1
|
Deng S, Yi D, Rujiralai T, Ren Q, Tan C, Ma J. Investigating the photophysical properties of rhodamines using a spectroscopic single-molecule fluorescence method. RSC Adv 2024; 14:38523-38529. [PMID: 39650840 PMCID: PMC11622037 DOI: 10.1039/d4ra06577h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/26/2024] [Indexed: 12/11/2024] Open
Abstract
The photophysical properties of rhodamine molecules play a critical role in their performance across various applications. The spectroscopic single-molecule fluorescence (sSMF) technique overcomes the limitations of conventional SMF by distinguishing individual fluorophores based on their emission spectra. This enables precise measurement and direct comparison of photophysical properties among distinct molecules under identical conditions, without requiring separation of molecules. In this study, using a custom sSMF instrument, we successfully identified individual rhodamine B molecules and their various N-dealkylated intermediates, allowing for simultaneous investigation of their photophysical properties. Notably, we observed that rhodamine B undergoing a single dealkylation step exhibited a striking enhancement in photostability compared to its fully intact counterparts and those undergoing two dealkylation steps. This enhancement persisted across various buffer conditions, including different pH levels and the presence or absence of an oxygen scavenger system (OSS). Despite these differences in photostability, time-dependent density functional theory (TD-DFT) calculations revealed that all these rhodamine molecules examined shared a similar energy gap (∼0.6 eV) between their first excited singlet and triplet states.
Collapse
Affiliation(s)
- Shangyuan Deng
- School of Physics, Sun Yat-sen University Guangzhou 510275 China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University Guangzhou 510006 China
| | - Deqi Yi
- School of Physics, Sun Yat-sen University Guangzhou 510275 China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University Guangzhou 510006 China
| | - Thitima Rujiralai
- Division of Physical Science, Faculty of Science, Prince of Songkla University Songkhla 90110 Thailand
| | - Qinghua Ren
- Department of Chemistry, Shanghai University Shanghai 200444 China
| | - Chuang Tan
- School of Physics, Sun Yat-sen University Guangzhou 510275 China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University Guangzhou 510006 China
| | - Jie Ma
- School of Physics, Sun Yat-sen University Guangzhou 510275 China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
2
|
Sahl SJ, Matthias J, Inamdar K, Weber M, Khan TA, Brüser C, Jakobs S, Becker S, Griesinger C, Broichhagen J, Hell SW. Direct optical measurement of intramolecular distances with angstrom precision. Science 2024; 386:180-187. [PMID: 39388556 DOI: 10.1126/science.adj7368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/03/2024] [Indexed: 10/12/2024]
Abstract
Optical investigations of nanometer distances between proteins, their subunits, or other biomolecules have been the exclusive prerogative of Förster resonance energy transfer (FRET) microscopy for decades. In this work, we show that MINFLUX fluorescence nanoscopy measures intramolecular distances down to 1 nanometer-and in planar projections down to 1 angstrom-directly, linearly, and with angstrom precision. Our method was validated by quantifying well-characterized 1- to 10-nanometer distances in polypeptides and proteins. Moreover, we visualized the orientations of immunoglobulin subunits, applied the method in human cells, and revealed specific configurations of a histidine kinase PAS domain dimer. Our results open the door for examining proximities and interactions by direct position measurements at the intramacromolecular scale.
Collapse
Affiliation(s)
- Steffen J Sahl
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Jessica Matthias
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Kaushik Inamdar
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Michael Weber
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Taukeer A Khan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Christian Brüser
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, Göttingen 37075, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, Göttingen 37075, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Christian Griesinger
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Johannes Broichhagen
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Ullah A, Mabood N, Ullah M, Shafi M, Maqbool M. Single‐molecule methods, activation‐induced cytidine deaminase, and quantum mechanical approach to explore and prevent carcinogenesis. VIEW 2024; 5. [DOI: 10.1002/viw.20240018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/03/2024] [Indexed: 01/21/2025] Open
Abstract
AbstractRecent advancements in single‐molecule methods have not only made it possible to obtain precise measurements for complex biological processes but also to produce simple mathematical models for intricate biochemical mechanisms, which would otherwise be speculative. These developments have strengthened our ability to respond through mathematical modeling to concepts of protein‒protein and protein‒DNA interactions on a nanometer level and address‐related questions. In this article, we examine an intriguing biological phenomenon in which a protein and an enzyme co‐jointly encounter carcinogenic adducts during transcription. We are focusing mainly on the dysregulation of the protein involved and the possible consequences that may arise. By providing a quantum mechanical model, we have demonstrated that the presence of carcinogenic adducts in a transcriptional bubble deregulates the protein that could cause lethal mutations. Next, we present a case study to explore carcinogenesis by suggesting an alternative experimental design. Our quantum mechanical model emphasizes the use of a quantized energies approach for specific mechanisms within the living cells. Radiation‐induced carcinogenicity can be prevented if radiation interacting with tissue is not given the energies that satisfy the quantization conditions.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Biochemistry University of Alberta Edmonton Alberta Canada
| | - Neelam Mabood
- Department of Pediatrics Faculty of Medicine & Dentistry University of Alberta Edmonton Alberta Canada
| | - Mujib Ullah
- Department of Immunology and Transplantation, School of Medicine Stanford University Stanford California USA
| | | | - Muhammad Maqbool
- Health Physics Program, Department of Clinical & Diagnostic Sciences The University of Alabama at Birmingham Birmingham Alabama USA
| |
Collapse
|
4
|
Verma AR, Ray KK, Bodick M, Kinz-Thompson CD, Gonzalez RL. Increasing the accuracy of single-molecule data analysis using tMAVEN. Biophys J 2024; 123:2765-2780. [PMID: 38268189 PMCID: PMC11393709 DOI: 10.1016/j.bpj.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/28/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
Time-dependent single-molecule experiments contain rich kinetic information about the functional dynamics of biomolecules. A key step in extracting this information is the application of kinetic models, such as hidden Markov models (HMMs), which characterize the molecular mechanism governing the experimental system. Unfortunately, researchers rarely know the physicochemical details of this molecular mechanism a priori, which raises questions about how to select the most appropriate kinetic model for a given single-molecule data set and what consequences arise if the wrong model is chosen. To address these questions, we have developed and used time-series modeling, analysis, and visualization environment (tMAVEN), a comprehensive, open-source, and extensible software platform. tMAVEN can perform each step of the single-molecule analysis pipeline, from preprocessing to kinetic modeling to plotting, and has been designed to enable the analysis of a single-molecule data set with multiple types of kinetic models. Using tMAVEN, we have systematically investigated mismatches between kinetic models and molecular mechanisms by analyzing simulated examples of prototypical single-molecule data sets exhibiting common experimental complications, such as molecular heterogeneity, with a series of different types of HMMs. Our results show that no single kinetic modeling strategy is mathematically appropriate for all experimental contexts. Indeed, HMMs only correctly capture the underlying molecular mechanism in the simplest of cases. As such, researchers must modify HMMs using physicochemical principles to avoid the risk of missing the significant biological and biophysical insights into molecular heterogeneity that their experiments provide. By enabling the facile, side-by-side application of multiple types of kinetic models to individual single-molecule data sets, tMAVEN allows researchers to carefully tailor their modeling approach to match the complexity of the underlying biomolecular dynamics and increase the accuracy of their single-molecule data analyses.
Collapse
Affiliation(s)
- Anjali R Verma
- Department of Chemistry, Columbia University, New York, New York
| | - Korak Kumar Ray
- Department of Chemistry, Columbia University, New York, New York
| | - Maya Bodick
- Department of Chemistry, Columbia University, New York, New York
| | | | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, New York.
| |
Collapse
|
5
|
Aguirre Rivera J, Mao G, Sabantsev A, Panfilov M, Hou Q, Lindell M, Chanez C, Ritort F, Jinek M, Deindl S. Massively parallel analysis of single-molecule dynamics on next-generation sequencing chips. Science 2024; 385:892-898. [PMID: 39172826 DOI: 10.1126/science.adn5371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/12/2024] [Indexed: 08/24/2024]
Abstract
Single-molecule techniques are ideally poised to characterize complex dynamics but are typically limited to investigating a small number of different samples. However, a large sequence or chemical space often needs to be explored to derive a comprehensive understanding of complex biological processes. Here we describe multiplexed single-molecule characterization at the library scale (MUSCLE), a method that combines single-molecule fluorescence microscopy with next-generation sequencing to enable highly multiplexed observations of complex dynamics. We comprehensively profiled the sequence dependence of DNA hairpin properties and Cas9-induced target DNA unwinding-rewinding dynamics. The ability to explore a large sequence space for Cas9 allowed us to identify a number of target sequences with unexpected behaviors. We envision that MUSCLE will enable the mechanistic exploration of many fundamental biological processes.
Collapse
Affiliation(s)
- J Aguirre Rivera
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - G Mao
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - A Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - M Panfilov
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - Q Hou
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - M Lindell
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, 75144 Uppsala, Sweden
| | - C Chanez
- Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland
| | - F Ritort
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - M Jinek
- Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland
| | - S Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| |
Collapse
|
6
|
Rissone P, Severino A, Pastor I, Ritort F. Universal cold RNA phase transitions. Proc Natl Acad Sci U S A 2024; 121:e2408313121. [PMID: 39150781 PMCID: PMC11348302 DOI: 10.1073/pnas.2408313121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/12/2024] [Indexed: 08/18/2024] Open
Abstract
RNA's diversity of structures and functions impacts all life forms since primordia. We use calorimetric force spectroscopy to investigate RNA folding landscapes in previously unexplored low-temperature conditions. We find that Watson-Crick RNA hairpins, the most basic secondary structure elements, undergo a glass-like transition below [Formula: see text]C where the heat capacity abruptly changes and the RNA folds into a diversity of misfolded structures. We hypothesize that an altered RNA biochemistry, determined by sequence-independent ribose-water interactions, outweighs sequence-dependent base pairing. The ubiquitous ribose-water interactions lead to universal RNA phase transitions below TG, such as maximum stability at [Formula: see text]C where water density is maximum, and cold denaturation at [Formula: see text]C. RNA cold biochemistry may have a profound impact on RNA function and evolution.
Collapse
Affiliation(s)
- Paolo Rissone
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Barcelona 08028, Spain
| | - Aurélien Severino
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Barcelona 08028, Spain
| | - Isabel Pastor
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Barcelona 08028, Spain
| | - Felix Ritort
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Barcelona 08028, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Barcelona 08028, Spain
| |
Collapse
|
7
|
Verma AR, Ray KK, Bodick M, Kinz-Thompson CD, Gonzalez RL. Increasing the accuracy of single-molecule data analysis using tMAVEN. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.15.553409. [PMID: 37645812 PMCID: PMC10462008 DOI: 10.1101/2023.08.15.553409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Time-dependent single-molecule experiments contain rich kinetic information about the functional dynamics of biomolecules. A key step in extracting this information is the application of kinetic models, such as hidden Markov models (HMMs), which characterize the molecular mechanism governing the experimental system. Unfortunately, researchers rarely know the physico-chemical details of this molecular mechanism a priori, which raises questions about how to select the most appropriate kinetic model for a given single-molecule dataset and what consequences arise if the wrong model is chosen. To address these questions, we have developed and used time-series Modeling, Analysis, and Visualization ENvironment (tMAVEN), a comprehensive, open-source, and extensible software platform. tMAVEN can perform each step of the single-molecule analysis pipeline, from pre-processing to kinetic modeling to plotting, and has been designed to enable the analysis of a single-molecule dataset with multiple types of kinetic models. Using tMAVEN, we have systematically investigated mismatches between kinetic models and molecular mechanisms by analyzing simulated examples of prototypical single-molecule datasets exhibiting common experimental complications, such as molecular heterogeneity, with a series of different types of HMMs. Our results show that no single kinetic modeling strategy is mathematically appropriate for all experimental contexts. Indeed, HMMs only correctly capture the underlying molecular mechanism in the simplest of cases. As such, researchers must modify HMMs using physico-chemical principles to avoid the risk of missing the significant biological and biophysical insights into molecular heterogeneity that their experiments provide. By enabling the facile, side-by-side application of multiple types of kinetic models to individual single-molecule datasets, tMAVEN allows researchers to carefully tailor their modeling approach to match the complexity of the underlying biomolecular dynamics and increase the accuracy of their single-molecule data analyses.
Collapse
Affiliation(s)
- Anjali R. Verma
- Department of Chemistry, Columbia University, New York, NY 10027 USA
| | - Korak Kumar Ray
- Department of Chemistry, Columbia University, New York, NY 10027 USA
| | - Maya Bodick
- Department of Chemistry, Columbia University, New York, NY 10027 USA
| | | | - Ruben L. Gonzalez
- Department of Chemistry, Columbia University, New York, NY 10027 USA
| |
Collapse
|
8
|
Bose R, Saleem I, Mustoe AM. Causes, functions, and therapeutic possibilities of RNA secondary structure ensembles and alternative states. Cell Chem Biol 2024; 31:17-35. [PMID: 38199037 PMCID: PMC10842484 DOI: 10.1016/j.chembiol.2023.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
RNA secondary structure plays essential roles in encoding RNA regulatory fate and function. Most RNAs populate ensembles of alternatively paired states and are continually unfolded and refolded by cellular processes. Measuring these structural ensembles and their contributions to cellular function has traditionally posed major challenges, but new methods and conceptual frameworks are beginning to fill this void. In this review, we provide a mechanism- and function-centric compendium of the roles of RNA secondary structural ensembles and minority states in regulating the RNA life cycle, from transcription to degradation. We further explore how dysregulation of RNA structural ensembles contributes to human disease and discuss the potential of drugging alternative RNA states to therapeutically modulate RNA activity. The emerging paradigm of RNA structural ensembles as central to RNA function provides a foundation for a deeper understanding of RNA biology and new therapeutic possibilities.
Collapse
Affiliation(s)
- Ritwika Bose
- Therapeutic Innovation Center (THINC), Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Irfana Saleem
- Therapeutic Innovation Center (THINC), Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Anthony M Mustoe
- Therapeutic Innovation Center (THINC), Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
van den Wildenberg SMJL, Prevo B, Peterman EJG. A Brief Introduction to Single-Molecule Fluorescence Methods. Methods Mol Biol 2024; 2694:111-132. [PMID: 37824002 DOI: 10.1007/978-1-0716-3377-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
One of the most popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which will be the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also allow access to useful measurable parameters on time and length scales relevant for the biomolecular world. Before several detailed experimental approaches will be addressed, we will first give a general overview of single-molecule fluorescence microscopy. We start with discussing the phenomenon of fluorescence in general and the history of single-molecule fluorescence microscopy. Next, we will review fluorescent probes in more detail and the equipment required to visualize them on the single-molecule level. We will end with a description of parameters measurable with such approaches, ranging from protein counting and tracking, single-molecule localization super-resolution microscopy, to distance measurements with Förster resonance energy transfer and orientation measurements with fluorescence polarization.
Collapse
Affiliation(s)
- Siet M J L van den Wildenberg
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, Clermont-Ferrand, France
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, Clermont-Ferrand, France
| | - Bram Prevo
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Erwin J G Peterman
- LaserLaB and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Kim GW, Ha JW. Direct Observation of In-Focus Plasmonic Cargos via Breaking Angular Degeneracy in Differential Interference Contrast Microscopy. JACS AU 2023; 3:3436-3445. [PMID: 38155657 PMCID: PMC10751767 DOI: 10.1021/jacsau.3c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
Breaking the angular degeneracy arising from the 2-fold optical symmetry of plasmonic anisotropic nanoprobes is critical in biological studies. In this study, we propose differential interference contrast (DIC) microscopy-based focused orientation and position imaging (dFOPI) to break the angular degeneracy of single gold nanorods (AuNRs). Single in-focus AuNRs (39 nm × 123 nm) within a spherical mesoporous silica shell were characterized with high throughput and produced distinct doughnut-shaped DIC image patterns featuring two lobes in the peripheral region, attributed to the scattering contribution of the AuNRs with large scattering cross sections. Interestingly, rotation of the lobes was observed in the focal plane for a large AuNR (>100 nm) tilted by more than ∼20° from the horizontal plane as the rotational stage was moved by 10° in a rotational study. From the rotation-dependent characteristic patterns, we directly visualized counterclockwise/clockwise rotations without the angular degeneracy at the localized surface plasmon resonance wavelength. Therefore, our dFOPI method can be applied for in vivo studies of important biological systems. To validate this claim, we tracked the three-dimensional rotational behavior of transferrin-modified in-focus AuNRs during clathrin-mediated endocytosis in real time without sacrificing the temporal and spatial resolution. In the invagination and scission stage, one or two directed twist motions of the AuNR cargos detached the AuNR-containing vesicles from the cell membrane. Furthermore, the dFOPI method directly visualized and revealed the right-handed twisting action along the dynamin helix in dynamin-catalyzed fission in live cells.
Collapse
Affiliation(s)
- Geun Wan Kim
- Department
of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, South Korea
| | - Ji Won Ha
- Department
of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, South Korea
- Energy
Harvest-Storage Research Center (EHSRC), University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, South Korea
| |
Collapse
|
11
|
Lewis JS, van Oijen AM, Spenkelink LM. Embracing Heterogeneity: Challenging the Paradigm of Replisomes as Deterministic Machines. Chem Rev 2023; 123:13419-13440. [PMID: 37971892 PMCID: PMC10790245 DOI: 10.1021/acs.chemrev.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
The paradigm of cellular systems as deterministic machines has long guided our understanding of biology. Advancements in technology and methodology, however, have revealed a world of stochasticity, challenging the notion of determinism. Here, we explore the stochastic behavior of multi-protein complexes, using the DNA replication system (replisome) as a prime example. The faithful and timely copying of DNA depends on the simultaneous action of a large set of enzymes and scaffolding factors. This fundamental cellular process is underpinned by dynamic protein-nucleic acid assemblies that must transition between distinct conformations and compositional states. Traditionally viewed as a well-orchestrated molecular machine, recent experimental evidence has unveiled significant variability and heterogeneity in the replication process. In this review, we discuss recent advances in single-molecule approaches and single-particle cryo-EM, which have provided insights into the dynamic processes of DNA replication. We comment on the new challenges faced by structural biologists and biophysicists as they attempt to describe the dynamic cascade of events leading to replisome assembly, activation, and progression. The fundamental principles uncovered and yet to be discovered through the study of DNA replication will inform on similar operating principles for other multi-protein complexes.
Collapse
Affiliation(s)
- Jacob S. Lewis
- Macromolecular
Machines Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Antoine M. van Oijen
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Lisanne M. Spenkelink
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
12
|
Luo B, Zhang C, Ling X, Mukherjee S, Jia G, Xie J, Jia X, Liu L, Baulin EF, Luo Y, Jiang L, Dong H, Wei X, Bujnicki JM, Su Z. Cryo-EM reveals dynamics of Tetrahymena group I intron self-splicing. Nat Catal 2023. [DOI: 10.1038/s41929-023-00934-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
13
|
Marklund E, Ke Y, Greenleaf WJ. High-throughput biochemistry in RNA sequence space: predicting structure and function. Nat Rev Genet 2023; 24:401-414. [PMID: 36635406 DOI: 10.1038/s41576-022-00567-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 01/14/2023]
Abstract
RNAs are central to fundamental biological processes in all known organisms. The set of possible intramolecular interactions of RNA nucleotides defines the range of alternative structural conformations of a specific RNA that can coexist, and these structures enable functional catalytic properties of RNAs and/or their productive intermolecular interactions with other RNAs or proteins. However, the immense combinatorial space of potential RNA sequences has precluded predictive mapping between RNA sequence and molecular structure and function. Recent advances in high-throughput approaches in vitro have enabled quantitative thermodynamic and kinetic measurements of RNA-RNA and RNA-protein interactions, across hundreds of thousands of sequence variations. In this Review, we explore these techniques, how they can be used to understand RNA function and how they might form the foundations of an accurate model to predict the structure and function of an RNA directly from its nucleotide sequence. The experimental techniques and modelling frameworks discussed here are also highly relevant for the sampling of sequence-structure-function space of DNAs and proteins.
Collapse
Affiliation(s)
- Emil Marklund
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuxi Ke
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
14
|
Zhao J, Gong Y. Amiloride-modulated phosphorescence turn-off/on method for the detection of abasic site-containing dsRNA based on uridine triphosphate-capped Mn-doped ZnS quantum dots. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Conformational heterogeneity of molecules physisorbed on a gold surface at room temperature. Nat Commun 2022; 13:4133. [PMID: 35840568 PMCID: PMC9287342 DOI: 10.1038/s41467-022-31576-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
A quantitative single-molecule tip-enhanced Raman spectroscopy (TERS) study at room temperature remained a challenge due to the rapid structural dynamics of molecules exposed to air. Here, we demonstrate the hyperspectral TERS imaging of single or a few brilliant cresyl blue (BCB) molecules at room temperature, along with quantitative spectral analyses. Robust chemical imaging is enabled by the freeze-frame approach using a thin Al2O3 capping layer, which suppresses spectral diffusions and inhibits chemical reactions and contamination in air. For the molecules resolved spatially in the TERS image, a clear Raman peak variation up to 7.5 cm−1 is observed, which cannot be found in molecular ensembles. From density functional theory-based quantitative analyses of the varied TERS peaks, we reveal the conformational heterogeneity at the single-molecule level. This work provides a facile way to investigate the single-molecule properties in interacting media, expanding the scope of single-molecule vibrational spectroscopy studies. Tip-enhanced vibrational spectroscopy at room temperature is complicated by molecular conformational dynamics, photobleaching, contaminations, and chemical reactions in air. This study demonstrates that a sub-nm protective layer of Al2O3 provides robust conditions for probing single-molecule conformations.
Collapse
|
16
|
Li J. Role of ergodicity, aging, and Gaussianity in resolving the origins of biomolecule subdiffusion. Phys Chem Chem Phys 2022; 24:16050-16057. [PMID: 35731614 DOI: 10.1039/d2cp01161a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The internal motions of biomolecules are essential to their function. Although biological macromolecules conventionally show subdiffusive dynamics, only recently has subdiffusion been associated with non-ergodicity. These findings have stimulated new questions in biophysics and statistical mechanics. Is non-ergodic subdiffusion a general strategy shared by biomolecules? What underlying mechanisms are responsible for it? Here, we performed extensive molecular dynamics (MD) simulations to characterize the internal dynamics of six different biomolecules, ranging from single or double-stranded DNA, a single domain protein (KRAS), two globular proteins (PGK and SHP2), to an intrinsically disordered protein (SNAP-25). We found that the subdiffusive behavior of these biomolecules falls into two classes. The internal motion of the first three cases is ergodic subdiffusion and can be interpreted by fractional Brownian motion (FBM), while the latter three cases involve non-ergodic subdiffusion and can be modeled by mixed origins of continuous-time random walk (CTRW) and FBM.
Collapse
Affiliation(s)
- Jun Li
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
17
|
Barth A, Opanasyuk O, Peulen TO, Felekyan S, Kalinin S, Sanabria H, Seidel CAM. Unraveling multi-state molecular dynamics in single-molecule FRET experiments. I. Theory of FRET-lines. J Chem Phys 2022; 156:141501. [PMID: 35428384 PMCID: PMC9014241 DOI: 10.1063/5.0089134] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 01/31/2023] Open
Abstract
Conformational dynamics of biomolecules are of fundamental importance for their function. Single-molecule studies of Förster Resonance Energy Transfer (smFRET) between a tethered donor and acceptor dye pair are a powerful tool to investigate the structure and dynamics of labeled molecules. However, capturing and quantifying conformational dynamics in intensity-based smFRET experiments remains challenging when the dynamics occur on the sub-millisecond timescale. The method of multiparameter fluorescence detection addresses this challenge by simultaneously registering fluorescence intensities and lifetimes of the donor and acceptor. Together, two FRET observables, the donor fluorescence lifetime τD and the intensity-based FRET efficiency E, inform on the width of the FRET efficiency distribution as a characteristic fingerprint for conformational dynamics. We present a general framework for analyzing dynamics that relates average fluorescence lifetimes and intensities in two-dimensional burst frequency histograms. We present parametric relations of these observables for interpreting the location of FRET populations in E-τD diagrams, called FRET-lines. To facilitate the analysis of complex exchange equilibria, FRET-lines serve as reference curves for a graphical interpretation of experimental data to (i) identify conformational states, (ii) resolve their dynamic connectivity, (iii) compare different kinetic models, and (iv) infer polymer properties of unfolded or intrinsically disordered proteins. For a simplified graphical analysis of complex kinetic networks, we derive a moment-based representation of the experimental data that decouples the motion of the fluorescence labels from the conformational dynamics of the biomolecule. Importantly, FRET-lines facilitate exploring complex dynamic models via easily computed experimental observables. We provide extensive computational tools to facilitate applying FRET-lines.
Collapse
Affiliation(s)
- Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Oleg Opanasyuk
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Thomas-Otavio Peulen
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Suren Felekyan
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Stanislav Kalinin
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29631, USA
| | - Claus A. M. Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf, Germany
| |
Collapse
|
18
|
Kamboj S, Harms C, Wright D, Nash A, Kumar L, Klein-Seetharaman J, Sarkar SK. Identification of allosteric fingerprints of alpha-synuclein aggregates in matrix metalloprotease-1 and substrate-specific virtual screening with single molecule insights. Sci Rep 2022; 12:5764. [PMID: 35388085 PMCID: PMC8987064 DOI: 10.1038/s41598-022-09866-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Alpha-synuclein (aSyn) has implications in pathological protein aggregations in neurodegeneration. Matrix metalloproteases (MMPs) are broad-spectrum proteases and cleave aSyn, leading to aggregation. Previous reports showed that allosteric communications between the two domains of MMP1 on collagen fibril and fibrin depend on substrates, activity, and ligands. This paper reports quantification of allostery using single molecule measurements of MMP1 dynamics on aSyn-induced aggregates by calculating Forster Resonance Energy Transfer (FRET) between two dyes attached to the catalytic and hemopexin domains of MMP1. The two domains of MMP1 prefer open conformations that are inhibited by a single point mutation E219Q of MMP1 and tetracycline, an MMP inhibitor. A two-state Poisson process describes the interdomain dynamics, where the two states and kinetic rates of interconversion between them are obtained from histograms and autocorrelations of FRET values. Since a crystal structure of aSyn-bound MMP1 is unavailable, binding poses were predicted by molecular docking of MMP1 with aSyn using ClusPro. MMP1 dynamics were simulated using predicted binding poses and compared with the experimental interdomain dynamics to identify an appropriate pose. The selected aSyn-MMP1 binding pose near aSyn residue K45 was simulated and analyzed to define conformational changes at the catalytic site. Allosteric residues in aSyn-bound MMP1 exhibiting strong correlations with the catalytic motif residues were compared with allosteric residues in free MMP1, and aSyn-specific residues were identified. The allosteric residues in aSyn-bound MMP1 are K281, T283, G292, G327, L328, E329, R337, F343, G345, N346, Y348, G353, Q354, D363, Y365, S366, S367, F368, P371, R372, V374, K375, A379, F391, A394, R399, M414, F419, V426, and C466. Shannon entropy was defined to quantify MMP1 dynamics. Virtual screening was performed against a site on selected aSyn-MMP1 binding poses, which showed that lead molecules differ between free MMP1 and substrate-bound MMP1. Also, identifying aSyn-specific allosteric residues in MMP1 enabled further selection of lead molecules. In other words, virtual screening needs to take substrates into account for potential substrate-specific control of MMP1 activity in the future. Molecular understanding of interactions between MMP1 and aSyn-induced aggregates may open up the possibility of degrading aggregates by targeting MMPs.
Collapse
Affiliation(s)
- Sumaer Kamboj
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | - Chase Harms
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | - Derek Wright
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | - Anthony Nash
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Lokender Kumar
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | | | - Susanta K Sarkar
- Department of Physics, Colorado School of Mines, Golden, CO, USA.
| |
Collapse
|
19
|
Guan X, Wang Y, Shao W, Li Z, Huang S, Zhang D. S2Snet: deep learning for low molecular weight RNA identification with nanopore. Brief Bioinform 2022; 23:6562681. [DOI: 10.1093/bib/bbac098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Ribonucleic acid (RNA) is a pivotal nucleic acid that plays a crucial role in regulating many biological activities. Recently, one study utilized a machine learning algorithm to automatically classify RNA structural events generated by a Mycobacterium smegmatis porin A nanopore trap. Although it can achieve desirable classification results, compared with deep learning (DL) methods, this classic machine learning requires domain knowledge to manually extract features, which is sophisticated, labor-intensive and time-consuming. Meanwhile, the generated original RNA structural events are not strictly equal in length, which is incompatible with the input requirements of DL models. To alleviate this issue, we propose a sequence-to-sequence (S2S) module that transforms the unequal length sequence (UELS) to the equal length sequence. Furthermore, to automatically extract features from the RNA structural events, we propose a sequence-to-sequence neural network based on DL. In addition, we add an attention mechanism to capture vital information for classification, such as dwell time and blockage amplitude. Through quantitative and qualitative analysis, the experimental results have achieved about a 2% performance increase (accuracy) compared to the previous method. The proposed method can also be applied to other nanopore platforms, such as the famous Oxford nanopore. It is worth noting that the proposed method is not only aimed at pursuing state-of-the-art performance but also provides an overall idea to process nanopore data with UELS.
Collapse
Affiliation(s)
- Xiaoyu Guan
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Wei Shao
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing, China
| | - Zhongnian Li
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing, China
| |
Collapse
|
20
|
Xie X, Li P, Xu Y, Zhou L, Yan Y, Xie L, Jia C, Guo X. Single-Molecule Junction: A Reliable Platform for Monitoring Molecular Physical and Chemical Processes. ACS NANO 2022; 16:3476-3505. [PMID: 35179354 DOI: 10.1021/acsnano.1c11433] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Monitoring and manipulating the physical and chemical behavior of single molecules is an important development direction of molecular electronics that aids in understanding the molecular world at the single-molecule level. The electrical detection platform based on single-molecule junctions can monitor physical and chemical processes at the single-molecule level with a high temporal resolution, stability, and signal-to-noise ratio. Recently, the combination of single-molecule junctions with different multimodal control systems has been widely used to explore significant physical and chemical phenomena because of its powerful monitoring and control capabilities. In this review, we focus on the applications of single-molecule junctions in monitoring molecular physical and chemical processes. The methods developed for characterizing single-molecule charge transfer and spin characteristics as well as revealing the corresponding intrinsic mechanisms are introduced. Dynamic detection and regulation of single-molecule conformational isomerization, intermolecular interactions, and chemical reactions are also discussed in detail. In addition to these dynamic investigations, this review discusses the open challenges of single-molecule detection in the fields of physics and chemistry and proposes some potential applications in this field.
Collapse
Affiliation(s)
- Xinmiao Xie
- Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Peihui Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Yanxia Xu
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Li Zhou
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Yong Yan
- Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Linghai Xie
- Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, PR China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, PR China
| |
Collapse
|
21
|
Chakraborty A, Krause L, Klostermeier D. Determination of rate constants for conformational changes of RNA helicases by single-molecule FRET TIRF microscopy. Methods 2022; 204:428-441. [PMID: 35304246 DOI: 10.1016/j.ymeth.2022.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 12/18/2022] Open
Abstract
RNA helicases couple nucleotide-driven conformational changes to the unwinding of RNA duplexes. Interaction partners can regulate helicase activity by altering the rate constants of these conformational changes. Single-molecule FRET experiments on donor/acceptor-labeled, immobilized molecules are ideally suited to monitor conformational changes in real time and to extract rate constants for these processes. This article provides guidance on how to design, perform, and analyze single-molecule FRET experiments by TIRF microscopy. It covers the theoretical background of FRET and single-molecule TIRF microscopy, the considerations to prepare proteins of interest for donor/acceptor labeling and surface immobilization, and the principles and procedures of data analysis, including image analysis and the determination of FRET time traces, the extraction of rate constants from FRET time traces, and the general conclusions that can be drawn from these data. A case study, using the DEAD-box protein eIF4A as an example, highlights how single-molecule FRET studies have been instrumental in understanding the role of conformational changes for duplex unwinding and for the regulation of helicase activities. Selected examples illustrate which conclusions can be drawn from the kinetic data obtained, highlight possible pitfalls in data analysis and interpretation, and outline how kinetic models can be related to functionally relevant states.
Collapse
Affiliation(s)
| | - Linda Krause
- University of Muenster, Institute for Physical Chemistry, Muenster, Germany
| | - Dagmar Klostermeier
- University of Muenster, Institute for Physical Chemistry, Muenster, Germany.
| |
Collapse
|
22
|
Jung J, Kim SY, Kim SK. Single-molecule study of the effects of temperature, pH, and RNA base on the stepwise enzyme kinetics of 10–23 deoxyribozyme. RSC Adv 2022; 12:14883-14887. [PMID: 35702195 PMCID: PMC9113834 DOI: 10.1039/d2ra02131e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
We investigated how the stepwise enzyme kinetics of 10–23 deoxyribozyme was affected by temperature, pH, and RNA residue of the substrate at the single-molecule level. A deoxyribozyme-substrate system was employed to temporally categorize a single-turnover reaction into four distinct steps: binding, cleavage, dissociation of one of the cleaved fragments, and dissociation of the other fragment. The dwell time of each step was measured as the temperature was varied from 26 to 34 °C, to which the transition state theory was applied to obtain the enthalpy and entropy of activation for individual steps. In addition, we found that only the cleavage step was significantly affected by pH, indicating that it involves deprotonation of a single proton. We also found that different RNA residues specifically affect the cleavage step and cause the dwell time to change by as much as 5 times. We investigated how the stepwise enzyme kinetics of 10–23 deoxyribozyme was affected by temperature, pH, and RNA residue of the substrate at the single-molecule level.![]()
Collapse
Affiliation(s)
- Jiwon Jung
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Seon Yong Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Seong Keun Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
23
|
Shen S, Naganuma M, Tomari Y, Tadakuma H. Revisiting the Glass Treatment for Single-Molecule Analysis of ncRNA Function. Methods Mol Biol 2022; 2509:209-231. [PMID: 35796966 DOI: 10.1007/978-1-0716-2380-0_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single-molecule imaging is a powerful method for unveiling precise molecular mechanisms. Particularly, single-molecule analysis with total internal reflection fluorescence (TIRF ) microscopy has been successfully applied to the characterization of molecular mechanisms in ncRNA studies. Tracing interactions at the single-molecule level have elucidated the intermediate states of the reaction, which are hidden by ensemble averaging in combinational biochemical approaches, and clarified the key steps of the interaction. However, applying a single-molecule technique to ncRNA analysis still remains a challenge, requiring laborious trial and error to identify a suitable glass surface passivation method. In this chapter, we revisit the major glass surface passivation methods using polyethylene glycol (PEG) treatment and summarize a detailed protocol for single-molecule analysis of the dicing process of Dcr-2, which may apply piRNA studies in the future.
Collapse
Affiliation(s)
- Shuting Shen
- School of Life Science and Technology & Gene Editing Center, ShanghaiTech University, Shanghai, China
| | - Masahiro Naganuma
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Yukihide Tomari
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Hisashi Tadakuma
- School of Life Science and Technology & Gene Editing Center, ShanghaiTech University, Shanghai, China.
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
24
|
Abstract
RNA-based machines are ubiquitous in Nature and increasingly important for medicines. They fold into complex, dynamic structures that process information and catalyze reactions, including reactions that generate new RNAs and proteins across biology. What are the experimental strategies and steps that are necessary to understand how these complex machines work? Two 1990 papers from Herschlag and Cech on "Catalysis of RNA Cleavage by the Tetrahymena thermophila Ribozyme" provide a master class in dissecting an RNA machine through kinetics approaches. By showing how to propose a kinetic framework, fill in the numbers, do cross-checks, and make comparisons across mutants and different RNA systems, the papers illustrate how to take a mechanistic approach and distill the results into general insights that are difficult to attain through other means.
Collapse
Affiliation(s)
- Rhiju Das
- Department
of Biochemistry, Stanford University School
of Medicine, Stanford, California 94305, United States
- Department
of Physics, Stanford University, Stanford, California 94305, United States
| | - Rick Russell
- Department
of Molecular Biosciences, The University
of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
25
|
Du C, Wang Y, Gong S. Regulation of the ThiM riboswitch is facilitated by the trapped structure formed during transcription of the wild-type sequence. FEBS Lett 2021; 595:2816-2828. [PMID: 34644399 DOI: 10.1002/1873-3468.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/09/2022]
Abstract
The ThiM riboswitch from Escherichia coli is a typical mRNA device that modulates downstream gene expression by sensing TPP. The helix-based RNA folding theory is used to investigate its detailed regulatory behaviors in cells. This RNA molecule is transcriptionally trapped in a state with the unstructured SD sequence in the absence of TPP, which induces downstream gene expression. As a key step to turn on gene expression, formation of this trapped state (the genetic ON state) highly depends on the co-transcriptional folding of its wild-type sequence. Instead of stabilities of the genetic ON and OFF states, the transcription rate, pause, and ligand levels are combined to affect the ThiM riboswitch-mediated gene regulation, which is consistent with a kinetic control model.
Collapse
Affiliation(s)
- Chengyi Du
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, China
| | - Yujie Wang
- Department of Physics and Telecommunication Engineering, Zhoukou Normal University, China
| | - Sha Gong
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, China
| |
Collapse
|
26
|
Kay TM, Aplin CP, Simonet R, Beenken J, Miller RC, Libal C, Boersma AJ, Sheets ED, Heikal AA. Molecular Brightness Approach for FRET Analysis of Donor-Linker-Acceptor Constructs at the Single Molecule Level: A Concept. Front Mol Biosci 2021; 8:730394. [PMID: 34595208 PMCID: PMC8476790 DOI: 10.3389/fmolb.2021.730394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
In this report, we have developed a simple approach using single-detector fluorescence autocorrelation spectroscopy (FCS) to investigate the Förster resonance energy transfer (FRET) of genetically encoded, freely diffusing crTC2.1 (mTurquoise2.1-linker-mCitrine) at the single molecule level. We hypothesize that the molecular brightness of the freely diffusing donor (mTurquoise2.1) in the presence of the acceptor (mCitrine) is lower than that of the donor alone due to FRET. To test this hypothesis, the fluorescence fluctuation signal and number of molecules of freely diffusing construct were measured using FCS to calculate the molecular brightness of the donor, excited at 405 nm and detected at 475/50 nm, in the presence and absence of the acceptor. Our results indicate that the molecular brightness of cleaved crTC2.1 in a buffer is larger than that of the intact counterpart under 405-nm excitation. The energy transfer efficiency at the single molecule level is larger and more spread in values as compared with the ensemble-averaging time-resolved fluorescence measurements. In contrast, the molecular brightness of the intact crTC2.1, under 488 nm excitation of the acceptor (531/40 nm detection), is the same or slightly larger than that of the cleaved counterpart. These FCS-FRET measurements on freely diffusing donor-acceptor pairs are independent of the precise time constants associated with autocorrelation curves due to the presence of potential photophysical processes. Ultimately, when used in living cells, the proposed approach would only require a low expression level of these genetically encoded constructs, helping to limit potential interference with the cell machinery.
Collapse
Affiliation(s)
- Taryn M Kay
- Department of Physics and Astronomy, University of Minnesota Duluth, Duluth, MN, United States
| | - Cody P Aplin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Rowan Simonet
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Julie Beenken
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Robert C Miller
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Christin Libal
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Arnold J Boersma
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Erin D Sheets
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Ahmed A Heikal
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| |
Collapse
|
27
|
Single-molecule localization microscopy as an emerging tool to probe multiscale food structures. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Han MJ, He QT, Yang M, Chen C, Yao Y, Liu X, Wang Y, Zhu ZL, Zhu KK, Qu C, Yang F, Hu C, Guo X, Zhang D, Chen C, Sun JP, Wang J. Single-molecule FRET and conformational analysis of beta-arrestin-1 through genetic code expansion and a Se-click reaction. Chem Sci 2021; 12:9114-9123. [PMID: 34276941 PMCID: PMC8261736 DOI: 10.1039/d1sc02653d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/02/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022] Open
Abstract
Single-molecule Förster resonance energy transfer (smFRET) is a powerful tool for investigating the dynamic properties of biomacromolecules. However, the success of protein smFRET relies on the precise and efficient labeling of two or more fluorophores on the protein of interest (POI), which has remained highly challenging, particularly for large membrane protein complexes. Here, we demonstrate the site-selective incorporation of a novel unnatural amino acid (2-amino-3-(4-hydroselenophenyl) propanoic acid, SeF) through genetic expansion followed by a Se-click reaction to conjugate the Bodipy593 fluorophore on calmodulin (CaM) and β-arrestin-1 (βarr1). Using this strategy, we monitored the subtle but functionally important conformational change of βarr1 upon activation by the G-protein coupled receptor (GPCR) through smFRET for the first time. Our new method has broad applications for the site-specific labeling and smFRET measurement of membrane protein complexes, and the elucidation of their dynamic properties such as transducer protein selection.
Collapse
Affiliation(s)
- Ming-Jie Han
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin Airport Economic Area Tianjin 300308 China
| | - Qing-Tao He
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University 44 Wenhua Xi Road Jinan 250012 Shandong China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education Haidian District Beijing 100191 China
- Institute of Biophysics, Chinese Academy of Sciences Chaoyang District Beijing 100101 China
| | - Mengyi Yang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University Haidian District Beijing 100084 China
| | - Chao Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin Airport Economic Area Tianjin 300308 China
- University of the Chinese Academy of Sciences (UCAS) Shijingshan District Beijing 100049 China
| | - Yirong Yao
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University Haidian District Beijing 100084 China
| | - Xiaohong Liu
- Institute of Biophysics, Chinese Academy of Sciences Chaoyang District Beijing 100101 China
| | - Yuchuan Wang
- Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center Futian District Shenzhen 518052 China
| | - Zhong-Liang Zhu
- School of Life Sciences, University of Science and Technology of China Baohe District Anhui 230026 China
| | - Kong-Kai Zhu
- School of Biological Science and Technology, University of Jinan Jinan Shandong 250022 China
| | - Changxiu Qu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University 44 Wenhua Xi Road Jinan 250012 Shandong China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University 44 Wenhua Xi Road Jinan 250012 Shandong China
| | - Cheng Hu
- Institute of Biophysics, Chinese Academy of Sciences Chaoyang District Beijing 100101 China
| | - Xuzhen Guo
- Institute of Biophysics, Chinese Academy of Sciences Chaoyang District Beijing 100101 China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin Airport Economic Area Tianjin 300308 China
| | - Chunlai Chen
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University Haidian District Beijing 100084 China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University 44 Wenhua Xi Road Jinan 250012 Shandong China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education Haidian District Beijing 100191 China
| | - Jiangyun Wang
- Institute of Biophysics, Chinese Academy of Sciences Chaoyang District Beijing 100101 China
- University of the Chinese Academy of Sciences (UCAS) Shijingshan District Beijing 100049 China
- Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center Futian District Shenzhen 518052 China
| |
Collapse
|
29
|
Götz C, Hinze G, Gellert A, Maus H, von Hammerstein F, Hammerschmidt SJ, Lauth LM, Hellmich UA, Schirmeister T, Basché T. Conformational Dynamics of the Dengue Virus Protease Revealed by Fluorescence Correlation and Single-Molecule FRET Studies. J Phys Chem B 2021; 125:6837-6846. [PMID: 34137269 DOI: 10.1021/acs.jpcb.1c01797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The dengue virus protease (DENV-PR) represents an attractive target for counteracting DENV infections. It is generally assumed that DENV-PR can exist in an open and a closed conformation and that active site directed ligands stabilize the closed state. While crystal structures of both the open and the closed conformation were successfully resolved, information about the prevalence of these conformations in solution remains elusive. Herein, we address the question of whether there is an equilibrium between different conformations in solution which can be influenced by addition of a competitive inhibitor. To this end, DENV-PR was statistically labeled by two dye molecules constituting a FRET (fluorescence resonance energy transfer) couple. Fluorescence correlation spectroscopy and photon-burst detection were employed to examine FRET pair labeled DENV-PRs freely diffusing in solution. The measurements were performed with two double mutants and with two dye couples. The data provide strong evidence that an equilibrium of at least two conformations of DENV-PR exists in solution. The competitive inhibitor stabilizes the closed state. Because the open and closed conformations appear to coexist in solution, our results support the picture of a conformational selection rather than that of an induced fit mechanism with respect to the inhibitor-induced formation of the closed state.
Collapse
Affiliation(s)
- Christian Götz
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gerald Hinze
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andrea Gellert
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hannah Maus
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Franziska von Hammerstein
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stefan J Hammerschmidt
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Luca M Lauth
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ute A Hellmich
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany.,Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Frankfurt, Germany
| | - Tanja Schirmeister
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Basché
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
30
|
Zhang T, Pramanik G, Zhang K, Gulka M, Wang L, Jing J, Xu F, Li Z, Wei Q, Cigler P, Chu Z. Toward Quantitative Bio-sensing with Nitrogen-Vacancy Center in Diamond. ACS Sens 2021; 6:2077-2107. [PMID: 34038091 DOI: 10.1021/acssensors.1c00415] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The long-dreamed-of capability of monitoring the molecular machinery in living systems has not been realized yet, mainly due to the technical limitations of current sensing technologies. However, recently emerging quantum sensors are showing great promise for molecular detection and imaging. One of such sensing qubits is the nitrogen-vacancy (NV) center, a photoluminescent impurity in a diamond lattice with unique room-temperature optical and spin properties. This atomic-sized quantum emitter has the ability to quantitatively measure nanoscale electromagnetic fields via optical means at ambient conditions. Moreover, the unlimited photostability of NV centers, combined with the excellent diamond biocompatibility and the possibility of diamond nanoparticles internalization into the living cells, makes NV-based sensors one of the most promising and versatile platforms for various life-science applications. In this review, we will summarize the latest developments of NV-based quantum sensing with a focus on biomedical applications, including measurements of magnetic biomaterials, intracellular temperature, localized physiological species, action potentials, and electronic and nuclear spins. We will also outline the main unresolved challenges and provide future perspectives of many promising aspects of NV-based bio-sensing.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Goutam Pramanik
- UGC DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700106, India
| | - Kai Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Michal Gulka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Lingzhi Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jixiang Jing
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Feng Xu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Qiang Wei
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065 Chengdu, China
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
31
|
Wang Y, Guan X, Zhang S, Liu Y, Wang S, Fan P, Du X, Yan S, Zhang P, Chen HY, Li W, Zhang D, Huang S. Structural-profiling of low molecular weight RNAs by nanopore trapping/translocation using Mycobacterium smegmatis porin A. Nat Commun 2021; 12:3368. [PMID: 34099723 PMCID: PMC8185011 DOI: 10.1038/s41467-021-23764-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Folding of RNA can produce elaborate tertiary structures, corresponding to their diverse roles in the regulation of biological activities. Direct observation of RNA structures at high resolution in their native form however remains a challenge. The large vestibule and the narrow constriction of a Mycobacterium smegmatis porin A (MspA) suggests a sensing mode called nanopore trapping/translocation, which clearly distinguishes between microRNA, small interfering RNA (siRNA), transfer RNA (tRNA) and 5 S ribosomal RNA (rRNA). To further profit from the acquired event characteristics, a custom machine learning algorithm is developed. Events from measurements with a mixture of RNA analytes can be automatically classified, reporting a general accuracy of ~93.4%. tRNAs, which possess a unique tertiary structure, report a highly distinguishable sensing feature, different from all other RNA types tested in this study. With this strategy, tRNAs from different sources are measured and a high structural conservation across different species is observed in single molecule.
Collapse
MESH Headings
- Machine Learning
- MicroRNAs/chemistry
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Dynamics Simulation
- Molecular Weight
- Mycobacterium smegmatis/genetics
- Mycobacterium smegmatis/metabolism
- Nanopores
- Nucleic Acid Conformation
- Porins/chemistry
- Porins/genetics
- Porins/metabolism
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA Folding
- RNA Transport
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
Collapse
Affiliation(s)
- Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Xiaoyu Guan
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Yao Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Sha Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Pingping Fan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Shuanghong Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Wenfei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| |
Collapse
|
32
|
Zhang L, Kaneko S, Fujii S, Kiguchi M, Nishino T. Single-molecule determination of chemical equilibrium of DNA intercalation by electrical conductance. Chem Commun (Camb) 2021; 57:4380-4383. [PMID: 33949386 DOI: 10.1039/d0cc08348h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated a single-molecule reaction of DNA intercalation as an example of a bimolecular association reaction. Single-molecule conductance values of the product and reactant molecules adsorbed on an Au surface were measured to identify and quantify these molecules. The binding isotherm was constructed, and the association constant of the reaction was determined on a single-molecule basis.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| | - Satoshi Kaneko
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| | - Shintaro Fujii
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| | - Manabu Kiguchi
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| | - Tomoaki Nishino
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| |
Collapse
|
33
|
Detection and Labeling of Small Non-Coding RNAs by Splinted Ligation. Methods Mol Biol 2021. [PMID: 33792872 DOI: 10.1007/978-1-0716-1386-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Discovery and characterization of microRNAs (miRNAs) and other families of small RNAs lead researchers to study their structures/functions and their expression patterns. The splinted ligation method described here is based on nucleic acid hybridization. It is optimized for the direct labeling and quantitative detection of small RNAs. A specific bridge DNA oligonucleotide is used, which is perfectly complementary to both the target small RNA and a labeled ligation nucleic acid. The target RNA is subsequently labeled by ligation, detected by analysis in denaturing conditions, and quantified by phosphorimaging. The protocol does not require any specific material, and the procedure is fast and sensitive.
Collapse
|
34
|
Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Sung Chung H, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CAM, Weiss S. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 2021; 10:e60416. [PMID: 33779550 PMCID: PMC8007216 DOI: 10.7554/elife.60416] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Anders Barth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt UniversityDiepenbeekBelgium
| | - Benjamin Ambrose
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Victoria Birkedal
- Department of Chemistry and iNANO center, Aarhus UniversityAarhusDenmark
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Richard Börner
- Laserinstitut HS Mittweida, University of Applied Science MittweidaMittweidaGermany
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Timothy D Craggs
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati School of MedicineCincinnatiUnited States
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology and The Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia UniversityNew YorkUnited States
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
| | - Christian A Hanke
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovotIsrael
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Centre, University of CopenhagenCopenhagenDenmark
- Denmark Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National UniversitySeoulRepublic of Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science and Department of Physics, Korea UniversitySeoulRepublic of Korea
| | - Thorsten Hugel
- Institute of Physical Chemistry and Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Antonino Ingargiola
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of OxfordOxfordUnited Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National LaboratoryLivermoreUnited States
| | - Nam Ki Lee
- School of Chemistry, Seoul National UniversitySeoulRepublic of Korea
| | - Tae-Hee Lee
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
| | - Edward A Lemke
- Departments of Biology and Chemistry, Johannes Gutenberg UniversityMainzGermany
- Institute of Molecular Biology (IMB)MainzGermany
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Universitié de MontpellierMontpellierFrance
| | | | - Xavier Michalet
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel Nettels
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Thomas-Otavio Peulen
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Evelyn Ploetz
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Yair Razvag
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Nicole C Robb
- Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Hamid Soleimaninejad
- Biological Optical Microscopy Platform (BOMP), University of MelbourneParkvilleAustralia
| | - Chun Tang
- College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking UniversityBeijingChina
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Claus AM Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Physiology, CaliforniaNanoSystems Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
35
|
Ganser LR, Chu CC, Bogerd HP, Kelly ML, Cullen BR, Al-Hashimi HM. Probing RNA Conformational Equilibria within the Functional Cellular Context. Cell Rep 2021; 30:2472-2480.e4. [PMID: 32101729 DOI: 10.1016/j.celrep.2020.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/24/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
Low-abundance short-lived non-native conformations referred to as excited states (ESs) are increasingly observed in vitro and implicated in the folding and biological activities of regulatory RNAs. We developed an approach for assessing the relative abundance of RNA ESs within the functional cellular context. Nuclear magnetic resonance (NMR) spectroscopy was used to estimate the degree to which substitution mutations bias conformational equilibria toward the inactive ES in vitro. The cellular activity of the ES-stabilizing mutants was used as an indirect measure of the conformational equilibria within the functional cellular context. Compensatory mutations that restore the ground-state conformation were used to control for changes in sequence. Using this approach, we show that the ESs of two regulatory RNAs from HIV-1, the transactivation response element (TAR) and the Rev response element (RRE), likely form in cells with abundances comparable to those measured in vitro, and their targeted stabilization may provide an avenue for developing anti-HIV therapeutics.
Collapse
Affiliation(s)
- Laura R Ganser
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Chia-Chieh Chu
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Hal P Bogerd
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, NC 27710, USA
| | - Megan L Kelly
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Bryan R Cullen
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
36
|
Paul T, Ha T, Myong S. Regeneration of PEG slide for multiple rounds of single-molecule measurements. Biophys J 2021; 120:1788-1799. [PMID: 33675764 DOI: 10.1016/j.bpj.2021.02.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022] Open
Abstract
Single-molecule fluorescence detection of protein and other biomolecules requires a polyethylene glycol (PEG)-passivated surface. Individual channels on a PEG-passivated slide are typically used only a few times, limiting the number of experiments per slide. Here, we report several strategies for regenerating PEG surfaces for multiple rounds of experiments. First, we show regeneration of DNA- or RNA-tethered surfaces by washing out the bound protein by 0.1% sodium dodecyl sulfate, which is significantly more effective than 6 M urea, 6 M GdmCl, or 100 μM proteinase K. Strikingly, 10 consecutive experiments in five different systems produced indistinguishable results both in molecule count and protein activity. Second, duplexed DNA unwound by helicase or denatured by 50 mM NaOH was reannealed with a complementary strand to regenerate the duplexed substrate with an exceptionally high recovery rate. Third, the biotin-PEG layer was regenerated by using 7 M NaOH to strip off NeutrAvidin, which can be reapplied for additional experiments. We demonstrate five cycles of regenerating antibody immobilized surface by which three different protein activity was measured. Altogether, our methods represent reliable and reproducible yet simple and rapid strategies that will enhance the efficiency of single-molecule experiments.
Collapse
Affiliation(s)
- Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Taekjip Ha
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland; Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, Urbana, Illinois; Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, Maryland
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland; Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, Urbana, Illinois.
| |
Collapse
|
37
|
Jiang M, Ye Y, Li J. Core Hairpin Structure of SpCas9 sgRNA Functions in a Sequence- and Spatial Conformation-Dependent Manner. SLAS Technol 2021; 26:92-102. [PMID: 32486929 DOI: 10.1177/2472630320922813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system is a widely used genome-editing tool with great clinical potential. However, its application is limited because of low editing efficiency of some target sequences and off-target effects. As this system contains only the Cas9 protein and a single-guide RNA (sgRNA; engineered from crRNA and tracrRNA), the structure and function of these components should be studied in detail to address the current clinical needs. Consequently, we investigated the structural and sequence features of the core hairpin (the first stem loop of sgRNA) of SpCas9 sgRNA. We showed that the core hairpin structure of sgRNA is essential for SpCas9/sgRNA-mediated DNA cleavage and that the internal loop structure in the core hairpin plays a vital role in target DNA cleavage. We observed that the root stem structure within the core hairpin preferentially forms Watson-Crick base pairs and should be of a specific length to maintain an appropriate spatial conformation for Cas9 binding. However, the length of the leaf stem structure of the core hairpin is flexible, having a variable nucleotide composition. Furthermore, extension of the leaf stem structure enhances the DNA cleavage activity of the Cas9/sgRNA complex, and this could be used to enhance the efficiency of gene editing. These observations provide insight into the sgRNA/Cas9 interaction, indicating that sgRNA modification could be a strategy for improved DNA editing efficiency, and optimized sgRNA can be further used for genome-wide functional screening and clinical application.
Collapse
Affiliation(s)
- Mingjun Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Yanzhen Ye
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Juan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| |
Collapse
|
38
|
Kumar L, Planas-Iglesias J, Harms C, Kamboj S, Wright D, Klein-Seetharaman J, Sarkar SK. Activity-dependent interdomain dynamics of matrix metalloprotease-1 on fibrin. Sci Rep 2020; 10:20615. [PMID: 33244162 PMCID: PMC7692495 DOI: 10.1038/s41598-020-77699-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 11/13/2020] [Indexed: 01/18/2023] Open
Abstract
The roles of protein conformational dynamics and allostery in function are well-known. However, the roles that interdomain dynamics have in function are not entirely understood. We used matrix metalloprotease-1 (MMP1) as a model system to study the relationship between interdomain dynamics and activity because MMP1 has diverse substrates. Here we focus on fibrin, the primary component of a blood clot. Water-soluble fibrinogen, following cleavage by thrombin, self-polymerize to form water-insoluble fibrin. We studied the interdomain dynamics of MMP1 on fibrin without crosslinks using single-molecule Forster Resonance Energy Transfer (smFRET). We observed that the distance between the catalytic and hemopexin domains of MMP1 increases or decreases as the MMP1 activity increases or decreases, respectively. We modulated the activity using (1) an active site mutant (E219Q) of MMP1, (2) MMP9, another member of the MMP family that increases the activity of MMP1, and (3) tetracycline, an inhibitor of MMP1. We fitted the histograms of smFRET values to a sum of two Gaussians and the autocorrelations to an exponential and power law. We modeled the dynamics as a two-state Poisson process and calculated the kinetic rates from the histograms and autocorrelations. Activity-dependent interdomain dynamics may enable allosteric control of the MMP1 function.
Collapse
Affiliation(s)
- Lokender Kumar
- Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
| | - Joan Planas-Iglesias
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic
| | - Chase Harms
- Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
| | - Sumaer Kamboj
- Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
| | - Derek Wright
- Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
| | - Judith Klein-Seetharaman
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
| | - Susanta K Sarkar
- Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA.
| |
Collapse
|
39
|
Rhine K, Makurath MA, Liu J, Skanchy S, Lopez C, Catalan KF, Ma Y, Fare CM, Shorter J, Ha T, Chemla YR, Myong S. ALS/FTLD-Linked Mutations in FUS Glycine Residues Cause Accelerated Gelation and Reduced Interactions with Wild-Type FUS. Mol Cell 2020; 80:666-681.e8. [PMID: 33159856 PMCID: PMC7688085 DOI: 10.1016/j.molcel.2020.10.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/06/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
The RNA-binding protein fused in sarcoma (FUS) can form pathogenic inclusions in neurodegenerative diseases like amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). Over 70 mutations in Fus are linked to ALS/FTLD. In patients, all Fus mutations are heterozygous, indicating that the mutant drives disease progression despite the presence of wild-type (WT) FUS. Here, we demonstrate that ALS/FTLD-linked FUS mutations in glycine (G) strikingly drive formation of droplets that do not readily interact with WT FUS, whereas arginine (R) mutants form mixed condensates with WT FUS. Remarkably, interactions between WT and G mutants are disfavored at the earliest stages of FUS nucleation. In contrast, R mutants physically interact with the WT FUS such that WT FUS recovers the mutant defects by reducing droplet size and increasing dynamic interactions with RNA. This result suggests disparate molecular mechanisms underlying ALS/FTLD pathogenesis and differing recovery potential depending on the type of mutation.
Collapse
Affiliation(s)
- Kevin Rhine
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Monika A Makurath
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - James Liu
- Department of Biology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA; Medical Genetics and Ophthalmic Genomics Unit, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sophie Skanchy
- Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Christian Lopez
- Department of Biology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Kevin F Catalan
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Ye Ma
- Department of Biomedical Engineering, Johns Hopkins Medical Institute, 615 N Wolfe St, Baltimore, MD 21231, USA
| | - Charlotte M Fare
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Taekjip Ha
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA; Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins Medical Institute, 615 N Wolfe St, Baltimore, MD 21231, USA; Howard Hughes Medical Institute, Baltimore, MD 21218, USA
| | - Yann R Chemla
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sua Myong
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA; Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA.
| |
Collapse
|
40
|
Liu YL, Perillo EP, Ang P, Kim M, Nguyen DT, Blocher K, Chen YA, Liu C, Hassan AM, Vu HT, Chen YI, Dunn AK, Yeh HC. Three-Dimensional Two-Color Dual-Particle Tracking Microscope for Monitoring DNA Conformational Changes and Nanoparticle Landings on Live Cells. ACS NANO 2020; 14:7927-7939. [PMID: 32668152 PMCID: PMC7456512 DOI: 10.1021/acsnano.9b08045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Here, we present a three-dimensional two-color dual-particle tracking (3D-2C-DPT) technique that can simultaneously localize two spectrally distinct targets in three dimensions with a time resolution down to 5 ms. The dual-targets can be tracked with separation distances from 33 to 250 nm with tracking precisions of ∼15 nm (for static targets) and ∼35 nm (for freely diffusing targets). Since each target is individually localized, a wealth of data can be extracted, such as the relative 3D position, the 2D rotation, and the separation distance between the two targets. Using this technique, we turn a double-stranded DNA (dsDNA)-linked dumbbell-like dimer into a nanoscopic optical ruler to quantify the bending dynamics of nicked or gapped dsDNA molecules in free solution by manipulating the design of dsDNA linkers (1-nick, 3-nt, 6-nt, or 9-nt single-strand gap), and the results show the increase of kon (linear to bent) from 3.2 to 10.7 s-1. The 3D-2C-DPT is then applied to observe translational and rotational motions of the landing of an antibody-conjugated nanoparticle on the plasma membrane of living cells, revealing the reduction of rotations possibly due to interactions with membrane receptors. This study demonstrates that this 3D-2C-DPT technique is a new tool to shed light on the conformational changes of biomolecules and the intermolecular interactions on plasma membrane.
Collapse
Affiliation(s)
- Yen-Liang Liu
- Graduate Institute of Biomedical Sciences, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Evan P Perillo
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
- Nanostring Technologies, Seattle, Washington 98109, United States
| | - Phyllis Ang
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Computer Science, Duke University, Durham, North Carolina 27705, United States
| | - Mirae Kim
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Duc Trung Nguyen
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Katherine Blocher
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Yu-An Chen
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Cong Liu
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Ahmed M Hassan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Huong T Vu
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Yuan-I Chen
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
41
|
Sung HL, Nesbitt DJ. Sequential Folding of the Nickel/Cobalt Riboswitch Is Facilitated by a Conformational Intermediate: Insights from Single-Molecule Kinetics and Thermodynamics. J Phys Chem B 2020; 124:7348-7360. [DOI: 10.1021/acs.jpcb.0c05625] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hsuan-Lei Sung
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States,
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - David J. Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States,
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
42
|
Bacic L, Sabantsev A, Deindl S. Recent advances in single-molecule fluorescence microscopy render structural biology dynamic. Curr Opin Struct Biol 2020; 65:61-68. [PMID: 32634693 DOI: 10.1016/j.sbi.2020.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 01/30/2023]
Abstract
Single-molecule fluorescence microscopy has long been appreciated as a powerful tool to study the structural dynamics that enable biological function of macromolecules. Recent years have witnessed the development of more complex single-molecule fluorescence techniques as well as powerful combinations with structural approaches to obtain mechanistic insights into the workings of various molecular machines and protein complexes. In this review, we highlight these developments that together bring us one step closer to a dynamic understanding of biological processes in atomic details.
Collapse
Affiliation(s)
- Luka Bacic
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anton Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
43
|
Profile of Xiaowei Zhuang, winner of the 2020 Vilcek Prize in Biomedical Science. Proc Natl Acad Sci U S A 2020; 117:9660-9664. [DOI: 10.1073/pnas.2004997117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
44
|
|
45
|
Li Y, Yang C, Guo X. Single-Molecule Electrical Detection: A Promising Route toward the Fundamental Limits of Chemistry and Life Science. Acc Chem Res 2020; 53:159-169. [PMID: 31545589 DOI: 10.1021/acs.accounts.9b00347] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ultimate limit of analytical chemistry is single-molecule detection, which allows one to visualize the dynamic processes of chemical/biological interactions with single-molecule or single-event sensitivity and hence enables the study of stochastic fluctuations under equilibrium conditions and the observation of time trajectories and reaction pathways of individual species in nonequilibrated systems. In addition, such studies may also allow the direct observation of novel microscopic quantum effects and fundamental discoveries of underlying molecular mechanisms in organic reactions and biological processes that are not accessible in ensemble experiments, thus providing unique opportunities to solve the key problems of physical, chemical, and life sciences. Consequently, the field of single-molecule detection has received considerable attention and has witnessed tremendous advances in different directions in combination with other disciplines. This Account describes our ongoing work on the development of groundbreaking methods (termed "single-molecule electrical approaches") of translating the detailed processes of chemical reactions or biological functions into detectable electrical signals at the single-event level on the platform of single-molecule electronic devices, with a particular focus on graphene-molecule-graphene single-molecule junctions (GMG-SMJs) and silicon-nanowire-based single-molecule electrical nanocircuits. These nanocircuit-based architectures are complementary to conventional optical or mechanical techniques but exhibit obvious advantages such as the absence of problems associated with bleaching and fluorescent labeling. Dash-line lithography (DLL) is an efficient lithographic method of cutting graphene and forming carboxylic-acid-functionalized nanogapped graphene point contact arrays developed to address the formidable challenges of molecular device fabrication difficulty and poor stability. Molecules of interest terminated by amines on both ends can be covalently sandwiched between graphene point contacts to create high-throughput robust GMG-SMJs containing only one molecule as the conductive element. In conjunction with the ease of device fabrication and device stability, this feature distinguishes GMG-SMJs as a new testbed platform for single-molecule analysis characterized by high temporal resolution and superior signal-to-noise ratios. By exploiting the DLL method, we have fabricated molecular devices that are sensitive to external stimuli and are capable of transducing chemical/biochemical events into electrical signals at the single-molecule level, with notable examples including host-guest interaction, hydrogen bond dynamics, DNA intercalation, photoinduced conformational transition, carbocation formation, nucleophilic addition, and stereoelectronic effect. In addition to GMG-SMJs and considering compatibility with the silicon-based industry, we have also developed a reliable method of point-functionalizing silicon-nanowire-based nanotransistors to afford single-molecule electrical nanocircuits. This approach proved to be a robust platform for single-molecule electrical analysis capable of probing fast dynamic processes such as single-protein detection, DNA hybridization/polymorphism, and motor rotation dynamics. The above systematic investigations emphasize the importance and unique advantages of universal single-molecule electrical approaches for realizing direct, label-free, real-time electrical measurements of reaction dynamics with single-event sensitivity. These approaches promise a fascinating mainstream platform to explore the dynamics of stochastic processes in chemical/biological systems as well as gain information in fields ranging from reaction chemistry for elucidating the intrinsic mechanisms to genomics or proteomics for accurate molecular and even point-of-care clinical diagnoses.
Collapse
Affiliation(s)
- Yu Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Chen Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
46
|
Li M, Xi N, Wang Y, Liu L. Atomic Force Microscopy as a Powerful Multifunctional Tool for Probing the Behaviors of Single Proteins. IEEE Trans Nanobioscience 2020; 19:78-99. [DOI: 10.1109/tnb.2019.2954099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Kim GW, Yoon S, Lee JH, Ha JW. High-throughput in-focus differential interference contrast imaging of three-dimensional orientations of single gold nanorods coated with a mesoporous silica shell. RSC Adv 2020; 10:29868-29872. [PMID: 35518257 PMCID: PMC9056269 DOI: 10.1039/d0ra04704j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/02/2020] [Indexed: 11/30/2022] Open
Abstract
Plasmonic gold nanorods (AuNRs) have been widely applied as optical orientation probes in many biophysical studies. However, characterizing the various three-dimensional (3D) orientations of AuNRs in the same focal plane of the objective lens is a challenging task. To overcome this challenge, we fabricated single AuNRs (10 nm × 30 nm) coated with either an elliptical or spherical mesoporous silica shell (AuNRs@mSiO2). Unlike bare AuNRs and elliptical AuNRs@mSiO2, spherical AuNRs@mSiO2 contained randomly oriented AuNR cores in 3D space, which could be observed on the same focal plane within a single frame by differential interference contrast (DIC) microscopy. The spherical AuNRs@mSiO2 thus achieved high-throughput detection. The proposed approach can overcome the limitations of the current gel-matrix method, which requires vertical scanning of the embedded AuNRs to capture different focal planes. Spherical AuNRs@mSiO2 have randomly oriented AuNR cores in 3D space, which could be resolved on the same focal plane by interference-based DIC microscopy.![]()
Collapse
Affiliation(s)
- Geun Wan Kim
- Department of Chemistry
- University of Ulsan
- Ulsan 44610
- Republic of Korea
- Energy Harvest-Storage Research Center (EHSRC)
| | - Seokyoung Yoon
- SKKU Advanced Institute of Nanotechnology (SAINT)
- Research Center for Advanced Materials Technology
- Sungkyunkwan University (SKKU)
- Suwon
- Republic of Korea
| | - Jung Heon Lee
- SKKU Advanced Institute of Nanotechnology (SAINT)
- Research Center for Advanced Materials Technology
- Sungkyunkwan University (SKKU)
- Suwon
- Republic of Korea
| | - Ji Won Ha
- Department of Chemistry
- University of Ulsan
- Ulsan 44610
- Republic of Korea
- Energy Harvest-Storage Research Center (EHSRC)
| |
Collapse
|
48
|
Li Y, Zhao L, Yao Y, Guo X. Single-Molecule Nanotechnologies: An Evolution in Biological Dynamics Detection. ACS APPLIED BIO MATERIALS 2019; 3:68-85. [DOI: 10.1021/acsabm.9b00840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Lihua Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yuan Yao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
49
|
Thirumalai D, Lorimer GH, Hyeon C. Iterative annealing mechanism explains the functions of the GroEL and RNA chaperones. Protein Sci 2019; 29:360-377. [PMID: 31800116 DOI: 10.1002/pro.3795] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022]
Abstract
Molecular chaperones are ATP-consuming machines, which facilitate the folding of proteins and RNA molecules that are kinetically trapped in misfolded states. Unassisted folding occurs by the kinetic partitioning mechanism according to which folding to the native state, with low probability as well as misfolding to one of the many metastable states, with high probability, occur rapidly. GroEL is an all-purpose stochastic machine that assists misfolded substrate proteins to fold. The RNA chaperones such as CYT-19, which are ATP-consuming enzymes, help the folding of ribozymes that get trapped in metastable states for long times. GroEL does not interact with the folded proteins but CYT-19 disrupts both the folded and misfolded ribozymes. The structures of GroEL and RNA chaperones are strikingly different. Despite these differences, the iterative annealing mechanism (IAM) quantitatively explains all the available experimental data for assisted folding of proteins and ribozymes. Driven by ATP binding and hydrolysis and GroES binding, GroEL undergoes a catalytic cycle during which it samples three allosteric states, T (apo), R (ATP bound), and R″ (ADP bound). Analyses of the experimental data show that the efficiency of the GroEL-GroES machinery and mutants is determined by the resetting rate k R ″ → T , which is largest for the wild-type (WT) GroEL. Generalized IAM accurately predicts the folding kinetics of Tetrahymena ribozyme and its variants. Chaperones maximize the product of the folding rate and the steady-state native state fold by driving the substrates out of equilibrium. Neither the absolute yield nor the folding rate is optimized.
Collapse
Affiliation(s)
- D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - George H Lorimer
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland
| | | |
Collapse
|
50
|
Gilboa B, Jing B, Cui TJ, Sow M, Plochowietz A, Mazumder A, Kapanidis AN. Confinement-Free Wide-Field Ratiometric Tracking of Single Fluorescent Molecules. Biophys J 2019; 117:2141-2153. [PMID: 31711608 PMCID: PMC6895709 DOI: 10.1016/j.bpj.2019.10.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/25/2019] [Accepted: 10/21/2019] [Indexed: 11/24/2022] Open
Abstract
Single-molecule fluorescence has been highly instrumental in elucidating interactions and dynamics of biological molecules in the past two decades. Single-molecule fluorescence experiments usually rely on one of two detection geometries, either confocal point-detection or wide-field area detection, typically in a total internal reflection fluorescence (TIRF) format. However, each of these techniques suffers from fundamental drawbacks that limit their application. In this work, we present a new technique, solution wide-field imaging (SWiFi) of diffusing molecules, as an alternative to the existing methods. SWiFi is a simple extension to existing objective-type TIRF microscopes that allows wide-field observations of fast-diffusing molecules down to single fluorophores without the need of tethering the molecules to the surface. We demonstrate that SWiFi enables high-throughput ratiometric measurements with several thousands of individual data points per minute on double-stranded DNA standard (dsDNA) samples containing Förster resonance energy transfer pairs. We further display the capabilities of SWiFi by reporting on mobility and ratiometric characterization of fluorescent nanodiamonds, DNA Holliday junctions, and protein-DNA interactions. The ability of SWiFi for high-throughput, ratiometric measurements of fast-diffusing species renders it a valuable tool for the single-molecule research community by bridging between confocal and TIRF detection geometries in a simple and efficient way.
Collapse
Affiliation(s)
- Barak Gilboa
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Bo Jing
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Tao J Cui
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Maabur Sow
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Anne Plochowietz
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Abhishek Mazumder
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|