1
|
Sleutel M, Sonani RR, Miller JG, Wang F, Socorro AG, Chen Y, Martin R, Demeler B, Rudolph MJ, Alva V, Remaut H, Egelman EH, Conticello VP. Donor Strand Complementation and Calcium Ion Coordination Drive the Chaperone-free Polymerization of Archaeal Cannulae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630787. [PMID: 39803462 PMCID: PMC11722229 DOI: 10.1101/2024.12.30.630787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cannulae are tubular protein filaments that accumulate on the extracellular surface of the hyperthermophilic archaeon Pyrodictium abyssi during cell division. Cannulae have been postulated to act as a primitive extracellular matrix through which cells could communicate or exchange material, although their native biological function remains obscure. Here, we report cryoEM structural analyses of ex vivo cannulae and of in vitro protein assemblies derived from recombinant cannula-like proteins. Three-dimensional reconstructions of P. abyssi cannulae revealed that the structural interactions between protomers in the native and recombinant filaments were based on donor strand complementation, a form of non-covalent polymerization in which a donor β-strand from one subunit is inserted into an acceptor groove in a β-sheet of a neighboring subunit. Donor strand complementation in cannulae is reinforced through calcium ion coordination at the interfaces between structural subunits in the respective assemblies. While donor strand complementation occurs during the assembly of chaperone-usher pili, this process requires the participation of accessory proteins that are localized in the outer membrane. In contrast, we demonstrate that calcium ions can induce assembly of cannulae in the absence of other co-factors. Crystallographic analysis of a recombinant cannula-like protein monomer provided evidence that calcium ion binding primes the precursor for donor strand invasion through unblocking of the acceptor groove. Bioinformatic analysis suggested that structurally homologous cannula-like proteins occurred within the genomes of other hyperthermophilic archaea and were encompassed within the TasA superfamily of biomatrix proteins. CryoEM structural analyses of tubular filaments derived from in vitro assembly of a recombinant cannula-like protein from an uncultured Hyperthermus species revealed a common mode of assembly to the Pyrodictium cannulae, in which donor strand complementation and calcium ion binding stabilized longitudinal and lateral assembly in tubular 2D sheets.
Collapse
Affiliation(s)
- Mike Sleutel
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Ravi R Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jessalyn G Miller
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- New York Structural Biology Center, 89 Convent Avenue New York, NY, 10027
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
- Biochemistry and Molecular Genetics Department, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | | | - Yang Chen
- New York Structural Biology Center, 89 Convent Avenue New York, NY, 10027
| | - Reece Martin
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Michael J Rudolph
- New York Structural Biology Center, 89 Convent Avenue New York, NY, 10027
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology Tübingen, Tübingen 72076, Germany
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Vincent P Conticello
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- The Robert P. Apkarian Integrated Electron Microscopy Core (IEMC), Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
2
|
Ochner H, Böhning J, Wang Z, Tarafder AK, Caspy I, Bharat TAM. Structure of the Pseudomonas aeruginosa PAO1 Type IV pilus. PLoS Pathog 2024; 20:e1012773. [PMID: 39666767 DOI: 10.1371/journal.ppat.1012773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/26/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024] Open
Abstract
Type IV pili (T4Ps) are abundant in many bacterial and archaeal species, where they play important roles in both surface sensing and twitching motility, with implications for adhesion, biofilm formation and pathogenicity. While Type IV pilus (T4P) structures from other organisms have been previously solved, a high-resolution structure of the native, fully assembled T4P of Pseudomonas aeruginosa, a major human pathogen, would be valuable in a drug discovery context. Here, we report a 3.2 Å-resolution structure of the P. aeruginosa PAO1 T4P determined by electron cryomicroscopy (cryo-EM). PilA subunits constituting the T4P exhibit a classical pilin fold featuring an extended N-terminal α-helix linked to a C-terminal globular β-sheet-containing domain, which are packed tightly along the pilus, in line with models derived from previous cryo-EM data of the P. aeruginosa PAK strain. The N-terminal helices constitute the pilus core where they stabilise the tubular assembly via hydrophobic interactions. The α-helical core of the pilus is surrounded by the C-terminal globular domain of PilA that coats the outer surface of the pilus, mediating interactions with the surrounding environment. Comparison of the P. aeruginosa PAO1 T4P with T4P structures from other organisms, both at the level of the pilin subunits and the fully assembled pili, confirms previously described common architectural principles whilst highlighting key differences between members of this abundant class of prokaryotic filaments. This study provides a structural framework for understanding the molecular and cell biology of these important cellular appendages mediating interaction of prokaryotes to surfaces.
Collapse
Affiliation(s)
- Hannah Ochner
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Jan Böhning
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Zhexin Wang
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Abul K Tarafder
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Ido Caspy
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Tanmay A M Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| |
Collapse
|
3
|
Wang T, Li Z, Xu K, Huang W, Huang G, Zhang QC, Yan N. CryoSeek: A strategy for bioentity discovery using cryoelectron microscopy. Proc Natl Acad Sci U S A 2024; 121:e2417046121. [PMID: 39382995 PMCID: PMC11494351 DOI: 10.1073/pnas.2417046121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Structural biology is experiencing a paradigm shift from targeted structural determination to structure-guided discovery of previously uncharacterized bioentities. We employed cryoelectron microscopy (cryo-EM) to analyze filtered water samples collected from the Tsinghua Lotus Pond. Here, we report the structural determination and characterization of two highly similar helical fibrils, named TLP-1a and TLP-1b, each approximately 8 nm in diameter with a 15-Å wide tunnel. These fibrils are assembled from a similar protein protomer, whose structure was conveniently automodeled in CryoNet. The protomer structure does not match any available experimental structures, but shares the same fold as many predicted structures of unknown functions. The amino-terminal β strand of protomer n + 4 inserts into a cleft in protomer n to complete an immunoglobulin (Ig)-like domain. This packing mechanism, known as donor-strand exchange (DSE), has been observed in several bacterial pilus assemblies, wherein the donor is protomer n + 1. Despite distinct shape and thickness, this reminiscence suggests that TLP-1a/b fibrils may represent uncharacterized bacterial pili. Our study demonstrates an emerging paradigm in structural biology, where high-resolution structural determination precedes and drives the identification and characterization of completely unknown objects.
Collapse
Affiliation(s)
- Tongtong Wang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Zhangqiang Li
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Kui Xu
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Wenze Huang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Gaoxingyu Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou310024, Zhejiang, China
| | - Qiangfeng Cliff Zhang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
- Institute of Bio-Architecture and Bio-Interactions, Shenzhen Medical Academy of Research and Translation, Shenzhen518107, Guangdong, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen518132, Guangdong, China
| |
Collapse
|
4
|
Bitter RM, Zimmerman MI, Summers BT, Pinkner JS, Dodson KW, Hultgren SJ, Yuan P. Structural basis for adhesin secretion by the outer-membrane usher in type 1 pili. Proc Natl Acad Sci U S A 2024; 121:e2410594121. [PMID: 39316053 PMCID: PMC11459180 DOI: 10.1073/pnas.2410594121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Gram-negative bacteria produce chaperone-usher pathway pili, which are extracellular protein fibers tipped with an adhesive protein that binds to a receptor with stereochemical specificity to determine host and tissue tropism. The outer-membrane usher protein, together with a periplasmic chaperone, assembles thousands of pilin subunits into a highly ordered pilus fiber. The tip adhesin in complex with its cognate chaperone activates the usher to allow extrusion across the outer membrane. The structural requirements to translocate the adhesin through the usher pore from the periplasm to the extracellular space remains incompletely understood. Here, we present a cryoelectron microscopy structure of a quaternary tip complex in the type 1 pilus system from Escherichia coli, which consists of the usher FimD, chaperone FimC, adhesin FimH, and the tip adapter FimF. In this structure, the usher FimD is caught in the act of secreting its cognate adhesin FimH. Comparison with previous structures depicting the adhesin either first entering or having completely exited the usher pore reveals remarkable structural plasticity of the two-domain adhesin during translocation. Moreover, a piliation assay demonstrated that the structural plasticity, enabled by a flexible linker between the two domains, is a prerequisite for adhesin translocation through the usher pore and thus pilus biogenesis. Overall, this study provides molecular details of adhesin translocation across the outer membrane and elucidates a unique conformational state adopted by the adhesin during stepwise secretion through the usher pore. This study elucidates fundamental aspects of FimH and usher dynamics critical in urinary tract infections and is leading to antibiotic-sparing therapeutics.
Collapse
Affiliation(s)
- Ryan M. Bitter
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Maxwell I. Zimmerman
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO63110
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St Louis, MO63110
| | - Brock T. Summers
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO63110
| | - Jerome S. Pinkner
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University in St Louis, St Louis, MO63110
| | - Karen W. Dodson
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University in St Louis, St Louis, MO63110
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University in St Louis, St Louis, MO63110
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO63110
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY10029
| |
Collapse
|
5
|
Lopatto EDB, Pinkner JS, Sanick DA, Potter RF, Liu LX, Bazán Villicaña J, Tamadonfar KO, Ye Y, Zimmerman MI, Gualberto NC, Dodson KW, Janetka JW, Hunstad DA, Hultgren SJ. Conformational ensembles in Klebsiella pneumoniae FimH impact uropathogenesis. Proc Natl Acad Sci U S A 2024; 121:e2409655121. [PMID: 39288182 PMCID: PMC11441496 DOI: 10.1073/pnas.2409655121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/01/2024] [Indexed: 09/19/2024] Open
Abstract
Klebsiella pneumoniae is an important pathogen causing difficult-to-treat urinary tract infections (UTIs). Over 1.5 million women per year suffer from recurrent UTI, reducing quality of life and causing substantial morbidity and mortality, especially in the hospital setting. Uropathogenic E. coli (UPEC) is the most prevalent cause of UTI. Like UPEC, K. pneumoniae relies on type 1 pili, tipped with the mannose-binding adhesin FimH, to cause cystitis. However, K. pneumoniae FimH is a poor binder of mannose, despite a mannose-binding pocket identical to UPEC FimH. FimH is composed of two domains that are in an equilibrium between tense (low-affinity) and relaxed (high-affinity) conformations. Substantial interdomain interactions in the tense conformation yield a low-affinity, deformed mannose-binding pocket, while domain-domain interactions are broken in the relaxed state, resulting in a high-affinity binding pocket. Using crystallography, we identified the structural basis by which domain-domain interactions direct the conformational equilibrium of K. pneumoniae FimH, which is strongly shifted toward the low-affinity tense state. Removal of the pilin domain restores mannose binding to the lectin domain, thus showing that poor mannose binding by K. pneumoniae FimH is not an inherent feature of the mannose-binding pocket. Phylogenetic analyses of K. pneumoniae genomes found that FimH sequences are highly conserved. However, we surveyed a collection of K. pneumoniae isolates from patients with long-term indwelling catheters and identified isolates that possessed relaxed higher-binding FimH variants, which increased K. pneumoniae fitness in bladder infection models, suggesting that long-term residence within the urinary tract may select for higher-binding FimH variants.
Collapse
Affiliation(s)
- Edward D. B. Lopatto
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Jerome S. Pinkner
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Denise A. Sanick
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Robert F. Potter
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO63110
| | - Lily X. Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Jesús Bazán Villicaña
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Kevin O. Tamadonfar
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Yijun Ye
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Maxwell I. Zimmerman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Nathaniel C. Gualberto
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Karen W. Dodson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - James W. Janetka
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| | - David A. Hunstad
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO63110
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
6
|
Katzschmann A, Haupts U, Reimann A, Settele F, Gloser-Bräunig M, Fiedler E, Parthier C. Ubiquitin-derived artificial binding proteins targeting oncofetal fibronectin reveal scaffold plasticity by β-strand slippage. Commun Biol 2024; 7:907. [PMID: 39068227 PMCID: PMC11283464 DOI: 10.1038/s42003-024-06569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Affilin proteins, artificial binding proteins based on the ubiquitin scaffold, have been generated by directed protein evolution to yield de-novo variants that bind the extra-domain B (EDB) of oncofetal fibronectin, an established marker of tumor neovasculature. The crystal structures of two EDB-specific Affilin variants reveal a striking structural plasticity of the ubiquitin scaffold, characterised by β-strand slippage, leading to different negative register shifts of the β5 strands. This process recruits amino acid residues from β5 towards the N-terminus to an adjacent loop region and subsequent residues into β5, respectively, remodeling the binding interface and leading to target specificity and affinity. Protein backbone alterations resulting from β-strand register shifts, as seen in the ubiquitin fold, can pose additional challenges to protein engineering as structural evidence of these events is still limited and they are difficult to predict. However, they can surface under the selection pressure of directed evolution and suggest that backbone plasticity allowing β-strand slippages can increase structural diversity, enhancing the evolutionary potential of a protein scaffold.
Collapse
Affiliation(s)
- Anja Katzschmann
- Navigo Proteins GmbH, Heinrich-Damerow-Straße 1, 06120, Halle (Saale), Germany
| | - Ulrich Haupts
- Navigo Proteins GmbH, Heinrich-Damerow-Straße 1, 06120, Halle (Saale), Germany
| | - Anja Reimann
- Navigo Proteins GmbH, Heinrich-Damerow-Straße 1, 06120, Halle (Saale), Germany
| | - Florian Settele
- Navigo Proteins GmbH, Heinrich-Damerow-Straße 1, 06120, Halle (Saale), Germany
| | | | - Erik Fiedler
- Navigo Proteins GmbH, Heinrich-Damerow-Straße 1, 06120, Halle (Saale), Germany.
| | - Christoph Parthier
- Martin-Luther-University Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Kurt-Mothes-Straße 3a, 06120, Halle (Saale), Germany.
| |
Collapse
|
7
|
Hong L, Kortemme T. An integrative approach to protein sequence design through multiobjective optimization. PLoS Comput Biol 2024; 20:e1011953. [PMID: 38991035 PMCID: PMC11265717 DOI: 10.1371/journal.pcbi.1011953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/23/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
With recent methodological advances in the field of computational protein design, in particular those based on deep learning, there is an increasing need for frameworks that allow for coherent, direct integration of different models and objective functions into the generative design process. Here we demonstrate how evolutionary multiobjective optimization techniques can be adapted to provide such an approach. With the established Non-dominated Sorting Genetic Algorithm II (NSGA-II) as the optimization framework, we use AlphaFold2 and ProteinMPNN confidence metrics to define the objective space, and a mutation operator composed of ESM-1v and ProteinMPNN to rank and then redesign the least favorable positions. Using the two-state design problem of the foldswitching protein RfaH as an in-depth case study, and PapD and calmodulin as examples of higher-dimensional design problems, we show that the evolutionary multiobjective optimization approach leads to significant reduction in the bias and variance in RfaH native sequence recovery, compared to a direct application of ProteinMPNN. We suggest that this improvement is due to three factors: (i) the use of an informative mutation operator that accelerates the sequence space exploration, (ii) the parallel, iterative design process inherent to the genetic algorithm that improves upon the ProteinMPNN autoregressive sequence decoding scheme, and (iii) the explicit approximation of the Pareto front that leads to optimal design candidates representing diverse tradeoff conditions. We anticipate this approach to be readily adaptable to different models and broadly relevant for protein design tasks with complex specifications.
Collapse
Affiliation(s)
- Lu Hong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States of America
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| |
Collapse
|
8
|
Singh S, Singh S, Trivedi M, Dwivedi M. An insight into MDR Acinetobacter baumannii infection and its pathogenesis: Potential therapeutic targets and challenges. Microb Pathog 2024; 192:106674. [PMID: 38714263 DOI: 10.1016/j.micpath.2024.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Acinetobacter baumannii is observed as a common species of Gram-negative bacteria that exist in soil and water. Despite being accepted as a typical component of human skin flora, it has become an important opportunistic pathogen, especially in healthcare settings. The pathogenicity of A. baumannii is attributed to its virulence factors, which include adhesins, pili, lipopolysaccharides, outer membrane proteins, iron uptake systems, autotransporter, secretion systems, phospholipases etc. These elements provide the bacterium the ability to cling to and penetrate host cells, get past the host immune system, and destroy tissue. Its infection is a major contributor to human pathophysiological conditions including pneumonia, bloodstream infections, urinary tract infections, and surgical site infections. It is challenging to treat infections brought on by this pathogen since this bacterium has evolved to withstand numerous drugs and further emergence of drug-resistant A. baumannii results in higher rates of morbidity and mortality. The long-term survival of this bacterium on surfaces of medical supplies and hospital furniture facilitates its frequent spread in humans from one habitat to another. There is a need for urgent investigations to find effective drug targets for A. baumannii as well as designing novel drugs to reduce the survival and spread of infection. In the current review, we represent the specific features, pathogenesis, and molecular intricacies of crucial drug targets of A. baumannii. This would also assist in proposing strategies and alternative therapies for the prevention and treatment of A. baumannii infections and their spread.
Collapse
Affiliation(s)
- Sukriti Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Sushmita Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Mala Trivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India; Research Cell, Amity University Uttar Pradesh, Lucknow, 226028, India.
| |
Collapse
|
9
|
Zyla DS, Wiegand T, Bachmann P, Zdanowicz R, Giese C, Meier BH, Waksman G, Hospenthal MK, Glockshuber R. The assembly platform FimD is required to obtain the most stable quaternary structure of type 1 pili. Nat Commun 2024; 15:3032. [PMID: 38589417 PMCID: PMC11001860 DOI: 10.1038/s41467-024-47212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Type 1 pili are important virulence factors of uropathogenic Escherichia coli that mediate bacterial attachment to epithelial cells in the urinary tract. The pilus rod is comprised of thousands of copies of the main structural subunit FimA and is assembled in vivo by the assembly platform FimD. Although type 1 pilus rods can self-assemble from FimA in vitro, this reaction is slower and produces structures with lower kinetic stability against denaturants compared to in vivo-assembled rods. Our study reveals that FimD-catalysed in vitro-assembled type 1 pilus rods attain a similar stability as pilus rods assembled in vivo. Employing structural, biophysical and biochemical analyses, we show that in vitro assembly reactions lacking FimD produce pilus rods with structural defects, reducing their stability against dissociation. Overall, our results indicate that FimD is not only required for the catalysis of pilus assembly, but also to control the assembly of the most stable quaternary structure.
Collapse
Affiliation(s)
- Dawid S Zyla
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
- La Jolla Institute for Immunology, 9420 Athena Cir, La Jolla, CA, 92037, USA
| | - Thomas Wiegand
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| | - Paul Bachmann
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Rafal Zdanowicz
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Christoph Giese
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| | - Beat H Meier
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 7HX, UK
| | - Manuela K Hospenthal
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland.
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 7HX, UK.
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093, Zürich, Switzerland
| |
Collapse
|
10
|
Agha MM, Uversky VN. Morphological features and types of aggregated structures. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:85-109. [PMID: 38811090 DOI: 10.1016/bs.pmbts.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
In vivo, protein aggregation arises due to incorrect folding or misfolding. The aggregation of proteins into amyloid fibrils is the characteristic feature of various misfolding diseases known as amyloidosis, such as Alzheimer's and Parkinson's disease. The heterogeneous nature of these fibrils restricts the extent to which their structure may be characterized. Advancements in techniques, such as X-ray diffraction, cryo-electron microscopy, and solid-state NMR have yielded intricate insights into structures of different amyloid fibrils. These studies have unveiled a diverse range of polymorphic structures that typically conform to the cross-β amyloid pattern. This chapter provides a concise overview of the information acquired in the field of protein aggregation, with particular focus on amyloids.
Collapse
Affiliation(s)
- Mansoureh Mirza Agha
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
11
|
Lei ZC, Wang X, Yang L, Qu H, Sun Y, Yang Y, Li W, Zhang WB, Cao XY, Fan C, Li G, Wu J, Tian ZQ. What can molecular assembly learn from catalysed assembly in living organisms? Chem Soc Rev 2024; 53:1892-1914. [PMID: 38230701 DOI: 10.1039/d3cs00634d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Molecular assembly is the process of organizing individual molecules into larger structures and complex systems. The self-assembly approach is predominantly utilized in creating artificial molecular assemblies, and was believed to be the primary mode of molecular assembly in living organisms as well. However, it has been shown that the assembly of many biological complexes is "catalysed" by other molecules, rather than relying solely on self-assembly. In this review, we summarize these catalysed-assembly (catassembly) phenomena in living organisms and systematically analyse their mechanisms. We then expand on these phenomena and discuss related concepts, including catalysed-disassembly and catalysed-reassembly. Catassembly proves to be an efficient and highly selective strategy for synergistically controlling and manipulating various noncovalent interactions, especially in hierarchical molecular assemblies. Overreliance on self-assembly may, to some extent, hinder the advancement of artificial molecular assembly with powerful features. Furthermore, inspired by the biological catassembly phenomena, we propose guidelines for designing artificial catassembly systems and developing characterization and theoretical methods, and review pioneering works along this new direction. Overall, this approach may broaden and deepen our understanding of molecular assembly, enabling the construction and control of intelligent assembly systems with advanced functionality.
Collapse
Affiliation(s)
- Zhi-Chao Lei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinchang Wang
- School of Electronic Science and Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Yibin Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Wei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xiao-Yu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science, Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiarui Wu
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| |
Collapse
|
12
|
Ahmad I, Nadeem A, Mushtaq F, Zlatkov N, Shahzad M, Zavialov AV, Wai SN, Uhlin BE. Csu pili dependent biofilm formation and virulence of Acinetobacter baumannii. NPJ Biofilms Microbiomes 2023; 9:101. [PMID: 38097635 PMCID: PMC10721868 DOI: 10.1038/s41522-023-00465-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Acinetobacter baumannii has emerged as one of the most common extensive drug-resistant nosocomial bacterial pathogens. Not only can the bacteria survive in hospital settings for long periods, but they are also able to resist adverse conditions. However, underlying regulatory mechanisms that allow A. baumannii to cope with these conditions and mediate its virulence are poorly understood. Here, we show that bi-stable expression of the Csu pili, along with the production of poly-N-acetyl glucosamine, regulates the formation of Mountain-like biofilm-patches on glass surfaces to protect bacteria from the bactericidal effect of colistin. Csu pilus assembly is found to be an essential component of mature biofilms formed on glass surfaces and of pellicles. By using several microscopic techniques, we show that clinical isolates of A. baumannii carrying abundant Csu pili mediate adherence to epithelial cells. In addition, Csu pili suppressed surface-associated motility but enhanced colonization of bacteria into the lungs, spleen, and liver in a mouse model of systemic infection. The screening of c-di-GMP metabolizing protein mutants of A. baumannii 17978 for the capability to adhere to epithelial cells led us to identify GGDEF/EAL protein AIS_2337, here denoted PdeB, as a major regulator of Csu pili-mediated virulence and biofilm formation. Moreover, PdeB was found to be involved in the type IV pili-regulated robustness of surface-associated motility. Our findings suggest that the Csu pilus is not only a functional component of mature A. baumannii biofilms but also a major virulence factor promoting the initiation of disease progression by mediating bacterial adherence to epithelial cells.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden.
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan.
| | - Aftab Nadeem
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden
| | - Fizza Mushtaq
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Nikola Zlatkov
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - Anton V Zavialov
- Department of Biochemistry, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | - Sun Nyunt Wai
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-90187, Umeå, Sweden
| | - Bernt Eric Uhlin
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden
| |
Collapse
|
13
|
Giese C, Puorger C, Ignatov O, Bečárová Z, Weber ME, Schärer MA, Capitani G, Glockshuber R. Stochastic chain termination in bacterial pilus assembly. Nat Commun 2023; 14:7718. [PMID: 38001074 PMCID: PMC10673952 DOI: 10.1038/s41467-023-43449-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Adhesive type 1 pili from uropathogenic Escherichia coli strains are filamentous, supramolecular protein complexes consisting of a short tip fibrillum and a long, helical rod formed by up to several thousand copies of the major pilus subunit FimA. Here, we reconstituted the entire type 1 pilus rod assembly reaction in vitro, using all constituent protein subunits in the presence of the assembly platform FimD, and identified the so-far uncharacterized subunit FimI as an irreversible assembly terminator. We provide a complete, quantitative model of pilus rod assembly kinetics based on the measured rate constants of FimD-catalyzed subunit incorporation. The model reliably predicts the length distribution of assembled pilus rods as a function of the ratio between FimI and the main pilus subunit FimA and is fully consistent with the length distribution of membrane-anchored pili assembled in vivo. The results show that the natural length distribution of adhesive pili formed via the chaperone-usher pathway results from a stochastic chain termination reaction. In addition, we demonstrate that FimI contributes to anchoring the pilus to the outer membrane and report the crystal structures of (i) FimI in complex with the assembly chaperone FimC, (ii) the FimI-FimC complex bound to the N-terminal domain of FimD, and (iii) a ternary complex between FimI, FimA and FimC that provides structural insights on pilus assembly termination and pilus anchoring by FimI.
Collapse
Affiliation(s)
- Christoph Giese
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland.
| | - Chasper Puorger
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
- Institute for Chemistry and Bioanalytics, University of Applied Sciences and Arts Northwestern Switzerland, 4132, Muttenz, Switzerland
| | - Oleksandr Ignatov
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
- V.I. Grishchenko Clinic of Reproductive Medicine, Blahovishchenska st.25, 61052, Kharkiv, Ukraine
| | - Zuzana Bečárová
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Marco E Weber
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Martin A Schärer
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Guido Capitani
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
14
|
Van Eyssen SR, Samarkina A, Isbilen O, Zeden MS, Volkan E. FimH and Type 1 Pili Mediated Tumor Cell Cytotoxicity by Uropathogenic Escherichia coli In Vitro. Pathogens 2023; 12:751. [PMID: 37375441 DOI: 10.3390/pathogens12060751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Uropathogenic Escherichia coli express hairlike proteinaceous surface projections, known as chaperone-usher pathway (CUP) pili. Type 1 pili are CUP pili with well-established pathogenic properties. The FimH adhesin subunit of type 1 pili plays a key role in the pathogenesis of urinary tract infections (UTIs) as it mediates the adhesion of the bacteria to urothelial cells of the bladder. In this study, two breast cancer cell lines, MDA-MB-231 and MCF-7, were used to demonstrate the cytotoxic activities of type 1 piliated uropathogenic E. coli UTI89 on breast cancer cells in a type 1 pili and FimH-mediated manner. E. coli were grown in static and shaking conditions to induce or inhibit optimal type 1 pili biogenesis, respectively. Deletion constructs of UTI89 ΔfimH and a complemented strain (UTI89 ΔfimH/pfimH) were further utilized to genetically assess the effect of type 1 pili and FimH on cancer cell viability. After incubation with the different strains, cytotoxicity was measured using trypan blue exclusion assays. UTI89 grown statically caused significant cytotoxicity in both breast cancer cell lines whereas cytotoxicity was reduced when the cells were incubated with bacteria grown under shaking conditions. The incubation of both MDA-MB-231 and MCF-7 with UTI89 Δfim operon or ΔfimH showed a significant reduction in cytotoxicity exerted by the bacterial strains, revealing that type 1 pili expression was necessary for cytotoxicity. Complementing the ΔfimH strain with pfimH reversed the phenotype, leading to a significant increase in cytotoxicity. Incubating type 1 pili expressing bacteria with the competitive FimH inhibitor D-mannose before cancer cell treatment also led to a significant reduction in cytotoxicity on both MDA-MB-231 and MCF-7 cancer cells, compared to vehicle control or D-mannose alone, indicating the requirement for functional FimH for cytotoxicity. Overall, our results reveal that, as opposed to UTI89 lacking type 1 pili, type 1 piliated UTI89 causes significant cancer cell mortality in a FimH-mediated manner, that is decreased with D-mannose.
Collapse
Affiliation(s)
- Shelly Roselyn Van Eyssen
- Biotechnology Research Center, Cyprus International University, Northern Cyprus, Mersin 10, 99258 Nicosia, Turkey
| | - Anastasia Samarkina
- Biotechnology Research Center, Cyprus International University, Northern Cyprus, Mersin 10, 99258 Nicosia, Turkey
| | - Ovgu Isbilen
- Biotechnology Research Center, Cyprus International University, Northern Cyprus, Mersin 10, 99258 Nicosia, Turkey
- Department of Pharmacy, Faculty of Pharmacy, Cyprus International University, Northern Cyprus, Mersin 10, 99258 Nicosia, Turkey
| | - Merve Suzan Zeden
- Biotechnology Research Center, Cyprus International University, Northern Cyprus, Mersin 10, 99258 Nicosia, Turkey
- Department of Microbiology, School of Biological and Chemical Sciences, University of Galway, H91TK33 Galway, Ireland
| | - Ender Volkan
- Biotechnology Research Center, Cyprus International University, Northern Cyprus, Mersin 10, 99258 Nicosia, Turkey
- Department of Pharmacy, Faculty of Pharmacy, Cyprus International University, Northern Cyprus, Mersin 10, 99258 Nicosia, Turkey
| |
Collapse
|
15
|
Gaines MC, Isupov MN, Sivabalasarma S, Haque RU, McLaren M, Mollat CL, Tripp P, Neuhaus A, Gold VAM, Albers SV, Daum B. Electron cryo-microscopy reveals the structure of the archaeal thread filament. Nat Commun 2022; 13:7411. [PMID: 36456543 PMCID: PMC9715654 DOI: 10.1038/s41467-022-34652-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/02/2022] [Indexed: 12/05/2022] Open
Abstract
Pili are filamentous surface extensions that play roles in bacterial and archaeal cellular processes such as adhesion, biofilm formation, motility, cell-cell communication, DNA uptake and horizontal gene transfer. The model archaeaon Sulfolobus acidocaldarius assembles three filaments of the type-IV pilus superfamily (archaella, archaeal adhesion pili and UV-inducible pili), as well as a so-far uncharacterised fourth filament, named "thread". Here, we report on the cryo-EM structure of the archaeal thread. The filament is highly glycosylated and consists of subunits of the protein Saci_0406, arranged in a head-to-tail manner. Saci_0406 displays structural similarity, but low sequence homology, to bacterial type-I pilins. Thread subunits are interconnected via donor strand complementation, a feature reminiscent of bacterial chaperone-usher pili. However, despite these similarities in overall architecture, archaeal threads appear to have evolved independently and are likely assembled by a distinct mechanism.
Collapse
Affiliation(s)
- Matthew C Gaines
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, Stocker Road, EX4 4QD, Exeter, UK
| | - Michail N Isupov
- Henry Wellcome Building for Biocatalysis, Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, EX4 4QD, Exeter, UK
| | - Shamphavi Sivabalasarma
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Risat Ul Haque
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, Stocker Road, EX4 4QD, Exeter, UK
| | - Mathew McLaren
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, Stocker Road, EX4 4QD, Exeter, UK
| | - Clara L Mollat
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Patrick Tripp
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Alexander Neuhaus
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, Stocker Road, EX4 4QD, Exeter, UK
| | - Vicki A M Gold
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, Stocker Road, EX4 4QD, Exeter, UK
| | - Sonja-Verena Albers
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBBS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK.
- Department of Biosciences, Faculty of Health and Life Sciences, Stocker Road, EX4 4QD, Exeter, UK.
| |
Collapse
|
16
|
Shanmugasundarasamy T, Karaiyagowder Govindarajan D, Kandaswamy K. A review on pilus assembly mechanisms in Gram-positive and Gram-negative bacteria. Cell Surf 2022; 8:100077. [PMID: 35493982 PMCID: PMC9046445 DOI: 10.1016/j.tcsw.2022.100077] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/17/2022] Open
Abstract
The surface of Gram-positive and Gram-negative bacteria contains long hair-like proteinaceous protrusion known as pili or fimbriae. Historically, pilin proteins were considered to play a major role in the transfer of genetic material during bacterial conjugation. Recent findings however elucidate their importance in virulence, biofilm formation, phage transduction, and motility. Therefore, it is crucial to gain mechanistic insights on the subcellular assembly of pili and the localization patterns of their subunit proteins (major and minor pilins) that aid the macromolecular pilus assembly at the bacterial surface. In this article, we review the current knowledge of pilus assembly mechanisms in a wide range of Gram-positive and Gram-negative bacteria, including subcellular localization patterns of a few pilin subunit proteins and their role in virulence and pathogenesis.
Collapse
|
17
|
Pakharukova N, Malmi H, Tuittila M, Dahlberg T, Ghosal D, Chang YW, Myint SL, Paavilainen S, Knight SD, Lamminmäki U, Uhlin BE, Andersson M, Jensen G, Zavialov AV. Archaic chaperone-usher pili self-secrete into superelastic zigzag springs. Nature 2022; 609:335-340. [PMID: 35853476 PMCID: PMC9452303 DOI: 10.1038/s41586-022-05095-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 07/08/2022] [Indexed: 11/23/2022]
Abstract
Adhesive pili assembled through the chaperone-usher pathway are hair-like appendages that mediate host tissue colonization and biofilm formation of Gram-negative bacteria1-3. Archaic chaperone-usher pathway pili, the most diverse and widespread chaperone-usher pathway adhesins, are promising vaccine and drug targets owing to their prevalence in the most troublesome multidrug-resistant pathogens1,4,5. However, their architecture and assembly-secretion process remain unknown. Here, we present the cryo-electron microscopy structure of the prototypical archaic Csu pilus that mediates biofilm formation of Acinetobacter baumannii-a notorious multidrug-resistant nosocomial pathogen. In contrast to the thick helical tubes of the classical type 1 and P pili, archaic pili assemble into an ultrathin zigzag architecture secured by an elegant clinch mechanism. The molecular clinch provides the pilus with high mechanical stability as well as superelasticity, a property observed for the first time, to our knowledge, in biomolecules, while enabling a more economical and faster pilus production. Furthermore, we demonstrate that clinch formation at the cell surface drives pilus secretion through the outer membrane. These findings suggest that clinch-formation inhibitors might represent a new strategy to fight multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Natalia Pakharukova
- Joint Biotechnology Laboratory, MediCity, Faculty of Medicine, University of Turku, Turku, Finland
| | - Henri Malmi
- Joint Biotechnology Laboratory, MediCity, Faculty of Medicine, University of Turku, Turku, Finland
| | - Minna Tuittila
- Joint Biotechnology Laboratory, MediCity, Faculty of Medicine, University of Turku, Turku, Finland
| | - Tobias Dahlberg
- Department of Physics, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Debnath Ghosal
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Yi-Wei Chang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Si Lhyam Myint
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Sari Paavilainen
- Joint Biotechnology Laboratory, MediCity, Faculty of Medicine, University of Turku, Turku, Finland
| | - Stefan David Knight
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Urpo Lamminmäki
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Bernt Eric Uhlin
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Magnus Andersson
- Department of Physics, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Grant Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anton V Zavialov
- Joint Biotechnology Laboratory, MediCity, Faculty of Medicine, University of Turku, Turku, Finland.
| |
Collapse
|
18
|
Massier S, Robin B, Mégroz M, Wright A, Harper M, Hayes B, Cosette P, Broutin I, Boyce JD, Dé E, Hardouin J. Phosphorylation of Extracellular Proteins in Acinetobacter baumannii in Sessile Mode of Growth. Front Microbiol 2021; 12:738780. [PMID: 34659171 PMCID: PMC8517400 DOI: 10.3389/fmicb.2021.738780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 11/21/2022] Open
Abstract
Acinetobacter baumannii is a problematic nosocomial pathogen owing to its increasing resistance to antibiotics and its great ability to survive in the hospital environment, which is linked to its capacity to form biofilms. Structural and functional investigations of post-translational modifications, such as phosphorylations, may lead to identification of candidates for therapeutic targets against this pathogen. Here, we present the first S/T/Y phosphosecretome of two A. baumannii strains, the reference strain ATCC 17978 and the virulent multi-drug resistant strain AB0057, cultured in two modes of growth (planktonic and biofilm) using TiO2 chromatography followed by high resolution mass spectrometry. In ATCC 17978, we detected a total of 137 (97 phosphoproteins) and 52 (33 phosphoproteins) phosphosites in biofilm and planktonic modes of growth, respectively. Similarly, in AB0057, 155 (119 phosphoproteins) and 102 (74 phosphoproteins) phosphosites in biofilm and planktonic modes of growth were identified, respectively. Both strains in the biofilm mode of growth showed a higher number of phosphosites and phosphoproteins compared to planktonic growth. Several phosphorylated sites are localized in key regions of proteins involved in either drug resistance (β-lactamases), adhesion to host tissues (pilins), or protein secretion (Hcp). Site-directed mutagenesis of the Hcp protein, essential for type VI secretion system-mediated interbacterial competition, showed that four of the modified residues are essential for type VI secretion system activity.
Collapse
Affiliation(s)
- Sébastien Massier
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- PISSARO Proteomic Facility, IRIB, Mont-Saint-Aignan, France
| | - Brandon Robin
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
| | - Marianne Mégroz
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Amy Wright
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Marina Harper
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Brooke Hayes
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Pascal Cosette
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- PISSARO Proteomic Facility, IRIB, Mont-Saint-Aignan, France
| | | | - John D. Boyce
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Emmanuelle Dé
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
| | - Julie Hardouin
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- PISSARO Proteomic Facility, IRIB, Mont-Saint-Aignan, France
| |
Collapse
|
19
|
Pradhan B, Liedtke J, Sleutel M, Lindbäck T, Zegeye ED, O´Sullivan K, Llarena A, Brynildsrud O, Aspholm M, Remaut H. Endospore Appendages: a novel pilus superfamily from the endospores of pathogenic Bacilli. EMBO J 2021; 40:e106887. [PMID: 34031903 PMCID: PMC8408608 DOI: 10.15252/embj.2020106887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 11/09/2022] Open
Abstract
Bacillus cereus sensu lato is a group of Gram-positive endospore-forming bacteria with high ecological diversity. Their endospores are decorated with micrometer-long appendages of unknown identity and function. Here, we isolate endospore appendages (Enas) from the food poisoning outbreak strain B. cereus NVH 0075-95 and find proteinaceous fibers of two main morphologies: S- and L-Ena. By using cryoEM and 3D helical reconstruction of S-Enas, we show these to represent a novel class of Gram-positive pili. S-Enas consist of single domain subunits with jellyroll topology that are laterally stacked by β-sheet augmentation. S-Enas are longitudinally stabilized by disulfide bonding through N-terminal connector peptides that bridge the helical turns. Together, this results in flexible pili that are highly resistant to heat, drought, and chemical damage. Phylogenomic analysis reveals a ubiquitous presence of the ena-gene cluster in the B. cereus group, which include species of clinical, environmental, and food importance. We propose Enas to represent a new class of pili specifically adapted to the harsh conditions encountered by bacterial spores.
Collapse
Affiliation(s)
- Brajabandhu Pradhan
- Structural and Molecular MicrobiologyVIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
- Department of Bioengineering SciencesStructural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Janine Liedtke
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
| | - Mike Sleutel
- Structural and Molecular MicrobiologyVIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
- Department of Bioengineering SciencesStructural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Toril Lindbäck
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
| | - Ephrem Debebe Zegeye
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
| | - Kristin O´Sullivan
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
| | - Ann‐Katrin Llarena
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
| | - Ola Brynildsrud
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
- Division of Infection Control and Environmental HealthNorwegian Institute of Public HealthOsloNorway
| | - Marina Aspholm
- Department of Paraclinical SciencesFaculty of Veterinary MedicineThe Norwegian University of Life SciencesÅsNorway
| | - Han Remaut
- Structural and Molecular MicrobiologyVIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
- Department of Bioengineering SciencesStructural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
20
|
Du M, Yuan Z, Werneburg GT, Henderson NS, Chauhan H, Kovach A, Zhao G, Johl J, Li H, Thanassi DG. Processive dynamics of the usher assembly platform during uropathogenic Escherichia coli P pilus biogenesis. Nat Commun 2021; 12:5207. [PMID: 34471127 PMCID: PMC8410936 DOI: 10.1038/s41467-021-25522-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022] Open
Abstract
Uropathogenic Escherichia coli assemble surface structures termed pili or fimbriae to initiate infection of the urinary tract. P pili facilitate bacterial colonization of the kidney and pyelonephritis. P pili are assembled through the conserved chaperone-usher pathway. Much of the structural and functional understanding of the chaperone-usher pathway has been gained through investigations of type 1 pili, which promote binding to the bladder and cystitis. In contrast, the structural basis for P pilus biogenesis at the usher has remained elusive. This is in part due to the flexible and variable-length P pilus tip fiber, creating structural heterogeneity, and difficulties isolating stable P pilus assembly intermediates. Here, we circumvent these hindrances and determine cryo-electron microscopy structures of the activated PapC usher in the process of secreting two- and three-subunit P pilus assembly intermediates, revealing processive steps in P pilus biogenesis and capturing new conformational dynamics of the usher assembly machine. Escherichia coli form pili structures in order to initiate infection of the urinary tract. Here, Thanassi et al., have solved the structures of pili assembly intermediates and provided insights into their biogenesis and assembly.
Collapse
Affiliation(s)
- Minge Du
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Zuanning Yuan
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Glenn T Werneburg
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, NY, USA.,Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, NY, USA.,Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nadine S Henderson
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, NY, USA.,Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, NY, USA
| | - Hemil Chauhan
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, NY, USA.,Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, NY, USA.,SUNY Downstate College of Medicine, Brooklyn, New York, NY, USA
| | - Amanda Kovach
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Gongpu Zhao
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Jessica Johl
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, NY, USA.,Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, NY, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| | - David G Thanassi
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, NY, USA. .,Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, NY, USA.
| |
Collapse
|
21
|
Exploiting pilus-mediated bacteria-host interactions for health benefits. Mol Aspects Med 2021; 81:100998. [PMID: 34294411 DOI: 10.1016/j.mam.2021.100998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/30/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023]
Abstract
Surface pili (or fimbriae) are an important but conspicuous adaptation of several genera and species of Gram-negative and Gram-positive bacteria. These long and non-flagellar multi-subunit adhesins mediate the initial contact that a bacterium has with a host or environment, and thus have come to be regarded as a key colonization factor for virulence activity in pathogens or niche adaptation in commensals. Pili in pathogenic bacteria are well recognized for their roles in the adhesion to host cells, colonization of tissues, and establishment of infection. As an 'anti-adhesive' ploy, targeting pilus-mediated attachment for disruption has become a potentially effective alternative to using antibiotics. In this review, we give a description of the several structurally distinct bacterial pilus types thus far characterized, and as well offer details about the intricacy of their individual structure, assembly, and function. With a molecular understanding of pilus biogenesis and pilus-mediated host interactions also provided, we go on to describe some of the emerging new approaches and compounds that have been recently developed to prevent the adhesion, colonization, and infection of piliated bacterial pathogens.
Collapse
|
22
|
Cross-Reactivity, Epitope Mapping, and Potency of Monoclonal Antibodies to Class 5 Fimbrial Tip Adhesins of Enterotoxigenic Escherichia coli. Infect Immun 2020; 88:IAI.00246-20. [PMID: 32839190 PMCID: PMC7573445 DOI: 10.1128/iai.00246-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/08/2020] [Indexed: 12/26/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a leading diarrheagenic bacterial pathogen among travelers and children in resource-limited regions. Adherence to host intestinal cells mediated by ETEC fimbriae is believed to be a critical first step in ETEC pathogenesis. These fimbriae are categorized into related classes based on sequence similarity, with members of the class 5 fimbrial family being the best characterized. The eight related members of the ETEC class 5 fimbrial family are subdivided into three subclasses (5a, 5b, and 5c) that share similar structural arrangements, including a fimbrial tip adhesin. Enterotoxigenic Escherichia coli (ETEC) is a leading diarrheagenic bacterial pathogen among travelers and children in resource-limited regions. Adherence to host intestinal cells mediated by ETEC fimbriae is believed to be a critical first step in ETEC pathogenesis. These fimbriae are categorized into related classes based on sequence similarity, with members of the class 5 fimbrial family being the best characterized. The eight related members of the ETEC class 5 fimbrial family are subdivided into three subclasses (5a, 5b, and 5c) that share similar structural arrangements, including a fimbrial tip adhesin. However, sequence variability among the class 5 adhesins may hinder the generation of cross-protective antibodies. To better understand functional epitopes of the class 5 adhesins and their ability to induce intraclass antibody responses, we produced 28 antiadhesin monoclonal antibodies (MAbs) to representative adhesins CfaE, CsbD, and CotD, respectively. We determined the MAb cross-reactivities, localized the epitopes, and measured functional activities as potency in inhibition of hemagglutination induced by class 5 fimbria-bearing ETEC. The MAbs’ reactivities to a panel of class 5 adhesins in enzyme-linked immunosorbent assays (ELISAs) revealed several reactivity patterns, including individual adhesin specificity, intrasubclass specificity, intersubclass specificity, and class-wide cross-reactivity, suggesting that some conserved epitopes, including two conserved arginines, are shared by the class 5 adhesins. However, the cross-reactive MAbs had functional activities limited to strains expressing colonization factor antigen I (CFA/I), coli surface antigen 17 (CS17), or CS1, suggesting that the breadth of functional activities of the MAbs was more restricted than the repertoire of cross-reactivities measured by ELISA. The results imply that multivalent adhesin-based ETEC vaccines or prophylactics need more than one active component to reach broad protection.
Collapse
|
23
|
He LH, Wang H, Liu Y, Kang M, Li T, Li CC, Tong AP, Zhu YB, Song YJ, Savarino SJ, Prouty MG, Xia D, Bao R. Chaperone-tip adhesin complex is vital for synergistic activation of CFA/I fimbriae biogenesis. PLoS Pathog 2020; 16:e1008848. [PMID: 33007034 PMCID: PMC7531860 DOI: 10.1371/journal.ppat.1008848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 07/30/2020] [Indexed: 02/05/2023] Open
Abstract
Colonization factor CFA/I defines the major adhesive fimbriae of enterotoxigenic Escherichia coli and mediates bacterial attachment to host intestinal epithelial cells. The CFA/I fimbria consists of a tip-localized minor adhesive subunit, CfaE, and thousands of copies of the major subunit CfaB polymerized into an ordered helical rod. Biosynthesis of CFA/I fimbriae requires the assistance of the periplasmic chaperone CfaA and outer membrane usher CfaC. Although the CfaE subunit is proposed to initiate the assembly of CFA/I fimbriae, how it performs this function remains elusive. Here, we report the establishment of an in vitro assay for CFA/I fimbria assembly and show that stabilized CfaA-CfaB and CfaA-CfaE binary complexes together with CfaC are sufficient to drive fimbria formation. The presence of both CfaA-CfaE and CfaC accelerates fimbria formation, while the absence of either component leads to linearized CfaB polymers in vitro. We further report the crystal structure of the stabilized CfaA-CfaE complex, revealing features unique for biogenesis of Class 5 fimbriae.
Collapse
Affiliation(s)
- Li-hui He
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Wang
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Yang Liu
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Mei Kang
- Department of Laboratory medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-cheng Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ai-ping Tong
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-bo Zhu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying-jie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Stephen J. Savarino
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Michael G. Prouty
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Walker JN, Poppler LH, Pinkner CL, Hultgren SJ, Myckatyn TM. Establishment and Characterization of Bacterial Infection of Breast Implants in a Murine Model. Aesthet Surg J 2020; 40:516-528. [PMID: 31259380 DOI: 10.1093/asj/sjz190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Staphylococcus epidermidis and Pseudomonas aeruginosa are the most common causes of Gram-positive and Gram-negative breast implant-associated infection. Little is known about how these bacteria infect breast implants as a function of implant surface characteristics and timing of infection. OBJECTIVES The aim of this work was to establish a mouse model for studying the impact of various conditions on breast implant infection. METHODS Ninety-one mice were implanted with 273 breast implant shells and infected with S. epidermidis or P. aeruginosa. Smooth, microtextured, and macrotextured breast implant shells were implanted in each mouse. Bacterial inoculation occurred during implantation or 1 day later. Implants were retrieved 1 or 7 days later. Explanted breast implant shells were sonicated, cultured, and colony-forming units determined or analyzed with scanning electron microscopy. RESULTS P. aeruginosa could be detected on all device surfaces at 1- and 7- days post infection (dpi), when mice were implanted and infected concurrently or when they were infected 1- day after implantation. However, P. aeruginosa infection was more robust on implant shells retrieved at 7 dpi and particularly on the macrotextured devices that were infected 1 day post implantation. S. epidermidis was mostly cleared from implants when mice were infected and implanted concurrently. Other the other hand, S. epidermidis could be detected on all device surfaces at 1 dpi and 2 days post implantation. However, S. epidermdis infection was suppressed by 7 dpi and 8 days post implantation. CONCLUSIONS S. epidermidis required higher inoculating doses to cause infection and was cleared within 7 days. P. aeruginosa infected at lower inoculating doses, with robust biofilms noted 7 days later.
Collapse
|
25
|
Abstract
The translocation of proteins across membranes is a fundamental cellular function. Bacteria have evolved a striking array of pathways for delivering proteins into or across cytoplasmic membranes and, when present, outer membranes. Translocated proteins can form part of the membrane landscape, reside in the periplasmic space situated between the inner and outer membranes of Gram-negative bacteria, deposit on the cell surface, or be released to the extracellular milieu or injected directly into target cells. One protein translocation system, the general secretory pathway, is conserved in all domains of life. A second, the twin-arginine translocation pathway, is also phylogenetically distributed among most bacteria and plant chloroplasts. While all cell types have evolved additional systems dedicated to the translocation of protein cargoes, the number of such systems in bacteria is now known to exceed nine. These dedicated protein translocation systems, which include the types 1 through 9 secretion systems (T1SSs-T9SSs), the chaperone-usher pathway, and type IV pilus system, are the subject of this review. Most of these systems were originally identified and have been extensively characterized in Gram-negative or diderm (two-membrane) species. It is now known that several of these systems also have been adapted to function in Gram-positive or monoderm (single-membrane) species, and at least one pathway is found only in monoderms. This review briefly summarizes the distinctive mechanistic and structural features of each dedicated pathway, as well as the shared properties, that together account for the broad biological diversity of protein translocation in bacteria.
Collapse
Affiliation(s)
- Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St., Houston, TX, USA.
| |
Collapse
|
26
|
Zhang Z, Bai M, Barbosa GO, Chen A, Wei Y, Luo S, Wang X, Wang B, Tsukui T, Li H, Sheppard D, Kornberg TB, Ma DK. Broadly conserved roles of TMEM131 family proteins in intracellular collagen assembly and secretory cargo trafficking. SCIENCE ADVANCES 2020; 6:eaay7667. [PMID: 32095531 PMCID: PMC7015688 DOI: 10.1126/sciadv.aay7667] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Collagen is the most abundant protein in animals. Its dysregulation contributes to aging and many human disorders, including pathological tissue fibrosis in major organs. How premature collagen proteins in the endoplasmic reticulum (ER) assemble and route for secretion remains molecularly undefined. From an RNA interference screen, we identified an uncharacterized Caenorhabditis elegans gene tmem-131, deficiency of which impairs collagen production and activates ER stress response. We find that amino termini of human TMEM131 contain bacterial PapD chaperone-like domains, which recruit premature collagen monomers for proper assembly and secretion. Carboxy termini of TMEM131 interact with TRAPPC8, a component of the TRAPP tethering complex, to drive collagen cargo trafficking from ER to the Golgi. We provide evidence that previously undescribed roles of TMEM131 in collagen recruitment and secretion are evolutionarily conserved in C. elegans, Drosophila, and humans.
Collapse
Affiliation(s)
- Zhe Zhang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Meirong Bai
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Guilherme Oliveira Barbosa
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrew Chen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuehua Wei
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shuo Luo
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Xin Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bingying Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tatsuya Tsukui
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dean Sheppard
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Thomas B. Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dengke K. Ma
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
27
|
Psonis JJ, Chahales P, Henderson NS, Rigel NW, Hoffman PS, Thanassi DG. The small molecule nitazoxanide selectively disrupts BAM-mediated folding of the outer membrane usher protein. J Biol Chem 2019; 294:14357-14369. [PMID: 31391254 PMCID: PMC6768635 DOI: 10.1074/jbc.ra119.009616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/30/2019] [Indexed: 12/11/2022] Open
Abstract
Bacterial pathogens assemble adhesive surface structures termed pili or fimbriae to initiate and sustain infection of host tissues. Uropathogenic Escherichia coli, the primary causative agent of urinary tract infections, expresses type 1 and P pili required for colonization of the bladder and kidney, respectively. These pili are assembled by the conserved chaperone-usher (CU) pathway, in which a periplasmic chaperone works together with an outer membrane (OM) usher protein to build and secrete the pilus fiber. Previously, we found that the small molecule and antiparasitic drug nitazoxanide (NTZ) inhibits CU pathway-mediated pilus biogenesis in E. coli by specifically interfering with proper maturation of the usher protein in the OM. The usher is folded and inserted into the OM by the β-barrel assembly machine (BAM) complex, which in E. coli comprises five proteins, BamA-E. Here, we show that sensitivity of the usher to NTZ is modulated by BAM expression levels and requires the BamB and BamE lipoproteins. Furthermore, a genetic screen for NTZ-resistant bacterial mutants isolated a mutation in the essential BamD lipoprotein. These findings suggest that NTZ selectively interferes with an usher-specific arm of the BAM complex, revealing new details of the usher folding pathway and BAM complex function. Evaluation of a set of NTZ derivatives identified compounds with increased potency and disclosed that NTZ's nitrothiazole ring is critical for usher inhibition. In summary, our findings indicate highly specific effects of NTZ on the usher folding pathway and have uncovered NTZ analogs that specifically decrease usher levels in the OM.
Collapse
Affiliation(s)
- John J Psonis
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| | - Peter Chahales
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| | - Nadine S Henderson
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| | - Nathan W Rigel
- Department of Biology, Hofstra University, Hempstead, New York 11549
| | - Paul S Hoffman
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia 22908
| | - David G Thanassi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
28
|
Zheng W, Andersson M, Mortezaei N, Bullitt E, Egelman E. Cryo-EM structure of the CFA/I pilus rod. IUCRJ 2019; 6:815-821. [PMID: 31576215 PMCID: PMC6760452 DOI: 10.1107/s2052252519007966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/03/2019] [Indexed: 05/04/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) are common agents of diarrhea for travelers and a major cause of mortality in children in developing countries. To attach to intestinal cells ETEC express colonization factors, among them CFA/I, which are the most prevalent factors and are the archetypical representative of class 5 pili. The helical quaternary structure of CFA/I can be unwound under tensile force and it has been shown that this mechanical property helps bacteria to withstand shear forces from fluid motion. We report in this work the CFA/I pilus structure at 4.3 Å resolution from electron cryomicroscopy (cryo-EM) data, and report details of the donor strand complementation. The CfaB pilins modeled into the cryo-EM map allow us to identify the buried surface area between subunits, and these regions are correlated to quaternary structural stability in class 5 and chaperone-usher pili. In addition, from the model built using the EM structure we also predicted that residue 13 (proline) of the N-terminal β-strand could have a major impact on the filament's structural stability. Therefore, we used optical tweezers to measure and compare the stability of the quaternary structure of wild type CFA/I and a point-mutated CFA/I with a propensity for unwinding. We found that pili with this mutated CFA/I require a lower force to unwind, supporting our hypothesis that Pro13 is important for structural stability. The high-resolution CFA/I pilus structure presented in this work and the analysis of structural stability will be useful for the development of novel antimicrobial drugs that target adhesion pili needed for initial attachment and sustained adhesion of ETEC.
Collapse
Affiliation(s)
- Weili Zheng
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | | | | | - Esther Bullitt
- Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA
| | - Edward Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
29
|
Abstract
The chaperone-usher (CU) pathway is a conserved secretion system dedicated to the assembly of a superfamily of virulence-associated surface structures by a wide range of Gram-negative bacteria. Pilus biogenesis by the CU pathway requires two specialized assembly components: a dedicated periplasmic chaperone and an integral outer membrane assembly and secretion platform termed the usher. The CU pathway assembles a variety of surface fibers, ranging from thin, flexible filaments to rigid, rod-like organelles. Pili typically act as adhesins and function as virulence factors that mediate contact with host cells and colonization of host tissues. Pilus-mediated adhesion is critical for early stages of infection, allowing bacteria to establish a foothold within the host. Pili are also involved in modulation of host cell signaling pathways, bacterial invasion into host cells, and biofilm formation. Pili are critical for initiating and sustaining infection and thus represent attractive targets for the development of antivirulence therapeutics. Such therapeutics offer a promising alternative to broad-spectrum antibiotics and provide a means to combat antibiotic resistance and treat infection while preserving the beneficial microbiota. A number of strategies have been taken to develop antipilus therapeutics, including vaccines against pilus proteins, competitive inhibitors of pilus-mediated adhesion, and small molecules that disrupt pilus biogenesis. Here we provide an overview of the function and assembly of CU pili and describe current efforts aimed at interfering with these critical virulence structures.
Collapse
|
30
|
Classical chaperone-usher (CU) adhesive fimbriome: uropathogenic Escherichia coli (UPEC) and urinary tract infections (UTIs). Folia Microbiol (Praha) 2019; 65:45-65. [DOI: 10.1007/s12223-019-00719-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
|
31
|
Abstract
Type 1 and P pili are important virulence factors of uropathogenic Escherichia coli, the leading cause of urinary tract infections. In this issue of Structure, Hospenthal et al. (2017) describe a near-atomic resolution cryo-EM structure of the type 1 pilus rod, providing molecular insights into rod uncoiling in two pili.
Collapse
|
32
|
Abstract
To interact with the external environments, bacteria often display long proteinaceous appendages on their cell surface, called pili or fimbriae. These non-flagellar thread-like structures are polymers composed of covalently or non-covalently interacting repeated pilin subunits. Distinct pilus classes can be identified on basis of their assembly pathways, including chaperone-usher pili, type V pili, type IV pili, curli and fap fibers, conjugative and type IV secretion pili, as well as sortase-mediated pili. Pili play versatile roles in bacterial physiology, and can be involved in adhesion and host cell invasion, DNA and protein secretion and uptake, biofilm formation, cell motility and more. Recent advances in structure determination of components involved in the various pilus systems has enabled a better molecular understanding of their mechanisms of assembly and function. In this chapter we describe the diversity in structure, biogenesis and function of the different pilus systems found in Gram-positive and Gram-negative bacteria, and review their potential as anti-microbial targets.
Collapse
Affiliation(s)
- Magdalena Lukaszczyk
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Brajabandhu Pradhan
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
33
|
Hospenthal MK, Waksman G. The Remarkable Biomechanical Properties of the Type 1 Chaperone-Usher Pilus: A Structural and Molecular Perspective. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0010-2018. [PMID: 30681068 PMCID: PMC11588285 DOI: 10.1128/microbiolspec.psib-0010-2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Indexed: 01/02/2023] Open
Abstract
Chaperone-usher (CU) pili are long, supramolecular protein fibers tethered to the surface of numerous bacterial pathogens. These virulence factors function primarily in bacterial adhesion to host tissues, but they also mediate biofilm formation. Type 1 and P pili of uropathogenic Escherichia coli (UPEC) are the two best-studied CU pilus examples, and here we primarily focus on the former. UPEC can be transmitted to the urinary tract by fecal shedding. It can then ascend up the urinary tract and cause disease by invading and colonizing host tissues of the bladder, causing cystitis, and the kidneys, causing pyelonephritis. FimH is the subunit displayed at the tip of type 1 pili and mediates adhesion to mannosylated host cells via a unique catch-bond mechanism. In response to shear forces caused by urine flow, FimH can transition from a low-affinity to high-affinity binding mode. This clever allosteric mechanism allows UPEC cells to remain tightly attached during periods of urine flow, while loosening their grip to allow dissemination through the urinary tract during urine stasis. Moreover, the bulk of a CU pilus is made up of the rod, which can reversibly uncoil in response to urine flow to evenly spread the tensile forces over the entire pilus length. We here explore the novel structural and mechanistic findings relating to the type 1 pilus FimH catch-bond and rod uncoiling and explain how they function together to enable successful attachment, spread, and persistence in the hostile urinary tract.
Collapse
Affiliation(s)
- Manuela K Hospenthal
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London WC1E 7HX, United Kingdom
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London WC1E 7HX, United Kingdom
| |
Collapse
|
34
|
Omattage NS, Deng Z, Pinkner JS, Dodson KW, Almqvist F, Yuan P, Hultgren SJ. Structural basis for usher activation and intramolecular subunit transfer in P pilus biogenesis in Escherichia coli. Nat Microbiol 2018; 3:1362-1368. [PMID: 30275511 PMCID: PMC6258349 DOI: 10.1038/s41564-018-0255-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/24/2018] [Indexed: 11/16/2022]
Abstract
Chaperone-usher pathway pili are extracellular proteinaceous fibres ubiquitously found on Gram-negative bacteria, and mediate host-pathogen interactions and biofilm formation critical in pathogenesis in numerous human diseases1. During pilus assembly, an outer membrane macromolecular machine called the usher catalyses pilus biogenesis from the individual subunits that are delivered as chaperone-subunit complexes in the periplasm. The usher orchestrates pilus assembly using all five functional domains: a 24-stranded transmembrane β-barrel translocation domain, a β-sandwich plug domain, an amino-terminal periplasmic domain and two carboxy-terminal periplasmic domains (CTD1 and CTD2)2-6. Despite extensive structural and functional characterization, the mechanism by which the usher is activated to initiate pilus biogenesis is unknown. Here, we present the crystal structure of the full-length PapC usher from Escherichia coli in complex with its cognate PapDG chaperone-subunit complex in a pre-activation state, elucidating molecular details of how the usher is specifically engaged by allosteric interactions with its substrate preceding activation and how the usher facilitates the transfer of subunits from the amino-terminal periplasmic domain to the CTDs during pilus assembly. This work elucidates the intricate workings of a molecular machine that catalyses chaperone-usher pathway pilus assembly and opens the door for the development of potent inhibitors to block pilus biogenesis.
Collapse
Affiliation(s)
- Natalie S Omattage
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University in St Louis, St Louis, MO, USA
| | - Zengqin Deng
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Jerome S Pinkner
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University in St Louis, St Louis, MO, USA
| | - Karen W Dodson
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University in St Louis, St Louis, MO, USA
| | - Fredrik Almqvist
- Department of Chemistry, Umeå University, Umeå, Sweden
- Umeå Center for Microbial Research, Umeå University, Umeå, Sweden
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, MO, USA.
- Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, MO, USA.
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO, USA.
- Center for Women's Infectious Disease Research, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
35
|
Pakharukova N, McKenna S, Tuittila M, Paavilainen S, Malmi H, Xu Y, Parilova O, Matthews S, Zavialov AV. Archaic and alternative chaperones preserve pilin folding energy by providing incomplete structural information. J Biol Chem 2018; 293:17070-17080. [PMID: 30228191 DOI: 10.1074/jbc.ra118.004170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/14/2018] [Indexed: 11/06/2022] Open
Abstract
Adhesive pili are external component of fibrous adhesive organelles and help bacteria attach to biotic or abiotic surfaces. The biogenesis of adhesive pili via the chaperone-usher pathway (CUP) is independent of external energy sources. In the classical CUP, chaperones transport assembly-competent pilins in a folded but expanded conformation. During donor-strand exchange, pilins subsequently collapse, producing a tightly packed hydrophobic core and releasing the necessary free energy to drive fiber formation. Here, we show that pilus biogenesis in non-classical, archaic, and alternative CUPs uses a different source of conformational energy. High-resolution structures of the archaic Csu-pili system from Acinetobacter baumannii revealed that non-classical chaperones employ a short donor strand motif that is insufficient to fully complement the pilin fold. This results in chaperone-bound pilins being trapped in a substantially unfolded intermediate. The exchange of this short motif with the longer donor strand from adjacent pilin provides the full steric information essential for folding, and thereby induces a large unfolded-to-folded conformational transition to drive assembly. Our findings may inform the development of anti-adhesion drugs (pilicides) to combat bacterial infections.
Collapse
Affiliation(s)
- Natalia Pakharukova
- From the Department of Chemistry, University of Turku, Joint Biotechnology Laboratory (JBL), Arcanum, Vatselankatu 2, Turku FIN-20500, Finland and
| | - Sophie McKenna
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW72AZ, United Kingdom
| | - Minna Tuittila
- From the Department of Chemistry, University of Turku, Joint Biotechnology Laboratory (JBL), Arcanum, Vatselankatu 2, Turku FIN-20500, Finland and
| | - Sari Paavilainen
- From the Department of Chemistry, University of Turku, Joint Biotechnology Laboratory (JBL), Arcanum, Vatselankatu 2, Turku FIN-20500, Finland and
| | - Henri Malmi
- From the Department of Chemistry, University of Turku, Joint Biotechnology Laboratory (JBL), Arcanum, Vatselankatu 2, Turku FIN-20500, Finland and
| | - Yingqi Xu
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW72AZ, United Kingdom
| | - Olena Parilova
- From the Department of Chemistry, University of Turku, Joint Biotechnology Laboratory (JBL), Arcanum, Vatselankatu 2, Turku FIN-20500, Finland and
| | - Steve Matthews
- the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW72AZ, United Kingdom
| | - Anton V Zavialov
- From the Department of Chemistry, University of Turku, Joint Biotechnology Laboratory (JBL), Arcanum, Vatselankatu 2, Turku FIN-20500, Finland and
| |
Collapse
|
36
|
Handover mechanism of the growing pilus by the bacterial outer-membrane usher FimD. Nature 2018; 562:444-447. [PMID: 30283140 PMCID: PMC6309448 DOI: 10.1038/s41586-018-0587-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022]
|
37
|
Abstract
Nosocomial infections and infections of indwelling devices are major healthcare problems worldwide. These infections are strongly associated with the ability of pathogens to form biofilms on biotic and abiotic surfaces. Panantibiotic-resistant Acinetobacter baumannii is one of the most troublesome pathogens, capable of colonizing medical devices by means of Csu pili, an adhesive organelle that belongs to the widespread class of archaic chaperone–usher pili. Here, we report an atomic-resolution insight into the mechanism of bacterial attachment to abiotic surfaces. We show that archaic pili use a binding mechanism that enables bacterial adhesion to structurally variable substrates. The results suggest a simple and cheap solution to reduce infections of A. baumannii and related pathogens. Acinetobacter baumannii—a leading cause of nosocomial infections—has a remarkable capacity to persist in hospital environments and medical devices due to its ability to form biofilms. Biofilm formation is mediated by Csu pili, assembled via the “archaic” chaperone–usher pathway. The X-ray structure of the CsuC-CsuE chaperone–adhesin preassembly complex reveals the basis for bacterial attachment to abiotic surfaces. CsuE exposes three hydrophobic finger-like loops at the tip of the pilus. Decreasing the hydrophobicity of these abolishes bacterial attachment, suggesting that archaic pili use tip-fingers to detect and bind to hydrophobic cavities in substrates. Antitip antibody completely blocks biofilm formation, presenting a means to prevent the spread of the pathogen. The use of hydrophilic materials instead of hydrophobic plastics in medical devices may represent another simple and cheap solution to reduce pathogen spread. Phylogenetic analysis suggests that the tip-fingers binding mechanism is shared by all archaic pili carrying two-domain adhesins. The use of flexible fingers instead of classical receptor-binding cavities is presumably more advantageous for attachment to structurally variable substrates, such as abiotic surfaces.
Collapse
|
38
|
Hu J, Zhan J, Chen H, He C, Cang H, Wang Q. The Small Regulatory Antisense RNA PilR Affects Pilus Formation and Cell Motility by Negatively Regulating pilA11 in Synechocystis sp. PCC 6803. Front Microbiol 2018; 9:786. [PMID: 29740417 PMCID: PMC5924778 DOI: 10.3389/fmicb.2018.00786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/06/2018] [Indexed: 01/19/2023] Open
Abstract
Pili are found on the surface of many bacteria and play important roles in cell motility, pathogenesis, biofilm formation, and sensing and reacting to environmental changes. Cell motility in the model cyanobacterium Synechocystis sp. PCC 6803 relies on expression of the putative pilA9-pilA10-pilA11-slr2018 operon. In this study, we identified the antisense RNA PilR encoded in the noncoding strand of the prepilin-encoding gene pilA11. Analysis of overexpressor [PilR(+)] and suppressor [PilR(-)] mutant strains revealed that PilR is a direct negative regulator of PilA11 protein. Although overexpression of PilR did not affect cell growth, it greatly reduced levels of pilA11 mRNA and protein and decreased both the thickness and number of pili, resulting in limited cell motility and small, distinct colonies. Suppression of PilR had the opposite effect. A hypothetical model on the regulation of pilA9-pilA10-pilA11-slr2018 operon expression by PilR was proposed. These results add a layer of complexity to the mechanisms controlling pilA11 gene expression and cell motility, and provide novel insights into how sRNA and the intergenic region secondary structures can work together to discoordinatly regulate target gene in an operon in cyanobacterium.
Collapse
Affiliation(s)
- Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hui Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chenliu He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huaixing Cang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
39
|
Werneburg GT, Thanassi DG. Pili Assembled by the Chaperone/Usher Pathway in Escherichia coli and Salmonella. EcoSal Plus 2018; 8:10.1128/ecosalplus.ESP-0007-2017. [PMID: 29536829 PMCID: PMC5940347 DOI: 10.1128/ecosalplus.esp-0007-2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/12/2022]
Abstract
Gram-negative bacteria assemble a variety of surface structures, including the hair-like organelles known as pili or fimbriae. Pili typically function in adhesion and mediate interactions with various surfaces, with other bacteria, and with other types of cells such as host cells. The chaperone/usher (CU) pathway assembles a widespread class of adhesive and virulence-associated pili. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and integral outer membrane protein termed the usher, which forms a multifunctional assembly and secretion platform. This review addresses the molecular and biochemical aspects of the CU pathway in detail, focusing on the type 1 and P pili expressed by uropathogenic Escherichia coli as model systems. We provide an overview of representative CU pili expressed by E. coli and Salmonella, and conclude with a discussion of potential approaches to develop antivirulence therapeutics that interfere with pilus assembly or function.
Collapse
Affiliation(s)
- Glenn T. Werneburg
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| | - David G. Thanassi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
40
|
Rabbani S, Fiege B, Eris D, Silbermann M, Jakob RP, Navarra G, Maier T, Ernst B. Conformational switch of the bacterial adhesin FimH in the absence of the regulatory domain: Engineering a minimalistic allosteric system. J Biol Chem 2018; 293:1835-1849. [PMID: 29180452 PMCID: PMC5798311 DOI: 10.1074/jbc.m117.802942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/23/2017] [Indexed: 11/06/2022] Open
Abstract
For many biological processes such as ligand binding, enzymatic catalysis, or protein folding, allosteric regulation of protein conformation and dynamics is fundamentally important. One example is the bacterial adhesin FimH, where the C-terminal pilin domain exerts negative allosteric control over binding of the N-terminal lectin domain to mannosylated ligands on host cells. When the lectin and pilin domains are separated under shear stress, the FimH-ligand interaction switches in a so-called catch-bond mechanism from the low- to high-affinity state. So far, it has been assumed that the pilin domain is essential for the allosteric propagation within the lectin domain that would otherwise be conformationally rigid. To test this hypothesis, we generated mutants of the isolated FimH lectin domain and characterized their thermodynamic, kinetic, and structural properties using isothermal titration calorimetry, surface plasmon resonance, nuclear magnetic resonance, and X-ray techniques. Intriguingly, some of the mutants mimicked the conformational and kinetic behaviors of the full-length protein and, even in absence of the pilin domain, conducted the cross-talk between allosteric sites and the mannoside-binding pocket. Thus, these mutants represent a minimalistic allosteric system of FimH, useful for further mechanistic studies and antagonist design.
Collapse
Affiliation(s)
- Said Rabbani
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Brigitte Fiege
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Deniz Eris
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Marleen Silbermann
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Roman Peter Jakob
- the Department Biozentrum, Focal Area Structural Biology, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Giulio Navarra
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Timm Maier
- the Department Biozentrum, Focal Area Structural Biology, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Beat Ernst
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| |
Collapse
|
41
|
Spaulding CN, Schreiber HL, Zheng W, Dodson KW, Hazen JE, Conover MS, Wang F, Svenmarker P, Luna-Rico A, Francetic O, Andersson M, Hultgren S, Egelman EH. Functional role of the type 1 pilus rod structure in mediating host-pathogen interactions. eLife 2018; 7:31662. [PMID: 29345620 PMCID: PMC5798934 DOI: 10.7554/elife.31662] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/12/2018] [Indexed: 12/11/2022] Open
Abstract
Uropathogenic E. coli (UPEC), which cause urinary tract infections (UTI), utilize type 1 pili, a chaperone usher pathway (CUP) pilus, to cause UTI and colonize the gut. The pilus rod, comprised of repeating FimA subunits, provides a structural scaffold for displaying the tip adhesin, FimH. We solved the 4.2 Å resolution structure of the type 1 pilus rod using cryo-electron microscopy. Residues forming the interactive surfaces that determine the mechanical properties of the rod were maintained by selection based on a global alignment of fimA sequences. We identified mutations that did not alter pilus production in vitro but reduced the force required to unwind the rod. UPEC expressing these mutant pili were significantly attenuated in bladder infection and intestinal colonization in mice. This study elucidates an unappreciated functional role for the molecular spring-like property of type 1 pilus rods in host-pathogen interactions and carries important implications for other pilus-mediated diseases. Escherichia coli, or E. coli for short, is a type of bacteria commonly found in the guts of people and animals. Certain types of E. coli can cause urinary tract infections (UTIs): they travel from the digestive tract up to the bladder (and sometimes to the kidneys) where they provoke painful symptoms. To cause the infection, the bacteria must become solidly attached to the lining of the bladder; otherwise they will get flushed out whenever urine is expelled. Pili are hair-like structures that cover a bacterium and allow it to attach to surfaces. E. coli has many different types of pili, but one seems particularly important in UTIs: type 1 pili. These pili are formed of subunits that assemble into a long coil-shaped rod, which is tipped by adhesive molecules that can stick to body surfaces. The current hypothesis is that the pili act as shock absorbers: when the bladder empties, the pili’s coil-like structure can unwind into a flexible straight fiber. This would take some of the forces off the adhesive molecules that are attached to the bladder, and help the bacteria to remain in place when urine flows out. However, the exact structure of type 1 pili is still unclear, and the essential role of their coil-like shape unconfirmed. Here, Spaulding, Schreiber, Zheng et al. use a microscopy method called cryo-EM to reveal the structure of the type 1 pili at near atomic-level, and identify the key units necessary for their coiling properties. The experiments show that pili with certain mutations in these units unwind much more easily when the bacteria carrying them are ‘tugged on’ with molecular tweezers. The bacteria with mutant pili are also less able to cause UTIs in mice. The coiling ability of the type 1 pili is therefore essential for E. coli to invade and colonize the bladder. Every year, over 150 million people worldwide experience a UTI; for 25% of women, the infection regularly returns. Antibiotics usually treat the problem but bacteria are becoming resistant to these drugs. New treatments could be designed if scientists understand what roles pili play in the infection mechanisms.
Collapse
Affiliation(s)
- Caitlin N Spaulding
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| | - Henry Louis Schreiber
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| | - Weili Zheng
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
| | - Karen W Dodson
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| | - Jennie E Hazen
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| | - Matt S Conover
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
| | | | - Areli Luna-Rico
- Department of Structural Biology and Chemistry, Institut Pasteur, Biochemistry of Macromolecular Interactions Unit, Paris, France
| | - Olivera Francetic
- Department of Structural Biology and Chemistry, Institut Pasteur, Biochemistry of Macromolecular Interactions Unit, Paris, France
| | | | - Scott Hultgren
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
| |
Collapse
|
42
|
Abstract
Escherichia coli bacterial cells produce multiple types of adhesion pili that mediate cell-cell and cell-host attachments. These pili (also called 'fimbriae') are large biopolymers that are comprised of subunits assembled via a sophisticated micro-machinery into helix-like structures that are anchored in the bacterial outer membrane. They are commonly essential for initiation of disease and thus provide a potential target for antibacterial prevention and treatment. To develop new therapeutics for disease prevention and treatment we need to understand the molecular mechanisms and the direct role of adhesion pili during pathogenesis. These helix-like pilus structures possess fascinating and unique biomechanical properties that have been thoroughly investigated using high-resolution imaging techniques, force spectroscopy and fluid flow chambers. In this chapter, we first discuss the structure of pili and the micro-machinery responsible for the assembly process. Thereafter, we present methods for measurement of the biomechanics of adhesion pili, including optical tweezers. Data demonstrate unique biomechanical properties of pili that allow bacteria to sustain binding during in vivo fluid shear forces. We thereafter summarize the current biomechanical findings related to adhesion pili and show that pili biomechanical properties are niche-specific. That is, the data suggest that there is an organ-specific adaptation of pili that facilitates infection of the bacteria's target tissue. Thus, pilus biophysical properties are an important part of Escherichia coli pathogenesis, allowing bacteria to overcome hydrodynamic challenges in diverse environments.
Collapse
Affiliation(s)
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA.
| | | |
Collapse
|
43
|
Zeng L, Zhang L, Wang P, Meng G. Structural basis of host recognition and biofilm formation by Salmonella Saf pili. eLife 2017; 6:28619. [PMID: 29125121 PMCID: PMC5700814 DOI: 10.7554/elife.28619] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022] Open
Abstract
Pili are critical in host recognition, colonization and biofilm formation during bacterial infection. Here, we report the crystal structures of SafD-dsc and SafD-SafA-SafA (SafDAA-dsc) in Saf pili. Cell adherence assays show that SafD and SafA are both required for host recognition, suggesting a poly-adhesive mechanism for Saf pili. Moreover, the SafDAA-dsc structure, as well as SAXS characterization, reveals an unexpected inter-molecular oligomerization, prompting the investigation of Saf-driven self-association in biofilm formation. The bead/cell aggregation and biofilm formation assays are used to demonstrate the novel function of Saf pili. Structure-based mutants targeting the inter-molecular hydrogen bonds and complementary architecture/surfaces in SafDAA-dsc dimers significantly impaired the Saf self-association activity and biofilm formation. In summary, our results identify two novel functions of Saf pili: the poly-adhesive and self-associating activities. More importantly, Saf-Saf structures and functional characterizations help to define a pili-mediated inter-cellular oligomerizaiton mechanism for bacterial aggregation, colonization and ultimate biofilm formation.
Collapse
Affiliation(s)
- Longhui Zeng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Li Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Pengran Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Guoyu Meng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
44
|
The Cryoelectron Microscopy Structure of the Type 1 Chaperone-Usher Pilus Rod. Structure 2017; 25:1829-1838.e4. [PMID: 29129382 PMCID: PMC5719983 DOI: 10.1016/j.str.2017.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/05/2017] [Accepted: 10/23/2017] [Indexed: 12/19/2022]
Abstract
Adhesive chaperone-usher pili are long, supramolecular protein fibers displayed on the surface of many bacterial pathogens. The type 1 and P pili of uropathogenic Escherichia coli (UPEC) play important roles during urinary tract colonization, mediating attachment to the bladder and kidney, respectively. The biomechanical properties of the helical pilus rods allow them to reversibly uncoil in response to flow-induced forces, allowing UPEC to retain a foothold in the unique and hostile environment of the urinary tract. Here we provide the 4.2-Å resolution cryo-EM structure of the type 1 pilus rod, which together with the previous P pilus rod structure rationalizes the remarkable "spring-like" properties of chaperone-usher pili. The cryo-EM structure of the type 1 pilus rod differs in its helical parameters from the structure determined previously by a hybrid approach. We provide evidence that these structural differences originate from different quaternary structures of pili assembled in vivo and in vitro.
Collapse
|
45
|
Mamipour M, Yousefi M, Hasanzadeh M. An overview on molecular chaperones enhancing solubility of expressed recombinant proteins with correct folding. Int J Biol Macromol 2017; 102:367-375. [PMID: 28412337 PMCID: PMC7185796 DOI: 10.1016/j.ijbiomac.2017.04.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/14/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023]
Abstract
The majority of research topics declared that most of the recombinant proteins have been expressed by Escherichia coli in basic investigations. But the majority of high expressed proteins formed as inactive recombinant proteins that are called inclusion body. To overcome this problem, several methods have been used including suitable promoter, environmental factors, ladder tag to secretion of proteins into the periplasm, gene protein optimization, chemical chaperones and molecular chaperones sets. Co-expression of the interest protein with molecular chaperones is one of the common methods The chaperones are a group of proteins, which are involved in making correct folding of recombinant proteins. Chaperones are divided two groups including; cytoplasmic and periplasmic chaperones. Moreover, periplasmic chaperones and proteases can be manipulated to increase the yields of secreted proteins. In this article, we attempted to review cytoplasmic chaperones such as Hsp families and periplasmic chaperones including; generic chaperones, specialized chaperones, PPIases, and proteins involved in disulfide bond formation.
Collapse
Affiliation(s)
- Mina Mamipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
46
|
Innovative Solutions to Sticky Situations: Antiadhesive Strategies for Treating Bacterial Infections. Microbiol Spectr 2017; 4. [PMID: 27227305 DOI: 10.1128/microbiolspec.vmbf-0023-2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial adherence to host tissue is an essential process in pathogenesis, necessary for invasion and colonization and often required for the efficient delivery of toxins and other bacterial effectors. As existing treatment options for common bacterial infections dwindle, we find ourselves rapidly approaching a tipping point in our confrontation with antibiotic-resistant strains and in desperate need of new treatment options. Bacterial strains defective in adherence are typically avirulent and unable to cause infection in animal models. The importance of this initial binding event in the pathogenic cascade highlights its potential as a novel therapeutic target. This article seeks to highlight a variety of strategies being employed to treat and prevent infection by targeting the mechanisms of bacterial adhesion. Advancements in this area include the development of novel antivirulence therapies using small molecules, vaccines, and peptides to target a variety of bacterial infections. These therapies target bacterial adhesion through a number of mechanisms, including inhibition of pathogen receptor biogenesis, competition-based strategies with receptor and adhesin analogs, and the inhibition of binding through neutralizing antibodies. While this article is not an exhaustive description of every advancement in the field, we hope it will highlight several promising examples of the therapeutic potential of antiadhesive strategies.
Collapse
|
47
|
Bacterial Filamentous Appendages Investigated by Solid-State NMR Spectroscopy. Methods Mol Biol 2017. [PMID: 28667627 DOI: 10.1007/978-1-4939-7033-9_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The assembly of filamentous appendages at the surface of bacteria is essential in many infection mechanisms. The extent of mechanical, dynamical, and functional properties of such appendages is very diverse, ranging from a structural scaffold of the pathogen-host cell interaction to cell motility, surface adhesion, or the export of virulence effectors. In particular, the architectures of several bacterial secretion systems have revealed the presence of filamentous architectures, known as pili, fimbriae, andneedles. At the macroscopic level, filamentous bacterial appendages appear as thin extracellular filaments of several nanometers in diameter and up to several microns in length. The structural characterization of these appendages at atomic-scale resolution represents an extremely challenging task because of their inherent noncrystallinity and very poor solubility. Here, we describe protocols based on recent advances in solid-state NMR spectroscopy to investigate the secondary structure, subunit-subunit protein interactions, symmetry parameters, and atomic architecture of bacterial filaments.
Collapse
|
48
|
Mydock-McGrane LK, Hannan TJ, Janetka JW. Rational design strategies for FimH antagonists: new drugs on the horizon for urinary tract infection and Crohn's disease. Expert Opin Drug Discov 2017; 12:711-731. [PMID: 28506090 DOI: 10.1080/17460441.2017.1331216] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The bacterial adhesin FimH is a virulence factor and an attractive therapeutic target for urinary tract infection (UTI) and Crohn's Disease (CD). Located on type 1 pili of uropathogenic E. coli (UPEC), the FimH adhesin plays an integral role in the pathogenesis of UPEC. Recent efforts have culminated in the development of small-molecule mannoside FimH antagonists that target the mannose-binding lectin domain of FimH, inhibiting its function and preventing UPEC from binding mannosylated host cells in the bladder, thereby circumventing infection. Areas covered: The authors describe the structure-guided design of mannoside ligands, and review the structural biology of the FimH lectin domain. Additionally, they discuss the lead optimization of mannosides for therapeutic application in UTI and CD, and describe various assays used to measure mannoside potency in vitro and mouse models used to determine efficacy in vivo. Expert opinion: To date, mannoside optimization has led to a diverse set of small-molecule FimH antagonists with oral bioavailability. With clinical trials already initiated in CD and on the horizon for UTI, it is the authors, opinion that mannosides will be a 'first-in-class' treatment strategy for UTI and CD, and will pave the way for treatment of other Gram-negative bacterial infections.
Collapse
Affiliation(s)
| | | | - James W Janetka
- b Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , Saint Louis , MO , USA
| |
Collapse
|
49
|
Structural and Molecular Biology of a Protein-Polymerizing Nanomachine for Pilus Biogenesis. J Mol Biol 2017; 429:2654-2666. [PMID: 28551336 DOI: 10.1016/j.jmb.2017.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/23/2023]
Abstract
Bacteria produce protein polymers on their surface called pili or fimbriae that serve either as attachment devices or as conduits for secreted substrates. This review will focus on the chaperone-usher pathway of pilus biogenesis, a widespread assembly line for pilus production at the surface of Gram-negative bacteria and the archetypical protein-polymerizing nanomachine. Comparison with other nanomachines polymerizing other types of biological units, such as nucleotides during DNA replication, provides some unifying principles as to how multidomain proteins assemble biological polymers.
Collapse
|
50
|
Abstract
Pili are crucial virulence factors for many Gram-negative pathogens. These surface structures provide bacteria with a link to their external environments by enabling them to interact with, and attach to, host cells, other surfaces or each other, or by providing a conduit for secretion. Recent high-resolution structures of pilus filaments and the machineries that produce them, namely chaperone-usher pili, type IV pili, conjugative type IV secretion pili and type V pili, are beginning to explain some of the intriguing biological properties that pili exhibit, such as the ability of chaperone-usher pili and type IV pili to stretch in response to external forces. By contrast, conjugative pili provide a conduit for the exchange of genetic information, and recent high-resolution structures have revealed an integral association between the pilin subunit and a phospholipid molecule, which may facilitate DNA transport. In addition, progress in the area of cryo-electron tomography has provided a glimpse of the overall architecture of the type IV pilus machinery. In this Review, we examine recent advances in our structural understanding of various Gram-negative pilus systems and discuss their functional implications.
Collapse
|