide a resource of protein turnover, absolute translation kinetics and protein synthesis rates in T cells ( https://www.immunomics.ch ).
Collapse
Affiliation(s)
- Tobias Wolf
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Wenjie Jin
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Giada Zoppi
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Ian A Vogel
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Murodzhon Akhmedov
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | | | - Tim Beltraminelli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Jan C Rieckmann
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Neftali J Ramirez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Integrated Research Training Group (IRTG) Medical Epigenetics, Collaborative Research Centre 992, Freiburg, Germany
| | - Marco Benevento
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Samuele Notarbartolo
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Dirk Bumann
- Biozentrum, University of Basel, Basel, Switzerland
| | - Felix Meissner
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Munich, Germany
- Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Munich, Germany
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Ivo Kwee
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.
| |
Collapse
|
11
|
Abstract
The maintenance of organismal homeostasis requires partitioning and transport of biochemical molecules between organ systems, their composite cells, and subcellular organelles. Although transcriptional programming undeniably defines the functional state of cells and tissues, underlying biochemical networks are intricately intertwined with transcriptional, translational, and post-translational regulation. Studies of the metabolic regulation of immunity have elegantly illustrated this phenomenon. The cells of the immune system interface with a diverse set of environmental conditions. Circulating immune cells perfuse peripheral organs in the blood and lymph, patrolling for pathogen invasion. Resident immune cells remain in tissues and play more newly appreciated roles in tissue homeostasis and immunity. Each of these cell populations interacts with unique and dynamic tissue environments, which vary greatly in biochemical composition. Furthermore, the effector response of immune cells to a diverse set of activating cues requires unique cellular adaptations to supply the requisite biochemical landscape. In this review, we examine the role of spatial partitioning of metabolic processes in immune function. We focus on studies of lymphocyte metabolism, with reference to the greater immunometabolism literature when appropriate to illustrate this concept.
Collapse
Affiliation(s)
- Justin A Shyer
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Will Bailis
- Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Leney-Greene MA, Boddapati AK, Su HC, Cantor JR, Lenardo MJ. Human Plasma-like Medium Improves T Lymphocyte Activation. iScience 2020; 23:100759. [PMID: 31887663 PMCID: PMC6941860 DOI: 10.1016/j.isci.2019.100759] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/30/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023] Open
Abstract
T lymphocytes are critical for effective immunity, and the ability to study their behavior in vitro can facilitate major insights into their development, function, and fate. However, the composition of human plasma differs from conventional media, and we hypothesized that such differences could impact immune cell physiology. Here, we showed that relative to the medium typically used to culture lymphocytes (RPMI), a physiologic medium (human plasma-like medium; HPLM) induced markedly different transcriptional responses in human primary T cells and in addition, improved their activation upon antigen stimulation. We found that this medium-dependent effect on T cell activation is linked to Ca2+, which is six-fold higher in HPLM than in RPMI. Thus, a medium that more closely resembles human plasma has striking effects on T cell biology, further demonstrates that medium composition can profoundly affect experimental results, and broadly suggests that physiologic media may offer a valuable way to study cultured immune cells.
Collapse
Affiliation(s)
- Michael A Leney-Greene
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Immunology Graduate Group, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Arun K Boddapati
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Helen C Su
- Immunology Graduate Group, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA 19104, USA; Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason R Cantor
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Carbone Cancer Center, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53705, USA
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Immunology Graduate Group, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Placek K, Schultze JL, Aschenbrenner AC. Epigenetic reprogramming of immune cells in injury, repair, and resolution. J Clin Invest 2019; 129:2994-3005. [PMID: 31329166 DOI: 10.1172/jci124619] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Immune cells are pivotal in the reaction to injury, whereupon, under ideal conditions, repair and resolution phases restore homeostasis following initial acute inflammation. Immune cell activation and reprogramming require transcriptional changes that can only be initiated if epigenetic alterations occur. Recently, accelerated deciphering of epigenetic mechanisms has extended knowledge of epigenetic regulation, including long-distance chromatin remodeling, DNA methylation, posttranslational histone modifications, and involvement of small and long noncoding RNAs. Epigenetic changes have been linked to aspects of immune cell development, activation, and differentiation. Furthermore, genome-wide epigenetic landscapes have been established for some immune cells, including tissue-resident macrophages, and blood-derived cells including T cells. The epigenetic mechanisms underlying developmental steps from hematopoietic stem cells to fully differentiated immune cells led to development of epigenetic technologies and insights into general rules of epigenetic regulation. Compared with more advanced research areas, epigenetic reprogramming of immune cells in injury remains in its infancy. While the early epigenetic mechanisms supporting activation of the immune response to injury have been studied, less is known about resolution and repair phases and cell type-specific changes. We review prominent recent findings concerning injury-mediated epigenetic reprogramming, particularly in stroke and myocardial infarction. Lastly, we illustrate how single-cell technologies will be crucial to understanding epigenetic reprogramming in the complex sequential processes following injury.
Collapse
Affiliation(s)
- Katarzyna Placek
- Immunology and Metabolism, LIMES Institute, University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany.,Genomics and Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Anna C Aschenbrenner
- Genomics and Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
14
|
Radio Electric Asymmetric Conveyer (REAC) technology to obviate loss of T cell responsiveness under simulated microgravity. PLoS One 2018; 13:e0200128. [PMID: 29979723 PMCID: PMC6034838 DOI: 10.1371/journal.pone.0200128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
Alterations of the gravitational environment are likely to modify cell behavior. Several studies have proven that T cells are sensitive to gravity alterations and that microgravity conditions may induce immunosuppression and weakened T cell immune response in humans during spaceflights. The aim of this work was to elucidate if a specific treatment of Radio Electric Asymmetric Conveyer (REAC) technology could restore, after mitogenic activation (Con A), a correct expression of cytokine IL2 gene and its receptor IL2R alpha, which are inhibited in T cells under microgravity conditions, as demonstrated in several studies. The results of this study, conducted in microgravity simulated with Random Positioning Machine (RPM), confirm the T cell activation recovery and offer the evidence that REAC technology could contribute to the understanding of T cell growth responsiveness in space, reducing the impact of weightlessness on the immune system experienced by humans in long duration space missions.
Collapse
|
15
|
Metcalfe S, Svvennsen R, Calne RY. FK506 and rapamycin: differential sensitivity of human, baboon, cynomolgus monkey, dog and pig lymphocytes. Transpl Int 2018. [DOI: 10.1111/tri.1992.5.s1.514] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Bendickova K, Tidu F, Fric J. Calcineurin-NFAT signalling in myeloid leucocytes: new prospects and pitfalls in immunosuppressive therapy. EMBO Mol Med 2018; 9:990-999. [PMID: 28606994 PMCID: PMC5538425 DOI: 10.15252/emmm.201707698] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Myeloid leucocytes mediate host protection against infection and critically regulate inflammatory responses in body tissues. Pattern recognition receptor signalling is crucial for myeloid cell responses to pathogens, but growing evidence suggests an equally potent role for Calcineurin–NFAT signalling in control of myeloid cell function. All major subsets of myeloid leucocytes employ Calcineurin–NFAT signalling during immune responses to pathogens and/or tissue damage, but the influence this pathway exerts on pathogen clearance and host susceptibility to infection is not fully understood. Recent data from experimental models indicate that Calcineurin‐NFAT signalling is essential for infection control, and calcineurin inhibitors used in transplantation medicine (including cyclosporine A and tacrolimus) are now being tested for efficacy in a diverse range of inflammatory conditions and autoimmune pathologies. Efforts to repurpose calcineurin inhibitor drugs for new therapeutic applications may yield rapid improvements in clinical outcomes, but the potential impact of these compounds on myeloid cell function in treated patients is largely unknown. Here we discuss Calcineurin–NFAT control of myeloid leucocyte function in the context of recent therapeutic developments and ongoing clinical studies.
Collapse
Affiliation(s)
- Kamila Bendickova
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Federico Tidu
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jan Fric
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
17
|
A Abdullah A, Abdullah R, A Nazariah Z, N Balakrishnan K, Firdaus J Abdullah F, A Bala J, Mohd-Lila MA. Cyclophilin A as a target in the treatment of cytomegalovirus infections. Antivir Chem Chemother 2018; 26:2040206618811413. [PMID: 30449131 PMCID: PMC6243413 DOI: 10.1177/2040206618811413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Viruses are obligate parasites that depend on the cellular machinery of the host to regenerate and manufacture their proteins. Most antiviral drugs on the market today target viral proteins. However, the more recent strategies involve targeting the host cell proteins or pathways that mediate viral replication. This new approach would be effective for most viruses while minimizing drug resistance and toxicity. METHODS Cytomegalovirus replication, latency, and immune response are mediated by the intermediate early protein 2, the main protein that determines the effectiveness of drugs in cytomegalovirus inhibition. This review explains how intermediate early protein 2 can modify the action of cyclosporin A, an immunosuppressive, and antiviral drug. It also links all the pathways mediated by cyclosporin A, cytomegalovirus replication, and its encoded proteins. RESULTS Intermediate early protein 2 can influence the cellular cyclophilin A pathway, affecting cyclosporin A as a mediator of viral replication or anti-cytomegalovirus drug. CONCLUSION Cyclosporin A has a dual function in cytomegalovirus pathogenesis. It has the immunosuppressive effect that establishes virus replication through the inhibition of T-cell function. It also has an anti-cytomegalovirus effect mediated by intermediate early protein 2. Both of these functions involve cyclophilin A pathway.
Collapse
Affiliation(s)
- Ashwaq A Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 2 Department of Microbiology, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Rasedee Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 3 Department of Veterinary Laboratory Diagnosis, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Zeenathul A Nazariah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Krishnan N Balakrishnan
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Faez Firdaus J Abdullah
- 5 Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Jamilu A Bala
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 6 Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University Kano, Kano, Nigeria
| | - Mohd-Azmi Mohd-Lila
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| |
Collapse
|
18
|
Fleming EH, Ochoa EE, Nichols JE, O'Banion MK, Salkind AR, Roberts NJ. Reduced activation and proliferation of human lymphocytes exposed to respiratory syncytial virus compared to cells exposed to influenza virus. J Med Virol 2017; 90:26-33. [PMID: 28856681 DOI: 10.1002/jmv.24917] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 12/11/2022]
Abstract
Both respiratory syncytial virus (RSV) and influenza A virus (IAV) may infect human peripheral blood mononuclear leukocytes (PBMC) during the immune response to viral challenge as the cells are recruited to the respiratory tract. The current studies demonstrated differences in PBMC responses to the two viruses very early after exposure, including reduced fos protein and CD69 expression and IL-2 production by RSV-exposed T lymphocytes. Exposure to RSV resulted in reduced lymphocyte proliferation despite evidence of a virus-specific T lymphocyte frequency equivalent to that for influenza virus. Reduced RSV-induced proliferation was not due to apoptosis, which was itself reduced relative to that of influenza virus-exposed T lymphocytes. The data indicate that differential immune responses to RSV and influenza virus are determined early after exposure of human PBMC and support the concept that the anamnestic immune response that might prevent clinically evident reinfection is attenuated very soon after exposure to RSV. Thus, candidate RSV vaccines should be expected to reduce but not prevent clinical illness upon subsequent infection by RSV. Furthermore, effective therapeutic agents for RSV are likely to be needed, especially for high-risk populations, even after vaccine development.
Collapse
Affiliation(s)
- Elisa H Fleming
- Division of Infectious Diseases, Department of Internal Medicine, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Eliana E Ochoa
- Division of Infectious Diseases, Department of Internal Medicine, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Joan E Nichols
- Division of Infectious Diseases, Department of Internal Medicine, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - M Kerry O'Banion
- Department of Neuroscience and Department of Neurology, University of Rochester School of Medicine, Rochester, New York
| | - Alan R Salkind
- Department of Medicine, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Norbert J Roberts
- Division of Infectious Diseases, Department of Internal Medicine, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, New York
| |
Collapse
|
19
|
Michel M, Demel C, Zacher B, Schwalb B, Krebs S, Blum H, Gagneur J, Cramer P. TT-seq captures enhancer landscapes immediately after T-cell stimulation. Mol Syst Biol 2017; 13:920. [PMID: 28270558 PMCID: PMC5371733 DOI: 10.15252/msb.20167507] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To monitor transcriptional regulation in human cells, rapid changes in enhancer and promoter activity must be captured with high sensitivity and temporal resolution. Here, we show that the recently established protocol TT-seq ("transient transcriptome sequencing") can monitor rapid changes in transcription from enhancers and promoters during the immediate response of T cells to ionomycin and phorbol 12-myristate 13-acetate (PMA). TT-seq maps eRNAs and mRNAs every 5 min after T-cell stimulation with high sensitivity and identifies many new primary response genes. TT-seq reveals that the synthesis of 1,601 eRNAs and 650 mRNAs changes significantly within only 15 min after stimulation, when standard RNA-seq does not detect differentially expressed genes. Transcription of enhancers that are primed for activation by nucleosome depletion can occur immediately and simultaneously with transcription of target gene promoters. Our results indicate that enhancer transcription is a good proxy for enhancer regulatory activity in target gene activation, and establish TT-seq as a tool for monitoring the dynamics of enhancer landscapes and transcription programs during cellular responses and differentiation.
Collapse
Affiliation(s)
- Margaux Michel
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Carina Demel
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Benedikt Zacher
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Björn Schwalb
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Krebs
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Helmut Blum
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julien Gagneur
- Department of Informatics, Technische Universität München, Garching, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
20
|
Tetradecanol reduces EL-4 T cell growth by the down regulation of NF-κB mediated IL-2 secretion. Eur J Pharmacol 2017; 799:135-142. [PMID: 28167257 DOI: 10.1016/j.ejphar.2017.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/05/2017] [Accepted: 02/02/2017] [Indexed: 12/11/2022]
Abstract
Tetradecanol is a straight-chain saturated fatty alcohol purified from Dendropanax morbifera leaves. We found that tetradecanol (30μM) reduced specifically the growth of T cells such as EL-4 T cell and isolated murine CD4+ T cells. In this study, we investigated the effects of tetradecanol on the regulation of interlukin-2 (IL-2), a potent T cell growth factor. Tetradecanol significantly inhibited IL-2 secretion in EL-4 T cells activated with phorbol 12-myristate 13-acetate (PMA) plus ionomycin (Io) and also in isolated murine CD4+ T cells activated with anti-CD3 and anti-CD28 antibodies. Next, we examined the effect of tetradecanol on the transcriptional activity related to IL-2 production in T cells. Tetradecanol decreased PMA/Io-induced promoter activity of NF-κB in EL-4 T cells, but did not show any significant effects on the promoters of activator protein 1 (AP-1) and nuclear factor of activated T cells (NF-AT). Tetradecanol inhibited IκBα degradation and nuclear translocation of NF-κB subunit, p65 in PMA/Io-activated EL-4 T cells. These results suggest that tetradecanol might have immunosuppressive effects on T cell mediated disorders. Using a chronic allergic contact dermatitis model induced by repeated application of oxazolone, we showed that tetradecanol reduced ear thickness induced by oxazolone.
Collapse
|
21
|
Santos LC, Blair DA, Kumari S, Cammer M, Iskratsch T, Herbin O, Alexandropoulos K, Dustin ML, Sheetz MP. Actin polymerization-dependent activation of Cas-L promotes immunological synapse stability. Immunol Cell Biol 2016; 94:981-993. [PMID: 27359298 PMCID: PMC5121033 DOI: 10.1038/icb.2016.61] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/06/2016] [Accepted: 06/20/2016] [Indexed: 02/07/2023]
Abstract
The immunological synapse formed between a T-cell and an antigen-presenting cell is important for cell-cell communication during T-cell-mediated immune responses. Immunological synapse formation begins with stimulation of the T-cell receptor (TCR). TCR microclusters are assembled and transported to the center of the immunological synapse in an actin polymerization-dependent process. However, the physical link between TCR and actin remains elusive. Here we show that lymphocyte-specific Crk-associated substrate (Cas-L), a member of a force sensing protein family, is required for transport of TCR microclusters and for establishing synapse stability. We found that Cas-L is phosphorylated at TCR microclusters in an actin polymerization-dependent fashion. Furthermore, Cas-L participates in a positive feedback loop leading to amplification of Ca2+ signaling, inside-out integrin activation, and actomyosin contraction. We propose a new role for Cas-L in T-cell activation as a mechanical transducer linking TCR microclusters to the underlying actin network and coordinating multiple actin-dependent structures in the immunological synapse. Our studies highlight the importance of mechanotransduction processes in T-cell-mediated immune responses.
Collapse
Affiliation(s)
- Luís C Santos
- Department of Biological Sciences, Columbia UniversityNew YorkNYUSA
- Skirball Institute of Biomolecular Medicine, New York School of MedicineNew YorkNYUSA
- Icahn Medical Institute, Mount Sinai School of MedicineNew YorkNYUSA
| | - David A Blair
- Skirball Institute of Biomolecular Medicine, New York School of MedicineNew YorkNYUSA
| | - Sudha Kumari
- Skirball Institute of Biomolecular Medicine, New York School of MedicineNew YorkNYUSA
| | - Michael Cammer
- Skirball Institute of Biomolecular Medicine, New York School of MedicineNew YorkNYUSA
| | - Thomas Iskratsch
- Department of Biological Sciences, Columbia UniversityNew YorkNYUSA
| | - Olivier Herbin
- Icahn Medical Institute, Mount Sinai School of MedicineNew YorkNYUSA
| | | | - Michael L Dustin
- Skirball Institute of Biomolecular Medicine, New York School of MedicineNew YorkNYUSA
- Kennedy Institute of Rheumatology, University of OxfordHeadingtonUK
| | - Michael P Sheetz
- Department of Biological Sciences, Columbia UniversityNew YorkNYUSA
| |
Collapse
|
22
|
Geometry Dynamics of α -Helices in Different Class I Major Histocompatibility Complexes. J Immunol Res 2015; 2015:173593. [PMID: 26649324 PMCID: PMC4651647 DOI: 10.1155/2015/173593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 01/05/2023] Open
Abstract
MHC α-helices form the antigen-binding cleft and are of particular interest for immunological reactions. To monitor these helices in molecular dynamics simulations, we applied a parsimonious fragment-fitting method to trace the axes of the α-helices. Each resulting axis was fitted by polynomials in a least-squares sense and the curvature integral was computed. To find the appropriate polynomial degree, the method was tested on two artificially modelled helices, one performing a bending movement and another a hinge movement. We found that second-order polynomials retrieve predefined parameters of helical motion with minimal relative error. From MD simulations we selected those parts of α-helices that were stable and also close to the TCR/MHC interface. We monitored the curvature integral, generated a ruled surface between the two MHC α-helices, and computed interhelical area and surface torsion, as they changed over time. We found that MHC α-helices undergo rapid but small changes in conformation. The curvature integral of helices proved to be a sensitive measure, which was closely related to changes in shape over time as confirmed by RMSD analysis. We speculate that small changes in the conformation of individual MHC α-helices are part of the intrinsic dynamics induced by engagement with the TCR.
Collapse
|
23
|
Lai W, Huang L, Zhu L, Ferrari G, Chan C, Li W, Lee KH, Chen CH. Gnidimacrin, a Potent Anti-HIV Diterpene, Can Eliminate Latent HIV-1 Ex Vivo by Activation of Protein Kinase C β. J Med Chem 2015; 58:8638-46. [PMID: 26509731 DOI: 10.1021/acs.jmedchem.5b01233] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
HIV-1-latency-reversing agents, such as histone deacetylase inhibitors (HDACIs), were ineffective in reducing latent HIV-1 reservoirs ex vivo using CD4 cells from patients as a model. This deficiency poses a challenge to current pharmacological approaches for HIV-1 eradication. The results of this study indicated that gnidimacrin (GM) was able to markedly reduce the latent HIV-1 DNA level and the frequency of latently infected cells in an ex vivo model using patients peripheral blood mononuclear cells. GM induced approximately 10-fold more HIV-1 production than the HDACI SAHA or romidepsin, which may be responsible for the effectiveness of GM in reducing latent HIV-1 levels. GM achieved these effects at low picomolar concentrations by selective activation of protein kinase C βI and βII. Notably, GM was able to reduce the frequency of HIV-1 latently infected cells at concentrations without global T cell activation or stimulating inflammatory cytokine production. GM merits further development as a clinical trial candidate for latent HIV-1 eradication.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University , Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States.,Chinese Medicine Research and Development Center, China Medical University and Hospital , Taichung, Taiwan
| | | |
Collapse
|
24
|
Bazzazi H, Sang L, Dick IE, Joshi-Mukherjee R, Yang W, Yue DT. Novel fluorescence resonance energy transfer-based reporter reveals differential calcineurin activation in neonatal and adult cardiomyocytes. J Physiol 2015; 593:3865-84. [PMID: 26096996 PMCID: PMC4575574 DOI: 10.1113/jp270510] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/16/2015] [Indexed: 12/26/2022] Open
Abstract
Novel fluorescence resonance energy transfer-based genetically encoded reporters of calcineurin are constructed by fusing the two subunits of calcineurin with P2A-based linkers retaining the expected native conformation of calcineurin. Calcineurin reporters display robust responses to calcium transients in HEK293 cells. The sensor responses are correlated with NFATc1 translocation dynamics in HEK293 cells. The sensors are uniformly distributed in neonatal myocytes and respond efficiently to single electrically evoked calcium transients and show cumulative activation at frequencies of 0.5 and 1 Hz. In adult myocytes, the calcineurin sensors appear to be localized to the cardiac z-lines, and respond to cumulative calcium transients at frequencies of 0.5 and 1 Hz. The phosphatase calcineurin is a central component of many calcium signalling pathways, relaying calcium signals from the plasma membrane to the nucleus. It has critical functions in a multitude of systems, including immune, cardiac and neuronal. Given the widespread importance of calcineurin in both normal and pathological conditions, new tools that elucidate the spatiotemporal dynamics of calcineurin activity would be invaluable. Here we develop two separate genetically encoded fluorescence resonance energy transfer (FRET)-based sensors of calcineurin activation, DuoCaN and UniCaN. Both sensors showcase a large dynamic range and rapid response kinetics, differing primarily in the linker structure between the FRET pairs. Both sensors were calibrated in HEK293 cells and their responses correlated well with NFAT translocation to the nucleus, validating the biological relevance of the sensor readout. The sensors were subsequently expressed in neonatal rat ventricular myocytes and acutely isolated adult guinea pig ventricular myocytes. Both sensors demonstrated robust responses in myocytes and revealed kinetic differences in calcineurin activation during changes in pacing rate for neonatal versus adult myocytes. Finally, mathematical modelling combined with quantitative FRET measurements provided novel insights into the kinetics and integration of calcineurin activation in response to myocyte Ca transients. In all, DuoCaN and UniCaN stand as valuable new tools for understanding the role of calcineurin in normal and pathological signalling.
Collapse
Affiliation(s)
- Hojjat Bazzazi
- Departments of Biomedical Engineering and Neuroscience, Centre for Cell Dynamics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Lingjie Sang
- Departments of Biomedical Engineering and Neuroscience, Centre for Cell Dynamics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Ivy E Dick
- Departments of Biomedical Engineering and Neuroscience, Centre for Cell Dynamics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Rosy Joshi-Mukherjee
- Departments of Biomedical Engineering and Neuroscience, Centre for Cell Dynamics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Wanjun Yang
- Departments of Biomedical Engineering and Neuroscience, Centre for Cell Dynamics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | | |
Collapse
|
25
|
Comparative effect of two pan-class I PI3K inhibitors used as anticancer drugs on human T cell function. Int Immunopharmacol 2015; 28:675-85. [DOI: 10.1016/j.intimp.2015.07.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/15/2023]
|
26
|
Non-Anticoagulant Fractions of Enoxaparin Suppress Inflammatory Cytokine Release from Peripheral Blood Mononuclear Cells of Allergic Asthmatic Individuals. PLoS One 2015; 10:e0128803. [PMID: 26046354 PMCID: PMC4457428 DOI: 10.1371/journal.pone.0128803] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/30/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Enoxaparin, a low-molecular-weight heparin, is known to possess anti-inflammatory properties. However, its clinical exploitation as an anti-inflammatory agent is hampered by its anticoagulant effect and the associated risk of bleeding. OBJECTIVE The aim of the current study was to examine the ability of non-anticoagulant fractions of enoxaparin to inhibit the release of key inflammatory cytokines in primed peripheral blood mononuclear cells derived from allergic mild asthmatics. METHODS Peripheral blood mononuclear cells from allergic asthmatics were activated with phytohaemag glutinin (PHA), concanavalin-A (ConA) or phorbol 12-myristate 13-acetate (PMA) in the presence or absence of enoxaparin fractions before cytokine levels were quantified using specific cytokine bead arrays. Together with nuclear magnetic resonance analysis,time-dependent and target-specific effects of enoxaparin fractions were used to elucidate structural determinants for their anti-inflammatory effect and gain mechanistic insights into their anti-inflammatory activity. RESULTS Two non-anticoagulant fractions of enoxaparin were identified that significantly inhibited T-cell activation. A disaccharide fraction of enoxaparin inhibited the release of IL-4, IL-5, IL-13 and TNF-α by more than 57% while a tetrasaccharide fraction was found to inhibit the release of tested cytokines by more than 68%. Our data suggest that the observed response is likely to be due to an interaction of 6-O-sulfated tetrasaccharide with cellular receptor(s). CONCLUSION AND CLINICAL RELEVANCE The two identified anti-inflammatory fractions lacked anticoagulant activity and are therefore not associated with risk of bleeding. The findings highlight the potential therapeutic use of enoxaparin-derived fractions, in particular tetrasaccharide, in patients with chronic inflammatory disorders.
Collapse
|
27
|
Potentiation of the store-operated calcium entry (SOCE) induces phytohemagglutinin-activated Jurkat T cell apoptosis. Cell Calcium 2015; 58:171-85. [PMID: 25963393 DOI: 10.1016/j.ceca.2015.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 01/12/2023]
Abstract
Store-operated Ca(2+) entry (SOCE) is the main Ca(2+) entry pathway of non-excitable cells. In the past decade, the activation of this entry has been unveiled, with STIM1, a protein of the endoplasmic reticulum able to sense the intraluminal Ca(2+) content, and Orai1, the pore-forming unit of the Ca(2+) release activated Ca(2+) (CRAC) channels. When Ca(2+) ions are released from the endoplasmic reticulum, STIM1 proteins oligomerize and directly interact with Orai1 proteins, allowing the opening of the CRAC channels and a massive Ca(2+) ion influx known as SOCE. As Ca(2+) is involved in various cellular processes, the discovery of new drugs acting on the SOCE should be of interest to control the cell activity. By testing analogs of 2-aminoethyl diphenylborinate (2-APB), a well known, though not so selective effector of the SOCE, we identified methoxy diethylborinate (MDEB), a molecule able to potentiate the SOCE in three leukocyte and two breast cancer cell lines by increasing the Ca(2+) influx amplitude. Unlike 2-APB, MDEB does not affect the Ca(2+) pumps or the Ca(2+) release from the endoplasmic reticulum. MDEB could therefore represent the first member of a new group of molecules, specifically able to potentiate SOCE. Although not toxic for non-activated Jurkat T cells, it could induce the apoptosis of phytohemagglutinin-stimulated cells.
Collapse
|
28
|
Mortlock SA, Wei J, Williamson P. T-cell activation and early gene response in dogs. PLoS One 2015; 10:e0121169. [PMID: 25803042 PMCID: PMC4372360 DOI: 10.1371/journal.pone.0121169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/28/2015] [Indexed: 12/27/2022] Open
Abstract
T-cells play a crucial role in canine immunoregulation and defence against invading pathogens. Proliferation is fundamental to T-cell differentiation, homeostasis and immune response. Initiation of proliferation following receptor mediated stimuli requires a temporally programmed gene response that can be identified as immediate-early, mid- and late phases. The immediate-early response genes in T-cell activation engage the cell cycle machinery and promote subsequent gene activation events. Genes involved in this immediate-early response in dogs are yet to be identified. The present study was undertaken to characterise the early T-cell gene response in dogs to improve understanding of the genetic mechanisms regulating immune function. Gene expression profiles were characterised using canine gene expression microarrays and quantitative reverse transcription PCR (qRT-PCR), and paired samples from eleven dogs. Significant functional annotation clusters were identified following stimulation with phytohemagluttinin (PHA) (5μg/ml), including the Toll-like receptor signaling pathway and phosphorylation pathways. Using strict statistical criteria, 13 individual genes were found to be differentially expressed, nine of which have ontologies that relate to proliferation and cell cycle control. These included, prostaglandin-endoperoxide synthase 2 (PTGS2/COX2), early growth response 1 (EGR1), growth arrest and DNA damage-inducible gene (GADD45B), phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1), V-FOS FBJ murine osteosarcoma viral oncogene homolog (FOS), early growth response 2 (EGR2), hemogen (HEMGN), polo-like kinase 2 (PLK2) and polo-like kinase 3 (PLK3). Differential gene expression was re-examined using qRT-PCR, which confirmed that EGR1, EGR2, PMAIP1, PTGS2, FOS and GADD45B were significantly upregulated in stimulated cells and ALAS2 downregulated. PTGS2 and EGR1 showed the highest levels of response in these dogs. Both of these genes are involved in cell cycle regulation. This study provides a comprehensive analysis of the early T-cell gene response to activation in dogs.
Collapse
Affiliation(s)
- Sally-Anne Mortlock
- Faculty of Veterinary Science, The University of Sydney, NSW 2006, Australia
| | - Jerry Wei
- Faculty of Veterinary Science, The University of Sydney, NSW 2006, Australia
- Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Peter Williamson
- Faculty of Veterinary Science, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
29
|
Wang YQ, Ma X, Lu L, Zhao L, Zhang X, Xu Q, Wang Y. Defective antiviral CD8 T-cell response and viral clearance in the absence of c-Jun N-terminal kinases. Immunology 2014; 142:603-13. [PMID: 24673683 DOI: 10.1111/imm.12270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 02/13/2014] [Indexed: 12/19/2022] Open
Abstract
The c-Jun N-terminal kinase (JNK) signalling pathway appears to act as a critical intermediate in the regulation of lymphocyte activation and proliferation. The majority of studies on the importance of JNK are focused on its role in T helper responses, with very few reports addressing the mechanisms of JNK in governing CD8 T-cell-mediated immunity. By using a well-defined mousepox model, we demonstrate that JNK is involved in CD8(+) T-cell-mediated antiviral responses. Deficiency of either JNK1 or JNK2 impaired viral clearance, subsequently resulting in an increased susceptibility to ectromelia virus in resistant mice. The impairment of CD8 responses in JNK-deficient mice was not directly due to an inhibition of effector T-cell expansion, as both JNK1 and JNK2 had limited effect on the activation-induced cell death of CD8(+) T cells, and only JNK2-deficient mice exhibited a significant change in CD8(+) T-cell proliferation after acute ectromelia virus infection. However, optimal activation of CD8(+) T cells and their effector functions require signals from both JNK1 and JNK2. Our results suggest that the JNK pathway acts as a critical intermediate in antiviral immunity through regulation of the activation and effector function of CD8(+) T cells rather than by altering their expansion.
Collapse
Affiliation(s)
- Yong-Qin Wang
- Department of Pathogen Biology, School of Medicine, Nankai University, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Luo H, Wang C, Feng M, Zhao Y. Microgravity inhibits resting T cell immunity in an exposure time-dependent manner. Int J Med Sci 2014; 11:87-96. [PMID: 24396290 PMCID: PMC3880995 DOI: 10.7150/ijms.7651] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Decline immune function is well documented after spaceflights. Microgravity is one of the key factors directly suppressing the function of immune system. Though T cell immune response was inhibited by microgravity, it is not clearly whether activation would be inhibited after a pre-exposure of microgravity on T lymphocytes at the resting state. METHODS We herein investigated the response ability of resting CD4⁺ and CD8⁺ T cells experiencing pre-exposure of modeled microgravity (MMg) for 0, 8, 16 and 24 hrs to concanavalin A (ConA) stimulation. The phenotypes and subsets of immune cells were determined by flow cytometry. RESULTS Both CD4⁺ and CD8⁺ T cells with an MMg pre-exposure exhibited decreased expressions of activation-markers including CD25, CD69 and CD71, inflammatory cytokine secretion and cell proliferation in response to ConA compared with T cells with 1g controls in an MMg exposure time- dependent manner. Moreover, short term MMg treatment caused more severe decreased proliferation in CD4⁺ T cells than in CD8⁺ T cells. CONCLUSIONS MMg can directly impact on resting T cell subsets. CD4⁺ T cells were more sensitive to the microgravity inhibition than CD8⁺ T cells in respect of cell proliferation. These results offered new insights for the MMg-caused T cell functional defects.
Collapse
Affiliation(s)
- Haiying Luo
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chongzhen Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Meifu Feng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Ponticelli C. Ischaemia-reperfusion injury: a major protagonist in kidney transplantation. Nephrol Dial Transplant 2013; 29:1134-40. [PMID: 24335382 DOI: 10.1093/ndt/gft488] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ischaemia-reperfusion injury (IRI) is a frequent event in kidney transplantation, particularly when the kidney comes from a deceased donor. The brain death is usually associated with generalized ischaemia due to a hyperactivity of the sympathetic system. In spite of this, most donors have profound hypotension and require administration of vasoconstrictor agents. Warm ischaemia after kidney vessels clamping and the cold ischaemia after refrigeration also reduce oxygen and nutrients supply to tissues. The reperfusion further aggravates the state of oxidation and inflammation created by ischaemia. IRI first attacks endothelial cells and tubular epithelial cells. The lesions may be so severe that they lead to acute kidney injury (AKI) and delayed graft function (DGF), which can impair the graft survival. The unfavourable impact of DGF is worse when DGF is associated with acute rejection. Another consequence of IRI is the activation of the innate immunity. Danger signals released by dying cells alarm Toll-like receptors that, through adapter molecules and a chain of kinases, transmit the signal to transcription factors which encode the genes regulating inflammatory cells and mediators. In the inflammatory environment, dendritic cells (DCs) intercept the antigen, migrate to lymph nodes and present the antigen to immunocompetent cells, so activating the adaptive immunity and favouring rejection. Attempts to prevent IRI include optimal management of donor and recipient. Calcium-channel blockers, l-arginine and N-acetylcysteine could obtain a small reduction in the incidence of post-transplant DGF. Fenoldopam, Atrial Natriuretic Peptide, Brain Natriuretic Peptide and Dopamine proved to be helpful in reducing the risk of AKI in experimental models, but there is no controlled evidence that these agents may be of benefit in preventing DGF in kidney transplant recipients. Other antioxidants have been successfully used in experimental models of AKI but only a few studies of poor quality have been made in clinical transplantation with a few of these agents and we still lack of unambiguous demonstration that pre-treatment with these antioxidants can attenuate the impact of IRI in kidney transplantation. Interference with the signals leading to activation of innate immunity, inactivation of complement or manipulation of DCs is a promising therapeutic option for the near future.
Collapse
|
32
|
Mityushova EV, Shatrova AN, Zenin VV, Aksenov ND, Marakhova II. STAT5 signaling in expression of the α-subunit of interleukin-2 receptor in human blood lymphocytes. ACTA ACUST UNITED AC 2013. [DOI: 10.1134/s1990519x13050076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Examining T cells at vaccine sites of tumor-bearing hosts provides insights to dysfunctional T-cell immunity. J Immunother 2013; 36:41-51. [PMID: 23211619 DOI: 10.1097/cji.0b013e318274590e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
When tumor vaccines are administered as cancer immunotherapy, cellular interactions at the vaccine site are crucial to the generation of antitumor immunity. Examining interactions at the vaccine site could provide important insights to the success or failure of vaccination. Our laboratory previously showed that while administration of a cell-based vaccine to tumor-free mice leads to productive antineuroblastoma immunity, vaccination of tumor-bearing mice does not. The goal of this study was to examine immune effectors at the vaccine site to identify mechanisms responsible for the generation of ineffective antitumor immunity in tumor-bearing mice. The results of this study show that vaccine sites of tumor-bearing mice contained significantly fewer T cells than vaccine sites of tumor-free mice. Similar migration and proliferation of T cells was observed in the vaccine sites of tumor-bearing and tumor-free mice, but T cells in the sites of tumor-bearing mice were more apoptotic. T cells at the vaccine sites of both tumor-free and tumor-bearing mice had an effector-memory phenotype and expressed activation markers. Despite the activated phenotype, T cells from tumor-bearing mice elicited defective antitumor immune responses. Although T cells from vaccine sites of tumor-bearing mice were capable of producing inflammatory cytokines, the T cells from tumor-bearing mice produced lower levels of cytokines compared with T cells from the tumor-free mice. Remarkably, this defect seems to be systemic, affecting distal T cells in tumor-bearing mice. This study demonstrates that the defective vaccine-induced immune response to neuroblastoma in tumor-bearing hosts originates as a result of tumor burden, resulting in poor antitumor immunity.
Collapse
|
34
|
Abstract
IL-2 secretion in total or subsets of PHA/PMA-stimulated PBMC-derived human T-lymphocytes was monitored and found to be largely due to CD4(+)CD8(-) cells. The presence and functional state of transcription factors (TF) was assessed by protein-DNA interaction assays and functional transactivation experiments in the Xenopts oocyte system, modulating IL-2 transcription by injection of proteins. The results reveal that CD4(+)CD8(-) cells contain both, functional silencer in their resting, and positive TF in their activated states while the CD4(+)CD8(-) group contains only non-functional positive TF. This demonstrates that the on/off switch of IL-2 transcription is based on the same mechanism in primary T-lymphocytes of mouse spleen and in peripheral human CD4(+)CD8(-) cells.
Collapse
|
35
|
Thakur P, Dadsetan S, Fomina AF. Bidirectional coupling between ryanodine receptors and Ca2+ release-activated Ca2+ (CRAC) channel machinery sustains store-operated Ca2+ entry in human T lymphocytes. J Biol Chem 2012; 287:37233-44. [PMID: 22948152 DOI: 10.1074/jbc.m112.398974] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression and functional significance of ryanodine receptors (RyR) were investigated in resting and activated primary human T cells. RyR1, RyR2, and RyR3 transcripts were detected in human T cells. RyR1/2 transcript levels increased, whereas those of RyR3 decreased after T cell activation. RyR1/2 protein immunoreactivity was detected in activated but not in resting T cells. The RyR agonist caffeine evoked Ca(2+) release from the intracellular store in activated T cells but not in resting T cells, indicating that RyR are functionally up-regulated in activated T cells compared with resting T cells. In the presence of store-operated Ca(2+) entry (SOCE) via plasmalemmal Ca(2+) release-activated Ca(2+) (CRAC) channels, RyR blockers reduced the Ca(2+) leak from the endoplasmic reticulum (ER) and the magnitude of SOCE, suggesting that a positive feedback relationship exists between RyR and CRAC channels. Overexpression of fluorescently tagged RyR2 and stromal interaction molecule 1 (STIM1), an ER Ca(2+) sensor gating CRAC channels, in HEK293 cells revealed that RyR are co-localized with STIM1 in the puncta formed after store depletion. These data indicate that in primary human T cells, the RyR are coupled to CRAC channel machinery such that SOCE activates RyR via a Ca(2+)-induced Ca(2+) release mechanism, which in turn reduces the Ca(2+) concentration within the ER lumen in the vicinity of STIM1, thus facilitating SOCE by reducing store-dependent CRAC channel inactivation. Treatment with RyR blockers suppressed activated T cell expansion, demonstrating the functional importance of RyR in T cells.
Collapse
Affiliation(s)
- Pratima Thakur
- Department of Physiology and Membrane Biology, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
36
|
Jorissen A, Plum LM, Rink L, Haase H. Impact of lead and mercuric ions on the interleukin-2-dependent proliferation and survival of T cells. Arch Toxicol 2012; 87:249-58. [DOI: 10.1007/s00204-012-0926-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 08/06/2012] [Indexed: 01/04/2023]
|
37
|
Di Sole F, Vadnagara K, Moe OW, Babich V. Calcineurin homologous protein: a multifunctional Ca2+-binding protein family. Am J Physiol Renal Physiol 2012; 303:F165-79. [PMID: 22189947 PMCID: PMC3404583 DOI: 10.1152/ajprenal.00628.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 05/17/2012] [Indexed: 12/13/2022] Open
Abstract
The calcineurin homologous protein (CHP) belongs to an evolutionarily conserved Ca(2+)-binding protein subfamily. The CHP subfamily is composed of CHP1, CHP2, and CHP3, which in vertebrates share significant homology at the protein level with each other and between other Ca(2+)-binding proteins. The CHP structure consists of two globular domains containing from one to four EF-hand structural motifs (calcium-binding regions composed of two helixes, E and F, joined by a loop), the myristoylation, and nuclear export signals. These structural features are essential for the function of the three members of the CHP subfamily. Indeed, CHP1-CHP3 have multiple and diverse essential functions, ranging from the regulation of the plasma membrane Na(+)/H(+) exchanger protein function, to carrier vesicle trafficking and gene transcription. The diverse functions attributed to the CHP subfamily rendered an understanding of its action highly complex and often controversial. This review provides a comprehensive and organized examination of the properties and physiological roles of the CHP subfamily with a view to revealing a link between CHP diverse functions.
Collapse
Affiliation(s)
- Francesca Di Sole
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-8885, USA.
| | | | | | | |
Collapse
|
38
|
Manikwar P, Kiptoo P, Badawi AH, Büyüktimkin B, Siahaan TJ. Antigen-specific blocking of CD4-specific immunological synapse formation using BPI and current therapies for autoimmune diseases. Med Res Rev 2012; 32:727-64. [PMID: 21433035 PMCID: PMC4441537 DOI: 10.1002/med.20243] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this review, we discuss T-cell activation, etiology, and the current therapies of autoimmune diseases (i.e., MS, T1D, and RA). T-cells are activated upon interaction with antigen-presenting cells (APC) followed by a "bull's eye"-like formation of the immunological synapse (IS) at the T-cell-APC interface. Although the various disease-modifying therapies developed so far have been shown to modulate the IS and thus help in the management of these diseases, they are also known to present some undesirable side effects. In this study, we describe a novel and selective way to suppress autoimmunity by using a bifunctional peptide inhibitor (BPI). BPI uses an intercellular adhesion molecule-1 (ICAM-1)-binding peptide to target antigenic peptides (e.g., proteolipid peptide, glutamic acid decarboxylase, and type II collagen) to the APC and therefore modulate the immune response. The central hypothesis is that BPI blocks the IS formation by simultaneously binding to major histocompatibility complex-II and ICAM-1 on the APC and selectively alters the activation of T cells from T(H)1 to T(reg) and/or T(H)2 phenotypes, leading to tolerance.
Collapse
Affiliation(s)
- Prakash Manikwar
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KA 66047, USA
| | | | | | | | | |
Collapse
|
39
|
Ramakrishnan R, Rice AP. Cdk9 T-loop phosphorylation is regulated by the calcium signaling pathway. J Cell Physiol 2012; 227:609-17. [PMID: 21448926 DOI: 10.1002/jcp.22760] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Eukaryotic RNA polymerase II transcriptional elongation is a tightly regulated process and is dependent upon positive transcription elongation factor-b (P-TEFb). The core P-TEFb complex is composed of Cdk9 and Cyclin T and is essential for the expression of most protein coding genes. Cdk9 kinase function is dependent upon phosphorylation of Thr186 in its T-loop. In this study, we examined kinases and signaling pathways that influence Cdk9 T-loop phosphorylation. Using an RNAi screen in HeLa cells, we found that Cdk9 T-loop phosphorylation is regulated by Ca(2+)/calmodulin-dependent kinase 1D (CaMK1D). Using small molecules inhibitors in HeLa cells and primary CD4(+) T lymphocytes, we found that the Ca(2+) signaling pathway is required for Cdk9 T-loop phosphorylation. Inhibition of Ca(2+) signaling led to dephosphorylation of Thr186 on Cdk9. In reporter plasmid assays, inhibition of the Ca(2+) signaling pathway repressed the PCNA promoter and HIV-1 Tat transactivation of the HIV-1 LTR, but not HTLV-1 Tax transactivation of the HTLV-1 LTR, suggesting that perturbation of the Ca(2+) pathway and reduction of Cdk9 T-loop phosphorylation inhibits transcription units that have a rigorous requirement for P-TEFb function.
Collapse
Affiliation(s)
- Rajesh Ramakrishnan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
40
|
Wang Q, Wu YJ. Lysophosphatidylcholine induces Ca2+ mobilization in Jurkat human T lymphocytes and CTLL-2 mouse T lymphocytes by different pathways. Eur J Pharm Sci 2011; 44:602-9. [DOI: 10.1016/j.ejps.2011.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/04/2011] [Accepted: 10/07/2011] [Indexed: 11/16/2022]
|
41
|
Thakur P, Fomina AF. Density of functional Ca2+ release-activated Ca2+ (CRAC) channels declines after T-cell activation. Channels (Austin) 2011; 5:510-7. [PMID: 22172731 DOI: 10.4161/chan.5.6.18222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
CRAC channel-mediated Ca(2+) entry plays a crucial role in T lymphocyte activation. Activated T cells display enhanced Ca(2+) signaling compared with resting T cells; this is partially attributed to activation-induced upregulation of CRAC channel expression. Orai and Stim family genes encode CRAC channel structural elements and regulatory proteins, respectively, but studies of their expression in T cells have led to controversial results. We re-examined Orai and Stim gene expression in resting, activated, and Jurkat T cells. Levels of Orai1 transcripts, encoding the human T cell CRAC channel subunit, were not significantly different between resting T and activated T cells. The total amount of all Orai transcripts was 2-fold higher in activated T cells than in resting T cells. Orai1 and total Orai transcript levels were significantly higher in Jurkat T cells than those in resting T cells. Stim expression did not vary significantly among cell types. Maximal whole-cell CRAC current amplitudes were 1.4-fold and 2.3-fold higher in activated and Jurkat T cells, respectively, than in resting T cells. Due to the small size of resting T cells, the surface CRAC channel density was 2.5-fold and 1.6-fold higher in resting T cells than in activated and Jurkat T cells, respectively. Predicted the rates of cytosolic Ca(2+) elevation calculated using the average values of CRAC channel currents and cell volumes showed that < 2-fold increase in the functional CRAC channel expression level cannot account for the enhanced rate of store-operated Ca(2+) entry in activated T cells compared with resting T cells.
Collapse
|
42
|
Li FY, Chaigne-Delalande B, Kanellopoulou C, Davis JC, Matthews HF, Douek DC, Cohen JI, Uzel G, Su HC, Lenardo MJ. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature 2011; 475:471-6. [PMID: 21796205 PMCID: PMC3159560 DOI: 10.1038/nature10246] [Citation(s) in RCA: 381] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/03/2011] [Indexed: 01/18/2023]
Abstract
The magnesium ion, Mg(2+), is essential for all life as a cofactor for ATP, polyphosphates such as DNA and RNA, and metabolic enzymes, but whether it plays a part in intracellular signalling (as Ca(2+) does) is unknown. Here we identify mutations in the magnesium transporter gene, MAGT1, in a novel X-linked human immunodeficiency characterized by CD4 lymphopenia, severe chronic viral infections, and defective T-lymphocyte activation. We demonstrate that a rapid transient Mg(2+) influx is induced by antigen receptor stimulation in normal T cells and by growth factor stimulation in non-lymphoid cells. MAGT1 deficiency abrogates the Mg(2+) influx, leading to impaired responses to antigen receptor engagement, including defective activation of phospholipase Cγ1 and a markedly impaired Ca(2+) influx in T cells but not B cells. These observations reveal a role for Mg(2+) as an intracellular second messenger coupling cell-surface receptor activation to intracellular effectors and identify MAGT1 as a possible target for novel therapeutics.
Collapse
Affiliation(s)
- Feng-Yen Li
- Molecular Development Section, Lymphocyte Molecular Genetics Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Asai K, Hachimura S, Toraya T, Kaminogawa S. Orally tolerant CD4 T cells respond poorly to antigenic stimulation but strongly to direct stimulation of intracellular signaling pathways. Cytotechnology 2011; 36:145-53. [PMID: 19003325 DOI: 10.1023/a:1014009328207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The response of splenic CD4 T cells from ovalbumin (OVA)-specific T cell receptor (TCR) transgenic mice after long-term feeding of a diet containing this antigen was examined. These CD4 T cells exhibited a decreased response to OVA peptide stimulation, in terms of proliferation, interleukin-2 secretion, and CD40 ligand expression, compared to those from mice fed a control diet lacking OVA, demonstrating that oral tolerance of T cells had been induced through oral intake of the antigen. We investigated the intracellular signaling pathways, which were Ca/CN cascade and Ras/MAPK cascade, of these tolerant CD4 T cells using phorbol-12-myristate-13-acetate (PMA) and ionomycin, which are known to directly stimulate these pathways. In contrast to the decreased response to TCR stimulation by OVA peptide, it was shown that the response of splenic CD4 T cells to these reagents in the state of oral tolerance was stronger. These results suggest that splenic CD4 T cells in the state of oral tolerance have an impairment in signaling, in which signals are not transmitted from the TCR to downstream signaling pathways, and have impairments in the vicinity of TCR.
Collapse
Affiliation(s)
- K Asai
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | | | | | | |
Collapse
|
44
|
Koreth J, Antin JH. Current and future approaches for control of graft-versus-host disease. Expert Rev Hematol 2011; 1:111. [PMID: 20151032 DOI: 10.1586/17474086.1.1.111] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Graft-versus-host disease (GVHD), both acute and chronic, remains one of the major barriers to improving outcomes after allogeneic stem cell transplantation. The pathophysiology of GVHD is complex and incompletely understood. GVHD is believed to arise from the interaction of: tissue damage and proinflammatory cytokines causing activation of antigen-presenting cells (APCs, donor T-cell activation by APCs and cytokines and host tissue injury by effector T lymphocytes and proinflammatory cytokines. There is also a role for additional lymphocyte subtypes (naive and memory T cells, regulatory T cells, natural killer T cells and B cells) in GVHD pathogenesis. Strategies to improve donor-recipient HLA match, and to minimize conditioning toxicity, cytokine release and APC and effector T-lymphocyte activation, will likely improve prophylaxis of acute (and possibly chronic) GVHD. Therapy of established acute and chronic GVHD is still heavily dependent on corticosteroids, despite their limited efficacy and considerable toxicity. Novel agents (and/or combinations of agents) comprising pharmacologic, biologic and cellular therapies targeting specific steps or subsets involved in immune activation will likely comprise future advances in GVHD control. This article reviews the current state of knowledge regarding the prevention and treatment of acute and chronic GVHD. Novel approaches currently undergoing evaluation are also highlighted.
Collapse
Affiliation(s)
- John Koreth
- Division of Hematologic Malignancies, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | |
Collapse
|
45
|
Tsai WJ, Chang CT, Wang GJ, Lee TH, Chang SF, Lu SC, Kuo YC. Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes. Chin Med 2011; 6:12. [PMID: 21435270 PMCID: PMC3076299 DOI: 10.1186/1749-8546-6-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 03/25/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arctium lappa (Niubang), a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC), isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. METHODS Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. RESULTS AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2) and interferon-γ (IFN-γ) production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. CONCLUSION AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT.
Collapse
Affiliation(s)
- Wei-Jern Tsai
- Institute of Life Science, Fu-Jen University, Taipei, 24205, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhang EY, Parker BL, Yankee TM. Gads regulates the expansion phase of CD8+ T cell-mediated immunity. THE JOURNAL OF IMMUNOLOGY 2011; 186:4579-89. [PMID: 21411729 DOI: 10.4049/jimmunol.1001604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Gads adaptor protein is critical for TCR-mediated Ca(2+) mobilization. We investigated the effect of Gads deficiency on the proliferation of CD8(+) T cells following peptide stimulation and in the context of infection with an intracellular pathogen. We stimulated CD8(+) T cells from Gads(+/+) OT-I and Gads(-/-) OT-I mice with cognate Ag (SIINFEKL) or altered peptide ligand. In vitro experiments revealed that Gads was required for optimal proliferation of CD8(+) T cells. This defect was most evident at the early time points of proliferation and when low doses of Ag were used as stimuli. Cell cycle analysis demonstrated that Gads(-/-) CD8(+) T cells had impaired TCR-mediated exit from the G(0) phase of the cell cycle. Furthermore, Gads(-/-) CD8(+) T cells had delayed expression of c-myc and CD69 upon the stimulation with SIINFEKL. We then investigated how Gads deficiency would impact CD8(+) T cell-mediated immunity in the context of infection with an intracellular pathogen. At early time points, Gads(+/+) and Gads(-/-) CD8(+) T cells proliferated to a similar extent, despite the fact that expression of CD69 and CD25 was reduced in the absence of Gads. After 5 d postinfection, Gads was required to sustain the expansion phase of the immune response; the peak response of Gads(-/-) cells was significantly lower than for Gads(+/+) cells. However, Gads was not required for the differentiation of naive CD8(+) T cells into memory cells. We conclude that the primary function of Gads is to regulate the sensitivity of the TCR to Ag ligation.
Collapse
Affiliation(s)
- Elizabeth Yan Zhang
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
47
|
Park MS, Chu F, Xie J, Wang Y, Bhattacharya P, Chan WK. Identification of cyclophilin-40-interacting proteins reveals potential cellular function of cyclophilin-40. Anal Biochem 2011; 410:257-65. [PMID: 21146485 PMCID: PMC3034277 DOI: 10.1016/j.ab.2010.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Revised: 11/18/2010] [Accepted: 12/06/2010] [Indexed: 01/16/2023]
Abstract
Cyclophilin-40 (CyP40) is part of the immunophilin family and is found in Hsp90-containing protein complexes. We were interested in identifying proteins that interact with CyP40. CyP40-interacting proteins in HeLa cells were identified using the tandem affinity purification approach. Adenovirus expressing human CyP40 protein (Ad-CyP40), fused with streptavidin and calmodulin binding peptides at the N terminus, was generated. Proteins were separated on a sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel after tandem affinity purification. Here 10 silver-stained protein bands that were enriched in the Ad-CyP40-infected lysate and the corresponding regions in the control lysate were excised, digested by trypsin, and identified by tandem mass spectrometric analysis. Of 11 interacting proteins that were identified, 4 (RACK1, Ku70, RPS3, and NF45) were expressed in rabbit reticulocyte lysate, bacteria, and MCF-7 cells. We confirmed that these proteins interact with CyP40. We observed that RACK1 suppressed the cobalt chloride-induced, hypoxia response element-dependent luciferase activity in MCF-7 cells but not in MCF-7 stable cells expressing approximately 10% of the cellular CyP40 content. In addition, RACK1 reduced the HIF-1α protein accumulation after cobalt chloride treatment, which was not observed when the CyP40 content was down-regulated. Collectively, we conclude that reduction of the HIF-1 α protein by RACK1 is CyP40-mediated.
Collapse
Affiliation(s)
- Miki Susanto Park
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA 95211, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Satoh E, Iwasaki R. Experimental diabetes attenuates calcium mobilization and proliferative response in splenic lymphocytes from mice. J Physiol Sci 2011; 61:23-30. [PMID: 20972743 PMCID: PMC10717575 DOI: 10.1007/s12576-010-0117-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/30/2010] [Indexed: 11/27/2022]
Abstract
The present study was conducted to investigate the effects of the diabetic condition on cytosolic free Ca(2+) concentration, [Ca(2+)](i), and the proliferation of splenic lymphocytes from mice. Diabetes was induced in mice by intraperitoneal injection of alloxan. [Ca(2+)](i) and the proliferation ex vivo of splenic lymphocytes isolated from mice were examined using fura-2 and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, respectively. Diabetes caused a significant increase in resting [Ca(2+)](i) and significantly reduced the ability of concanavalin A (Con A; a T-lymphocyte-selective mitogen) to increase [Ca(2+)](i), but not that of lipopolysaccharide (LPS; a B-lymphocyte-selective mitogen). In addition, diabetes significantly reduced Con A-stimulated but not LPS-stimulated lymphocyte proliferation. Verapamil (an L-type Ca(2+) channel blocker) inhibited Con A-induced increases in [Ca(2+)](i) and proliferation in lymphocytes from control and diabetic mice to a similar extent, respectively. These results suggest that diabetes attenuates Con A-stimulated T-lymphocyte proliferation by decreasing [Ca(2+)](i) via reduction of Ca(2+) entry through L-type Ca(2+) channels.
Collapse
Affiliation(s)
- Eiki Satoh
- Research Center for Animal Hygiene and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan.
| | | |
Collapse
|
49
|
Zhao X, Tang Y, Qu B, Cui H, Wang S, Wang L, Luo X, Huang X, Li J, Chen S, Shen N. MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. ACTA ACUST UNITED AC 2010; 62:3425-35. [PMID: 20589685 DOI: 10.1002/art.27632] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE MicroRNA (miRNA) have received increasing attention as posttranscriptional regulators that fine-tune the homeostasis of the inflammatory response. This study aimed to clarify whether miR-125a, which was identified in a pilot expression profiling step, is involved in the inflammatory chemokine pathway in systemic lupus erythematosus (SLE). METHODS Independent verification of miR-125a expression in amplified samples from SLE patients and normal controls was performed by TaqMan quantitative polymerase chain reaction (PCR) analysis. A combination of 3 bioinformatic prediction techniques and reporter gene assays was used to identify miR-125a targets. In vitro systems of overexpression by transfection and inducible expression by stimulation were performed to investigate the function of miR-125a, which was followed by real-time quantitative PCR and enzyme-linked immunosorbent assay. RESULTS In SLE patients, the expression of miR-125a was reduced and the expression of its predicted target gene, KLF13, was increased. Bioinformatics predicted that miR-125a base-paired with sequences in the 3'-untranslated region of KLF13. Overexpression of miR-125a led to a significant reduction in the expression of RANTES and KLF13. MicroRNA-125a inhibited endogenous KLF13 expression in a dose-dependent manner, as determined using gain- and loss-of-function methods. A luciferase reporter system confirmed the miR-125a binding sites. Notably, miR-125a expression was induced in T cells in a dose- and time-dependent manner. Finally, the introduction of miR-125a into T cells from SLE patients alleviated the elevated RANTES expression. CONCLUSION MicroRNA-125a negatively regulates RANTES expression by targeting KLF13 in activated T cells. The underexpression of miR-125a contributes to the elevated expression of RANTES in SLE. Our findings extend the role of miRNA in the pathogenesis of lupus and provide potential strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Xia Zhao
- Joint Molecular Rheumatology Laboratory of Institute of Health Sciences and Shanghai Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai Institutes for Biological Sciences, and Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Orlichenko LS, Behari J, Yeh TH, Liu S, Stolz DB, Saluja AK, Singh VP. Transcriptional regulation of CXC-ELR chemokines KC and MIP-2 in mouse pancreatic acini. Am J Physiol Gastrointest Liver Physiol 2010; 299:G867-76. [PMID: 20671197 PMCID: PMC2957341 DOI: 10.1152/ajpgi.00177.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neutrophils and their chemoattractants, the CXC-ELR chemokines keratinocyte cytokine (KC) and macrophage inflammatory protein-2 (MIP-2), play a critical role in pancreatitis. While acute pancreatitis is initiated in acinar cells, it is unclear if these are a source of CXC-ELR chemokines. KC and MIP-2 have NF-κB, activator protein-1 (AP-1) sites in their promoter regions. However, previous studies have shown increased basal and reduced caerulein-induced AP-1 activation in harvested pancreatic tissue in vitro, which limits interpreting the caerulein-induced response. Moreover, recent studies suggest that NF-κB silencing in acinar cells alone may not be sufficient to reduce inflammation in acute pancreatitis. Thus the aim of this study was to determine whether acinar cells are a source of KC and MIP-2 and to understand their transcriptional regulation. Primary overnight-cultured murine pancreatic acini were used after confirming their ability to replicate physiological and pathological acinar cell responses. Upstream signaling resulting in KC, MIP-2 upregulation was studied along with activation of the transcription factors NF-κB and AP-1. Cultured acini replicated critical responses to physiological and pathological caerulein concentrations. KC and MIP-2 mRNA levels increased in response to supramaximal but not to physiological caerulein doses. This upregulation was calcium and protein kinase C (PKC), but not cAMP, dependent. NF-κB inhibition completely prevented upregulation of KC but not MIP-2. Complete suppression of MIP-2 upregulation required dual inhibition of NF-κB and AP-1. Acinar cells are a likely source of KC and MIP-2 upregulation during pancreatitis. This upregulation is dependent on calcium and PKC. MIP-2 upregulation requires both NF-κB and AP-1 in these cells. Thus dual inhibition of NF-κB and AP-1 may be a more successful strategy to reduce inflammation in pancreatitis than targeting NF-κB alone.
Collapse
Affiliation(s)
| | | | | | | | - Donna B. Stolz
- 2Cell Biology and Physiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; and
| | - Ashok K. Saluja
- 3Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | | |
Collapse
|