1
|
Liu Y, Zhu J, Zhou S, Hou Y, Yan Z, Ao X, Wang P, Zhou L, Chen H, Liang X, Guan H, Gao S, Xie D, Gu Y, Zhou P. Low-dose ionizing radiation-induced RET/PTC1 rearrangement via the non-homologous end joining pathway to drive thyroid cancer. MedComm (Beijing) 2024; 5:e690. [PMID: 39135916 PMCID: PMC11318340 DOI: 10.1002/mco2.690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Thyroid cancer incidence increases worldwide annually, primarily due to factors such as ionizing radiation (IR), iodine intake, and genetics. Papillary carcinoma of the thyroid (PTC) accounts for about 80% of thyroid cancer cases. RET/PTC1 (coiled-coil domain containing 6 [CCDC6]-rearranged during transfection) rearrangement is a distinctive feature in over 70% of thyroid cancers who exposed to low doses of IR in Chernobyl and Hiroshima‒Nagasaki atomic bombings. This study aims to elucidate mechanism between RET/PTC1 rearrangement and IR in PTC. N-thy-ori-3-1 cells were subjected to varying doses of IR (2/1/0.5/0.2/0.1/0.05 Gy) of IR at different days, and result showed low-dose IR-induced RET/PTC1 rearrangement in a dose-dependent manner. RET/PTC1 has been observed to promote PTC both in vivo and in vitro. To delineate the role of different DNA repair pathways, SCR7, RI-1, and Olaparib were employed to inhibit non-homologous end joining (NHEJ), homologous recombination (HR), and microhomology-mediated end joining (MMEJ), respectively. Notably, inhibiting NHEJ enhanced HR repair efficiency and reduced IR-induced RET/PTC1 rearrangement. Conversely, inhibiting HR increased NHEJ repair efficiency and subsequent RET/PTC1 rearrangement. The MMEJ did not show a markable role in this progress. Additionally, inhibiting DNA-dependent protein kinase catalytic subunit (DNA-PKcs) decreased the efficiency of NHEJ and thus reduced IR-induced RET/PTC1 rearrangement. To conclude, the data suggest that NHEJ, rather than HR or MMEJ, is the critical cause of IR-induced RET/PTC1 rearrangement. Targeting DNA-PKcs to inhibit the NHEJ has emerged as a promising therapeutic strategy for addressing IR-induced RET/PTC1 rearrangement in PTC.
Collapse
Affiliation(s)
- Yuhao Liu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Jiaojiao Zhu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Shenghui Zhou
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
| | - Yifan Hou
- College of Life SciencesHebei UniversityBaodingChina
| | - Ziyan Yan
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Xingkun Ao
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
| | - Ping Wang
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Lin Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Huixi Chen
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
| | - Xinxin Liang
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
| | - Hua Guan
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Shanshan Gao
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Dafei Xie
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yongqing Gu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
- College of Life SciencesHebei UniversityBaodingChina
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| |
Collapse
|
2
|
Zhao SG, Bootsma M, Zhou S, Shrestha R, Moreno-Rodriguez T, Lundberg A, Pan C, Arlidge C, Hawley JR, Foye A, Weinstein AS, Sjöström M, Zhang M, Li H, Chesner LN, Rydzewski NR, Helzer KT, Shi Y, Lynch M, Dehm SM, Lang JM, Alumkal JJ, He HH, Wyatt AW, Aggarwal R, Zwart W, Small EJ, Quigley DA, Lupien M, Feng FY. Integrated analyses highlight interactions between the three-dimensional genome and DNA, RNA and epigenomic alterations in metastatic prostate cancer. Nat Genet 2024; 56:1689-1700. [PMID: 39020220 PMCID: PMC11319208 DOI: 10.1038/s41588-024-01826-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/10/2024] [Indexed: 07/19/2024]
Abstract
The impact of variations in the three-dimensional structure of the genome has been recognized, but solid cancer tissue studies are limited. Here, we performed integrated deep Hi-C sequencing with matched whole-genome sequencing, whole-genome bisulfite sequencing, 5-hydroxymethylcytosine (5hmC) sequencing and RNA sequencing across a cohort of 80 biopsy samples from patients with metastatic castration-resistant prostate cancer. Dramatic differences were present in gene expression, 5-methylcytosine/5hmC methylation and in structural variation versus mutation rate between A and B (open and closed) chromatin compartments. A subset of tumors exhibited depleted regional chromatin contacts at the AR locus, linked to extrachromosomal circular DNA (ecDNA) and worse response to AR signaling inhibitors. We also identified topological subtypes associated with stark differences in methylation structure, gene expression and prognosis. Our data suggested that DNA interactions may predispose to structural variant formation, exemplified by the recurrent TMPRSS2-ERG fusion. This comprehensive integrated sequencing effort represents a unique clinical tumor resource.
Collapse
Grants
- R01 CA270539 NCI NIH HHS
- R01 CA276269 NCI NIH HHS
- R01 CA174777 NCI NIH HHS
- P50 CA097186 NCI NIH HHS
- 1DP2CA271832-01, P30 CA014520 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- DP2 CA271832 NCI NIH HHS
- P50 CA186786 NCI NIH HHS
- R01 CA282005 NCI NIH HHS
- R01 CA251245, P50 CA097186, P50 CA186786, P50 CA186786-07S1, P30 CA046592, and W81XWH-20-1-0405 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- P30 CA046592 NCI NIH HHS
- R01 CA251245 NCI NIH HHS
- P30 CA014520 NCI NIH HHS
- W81XWH2010799 U.S. Department of Defense (United States Department of Defense)
- W81XWH-21-1-0046 U.S. Department of Defense (United States Department of Defense)
- SU2C-AACR-DT0812 EIF | Stand Up To Cancer (SU2C)
- Prostate Cancer Foundation (PCF)
- UCSF Benioff Initiative for Prostate Cancer Research
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- Canadian Institute of Health Research (CIHR) (FRN-153234 & 168933), the Canadian Epigenetics, Environment, and Health Research Consortium (CEEHRC) (FRN-158225), the Ontario Institute for Cancer Research (OICR) through funding provided by the Government of Ontario (IA 031), and the Princess Margaret Cancer Foundation.
Collapse
Affiliation(s)
- Shuang G Zhao
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Madison, WI, USA
| | - Matthew Bootsma
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Stanley Zhou
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Raunak Shrestha
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Thaidy Moreno-Rodriguez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Arian Lundberg
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Chu Pan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Arlidge
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - James R Hawley
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Adam Foye
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Alana S Weinstein
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Martin Sjöström
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Meng Zhang
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Haolong Li
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Lisa N Chesner
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Nicholas R Rydzewski
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kyle T Helzer
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Yue Shi
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - Molly Lynch
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| | - Joshua M Lang
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshi J Alumkal
- Department of Internal Medicine, Division of Hematology-Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Hansen H He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Alexander W Wyatt
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Wilbert Zwart
- Netherlands Cancer Institute, Oncode Institute, Amsterdam, the Netherlands
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Felix Y Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Bailey SM, Cross EM, Kinner-Bibeau L, Sebesta HC, Bedford JS, Tompkins CJ. Monitoring Genomic Structural Rearrangements Resulting from Gene Editing. J Pers Med 2024; 14:110. [PMID: 38276232 PMCID: PMC10817574 DOI: 10.3390/jpm14010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
The cytogenomics-based methodology of directional genomic hybridization (dGH) enables the detection and quantification of a more comprehensive spectrum of genomic structural variants than any other approach currently available, and importantly, does so on a single-cell basis. Thus, dGH is well-suited for testing and/or validating new advancements in CRISPR-Cas9 gene editing systems. In addition to aberrations detected by traditional cytogenetic approaches, the strand specificity of dGH facilitates detection of otherwise cryptic intra-chromosomal rearrangements, specifically small inversions. As such, dGH represents a powerful, high-resolution approach for the quantitative monitoring of potentially detrimental genomic structural rearrangements resulting from exposure to agents that induce DNA double-strand breaks (DSBs), including restriction endonucleases and ionizing radiations. For intentional genome editing strategies, it is critical that any undesired effects of DSBs induced either by the editing system itself or by mis-repair with other endogenous DSBs are recognized and minimized. In this paper, we discuss the application of dGH for assessing gene editing-associated structural variants and the potential heterogeneity of such rearrangements among cells within an edited population, highlighting its relevance to personalized medicine strategies.
Collapse
Affiliation(s)
- Susan M. Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA;
- KromaTiD, Inc., Longmont, CO 80501, USA; (E.M.C.); (L.K.-B.); (H.C.S.)
| | - Erin M. Cross
- KromaTiD, Inc., Longmont, CO 80501, USA; (E.M.C.); (L.K.-B.); (H.C.S.)
| | | | - Henry C. Sebesta
- KromaTiD, Inc., Longmont, CO 80501, USA; (E.M.C.); (L.K.-B.); (H.C.S.)
| | - Joel S. Bedford
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA;
- KromaTiD, Inc., Longmont, CO 80501, USA; (E.M.C.); (L.K.-B.); (H.C.S.)
| | | |
Collapse
|
4
|
Abstract
Radiation is an environmental factor that elevates the risk of developing thyroid cancer. Actual and possible scenarios of exposures to external and internal radiation are multiple and diverse. This article reviews radiation doses to the thyroid and corresponding cancer risks due to planned, existing, and emergency exposure situations, and medical, public, and occupational categories of exposures. Any exposure scenario may deliver a range of doses to the thyroid, and the risk for cancer is addressed along with modifying factors. The consequences of the Chornobyl and Fukushima nuclear power plant accidents are described, summarizing the information on thyroid cancer epidemiology, treatment, and prognosis, clinicopathological characteristics, and genetic alterations. The Chornobyl thyroid cancers have evolved in time: becoming less aggressive and driver shifting from fusions to point mutations. A comparison of thyroid cancers from the 2 areas reveals numerous differences that cumulatively suggest the low probability of the radiogenic nature of thyroid cancers in Fukushima. In view of continuing usage of different sources of radiation in various settings, the possible ways of reducing thyroid cancer risk from exposures are considered. For external exposures, reasonable measures are generally in line with the As Low As Reasonably Achievable principle, while for internal irradiation from radioactive iodine, thyroid blocking with stable iodine may be recommended in addition to other measures in case of anticipated exposures from a nuclear reactor accident. Finally, the perspectives of studies of radiation effects on the thyroid are discussed from the epidemiological, basic science, and clinical points of view.
Collapse
Affiliation(s)
- Vladimir Saenko
- Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Norisato Mitsutake
- Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
5
|
Abstract
Background: Very little was known about the molecular pathogenesis of thyroid cancer until the late 1980s. As part of the Centennial celebration of the American Thyroid Association, we review the historical discoveries that contributed to our current understanding of the genetic underpinnings of thyroid cancer. Summary: The pace of discovery was heavily dependent on scientific breakthroughs in nucleic acid sequencing technology, cancer biology, thyroid development, thyroid cell signaling, and growth regulation. Accordingly, we attempt to link the primary observations on thyroid cancer molecular genetics with the methodological and scientific advances that made them possible. Conclusions: The major genetic drivers of the common forms of thyroid cancer are now quite well established and contribute to a significant extent to how we diagnose and treat the disease. However, many challenges remain. Future work will need to unravel the complexity of thyroid cancer ecosystems, which is likely to be a major determinant of their biological behavior and on how they respond to therapy.
Collapse
Affiliation(s)
- James A. Fagin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yuri E. Nikiforov
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Fagin JA, Krishnamoorthy GP, Landa I. Pathogenesis of cancers derived from thyroid follicular cells. Nat Rev Cancer 2023; 23:631-650. [PMID: 37438605 PMCID: PMC10763075 DOI: 10.1038/s41568-023-00598-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
The genomic simplicity of differentiated cancers derived from thyroid follicular cells offers unique insights into how oncogenic drivers impact tumour phenotype. Essentially, the main oncoproteins in thyroid cancer activate nodes in the receptor tyrosine kinase-RAS-BRAF pathway, which constitutively induces MAPK signalling to varying degrees consistent with their specific biochemical mechanisms of action. The magnitude of the flux through the MAPK signalling pathway determines key elements of thyroid cancer biology, including differentiation state, invasive properties and the cellular composition of the tumour microenvironment. Progression of disease results from genomic lesions that drive immortalization, disrupt chromatin accessibility and cause cell cycle checkpoint dysfunction, in conjunction with a tumour microenvironment characterized by progressive immunosuppression. This Review charts the genomic trajectories of these common endocrine tumours, while connecting them to the biological states that they confer.
Collapse
Affiliation(s)
- James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Gnana P Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Iñigo Landa
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
7
|
Canoy RJ, Shmakova A, Karpukhina A, Lomov N, Tiukacheva E, Kozhevnikova Y, André F, Germini D, Vassetzky Y. Specificity of cancer-related chromosomal translocations is linked to proximity after the DNA double-strand break and subsequent selection. NAR Cancer 2023; 5:zcad049. [PMID: 37750169 PMCID: PMC10518054 DOI: 10.1093/narcan/zcad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/01/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
Most cancer-related chromosomal translocations appear to be cell type specific. It is currently unknown why different chromosomal translocations occur in different cells. This can be due to either the occurrence of particular translocations in specific cell types or adaptive survival advantage conferred by translocations only in specific cells. We experimentally addressed this question by double-strand break (DSB) induction at MYC, IGH, AML and ETO loci in the same cell to generate chromosomal translocations in different cell lineages. Our results show that any translocation can potentially arise in any cell type. We have analyzed different factors that could affect the frequency of the translocations, and only the spatial proximity between gene loci after the DSB induction correlated with the resulting translocation frequency, supporting the 'breakage-first' model. Furthermore, upon long-term culture of cells with the generated chromosomal translocations, only oncogenic MYC-IGH and AML-ETO translocations persisted over a 60-day period. Overall, the results suggest that chromosomal translocation can be generated after DSB induction in any type of cell, but whether the cell with the translocation would persist in a cell population depends on the cell type-specific selective survival advantage that the chromosomal translocation confers to the cell.
Collapse
Affiliation(s)
- Reynand Jay Canoy
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Institute of Human Genetics, National Institutes of Health, University of the Philippines Manila, 1000 Manila, The Philippines
| | - Anna Shmakova
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization ‘National Cardiology Research Center’ of the Ministry of Health of the Russian Federation, 127994 Moscow, Russia
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| | - Anna Karpukhina
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| | - Nikolai Lomov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eugenia Tiukacheva
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| | - Yana Kozhevnikova
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
| | - Franck André
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
| | - Diego Germini
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
| | - Yegor Vassetzky
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| |
Collapse
|
8
|
Desilets A, Repetto M, Yang SR, Sherman EJ, Drilon A. RET-Altered Cancers-A Tumor-Agnostic Review of Biology, Diagnosis and Targeted Therapy Activity. Cancers (Basel) 2023; 15:4146. [PMID: 37627175 PMCID: PMC10452615 DOI: 10.3390/cancers15164146] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
RET alterations, such as fusions or mutations, drive the growth of multiple tumor types. These alterations are found in canonical (lung and thyroid) and non-canonical (e.g., gastrointestinal, breast, gynecological, genitourinary, histiocytic) cancers. RET alterations are best identified via comprehensive next-generation sequencing, preferably with DNA and RNA interrogation for fusions. Targeted therapies for RET-dependent cancers have evolved from older multikinase inhibitors to selective inhibitors of RET such as selpercatinib and pralsetinib. Prospective basket trials and retrospective reports have demonstrated the activity of these drugs in a wide variety of RET-altered cancers, notably those with RET fusions. This paved the way for the first tumor-agnostic selective RET inhibitor US FDA approval in 2022. Acquired resistance to RET kinase inhibitors can take the form of acquired resistance mutations (e.g., RET G810X) or bypass alterations.
Collapse
Affiliation(s)
- Antoine Desilets
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
| | - Matteo Repetto
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20133 Milan, Italy
| | - Soo-Ryum Yang
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
| | - Eric J. Sherman
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Alexander Drilon
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
9
|
Weischenfeldt J, Ibrahim DM. When 3D genome changes cause disease: the impact of structural variations in congenital disease and cancer. Curr Opin Genet Dev 2023; 80:102048. [PMID: 37156210 DOI: 10.1016/j.gde.2023.102048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023]
Abstract
Large structural variations (SV) are a class of mutations that have long been known to cause a wide range of genetic diseases, from rare congenital disease to cancer. Many of these SVs do not directly disrupt disease-related genes and determining causal genotype-phenotype relationships has been challenging to disentangle in the past. This has started to change with our increased understanding of the 3D genome folding. The pathophysiologies of the different types of genetic diseases influence the type of SVs observed and their genetic consequences, and how these are connected to 3D genome folding. We propose guiding principles for interpreting disease-associated SVs based on our current understanding of 3D chromatin architecture and the gene-regulatory and physiological mechanisms disrupted in disease.
Collapse
Affiliation(s)
- Joachim Weischenfeldt
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Daniel M Ibrahim
- Berlin Institute of Health at Charité - Universitätsmedizin, BIH Center for Regenerative Therapies, Berlin, Germany; Max-Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
10
|
Kosik P, Skorvaga M, Belyaev I. Preleukemic Fusion Genes Induced via Ionizing Radiation. Int J Mol Sci 2023; 24:ijms24076580. [PMID: 37047553 PMCID: PMC10095576 DOI: 10.3390/ijms24076580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Although the prevalence of leukemia is increasing, the agents responsible for this increase are not definitely known. While ionizing radiation (IR) was classified as a group one carcinogen by the IARC, the IR-induced cancers, including leukemia, are indistinguishable from those that are caused by other factors, so the risk estimation relies on epidemiological data. Several epidemiological studies on atomic bomb survivors and persons undergoing IR exposure during medical investigations or radiotherapy showed an association between radiation and leukemia. IR is also known to induce chromosomal translocations. Specific chromosomal translocations resulting in preleukemic fusion genes (PFGs) are generally accepted to be the first hit in the onset of many leukemias. Several studies indicated that incidence of PFGs in healthy newborns is up to 100-times higher than childhood leukemia with the same chromosomal aberrations. Because of this fact, it has been suggested that PFGs are not able to induce leukemia alone, but secondary mutations are necessary. PFGs also have to occur in specific cell populations of hematopoetic stem cells with higher leukemogenic potential. In this review, we describe the connection between IR, PFGs, and cancer, focusing on recurrent PFGs where an association with IR has been established.
Collapse
Affiliation(s)
- Pavol Kosik
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Milan Skorvaga
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
11
|
Demin DE, Murashko MM, Uvarova AN, Stasevich EM, Shyrokova EY, Gorlachev GE, Zaretsky AR, Korneev KV, Ustiugova AS, Tkachenko EA, Kostenko VV, Tatosyan KA, Sheetikov SA, Spirin PV, Kuprash DV, Schwartz AM. Adversary of DNA integrity: A long non-coding RNA stimulates driver oncogenic chromosomal rearrangement in human thyroid cells. Int J Cancer 2023; 152:1452-1462. [PMID: 36510744 DOI: 10.1002/ijc.34396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
The flurry of publications devoted to the functions of long non-coding RNAs (lncRNAs) published in the last decade leaves no doubt about the exceptional importance of lncRNAs in various areas including tumor biology. However, contribution of lncRNAs to the early stages of oncogenesis remains poorly understood. In this study we explored a new role for lncRNAs: stimulation of specific chromosomal rearrangements upon DNA damage. We demonstrated that lncRNA CASTL1 (ENSG00000269945) stimulates the formation of the CCDC6-RET inversion (RET/PTC1) in human thyroid cells subjected to radiation or chemical DNA damage. Facilitation of chromosomal rearrangement requires lncRNA to contain regions complementary to the introns of both CCDC6 and RET genes as deletion of these regions deprives CASTL1 of the ability to stimulate the gene fusion. We found that CASTL1 expression is elevated in tumors with CCDC6-RET fusion which is the most frequent rearrangement in papillary thyroid carcinoma. Our results open a new venue for the studies of early oncogenesis in various tumor types, especially those associated with physical or chemical DNA damage.
Collapse
Affiliation(s)
- Denis Eriksonovich Demin
- Laboratory for the Transmission of Intracellular Signals in Normal and Pathological Conditions, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Matvey Mikhailovich Murashko
- Laboratory for the Transmission of Intracellular Signals in Normal and Pathological Conditions, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Aksinya Nicolaevna Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Mikhailovna Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena Yurievna Shyrokova
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia.,Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Andrew Rostislavovich Zaretsky
- Department of Molecular Technologies, Research Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation
| | - Kirill Viktorovich Korneev
- Laboratory for the Transmission of Intracellular Signals in Normal and Pathological Conditions, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,National Research Center for Hematology, Moscow, Russia
| | - Alina Sergeevna Ustiugova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena Andreevna Tkachenko
- Laboratory for the Transmission of Intracellular Signals in Normal and Pathological Conditions, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Valentina Vitalevna Kostenko
- Laboratory for the Transmission of Intracellular Signals in Normal and Pathological Conditions, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Karina Aleksandrovna Tatosyan
- Laboratory of Eukaryotic Genome Evolution, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Saveliy Andreevich Sheetikov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,National Research Center for Hematology, Moscow, Russia
| | - Pavel Vladimirovich Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Vladimirovich Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anton Markovich Schwartz
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Erenpreisa J, Giuliani A, Yoshikawa K, Falk M, Hildenbrand G, Salmina K, Freivalds T, Vainshelbaum N, Weidner J, Sievers A, Pilarczyk G, Hausmann M. Spatial-Temporal Genome Regulation in Stress-Response and Cell-Fate Change. Int J Mol Sci 2023; 24:2658. [PMID: 36769000 PMCID: PMC9917235 DOI: 10.3390/ijms24032658] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 02/04/2023] Open
Abstract
Complex functioning of the genome in the cell nucleus is controlled at different levels: (a) the DNA base sequence containing all relevant inherited information; (b) epigenetic pathways consisting of protein interactions and feedback loops; (c) the genome architecture and organization activating or suppressing genetic interactions between different parts of the genome. Most research so far has shed light on the puzzle pieces at these levels. This article, however, attempts an integrative approach to genome expression regulation incorporating these different layers. Under environmental stress or during cell development, differentiation towards specialized cell types, or to dysfunctional tumor, the cell nucleus seems to react as a whole through coordinated changes at all levels of control. This implies the need for a framework in which biological, chemical, and physical manifestations can serve as a basis for a coherent theory of gene self-organization. An international symposium held at the Biomedical Research and Study Center in Riga, Latvia, on 25 July 2022 addressed novel aspects of the abovementioned topic. The present article reviews the most recent results and conclusions of the state-of-the-art research in this multidisciplinary field of science, which were delivered and discussed by scholars at the Riga symposium.
Collapse
Affiliation(s)
| | - Alessandro Giuliani
- Istituto Superiore di Sanita Environment and Health Department, 00161 Roma, Italy
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Martin Falk
- Institute of Biophysics, The Czech Academy of Sciences, 612 65 Brno, Czech Republic
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Georg Hildenbrand
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
- Faculty of Engineering, University of Applied Science Aschaffenburg, 63743 Aschaffenburg, Germany
| | - Kristine Salmina
- Latvian Biomedicine Research and Study Centre, LV1067 Riga, Latvia
| | - Talivaldis Freivalds
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV1004 Riga, Latvia
| | - Ninel Vainshelbaum
- Latvian Biomedicine Research and Study Centre, LV1067 Riga, Latvia
- Doctoral Study Program, University of Latvia, LV1004 Riga, Latvia
| | - Jonas Weidner
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Aaron Sievers
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
- Institute for Human Genetics, University Hospital Heidelberg, 69117 Heidelberg, Germany
| | - Götz Pilarczyk
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Zagelbaum J, Gautier J. Double-strand break repair and mis-repair in 3D. DNA Repair (Amst) 2023; 121:103430. [PMID: 36436496 PMCID: PMC10799305 DOI: 10.1016/j.dnarep.2022.103430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
DNA double-strand breaks (DSBs) are lesions that arise frequently from exposure to damaging agents as well as from ongoing physiological DNA transactions. Mis-repair of DSBs leads to rearrangements and structural variations in chromosomes, including insertions, deletions, and translocations implicated in disease. The DNA damage response (DDR) limits pathologic mutations and large-scale chromosome rearrangements. DSB repair initiates in 2D at DNA lesions with the stepwise recruitment of repair proteins and local chromatin remodeling which facilitates break accessibility. More complex structures are then formed via protein assembly into nanodomains and via genome folding into chromatin loops. Subsequently, 3D reorganization of DSBs is guided by clustering forces which drive the assembly of repair domains harboring multiple lesions. These domains are further stabilized and insulated into condensates via liquid-liquid phase-separation. Here, we discuss the benefits and risks associated with this 3D reorganization of the broken genome.
Collapse
Affiliation(s)
- Jennifer Zagelbaum
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
14
|
Kucharczyk T, Krawczyk P, Kowalski DM, Płużański A, Kubiatowski T, Kalinka E. RET Proto-Oncogene-Not Such an Obvious Starting Point in Cancer Therapy. Cancers (Basel) 2022; 14:5298. [PMID: 36358717 PMCID: PMC9657474 DOI: 10.3390/cancers14215298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2023] Open
Abstract
Mutations and fusions of RET (rearranged during transfection) gene are detected in a few common types of tumors including thyroid or non-small cells lung cancers. Multiple kinase inhibitors (MKIs) do not show spectacular effectiveness in patients with RET-altered tumors. Hence, recently, two novel RET-specific inhibitors were registered in the US and in Europe. Selpercatinib and pralsetinib showed high efficacy in clinical trials, with fewer adverse effects, in comparison to previously used MKIs. However, the effectiveness of these new drugs may be reduced by the emergence of resistance mutations in RET gene and activation of different activating signaling pathways. This review presents the function of the normal RET receptor, types of molecular disturbances of the RET gene in patients with various cancers, methods of detecting these abnormalities, and the effectiveness of modern anticancer therapies (ranging from immunotherapies, through MKIs, to RET-specific inhibitors).
Collapse
Affiliation(s)
- Tomasz Kucharczyk
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Paweł Krawczyk
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Dariusz M. Kowalski
- Department of Lung and Thoracic Tumours, Maria Skłodowskiej-Curie National Research Institute, 02-718 Warsaw, Poland
| | - Adam Płużański
- Department of Lung and Thoracic Tumours, Maria Skłodowskiej-Curie National Research Institute, 02-718 Warsaw, Poland
| | - Tomasz Kubiatowski
- Oncology and Immunology Clinic, Warmian-Masurian Cancer Center of the Ministry of the Interior and Administration’s Hospital, 10-228 Olsztyn, Poland
| | - Ewa Kalinka
- Department of Oncology, Polish Mother’s Memorial Hospital-Research Institute, 90-302 Lodz, Poland
| |
Collapse
|
15
|
Kumari S, Sharma S, Advani D, Khosla A, Kumar P, Ambasta RK. Unboxing the molecular modalities of mutagens in cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62111-62159. [PMID: 34611806 PMCID: PMC8492102 DOI: 10.1007/s11356-021-16726-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/22/2021] [Indexed: 04/16/2023]
Abstract
The etiology of the majority of human cancers is associated with a myriad of environmental causes, including physical, chemical, and biological factors. DNA damage induced by such mutagens is the initial step in the process of carcinogenesis resulting in the accumulation of mutations. Mutational events are considered the major triggers for introducing genetic and epigenetic insults such as DNA crosslinks, single- and double-strand DNA breaks, formation of DNA adducts, mismatched bases, modification in histones, DNA methylation, and microRNA alterations. However, DNA repair mechanisms are devoted to protect the DNA to ensure genetic stability, any aberrations in these calibrated mechanisms provoke cancer occurrence. Comprehensive knowledge of the type of mutagens and carcinogens and the influence of these agents in DNA damage and cancer induction is crucial to develop rational anticancer strategies. This review delineated the molecular mechanism of DNA damage and the repair pathways to provide a deep understanding of the molecular basis of mutagenicity and carcinogenicity. A relationship between DNA adduct formation and cancer incidence has also been summarized. The mechanistic basis of inflammatory response and oxidative damage triggered by mutagens in tumorigenesis has also been highlighted. We elucidated the interesting interplay between DNA damage response and immune system mechanisms. We addressed the current understanding of DNA repair targeted therapies and DNA damaging chemotherapeutic agents for cancer treatment and discussed how antiviral agents, anti-inflammatory drugs, and immunotherapeutic agents combined with traditional approaches lay the foundations for future cancer therapies.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
16
|
Loddo M, Hardisty KM, Llewelyn A, Haddow T, Thatcher R, Williams G. Utilisation of semiconductor sequencing for detection of actionable fusions in solid tumours. PLoS One 2022; 17:e0246778. [PMID: 35984852 PMCID: PMC9390944 DOI: 10.1371/journal.pone.0246778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 07/22/2022] [Indexed: 11/19/2022] Open
Abstract
Oncogenic fusions represent compelling druggable targets in solid tumours highlighted by the recent site agnostic FDA approval of larotrectinib for NTRK rearrangements. However screening for fusions in routinely processed tissue samples is constrained due to degradation of nucleic acid as a result of formalin fixation., To investigate the clinical utility of semiconductor sequencing optimised for detection of actionable fusion transcripts in formalin fixed samples, we have undertaken an analysis of test trending data generated by a clinically validated next generation sequencing platform designed to capture 867 of the most clinically relevant druggable driver-partner oncogenic fusions. Here we show across a real-life cohort of 1112 patients with solid tumours that actionable fusions occur at high frequency (7.4%) with linkage to a wide range of targeted therapy protocols including seven fusion-drug matches with FDA/EMA approval and/or NCCN/ESMO recommendations and 80 clinical trials. The more prevalent actionable fusions identified were independent of tumour type in keeping with signalling via evolutionary conserved RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, PLCy/PKC and JAK/STAT pathways. Taken together our data indicates that semiconductor sequencing for detection of actionable fusions can be integrated into routine diagnostic pathology workflows enabling the identification of personalised treatment options that have potential to improve clinical cancer management across many tumour types.
Collapse
Affiliation(s)
- Marco Loddo
- Oncologica UK Ltd, Cambridge, United Kingdom
- * E-mail: (ML); (GW)
| | | | | | | | | | - Gareth Williams
- Oncologica UK Ltd, Cambridge, United Kingdom
- * E-mail: (ML); (GW)
| |
Collapse
|
17
|
Stress and the CITI. Mol Cell 2022; 82:2730-2731. [PMID: 35931036 DOI: 10.1016/j.molcel.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription-coupled cellular stress is associated with several physiological and pathological features, including membraneless biomolecular condensates. In the study by Yasuhara et al., the authors have described specific nuclear condensates in multiple cell types upon inhibition of RNA polymerase II transcription, discovered their main constituent proteins, and elucidated their functions.
Collapse
|
18
|
de Lima MF, Lisboa MDO, Terceiro LEL, Rangel-Pozzo A, Mai S. Chromosome Territories in Hematological Malignancies. Cells 2022; 11:1368. [PMID: 35456046 PMCID: PMC9028803 DOI: 10.3390/cells11081368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
Chromosomes are organized in distinct nuclear areas designated as chromosome territories (CT). The structural formation of CT is a consequence of chromatin packaging and organization that ultimately affects cell function. Chromosome positioning can identify structural signatures of genomic organization, especially for diseases where changes in gene expression contribute to a given phenotype. The study of CT in hematological diseases revealed chromosome position as an important factor for specific chromosome translocations. In this review, we highlight the history of CT theory, current knowledge on possible clinical applications of CT analysis, and the impact of CT in the development of hematological neoplasia such as multiple myeloma, leukemia, and lymphomas. Accumulating data on nuclear architecture in cancer allow one to propose the three-dimensional nuclear genomic landscape as a novel cancer biomarker for the future.
Collapse
Affiliation(s)
- Matheus Fabiao de Lima
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Mateus de Oliveira Lisboa
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba 80215-901, Brazil;
| | - Lucas E. L. Terceiro
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada;
| | - Aline Rangel-Pozzo
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Sabine Mai
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| |
Collapse
|
19
|
Hess JR, Newbern DK, Beebe KL, Walsh AM, Schafernak KT. High Prevalence of Gene Fusions and Copy Number Alterations in Pediatric Radiation Therapy-Induced Papillary and Follicular Thyroid Carcinomas. Thyroid 2022; 32:411-420. [PMID: 34915766 DOI: 10.1089/thy.2021.0217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background: Childhood cancer survivors and bone marrow transplant recipients treated with radiation therapy (RT) are at increased risk for subsequent thyroid cancer. However, the genetic landscape of pediatric thyroid cancer, both primary and RT-induced, remains poorly defined, as pediatric papillary thyroid carcinoma (PTC) has been understudied compared with adults and data on pediatric follicular thyroid carcinoma (FTC) are virtually nonexistent. The objective of this study was to characterize and compare the molecular profiles of pediatric RT-induced PTC and FTC cases with primary pediatric thyroid cancers. Methods: A total of 41 differentiated thyroid carcinomas (11 RT cases and 30 primary cases) from 37 patients seen at Phoenix Children's Hospital between January 1, 2010 and December 31, 2019 were evaluated by targeted next-generation sequencing and/or BRAF immunohistochemistry. Results: Eighty-six percent (6/7) of RT-PTC harbored a gene fusion (GF) compared with 56% (14/25) of primary PTC; 14% (1/7) of RT-PTC had a single-nucleotide variant (SNV; specifically, a point mutation in the DICER1 gene) compared with 44% (11/25) of primary PTC (all of the latter had the BRAFV600E mutation). An exceedingly rare ROS1 fusion was identified in a child with RT-PTC. With respect to FTC, copy number alterations (CNAs) were seen in 75% (3/4) of RT cases compared with 40% (2/5) of primary cases. None of the RT-FTC had SNVs compared with 100% (5/5) of primary FTC. Conclusions: In children, the molecular profile of subsequent RT-induced thyroid cancers appears to differ from primary (sporadic and syndromic) cases, with a high prevalence of GFs in RT-PTC (similar to PTC occurring after the Chernobyl nuclear reactor accident) and CNAs in RT-FTC. A better understanding of the molecular mechanisms underlying these cancers may lead to more accurate diagnosis, prognosis, and treatment, as some of the genomic alterations are potentially targetable.
Collapse
Affiliation(s)
- Jennifer R Hess
- Center for Cancer and Blood Disorders; Phoenix, Arizona, USA
| | | | - Kristen L Beebe
- Center for Cancer and Blood Disorders; Phoenix, Arizona, USA
- Mayo Clinic Arizona, Phoenix, Arizona, USA
| | | | - Kristian T Schafernak
- Department of Pathology and Laboratory Medicine; Phoenix Children's Hospital, Phoenix, Arizona, USA
| |
Collapse
|
20
|
Fagin JA. Age of Onset of Receptor Tyrosine Kinase Fusions Drives Distinct Biologic Outcomes in Thyroid Cancer. J Clin Oncol 2022; 40:1124-1126. [DOI: 10.1200/jco.21.02864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- James A. Fagin
- Department of Medicine and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY
| |
Collapse
|
21
|
Gupta SK, Jea JDY, Yen L. RNA-driven JAZF1-SUZ12 gene fusion in human endometrial stromal cells. PLoS Genet 2021; 17:e1009985. [PMID: 34928964 PMCID: PMC8722726 DOI: 10.1371/journal.pgen.1009985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/03/2022] [Accepted: 12/08/2021] [Indexed: 12/17/2022] Open
Abstract
Oncogenic fusion genes as the result of chromosomal rearrangements are important for understanding genome instability in cancer cells and developing useful cancer therapies. To date, the mechanisms that create such oncogenic fusion genes are poorly understood. Previously we reported an unappreciated RNA-driven mechanism in human prostate cells in which the expression of chimeric RNA induces specified gene fusions in a sequence-dependent manner. One fundamental question yet to be addressed is whether such RNA-driven gene fusion mechanism is generalizable, or rather, a special case restricted to prostate cells. In this report, we demonstrated that the expression of designed chimeric RNAs in human endometrial stromal cells leads to the formation of JAZF1-SUZ12, a cancer fusion gene commonly found in low-grade endometrial stromal sarcomas. The process is specified by the sequence of chimeric RNA involved and inhibited by estrogen or progesterone. Furthermore, it is the antisense rather than sense chimeric RNAs that effectively drive JAZF1-SUZ12 gene fusion. The induced fusion gene is validated both at the RNA and the genomic DNA level. The ability of designed chimeric RNAs to drive and recapitulate the formation of JAZF1-SUZ12 gene fusion in endometrial cells represents another independent case of RNA-driven gene fusion, suggesting that RNA-driven genomic recombination is a permissible mechanism in mammalian cells. The results could have fundamental implications in the role of RNA in genome stability, and provide important insight in early disease mechanisms related to the formation of cancer fusion genes. Fusion genes resulting from chromosomal translocations are important for understanding cancer mechanisms and developing anti-cancer therapies. Fusion gene are presumed to occur prior to fusion RNA expression. However, studies have reported the presence of fusion RNAs in individuals who were negative for chromosomal translocations. The observation, that fusion RNA could be present prior to fusion gene formation, raises the provocative hypothesis that fusion RNA, or any cellular RNA with sequence compositions resembling that of fusion RNA, could act as a template to mediate genomic rearrangement which leads to the final gene fusion. In this report, we demonstrated that the expression of designed chimeric RNAs in human endometrial stromal cells leads to the formation of JAZF1-SUZ12, a cancer fusion gene found in endometrial stromal sarcomas. The process is specified by the sequence of chimeric RNA involved and inhibited by estrogen or progesterone. Furthermore, it is the antisense rather than sense chimeric RNAs that effectively drive JAZF1-SUZ12 gene fusion. The results could have fundamental implications in the role of RNA in mammalian genome stability, provide important insight in early disease mechanism, as well as developing gene editing technology via mechanisms native to mammalian cells.
Collapse
Affiliation(s)
- Sachin Kumar Gupta
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jocelyn Duen-Ya Jea
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Laising Yen
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
22
|
Marron M, Brackmann LK, Schwarz H, Hummel-Bartenschlager W, Zahnreich S, Galetzka D, Schmitt I, Grad C, Drees P, Hopf J, Mirsch J, Scholz-Kreisel P, Kaatsch P, Poplawski A, Hess M, Binder H, Hankeln T, Blettner M, Schmidberger H. Identification of Genetic Predispositions Related to Ionizing Radiation in Primary Human Skin Fibroblasts From Survivors of Childhood and Second Primary Cancer as Well as Cancer-Free Controls: Protocol for the Nested Case-Control Study KiKme. JMIR Res Protoc 2021; 10:e32395. [PMID: 34762066 PMCID: PMC8663494 DOI: 10.2196/32395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Therapy for a first primary neoplasm (FPN) in childhood with high doses of ionizing radiation is an established risk factor for second primary neoplasms (SPN). An association between exposure to low doses and childhood cancer is also suggested; however, results are inconsistent. As only subgroups of children with FPNs develop SPNs, an interaction between radiation, genetic, and other risk factors is presumed to influence cancer development. OBJECTIVE Therefore, the population-based, nested case-control study KiKme aims to identify differences in genetic predisposition and radiation response between childhood cancer survivors with and without SPNs as well as cancer-free controls. METHODS We conducted a population-based, nested case-control study KiKme. Besides questionnaire information, skin biopsies and saliva samples are available. By measuring individual reactions to different exposures to radiation (eg, 0.05 and 2 Gray) in normal somatic cells of the same person, our design enables us to create several exposure scenarios for the same person simultaneously and measure several different molecular markers (eg, DNA, messenger RNA, long noncoding RNA, copy number variation). RESULTS Since 2013, 101 of 247 invited SPN patients, 340 of 1729 invited FPN patients, and 150 of 246 invited cancer-free controls were recruited and matched by age and sex. Childhood cancer patients were additionally matched by tumor morphology, year of diagnosis, and age at diagnosis. Participants reported on lifestyle, socioeconomical, and anthropometric factors, as well as on medical radiation history, health, and family history of diseases (n=556). Primary human fibroblasts from skin biopsies of the participants were cultivated (n=499) and cryopreserved (n=3886). DNA was extracted from fibroblasts (n=488) and saliva (n=510). CONCLUSIONS This molecular-epidemiological study is the first to combine observational epidemiological research with standardized experimental components in primary human skin fibroblasts to identify genetic predispositions related to ionizing radiation in childhood and SPNs. In the future, fibroblasts of the participants will be used for standardized irradiation experiments, which will inform analysis of the case-control study and vice versa. Differences between participants will be identified using several molecular markers. With its innovative combination of experimental and observational components, this new study will provide valuable data to forward research on radiation-related risk factors in childhood cancer and SPNs. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/32395.
Collapse
Affiliation(s)
- Manuela Marron
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Lara Kim Brackmann
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Heike Schwarz
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | | | - Sebastian Zahnreich
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Danuta Galetzka
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Iris Schmitt
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Christian Grad
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Philipp Drees
- Department of Orthopedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Johannes Hopf
- Department of Orthopedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Johanna Mirsch
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany
| | - Peter Scholz-Kreisel
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Peter Kaatsch
- German Childhood Cancer Registry, Institute for Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Moritz Hess
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Harald Binder
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, Mainz, Germany
| | - Maria Blettner
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
23
|
Chromosome Folding Promotes Intrachromosomal Aberrations under Radiation- and Nuclease-Induced DNA Breakage. Int J Mol Sci 2021; 22:ijms222212186. [PMID: 34830065 PMCID: PMC8618582 DOI: 10.3390/ijms222212186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/19/2022] Open
Abstract
The long-standing question in radiation and cancer biology is how principles of chromosome organization impact the formation of chromosomal aberrations (CAs). To address this issue, we developed a physical modeling approach and analyzed high-throughput genomic data from chromosome conformation capture (Hi-C) and translocation sequencing (HTGTS) methods. Combining modeling of chromosome structure and of chromosomal aberrations induced by ionizing radiation (IR) and nuclease we made predictions which quantitatively correlated with key experimental findings in mouse chromosomes: chromosome contact maps, high frequency of cis-translocation breakpoints far outside of the site of nuclease-induced DNA double-strand breaks (DSBs), the distinct shape of breakpoint distribution in chromosomes with different 3D organizations. These correlations support the heteropolymer globule principle of chromosome organization in G1-arrested pro-B mouse cells. The joint analysis of Hi-C, HTGTS and physical modeling data offers mechanistic insight into how chromosome structure heterogeneity, globular folding and lesion dynamics drive IR-recurrent CAs. The results provide the biophysical and computational basis for the analysis of chromosome aberration landscape under IR and nuclease-induced DSBs.
Collapse
|
24
|
Mitsutake N, Saenko V. Molecular pathogenesis of pediatric thyroid carcinoma. JOURNAL OF RADIATION RESEARCH 2021; 62:i71-i77. [PMID: 33978172 PMCID: PMC8114219 DOI: 10.1093/jrr/rraa096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/16/2020] [Indexed: 06/12/2023]
Abstract
There has been little understanding of the molecular pathogenesis of pediatric thyroid cancers. Most of them are histologically classified as papillary thyroid carcinoma (PTC). Ionizing radiation is the most important environmental factor to induce PTC, especially in children. Particularly, radiation-related pediatric PTCs after the Chernobyl accident provided invaluable information. In addition, the recent accumulation of sporadic pediatric PTC cases, partly due to advances in diagnostic imaging, has also provided insight into their general pathogenesis. In PTC development, basically two types of genetic alterations, fusion oncogenes, mainly RET/PTC, and a point mutation, mainly BRAFV600E, are thought to play a key role as driver oncogenes. Their frequencies vary depending on patient age. The younger the age, the more prevalent the fusion oncogenes are. Higher incidence of fusion oncogenes was also observed in cases exposed to radiation. In short, fusion oncogenes are associated with both age and radiation and are not evidence of radiation exposure. The type of driver oncogene is shifted toward BRAFV600E during adolescence in sporadic PTCs. However, until about this age, fusion oncogenes seem to still confer dominant growth advantages, which may lead to the higher discovery rate of the fusion oncogenes. It has been postulated that RET/PTC in radiation-induced PTC is generated by ionizing radiation; however, there is an interesting hypothesis that thyroid follicular cell clones with pre-existing RET/PTC were already present, and radiation may play a role as a promoter/progressor but not initiator. Telomerase reverse transcriptase gene (TERT) promoter mutations, which are the strongest marker of tumor aggressiveness in adult PTC cases, have not been detected in pediatric cases; however, TERT expression without the mutations may play a role in tumor aggressiveness. In this paper, the recent information regarding molecular findings in sporadic and radiation-associated pediatric PTCs is summarized.
Collapse
Affiliation(s)
- Norisato Mitsutake
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Vladimir Saenko
- Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
25
|
Romei C, Elisei R. A Narrative Review of Genetic Alterations in Primary Thyroid Epithelial Cancer. Int J Mol Sci 2021; 22:1726. [PMID: 33572167 PMCID: PMC7915177 DOI: 10.3390/ijms22041726] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/22/2022] Open
Abstract
Thyroid carcinoma is the most frequent endocrine neoplasia. Different types of thyroid carcinoma are described: well-differentiated papillary thyroid carcinoma (PTC), poorly differentiated thyroid carcinoma (PDTC), follicular thyroid carcinoma (FTC), anaplastic thyroid carcinoma (ATC), and medullary thyroid carcinoma (MTC). MTC is inherited as an autosomal dominant trait in 25% of cases. The genetic landscape of thyroid carcinoma has been largely deciphered. In PTC, genetic alterations have been found in about 95% of tumors: BRAF mutations and RET rearrangements are the main genetic alterations. BRAF and RAS mutations have been confirmed to play an important role also in PDTC and ATC, together with TP53 mutations that are fundamental in tumor progression. It has also been clearly demonstrated that telomerase reverse transcriptase (TERT) promoter mutations and TP53 mutations are present with a high-frequency in more advanced tumors, frequently associated with other mutations, and their presence, especially if simultaneous, is a signature of aggressiveness. In MTC, next-generation sequencing confirmed that mutations in the RET gene are the most common molecular events followed by H-RAS and K-RAS mutations. The comprehensive knowledge of the genetic events responsible for thyroid tumorigenesis is important to better predict the biological behavior and better plan the therapeutic strategy for specific treatment of the malignancy based on its molecular profile.
Collapse
MESH Headings
- Adenocarcinoma, Follicular/genetics
- Adenocarcinoma, Follicular/pathology
- Biomarkers, Tumor/genetics
- Carcinogenesis/genetics
- Carcinoma, Neuroendocrine/genetics
- Carcinoma, Neuroendocrine/pathology
- DNA Mutational Analysis
- Gene Rearrangement
- Humans
- Mutation
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Proteins B-raf/genetics
- Proto-Oncogene Proteins c-ret/genetics
- Proto-Oncogene Proteins p21(ras)/genetics
- Telomerase/genetics
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/pathology
- Thyroid Carcinoma, Anaplastic/genetics
- Thyroid Carcinoma, Anaplastic/pathology
- Thyroid Gland/pathology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
| | - Rossella Elisei
- Department of Clinical and Experimental Medicine, Section of Endocrinology, University of Pisa, 56124 Pisa, Italy;
| |
Collapse
|
26
|
Shi Y, Guo Z, Su X, Meng L, Zhang M, Sun J, Wu C, Zheng M, Shang X, Zou X, Cheng W, Yu Y, Cai Y, Zhang C, Cai W, Da LT, He G, Han ZG. DeepAntigen: a novel method for neoantigen prioritization via 3D genome and deep sparse learning. Bioinformatics 2020; 36:4894-4901. [PMID: 32592462 DOI: 10.1093/bioinformatics/btaa596] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/08/2020] [Accepted: 06/19/2020] [Indexed: 12/30/2022] Open
Abstract
MOTIVATION The mutations of cancers can encode the seeds of their own destruction, in the form of T-cell recognizable immunogenic peptides, also known as neoantigens. It is computationally challenging, however, to accurately prioritize the potential neoantigen candidates according to their ability of activating the T-cell immunoresponse, especially when the somatic mutations are abundant. Although a few neoantigen prioritization methods have been proposed to address this issue, advanced machine learning model that is specifically designed to tackle this problem is still lacking. Moreover, none of the existing methods considers the original DNA loci of the neoantigens in the perspective of 3D genome which may provide key information for inferring neoantigens' immunogenicity. RESULTS In this study, we discovered that DNA loci of the immunopositive and immunonegative MHC-I neoantigens have distinct spatial distribution patterns across the genome. We therefore used the 3D genome information along with an ensemble pMHC-I coding strategy, and developed a group feature selection-based deep sparse neural network model (DNN-GFS) that is optimized for neoantigen prioritization. DNN-GFS demonstrated increased neoantigen prioritization power comparing to existing sequence-based approaches. We also developed a webserver named deepAntigen (http://yishi.sjtu.edu.cn/deepAntigen) that implements the DNN-GFS as well as other machine learning methods. We believe that this work provides a new perspective toward more accurate neoantigen prediction which eventually contribute to personalized cancer immunotherapy. AVAILABILITY AND IMPLEMENTATION Data and implementation are available on webserver: http://yishi.sjtu.edu.cn/deepAntigen. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yi Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zehua Guo
- Shanghai Jiao Tong University, Shanghai 200030, China
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianbin Su
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Luming Meng
- College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Mingxuan Zhang
- Department of Mathematics, University of California San Diego, La Jolla, CA 92093-0112, USA
| | - Jing Sun
- Department of General Surgery & Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chao Wu
- Department of General Surgery & Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Minhua Zheng
- Department of General Surgery & Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xueyin Shang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wangqiu Cheng
- Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yaoliang Yu
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L3G1, Canada
| | - Yujia Cai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chaoyi Zhang
- School of Computer Science, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Weidong Cai
- School of Computer Science, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang He
- Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
27
|
Pariset E, Penninckx S, Kerbaul CD, Guiet E, Macha AL, Cekanaviciute E, Snijders AM, Mao JH, Paris F, Costes SV. 53BP1 Repair Kinetics for Prediction of In Vivo Radiation Susceptibility in 15 Mouse Strains. Radiat Res 2020; 194:485-499. [PMID: 32991727 DOI: 10.1667/rade-20-00122.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/05/2020] [Indexed: 11/03/2022]
Abstract
We present a novel mathematical formalism to predict the kinetics of DNA damage repair after exposure to both low- and high-LET radiation (X rays; 350 MeV/n 40Ar; 600 MeV/n 56Fe). Our method is based on monitoring DNA damage repair protein 53BP1 that forms radiation-induced foci (RIF) at locations of DNA double-strand breaks (DSB) in the nucleus and comparing its expression in primary skin fibroblasts isolated from 15 mice strains. We previously reported strong evidence for clustering of nearby DSB into single repair units as opposed to the classic "contact-first" model where DSB are considered immobile. Here we apply this clustering model to evaluate the number of remaining RIF over time. We also show that the newly introduced kinetic metrics can be used as surrogate biomarkers for in vivo radiation toxicity, with potential applications in radiotherapy and human space exploration. In particular, we observed an association between the characteristic time constant of RIF repair measured in vitro and survival levels of immune cells collected from irradiated mice. Moreover, the speed of DNA damage repair correlated not only with radiation-induced cellular survival in vivo, but also with spontaneous cancer incidence data collected from the Mouse Tumor Biology database, suggesting a relationship between the efficiency of DSB repair after irradiation and cancer risk.
Collapse
Affiliation(s)
- Eloise Pariset
- Universities Space Research Association (USRA), Columbia, Maryland 21046
- Space Biosciences Division, NASA Ames Research Center, Mountain View, California 94035
| | - Sébastien Penninckx
- Namur Research Institute for Life Science, University of Namur, 5000 Namur, Belgium
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | | | - Elodie Guiet
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | | | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Mountain View, California 94035
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - François Paris
- Université de Nantes, INSERM, CNRS, CRCINA, Nantes, France 44007
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Mountain View, California 94035
| |
Collapse
|
28
|
Rangel-Pozzo A, Sisdelli L, Cordioli MIV, Vaisman F, Caria P, Mai S, Cerutti JM. Genetic Landscape of Papillary Thyroid Carcinoma and Nuclear Architecture: An Overview Comparing Pediatric and Adult Populations. Cancers (Basel) 2020; 12:E3146. [PMID: 33120984 PMCID: PMC7693829 DOI: 10.3390/cancers12113146] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022] Open
Abstract
Thyroid cancer is a rare malignancy in the pediatric population that is highly associated with disease aggressiveness and advanced disease stages when compared to adult population. The biological and molecular features underlying pediatric and adult thyroid cancer pathogenesis could be responsible for differences in the clinical presentation and prognosis. Despite this, the clinical assessment and treatments used in pediatric thyroid cancer are the same as those implemented for adults and specific personalized target treatments are not used in clinical practice. In this review, we focus on papillary thyroid carcinoma (PTC), which represents 80-90% of all differentiated thyroid carcinomas. PTC has a high rate of gene fusions and mutations, which can influence the histologic subtypes in both children and adults. This review also highlights telomere-related genomic instability and changes in nuclear organization as novel biomarkers for thyroid cancers.
Collapse
Affiliation(s)
- Aline Rangel-Pozzo
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Luiza Sisdelli
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo/EPM, São Paulo, SP 04039-032, Brazil; (L.S.); (M.I.V.C.); (J.M.C.)
| | - Maria Isabel V. Cordioli
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo/EPM, São Paulo, SP 04039-032, Brazil; (L.S.); (M.I.V.C.); (J.M.C.)
| | - Fernanda Vaisman
- Instituto Nacional do Câncer, Rio de Janeiro, RJ 22451-000, Brazil;
| | - Paola Caria
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Sabine Mai
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Janete M. Cerutti
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo/EPM, São Paulo, SP 04039-032, Brazil; (L.S.); (M.I.V.C.); (J.M.C.)
| |
Collapse
|
29
|
Elfman J, Pham LP, Li H. The relationship between chimeric RNAs and gene fusions: Potential implications of reciprocity in cancer. J Genet Genomics 2020; 47:341-348. [PMID: 33008771 DOI: 10.1016/j.jgg.2020.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Justin Elfman
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22904 USA
| | - Lam-Phong Pham
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22904 USA
| | - Hui Li
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22904 USA; Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22904 USA.
| |
Collapse
|
30
|
Proteogenomics analysis unveils a TFG-RET gene fusion and druggable targets in papillary thyroid carcinomas. Nat Commun 2020; 11:2056. [PMID: 32345963 PMCID: PMC7188865 DOI: 10.1038/s41467-020-15955-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Papillary thyroid cancer (PTC) is the most common type of endocrine malignancy. By RNA-seq analysis, we identify a RET rearrangement in the tumour material of a patient who does not harbour any known RAS or BRAF mutations. This new gene fusion involves exons 1–4 from the 5′ end of the Trk fused Gene (TFG) fused to the 3′ end of RET tyrosine kinase leading to a TFG-RET fusion which transforms immortalized human thyroid cells in a kinase-dependent manner. TFG-RET oligomerises in a PB1 domain-dependent manner and oligomerisation of TFG-RET is required for oncogenic transformation. Quantitative proteomic analysis reveals the upregulation of E3 Ubiquitin ligase HUWE1 and DUBs like USP9X and UBP7 in both tumor and metastatic lesions, which is further confirmed in additional patients. Expression of TFG-RET leads to the upregulation of HUWE1 and inhibition of HUWE1 significantly reduces RET-mediated oncogenesis. Papillary thyroid cancer (PTC) is one of the most common type of endocrine malignancy. Here, the authors use proteogenomic approaches to analyse the primary tumour and lymph node metastases from a PTC patient and report an oncogenic RET fusion, and potential druggable targets from the ubiquitin signaling machinery for treating human PTCs.
Collapse
|
31
|
Edmondson EF, Gatti DM, Ray FA, Garcia EL, Fallgren CM, Kamstock DA, Weil MM. Genomic mapping in outbred mice reveals overlap in genetic susceptibility for HZE ion- and γ-ray-induced tumors. SCIENCE ADVANCES 2020; 6:eaax5940. [PMID: 32494593 PMCID: PMC7159905 DOI: 10.1126/sciadv.aax5940] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 01/14/2020] [Indexed: 05/02/2023]
Abstract
Cancer risk from galactic cosmic radiation exposure is considered a potential "showstopper" for a manned mission to Mars. Calculating the actual risks confronted by spaceflight crews is complicated by our limited understanding of the carcinogenic effects of high-charge, high-energy (HZE) ions, a radiation type for which no human exposure data exist. Using a mouse model of genetic diversity, we find that the histotype spectrum of HZE ion-induced tumors is similar to the spectra of spontaneous and γ-ray-induced tumors and that the genomic loci controlling susceptibilities overlap between groups for some tumor types. Where it occurs, this overlap indicates shared tumorigenesis mechanisms regardless of the type of radiation exposure and supports the use of human epidemiological data from γ-ray exposures to predict cancer risks from galactic cosmic rays.
Collapse
Affiliation(s)
- E. F. Edmondson
- Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Colorado State University, Fort Collins, CO 80523, USA
| | - D. M. Gatti
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - F. A. Ray
- Colorado State University, Fort Collins, CO 80523, USA
| | - E. L. Garcia
- Colorado State University, Fort Collins, CO 80523, USA
| | | | | | - M. M. Weil
- Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
32
|
Radiation-Induced Thyroid Cancers: Overview of Molecular Signatures. Cancers (Basel) 2019; 11:cancers11091290. [PMID: 31480712 PMCID: PMC6770066 DOI: 10.3390/cancers11091290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 11/25/2022] Open
Abstract
Enormous amounts of childhood thyroid cancers, mostly childhood papillary thyroid carcinomas (PTCs), after the Chernobyl nuclear power plant accident have revealed a mutual relationship between the radiation exposure and thyroid cancer development. While the internal exposure to radioactive 131I is involved in the childhood thyroid cancers after the Chernobyl accident, people exposed to the external radiation, such as atomic-bomb (A-bomb) survivors, and the patients who received radiation therapy, have also been epidemiologically demonstrated to develop thyroid cancers. In order to elucidate the mechanisms of radiation-induced carcinogenesis, studies have aimed at defining the molecular changes associated with the thyroid cancer development. Here, we overview the literatures towards the identification of oncogenic alterations, particularly gene rearrangements, and discuss the existence of radiation signatures associated with radiation-induced thyroid cancers.
Collapse
|
33
|
Swenson KM, Blanchette M. Large-scale mammalian genome rearrangements coincide with chromatin interactions. Bioinformatics 2019; 35:i117-i126. [PMID: 31510664 PMCID: PMC6612848 DOI: 10.1093/bioinformatics/btz343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Motivation Genome rearrangements drastically change gene order along great stretches of a chromosome. There has been initial evidence that these apparently non-local events in the 1D sense may have breakpoints that are close in the 3D sense. We harness the power of the Double Cut and Join model of genome rearrangement, along with Hi-C chromosome conformation capture data to test this hypothesis between human and mouse. Results We devise novel statistical tests that show that indeed, rearrangement scenarios that transform the human into the mouse gene order are enriched for pairs of breakpoints that have frequent chromosome interactions. This is observed for both intra-chromosomal breakpoint pairs, as well as for inter-chromosomal pairs. For intra-chromosomal rearrangements, the enrichment exists from close (<20 Mb) to very distant (100 Mb) pairs. Further, the pattern exists across multiple cell lines in Hi-C data produced by different laboratories and at different stages of the cell cycle. We show that similarities in the contact frequencies between these many experiments contribute to the enrichment. We conclude that either (i) rearrangements usually involve breakpoints that are spatially close or (ii) there is selection against rearrangements that act on spatially distant breakpoints. Availability and implementation Our pipeline is freely available at https://bitbucket.org/thekswenson/locality. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Krister M Swenson
- Laboratoire d'Informatique, de Robotique, et de Microelectronique de Montpellier (LIRMM), Université Montpellier, Montpellier, France.,Centre Nationale de la Recherche Scientifique (CNRS), France
| | | |
Collapse
|
34
|
Krumm A, Duan Z. Understanding the 3D genome: Emerging impacts on human disease. Semin Cell Dev Biol 2019; 90:62-77. [PMID: 29990539 PMCID: PMC6329682 DOI: 10.1016/j.semcdb.2018.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022]
Abstract
Recent burst of new technologies that allow for quantitatively delineating chromatin structure has greatly expanded our understanding of how the genome is organized in the three-dimensional (3D) space of the nucleus. It is now clear that the hierarchical organization of the eukaryotic genome critically impacts nuclear activities such as transcription, replication, as well as cellular and developmental events such as cell cycle, cell fate decision and embryonic development. In this review, we discuss new insights into how the structural features of the 3D genome hierarchy are established and maintained, how this hierarchy undergoes dynamic rearrangement during normal development and how its perturbation will lead to human disease, highlighting the accumulating evidence that links the diverse 3D genome architecture components to a multitude of human diseases and the emerging mechanisms by which 3D genome derangement causes disease phenotypes.
Collapse
Affiliation(s)
- Anton Krumm
- Department of Microbiology, University of Washington, USA.
| | - Zhijun Duan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, USA; Division of Hematology, Department of Medicine, University of Washington, USA.
| |
Collapse
|
35
|
Detection of RET rearrangements in papillary thyroid carcinoma using RT-PCR and FISH techniques - A molecular and clinical analysis. Eur J Surg Oncol 2019; 45:1018-1024. [DOI: 10.1016/j.ejso.2018.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/22/2018] [Accepted: 11/12/2018] [Indexed: 12/26/2022] Open
|
36
|
Penninckx S, Cekanaviciute E, Degorre C, Guiet E, Viger L, Lucas S, Costes SV. Dose, LET and Strain Dependence of Radiation-Induced 53BP1 Foci in 15 Mouse Strains Ex Vivo Introducing Novel DNA Damage Metrics. Radiat Res 2019; 192:1-12. [PMID: 31081741 DOI: 10.1667/rr15338.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We present a comprehensive comparative analysis on the repair of radiation-induced DNA damage ex vivo in 15 strains of mice, including 5 inbred reference strains and 10 collaborative-cross strains, of both sexes, totaling 5 million skin fibroblast cells imaged by three-dimensional highthroughput conventional microscopy. Non-immortalized primary skin fibroblasts derived from 76 mice were subjected to increasing doses of both low- and high-LET radiation (X rays; 350 MeV/n 40Ar; 600 MeV/n 56Fe), which are relevant to carcinogenesis and human space exploration. Automated image quantification of 53BP1 radiation-induced foci (RIF) formation and repair during the first 4-48 h postirradiation was performed as a function of dose and LET. Since multiple DNA double-strand breaks (DSBs) are induced in a dose- and LET-dependent manner, our data suggest that when DSBs are formed within the same discrete nuclear region, referred to as the "repair domain", novel mathematical formalisms used to report RIF allowed us to conclude that multiple DSBs can be present in single RIF. Specifically, we observed that the number of RIF per Gy was lower for higher X-ray doses or higher LET particles (i.e., 600 MeV/n 56Fe), suggesting there are more DSBs per RIF when the local absorbed dose increases in the nucleus. The data also clearly show that with more DSBs per RIF, it becomes more difficult for cells to fully resolve RIF. All 15 strains showed the same dose and LET dependence, but strain differences were preserved under various experimental conditions, indicating that the number and sizes of repair domains are modulated by the genetic background of each strain.
Collapse
Affiliation(s)
- Sébastien Penninckx
- a Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720.,b Namur Research Institute for Life Science, University of Namur, 5000 Namur, Belgium
| | - Egle Cekanaviciute
- c Universities Space Research Association (USRA), Columbia, Maryland.,d Space Biosciences Division, NASA Ames Research Center, Mountain View, California 94035
| | | | - Elodie Guiet
- a Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Louise Viger
- a Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Stéphane Lucas
- b Namur Research Institute for Life Science, University of Namur, 5000 Namur, Belgium
| | - Sylvain V Costes
- a Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720.,d Space Biosciences Division, NASA Ames Research Center, Mountain View, California 94035
| |
Collapse
|
37
|
Parmar JJ, Woringer M, Zimmer C. How the Genome Folds: The Biophysics of Four-Dimensional Chromatin Organization. Annu Rev Biophys 2019; 48:231-253. [DOI: 10.1146/annurev-biophys-052118-115638] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetic information that instructs transcription and other cellular functions is carried by the chromosomes, polymers of DNA in complex with histones and other proteins. These polymers are folded inside nuclei five orders of magnitude smaller than their linear length, and many facets of this folding correlate with or are causally related to transcription and other cellular functions. Recent advances in sequencing and imaging-based techniques have enabled new views into several layers of chromatin organization. These experimental findings are accompanied by computational modeling efforts based on polymer physics that can provide mechanistic insights and quantitative predictions. Here, we review current knowledge of the main levels of chromatin organization, from the scale of nucleosomes to the entire nucleus, our current understanding of their underlying biophysical and molecular mechanisms, and some of their functional implications.
Collapse
Affiliation(s)
- Jyotsana J. Parmar
- Unité Imagerie et Modélisation, CNRS UMR 3691, and C3BI (Center of Bioinformatics, Biostatistics and Integrative Biology), CNRS USR 3756, Institut Pasteur, 75015 Paris, France;, ,
| | - Maxime Woringer
- Unité Imagerie et Modélisation, CNRS UMR 3691, and C3BI (Center of Bioinformatics, Biostatistics and Integrative Biology), CNRS USR 3756, Institut Pasteur, 75015 Paris, France;, ,
- Sorbonne Universités, CNRS, 75005 Paris, France
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, and CIRM Center of Excellence in Stem Cell Genomics, University of California, Berkeley, California 94720, USA
| | - Christophe Zimmer
- Unité Imagerie et Modélisation, CNRS UMR 3691, and C3BI (Center of Bioinformatics, Biostatistics and Integrative Biology), CNRS USR 3756, Institut Pasteur, 75015 Paris, France;, ,
| |
Collapse
|
38
|
Laxmi A, Gupta P, Gupta J. CCDC6, a gene product in fusion with different protoncogenes, as a potential chemotherapeutic target. Cancer Biomark 2019; 24:383-393. [PMID: 30909182 DOI: 10.3233/cbm-181601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Aishwarya Laxmi
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Pawan Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Department of Research and Development, Lovely Professional University, Phagwara, Punjab 144411, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Jeena Gupta
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
39
|
Johansson B, Mertens F, Schyman T, Björk J, Mandahl N, Mitelman F. Most gene fusions in cancer are stochastic events. Genes Chromosomes Cancer 2019; 58:607-611. [PMID: 30807681 DOI: 10.1002/gcc.22745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/28/2022] Open
Abstract
Cancer-associated gene fusions resulting in chimeric proteins or aberrant expression of one or both partner genes are pathogenetically and clinically important in several hematologic malignancies and solid tumors. Since the advent of different types of massively parallel sequencing (MPS), the number of identified gene fusions has increased dramatically, prompting the question whether they all have a biologic impact. By ascertaining the chromosomal locations of 8934 genes involved in 10 861 gene fusions reported in the literature, we here show that there is a highly significant association between gene content of chromosomes and chromosome bands and number of genes involved in fusions. This strongly suggests that a clear majority of gene fusions detected by MPS are stochastic events associated with the number of genes available to participate in fusions and that most reported gene fusions are passengers without any pathogenetic importance.
Collapse
Affiliation(s)
- Bertil Johansson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Department of Clinical Genetics and Pathology, Division of Laboratory Medicine, Lund, Sweden
| | - Fredrik Mertens
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Department of Clinical Genetics and Pathology, Division of Laboratory Medicine, Lund, Sweden
| | - Tommy Schyman
- Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Jonas Björk
- Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Nils Mandahl
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Felix Mitelman
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
40
|
Tuna M, Amos CI, Mills GB. Molecular mechanisms and pathobiology of oncogenic fusion transcripts in epithelial tumors. Oncotarget 2019; 10:2095-2111. [PMID: 31007851 PMCID: PMC6459343 DOI: 10.18632/oncotarget.26777] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Recurrent fusion transcripts, which are one of the characteristic hallmarks of cancer, arise either from chromosomal rearrangements or from transcriptional errors in splicing. DNA rearrangements include intrachromosomal or interchromosomal translocation, tandem duplication, deletion, inversion, or result from chromothripsis, which causes complex rearrangements. In addition, fusion proteins can be created through transcriptional read-through. Fusion genes can be transcribed to fusion transcripts and translated to chimeric proteins, with many having demonstrated transforming activities through multiple mechanisms in cells. Fusion proteins represent novel therapeutic targets and diagnostic biomarkers of diagnosis, disease status, or progression. This review focuses on the mechanisms underlying the formation of oncogenic fusion genes and transcripts and their impact on the pathobiology of epithelial tumors.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Christopher I. Amos
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Gordon B. Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cell, Developmental and Cancer Biology, School of Medicine, Oregon Health Science University, Portland, OR, USA
- Precision Oncology, Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
41
|
Valvo V, Nucera C. Coding Molecular Determinants of Thyroid Cancer Development and Progression. Endocrinol Metab Clin North Am 2019; 48:37-59. [PMID: 30717910 PMCID: PMC6366338 DOI: 10.1016/j.ecl.2018.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thyroid cancer is the most common endocrine malignancy. Its incidence and mortality rates have increased for patients with advanced-stage papillary thyroid cancer. The characterization of the molecular pathways essential in thyroid cancer initiation and progression has made huge progress, underlining the role of intracellular signaling to promote clonal evolution, dedifferentiation, metastasis, and drug resistance. The discovery of genetic alterations that include mutations (BRAF, hTERT), translocations, deletions (eg, 9p), and copy-number gain (eg, 1q) has provided new biological insights with clinical applications. Understanding how molecular pathways interplay is one of the key strategies to develop new therapeutic treatments and improve prognosis.
Collapse
Affiliation(s)
- Veronica Valvo
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI), Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA; Department of Pathology, Center for Vascular Biology Research (CVBR), Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA
| | - Carmelo Nucera
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI), Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA; Department of Pathology, Center for Vascular Biology Research (CVBR), Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
42
|
Efanov AA, Brenner AV, Bogdanova TI, Kelly LM, Liu P, Little MP, Wald AI, Hatch M, Zurnadzy LY, Nikiforova MN, Drozdovitch V, Leeman-Neill R, Mabuchi K, Tronko MD, Chanock SJ, Nikiforov YE. Investigation of the Relationship Between Radiation Dose and Gene Mutations and Fusions in Post-Chernobyl Thyroid Cancer. J Natl Cancer Inst 2019; 110:371-378. [PMID: 29165687 DOI: 10.1093/jnci/djx209] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023] Open
Abstract
Background Exposure to ionizing radiation during childhood is a well-established risk factor for thyroid cancer. However, the genetic mechanisms of radiation-associated carcinogenesis remain not fully understood. Methods In this study, we used targeted next-generation sequencing and RNA-Seq to study 65 papillary thyroid cancers (PTCs) from patients in the Ukrainian-American cohort with measurement-based iodine-131 (I-131) thyroid doses received as a result of the Chernobyl accident. We fitted linear regression models to evaluate differences in distribution of risk factors for PTC according to type of genetic alteration and logistic regression models to evaluate the I-131 dose response. All statistical tests were two-sided. Results Driver mutations were identified in 96.9% of these thyroid cancers, including point mutations in 26.2% and gene fusions in 70.8% of cases. Novel driver fusions such as POR-BRAF, as well as STRN-ALK fusions that have not been implicated in radiation-associated cancer before, were found. The mean I-131 dose in cases with point mutations was 0.2 Gy (range = 0.013-1.05 Gy), statistically significantly lower than 1.4 Gy (range = 0.009-6.15 Gy) for cases with fusions (P < .001). No driver point mutations were found in tumors from individuals who received more than 1.1 Gy of radiation. Relative to tumors with point mutations, the proportion of tumors with gene fusions increased with radiation dose, reaching 87.8% among individuals exposed to 0.3 Gy or higher. With a limited study sample size, the estimated odds ratio at 1 Gy was 20.01 (95% confidence interval = 2.57 to 653.02, P < .001). In addition, after controlling for I-131 dose, we found higher odds ratios for gene fusion-positive PTCs associated with several specific demographic and geographic features. Conclusions Our data provide support for a link between I-131 thyroid dose and generation of carcinogenic gene fusions, the predominant mechanism of thyroid cancer associated with radiation exposure from the Chernobyl accident.
Collapse
Affiliation(s)
- Alexey A Efanov
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Alina V Brenner
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Tetiana I Bogdanova
- State Institution V. P. Komisarenko Institute of Endocrinology and Metabolism of AMS of Ukraine, Kyiv, Ukraine
| | - Lindsey M Kelly
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Pengyuan Liu
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mark P Little
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Abigail I Wald
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Maureen Hatch
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Liudmyla Y Zurnadzy
- State Institution V. P. Komisarenko Institute of Endocrinology and Metabolism of AMS of Ukraine, Kyiv, Ukraine
| | - Marina N Nikiforova
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Vladimir Drozdovitch
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Kiyohiko Mabuchi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Mykola D Tronko
- State Institution V. P. Komisarenko Institute of Endocrinology and Metabolism of AMS of Ukraine, Kyiv, Ukraine
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Yuri E Nikiforov
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
43
|
Ray S, Cekanaviciute E, Lima IP, Sørensen BS, Costes SV. Comparing Photon and Charged Particle Therapy Using DNA Damage Biomarkers. Int J Part Ther 2018; 5:15-24. [PMID: 31773017 DOI: 10.14338/ijpt-18-00018.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/05/2018] [Indexed: 11/21/2022] Open
Abstract
Treatment modalities for cancer radiation therapy have become increasingly diversified given the growing number of facilities providing proton and carbon-ion therapy in addition to the more historically accepted photon therapy. An understanding of high-LET radiobiology is critical for optimization of charged particle radiation therapy and potential DNA damage response. In this review, we present a comprehensive summary and comparison of these types of therapy monitored primarily by using DNA damage biomarkers. We focus on their relative profiles of dose distribution and mechanisms of action from the level of nucleic acid to tumor cell death.
Collapse
Affiliation(s)
- Shayoni Ray
- USRA/NASA Ames Research Center, Moffett Field, CA, USA
| | | | | | | | | |
Collapse
|
44
|
Arifulin EA, Musinova YR, Vassetzky YS, Sheval EV. Mobility of Nuclear Components and Genome Functioning. BIOCHEMISTRY (MOSCOW) 2018; 83:690-700. [PMID: 30195325 DOI: 10.1134/s0006297918060068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell nucleus is characterized by strong compartmentalization of structural components in its three-dimensional space. Certain genomic functions are accompanied by changes in the localization of chromatin loci and nuclear bodies. Here we review recent data on the mobility of nuclear components and the role of this mobility in genome functioning.
Collapse
Affiliation(s)
- E A Arifulin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Y R Musinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, Villejuif, 94805, France.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Y S Vassetzky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, Villejuif, 94805, France.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,UMR8126, CNRS, Université Paris-Sud, Institut de Cancérologie Gustave Roussy, Villejuif, 94805, France
| | - E V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, Villejuif, 94805, France
| |
Collapse
|
45
|
|
46
|
Diament A, Tuller T. Modeling three-dimensional genomic organization in evolution and pathogenesis. Semin Cell Dev Biol 2018; 90:78-93. [PMID: 30030143 DOI: 10.1016/j.semcdb.2018.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/08/2018] [Indexed: 12/17/2022]
Abstract
The regulation of gene expression is mediated via the complex three-dimensional (3D) conformation of the genetic material and its interactions with various intracellular factors. Various experimental and computational approaches have been developed in recent years for understating the relation between the 3D conformation of the genome and the phenotypes of cells in normal condition and diseases. In this review, we will discuss novel approaches for analyzing and modeling the 3D genomic conformation, focusing on deciphering disease-causing mutations that affect gene expression. We conclude that as this is a very challenging mission, an important direction should involve the comparative analysis of various 3D models from various organisms or cells.
Collapse
Affiliation(s)
- Alon Diament
- Dept. of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamir Tuller
- Dept. of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
47
|
Abstract
Thyroid nodules are heterogeneous tumors with variable genetic signatures. Thyroid cancers are monoclonal lesions with a defined histomorphology that largely depends on the underlying somatic mutation. While the mutation rate is generally low in differentiated thyroid cancers, poorly differentiated and anaplastic thyroid cancers show a high mutation load. The identification of somatic mutations in fine needle aspirates can be helpful for the differential diagnostics of thyroid nodules; however, a prognostic contribution is less certain. The molecular pathology of thyroid tumors is helpful for the development of targeted therapies and may infer novel immuno-oncological concepts for advanced aggressive thyroid cancers.
Collapse
Affiliation(s)
- D Führer
- Klinik für Endokrinologie, Diabetologie und Stoffwechsel, Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Deutschland.
| |
Collapse
|
48
|
Saiki M, Kitazono S, Yoshizawa T, Dotsu Y, Ariyasu R, Koyama J, Sonoda T, Uchibori K, Nishikawa S, Yanagitani N, Horiike A, Ohyanagi F, Oikado K, Ninomiya H, Takeuchi K, Ishikawa Y, Nishio M. Characterization of Computed Tomography Imaging of Rearranged During Transfection-rearranged Lung Cancer. Clin Lung Cancer 2018; 19:435-440.e1. [PMID: 29885946 DOI: 10.1016/j.cllc.2018.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/21/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Rearranged during transfection (RET)-rearranged non-small-cell lung cancer (NSCLC) is relatively rare and the clinical and computed tomography (CT) image characteristics of patients with an advanced disease stage have not been well documented. PATIENTS AND METHODS We identified patients with advanced-stage RET-rearranged NSCLC treated in the Cancer Institute Hospital, Japanese Foundation for Cancer Research, and analyzed the clinical and CT imaging characteristics. RESULTS In 21 patients with advanced RET-rearranged NSCLC, RET rearrangements were identified using fluorescence in situ hybridization and/or reverse transcriptase-polymerase chain reaction. The fusion partner genes were identified as KIF5B (57%), CCDC6 (19%), and unknown (24%). CT imaging showed that 12 primary lesions (92%) were peripherally located and all were solid tumors without ground-glass, air bronchograms, or cavitation. The median size of the primary lesions was 30 mm (range, 12-63 mm). Of the 18 patients with CT images before initial chemotherapy, 12 (67%) showed an absence of lymphadenopathy. Distant metastasis included 13 with pleural dissemination (72%), 10 with lung metastasis (56%), 8 with bone metastasis (44%), and 2 with brain metastasis (11%). CONCLUSION Advanced RET-rearranged NSCLC manifested as a relatively small and peripherally located solid primary lesion with or without small solitary lymphadenopathy. Pleural dissemination was frequently observed.
Collapse
Affiliation(s)
- Masafumi Saiki
- Department of Thoracic Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoru Kitazono
- Department of Thoracic Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takahiro Yoshizawa
- Department of Thoracic Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yosuke Dotsu
- Department of Thoracic Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryo Ariyasu
- Department of Thoracic Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Junji Koyama
- Department of Thoracic Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tomoaki Sonoda
- Department of Thoracic Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ken Uchibori
- Department of Thoracic Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shingo Nishikawa
- Department of Thoracic Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Noriko Yanagitani
- Department of Thoracic Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Atsushi Horiike
- Department of Thoracic Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Fumiyoshi Ohyanagi
- Division of Pulmonary Medicine, Clinical Department of Internal Medicine, Jichi Medical University, Saitama Medical Center, Saitama-City, Japan
| | - Katsunori Oikado
- Department of Diagnostic Imaging, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hironori Ninomiya
- Division of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuichi Ishikawa
- Division of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.
| |
Collapse
|
49
|
Sall FB, Germini D, Kovina AP, Ribrag V, Wiels J, Toure AO, Iarovaia OV, Lipinski M, Vassetzky Y. Effect of Environmental Factors on Nuclear Organization and Transformation of Human B Lymphocytes. BIOCHEMISTRY (MOSCOW) 2018; 83:402-410. [DOI: 10.1134/s0006297918040119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Abstract
BACKGROUND Gene fusions are known in many cancers as driver or passenger mutations. They play an important role in both the etiology and pathogenesis of cancer and are considered as potential diagnostic and prognostic markers and possible therapeutic targets. The spectrum and prevalence of gene fusions in thyroid cancer ranges from single cases up to 80%, depending on the specific type of cancer. During last three years, massive parallel sequencing technologies have revealed new fusions and allowed detailed characteristics of fusions in different types of thyroid cancer. SUMMARY This article reviews all known fusions and their prevalence in papillary, poorly differentiated and anaplastic, follicular, and medullary carcinomas. The mechanisms of fusion formation are described. In addition, the mechanisms of oncogenic transformation, such as altered gene expression, forced oligomerization, and subcellular localization, are given. CONCLUSION The prognostic value and perspectives of the utilization of gene fusions as therapeutic targets are discussed.
Collapse
Affiliation(s)
- Valentina D Yakushina
- 1 Research Centre for Medical Genetics , Moscow, Russian Federation
- 2 Moscow Institute of Physics and Technology , Moscow, Russian Federation
| | | | - Alexander V Lavrov
- 1 Research Centre for Medical Genetics , Moscow, Russian Federation
- 4 Russian National Research Medical University , Moscow, Russian Federation
| |
Collapse
|