1
|
Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of Mitochondrial Dysfunctions in Neurodegenerative Disorders: Advances in Mitochondrial Biology. Mol Neurobiol 2025; 62:6827-6855. [PMID: 39269547 DOI: 10.1007/s12035-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assessing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat these devastating neurological conditions.
Collapse
Affiliation(s)
- Divya Sri Kathiresan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Rubadevi Balasubramani
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Kamalesh Marudhachalam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Piyush Jaiswal
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Nivedha Ramesh
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Suruthi Gunna Sureshbabu
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
2
|
Venkatraman K, Lipp NF, Budin I. Origin and evolution of mitochondrial inner membrane composition. J Cell Sci 2025; 138:jcs263780. [PMID: 40265338 DOI: 10.1242/jcs.263780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
Unique membrane architectures and lipid building blocks underlie the metabolic and non-metabolic functions of mitochondria. During eukaryogenesis, mitochondria likely arose from an alphaproteobacterial symbiont of an Asgard archaea-related host cell. Subsequently, mitochondria evolved inner membrane folds known as cristae alongside a specialized lipid composition supported by metabolic and transport machinery. Advancements in phylogenetic methods and genomic and metagenomic data have suggested potential origins for cristae-shaping protein complexes, such as the mitochondrial contact site and cristae-organizing system (MICOS). MICOS protein homologs function in the formation of cristae-like intracytoplasmic membranes (ICMs) in diverse extant alphaproteobacteria. The machinery responsible for synthesizing key mitochondrial phospholipids - which cooperate with cristae-shaping proteins to establish inner membrane architecture - could have also evolved from a bacterial ancestor, but its origins have been less explored. In this Review, we examine the current understanding of mitochondrial membrane evolution, highlighting distinctions between prokaryotic and eukaryotic mitochondrial-specific proteins and lipids and their differing roles in shaping cristae and ICM architecture, and propose a model explaining the concurrent specialization of the mitochondrial lipidome and inner membrane structure in eukaryogenesis. We discuss how advancements across a range of disciplines are shedding light on how multiple membrane components co-evolved to support the central functions of eukaryotic mitochondria.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicolas-Frédéric Lipp
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Hu W, Zhang J, Wu Z, Wu Y, Hu Y, Hu X, Cao J. Research progress on paternal mitochondrial inheritance: An overview. Mitochondrion 2025; 82:102019. [PMID: 40024491 DOI: 10.1016/j.mito.2025.102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Mitochondria are self-replicating organelles with their own DNA. They play a crucial role in biological, cellular and functional processes, such as energy production, metabolism, and signal transduction. Abnormal mitochondrial function can cause various diseases such as diabetes, tumour, Parkinson's disease, hereditary optic neuropathy, and others. Although mitochondrial functions have been extensively and widely explored, studies on mitochondrial inheritance have been limited. Mitochondrial inheritance is traditionally thought to be maternal although small amounts of paternally transmitted mitochondria have been discovered on rare occasions, and the role of paternal mitochondria transmission to offspring has been largely ignored. This review highlights the present knowledge on mitochondrial inheritance, especially the controversy and the difficulties in investigating paternal mitochondrial inheritance. More significantly, we present a comprehensive description of the physiological functions of paternal mitochondria in children and discuss the animal model to explore the mechanism of paternal mitochondrial inheritance. This review may provide a theoretical and experimental basis for improving our understanding of paternal mitochondrial inheritance, and also provide new ideas for treating mitochondrial diseases.
Collapse
Affiliation(s)
- Wen Hu
- Key Laboratory of Mitochondrial Medicine, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jiting Zhang
- Key Laboratory of Mitochondrial Medicine, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Zhaoqi Wu
- Key Laboratory of Mitochondrial Medicine, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Yi Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yuhui Hu
- Medical College, Jinggangshan University, Ji'an, China
| | - Xiaohui Hu
- Department of Basic Medicine, Gannan Healthcare Vocational College, Ganzhou, China.
| | - Jinguo Cao
- Key Laboratory of Mitochondrial Medicine, Department of Basic Medicine, Gannan Medical University, Ganzhou, China.
| |
Collapse
|
4
|
Wang H, Wang D, Shao B, Li J, Li Z, Chase MW, Li J, Feng Y, Wen Y, Qin S, Chen B, Wu Z, Jin X. Unequally Abundant Chromosomes and Unusual Collections of Transferred Sequences Characterize Mitochondrial Genomes of Gastrodia (Orchidaceae), One of the Largest Mycoheterotrophic Plant Genera. Mol Biol Evol 2025; 42:msaf082. [PMID: 40189939 PMCID: PMC12022611 DOI: 10.1093/molbev/msaf082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
The mystery of genomic alternations in heterotrophic plants is among the most intriguing in evolutionary biology. Compared to plastid genomes (plastomes) with parallel size reduction and gene loss, mitochondrial genome (mitogenome) variation in heterotrophic plants remains underexplored in many aspects. To further unravel the evolutionary outcomes of heterotrophy, we present a comparative mitogenomic study with 13 de novo assemblies of Gastrodia (Orchidaceae), one of the largest fully mycoheterotrophic plant genera, and its relatives. Analyzed Gastrodia mitogenomes range from 0.56 to 2.1 Mb, each consisting of numerous, unequally abundant chromosomes or contigs. Size variation might have evolved through chromosome rearrangements followed by stochastic loss of "dispensable" chromosomes, with deletion-biased mutations. The discovery of a hyper-abundant (∼15 times intragenomic average) chromosome in two assemblies represents the hitherto most extreme copy number variation in any mitogenomes, with similar architectures discovered in two metazoan lineages. Transferred sequence contents highlight asymmetric evolutionary consequences of heterotrophy: despite drastically reduced intracellular plastome transfers convergent across heterotrophic plants, their rarity of horizontally acquired sequences sharply contrasts parasitic plants, where massive transfers from their hosts prevail. Rates of sequence evolution are markedly elevated but not explained by copy number variation, extending prior findings of accelerated molecular evolution from parasitic to heterotrophic plants. Putative evolutionary scenarios for these mitogenomic convergence and divergence fit well with the common (e.g. plastome contraction) and specific (e.g. host identity) aspects of the two heterotrophic types. These idiosyncratic mycoheterotrophs expand known architectural variability of plant mitogenomes and provide mechanistic insights into their content and size variation.
Collapse
Affiliation(s)
- Hanchen Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Deyi Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Bingyi Shao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jingrui Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhanghai Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Mark W Chase
- Department of Environment and Agriculture, Curtin University, Bentley, Australia
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Jianwu Li
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla County, Yunnan, China
| | - Yanlei Feng
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Yingying Wen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shiyu Qin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Binghua Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaohua Jin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
de Assis PM, Rodrigues-Oliveira IH, Batista da Silva I, Pasa R, Menegidio FB, Kavalco KF. Description and characterization of the small mitochondrial genome of Trichoderma cerinum (Hypocreales, Hypocreaceae) and its evolutionary perspectives. Mitochondrial DNA A DNA Mapp Seq Anal 2025; 35:126-134. [PMID: 40116597 DOI: 10.1080/24701394.2025.2482202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Trichoderma Persoon (1794) is a genus of fungus found in soils and decaying wood all over the world. We present the assembly and annotation of the mitochondrial genome of Trichoderma cerinum Bissett, Kubicek & Szakacs (2003) and an assessment of the phylogeny of the group, discussing the loss and gain of shared genes in the evolutionary history of fungi. We downloaded the raw data of T. cerinum from the NCBI database and exported it to the Galaxy Europe platform, where we performed the mitogenome assembly using the NOVOplasty tool. We used three tools for annotation. The phylogeny was conducted with 12 Trichoderma species and the T. cerinum. Fusarium oxysporum was used as an outgroup. We got a circularized mitochondrial genome of 26,696 bp, with 15 protein-coding genes, 25 tRNAs, two rRNAs, two endonuclease sequences, and an orf40. This species contains only one intron in the cob gene. In our phylogenetic reconstruction, T. cerinum was recovered as a sister group of a clade containing Trichoderma lixii, Trichoderma afroharzianum, Trichoderma simmonsii, and Trichoderma harzianum.
Collapse
Affiliation(s)
- Priscila Martins de Assis
- Laboratory of Ecological and Evolutionary Genetics, Federal University of Viçosa, Rio Paranaíba, Brazil
| | - Igor Henrique Rodrigues-Oliveira
- Laboratory of Ecological and Evolutionary Genetics, Federal University of Viçosa, Rio Paranaíba, Brazil
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Iuri Batista da Silva
- Laboratory of Ecological and Evolutionary Genetics, Federal University of Viçosa, Rio Paranaíba, Brazil
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Bioinformatics and Genomics, Federal University of Viçosa, Rio Paranaíba, Brazil
| | - Rubens Pasa
- Laboratory of Ecological and Evolutionary Genetics, Federal University of Viçosa, Rio Paranaíba, Brazil
- Laboratory of Bioinformatics and Genomics, Federal University of Viçosa, Rio Paranaíba, Brazil
| | - Fabiano B Menegidio
- Laboratório de Bioinformática e de Ciências Ômicas, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| | - Karine Frehner Kavalco
- Laboratory of Ecological and Evolutionary Genetics, Federal University of Viçosa, Rio Paranaíba, Brazil
- Laboratory of Bioinformatics and Genomics, Federal University of Viçosa, Rio Paranaíba, Brazil
| |
Collapse
|
6
|
Shi P, Wang B, Shi S, Chu X, Liu C, Kang M, Hui J, Gou Y, Zhou R, Liu Y, Jia Y, Zhang F, Wen Y. Assessing the joint effects of mitochondrial genes and physical activity on the psychiatric phenotype of subjective well-being based on the UK Biobank data. Eur Arch Psychiatry Clin Neurosci 2025; 275:667-678. [PMID: 38767715 DOI: 10.1007/s00406-024-01822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Subjective well-being (SWB) is an important measure for mental health status. Previous research has shown that physical activity can affect an individual's well-being, yet the underlying molecular mechanism remains to be clarified. In this study, we aim to evaluate the potential interactions between mitochondrial genes and physical activity (PA) as well as their combined effects on individual well-being. SWB phenotype data in UK Biobank were enrolled for this study including nine aspects such as work/job satisfaction, health satisfaction, family relationship satisfaction, friendships satisfaction, financial situation satisfaction, ever depressed for a whole week, general happiness, general happiness with own health and belief that own life is meaningful. We made analysis for each aspects separately. Firstly, mitochondria-wide association studies (MiWAS) was conducted to assess the association of mitochondrial Single Nucleotide Polymorphisms SNP with each aspect of SWB. Then an interaction analysis of mitochondrial DNA (mtDNA) mutation and PA was performed to evaluate their joint effect on SWB status. Meanwhile, these two analysis were made for female and male group separately as well as the total samples, all under the control of possible confounding factors including gender, age, Townsend Deprivation Index (TDI), education, alcohol consumption, smoking habits, and 10 principal components. MiWAS analysis identified 45 mtSNPs associated with 9 phenotypes of SWB. For example, m.15218A > G on MT-CYB in the health satisfaction phenotype of the total subjects. Gender-specific analyses found 30 mtSNPs in females and 58 in males, involving 13 mtGenes. In mtDNA-PA interaction analysis, we also identified 10 significant mtDNA-PA interaction sets for SWB. For instance, m.13020 T > C (MT-ND5) was associated with the SWB financial situation satisfaction phenotype in all subjects (P = 0.00577). In addition, MiWAS analysis identified 12 mtGene variants associated with SWB, as MT-ND1 and MT-ND2. However, in mtDNA-PA interactions we detected 7 mtDNA affecting psychiatric disorders occurring, as in the friendships satisfaction phenotype (m.3394 T > C on MT-ND1). Our study results suggest an implication of the interaction between mitochondrial function and physical activity in the risk of psychiatric disorder development.
Collapse
Affiliation(s)
- Panxing Shi
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bingyi Wang
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Sirong Shi
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoge Chu
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chen Liu
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Meijuan Kang
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jingni Hui
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yifan Gou
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ruixue Zhou
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ye Liu
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yumeng Jia
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Feng Zhang
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yan Wen
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
7
|
Han B, Zhou L, Shi Y, Zhao F, Ji J, Zhang K, Yin S, Ning X. LncRNA432-miR-21-y-DAPK2 ceRNA crosstalk regulates antibacterial response in hypoxia stress through mediating mitochondrial apoptosis in teleost fish. Int J Biol Macromol 2025; 295:139694. [PMID: 39798738 DOI: 10.1016/j.ijbiomac.2025.139694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
As cold-blooded vertebrates, fish are sensitive to environmental changes. The outcome of pathogen infections in fish therefore is highly shaped by hypoxia. The epigenetic regulation of competitive endogenous RNA (ceRNA) bridging non-coding RNAs and mRNAs represents a promising mechanism modulating antibacterial response plus environmental stress. Here, we for the first time systematically analyzed the ceRNA crosstalk in fish response to the combined stimulation of hypoxia and bacterial infection (HB) dual-stimulation. We found that mitochondrial apoptosis initiated by loss of mitochondrial membrane potential was the main causative for liver damage induced by HB challenge in fish. Accordingly, through whole transcriptome analysis, an apoptosis-associated ceRNA network was constructed, based on which a key crosstalk consisting of lnc432, miR-21-y and DAPK2 was identified. Mechanistically, DAPK2 acted as a positive regulator, knockdown of which significantly increased the bacterial burden during hypoxia by promoting mitochondrial apoptosis. MiR-21-y inhibited DAPK2 expression at both mRNA and protein levels by interacting with its 3'UTR, thereby enhancing DAPK2-mediated apoptosis determinations, and exacerbating bacterial infection during hypoxia. Lnc432 knockdown significantly increased miR-21-y and decreased DAPK2, and substantially promoted the expression of genes associated with mitochondrial apoptosis and enhanced the bacterial load during hypoxia stress. Finally, we revealed that lnc432 sponged miR-21-y to alleviate its suppression on DAPK2 in the ceRNA regulatory way. Our findings reveal that lnc432-miR-21-y-DAPK2 ceRNA crosstalk occurs in fish response to bacterial infection during hypoxic stress through mediating mitochondrial apoptosis. This study provides novel insights into the mechanism underlying the interactions among pathogens, hosts and environmental factors.
Collapse
Affiliation(s)
- Bing Han
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Linxin Zhou
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Yaxuan Shi
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Feng Zhao
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Jie Ji
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China
| | - Kai Zhang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China.
| | - Xianhui Ning
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China.
| |
Collapse
|
8
|
Rachel F, Luttermann C, Höper D, Conraths FJ, Dapprich J, Maksimov P. Typing of Echinococcus multilocularis by Region-Specific Extraction and Next-Generation Sequencing of the mitogenome. Front Microbiol 2025; 16:1535628. [PMID: 40092033 PMCID: PMC11906691 DOI: 10.3389/fmicb.2025.1535628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Background Infection by the fox tapeworm Echinococcus multilocularis may lead to a severe zoonosis in humans, alveolar echinococcosis, which may be fatal if left untreated. Typing is important to understand the epidemiology of this parasite, yet there is limited knowledge on the microdiversity of E. multilocularis on the local scale, since the typing resolution of established methods is restricted. Methods The mitogenome of E. multilocularis was used as the target regions to modify, apply and validate the Region-Specific Extraction (RSE) method in combination with Next-Generation Sequencing (NGS). Single Nucleotide Polymorphisms (SNPs) were detected in the mitochondrial DNA (mtDNA) and analysed bioinformatically. To validate the success and the accuracy of the RSE protocol, the mitogenomes of some E. multilocularis isolates were also analysed by the Whole-Genome Sequencing (WGS). Results With the chosen combination of methods, the entire mitogenome (~13 kb) of E. multilocularis could be captured and amplified. The read depth (median ≥ 156X) was sufficient to detect existing SNPs. The comparison of mitogenome sequences extracted by RSE with mitogenome sequences obtained by WGS showed that the accuracy of the RSE method was consistently comparable to direct Whole-Genome Sequencing. Conclusion The results demonstrate that the RSE method in combination with NGS is suitable to analyse the microdiversity of E. multilocularis at the whole mitogenome level. For the capture and sequencing of large (several kb) genomic regions of E. multilocularis and other applications, this method can be very helpful.
Collapse
Affiliation(s)
- Franziska Rachel
- National Reference Laboratory for Echinococcosis, Institute of Epidemiology, Friedrich-Loeffler-Institut - Federal Research Institute for Animal Health (FLI), Greifswald, Germany
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| | - Christine Luttermann
- Laboratory for Antiviral Immunity, Institute of Immunology, Friedrich-Loeffler-Institut - Federal Research Institute for Animal Health (FLI), Greifswald, Germany
| | - Dirk Höper
- Laboratory for NGS-Based Pathogen Characterization and Animal Disease Diagnostics, Institute of Diagnostic Virology, Friedrich-Loeffler-Institut - Federal Research Institute for Animal Health (FLI), Greifswald, Germany
| | - Franz Josef Conraths
- National Reference Laboratory for Echinococcosis, Institute of Epidemiology, Friedrich-Loeffler-Institut - Federal Research Institute for Animal Health (FLI), Greifswald, Germany
| | | | - Pavlo Maksimov
- National Reference Laboratory for Echinococcosis, Institute of Epidemiology, Friedrich-Loeffler-Institut - Federal Research Institute for Animal Health (FLI), Greifswald, Germany
| |
Collapse
|
9
|
Patil R, Wang H, Kazaleh M, Ailawadi G, Salmon M. Dysregulation of Mitochondrial Homeostasis in Cardiovascular Diseases. Pharmaceuticals (Basel) 2025; 18:112. [PMID: 39861173 PMCID: PMC11768260 DOI: 10.3390/ph18010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Mitochondria dysfunction plays a central role in the development of vascular diseases as oxidative stress promotes alterations in mitochondrial morphology and function that contribute to disease progression. Redox imbalances can affect normal cellular processes including mitochondrial biogenesis, electrochemical equilibrium, and the regulation of mitochondrial DNA. In this review, we will discuss these imbalances and, in particular, the potential role of mitochondrial fusion, fission, biogenesis, and mitophagy in the context of vascular diseases and how the dysregulation of normal function might contribute to disease progression. We will also discuss potential implications of targeting mitochondrial regulation as therapeutic targets to treat vascular disease formation.
Collapse
Affiliation(s)
- Ricky Patil
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.W.); (M.K.); (G.A.); (M.S.)
| | - Hui Wang
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.W.); (M.K.); (G.A.); (M.S.)
| | - Matthew Kazaleh
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.W.); (M.K.); (G.A.); (M.S.)
| | - Gorav Ailawadi
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.W.); (M.K.); (G.A.); (M.S.)
- Frankel Cardiovascular Center, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Morgan Salmon
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (H.W.); (M.K.); (G.A.); (M.S.)
- Frankel Cardiovascular Center, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Li Y, Li S, Hua X, Xu Y, Chen S, Yu Z, Zhuang G, Lan Y, Yao W, Chen B, Zhang M, Zhang J. Mitochondrial genome structural variants and candidate cytoplasmic male sterility-related gene in sugarcane. BMC Genomics 2025; 26:28. [PMID: 39794692 PMCID: PMC11724576 DOI: 10.1186/s12864-025-11210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Sugarcane is a crucial crop for both sugar and bioethanol production. The nobilization breeding and utilization of wild germplasm have significantly enhanced its productivity. However, the pollen sterility in Saccharum officinarum restricts its role to being a female parent in crosses with Saccharum spontaneum during nobilization breeding, resulting in a narrow genetic basis for modern sugarcane cultivars. Mitochondria, often referred to as the intracellular "energy factories", provide energy for plant life activities, and are also implicated in cytoplasmic male sterility (CMS). RESULTS We performed mitochondrial genome assembly and structural analysis of two Saccharum founding species. We discovered that the proportions of repeat sequences are the primary factor contributing to the variations in mitochondrial genome structure and size between the two Saccharum species. Heterologous expression of the mitochondrial chimeric gene ORF113, which is highly expressed in male-sterile S. officinarum flowers, significantly inhibits growth and ATP synthesis in yeast cells, making it a key candidate CMS-related gene in sugarcane. Furthermore, we developed two co-dominant simple sequence repeat (SSR) markers based on the mitochondrial genome, which can effectively distinguish the cytoplasmic types of the two Saccharum species. CONCLUSION In this study, we identified structural variants and developed SSR molecular markers in the mitochondrial genomes of both S. officinarum and S. spontaneum. We also identified a novel mitochondrial chimeric ORF as a key candidate CMS-related gene. These findings offer valuable insights into variety identification, genetic resource development, and cross-breeding strategies in sugarcane.
Collapse
Affiliation(s)
- Yihan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Shuangyu Li
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiuting Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yi Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Shuqi Chen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zehuai Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Gui Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yuhong Lan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China.
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
11
|
Chen Z, Zhuo W, Wang Y, Qi J, Liu L, Lu S, Wang H, Sun T, Wang L, Ren F. Mitochondrial genome of Lonicera macranthoides: features, RNA editing, and insights into male sterility. FRONTIERS IN PLANT SCIENCE 2025; 15:1520251. [PMID: 39866323 PMCID: PMC11759266 DOI: 10.3389/fpls.2024.1520251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025]
Abstract
Introduction Mitochondria are essential organelles that provide energy for plants. They are semi-autonomous, maternally inherited, and closely linked to cytoplasmic male sterility (CMS) in plants. Lonicera macranthoides, a widely used medicinal plant from the Caprifoliaceae family, is rich in chlorogenic acid (CGA) and its analogues, which are known for their antiviral and anticancer properties. However, studies on the mitogenome of L. macranthoides still remain limited. Methods The mitochondrial DNA contained in the whole genome DNA was extracted from a male sterile cultivar of L. macranthoides, named 'Yulei 1'. Next-generation sequencing (NGS) and third-generation sequencing (TGS) technologies were combined to obtain the mitogenome. RNA editing events were identified by integrating the mitogenome data with RNA sequencing data from leaf, stem, and flower tissues. The potential causes of male sterility in 'Yulei 1' were analyzed based on the loss of functional genes, mitogenome rearrangements, RNA editing events, and open reading frames (ORFs). Results and discussion The complete mitogenome of L. macranthoides 'Yulei 1' was obtained for the first time, with a length of 1,002,202 bp. It contains 48 protein-coding genes (PCGs), 26 tRNA genes, and 3 rRNA genes. Additionally, 79 simple sequence repeats (SSRs), 39 tandem repeats, and 99 dispersed repeats were identified. Among these, two direct repeats (RP1a/1b, RP2a/2b) and two inverse repeats (RP3a/b, RP4a/b) may facilitate mitogenome recombination. Gene transfer analysis revealed that 4.36% and 21.98% of mitogenomic sequences mapped to the chloroplast and nuclear genomes, respectively. Phylogenetic analysis indicated that L. macranthoides is closest to L. japonica at the mitogenome level. Notably, RNA editing events varied across different plant tissues, with 357 editing sites in 30 PCGs in leaves, 138 sites in 24 PCGs in flowers, and 68 sites in 13 PCGs in stems. Finally, all indications of CMS in the mitogenome were screened, including the detection of ORFs, and the findings showed no mutations in the mitogenome that would explain the sterility of 'Yulei 1'. Overall, our study provides a complete mitogenome of L. macranthoides, which will aid in its genetic marker exploration, evolutionary relationship analysis, and breeding programs.
Collapse
Affiliation(s)
- Zhong Chen
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China
| | - Wei Zhuo
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China
| | - Yuqi Wang
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China
| | - Junpeng Qi
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China
| | - Li Liu
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China
| | - Sheng’E. Lu
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China
| | - Han Wang
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China
| | - Tao Sun
- Chongqing Customs Technology Center, Shapingba, Chongqing, China
| | - Liqiang Wang
- College of Pharmacy, Heze University, Heze, Shandong, China
| | - Fengming Ren
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China
- School of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Bishan, Chongqing, China
| |
Collapse
|
12
|
Liang H, Qi H, Chen J, Wang Y, Liu M, Sun X, Wang C, Xia T, Feng X, Feng S, Chen C, Zheng D. Assembly and analysis of the first complete mitochondrial genome sequencing of main Tea-oil Camellia cultivars Camellia drupifera (Theaceae): revealed a multi-branch mitochondrial conformation for Camellia. BMC PLANT BIOLOGY 2025; 25:13. [PMID: 39754047 PMCID: PMC11697926 DOI: 10.1186/s12870-024-05996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Tea-oil Camellia within the genus Camellia is renowned for its premium Camellia oil, often described as "Oriental olive oil". So far, only one partial mitochondrial genomes of Tea-oil Camellia have been published (no main Tea-oil Camellia cultivars), and comparative mitochondrial genomic studies of Camellia remain limited. RESULTS In this study, we first reconstructed the entire mitochondrial genome of C. drupifera to gain insights into its genetic structure and evolutionary history. Through our analysis, we observed a characteristic multi-branched configuration in the mitochondrial genomes of C. drupifera. A thorough examination of the protein-coding regions (PCGs) across Camellia species identified gene losses that occurred during their evolution. Notably, repeat sequences showed a weak correlation between the abundance of simple sequence repeats (SSRs) and genome size of Camellia. Additionally, despite of the considerable variations in the sizes of Camellia mitochondrial genomes, there was little diversity in GC content and gene composition. The phylogenetic tree derived from mitochondrial data was inconsistent with that generated from chloroplast data. CONCLUSIONS In conclusion, our study provides valuable insights into the molecular characteristics and evolutionary mechanisms of multi-branch mitochondrial structures in Camellia. The high-resolution mitogenome of C. drupifera enhances our understanding of multi-branch mitogenomes and lays a solid groundwork for future advancements in genomic improvement and germplasm innovation within Tea-oil Camellia.
Collapse
Affiliation(s)
- Heng Liang
- Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, Haikou, 571100, China
- National Germplasm Resource Chengmai Observation and Experiment Station, Chengmai, 571100, China
| | - Huasha Qi
- Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, Haikou, 571100, China
- National Germplasm Resource Chengmai Observation and Experiment Station, Chengmai, 571100, China
| | - Jiali Chen
- Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, Haikou, 571100, China
- National Germplasm Resource Chengmai Observation and Experiment Station, Chengmai, 571100, China
| | - Yidan Wang
- School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Moyang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiuxiu Sun
- Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, Haikou, 571100, China
- National Germplasm Resource Chengmai Observation and Experiment Station, Chengmai, 571100, China
| | - Chunmei Wang
- Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, Haikou, 571100, China
- National Germplasm Resource Chengmai Observation and Experiment Station, Chengmai, 571100, China
| | - Tengfei Xia
- Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, Haikou, 571100, China
- National Germplasm Resource Chengmai Observation and Experiment Station, Chengmai, 571100, China
| | - Xuejie Feng
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China
| | - Shiling Feng
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Cheng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daojun Zheng
- Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, 571100, China.
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China.
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, Haikou, 571100, China.
- National Germplasm Resource Chengmai Observation and Experiment Station, Chengmai, 571100, China.
| |
Collapse
|
13
|
Watanabe A, Tipgomut C, Totani H, Yoshimura K, Iwano T, Bashiri H, Chua LH, Yang C, Suda T. Noncanonical TCA cycle fosters canonical TCA cycle and mitochondrial integrity in acute myeloid leukemia. Cancer Sci 2025; 116:152-163. [PMID: 39479926 PMCID: PMC11711061 DOI: 10.1111/cas.16347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 11/02/2024] Open
Abstract
Cancer cells rely on mitochondrial oxidative phosphorylation (OXPHOS) and the noncanonical tricarboxylic acid (TCA) cycle. In this paper, we shed light on the vital role played by the noncanonical TCA cycle in a host-side concession to mitochondria, especially in highly energy-demanding malignant tumor cells. Inhibition of ATP-citrate lyase (ACLY), a key enzyme in the noncanonical TCA cycle, induced apoptosis by increasing reactive oxygen species levels and DNA damage while reducing mitochondrial membrane potential. The mitochondrial membrane citrate transporter inhibitor, CTPI2, synergistically enhanced these effects. ACLY inhibition reduced cytosolic citrate levels and CTPI2 lowered ACLY activity, suggesting that the noncanonical TCA cycle is sustained by a positive feedback mechanism. These inhibitions impaired ATP production, particularly through OXPHOS. Metabolomic analysis of mitochondrial and cytosolic fractions revealed reduced levels of glutathione pathway-related and TCA cycle-related metabolite, except fumarate, in mitochondria following noncanonical TCA cycle inhibition. Despite the efficient energy supply to the cell by mitochondria, this symbiosis poses challenges related to reactive oxygen species and mitochondrial maintenance. In conclusion, the noncanonical TCA cycle is indispensable for the canonical TCA cycle and mitochondrial integrity, contributing to mitochondrial domestication.
Collapse
Affiliation(s)
- Atsushi Watanabe
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
- Department of Pediatrics, Faculty of MedicineUniversity of YamanashiYamanashiJapan
- Department of PediatricsYamanashi Prefectural Central HospitalYamanashiJapan
| | - Chartsiam Tipgomut
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Haruhito Totani
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Kentaro Yoshimura
- Department of Anatomy and Cell Biology, Faculty of MedicineUniversity of YamanashiYamanashiJapan
| | - Tomohiko Iwano
- Division of Molecular Biology, Center for Medical Education and Sciences, Interdisciplinary Graduate School of MedicineUniversity of YamanashiYamanashiJapan
| | - Hamed Bashiri
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Lee Hui Chua
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Chong Yang
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
- Institute of HematologyBlood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Toshio Suda
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
- Institute of HematologyBlood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| |
Collapse
|
14
|
Li J, Bai R, Zhou Y, Song X, Li L. A mitochondria-to-nucleus regulation mediated by the nuclear-translocated mitochondrial lncRNAs. PLoS Genet 2025; 21:e1011580. [PMID: 39869642 PMCID: PMC11801721 DOI: 10.1371/journal.pgen.1011580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 02/06/2025] [Accepted: 01/17/2025] [Indexed: 01/29/2025] Open
Abstract
A bidirectional nucleus-mitochondria communication is essential for homeostasis and stress. By acting as critical molecules, the nuclear-encoded lncRNAs (nulncRNAs) have been implicated in the nucleus-to-mitochondria anterograde regulation. However, role of mitochondrial-derived lncRNAs (mtlncRNAs) in the mitochondria-to-nucleus retrograde regulation remains elusive. Here, we identify functional implication of the mtlncRNAs MDL1AS, lncND5 and lncCyt b in retrograde regulation. Mediated by HuR and PNPT1 proteins, the mtlncRNAs undergo a mitochondria-to-nucleus traveling and then regulate a network of nuclear genes. Moreover, as an example of the functional consequence, we showed that the nuclear-translocated lncCyt b cooperates with the splicing factor hnRNPA2B1 to influence several aspects of cell metabolism including glycolysis, possibly through their regulatory effect on the post-transcriptional processing of related nuclear genes. This study advances our knowledge in mitochondrial biology and provides new insights into the role of mtlncRNAs in mitochondria-nucleus communications.
Collapse
Affiliation(s)
- Jia Li
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Ruoling Bai
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yulian Zhou
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xu Song
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Ling Li
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Deryusheva EI, Machulin AV, Surin AA, Kravchenko SV, Surin AK, Galzitskaya OV. RNA-Binding S1 Domain in Bacterial, Archaeal and Eukaryotic Proteins as One of the Evolutionary Markers of Symbiogenesis. Int J Mol Sci 2024; 25:13057. [PMID: 39684768 DOI: 10.3390/ijms252313057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The RNA-binding S1 domain is a β-barrel with a highly conserved RNA-binding site on its surface. This domain is an important part of the structures of different bacterial, archaeal, and eukaryotic proteins. A distinctive feature of the S1 domain is multiple presences (structural repeats) in proteins and protein complexes. Here, we have analyzed all available protein sequences in the UniProt database to obtain data on the distribution of bacterial, eukaryotic and archaeal proteins containing the S1 domain. Mainly, the S1 domain is found in bacterial proteins with the number of domains varying from one to eight. Eukaryotic proteins contain from one to fifteen S1 domains, while in archaeal proteins, only one S1 domain is identified. Analysis of eukaryotic proteins containing S1 domains revealed a group of chloroplast S1 ribosomal proteins (ChRpS1) with characteristic properties of bacterial S1 ribosomal proteins (RpS1) from the Cyanobacteria. Also, in a separate group, chloroplast and mitochondrial elongation factor Ts containing two S1 structural domains were assigned. For mitochondrial elongation factor Ts, the features of S1 in comparison with the RpS1 from Cyanobacteria phylum and the Alphaproteobacteria class were revealed. The data obtained allow us to consider the S1 domain as one of the evolutionary markers of the symbiogenesis of bacterial and eukaryotic organisms.
Collapse
Affiliation(s)
- Evgenia I Deryusheva
- Institute for Biological Instrumentation, Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Science", Russian Academy of Science, 142290 Pushchino, Russia
| | - Andrey V Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Scientific Center for Biological Research of Russian Academy of Science", Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexey A Surin
- Faculty of Informatics and Computer Engineering, MIREA-Russian Technological University, 119454 Moscow, Russia
| | - Sergey V Kravchenko
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Alexey K Surin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Oxana V Galzitskaya
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute for Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Gamaleya Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia
| |
Collapse
|
16
|
Hahn A, Hung GCC, Ahier A, Dai CY, Kirmes I, Forde BM, Campbell D, Lee RSY, Sucic J, Onraet T, Zuryn S. Misregulation of mitochondrial 6mA promotes the propagation of mutant mtDNA and causes aging in C. elegans. Cell Metab 2024; 36:2528-2541.e11. [PMID: 39173633 DOI: 10.1016/j.cmet.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
In virtually all eukaryotes, the mitochondrial DNA (mtDNA) encodes proteins necessary for oxidative phosphorylation (OXPHOS) and RNAs required for their synthesis. The mechanisms of regulation of mtDNA copy number and expression are not completely understood but crucially ensure the correct stoichiometric assembly of OXPHOS complexes from nuclear- and mtDNA-encoded subunits. Here, we detect adenosine N6-methylation (6mA) on the mtDNA of diverse animal and plant species. This modification is regulated in C. elegans by the DNA methyltransferase DAMT-1 and demethylase ALKB-1. Misregulation of mtDNA 6mA through targeted modulation of these activities inappropriately alters mtDNA copy number and transcript levels, impairing OXPHOS function, elevating oxidative stress, and shortening lifespan. Compounding these defects, mtDNA 6mA hypomethylation promotes the cross-generational propagation of a deleterious mtDNA. Together, these results reveal that mtDNA 6mA is highly conserved among eukaryotes and regulates lifespan by influencing mtDNA copy number, expression, and heritable mutation levels in vivo.
Collapse
Affiliation(s)
- Anne Hahn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Grace Ching Ching Hung
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Arnaud Ahier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chuan-Yang Dai
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ina Kirmes
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Brian M Forde
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel Campbell
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rachel Shin Yie Lee
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Josiah Sucic
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tessa Onraet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
17
|
Persson PB, Persson AB. Evolutionary physiology. Acta Physiol (Oxf) 2024; 240:e14221. [PMID: 39207025 DOI: 10.1111/apha.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Pontus B Persson
- Institute of Translational Physiology, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin
| | - Anja Bondke Persson
- Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité-Universitätsmedizin Berlin
| |
Collapse
|
18
|
Jain S, Paz E, Azem A. Hotspots for Disease-Causing Mutations in the Mitochondrial TIM23 Import Complex. Genes (Basel) 2024; 15:1534. [PMID: 39766801 PMCID: PMC11675802 DOI: 10.3390/genes15121534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
The human mitochondrial proteome comprises approximately 1500 proteins, with only 13 being encoded by mitochondrial DNA. The remainder are encoded by the nuclear genome, translated by cytosolic ribosomes, and subsequently imported into and sorted within mitochondria. The process of mitochondria-destined protein import is mediated by several intricate protein complexes distributed among the four mitochondrial compartments. The focus of this mini-review is the translocase of the inner membrane 23 (TIM23) complex that assists in the import of ~60% of the mitochondrial proteome, which includes the majority of matrix proteins as well as some inner membrane and intermembrane space proteins. To date, numerous pathogenic mutations have been reported in the genes encoding various components of the TIM23 complex. These diseases exhibit mostly developmental and neurological defects at an early age. Interestingly, accumulating evidence supports the possibility that the gene for Tim50 represents a hotspot for disease-causing mutations among core TIM23 complex components, while genes for the mitochondrial Hsp70 protein (mortalin) and its J domain regulators represent hotspots for mutations affecting presequence translocase-associated motor (PAM) subunits. The potential mechanistic implications of the discovery of disease-causing mutations on the function of the TIM23 complex, in particular Tim50, are discussed.
Collapse
Affiliation(s)
- Sahil Jain
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.P.); (A.A.)
- Bioinformatics Centre, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, India
| | - Eyal Paz
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.P.); (A.A.)
| | - Abdussalam Azem
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.P.); (A.A.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
19
|
Sheng Y, Abreu A, Markovich Z, Ebea P, Davis L, Park E, Sheng P, Xie M, Han SM, Xiao R. A mitochondrial unfolded protein response-independent role of DVE-1 in longevity regulation. Cell Rep 2024; 43:114889. [PMID: 39423131 PMCID: PMC11648574 DOI: 10.1016/j.celrep.2024.114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/10/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
The special AT-rich sequence-binding (SATB) protein DVE-1 is widely recognized for its pivotal involvement in orchestrating the retrograde mitochondrial unfolded protein response (mitoUPR) in C. elegans. In our study of downstream factors contributing to lifespan extension in sensory ciliary mutants, we find that DVE-1 is crucial for this longevity effect independent of its canonical mitoUPR function. Additionally, DVE-1 also influences lifespan under conditions of dietary restriction and germline loss, again distinct from its role in mitoUPR. Mechanistically, while mitochondrial stress typically prompts nuclear accumulation of DVE-1 to initiate the transcriptional mitoUPR program, these long-lived mutants reduce DVE-1 nuclear accumulation, likely by enhancing its cytosolic translocation. This observation suggests a cytosolic role for DVE-1 in lifespan extension. Overall, our study implies that, in contrast to the more narrowly defined role of the mitoUPR-related transcription factor ATFS-1, DVE-1 may possess broader functions than previously recognized in modulating longevity and defending against stress.
Collapse
Affiliation(s)
- Yi Sheng
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Adriana Abreu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zachary Markovich
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Pearl Ebea
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Leah Davis
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Eric Park
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Peike Sheng
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Sung Min Han
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rui Xiao
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Institute on Aging, University of Florida, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
20
|
Haseltine WA, Patarca R. The RNA Revolution in the Central Molecular Biology Dogma Evolution. Int J Mol Sci 2024; 25:12695. [PMID: 39684407 DOI: 10.3390/ijms252312695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Human genome projects in the 1990s identified about 20,000 protein-coding sequences. We are now in the RNA revolution, propelled by the realization that genes determine phenotype beyond the foundational central molecular biology dogma, stating that inherited linear pieces of DNA are transcribed to RNAs and translated into proteins. Crucially, over 95% of the genome, initially considered junk DNA between protein-coding genes, encodes essential, functionally diverse non-protein-coding RNAs, raising the gene count by at least one order of magnitude. Most inherited phenotype-determining changes in DNA are in regulatory areas that control RNA and regulatory sequences. RNAs can directly or indirectly determine phenotypes by regulating protein and RNA function, transferring information within and between organisms, and generating DNA. RNAs also exhibit high structural, functional, and biomolecular interaction plasticity and are modified via editing, methylation, glycosylation, and other mechanisms, which bestow them with diverse intra- and extracellular functions without altering the underlying DNA. RNA is, therefore, currently considered the primary determinant of cellular to populational functional diversity, disease-linked and biomolecular structural variations, and cell function regulation. As demonstrated by RNA-based coronavirus vaccines' success, RNA technology is transforming medicine, agriculture, and industry, as did the advent of recombinant DNA technology in the 1980s.
Collapse
Affiliation(s)
- William A Haseltine
- Access Health International, 384 West Lane, Ridgefield, CT 06877, USA
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| | - Roberto Patarca
- Access Health International, 384 West Lane, Ridgefield, CT 06877, USA
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| |
Collapse
|
21
|
Han J, Xu W, Yu H, Han Y, Zhu M. Structural and evolutionary analyses of the mitochondrial genome of Spuriopimpinella brachycarpa. FRONTIERS IN PLANT SCIENCE 2024; 15:1492723. [PMID: 39659412 PMCID: PMC11628310 DOI: 10.3389/fpls.2024.1492723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
Introduction Spuriopimpinella brachycarpa (Kom.) Kitag., a member of the Apiaceae family, is a perennial aromatic herb native to Northeast Asia with applications in culinary and traditional medicine. Despite its significance, most studies on S. brachycarpa have primarily focused on its phytochemical properties, with limited insights into its molecular and genomic characteristics. Methods This study presents the sequencing and assembly of the mitochondrial genome (mitogenome) of S. brachycarpa using second- and third-generation high-throughput sequencing technologies. Comprehensive analyses were performed on its structural organization, RNA editing sites, relative synonymous codon usage (RSCU), and repeat sequences. Comparative analyses with closely related species were also conducted. Results The mitogenome exhibited a multi-branched structure, with a total length of 523,512 bp and a GC content of 43.37%. Annotation revealed 30 unique protein-coding genes, 21 tRNA genes, and three rRNA genes. Comparative analysis indicated that the S. brachycarpa mitogenome contains structural variations but shares collinear features with other Apiaceae species. We identified 618 potential RNA editing sites involving C-to-U conversions and discovered 59 homologous fragments between the mitogenome and plastome, comprising 8.13% of the mitogenome. Discussion These results enrich the genomic database of Apiaceae, providing valuable insights into the evolutionary relationships and genetic diversity within the family.
Collapse
Affiliation(s)
- Jun Han
- Chinese Medicine Research Institute of Beijing Tcmages Pharmaceutical Co., Ltd., Beijing, China
| | - Wenbo Xu
- Chinese Medicine Research Institute of Beijing Tcmages Pharmaceutical Co., Ltd., Beijing, China
| | - Huanxi Yu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing, China
| | - Yun Han
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Ming Zhu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
22
|
Wu J, Liu Y, Ou L, Gan T, Zhangding Z, Yuan S, Liu X, Liu M, Li J, Yin J, Xin C, Tian Y, Hu J. Transfer of mitochondrial DNA into the nuclear genome during induced DNA breaks. Nat Commun 2024; 15:9438. [PMID: 39487167 PMCID: PMC11530683 DOI: 10.1038/s41467-024-53806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
Mitochondria serve as the cellular powerhouse, and their distinct DNA makes them a prospective target for gene editing to treat genetic disorders. However, the impact of genome editing on mitochondrial DNA (mtDNA) stability remains a mystery. Our study reveals previously unknown risks of genome editing that both nuclear and mitochondrial editing cause discernible transfer of mitochondrial DNA segments into the nuclear genome in various cell types including human cell lines, primary T cells, and mouse embryos. Furthermore, drug-induced mitochondrial stresses and mtDNA breaks exacerbate this transfer of mtDNA into the nuclear genome. Notably, we observe that mitochondrial editors, including mitoTALEN and recently developed base editor DdCBE, can also enhance crosstalk between mtDNA and the nuclear genome. Moreover, we provide a practical solution by co-expressing TREX1 or TREX2 exonucleases during DdCBE editing. These findings imply genome instability of mitochondria during induced DNA breaks and explain the origins of mitochondrial-nuclear DNA segments.
Collapse
Affiliation(s)
- Jinchun Wu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Yang Liu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Liqiong Ou
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Tingting Gan
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, China
| | - Zhengrong Zhangding
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Shaopeng Yuan
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Xinyi Liu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Mengzhu Liu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Jiasheng Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhang Yin
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Changchang Xin
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiazhi Hu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China.
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, China.
| |
Collapse
|
23
|
Pérez-Bustamante IS, Cruz-Flores R, López-Carvallo JA, Sánchez-Serrano S. Effect of the 16S rRNA Gene Hypervariable Region on the Microbiome Taxonomic Profile and Diversity in the Endangered Fish Totoaba macdonaldi. Microorganisms 2024; 12:2119. [PMID: 39597509 PMCID: PMC11596169 DOI: 10.3390/microorganisms12112119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 11/29/2024] Open
Abstract
Understanding the intricate dynamics of fish microbiota through 16S rRNA amplicon sequencing is pivotal for ecological insights and effective disease management. However, this approach faces challenges including the co-amplification of host mitochondrial sequences and the variability in bacterial composition influenced by the selected 16S rRNA gene regions. To overcome these limitations, we conducted a comprehensive investigation to identify the most suitable 16S rRNA region for bacterial microbial analysis in endangered fish Totoaba macdonaldi, an endemic species of significant ecological and economic importance in Mexico. Targeting four distinct hypervariable regions (V1-V2, V2-V3, V3-V4, and V5-V7) of the 16S rRNA gene, we determined the microbial composition within the distal intestine. A total of 40 microbiomes were sequenced. Our findings underscore the critical impact of region selection on the accuracy of microbiota analysis. The V3-V4 region detected the highest number of bacterial taxa and exhibited significantly higher alpha diversity indices, demonstrating the highest taxonomic resolution. This study emphasizes the necessity of meticulous 16S rRNA region selection for fish microbiota analysis, particularly in native species of ecological and economic significance such as the endangered T. macdonaldi, where information is limited. Such optimization enhances the reliability and applicability of microbiota studies in fisheries management and conservation efforts.
Collapse
Affiliation(s)
- Itzel Soledad Pérez-Bustamante
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada 22860, Mexico;
| | - Roberto Cruz-Flores
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada 22860, Mexico;
| | - Jesús Antonio López-Carvallo
- Laboratorio de Fisiología y Genética Marina, Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte (UCN), Coquimbo 1781421, Chile;
| | - Samuel Sánchez-Serrano
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (UABC), Ensenada 22860, Mexico;
| |
Collapse
|
24
|
Tang GX, Li ML, Zhou C, Huang ZS, Chen SB, Chen XC, Tan JH. Mitochondrial RelA empowers mtDNA G-quadruplex formation for hypoxia adaptation in cancer cells. Cell Chem Biol 2024; 31:1800-1814.e7. [PMID: 38821064 DOI: 10.1016/j.chembiol.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/04/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Mitochondrial DNA (mtDNA) G-quadruplexes (G4s) have important regulatory roles in energy metabolism, yet their specific functions and underlying regulatory mechanisms have not been delineated. Using a chemical-genetic screening strategy, we demonstrated that the JAK/STAT3 pathway is the primary regulatory mechanism governing mtDNA G4 dynamics in hypoxic cancer cells. Further proteomic analysis showed that activation of the JAK/STAT3 pathway facilitates the translocation of RelA, a member of the NF-κB family, to the mitochondria, where RelA binds to mtDNA G4s and promotes their folding, resulting in increased mtDNA instability, inhibited mtDNA transcription, and subsequent mitochondrial dysfunction. This binding event disrupts the equilibrium of energy metabolism, catalyzing a metabolic shift favoring glycolysis. Collectively, the results provide insights into a strategy employed by cancer cells to adapt to hypoxia through metabolic reprogramming.
Collapse
Affiliation(s)
- Gui-Xue Tang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mao-Lin Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Cui Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Shu Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiu-Cai Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Jia-Heng Tan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
25
|
Indo HP, Chatatikun M, Nakanishi I, Matsumoto KI, Imai M, Kawakami F, Kubo M, Abe H, Ichikawa H, Yonei Y, Beppu HJ, Minamiyama Y, Kanekura T, Ichikawa T, Phongphithakchai A, Udomwech L, Sukati S, Charong N, Somsak V, Tangpong J, Nomura S, Majima HJ. The Roles of Mitochondria in Human Being's Life and Aging. Biomolecules 2024; 14:1317. [PMID: 39456251 PMCID: PMC11506671 DOI: 10.3390/biom14101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The universe began 13.8 billion years ago, and Earth was born 4.6 billion years ago. Early traces of life were found as soon as 4.1 billion years ago; then, ~200,000 years ago, the human being was born. The evolution of life on earth was to become individual rather than cellular life. The birth of mitochondria made this possible to be the individual life. Since then, individuals have had a limited time of life. It was 1.4 billion years ago that a bacterial cell began living inside an archaeal host cell, a form of endosymbiosis that is the development of eukaryotic cells, which contain a nucleus and other membrane-bound compartments. The bacterium started to provide its host cell with additional energy, and the interaction eventually resulted in a eukaryotic cell, with both archaeal (the host cell) and bacterial (mitochondrial) origins still having genomes. The cells survived high concentrations of oxygen producing more energy inside the cell. Further, the roles of mitochondria in human being's life and aging will be discussed.
Collapse
Affiliation(s)
- Hiroko P. Indo
- Department of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City 890-8544, Japan; (H.P.I.)
- Amanogawa Galactic Astronomy Research Center (AGARC), Kagoshima University Graduate School of Sciences and Engineering, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Moragot Chatatikun
- School of Allied Health Sciences, Walailak University, Thasala 80161, Thailand; (M.C.); (S.S.); (N.C.); (V.S.); (J.T.)
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Thasala Nakhon Si Thammarat 80160, Thailand
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Team, Quantum Life Spin Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan;
| | - Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, Institute for Radiological Science (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Motoki Imai
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
- Department of Applied Tumor Pathology, Graduate School of Medical Sciences, Kitasato University, Sagamihara 252-0374, Japan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
| | - Fumitaka Kawakami
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
- Department of Health Administration, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
| | - Makoto Kubo
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
- Department of Environmental Microbiology, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
| | - Hiroshi Abe
- Department of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City 890-8544, Japan; (H.P.I.)
| | - Hiroshi Ichikawa
- Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshishia University, Kyoto 610-0394, Japan
| | - Yoshikazu Yonei
- Anti-Aging Medical Research Center and Glycation Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Hisashi J. Beppu
- Dr. Beppu’s Oral Health Care & Anti-Aging Clinic, Chuo-ku, Tokyo 103-0027, Japan
| | - Yukiko Minamiyama
- Food Hygiene and Environmental Health Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Takafumi Ichikawa
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
- Department of Regulation Biochemistry, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Japan
| | - Atthaphong Phongphithakchai
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Lunla Udomwech
- School of Medicine, Walailak University, Thasala 80161, Thailand
| | - Suriyan Sukati
- School of Allied Health Sciences, Walailak University, Thasala 80161, Thailand; (M.C.); (S.S.); (N.C.); (V.S.); (J.T.)
- Hematology and Transfusion Science Research Center (HTSRC), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Nurdina Charong
- School of Allied Health Sciences, Walailak University, Thasala 80161, Thailand; (M.C.); (S.S.); (N.C.); (V.S.); (J.T.)
- Hematology and Transfusion Science Research Center (HTSRC), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Voravuth Somsak
- School of Allied Health Sciences, Walailak University, Thasala 80161, Thailand; (M.C.); (S.S.); (N.C.); (V.S.); (J.T.)
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Thasala Nakhon Si Thammarat 80160, Thailand
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, Walailak University, Thasala 80161, Thailand; (M.C.); (S.S.); (N.C.); (V.S.); (J.T.)
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Thasala Nakhon Si Thammarat 80160, Thailand
| | - Sachiyo Nomura
- Department of Clinical Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan;
- Isotope Science Center, The University of Tokyo, 2-22-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Gastrointestinal Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hideyuki J. Majima
- School of Allied Health Sciences, Walailak University, Thasala 80161, Thailand; (M.C.); (S.S.); (N.C.); (V.S.); (J.T.)
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Thasala Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
26
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
27
|
Zhou G, Zhang H, Chen W, Li Z, Zhang X, Fu Y. Morphological observation, molecular identification and evolutionary analysis of Hydatigera kamiyai found in Neodon fuscus from the Qinghai-Tibetan plateau. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105629. [PMID: 38936527 DOI: 10.1016/j.meegid.2024.105629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Hydatigera kamiyai (H. kamiyai) is a new species within Hydatigera that has recently been resurrected. Voles and cats are hosts of H. kamiyai and have a certain impact on its health and economy. Moreover, the Qinghai-Tibetan plateau (QTP) is a research hotspot representing Earth's biodiversity, as its unique geographical environment and climatic conditions support the growth of a variety of mammals and provide favorable conditions for various parasites to complete their life history. The aim of this study was to reveal the phylogenetic relationships and divergence times of H. kamiyai strains isolated from Neodon fuscus on the QTP using morphological and molecular methods. In this study, we morphologically observed H. kamiyai and sequenced the whole mitochondrial genome. Then, we constructed phylogenetic trees with the maximum likelihood (ML) and Bayesian inference (BI) methods. The GTR alternative model was selected for divergence time analysis. These data demonstrated that the results were consistent with the general morphological characteristics of Hydatigera. The whole genome of H. kamiyai was 13,822 bp in size, and the A + T content (73%) was greater than the G + C content (27%). The Ka/Ks values were all <1, indicating that all 13 protein-coding genes (13 PCGs) underwent purifying selection during the process of evolution. The phylogenetic tree generated based on the 13 PCGs, cytochrom oxidase subunit I (COI), 18S rRNA and 28S rRNA revealed close phylogenetic relationships between H. kamiyai and Hydatigera, with high node support for the relationship. The divergence time based on 13 PCGs indicated that H. kamiyai diverged approximately 11.3 million years ago (Mya) in the Miocene. Interestingly, it diverged later than the period of rapid uplift in the QTP. We also speculated that H. kamiyai differentiation was caused by host differentiation due to the favorable living conditions brought about by the uplift of the QTP. As there have been relatively few investigations on the mitochondrial genome of H. kamiyai, our study could provide factual support for further studies of H. kamiyai on the QTP. We also emphasized the importance of further studies of its hosts, Neodon fuscus and cats, which will be important for further understanding the life cycle of H. kamiyai.
Collapse
Affiliation(s)
- Guoyan Zhou
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China
| | - Haining Zhang
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China
| | - Wangkai Chen
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China
| | - Zhi Li
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China
| | - Xueyong Zhang
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China
| | - Yong Fu
- Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China; Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Xining, People's Republic of China.
| |
Collapse
|
28
|
Vosseberg J, van Hooff JJE, Köstlbacher S, Panagiotou K, Tamarit D, Ettema TJG. The emerging view on the origin and early evolution of eukaryotic cells. Nature 2024; 633:295-305. [PMID: 39261613 DOI: 10.1038/s41586-024-07677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/05/2024] [Indexed: 09/13/2024]
Abstract
The origin of the eukaryotic cell, with its compartmentalized nature and generally large size compared with bacterial and archaeal cells, represents a cornerstone event in the evolution of complex life on Earth. In a process referred to as eukaryogenesis, the eukaryotic cell is believed to have evolved between approximately 1.8 and 2.7 billion years ago from its archaeal ancestors, with a symbiosis with a bacterial (proto-mitochondrial) partner being a key event. In the tree of life, the branch separating the first from the last common ancestor of all eukaryotes is long and lacks evolutionary intermediates. As a result, the timing and driving forces of the emergence of complex eukaryotic features remain poorly understood. During the past decade, environmental and comparative genomic studies have revealed vital details about the identity and nature of the host cell and the proto-mitochondrial endosymbiont, enabling a critical reappraisal of hypotheses underlying the symbiotic origin of the eukaryotic cell. Here we outline our current understanding of the key players and events underlying the emergence of cellular complexity during the prokaryote-to-eukaryote transition and discuss potential avenues of future research that might provide new insights into the enigmatic origin of the eukaryotic cell.
Collapse
Affiliation(s)
- Julian Vosseberg
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jolien J E van Hooff
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Stephan Köstlbacher
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Kassiani Panagiotou
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Daniel Tamarit
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
29
|
Cañadas-Garre M, Maqueda JJ, Baños-Jaime B, Hill C, Skelly R, Cappa R, Brennan E, Doyle R, Godson C, Maxwell AP, McKnight AJ. Mitochondrial related variants associated with cardiovascular traits. Front Physiol 2024; 15:1395371. [PMID: 39258111 PMCID: PMC11385366 DOI: 10.3389/fphys.2024.1395371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction Cardiovascular disease (CVD) is responsible for over 30% of mortality worldwide. CVD arises from the complex influence of molecular, clinical, social, and environmental factors. Despite the growing number of autosomal genetic variants contributing to CVD, the cause of most CVDs is still unclear. Mitochondria are crucial in the pathophysiology, development and progression of CVDs; the impact of mitochondrial DNA (mtDNA) variants and mitochondrial haplogroups in the context of CVD has recently been highlighted. Aims We investigated the role of genetic variants in both mtDNA and nuclear-encoded mitochondrial genes (NEMG) in CVD, including coronary artery disease (CAD), hypertension, and serum lipids in the UK Biobank, with sub-group analysis for diabetes. Methods We investigated 371,542 variants in 2,527 NEMG, along with 192 variants in 32 mitochondrial genes in 381,994 participants of the UK Biobank, stratifying by presence of diabetes. Results Mitochondrial variants showed associations with CVD, hypertension, and serum lipids. Mitochondrial haplogroup J was associated with CAD and serum lipids, whereas mitochondrial haplogroups T and U were associated with CVD. Among NEMG, variants within Nitric Oxide Synthase 3 (NOS3) showed associations with CVD, CAD, hypertension, as well as diastolic and systolic blood pressure. We also identified Translocase Of Outer Mitochondrial Membrane 40 (TOMM40) variants associated with CAD; Solute carrier family 22 member 2 (SLC22A2) variants associated with CAD and CVD; and HLA-DQA1 variants associated with hypertension. Variants within these three genes were also associated with serum lipids. Conclusion Our study demonstrates the relevance of mitochondrial related variants in the context of CVD. We have linked mitochondrial haplogroup U to CVD, confirmed association of mitochondrial haplogroups J and T with CVD and proposed new markers of hypertension and serum lipids in the context of diabetes. We have also evidenced connections between the etiological pathways underlying CVDs, blood pressure and serum lipids, placing NOS3, SLC22A2, TOMM40 and HLA-DQA1 genes as common nexuses.
Collapse
Affiliation(s)
- Marisa Cañadas-Garre
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- MRC Integrative Epidemiology Unit, Bristol Medical School (Population Health Sciences), University of Bristol Oakfield House, Belfast, United Kingdom
| | - Joaquín J Maqueda
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Blanca Baños-Jaime
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Claire Hill
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| | - Ryan Skelly
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| | - Ruaidhri Cappa
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| | - Eoin Brennan
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Ross Doyle
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Alexander P Maxwell
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- Regional Nephrology Unit, Belfast City Hospital Belfast, Belfast, United Kingdom
| | - Amy Jayne McKnight
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| |
Collapse
|
30
|
Hazu M, Guna A, Stevens TA, Voorhees RM. Monitoring alpha-helical membrane protein insertion into the outer mitochondrial membrane in mammalian cells. Methods Enzymol 2024; 707:63-99. [PMID: 39488394 DOI: 10.1016/bs.mie.2024.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Mitochondrial function is dependent on the correct localization and insertion of membrane proteins into the outer mitochondrial membrane (OM). In mammals, the OM contains ∼150 proteins, the majority of which contain α-helical transmembrane domains. This family of α-helical proteins has significantly expanded in metazoans and has evolved to mediate critical signaling and regulatory processes including mitochondrial fusion and fission, mitophagy, apoptosis and aspects of the innate immune response. Recently, the conserved OM protein MTCH2 has been identified as an insertase for α-helical proteins in human mitochondria. However, our understanding of the targeting, insertion, folding and quality control of α-helical OM proteins remains incomplete. Here we highlight three methods to monitor α-helical protein insertion both in human cells and in vitro. First, we describe a versatile split fluorescent reporter system that can be used to monitor the insertion of α-helical proteins into the OM in human cells. Second, we delineate a streamlined approach to isolating functional, insertion competent mitochondria from human cells that are compatible with in vitro import assays. Finally, we explain in detail how to reconstitute the insertion of α-helical proteins in a minimal system, by creating functional proteoliposomes containing purified MTCH2. Together these tools represent an integrated platform to enable the detailed mechanistic analysis of biogenesis of the diverse and physiologically essential α-helical OM proteome.
Collapse
Affiliation(s)
- Masami Hazu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Alina Guna
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Taylor A Stevens
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
31
|
Sun N, Han F, Wang S, Shen F, Liu W, Fan W, Bi C. Comprehensive analysis of the Lycopodium japonicum mitogenome reveals abundant tRNA genes and cis-spliced introns in Lycopodiaceae species. FRONTIERS IN PLANT SCIENCE 2024; 15:1446015. [PMID: 39228832 PMCID: PMC11368720 DOI: 10.3389/fpls.2024.1446015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024]
Abstract
Lycophytes and ferns represent one of the earliest-diverging lineages of vascular plants, with the Lycopodiaceae family constituting the basal clade among lycophytes. In this research, we successfully assembled and annotated the complete Lycopodium japonicum Thunb. (L. japonicum) mitochondrial genome (mitogenome) utilizing PacBio HiFi sequencing data, resulting in a single circular molecule with a size of 454,458 bp. 64 unique genes were annotated altogether, including 34 protein-coding genes, 27 tRNAs and 3 rRNAs. It also contains 32 group II introns, all of which undergo cis-splicing. We identified 195 simple sequence repeats, 1,948 dispersed repeats, and 92 tandem repeats in the L. japonicum mitogenome. Collinear analysis indicated that the mitogenomes of Lycopodiaceae are remarkably conserved compared to those of other vascular plants. We totally identified 326 RNA editing sites in 31 unique protein-coding genes with 299 sites converting cytosine to uracil and 27 sites the reverse. Notably, the L. japonicum mitogenome has small amounts foreign DNA from plastid or nuclear origin, accounting for only 2.81% of the mitogenome. The maximum likelihood phylogenetic analysis based on 23 diverse land plant mitogenomes and plastid genomes supports the basal position of lycophytes within vascular plants and they form a sister clade to all other vascular lineages, which is consistent with the PPG I classification system. As the first reported mitogenome of Lycopodioideae subfamily, this study enriches our understanding of Lycopodium mitogenomes, and sets the stage for future research on mitochondrial diversity and evolution within the lycophytes and ferns.
Collapse
Affiliation(s)
- Ning Sun
- College of Information Science and Technology and Artificial Intelligence, Nanjing Forestry University, Nanjing, China
| | - Fuchuan Han
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Suyan Wang
- College of Information Science and Technology and Artificial Intelligence, Nanjing Forestry University, Nanjing, China
| | - Fei Shen
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wei Liu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, China
| | - Weishu Fan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- New Cornerstone Science Laboratory, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Changwei Bi
- College of Information Science and Technology and Artificial Intelligence, Nanjing Forestry University, Nanjing, China
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
32
|
Xu Y, Baylink DJ, Xiao J, Tran L, Nguyen V, Park B, Valladares I, Lee S, Codorniz K, Tan L, Chen CS, Abdel-Azim H, Reeves ME, Mirshahidi H, Marcucci G, Cao H. Discovery of NFκB2-Coordinated Dual Regulation of Mitochondrial and Nuclear Genomes Leads to an Effective Therapy for Acute Myeloid Leukemia. Int J Mol Sci 2024; 25:8532. [PMID: 39126100 PMCID: PMC11313218 DOI: 10.3390/ijms25158532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Acute myeloid leukemia (AML) has a poor survival rate for both pediatric and adult patients due to its frequent relapse. To elucidate the bioenergetic principle underlying AML relapse, we investigated the transcriptional regulation of mitochondrial-nuclear dual genomes responsible for metabolic plasticity in treatment-resistant blasts. Both the gain and loss of function results demonstrated that NFκB2, a noncanonical transcription factor (TF) of the NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) family, can control the expression of TFAM (mitochondrial transcription factor A), which is known to be essential for metabolic biogenesis. Furthermore, genetic tracking and promoter assays revealed that NFκB2 is in the mitochondria and can bind the specific "TTGGGGGGTG" region of the regulatory D-loop domain to activate the light-strand promoter (LSP) and heavy-strand promoter 1 (HSP1), promoters of the mitochondrial genome. Based on our discovery of NFκB2's novel function of regulating mitochondrial-nuclear dual genomes, we explored a novel triplet therapy including inhibitors of NFκB2, tyrosine kinase, and mitochondrial ATP synthase that effectively eliminated primary AML blasts with mutations of the FMS-related receptor tyrosine kinase 3 (FLT3) and displayed minimum toxicity to control cells ex vivo. As such, effective treatments for AML must include strong inhibitory actions on the dual genomes mediating metabolic plasticity to improve leukemia prognosis.
Collapse
Affiliation(s)
- Yi Xu
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.-S.C.)
- Division Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - David J. Baylink
- Division Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jeffrey Xiao
- Division Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Lily Tran
- Division Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Vinh Nguyen
- Division Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Brandon Park
- Division Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Ismael Valladares
- Division Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Scott Lee
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Kevin Codorniz
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Laren Tan
- Division of Pulmonary, Critical Care, Hyperbaric and Sleep Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Chien-Shing Chen
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.-S.C.)
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hisham Abdel-Azim
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.-S.C.)
- Division of Transplant and Cell Therapy, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA
- Division of Hematology and Oncology, Department of Pediatrics, Loma Linda University, Loma Linda, CA 92354, USA
| | - Mark E. Reeves
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.-S.C.)
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hamid Mirshahidi
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.-S.C.)
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Guido Marcucci
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA 91010, USA
| | - Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (C.-S.C.)
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
33
|
Ahmed M, Kayal E, Lavrov DV. Mitochondrial DNA of the Demosponge Acanthella acuta: Linear Architecture and Other Unique Features. Genome Biol Evol 2024; 16:evae168. [PMID: 39176446 PMCID: PMC11358620 DOI: 10.1093/gbe/evae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
While Acanthella acuta Schmidt 1862, a common demosponge found in the Mediterranean Sea and Atlantic Ocean, is morphologically similar to other sponges, its mitochondrial DNA (mtDNA) is unique within the class. In contrast to all other studied demosponges, the mtDNA of A. acuta is inferred to be linear and displays several unusual features such as inverted terminal repeats, group II introns in three mitochondrial genes, and two unique open reading frames (ORFs): one of which (ORF1535) combines a DNA polymerase domain with a DNA-directed RNA polymerase domain, while the second bears no discernible similarity to any reported sequences. The group II intron within the cox2 gene is the first such intron reported in an animal. Our phylogenetic analyses indicate that the cox1 intron is related to similar introns found in other demosponges, while the cox2 intron is likely not of animal origin. The two domains found within ORF1535 do not share a common origin and, along with the cox2 intron, were likely acquired by horizontal gene transfer. The findings of this paper open new avenues of exploration in the understanding of mtDNA linearization within Metazoa.
Collapse
Affiliation(s)
- Momin Ahmed
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Ehsan Kayal
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Dennis V Lavrov
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
34
|
Özdemir M, Dennerlein S. The TOM complex from an evolutionary perspective and the functions of TOMM70. Biol Chem 2024; 0:hsz-2024-0043. [PMID: 39092472 DOI: 10.1515/hsz-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
In humans, up to 1,500 mitochondrial precursor proteins are synthesized at cytosolic ribosomes and must be imported into the organelle. This is not only essential for mitochondrial but also for many cytosolic functions. The majority of mitochondrial precursor proteins are imported over the translocase of the outer membrane (TOM). In recent years, high-resolution structure analyses from different organisms shed light on the composition and arrangement of the TOM complex. Although significant similarities have been found, differences were also observed, which have been favored during evolution and could reflect the manifold functions of TOM with cellular signaling and its response to altered metabolic situations. A key component within these regulatory mechanisms is TOMM70, which is involved in protein import, forms contacts to the ER and the nucleus, but is also involved in cellular defense mechanisms during infections.
Collapse
Affiliation(s)
- Metin Özdemir
- Institute for Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Sven Dennerlein
- Institute for Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| |
Collapse
|
35
|
Diaz-Vegas A, Cooke KC, Cutler HB, Yau B, Masson SWC, Harney D, Fuller OK, Potter M, Madsen S, Craw NR, Zhang Y, Moreno CL, Kebede MA, Neely GG, Stöckli J, Burchfield JG, James DE. Deletion of miPEP in adipocytes protects against obesity and insulin resistance by boosting muscle metabolism. Mol Metab 2024; 86:101983. [PMID: 38960128 PMCID: PMC11292358 DOI: 10.1016/j.molmet.2024.101983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
Mitochondria facilitate thousands of biochemical reactions, covering a broad spectrum of anabolic and catabolic processes. Here we demonstrate that the adipocyte mitochondrial proteome is markedly altered across multiple models of insulin resistance and reveal a consistent decrease in the level of the mitochondrial processing peptidase miPEP. OBJECTIVE To determine the role of miPEP in insulin resistance. METHODS To experimentally test this observation, we generated adipocyte-specific miPEP knockout mice to interrogate its role in the aetiology of insulin resistance. RESULTS We observed a strong phenotype characterised by enhanced insulin sensitivity and reduced adiposity, despite normal food intake and physical activity. Strikingly, these phenotypes vanished when mice were housed at thermoneutrality, suggesting that metabolic protection conferred by miPEP deletion hinges upon a thermoregulatory process. Tissue specific analysis of miPEP deficient mice revealed an increment in muscle metabolism, and upregulation of the protein FBP2 that is involved in ATP hydrolysis in the gluconeogenic pathway. CONCLUSION These findings suggest that miPEP deletion initiates a compensatory increase in skeletal muscle metabolism acting as a protective mechanism against diet-induced obesity and insulin resistance.
Collapse
Affiliation(s)
- Alexis Diaz-Vegas
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia.
| | - Kristen C Cooke
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Harry B Cutler
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Belinda Yau
- School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Stewart W C Masson
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Dylan Harney
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Oliver K Fuller
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Meg Potter
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Søren Madsen
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Niamh R Craw
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Yiju Zhang
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Cesar L Moreno
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Melkam A Kebede
- School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - G Gregory Neely
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Jacqueline Stöckli
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - James G Burchfield
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - David E James
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
36
|
Zhang X, Ding Z, Lou H, Han R, Ma C, Yang S. A Systematic Review and Developmental Perspective on Origin of CMS Genes in Crops. Int J Mol Sci 2024; 25:8372. [PMID: 39125940 PMCID: PMC11312923 DOI: 10.3390/ijms25158372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Cytoplasmic male sterility (CMS) arises from the incompatibility between the nucleus and cytoplasm as typical representatives of the chimeric structures in the mitochondrial genome (mitogenome), which has been extensively applied for hybrid seed production in various crops. The frequent occurrence of chimeric mitochondrial genes leading to CMS is consistent with the mitochondrial DNA (mtDNA) evolution. The sequence conservation resulting from faithfully maternal inheritance and the chimeric structure caused by frequent sequence recombination have been defined as two major features of the mitogenome. However, when and how these chimeric mitochondrial genes appear in the context of the highly conserved reproduction of mitochondria is an enigma. This review, therefore, presents the critical view of the research on CMS in plants to elucidate the mechanisms of this phenomenon. Generally, distant hybridization is the main mechanism to generate an original CMS source in natural populations and in breeding. Mitochondria and mitogenomes show pleomorphic and dynamic changes at key stages of the life cycle. The promitochondria in dry seeds develop into fully functioning mitochondria during seed imbibition, followed by massive mitochondria or mitogenome fusion and fission in the germination stage along with changes in the mtDNA structure and quantity. The mitogenome stability is controlled by nuclear loci, such as the nuclear gene Msh1. Its suppression leads to the rearrangement of mtDNA and the production of heritable CMS genes. An abundant recombination of mtDNA is also often found in distant hybrids and somatic/cybrid hybrids. Since mtDNA recombination is ubiquitous in distant hybridization, we put forward a hypothesis that the original CMS genes originated from mtDNA recombination during the germination of the hybrid seeds produced from distant hybridizations to solve the nucleo-cytoplasmic incompatibility resulting from the allogenic nuclear genome during seed germination.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Zhengpin Ding
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Hongbo Lou
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Rui Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
37
|
Zheng Q, Luo X, Huang Y, Ke SJ, Liu ZJ. The Complete Mitogenome of Apostasia fujianica Y.Li & S.Lan and Comparative Analysis of Mitogenomes across Orchidaceae. Int J Mol Sci 2024; 25:8151. [PMID: 39125719 PMCID: PMC11311346 DOI: 10.3390/ijms25158151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Apostasia fujianica belongs to the genus Apostasia and is part of the basal lineage in the phylogenetic tree of the Orchidaceae. Currently, there are only ten reported complete mitochondrial genomes in orchids, which greatly hinders the understanding of mitochondrial evolution in Orchidaceae. Therefore, we assembled and annotated the mitochondrial genome of A. fujianica, which has a length of 573,612 bp and a GC content of 44.5%. We annotated a total of 44 genes, including 30 protein-coding genes, 12 tRNA genes, and two rRNA genes. We also performed relative synonymous codon usage (RSCU) analysis, repeat sequence analysis, intergenomic transfer (IGT) analysis, and Ka/Ks analysis for A. fujianica and conducted RNA editing site analysis on the mitochondrial genomes of eight orchid species. We found that most protein-coding genes are under purifying selection, but nad6 is under positive selection, with a Ka/Ks value of 1.35. During the IGT event in A. fujianica's mitogenome, the trnN-GUU, trnD-GUC, trnW-CCA, trnP-UGG, and psaJ genes were identified as having transferred from the plastid to the mitochondrion. Compared to other monocots, the family Orchidaceae appears to have lost the rpl10, rpl14, sdh3, and sdh4 genes. Additionally, to further elucidate the evolutionary relationships among monocots, we constructed a phylogenetic tree based on the complete mitogenomes of monocots. Our study results provide valuable data on the mitogenome of A. fujianica and lay the groundwork for future research on genetic variation, evolutionary relationships, and breeding of Orchidaceae.
Collapse
Affiliation(s)
- Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoting Luo
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ye Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shi-Jie Ke
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
38
|
Hirata R, Mogi Y, Takahashi K, Nozaki H, Higashiyama T, Yoshida Y. Simple prerequisite of presequence for mitochondrial protein import in the unicellular red alga Cyanidioschyzon merolae. J Cell Sci 2024; 137:jcs262042. [PMID: 38940185 PMCID: PMC11298712 DOI: 10.1242/jcs.262042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024] Open
Abstract
Mitochondrial biogenesis relies on hundreds of proteins that are derived from genes encoded in the nucleus. According to the characteristic properties of N-terminal targeting peptides (TPs) and multi-step authentication by the protein translocase called the TOM complex, nascent polypeptides satisfying the requirements are imported into mitochondria. However, it is unknown whether eukaryotic cells with a single mitochondrion per cell have a similar complexity of presequence requirements for mitochondrial protein import compared to other eukaryotes with multiple mitochondria. Based on putative mitochondrial TP sequences in the unicellular red alga Cyanidioschyzon merolae, we designed synthetic TPs and showed that functional TPs must have at least one basic residue and a specific amino acid composition, although their physicochemical properties are not strictly determined. Combined with the simple composition of the TOM complex in C. merolae, our results suggest that a regional positive charge in TPs is verified solely by TOM22 for mitochondrial protein import in C. merolae. The simple authentication mechanism indicates that the monomitochondrial C. merolae does not need to increase the cryptographic complexity of the lock-and-key mechanism for mitochondrial protein import.
Collapse
Affiliation(s)
- Riko Hirata
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuko Mogi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kohei Takahashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Biodiversity Division, National Institute for Environmental Studies, Ibaraki 305-8506, Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yamato Yoshida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Japan Science and Technology Agency (JST), PRESTO, Tokyo 113-0033, Japan
| |
Collapse
|
39
|
Abstract
Coronavirus Disease-19 (COVID-19) pandemic is caused by SARS-CoV-2 that has infected more than 600 million people and killed more than 6 million people worldwide. This infection affects mainly certain groups of people that have high susceptibility to present severe COVID-19 due to comorbidities. Moreover, the long-COVID-19 comprises a series of symptoms that may remain in some patients for months after infection that further compromises their health. Thus, since this pandemic is profoundly affecting health, economy, and social life of societies, a deeper understanding of viral replication cycle could help to envisage novel therapeutic alternatives that limit or stop COVID-19. Several findings have unexpectedly discovered that mitochondria play a critical role in SARS-CoV-2 cell infection. Indeed, it has been suggested that this organelle could be the origin of its replication niches, the double membrane vesicles (DMV). In this regard, mitochondria derived vesicles (MDV), involved in mitochondria quality control, discovered almost 15 years ago, comprise a subpopulation characterized by a double membrane. MDV shedding is induced by mitochondrial stress, and it has a fast assembly dynamic, reason that perhaps has precluded their identification in electron microscopy or tomography studies. These and other features of MDV together with recent SARS-CoV-2 protein interactome and other findings link SARS-CoV-2 to mitochondria and support that these vesicles are the precursors of SARS-CoV-2 induced DMV. In this work, the morphological, biochemical, molecular, and cellular evidence that supports this hypothesis is reviewed and integrated into the current model of SARS-CoV-2 cell infection. In this scheme, some relevant questions are raised as pending topics for research that would help in the near future to test this hypothesis. The intention of this work is to provide a novel framework that could open new possibilities to tackle SARS-CoV-2 pandemic through mitochondria and DMV targeted therapies.
Collapse
Affiliation(s)
- Pavel Montes de Oca-B
- Neurociencia Cognitiva, Instituto de Fisiologia-UNAM, CDMX, CDMX, 04510, Mexico
- Unidad de Neurobiologia Dinamica, Instituto Nacional de Neurologia y Neurocirugia, CDMX, CDMX, 14269, Mexico
| |
Collapse
|
40
|
Lee YT, Senturk M, Guan Y, Wang MC. Bacteria-organelle communication in physiology and disease. J Cell Biol 2024; 223:e202310134. [PMID: 38748249 PMCID: PMC11096858 DOI: 10.1083/jcb.202310134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/03/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Bacteria, omnipresent in our environment and coexisting within our body, exert dual beneficial and pathogenic influences. These microorganisms engage in intricate interactions with the human body, impacting both human health and disease. Simultaneously, certain organelles within our cells share an evolutionary relationship with bacteria, particularly mitochondria, best known for their energy production role and their dynamic interaction with each other and other organelles. In recent years, communication between bacteria and mitochondria has emerged as a new mechanism for regulating the host's physiology and pathology. In this review, we delve into the dynamic communications between bacteria and host mitochondria, shedding light on their collaborative regulation of host immune response, metabolism, aging, and longevity. Additionally, we discuss bacterial interactions with other organelles, including chloroplasts, lysosomes, and the endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Yi-Tang Lee
- Waisman Center, University of Wisconsin, Madison, WI, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Integrative Program of Molecular and Biochemical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Mumine Senturk
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Youchen Guan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Meng C. Wang
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
41
|
Laird M, Ku JC, Raiten J, Sriram S, Moore M, Li Y. Mitochondrial metabolism regulation and epigenetics in hypoxia. Front Physiol 2024; 15:1393232. [PMID: 38915781 PMCID: PMC11194441 DOI: 10.3389/fphys.2024.1393232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/13/2024] [Indexed: 06/26/2024] Open
Abstract
The complex and dynamic interaction between cellular energy control and gene expression modulation is shown by the intersection between mitochondrial metabolism and epigenetics in hypoxic environments. Poor oxygen delivery to tissues, or hypoxia, is a basic physiological stressor that sets off a series of reactions in cells to adapt and endure oxygen-starved environments. Often called the "powerhouse of the cell," mitochondria are essential to cellular metabolism, especially regarding producing energy through oxidative phosphorylation. The cellular response to hypoxia entails a change in mitochondrial metabolism to improve survival, including epigenetic modifications that control gene expression without altering the underlying genome. By altering the expression of genes involved in angiogenesis, cell survival, and metabolism, these epigenetic modifications help cells adapt to hypoxia. The sophisticated interplay between mitochondrial metabolism and epigenetics in hypoxia is highlighted by several important points, which have been summarized in the current article. Deciphering the relationship between mitochondrial metabolism and epigenetics during hypoxia is essential to understanding the molecular processes that regulate cellular adaptation to reduced oxygen concentrations.
Collapse
Affiliation(s)
- Madison Laird
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Jennifer C. Ku
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Jacob Raiten
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Sashwat Sriram
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Megan Moore
- Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| | - Yong Li
- Department of Orthopaedic Surgery, Biomedical Engineering, Western Michigan University Homer Stryker School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
42
|
Zhang J, Liu G, Wei J. Assembly and comparative analysis of the first complete mitochondrial genome of Setaria italica. PLANTA 2024; 260:23. [PMID: 38850310 DOI: 10.1007/s00425-024-04386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/10/2024] [Indexed: 06/10/2024]
Abstract
MAIN CONCLUSION In this study, we assembled the first complete mitochondrial genome of Setaria italica and confirmed the multi-branched architecture. The foxtail millet (Setaria italica) holds significant agricultural importance, particularly in arid and semi-arid regions. It plays a pivotal role in diversifying dietary patterns and shaping planting strategies. Although the chloroplast genome of S. italica has been elucidated in recent studies, the complete mitochondrial genome remains largely unexplored. In this study, we employed PacBio HiFi sequencing platforms to sequence and assemble the complete mitochondrial genome. The mitochondrial genome spans a total length of 446,614 base pairs and harbors a comprehensive set of genetic elements, including 33 unique protein-coding genes (PCGs), encompassing 24 unique mitochondrial core genes and 9 variable genes, along with 20 transfer RNA (tRNA) genes and 3 ribosomal RNA (rRNA) genes. Our analysis of mitochondrial PCGs revealed a pronounced codon usage preference. For instance, the termination codon exhibits a marked preference for UAA, while alanine (Ala) exhibits a preference for GCU, and glutamine (Gln) favors CAA. Notably, the maximum Relative Synonymous Codon Usage (RSCU) values for cysteine (Cys) and phenylalanine (Phe) are both below 1.2, indicating a lack of strong codon usage preference for these amino acids. Phylogenetic analyses consistently place S. italica in close evolutionary proximity to Chrysopogon zizanioides, relative to other Panicoideae plants. Collinearity analysis showed that a total of 39 fragments were identified to display homology with both the mitochondrial and chloroplast genomes. A total of 417 potential RNA-editing sites were discovered across the 33 mitochondrial PCGs. Notably, all these editing events involved the conversion of cytosine (C) to uracil (U). Through the employment of PCR validation coupled with Sanger sequencing for the anticipated editing sites of these codons, RNA-editing events were conclusively identified at two specific loci: nad4L-2 and atp6-1030. The results of this study provide a pivotal foundation for advanced genomic breeding research in foxtail millet. Furthermore, they impart essential insights that will be instrumental for forthcoming investigations into the evolutionary and molecular dynamics of Panicoideae species.
Collapse
Affiliation(s)
- Jiewei Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Guiming Liu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Jianhua Wei
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
43
|
Marinov GK, Ramalingam V, Greenleaf WJ, Kundaje A. An updated compendium and reevaluation of the evidence for nuclear transcription factor occupancy over the mitochondrial genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597442. [PMID: 38895386 PMCID: PMC11185660 DOI: 10.1101/2024.06.04.597442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In most eukaryotes, mitochondrial organelles contain their own genome, usually circular, which is the remnant of the genome of the ancestral bacterial endosymbiont that gave rise to modern mitochondria. Mitochondrial genomes are dramatically reduced in their gene content due to the process of endosymbiotic gene transfer to the nucleus; as a result most mitochondrial proteins are encoded in the nucleus and imported into mitochondria. This includes the components of the dedicated mitochondrial transcription and replication systems and regulatory factors, which are entirely distinct from the information processing systems in the nucleus. However, since the 1990s several nuclear transcription factors have been reported to act in mitochondria, and previously we identified 8 human and 3 mouse transcription factors (TFs) with strong localized enrichment over the mitochondrial genome using ChIP-seq (Chromatin Immunoprecipitation) datasets from the second phase of the ENCODE (Encyclopedia of DNA Elements) Project Consortium. Here, we analyze the greatly expanded in the intervening decade ENCODE compendium of TF ChIP-seq datasets (a total of 6,153 ChIP experiments for 942 proteins, of which 763 are sequence-specific TFs) combined with interpretative deep learning models of TF occupancy to create a comprehensive compendium of nuclear TFs that show evidence of association with the mitochondrial genome. We find some evidence for chrM occupancy for 50 nuclear TFs and two other proteins, with bZIP TFs emerging as most likely to be playing a role in mitochondria. However, we also observe that in cases where the same TF has been assayed with multiple antibodies and ChIP protocols, evidence for its chrM occupancy is not always reproducible. In the light of these findings, we discuss the evidential criteria for establishing chrM occupancy and reevaluate the overall compendium of putative mitochondrial-acting nuclear TFs.
Collapse
Affiliation(s)
- Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
44
|
Bernardino Gomes TM, Vincent AE, Menger KE, Stewart JB, Nicholls TJ. Mechanisms and pathologies of human mitochondrial DNA replication and deletion formation. Biochem J 2024; 481:683-715. [PMID: 38804971 PMCID: PMC11346376 DOI: 10.1042/bcj20230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Human mitochondria possess a multi-copy circular genome, mitochondrial DNA (mtDNA), that is essential for cellular energy metabolism. The number of copies of mtDNA per cell, and their integrity, are maintained by nuclear-encoded mtDNA replication and repair machineries. Aberrant mtDNA replication and mtDNA breakage are believed to cause deletions within mtDNA. The genomic location and breakpoint sequences of these deletions show similar patterns across various inherited and acquired diseases, and are also observed during normal ageing, suggesting a common mechanism of deletion formation. However, an ongoing debate over the mechanism by which mtDNA replicates has made it difficult to develop clear and testable models for how mtDNA rearrangements arise and propagate at a molecular and cellular level. These deletions may impair energy metabolism if present in a high proportion of the mtDNA copies within the cell, and can be seen in primary mitochondrial diseases, either in sporadic cases or caused by autosomal variants in nuclear-encoded mtDNA maintenance genes. These mitochondrial diseases have diverse genetic causes and multiple modes of inheritance, and show notoriously broad clinical heterogeneity with complex tissue specificities, which further makes establishing genotype-phenotype relationships challenging. In this review, we aim to cover our current understanding of how the human mitochondrial genome is replicated, the mechanisms by which mtDNA replication and repair can lead to mtDNA instability in the form of large-scale rearrangements, how rearranged mtDNAs subsequently accumulate within cells, and the pathological consequences when this occurs.
Collapse
Affiliation(s)
- Tiago M. Bernardino Gomes
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- NHS England Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Amy E. Vincent
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Katja E. Menger
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - James B. Stewart
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| |
Collapse
|
45
|
Bennett GM, Kwak Y, Maynard R. Endosymbioses Have Shaped the Evolution of Biological Diversity and Complexity Time and Time Again. Genome Biol Evol 2024; 16:evae112. [PMID: 38813885 PMCID: PMC11154151 DOI: 10.1093/gbe/evae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Life on Earth comprises prokaryotes and a broad assemblage of endosymbioses. The pages of Molecular Biology and Evolution and Genome Biology and Evolution have provided an essential window into how these endosymbiotic interactions have evolved and shaped biological diversity. Here, we provide a current perspective on this knowledge by drawing on decades of revelatory research published in Molecular Biology and Evolution and Genome Biology and Evolution, and insights from the field at large. The accumulated work illustrates how endosymbioses provide hosts with novel phenotypes that allow them to transition between adaptive landscapes to access environmental resources. Such endosymbiotic relationships have shaped and reshaped life on Earth. The early serial establishment of mitochondria and chloroplasts through endosymbioses permitted massive upscaling of cellular energetics, multicellularity, and terrestrial planetary greening. These endosymbioses are also the foundation upon which all later ones are built, including everything from land-plant endosymbioses with fungi and bacteria to nutritional endosymbioses found in invertebrate animals. Common evolutionary mechanisms have shaped this broad range of interactions. Endosymbionts generally experience adaptive and stochastic genome streamlining, the extent of which depends on several key factors (e.g. mode of transmission). Hosts, in contrast, adapt complex mechanisms of resource exchange, cellular integration and regulation, and genetic support mechanisms to prop up degraded symbionts. However, there are significant differences between endosymbiotic interactions not only in how partners have evolved with each other but also in the scope of their influence on biological diversity. These differences are important considerations for predicting how endosymbioses will persist and adapt to a changing planet.
Collapse
Affiliation(s)
- Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
- National Science Foundation Biological Integration Institute—INSITE, University of California, Merced, CA, USA
| | - Younghwan Kwak
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
- National Science Foundation Biological Integration Institute—INSITE, University of California, Merced, CA, USA
| | - Reo Maynard
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| |
Collapse
|
46
|
Kim KH, Lee CB. Socialized mitochondria: mitonuclear crosstalk in stress. Exp Mol Med 2024; 56:1033-1042. [PMID: 38689084 PMCID: PMC11148012 DOI: 10.1038/s12276-024-01211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 05/02/2024] Open
Abstract
Traditionally, mitochondria are considered sites of energy production. However, recent studies have suggested that mitochondria are signaling organelles that are involved in intracellular interactions with other organelles. Remarkably, stressed mitochondria appear to induce a beneficial response that restores mitochondrial function and cellular homeostasis. These mitochondrial stress-centered signaling pathways have been rapidly elucidated in multiple organisms. In this review, we examine current perspectives on how mitochondria communicate with the rest of the cell, highlighting mitochondria-to-nucleus (mitonuclear) communication under various stresses. Our understanding of mitochondria as signaling organelles may provide new insights into disease susceptibility and lifespan extension.
Collapse
Affiliation(s)
- Kyung Hwa Kim
- Department of Health Sciences, The Graduate School of Dong-A University, 840 Hadan-dong, Saha-gu, Busan, 49315, Korea.
| | - Cho Bi Lee
- Department of Health Sciences, The Graduate School of Dong-A University, 840 Hadan-dong, Saha-gu, Busan, 49315, Korea
| |
Collapse
|
47
|
Shen B, Shen A, Liu L, Tan Y, Li S, Tan Z. Assembly and comparative analysis of the complete multichromosomal mitochondrial genome of Cymbidium ensifolium, an orchid of high economic and ornamental value. BMC PLANT BIOLOGY 2024; 24:255. [PMID: 38594641 PMCID: PMC11003039 DOI: 10.1186/s12870-024-04962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Orchidaceae is one of the largest groups of angiosperms, and most species have high economic value and scientific research value due to their ornamental and medicinal properties. In China, Chinese Cymbidium is a popular ornamental orchid with high economic value and a long history. However, to date, no detailed information on the mitochondrial genome of any species of Chinese Cymbidium has been published. RESULTS Here, we present the complete assembly and annotation of the mitochondrial genome of Cymbidium ensifolium (L.) Sw. The mitogenome of C. ensifolium was 560,647 bp in length and consisted of 19 circular subgenomes ranging in size from 21,995 bp to 48,212 bp. The genome encoded 35 protein-coding genes, 36 tRNAs, 3 rRNAs, and 3405 ORFs. Repeat sequence analysis and prediction of RNA editing sites revealed a total of 915 dispersed repeats, 162 simple repeats, 45 tandem repeats, and 530 RNA editing sites. Analysis of codon usage showed a preference for codons ending in A/T. Interorganellar DNA transfer was identified in 13 of the 19 chromosomes, with plastid-derived DNA fragments representing 6.81% of the C. ensifolium mitochondrial genome. The homologous fragments of the mitochondrial genome and nuclear genome were also analysed. Comparative analysis showed that the GC content was conserved, but the size, structure, and gene content of the mitogenomes varied greatly among plants with multichromosomal mitogenome structure. Phylogenetic analysis based on the mitogenomes reflected the evolutionary and taxonomic statuses of C. ensifolium. Interestingly, compared with the mitogenomes of Cymbidium lancifolium Hook. and Cymbidium macrorhizon Lindl., the mitogenome of C. ensifolium lost 8 ribosomal protein-coding genes. CONCLUSION In this study, we assembled and annotated the mitogenome of C. ensifolium and compared it with the mitogenomes of other Liliidae and plants with multichromosomal mitogenome structures. Our findings enrich the mitochondrial genome database of orchid plants and reveal the rapid structural evolution of Cymbidium mitochondrial genomes, highlighting the potential for mitochondrial genes to help decipher plant evolutionary history.
Collapse
Affiliation(s)
- Baoming Shen
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Airong Shen
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Lina Liu
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Yun Tan
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Sainan Li
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China
| | - Zhuming Tan
- Institute of Forest and Grass Cultivation, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha City, 410004, China.
| |
Collapse
|
48
|
Cao J, Luo Y, Chen Y, Wu Z, Zhang J, Wu Y, Hu W. Maternal mitochondrial function affects paternal mitochondrial inheritance in Drosophila. Genetics 2024; 226:iyae014. [PMID: 38290047 PMCID: PMC10990420 DOI: 10.1093/genetics/iyae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024] Open
Abstract
The maternal inheritance of mitochondria is a widely accepted paradigm, and mechanisms that prevent paternal mitochondria transmission to offspring during spermatogenesis and postfertilization have been described. Although certain species do retain paternal mitochondria, the factors affecting paternal mitochondria inheritance in these cases are unclear. More importantly, the evolutionary benefit of retaining paternal mitochondria and their ultimate fate are unknown. Here we show that transplanted exogenous paternal D. yakuba mitochondria can be transmitted to offspring when maternal mitochondria are dysfunctional in D. melanogaster. Furthermore, we show that the preserved paternal mitochondria are functional, and can be stably inherited, such that the proportion of paternal mitochondria increases gradually in subsequent generations. Our work has important implications that paternal mitochondria inheritance should not be overlooked as a genetic phenomenon in evolution, especially when paternal mitochondria are of significant differences from the maternal mitochondria or the maternal mitochondria are functionally abnormal. Our results improve the understanding of mitochondrial inheritance and provide a new model system for its study.
Collapse
Affiliation(s)
- Jinguo Cao
- Department of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Mitochondrial Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yuying Luo
- Department of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yonghe Chen
- Department of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Zhaoqi Wu
- Department of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Jiting Zhang
- Department of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yi Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ministry of Education, Ganzhou 341000, China
- Key Laboratory of Genetic and Developmental Related Diseases, Gannan Medical University, Ganzhou 341000, China
| | - Wen Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ministry of Education, Ganzhou 341000, China
| |
Collapse
|
49
|
Xing Y, Peng A, Yang J, Cheng Z, Yue Y, Liu F, Li F, Liu Y, Liu Q. Precisely Activating cGAS-STING Pathway with a Novel Peptide-Based Nanoagonist to Potentiate Immune Checkpoint Blockade Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309583. [PMID: 38233164 PMCID: PMC11022698 DOI: 10.1002/advs.202309583] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/05/2024] [Indexed: 01/19/2024]
Abstract
As an essential intracellular immune activation pathway, the cGAS-STING pathway has attracted broad attention in cancer treatment. However, low bioavailability, nonspecificity, and adverse effects of small molecule STING agonists severely limit their therapeutic efficacy and in vivo application. In this study, a peptide-based STING agonist is first proposed, and KLA is screened out to activate the cGAS-STING pathway by promoting mitochondrial DNA (mtDNA) leakage. To precisely activate the cGAS-STING pathway and block the PD-1/PD-L1 pathway, a multi-stimuli activatable peptide nanodrug (MAPN) is developed for the effective delivery of KLA and PD-L1 antagonist peptide (CVR). With rational design, MAPN achieved the site-specific release of KLA and CVR in response to multiple endogenous stimuli, simultaneously activating the cGAS-STING pathway and blocking PD-1/PD-L1 pathway, ultimately initiating robust and durable T cell anti-tumor immunity with a tumor growth inhibition rate of 78% and extending the median survival time of B16F10 tumor-bearing mice to 40 days. Overall, antimicrobial peptides, which can promote mtDNA leakage through damaging mitochondrial membranes, may be potential alternatives for small molecule STING agonists and giving a new insight for the design of novel STING agonists. Furthermore, MAPN presents a universal delivery platform for the effective synergy of multiple peptides.
Collapse
Affiliation(s)
- Yumeng Xing
- School of PharmacyAnhui Medical UniversityHefei230032China
- College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Ao Peng
- School of PharmacyAnhui Medical UniversityHefei230032China
| | - Jianhui Yang
- School of PharmacyAnhui Medical UniversityHefei230032China
| | - Zhifei Cheng
- School of PharmacyAnhui University of Chinese MedicineHefei230012China
| | - Yi Yue
- School of PharmacyAnhui Medical UniversityHefei230032China
| | - Feilong Liu
- School of PharmacyAnhui Medical UniversityHefei230032China
| | - Fenghe Li
- School of PharmacyAnhui Medical UniversityHefei230032China
| | - Yang Liu
- College of ChemistryNankai UniversityTianjin300071China
| | - Qi Liu
- School of PharmacyAnhui Medical UniversityHefei230032China
| |
Collapse
|
50
|
He D, Li Y, Yuan C, Pei X, Damaris RN, Yu H, Qian B, Liu Y, Yi B, Huang C, Zeng J. Characterization of the CMS genetic regulation through comparative complete mitochondrial genome sequencing in Nicotiana tabacum. THE PLANT GENOME 2024; 17:e20409. [PMID: 37961811 DOI: 10.1002/tpg2.20409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/01/2023] [Accepted: 10/14/2023] [Indexed: 11/15/2023]
Abstract
Mitochondrial genomes (mitogenomes) of flowering plants vary greatly in structure and size, which can lead to frequent gene mutation, rearrangement, or recombination, then result in the cytoplasmic male sterile (CMS) mutants. In tobacco (Nicotiana tabacum), suaCMS lines are widely used in heterosis breeding; however, the related genetic regulations are not very clear. In this study, the cytological observation indicated that the pollen abortion of tobacco suaCMS(HD) occurred at the very early stage of the stamen primordia differentiation. In this study, the complete mitochondrial genomes of suaCMS(HD) and its maintainer HD were sequenced using the PacBio and Illumina Hiseq technology. The total length of the assembled mitogenomes of suaCMS(HD) and HD was 494,317 bp and 430,694 bp, respectively. Comparative analysis indicated that the expanded 64 K bases in suaCMS(HD) were mainly located in noncoding regions, and 23 and 21 big syntenic blocks (>5000 bp) were found in suaCMS(HD) and HD with a series of repeats. Electron transport chain-related genes were highly conserved in two mitogenomes, except five genes (ATP4, ATP6, COX2, CcmFC, and SDH3) with substantial substitutions. Three suaCMS(HD)-specific genes, orf261, orf291, and orf433, were screened. Sequence analysis and RT-PCR verification showed that they were unique to suaCMS(HD). Further gene location analysis and protein property prediction indicated that all the three genes were likely candidates for suaCMS(HD). This study provides new insight into understanding the suaCMS mechanism and is useful for improving tobacco breeding.
Collapse
Affiliation(s)
- Dongli He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yifan Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Cheng Yuan
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Xiaoxiong Pei
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | | | - Haiqin Yu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Bao Qian
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Yong Liu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Jianmin Zeng
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| |
Collapse
|